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10.8 Taylor and Maclaurin Series

We have seen how geometric series can be used to generate a power series for functions 
such as ƒ(x) = 1>(1 - x) or g(x) = 3>(x - 2). Now we expand our capability to repre-
sent a function with a power series. This section shows how functions that are infinitely 
differentiable generate power series called Taylor series. In many cases, these series pro-
vide useful polynomial approximations of the original functions. Because approximation 
by polynomials is extremely useful to both mathematicians and scientists, Taylor series are 
an important application of the theory of infinite series.

Series Representations

We know from Theorem 21 that within its interval of convergence I the sum of a power 
series is a continuous function with derivatives of all orders. But what about the other way 
around? If a function ƒ(x) has derivatives of all orders on an interval, can it be expressed as 
a power series on at least part of that interval? And if it can, what are its coefficients?

We can answer the last question readily if we assume that ƒ(x) is the sum of a power 
series about x = a,

 ƒ(x) = aq
n = 0

an(x - a)n

 = a0 + a1(x - a) + a2(x - a)2 + g + an(x - a)n + g
with a positive radius of convergence. By repeated term-by-term differentiation within the 
interval of convergence I, we obtain

 ƒ′(x) = a1 + 2a2(x - a) + 3a3(x - a)2 + g + nan(x - a)n - 1 + g,

 ƒ″(x) = 1 # 2a2 + 2 # 3a3(x - a) + 3 # 4a4(x - a)2 + g,

 ƒ‴(x) = 1 # 2 # 3a3 + 2 # 3 # 4a4(x - a) + 3 # 4 # 5a5(x - a)2 + g,

with the nth derivative being

ƒ(n)(x) = n!an + a sum of terms with (x - a) as a factor.

Since these equations all hold at x = a, we have

ƒ′(a) = a1,  ƒ″(a) = 1 # 2a2,  ƒ‴(a) = 1 # 2 # 3a3,

and, in general,
ƒ(n)(a) = n!an .

e. Explain why 0 x - cn 0 6 h and why 
0 dn-1 0 … a = max5 0 x 0 , 0 x + h 0 6 .

f. Show that

` g(x) -
ƒ(x + h) - ƒ(x)

h
` … � h � aq

n = 2
0 n(n - 1)ana

n-2 0

g. Show that gq
n = 2 n(n - 1)an-2 converges for -R 6 x 6 R.

h. Let h S 0 in part (f) to conclude that

lim
hS0

 
ƒ(x + h) - ƒ(x)

h
= g(x).

 65. Proof of Theorem 22 Assume that a = 0 in Theorem 22 and 

  that ƒ(x) = aq
n = 0

cnxn converges for -R 6 x 6 R. Let 

  g(x) = aq
n = 0

 
cn

n + 1
 xn+1. This exercise will prove that g′(x) = ƒ(x).

a. Use the Ratio Test to show that g(x) converges for 
-R 6 x 6 R.

b. Use Theorem 21 to show that g′(x) = ƒ(x), that is,

 Lƒ(x) dx = g(x) + C.
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 10.8  Taylor and Maclaurin Series 623

These formulas reveal a pattern in the coefficients of any power series gq
n = 0  an(x - a)n 

that converges to the values of ƒ on I (“represents ƒ on I ”). If there is such a series (still an 
open question), then there is only one such series, and its nth coefficient is

an =
ƒ(n)(a)

n!
.

If ƒ has a series representation, then the series must be

 ƒ(x) = ƒ(a) + ƒ′(a)(x - a) +
ƒ″(a)

2!
(x - a)2

                           + g +
ƒ(n)(a)

n!
 (x - a)n + g.  (1)

But if we start with an arbitrary function ƒ that is infinitely differentiable on an interval 
containing x = a and use it to generate the series in Equation (1), does the series converge 
to ƒ(x) at each x in the interval of convergence? The answer is maybe—for some functions 
it will but for other functions it will not (as we will see in Example 4).

Taylor and Maclaurin Series

The series on the right-hand side of Equation (1) is the most important and useful series 
we will study in this chapter.

HISTORICAL BIOGRAPHIES

Brook Taylor
(1685–1731)
www.goo.gl/5A5Dxl

Colin Maclaurin
(1698–1746)
www.goo.gl/vL7QNQ DEFINITIONS Let ƒ be a function with derivatives of all orders throughout 

some interval containing a as an interior point. Then the Taylor series generated 
by ƒ at x = a is

 aq
k = 0

 
ƒ(k)(a)

k!
 (x - a)k = ƒ(a) + ƒ′(a)(x - a) +

ƒ″(a)
2!

 (x - a)2

 + g +
ƒ(n)(a)

n!
 (x - a)n + g.

The Maclaurin series of ƒ is the Taylor series generated by ƒ at x = 0, or

aq
k = 0

 
ƒ(k)(0)

k!
 xk = ƒ(0) + ƒ′(0)x +

ƒ″(0)
2!

 x2 + g+
ƒ(n)(0)

n!
 xn + g.

The Maclaurin series generated by ƒ is often just called the Taylor series of ƒ.

EXAMPLE 1  Find the Taylor series generated by ƒ(x) = 1>x at a = 2. Where, if 
anywhere, does the series converge to 1 >x?

Solution We need to find ƒ(2), ƒ′(2), ƒ″(2), . . . .. Taking derivatives we get

ƒ(x) = x-1, ƒ′(x) = -x-2, ƒ″(x) = 2!x-3, . . . , ƒ(n)(x) = (-1)nn!x-(n + 1),

so that

ƒ(2) = 2-1 = 1
2, ƒ′(2) = -  1

22 , 
ƒ″(2)

2! = 2-3 = 1
23 , . . . , 

ƒ(n)(2)
n! =

(-1)n

2n + 1  .

The Taylor series is

 ƒ(2) + ƒ′(2)(x - 2) -
ƒ″(2)

2!
 (x - 2)2 + g +

ƒ(n)(2)
n!

 (x - 2)n + g

 = 1
2 -

(x - 2)

22 +
(x - 2)2

23 - g + (-1)n 
(x - 2)n

2n + 1 + g.
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624 Chapter 10 Infinite Sequences and Series

This is a geometric series with first term 1 >2 and ratio r = -(x - 2)>2. It converges 
absolutely for � x - 2 � 6 2 and its sum is

1>2
1 + (x - 2)>2 = 1

2 + (x - 2) = 1
x .

In this example the Taylor series generated by ƒ(x) = 1>x at a = 2 converges to 1 >x for 
� x - 2 � 6 2 or 0 6 x 6 4. 

Taylor Polynomials

The linearization of a differentiable function ƒ at a point a is the polynomial of degree one 
given by

P1(x) = ƒ(a) + ƒ′(a)(x - a).

In Section 3.9 we used this linearization to approximate ƒ(x) at values of x near a. If ƒ has 
derivatives of higher order at a, then it has higher-order polynomial approximations as well, 
one for each available derivative. These polynomials are called the Taylor polynomials of ƒ.

DEFINITION Let ƒ be a function with derivatives of order k for k = 1, 2, . . . , N  
in some interval containing a as an interior point. Then for any integer n from 0 
through N, the Taylor polynomial of order n generated by ƒ at x = a is the 
polynomial

 Pn(x) = ƒ(a) + ƒ′(a)(x - a) +
ƒ″(a)

2!
 (x - a)2 + g

 +
ƒ(k)(a)

k!
 (x - a)k + g+

ƒ(n)(a)
n!

 (x - a)n.

We speak of a Taylor polynomial of order n rather than degree n because ƒ(n)(a) may 
be zero. The first two Taylor polynomials of ƒ(x) = cos x at x = 0, for example, are 
P0(x) = 1 and P1(x) = 1. The first-order Taylor polynomial has degree zero, not one.

Just as the linearization of ƒ at x = a provides the best linear approximation of ƒ in 
the neighborhood of a, the higher-order Taylor polynomials provide the “best” polynomial 
approximations of their respective degrees. (See Exercise 44.)

