e. Explain why $\left|x-c_{n}\right|<h$ and why $\left|d_{n-1}\right| \leq \alpha=\max \{|x|,|x+h|\}$.
f. Show that

$$
\left|g(x)-\frac{f(x+h)-f(x)}{h}\right| \leq|h| \sum_{n=2}^{\infty}\left|n(n-1) a_{n} \alpha^{n-2}\right|
$$

g. Show that $\sum_{n=2}^{\infty} n(n-1) \alpha^{n-2}$ converges for $-R<x<R$.
h. Let $h \rightarrow 0$ in part (f) to conclude that

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=g(x)
$$

65. Proof of Theorem 22 Assume that $a=0$ in Theorem 22 and that $f(x)=\sum_{n=0}^{\infty} c_{n} x^{n} \quad$ converges for $\quad-R<x<R$. Let $g(x)=\sum_{n=0}^{\infty} \frac{c_{n}}{n+1} x^{n+1}$. This exercise will prove that $g^{\prime}(x)=f(x)$.
a. Use the Ratio Test to show that $g(x)$ converges for $-R<x<R$.
b. Use Theorem 21 to show that $g^{\prime}(x)=f(x)$, that is,

$$
\int f(x) d x=g(x)+C
$$

10.8 Taylor and Maclaurin Series

We have seen how geometric series can be used to generate a power series for functions such as $f(x)=1 /(1-x)$ or $g(x)=3 /(x-2)$. Now we expand our capability to represent a function with a power series. This section shows how functions that are infinitely differentiable generate power series called Taylor series. In many cases, these series provide useful polynomial approximations of the original functions. Because approximation by polynomials is extremely useful to both mathematicians and scientists, Taylor series are an important application of the theory of infinite series.

Series Representations

We know from Theorem 21 that within its interval of convergence I the sum of a power series is a continuous function with derivatives of all orders. But what about the other way around? If a function $f(x)$ has derivatives of all orders on an interval, can it be expressed as a power series on at least part of that interval? And if it can, what are its coefficients?

We can answer the last question readily if we assume that $f(x)$ is the sum of a power series about $x=a$,

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} a_{n}(x-a)^{n} \\
& =a_{0}+a_{1}(x-a)+a_{2}(x-a)^{2}+\cdots+a_{n}(x-a)^{n}+\cdots
\end{aligned}
$$

with a positive radius of convergence. By repeated term-by-term differentiation within the interval of convergence I, we obtain

$$
\begin{aligned}
& f^{\prime}(x)=a_{1}+2 a_{2}(x-a)+3 a_{3}(x-a)^{2}+\cdots+n a_{n}(x-a)^{n-1}+\cdots \\
& f^{\prime \prime}(x)=1 \cdot 2 a_{2}+2 \cdot 3 a_{3}(x-a)+3 \cdot 4 a_{4}(x-a)^{2}+\cdots \\
& f^{\prime \prime \prime}(x)=1 \cdot 2 \cdot 3 a_{3}+2 \cdot 3 \cdot 4 a_{4}(x-a)+3 \cdot 4 \cdot 5 a_{5}(x-a)^{2}+\cdots
\end{aligned}
$$

with the nth derivative being

$$
f^{(n)}(x)=n!a_{n}+\text { a sum of terms with }(x-a) \text { as a factor. }
$$

Since these equations all hold at $x=a$, we have

$$
f^{\prime}(a)=a_{1}, \quad f^{\prime \prime}(a)=1 \cdot 2 a_{2}, \quad f^{\prime \prime \prime}(a)=1 \cdot 2 \cdot 3 a_{3}
$$

and, in general,

$$
f^{(n)}(a)=n!a_{n}
$$

These formulas reveal a pattern in the coefficients of any power series $\sum_{n=0}^{\infty} a_{n}(x-a)^{n}$ that converges to the values of f on I ("represents f on I "). If there is such a series (still an open question), then there is only one such series, and its nth coefficient is

$$
a_{n}=\frac{f^{(n)}(a)}{n!}
$$

If f has a series representation, then the series must be

$$
\begin{align*}
f(x)=f(a) & +f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2} \\
& +\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}+\cdots . \tag{1}
\end{align*}
$$

But if we start with an arbitrary function f that is infinitely differentiable on an interval containing $x=a$ and use it to generate the series in Equation (1), does the series converge to $f(x)$ at each x in the interval of convergence? The answer is maybe-for some functions it will but for other functions it will not (as we will see in Example 4).