EXAMPLE 2  Find the Taylor series and the Taylor polynomials generated by 
ƒ(x) = ex at x = 0.

Solution Since ƒ(n)(x) = ex and ƒ(n)(0) = 1 for every n = 0, 1, 2,c, the Taylor series 
generated by ƒ at x = 0 (see Figure 10.22) is

 ƒ(0) + ƒ′(0)x +
ƒ″(0)

2!
 x2 + g +

ƒ(n)(0)
n!

 xn + g

 = 1 + x + x2

2 + g + xn

n!
+ g

 = aq
k = 0

 x
k

k!
.

This is also the Maclaurin series for ex. In the next section we will see that the series 
 converges to ex at every x.

The Taylor polynomial of order n at x = 0 is

 Pn(x) = 1 + x + x2

2 + g + xn

n! . 

0.5

1.0

y = e x

0 0.5

1.5

2.0

2.5

3.0
y = P3(x)

y = P2(x)

y = P1(x)

1.0

x

y

−0.5

FIGURE 10.22 The graph of ƒ(x) = ex 
and its Taylor polynomials

 P1(x) = 1 + x

 P2(x) = 1 + x + (x2>2!)
 P3(x) = 1 + x + (x2>2!) + (x3>3!).

Notice the very close agreement near the 
center x = 0 (Example 2).
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 10.8  Taylor and Maclaurin Series 625

EXAMPLE 4  It can be shown (though not easily) that

ƒ(x) = e0, x = 0
e-1>x2

, x ≠ 0

0 1

1
y = cos x

2

−1

−2

2 3 4 5 6 7 9

P0
P4 P8 P12 P16

P2 P6 P10 P14 P18

8
x

y

FIGURE 10.23 The polynomials

P2n(x) = an

k = 0
 
(-1)kx2k

(2k)!

converge to cos x as n S q. We can deduce the behavior of 
cos x arbitrarily far away solely from knowing the values of the 
cosine and its derivatives at x = 0 (Example 3).

EXAMPLE 3  Find the Taylor series and Taylor polynomials generated by ƒ(x) = cos x 
at x = 0.

Solution The cosine and its derivatives are

  ƒ(x) =   cos x,     ƒ′(x) =    -sin x,

  ƒ″(x) =    -cos x,    ƒ(3)(x) =     sin x,

    f  f
  ƒ(2n)(x) = (-1)n cos x,    ƒ(2n + 1)(x) = (-1)n + 1 sin x.

At x = 0, the cosines are 1 and the sines are 0, so

ƒ(2n)(0) = (-1)n,  ƒ(2n + 1)(0) = 0.

The Taylor series generated by ƒ at 0 is

 ƒ(0) + ƒ′(0) x +
ƒ″(0)

2!
 x2 +

ƒ‴(0)
3!

 x3 + g +
ƒ(n)(0)

n!
 xn + g

 = 1 + 0 # x - x2

2!
+ 0 # x3 + x4

4!
+ g + (-1)n x2n

(2n)!
+ g

 = aq
k = 0

 
(-1)kx2k

(2k)!
.

This is also the Maclaurin series for cos x. Notice that only even powers of x occur in the 
Taylor series generated by the cosine function, which is consistent with the fact that it is an 
even function. In Section 10.9, we will see that the series converges to cos x at every x.

Because ƒ(2n + 1)(0) = 0, the Taylor polynomials of orders 2n and 2n + 1 are identical:

P2n(x) = P2n + 1(x) = 1 - x2

2!
+ x4

4!
- g + (-1)n x2n

(2n)!
.

Figure 10.23 shows how well these polynomials approximate ƒ(x) = cos x near x = 0. 
Only the right-hand portions of the graphs are given because the graphs are symmetric 
about the y-axis. 
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626 Chapter 10 Infinite Sequences and Series

(Figure 10.24) has derivatives of all orders at x = 0 and that ƒ(n)(0) = 0 for all n. This 
means that the Taylor series generated by ƒ at x = 0 is

 ƒ(0) + ƒ′(0)x +
ƒ″(0)

2!
 x2 + g +

ƒ(n)(0)
n!

 xn + g
 = 0 + 0 # x + 0 # x2 + g + 0 # xn + g
 = 0 + 0 + g + 0 + g.

The series converges for every x (its sum is 0) but converges to ƒ(x) only at x = 0. That is, 
the Taylor series generated by ƒ(x) in this example is not equal to the function ƒ(x) over 
the entire interval of convergence. 

Two questions still remain.

1. For what values of x can we normally expect a Taylor series to converge to its generat-
ing function?

2. How accurately do a function’s Taylor polynomials approximate the function on a 
given interval?

The answers are provided by a theorem of Taylor in the next section.

Finding Taylor Polynomials
In Exercises 1–10, find the Taylor polynomials of orders 0, 1, 2, and 3 
generated by ƒ at a.

 1. ƒ(x) = e2x, a = 0 2. ƒ(x) = sin x, a = 0

 3. ƒ(x) = ln x, a = 1 4. ƒ(x) = ln (1 + x), a = 0

 5. ƒ(x) = 1>x, a = 2 6. ƒ(x) = 1>(x + 2), a = 0

 7. ƒ(x) = sin x, a = p>4 8. ƒ(x) = tan x, a = p>4
 9. ƒ(x) = 2x, a = 4 10. ƒ(x) = 21 - x, a = 0

Finding Taylor Series at x = 0 (Maclaurin Series)
Find the Maclaurin series for the functions in Exercises 11–24.

 11. e-x  12. xex

 13. 1
1 + x

 14. 
2 + x
1 - x

 15. sin 3x 16. sin  
x
2

 17. 7 cos (-x) 18. 5 cos px

 19. cosh x = ex + e-x

2
 20. sinh x = ex - e-x

2

 21. x4 - 2x3 - 5x + 4 22. 
x2

x + 1

 23. x sin x 24. (x + 1) ln (x + 1)

Finding Taylor and Maclaurin Series
In Exercises 25–34, find the Taylor series generated by ƒ at x = a.

 25. ƒ(x) = x3 - 2x + 4, a = 2

 26. ƒ(x) = 2x3 + x2 + 3x - 8, a = 1

 27. ƒ(x) = x4 + x2 + 1, a = -2

 28. ƒ(x) = 3x5 - x4 + 2x3 + x2 - 2, a = -1

 29. ƒ(x) = 1>x2, a = 1

 30. ƒ(x) = 1>(1 - x)3, a = 0

 31. ƒ(x) = ex, a = 2

 32. ƒ(x) = 2x, a = 1

 33. ƒ(x) = cos (2x + (p>2)), a = p>4
 34. ƒ(x) = 2x + 1, a = 0

In Exercises 35–38, find the first three nonzero terms of the Maclaurin 
series for each function and the values of x for which the series con-
verges absolutely.

 35. ƒ(x) = cos x - (2>(1 - x)) 

 36. ƒ(x) = (1 - x + x2)ex

 37. ƒ(x) = (sin x) ln (1 + x)

 38. ƒ(x) = x sin2 x

 39. ƒ(x) = x4ex2

 40. ƒ(x) = x3

1 + 2x

Theory and Examples
 41. Use the Taylor series generated by ex at x = a to show that

ex = ea c 1 + (x - a) +
(x - a)2

2!
+ g d .

 42. (Continuation of Exercise 41.) Find the Taylor series generated by 
ex at x = 1. Compare your answer with the formula in Exercise 41.

 43. Let ƒ(x) have derivatives through order n at x = a. Show that the 
Taylor polynomial of order n and its first n derivatives have the 
same values that ƒ and its first n derivatives have at x = a.

EXERCISES 10.8

0 1 2

1

−1−2

e−1�x2
,  x ≠ 0

 0 , x = 0  
y =

x

y

FIGURE 10.24 The graph of the con-
tinuous extension of y = e-1>x2

 is so flat 
at the origin that all of its derivatives there 
are zero (Example 4). Therefore its Taylor 
series, which is zero everywhere, is not the 
function itself.
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 10.9  Convergence of Taylor Series 627

 44. Approximation properties of Taylor polynomials Suppose 
that ƒ(x) is differentiable on an interval centered at x = a and 
that g(x) =  b0 + b1(x - a) + g + bn(x - a)n is a polyno-
mial of degree n with constant coefficients b0, . . . , bn. Let E(x) =  
ƒ(x) - g(x). Show that if we impose on g the conditions

 i) E(a) = 0 The approximation error is zero at x = a.

 ii) lim
xSa

  
E(x)

(x - a)n = 0,   The error is negligible when compared to 
(x - a)n.

Thus, the Taylor polynomial Pn(x) is the only polynomial 
of degree less than or equal to n whose error is both zero at 
x = a and negligible when compared with (x - a)n.

Quadratic Approximations The Taylor polynomial of order 2 gen-
erated by a twice-differentiable function ƒ(x) at x = a is called the 
quadratic approximation of ƒ at x = a. In Exercises 45–50, find the 
(a) linearization (Taylor polynomial of order 1) and (b) quadratic 
approximation of ƒ at x = 0.

 45. ƒ(x) = ln (cos x) 46. ƒ(x) = esin x

 47. ƒ(x) = 1>21 - x2 48. ƒ(x) = cosh x

 49. ƒ(x) = sin x 50. ƒ(x) = tan x

10.9 Convergence of Taylor Series

In the last section we asked when a Taylor series for a function can be expected to converge 
to the function that generates it. The finite-order Taylor polynomials that approximate the 
Taylor series provide estimates for the generating function. In order for these estimates to 
be useful, we need a way to control the possible errors we may encounter when approxi-
mating a function with its finite-order Taylor polynomials. How do we bound such possible 
errors? We answer the question in this section with the following theorem.

THEOREM 23—Taylor’s Theorem
If ƒ and its first n derivatives ƒ′, ƒ″,c , ƒ(n) are continuous on the closed interval 
between a and b, and ƒ(n) is differentiable on the open interval between a and b, 
then there exists a number c between a and b such that

 ƒ(b) = ƒ(a) + ƒ′(a)(b - a) +
ƒ″(a)

2!
(b - a)2 + g

 +
ƒ(n)(a)

n!
(b - a)n +

ƒ(n + 1)(c)
(n + 1)!

 (b - a)n + 1.

Taylor’s Theorem is a generalization of the Mean Value Theorem (Exercise 49). There is a 
proof of Taylor’s Theorem at the end of this section.

When we apply Taylor’s Theorem, we usually want to hold a fixed and treat b as an 
independent variable. Taylor’s formula is easier to use in circumstances like these if we 
change b to x. Here is a version of the theorem with this change.

Taylor’s Formula
If ƒ has derivatives of all orders in an open interval I containing a, then for each 
positive integer n and for each x in I,

 ƒ(x) = ƒ(a) + ƒ′(a)(x - a) +
ƒ″(a)

2!
(x - a)2 + g

  +
ƒ(n)(a)

n!
(x - a)n + Rn(x),  (1)

where

 Rn(x) =
ƒ(n + 1)(c)
(n + 1)!

 (x - a)n + 1  for some c between a and x. (2)

then

 g(x) = ƒ(a) + ƒ′(a)(x - a) +
ƒ″(a)

2!
 (x - a)2 + g

                 +
ƒ(n)(a)

n!
(x - a)n.
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628 Chapter 10 Infinite Sequences and Series

When we state Taylor’s theorem this way, it says that for each x∊I,

ƒ(x) = Pn(x) + Rn(x).

The function Rn(x) is determined by the value of the (n + 1)st derivative ƒ(n + 1) at a point 
c that depends on both a and x, and that lies somewhere between them. For any value of n 
we want, the equation gives both a polynomial approximation of ƒ of that order and a for-
mula for the error involved in using that approximation over the interval I.

Equation (1) is called Taylor’s formula. The function Rn(x) is called the remainder 
of order n or the error term for the approximation of ƒ by Pn(x) over I.

If Rn(x) S 0 as n S q for all x∊I, we say that the Taylor series generated by ƒ 
at x = a converges to ƒ on I, and we write

ƒ(x) = aq
k = 0

 
ƒ(k)(a)

k!
 (x - a)k.

Often we can estimate Rn without knowing the value of c, as the following example 
illustrates.

EXAMPLE 1  Show that the Taylor series generated by ƒ(x) = ex at x = 0 converges 
to ƒ(x) for every real value of x.

Solution The function has derivatives of all orders throughout the interval I =   
(-q, q). Equations (1) and (2) with ƒ(x) = ex and a = 0 give

ex = 1 + x + x2

2!
+ g + xn

n!
+ Rn(x)  

Polynomial from  
Section 10.8, Example 2 

and

Rn(x) = ec

(n + 1)!
 xn + 1    for some c between 0 and x.

Since ex is an increasing function of x, ec lies between e0 = 1 and ex. When x is negative, 
so is c, and ec 6 1. When x is zero, ex = 1 so that Rn(x) = 0. When x is positive, so is c, 
and ec 6 ex. Thus, for Rn(x) given as above,

� Rn(x) � …
� x �n + 1

(n + 1)!
  when x … 0,  ec 6 1 since c 6 0

and

� Rn(x) � 6 ex xn + 1

(n + 1)!
  when x 7 0.  ec 6 ex since c 6 x

Finally, because

lim
nSq

  xn + 1

(n + 1)!
= 0  for every x,  Section 10.1, Theorem 5

lim
nSq

Rn(x) = 0, and the series converges to ex for every x. Thus,

 ex = aq
k = 0

 x
k

k!
= 1 + x + x2

2!
+ g + xk

k!
+ g. (3)

 

We can use the result of Example 1 with x = 1 to write

e = 1 + 1 + 1
2!

+ g + 1
n!

+ Rn(1),

The Number e as a Series

e = aq
n = 0

 
1
n!
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 10.9  Convergence of Taylor Series 629

where for some c between 0 and 1,

Rn(1) = ec 1
(n + 1)!

6 3
(n + 1)!

.  ec 6 e1 6 3

Estimating the Remainder

It is often possible to estimate Rn(x) as we did in Example 1. This method of estimation is 
so convenient that we state it as a theorem for future reference.

THEOREM 24—The Remainder Estimation Theorem
If there is a positive constant M such that � ƒ(n + 1)(t) � … M  for all t between x 
and a, inclusive, then the remainder term Rn(x) in Taylor’s Theorem satisfies the 
inequality

� Rn(x) � … M 
� x - a � n + 1

(n + 1)!
.

If this inequality holds for every n and the other conditions of Taylor’s Theorem 
are satisfied by ƒ, then the series converges to ƒ(x).

The next two examples use Theorem 24 to show that the Taylor series generated by 
the sine and cosine functions do in fact converge to the functions themselves.

EXAMPLE 2  Show that the Taylor series for sin x at x = 0 converges for all x.

Solution The function and its derivatives are

 ƒ(x) =    sin x,    ƒ′(x) =    cos x,

 ƒ″(x) =   -sin x,    ƒ‴(x) =   -cos x,

  f            f
 ƒ(2k)(x) = (-1)k   sin x,   ƒ(2k + 1)(x) = (-1)k cos x,

so

f (2k)(0) = 0  and  f (2k + 1)(0) = (-1)k.

The series has only odd-powered terms and, for n = 2k + 1, Taylor’s Theorem gives

sin x = x - x3

3!
+ x5

5!
- g+

(-1)kx2k + 1

(2k + 1)!
+ R2k + 1(x).