Taylor and Maclaurin Series

The series on the right-hand side of Equation (1) is the most important and useful series we will study in this chapter.

DEFINITIONS Let f be a function with derivatives of all orders throughout some interval containing a as an interior point. Then the Taylor series generated by f at $x=a$ is

$$
\begin{aligned}
\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}=f(a) & +f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2} \\
& +\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}+\cdots
\end{aligned}
$$

The Maclaurin series of \boldsymbol{f} is the Taylor series generated by f at $x=0$, or

$$
\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^{k}=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\cdots+\frac{f^{(n)}(0)}{n!} x^{n}+\cdots
$$

The Maclaurin series generated by f is often just called the Taylor series of f.

EXAMPLE 1 Find the Taylor series generated by $f(x)=1 / x$ at $a=2$. Where, if anywhere, does the series converge to $1 / x$?

Solution We need to find $f(2), f^{\prime}(2), f^{\prime \prime}(2), \ldots$. Taking derivatives we get

$$
f(x)=x^{-1}, \quad f^{\prime}(x)=-x^{-2}, \quad f^{\prime \prime}(x)=2!x^{-3}, \ldots, f^{(n)}(x)=(-1)^{n} n!x^{-(n+1)}
$$

so that

$$
f(2)=2^{-1}=\frac{1}{2}, \quad f^{\prime}(2)=-\frac{1}{2^{2}}, \quad \frac{f^{\prime \prime}(2)}{2!}=2^{-3}=\frac{1}{2^{3}}, \ldots, \frac{f^{(n)}(2)}{n!}=\frac{(-1)^{n}}{2^{n+1}}
$$

The Taylor series is

$$
\begin{aligned}
f(2)+f^{\prime}(2)(x & -2)-\frac{f^{\prime \prime}(2)}{2!}(x-2)^{2}+\cdots+\frac{f^{(n)}(2)}{n!}(x-2)^{n}+\cdots \\
& =\frac{1}{2}-\frac{(x-2)}{2^{2}}+\frac{(x-2)^{2}}{2^{3}}-\cdots+(-1)^{n} \frac{(x-2)^{n}}{2^{n+1}}+\cdots
\end{aligned}
$$

FIGURE 10.22 The graph of $f(x)=e^{x}$ and its Taylor polynomials

$$
\begin{aligned}
& P_{1}(x)=1+x \\
& P_{2}(x)=1+x+\left(x^{2} / 2!\right) \\
& P_{3}(x)=1+x+\left(x^{2} / 2!\right)+\left(x^{3} / 3!\right)
\end{aligned}
$$

Notice the very close agreement near the center $x=0$ (Example 2).

This is a geometric series with first term $1 / 2$ and ratio $r=-(x-2) / 2$. It converges absolutely for $|x-2|<2$ and its sum is

$$
\frac{1 / 2}{1+(x-2) / 2}=\frac{1}{2+(x-2)}=\frac{1}{x}
$$

In this example the Taylor series generated by $f(x)=1 / x$ at $a=2$ converges to $1 / x$ for $|x-2|<2$ or $0<x<4$.

Taylor Polynomials

The linearization of a differentiable function f at a point a is the polynomial of degree one given by

$$
P_{1}(x)=f(a)+f^{\prime}(a)(x-a)
$$

In Section 3.9 we used this linearization to approximate $f(x)$ at values of x near a. If f has derivatives of higher order at a, then it has higher-order polynomial approximations as well, one for each available derivative. These polynomials are called the Taylor polynomials of f.

DEFINITION Let f be a function with derivatives of order k for $k=1,2, \ldots, N$ in some interval containing a as an interior point. Then for any integer n from 0 through N, the Taylor polynomial of order \boldsymbol{n} generated by f at $x=a$ is the polynomial

$$
\begin{aligned}
P_{n}(x)=f(a)+f^{\prime}(a)(x-a) & +\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots \\
& +\frac{f^{(k)}(a)}{k!}(x-a)^{k}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n} .
\end{aligned}
$$

We speak of a Taylor polynomial of order n rather than degree n because $f^{(n)}(a)$ may be zero. The first two Taylor polynomials of $f(x)=\cos x$ at $x=0$, for example, are $P_{0}(x)=1$ and $P_{1}(x)=1$. The first-order Taylor polynomial has degree zero, not one.