All the derivatives of sin x have absolute values less than or equal to 1, so we can apply the 
Remainder Estimation Theorem with M = 1 to obtain

� R2k + 1(x) � … 1 # � x �2k + 2

(2k + 2)!
.

From Theorem 5, Rule 6, we have ( � x �2k + 2>(2k + 2)!) S 0 as k S q, whatever the 
value of x, so R2k + 1(x) S 0 and the Maclaurin series for sin x converges to sin x for every 
x. Thus,

 sin x = aq
k = 0

 
(-1)kx2k + 1

(2k + 1)!
= x - x3

3!
+ x5

5!
- x7

7!
+ g. (4)

 

sin x = x - x3

3!
+ x5

5!
- x7

7!
+ g
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EXAMPLE 3  Show that the Taylor series for cos x at x = 0 converges to cos x for 
every value of x.

Solution We add the remainder term to the Taylor polynomial for cos x (Section 10.8, 
Example 3) to obtain Taylor’s formula for cos x with n = 2k:

cos x = 1 - x2

2!
+ x4

4!
- g+ (-1)k x2k

(2k)!
+ R2k(x).

Because the derivatives of the cosine have absolute value less than or equal to 1, the 
Remainder Estimation Theorem with M = 1 gives

� R2k(x) � … 1 # � x � 2k + 1

(2k + 1)!
.

For every value of x, R2k(x) S 0 as k S q. Therefore, the series converges to cos x for 
every value of x. Thus,

 cos x = aq
k = 0

 
(-1)kx2k

(2k)!
= 1 - x2

2!
+ x4

4!
- x6

6!
+ g. (5)

 

Using Taylor Series

Since every Taylor series is a power series, the operations of adding, subtracting, and mul-
tiplying Taylor series are all valid on the intersection of their intervals of convergence.

EXAMPLE 4  Using known series, find the first few terms of the Taylor series for the 
given function by using power series operations.

(a) 1
3 (2x + x cos x)        (b) ex cos x

Solution

(a)  13 (2x + x cos x) = 2
3 x + 1

3 x a1 - x2

2! + x4

4! - g + (-1)k x2k

(2k)!
+ gb  

 = 2
3 x + 1

3 x - x3

3! + x5

3 # 4! - g = x - x3

6
+ x5

72 - g

(b)  ex cos x = a1 + x + x2

2! + x3

3! + x4

4! + gb a1 - x2

2! + x4

4! - gb  

 = a1 + x + x2

2! + x3

3! + x4

4! + gb - ax
2

2! + x3

2! + x4

2!2! + x5

2!3! + gb

                  + ax
4

4! + x5

4! + x6

2!4! + gb + g

 = 1 + x - x3

3 - x4

6
+ g 

By Theorem 20, we can use the Taylor series of the function ƒ to find the Taylor series 
of ƒ(u(x)) where u(x) is any continuous function. The Taylor series resulting from this 
substitution will converge for all x such that u(x) lies within the interval of convergence of 

Taylor series 
for cos x

Multiply the first 
series by each term 
of the second series.

cos x = 1 - x2

2!
+ x4

4!
- x6

6!
+ g
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the Taylor series of ƒ. For instance, we can find the Taylor series for cos 2x by substituting 
2x for x in the Taylor series for cos x:

 cos 2x = aq
k = 0

 
(-1)k(2x)2k

(2k)!
= 1 -

(2x)2

2!
+

(2x)4

4!
-

(2x)6

6!
+ g  Eq. (5) with 2x for x

 = 1 - 22x2

2!
+ 24x4

4!
- 26x6

6!
+ g

 = aq
k = 0

(-1)k 2
2kx2k

(2k)!
.

1

y = sin x

2 3 4 8 9

P1 P5

P3 P7 P11 P15 P19

P9 P13 P17

5 6 70

1

2

−1

−2

x

y

FIGURE 10.25 The polynomials

P2n + 1(x) = an

k = 0
 
(-1)kx2k + 1

(2k + 1)!

converge to sin x as n S q. Notice how closely P3(x) approxi-
mates the sine curve for x … 1 (Example 5).

EXAMPLE 5  For what values of x can we replace sin x by x - (x3>3!)  and obtain 
an error whose magnitude is no greater than 3 * 10-4?

Solution Here we can take advantage of the fact that the Taylor series for sin x is an 
alternating series for every nonzero value of x. According to the Alternating Series Estima-
tion Theorem (Section 10.6), the error in truncating

sin x = x - x3

3!
 + x5

5!
- x7

7! + g

after (x3>3!)  is no greater than

` x
5

5!
` =

� x � 5

120 .

Therefore the error will be less than or equal to 3 * 10-4 if

� x � 5

120 6 3 * 10-4  or  � x � 6 25 360 * 10-4 ≈ 0.514.  
Rounded down, 
to be safe  

The Alternating Series Estimation Theorem tells us something that the Remainder 
Estimation Theorem does not: namely, that the estimate x - (x3>3!)  for sin x is an under-
estimate when x is positive, because then x5>120 is positive.

Figure 10.25 shows the graph of sin x, along with the graphs of a number of its approx-
imating Taylor polynomials. The graph of P3(x) = x - (x3>3!)  is almost indistinguishable 
from the sine curve when 0 … x … 1. 
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632 Chapter 10 Infinite Sequences and Series

A Proof of Taylor’s Theorem

We prove Taylor’s theorem assuming a 6 b. The proof for a 7 b is nearly the same.
The Taylor polynomial

Pn(x) = ƒ(a) + ƒ′(a)(x - a) +
ƒ″(a)

2!
 (x - a)2 + g +

f (n)(a)
n!

 (x - a)n

and its first n derivatives match the function ƒ and its first n derivatives at x = a. We do 
not disturb that matching if we add another term of the form K(x - a)n + 1, where K is any 
constant, because such a term and its first n derivatives are all equal to zero at x = a. The 
new function

fn(x) = Pn(x) + K(x - a)n + 1

and its first n derivatives still agree with ƒ and its first n derivatives at x = a.
We now choose the particular value of K that makes the curve y = fn(x) agree with 

the original curve y = ƒ(x) at x = b. In symbols,

 ƒ(b) = Pn(b) + K(b - a)n + 1,  or  K =
ƒ(b) - Pn(b)

(b - a)n + 1 . (6)

With K defined by Equation (6), the function

F(x) = ƒ(x) - fn(x)

measures the difference between the original function ƒ and the approximating function 
fn for each x in 3a, b4 .

We now use Rolle’s Theorem (Section 4.2). First, because F(a) = F(b) = 0 and both 
F and F′ are continuous on 3a, b4 , we know that

F′(c1) = 0  for some c1 in (a, b).

Next, because F′(a) = F′(c1) = 0 and both F′ and F″ are continuous on 3a, c14 , we 
know that

F″(c2) = 0  for some c2 in (a, c1).

Rolle’s Theorem, applied successively to F″, F‴, . . . , F (n - 1), implies the existence of

 c3 in (a, c2)   such that F‴(c3) = 0,

 c4 in (a, c3)   such that F (4)(c4) = 0,

 f
 cn in (a, cn - 1)   such that F (n)(cn) = 0.

Finally, because F (n) is continuous on 3a, cn4  and differentiable on (a, cn), and 
F (n)(a) = F (n)(cn) = 0, Rolle’s Theorem implies that there is a number cn + 1 in (a, cn) 
such that

 F (n + 1)(cn + 1) = 0. (7)

If we differentiate F(x) = ƒ(x) - Pn(x) - K(x - a)n + 1 a total of n + 1 times, we get

 F (n + 1)(x) = ƒ(n + 1)(x) - 0 - (n + 1)!K. (8)

Equations (7) and (8) together give

 K =
ƒ(n + 1)(c)
(n + 1)!

  for some number c = cn + 1 in (a, b). (9)

Equations (6) and (9) give

ƒ(b) = Pn(b) +
ƒ(n + 1)(c)
(n + 1)!

 (b - a)n + 1.

This concludes the proof. 
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Finding Taylor Series
Use substitution (as in Example 4) to find the Taylor series at x = 0 
of the functions in Exercises 1–12.

 1. e-5x 2. e-x>2 3. 5 sin (-x)

 4. sin apx
2
b  5. cos  5x2 6. cos 1x2>3>222

 7. ln (1 + x2)  8. tan-1 (3x4)  9. 1

1 + 3
4 x3

 10. 1
2 - x

 11. ln (3 + 6x) 12. e-x2 + ln 5

Use power series operations to find the Taylor series at x = 0 for the 
functions in Exercises 13–30.

 13. xex  14. x2 sin x 15. 
x2

2
- 1 + cos x

 16. sin x - x + x3

3!
 17. x cos px 18. x2 cos (x2)

 19. cos2 x (Hint: cos2 x = (1 + cos 2x)>2.)

 20. sin2 x 21. 
x2

1 - 2x
 22. x ln (1 + 2x)

 23. 1
(1 - x)2 24. 2

(1 - x)3 25. x tan-1 x2

 26. sin x # cos x 27. ex + 1
1 + x

 28. cos x - sin x

 29. 
x
3

 ln (1 + x2) 30. ln (1 + x) - ln (1 - x)

Find the first four nonzero terms in the Maclaurin series for the func-
tions in Exercises 31–38.

 31. ex sin x 32. 
ln (1 + x)

1 - x
 33. (tan-1 x)2

 34. cos2 x #  sin x 35. esin x 36. sin (tan-1 x)

 37. cos (ex - 1) 38. cos1x + ln (cos x)

Error Estimates
 39. Estimate the error if P3(x) = x - (x3>6)  is used to estimate the 

value of sin x at x = 0.1.

 40. Estimate the error if P4(x) = 1 + x + (x2>2) + (x3>6) + (x4>24)  
is used to estimate the value of ex at x = 1>2.

 41. For approximately what values of x can you replace sin x by 
x - (x3>6)  with an error of magnitude no greater than 5 * 10-4 ? 
Give reasons for your answer.

 42. If cos x is replaced by 1 - (x2>2)  and � x � 6 0.5, what estimate 
can be made of the error? Does 1 - (x2>2)  tend to be too large, 
or too small? Give reasons for your answer.

 43. How close is the approximation sin x = x when � x � 6 10-3 ? For 
which of these values of x is x 6 sin x?

 44. The estimate 21 + x = 1 + (x>2) is used when x is small. Esti-
mate the error when � x � 6 0.01.

 45. The approximation ex = 1 + x + (x2>2)  is used when x is small. 
Use the Remainder Estimation Theorem to estimate the error 
when � x � 6 0.1.

 46. (Continuation of Exercise 45.) When x 6 0, the series for ex 
is an alternating series. Use the Alternating Series Estimation 
Theorem to estimate the error that results from replacing ex by 
1 + x + (x2>2) when -0.1 6 x 6 0. Compare your estimate 
with the one you obtained in Exercise 45.

Theory and Examples
 47. Use the identity sin2 x = (1 - cos 2x)>2 to obtain the  Maclaurin 

series for sin2 x. Then differentiate this series to obtain the  Maclaurin  
series for 2 sin x cos x. Check that this is the series for sin 2x.

 48. (Continuation of Exercise 47.) Use the identity cos2 x =  
cos 2x + sin2 x to obtain a power series for cos2 x.

 49. Taylor’s Theorem and the Mean Value Theorem Explain how 
the Mean Value Theorem (Section 4.2, Theorem 4) is a special 
case of Taylor’s Theorem.

 50. Linearizations at inflection points Show that if the graph of a 
twice-differentiable function ƒ(x) has an inflection point at x = a, 
then the linearization of ƒ at x = a is also the quadratic approxi-
mation of ƒ at x = a. This explains why tangent lines fit so well at 
inflection points.

 51. The (second) second derivative test Use the equation

ƒ(x) = ƒ(a) + ƒ′(a)(x - a) +
ƒ″(c2)

2
 (x - a)2

  to establish the following test.
   Let ƒ have continuous first and second derivatives and suppose 

that ƒ′(a) = 0. Then

a. ƒ has a local maximum at a if ƒ″ … 0 throughout an interval 
whose interior contains a;

b. ƒ has a local minimum at a if ƒ″ Ú 0 throughout an interval 
whose interior contains a.

 52. A cubic approximation Use Taylor’s formula with a = 0 
and n = 3 to find the standard cubic approximation of ƒ(x) =  
1>(1 - x) at x = 0. Give an upper bound for the magnitude of 
the error in the approximation when � x � … 0.1.

 53. a.  Use Taylor’s formula with n = 2 to find the quadratic 
 approximation of ƒ(x) = (1 + x)k at x = 0 (k a constant).

b. If k = 3, for approximately what values of x in the interval 
30, 14  will the error in the quadratic approximation be less 
than 1 >100?

 54. Improving approximations of P

a. Let P be an approximation of p accurate to n decimals. 
Show that P + sin P gives an approximation correct to 3n 
decimals. (Hint: Let P = p + x.)

b. Try it with a calculator.

 55. The Taylor series generated by ƒ(x) = gHn = 0  an xn is gHn = 0  an xn A function defined by a power series gq
n = 0 an xn with 

a radius of convergence R 7 0 has a Taylor series that converges 
to the function at every point of (-R, R). Show this by showing 
that the Taylor series generated by ƒ(x) = gq

n = 0 an xn is the series gq
n = 0 an xn itself.

   An immediate consequence of this is that series like

x sin x = x2 - x4

3!
+ x6

5!
- x8

7!
+ g

T

EXERCISES 10.9
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634 Chapter 10 Infinite Sequences and Series

Step 1: Plot the function over the specified interval.

Step 2: Find the Taylor polynomials P1(x), P2(x), and P3(x) at 
x = 0.

Step 3: Calculate the (n + 1)st derivative ƒ(n + 1)(c) associat-
ed with the remainder term for each Taylor polynomial. Plot 
the derivative as a function of c over the specified interval 
and estimate its maximum absolute value, M.

Step 4: Calculate the remainder Rn(x) for each polynomial. 
Using the estimate M from Step 3 in place of ƒ(n + 1)(c), plot 
Rn(x) over the specified interval. Then estimate the values of 
x that answer question (a).

Step 5: Compare your estimated error with the actual error 
En(x) = � ƒ(x) - Pn(x) �  by plotting En(x) over the specified 
interval. This will help answer question (b).

Step 6: Graph the function and its three Taylor approxima-
tions together. Discuss the graphs in relation to the informa-
tion discovered in Steps 4 and 5.

 57. ƒ(x) = 121 + x
, � x � … 3

4

 58. ƒ(x) = (1 + x)3>2, -  
1
2

… x … 2

 59. ƒ(x) = x
x2 + 1

, � x � … 2

 60. ƒ(x) = (cos x)(sin 2x), � x � … 2

 61. ƒ(x) = e-x cos 2x, � x � … 1

 62. ƒ(x) = e 

x>3 sin 2x, � x � … 2

  and

x2ex = x2 + x3 + x4

2!
+ x5

3!
+ g,

  obtained by multiplying Taylor series by powers of x, as well as 
series obtained by integration and differentiation of convergent 
power series, are themselves the Taylor series generated by the 
functions they represent.

 56. Taylor series for even functions and odd functions (Continu-
ation of Section 10.7, Exercise 59.) Suppose that ƒ(x) = gq

n = 0 an xn 
converges for all x in an open interval (-R, R). Show that

a. If ƒ is even, then a1 = a3 = a5 = g = 0, i.e., the Taylor 
series for ƒ at x = 0 contains only even powers of x.

b. If ƒ is odd, then a0 = a2 = a4 = g = 0, i.e., the Taylor 
series for ƒ at x = 0 contains only odd powers of x.