Just as the linearization of f at $x=a$ provides the best linear approximation of f in the neighborhood of a, the higher-order Taylor polynomials provide the "best" polynomial approximations of their respective degrees. (See Exercise 44.)

EXAMPLE 2 Find the Taylor series and the Taylor polynomials generated by $f(x)=e^{x}$ at $x=0$.

Solution Since $f^{(n)}(x)=e^{x}$ and $f^{(n)}(0)=1$ for every $n=0,1,2, \ldots$, the Taylor series generated by f at $x=0$ (see Figure 10.22) is

$$
\begin{aligned}
f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\cdots & +\frac{f^{(n)}(0)}{n!} x^{n}+\cdots \\
& =1+x+\frac{x^{2}}{2}+\cdots+\frac{x^{n}}{n!}+\cdots \\
& =\sum_{k=0}^{\infty} \frac{x^{k}}{k!}
\end{aligned}
$$

This is also the Maclaurin series for e^{x}. In the next section we will see that the series converges to e^{x} at every x.

The Taylor polynomial of order n at $x=0$ is

$$
P_{n}(x)=1+x+\frac{x^{2}}{2}+\cdots+\frac{x^{n}}{n!}
$$

EXAMPLE 3 Find the Taylor series and Taylor polynomials generated by $f(x)=\cos x$ at $x=0$.

Solution The cosine and its derivatives are

$$
\begin{array}{rlrlr}
f(x) & = & \cos x, & f^{\prime}(x) & = \\
f^{\prime \prime}(x)= & -\cos x, & f^{(3)}(x) & = & -\sin x, \\
\vdots & & & \sin x, \\
f^{(2 n)}(x) & =(-1)^{n} \cos x, & f^{(2 n+1)}(x) & =(-1)^{n+1} \sin x .
\end{array}
$$

At $x=0$, the cosines are 1 and the sines are 0 , so

$$
f^{(2 n)}(0)=(-1)^{n}, \quad f^{(2 n+1)}(0)=0
$$

The Taylor series generated by f at 0 is

$$
\begin{aligned}
f(0)+f^{\prime}(0) x & +\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\cdots+\frac{f^{(n)}(0)}{n!} x^{n}+\cdots \\
& =1+0 \cdot x-\frac{x^{2}}{2!}+0 \cdot x^{3}+\frac{x^{4}}{4!}+\cdots+(-1)^{n} \frac{x^{2 n}}{(2 n)!}+\cdots \\
& =\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k}}{(2 k)!}
\end{aligned}
$$

This is also the Maclaurin series for $\cos x$. Notice that only even powers of x occur in the Taylor series generated by the cosine function, which is consistent with the fact that it is an even function. In Section 10.9, we will see that the series converges to $\cos x$ at every x.

Because $f^{(2 n+1)}(0)=0$, the Taylor polynomials of orders $2 n$ and $2 n+1$ are identical:

$$
P_{2 n}(x)=P_{2 n+1}(x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots+(-1)^{n} \frac{x^{2 n}}{(2 n)!}
$$

Figure 10.23 shows how well these polynomials approximate $f(x)=\cos x$ near $x=0$. Only the right-hand portions of the graphs are given because the graphs are symmetric about the y-axis.

FIGURE 10.23 The polynomials

$$
P_{2 n}(x)=\sum_{k=0}^{n} \frac{(-1)^{k} x^{2 k}}{(2 k)!}
$$

converge to $\cos x$ as $n \rightarrow \infty$. We can deduce the behavior of $\cos x$ arbitrarily far away solely from knowing the values of the cosine and its derivatives at $x=0$ (Example 3).

EXAMPLE 4 It can be shown (though not easily) that

$$
f(x)= \begin{cases}0, & x=0 \\ e^{-1 / x^{2}}, & x \neq 0\end{cases}
$$

FIGURE 10.24 The graph of the continuous extension of $y=e^{-1 / x^{2}}$ is so flat at the origin that all of its derivatives there are zero (Example 4). Therefore its Taylor series, which is zero everywhere, is not the function itself.
(Figure 10.24) has derivatives of all orders at $x=0$ and that $f^{(n)}(0)=0$ for all n. This means that the Taylor series generated by f at $x=0$ is

$$
\begin{aligned}
f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\cdots & +\frac{f^{(n)}(0)}{n!} x^{n}+\cdots \\
& =0+0 \cdot x+0 \cdot x^{2}+\cdots+0 \cdot x^{n}+\cdots \\
& =0+0+\cdots+0+\cdots
\end{aligned}
$$

The series converges for every x (its sum is 0) but converges to $f(x)$ only at $x=0$. That is, the Taylor series generated by $f(x)$ in this example is not equal to the function $f(x)$ over the entire interval of convergence.