COMPUTER EXPLORATIONS
Taylor’s formula with n = 1 and a = 0 gives the linearization of a 
function at x = 0. With n = 2 and n = 3 we obtain the standard 
quadratic and cubic approximations. In these exercises we explore the 
errors associated with these approximations. We seek answers to two 
questions:

a. For what values of x can the function be replaced by each 
approximation with an error less than 10-2?

b. What is the maximum error we could expect if we replace the 
function by each approximation over the specified interval?

Using a CAS, perform the following steps to aid in answering 
questions (a) and (b) for the functions and intervals in Exercises  
57–62.

10.10 Applications of Taylor Series

We can use Taylor series to solve problems that would otherwise be intractable. For exam-
ple, many functions have antiderivatives that cannot be expressed using familiar functions. 
In this section we show how to evaluate integrals of such functions by giving them as 
 Taylor series. We also show how to use Taylor series to evaluate limits that lead to indeter-
minate forms and how Taylor series can be used to extend the exponential function from 
real to complex numbers. We begin with a discussion of the binomial series, which comes 
from the Taylor series of the function ƒ(x) = (1 + x)m, and conclude the section with 
Table 10.1, which lists some commonly used Taylor series.

The Binomial Series for Powers and Roots

The Taylor series generated by ƒ(x) = (1 + x)m, when m is constant, is

 1 + mx +
m(m - 1)

2!
 x2 +

m(m - 1)(m - 2)
3!

 x3 + g

  +
m(m - 1)(m - 2) g (m - k + 1)

k!
 xk + g. (1)
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This series, called the binomial series, converges absolutely for � x � 6 1. To derive the 
series, we first list the function and its derivatives:

 ƒ(x) = (1 + x)m

 ƒ′(x) = m(1 + x)m - 1

 ƒ″(x) = m(m - 1)(1 + x)m - 2

 ƒ‴(x) = m(m - 1)(m - 2)(1 + x)m - 3

 f
 ƒ(k)(x) = m(m - 1)(m - 2)g(m - k + 1)(1 + x)m - k.

We then evaluate these at x = 0 and substitute into the Taylor series formula to obtain 
Series (1).

If m is an integer greater than or equal to zero, the series stops after (m + 1) terms 
because the coefficients from k = m + 1 on are zero.

If m is not a positive integer or zero, the series is infinite and converges for � x � 6 1. 
To see why, let uk be the term involving xk. Then apply the Ratio Test for absolute conver-
gence to see that

` uk + 1
uk
` = `m - k

k + 1
 x ` S � x �  as k S q .

Our derivation of the binomial series shows only that it is generated by (1 + x)m and 
converges for � x � 6 1. The derivation does not show that the series converges to 
(1 + x)m. It does, but we leave the proof to Exercise 58. The following formulation gives 
a succinct way to express the series.

The Binomial Series
For -1 6 x 6 1,

(1 + x)m = 1 + aq
k = 1

 am
k
b  xk ,

where we define

am
1
b = m,  am

2
b =

m(m - 1)
2!

,

and

am
k
b =

m(m - 1)(m - 2)g(m - k + 1)
k!

  for k Ú 3.

EXAMPLE 1  If m = -1,

a-1
1
b = -1,  a-1

2
b =

-1(-2)
2!

= 1,

and

a-1
k
b =

-1(-2)(-3)g(-1 - k + 1)
k!

= (-1)k ak!
k!
b = (-1)k.

With these coefficient values and with x replaced by -x, the binomial series formula gives 
the familiar geometric series

 (1 + x)-1 = 1 + aq
k = 1

(-1)kxk = 1 - x + x2 - x3 + g + (-1)kxk + g. 
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EXAMPLE 2  We know from Section 3.9, Example 1, that 21 + x ≈ 1 + (x>2) 
for � x �  small. With m = 1>2, the binomial series gives quadratic and higher-order 
approximations as well, along with error estimates that come from the Alternating Series 
Estimation Theorem:

 (1 + x)1>2 = 1 + x
2 +

a12b a-  12b
2!

 x2 +
a12b a-  12b a-  32b

3!
 x3

 +
a12b a-  12b a-  32b a-  52b

4!
 x4 + g

 = 1 + x
2 - x2

8 + x3

16
- 5x4

128 + g.

Substitution for x gives still other approximations. For example,21 - x2 ≈ 1 - x2

2 - x4

8  for  � x2 �   small

 A1 - 1
x ≈ 1 - 1

2x - 1
8x2  for ` 1x `  small, that is,  � x �   large. 

Evaluating Nonelementary Integrals

Sometimes we can use a familiar Taylor series to find the sum of a given power series in 
terms of a known function. For example,

x2 - x6

3! + x10

5!
- x14

7! + g = (x2) -
(x2)3

3! +
(x2)5

5!
-

(x2)7

7! + g = sin x2 .

Additional examples are provided in Exercises 59–62.
Taylor series can be used to express nonelementary integrals in terms of series. Inte-

grals like 1  sin x2 dx arise in the study of the diffraction of light.

EXAMPLE 3  Express 1  sin x2 dx as a power series.

Solution From the series for sin x we substitute x2 for x to obtain

sin x2 = x2 - x6

3!
+ x10

5!
- x14

7!
+ x18

9!
- g.

Therefore,

  L  sin x2 dx = C + x3

3 - x7

7 # 3!
+ x11

11 # 5!
- x15

15 # 7!
+ x19

19 # 9!
- g. 

EXAMPLE 4  Estimate 11
0  sin x2 dx with an error of less than 0.001.

Solution From the indefinite integral in Example 3, we easily find that

 L
1

0
 sin x2 dx = 1

3 - 1
7 # 3!

+ 1
11 # 5!

- 1
15 # 7!

+ 1
19 # 9!

- g.

The series on the right-hand side alternates, and we find by numerical evaluations that

1
11 # 5!

≈ 0.00076
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is the first term to be numerically less than 0.001. The sum of the preceding two terms 
gives

 L
1

0
 sin x2 dx ≈ 1

3 - 1
42 ≈ 0.310.

With two more terms we could estimate

 L
1

0
 sin x2 dx ≈ 0.310268

with an error of less than 10-6. With only one term beyond that we have

 L
1

0
 sin x2 dx ≈ 1

3 - 1
42 + 1

1320 - 1
75600

+ 1
6894720

≈ 0.310268303,

with an error of about 1.08 * 10-9. To guarantee this accuracy with the error formula for 
the Trapezoidal Rule would require using about 8000 subintervals. 

Arctangents

In Section 10.7, Example 5, we found a series for tan-1 x by differentiating to get

d
dx

 tan-1 x = 1
1 + x2 = 1 - x2 + x4 - x6 + g

and then integrating to get

tan-1 x = x - x3

3 + x5

5
- x7

7 + g.

However, we did not prove the term-by-term integration theorem on which this conclu-
sion depended. We now derive the series again by integrating both sides of the finite 
formula

 1
1 + t2 = 1 - t2 + t4 - t6 + g+ (-1)nt2n +

(-1)n + 1t2n + 2

1 + t2 , (2)

in which the last term comes from adding the remaining terms as a geometric series with 
first term a = (-1)n + 1t2n + 2 and ratio r = - t2. Integrating both sides of Equation (2) from 
t = 0 to t = x gives

tan-1 x = x - x3

3 + x5

5
- x7

7 + g + (-1)n x2n + 1

2n + 1 + Rn(x),

where

Rn(x) = L
x

0
 
(-1)n + 1t2n + 2

1 + t2  dt.

The denominator of the integrand is greater than or equal to 1; hence

� Rn(x) � … L
�x�

0
t2n + 2 dt =

� x � 2n + 3

2n + 3 .

If � x � … 1, the right side of this inequality approaches zero as n S q. Therefore 
limnSq Rn(x) = 0 if � x � … 1 and

tan-1 x = aq
n = 0

 
(-1)nx2n + 1

2n + 1 ,  � x � … 1.

 tan-1 x = x - x3

3 + x5

5
- x7

7 + g,  � x � … 1.

 (3)
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We take this route instead of finding the Taylor series directly because the formulas 
for the higher-order derivatives of tan-1 x are unmanageable. When we put x = 1 in Equa-
tion (3), we get Leibniz’s formula:

p
4 = 1 - 1

3 + 1
5

- 1
7 + 1

9 - g +
(-1)n

2n + 1 + g.

Because this series converges very slowly, it is not used in approximating p to many deci-
mal places. The series for tan-1 x converges most rapidly when x is near zero. For that 
reason, people who use the series for tan-1 x to compute p use various trigonometric 
 identities.

For example, if

a = tan-1 12  and  b = tan-1 13 ,

then

tan (a + b) =
tan a + tan b

1 - tan a tan b =
1
2 + 1

3

1 - 1
6

= 1 = tan p4

and therefore

p
4 = a + b = tan-1 12 + tan-1 13 .

Now Equation (3) may be used with x = 1>2 to evaluate tan-1 (1>2) and with x = 1>3 to 
give tan-1 (1>3). The sum of these results, multiplied by 4, gives p.

Evaluating Indeterminate Forms

We can sometimes evaluate indeterminate forms by expressing the functions involved as 
Taylor series.

EXAMPLE 5  Evaluate

lim
xS1

  ln x
x - 1.

Solution We represent ln x as a Taylor series in powers of x - 1. This can be accom-
plished by calculating the Taylor series generated by ln x at x = 1 directly or by replacing 
x by x - 1 in the series for ln (1 + x) in Section 10.7, Example 6. Either way, we obtain

ln x = (x - 1) - 1
2 (x - 1)2 + g,

from which we find that

lim 
xS1

  ln x
x - 1 = lim

xS1
 a1 - 1

2 (x - 1) + gb = 1.

Of course, this particular limit can be evaluated using l’Hôpital’s Rule just as well. 

EXAMPLE 6  Evaluate

lim
xS0

 sin x - tan x
x3 .
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Solution The Taylor series for sin x and tan x, to terms in x5, are

sin x = x - x3

3!
+ x5

5!
- g,  tan x = x + x3

3 + 2x5

15
+ g.

Subtracting the series term by term, it follows that

sin x - tan x = -  x
3

2 - x5

8 - g = x3 a-  12 - x2

8 - gb .

Division of both sides by x3 and taking limits then gives

  lim
xS0

 sin x - tan x
x3 = lim

xS0
 a-  12 - x2

8 - gb = -  12 . 

If we apply series to calculate limxS0 ((1>sin x) - (1/x)), we not only find the limit 
 successfully but also discover an approximation formula for csc x.

EXAMPLE 7  Find lim
xS0

 a 1
sin x

- 1
xb .

Solution Using algebra and the Taylor series for sin x, we have

 1
sin x

- 1
x = x - sin x

x sin x
=

x - ax - x3

3!
+ x5

5!
- gb

x # ax - x3

3!
+ x5

5!
- gb

 =
x3 a 1

3!
- x2

5!
+ gb

x2 a1 - x2

3!
+ gb

= x #
1
3!

- x2

5!
+ g

1 - x2

3!
+ g

.

Therefore,

lim
xS0

 a 1
sin x

- 1
xb = lim

xS0
 §x #

1
3!

- x2

5!
+ g

1 - x2

3!
+ g

¥ = 0.

From the quotient on the right, we can see that if � x �  is small, then

 1
sin x

- 1
x ≈ x # 1

3!
= x

6
  or  csc x ≈ 1

x + x
6

. 

Euler’s Identity

A complex number is a number of the form a + bi, where a and b are real numbers and 
i = 2-1 (see Appendix 7). If we substitute x = iu (u real) in the Taylor series for ex and 
use the relations

i2 = -1,  i3 = i2i = - i,  i4 = i2i2 = 1,  i5 = i4i = i,
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and so on, to simplify the result, we obtain

 eiu = 1 + iu
1!

+ i2u2

2!
+ i3u3

3!
+ i4u4

4!
+ i5u5

5!
+ i6u6

6!
+ g

 = a1 - u2

2!
+ u4

4!
- u6

6!
+ gb + iau - u3

3!
+ u5

5!
- gb = cos u + i sin u.

This does not prove that eiu = cos u + i sin u because we have not yet defined 
what it means to raise e to an imaginary power. Rather, it tells us how to define eiu so 
that its properties are consistent with the properties of the exponential function for real 
numbers.

DEFINITION

 For any real number u, eiu = cos u + i sin u. (4)

Equation (4), called Euler’s identity, enables us to define ea + bi to be ea # ebi for any 
complex number a + bi. So

ea + ib = ea(cos b + i sin b).

One consequence of this identity is the equation

eip = -1.

When written in the form eip + 1 = 0, this equation combines five of the most important 
constants in mathematics.

TABLE 10.1  Frequently Used Taylor Series

1
1 - x = 1 + x + x2 + g+ xn + g = aq

n = 0
xn,  � x � 6 1

1
1 + x = 1 - x + x2 - g + (-x)n + g = aq

n = 0
(-1)nxn,  � x � 6 1

ex = 1 + x + x2

2!
+ g + xn

n!
+ g = aq

n = 0
 x

n

n!
,  � x � 6 q

sin x = x - x3

3!
+ x5

5!
- g+ (-1)n  x2n + 1

(2n + 1)!
+ g = aq

n = 0
 
(-1)nx2n + 1

(2n + 1)!
,  � x � 6 q

cos x = 1 - x2

2!
+ x4

4!
- g + (-1)n  x2n

(2n)!
+ g = aq

n = 0
 
(-1)nx2n

(2n)!
,  � x � 6 q

ln (1 + x) = x - x2

2 + x3

3 - g + (-1)n - 1  x
n

n + g = aq
n = 1

 
(-1)n - 1xn

n ,  -1 6 x … 1

tan-1 x = x - x3

3 + x5

5
- g + (-1)n x2n + 1

2n + 1 + g = aq
n = 0

 
(-1)nx2n + 1

2n + 1 ,  � x � … 1
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Binomial Series
Find the first four terms of the binomial series for the functions in 
Exercises 1–10.

 1. (1 + x)1>2 2. (1 + x)1>3

 3. (1 - x)-3 4. (1 - 2x)1>2

 5. a1 + x
2
b

-2

 6. a1 - x
3
b

4

 7. (1 + x3)-1>2 8. (1 + x2)-1>3

 9. a1 + 1
xb

1>2
 10. 

x23 1 + x

Find the binomial series for the functions in Exercises 11–14.

 11. (1 + x)4 12. (1 + x2)3

 13. (1 - 2x)3 14. a1 - x
2
b

4

Approximations and Nonelementary Integrals
In Exercises 15–18, use series to estimate the integrals’ values with an 
error of magnitude less than 10-5. (The answer section gives the inte-
grals’ values rounded to seven decimal places.)

 15.  L
0.6

0
 sin x2 dx 16.  L

0.4

0
 
e-x - 1

x  dx

 17.  L
0.5

0
 

121 + x4
 dx 18.  L

0.35

0
23 1 + x2 dx

Use series to approximate the values of the integrals in Exercises 19–
22 with an error of magnitude less than 10-8.

 19.  L
0.1

0
 
sin x

x  dx 20.  L
0.1

0
e-x2

 dx

 21.  L
0.1

0
21 + x4 dx 22.  L

1

0
 
1 - cos x

x2  dx

 23. Estimate the error if cos t2 is approximated by 1 - t4

2
+ t8

4!
 in the 

  integral 11
0  cos t2 dt.

 24. Estimate the error if cos 2t is approximated by 1 - t
2

+ t2

4!
- t3

6!
 

  in the integral 11
0  cos 2t dt.

In Exercises 25–28, find a polynomial that will approximate F(x) 
throughout the given interval with an error of magnitude less than 
10-3.

 25. F(x) = L
x

0
 sin t2 dt, 30, 14

 26. F(x) = L
x

0
t2e-t2

 dt, 30, 14

 27. F(x) = L
x

0
 tan-1 t dt,  (a) 30, 0.54  (b) 30, 14

 28. F(x) = L
x

0
  
ln (1 + t)

t  dt,  (a) 30, 0.54  (b) 30, 14

T

T

Indeterminate Forms
Use series to evaluate the limits in Exercises 29–40.

 29. lim
xS0

 
ex - (1 + x)

x2  30. lim
xS0

 
ex - e-x

x

 31. lim
tS0

 
1 - cos t - (t2>2)

t4  32. lim
uS0

 
sin u - u + (u3>6)

u5

 33. lim
yS0

 
y - tan-1 y

y3  34. lim
yS0

 
tan-1 y - sin y

y3 cos y

 35. lim
xSq x2 (e-1>x2 - 1)  36. lim

xSq
 (x + 1) sin 

1
x + 1

 37. lim
xS0

 
ln (1 + x2)
1 - cos x

 38. lim
xS2

  
x2 - 4

ln (x - 1)

 39. lim
xS0

  
sin 3x2

1 - cos 2x
 40. lim

xS0
  
ln (1 + x3)

x # sin x2

Using Table 10.1
In Exercises 41–52, use Table 10.1 to find the sum of each series.

 41. 1 + 1 + 1
2!

+ 1
3!

+ 1
4!

+ g

 42. a1
4
b

3

+ a1
4
b

4

+ a1
4
b

5

+ a1
4
b

6

+ g

 43. 1 - 32

42 # 2!
+ 34

44 # 4!
- 36

46 # 6!
+ g

 44. 1
2

- 1
2 # 22 + 1

3 # 23 - 1
4 # 24 + g

 45. 
p

3
- p3

33 # 3!
+ p5

35 # 5!
- p7

37 # 7!
+ g

 46. 2
3

- 23

33 # 3
+ 25

35 # 5
- 27

37 # 7
+ g

 47. x3 + x4 + x5 + x6 + g

 48. 1 - 32x2

2!
+ 34x4

4!
- 36x6

6!
+ g

 49. x3 - x5 + x7 - x9 + x11 - g

 50. x2 - 2x3 + 22x4

2!
- 23x5

3!
+ 24x6

4!
- g

 51. -1 + 2x - 3x2 + 4x3 - 5x4 + g

 52. 1 + x
2

+ x2

3
+ x3

4
+ x4

5
+ g

Theory and Examples
 53. Replace x by -x in the Taylor series for ln (1 + x) to obtain a 

series for ln (1 - x). Then subtract this from the Taylor series for 
ln (1 + x) to show that for � x � 6 1,

ln 
1 + x
1 - x

= 2ax + x3

3
+ x5

5
+ gb .

 54. How many terms of the Taylor series for ln (1 + x) should you 
add to be sure of calculating ln (1.1) with an error of magnitude 
less than 10-8? Give reasons for your answer.

EXERCISES 10.10
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 64. The complete elliptic integral of the first kind is the integral

K = L
p/2

0
 

du21 - k2 sin2 u
 ,

  where 0 6 k 6 1 is constant.

a. Show that the first four terms of the binomial series for 
1>21 - x are

(1 - x)- 1/2 = 1 + 1
2

 x + 1 # 3
2 # 4

 x2 + 1 # 3 # 5
2 # 4 # 6

 x3 + g.

b. From part (a) and the reduction integral Formula 67 at the 
back of the book, show that

K = p

2
 c 1 + a1

2
b

2

k2 + a1 # 3
2 # 4
b

2

k4 + a1 # 3 # 5
2 # 4 # 6

b
2

k6 + g d .

 65. Series for sin-1 x Integrate the binomial series for (1 - x2)-1>2 
to show that for � x � 6 1,

sin-1 x = x + aq
n = 1

 
1 # 3 # 5 # g # (2n - 1)

2 # 4 # 6 # g # (2n)
 

x2n + 1

2n + 1
.

 66. Series for tan-1 x for ∣ x ∣ + 1 Derive the series

 tan-1 x = p

2
- 1

x
+ 1

3x3 - 1
5x5 + g, x 7 1

 tan-1 x = -  
p

2
- 1

x
+ 1

3x3 - 1
5x5 + g, x 6 -1,

  by integrating the series

1
1 + t2 = 1

t2 #  
1

1 + (1>t2)
= 1

t2 - 1
t4 + 1

t6 - 1
t8 + g

  in the first case from x to q and in the second case from -q to x.

Euler’s Identity
 67. Use Equation (4) to write the following powers of e in the form 

a + bi.

a. e-ip    b. eip>4    c. e-ip>2

 68. Use Equation (4) to show that

cos u = eiu + e-iu

2
 and sin u = eiu - e-iu

2i
.

 69. Establish the equations in Exercise 68 by combining the formal 
Taylor series for eiu and e-iu.

 70. Show that

a. cosh iu = cos u, b. sinh iu = i sin u.

 71. By multiplying the Taylor series for ex and sin x, find the terms 
through x5 of the Taylor series for ex sin x. This series is the imagi-
nary part of the series for

ex # eix = e(1 + i)x.

  Use this fact to check your answer. For what values of x should the 
series for ex sin x converge?

 72. When a and b are real, we define e(a + ib)x with the equation

e(a + ib)x = eax # eibx = eax(cos bx + i sin bx).

 55. According to the Alternating Series Estimation Theorem, how 
many terms of the Taylor series for tan-1 1 would you have to add 
to be sure of finding p>4 with an error of magnitude less than 
10-3? Give reasons for your answer.

 56. Show that the Taylor series for ƒ(x) = tan-1 x diverges for 
� x � 7 1.

 57. Estimating Pi About how many terms of the Taylor series for 
tan-1 x would you have to use to evaluate each term on the right-
hand side of the equation

p = 48 tan-1 
1
18

+ 32 tan-1 
1
57

- 20 tan-1 
1

239

  with an error of magnitude less than 10-6? In contrast, the conver-
gence of gq

n = 1(1>n2)  to p2>6 is so slow that even 50 terms will 
not yield two-place accuracy.

 58. Use the following steps to prove that the binomial series in Equa-
tion (1) converges to (1 + x)m.

a. Differentiate the series

ƒ(x) = 1 + aq
k = 1
am

k
bxk

to show that

ƒ′(x) =
mƒ(x)
1 + x

, -1 6 x 6 1.

b. Define g(x) = (1 + x)- m ƒ(x) and show that g′(x) = 0.

c. From part (b), show that

ƒ(x) = (1 + x)m.

 59. a. Use the binomial series and the fact that

d
dx

 sin-1 x = (1 - x2)-1>2

to generate the first four nonzero terms of the Taylor series 
for sin-1 x. What is the radius of convergence?

b. Series for cos−1 x Use your result in part (a) to find the first 
five nonzero terms of the Taylor series for cos-1 x.

 60. a.  Series for sinh-1 x Find the first four nonzero terms of the 
Taylor series for

sinh-1 x = L
x

0
 

dt21 + t2
. 

b.  Use the first three terms of the series in part (a) to estimate 
sinh-1 0.25. Give an upper bound for the magnitude of the 
estimation error.

 61. Obtain the Taylor series for 1>(1 + x)2 from the series for 
-1>(1 + x).

 62. Use the Taylor series for 1> (1 - x2)  to obtain a series for 
2x> (1 - x2)2.

 63. Estimating Pi The English mathematician Wallis discovered 
the formula

p

4
= 2 # 4 # 4 # 6 # 6 # 8 # g

3 # 3 # 5 # 5 # 7 # 7 # g.

  Find p to two decimal places with this formula.

T

T

T
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