Two questions still remain.

1. For what values of x can we normally expect a Taylor series to converge to its generating function?
2. How accurately do a function's Taylor polynomials approximate the function on a given interval?
The answers are provided by a theorem of Taylor in the next section.

EXERCISES 10.8

Finding Taylor Polynomials

In Exercises 1-10, find the Taylor polynomials of orders $0,1,2$, and 3 generated by f at a.

1. $f(x)=e^{2 x}, \quad a=0$
2. $f(x)=\sin x, \quad a=0$
3. $f(x)=\ln x, \quad a=1$
4. $f(x)=\ln (1+x), \quad a=0$
5. $f(x)=1 / x, \quad a=2$
6. $f(x)=1 /(x+2), \quad a=0$
7. $f(x)=\sin x, \quad a=\pi / 4$
8. $f(x)=\tan x, \quad a=\pi / 4$
9. $f(x)=\sqrt{x}, \quad a=4$
10. $f(x)=\sqrt{1-x}, \quad a=0$

Finding Taylor Series at $x=0$ (Maclaurin Series)
Find the Maclaurin series for the functions in Exercises 11-24.
11. e^{-x}
12. $x e^{x}$
13. $\frac{1}{1+x}$
14. $\frac{2+x}{1-x}$
15. $\sin 3 x$
16. $\sin \frac{x}{2}$
17. $7 \cos (-x)$
18. $5 \cos \pi x$
19. $\cosh x=\frac{e^{x}+e^{-x}}{2}$
20. $\sinh x=\frac{e^{x}-e^{-x}}{2}$
21. $x^{4}-2 x^{3}-5 x+4$
22. $\frac{x^{2}}{x+1}$
23. $x \sin x$
24. $(x+1) \ln (x+1)$

Finding Taylor and Maclaurin Series
In Exercises 25-34, find the Taylor series generated by f at $x=a$.
25. $f(x)=x^{3}-2 x+4, \quad a=2$
26. $f(x)=2 x^{3}+x^{2}+3 x-8, \quad a=1$
27. $f(x)=x^{4}+x^{2}+1, \quad a=-2$
28. $f(x)=3 x^{5}-x^{4}+2 x^{3}+x^{2}-2, \quad a=-1$
29. $f(x)=1 / x^{2}, \quad a=1$
30. $f(x)=1 /(1-x)^{3}, \quad a=0$
31. $f(x)=e^{x}, \quad a=2$
32. $f(x)=2^{x}, \quad a=1$
33. $f(x)=\cos (2 x+(\pi / 2)), \quad a=\pi / 4$
34. $f(x)=\sqrt{x+1}, \quad a=0$

In Exercises 35-38, find the first three nonzero terms of the Maclaurin series for each function and the values of x for which the series converges absolutely.
35. $f(x)=\cos x-(2 /(1-x))$
36. $f(x)=\left(1-x+x^{2}\right) e^{x}$
37. $f(x)=(\sin x) \ln (1+x)$
38. $f(x)=x \sin ^{2} x$
39. $f(x)=x^{4} e^{x^{2}}$
40. $f(x)=\frac{x^{3}}{1+2 x}$

Theory and Examples

41. Use the Taylor series generated by e^{x} at $x=a$ to show that

$$
e^{x}=e^{a}\left[1+(x-a)+\frac{(x-a)^{2}}{2!}+\cdots\right] .
$$

42. (Continuation of Exercise 41.) Find the Taylor series generated by e^{x} at $x=1$. Compare your answer with the formula in Exercise 41.
43. Let $f(x)$ have derivatives through order n at $x=a$. Show that the Taylor polynomial of order n and its first n derivatives have the same values that f and its first n derivatives have at $x=a$.
44. Approximation properties of Taylor polynomials Suppose that $f(x)$ is differentiable on an interval centered at $x=a$ and that $g(x)=b_{0}+b_{1}(x-a)+\cdots+b_{n}(x-a)^{n}$ is a polynomial of degree n with constant coefficients b_{0}, \ldots, b_{n}. Let $E(x)=$ $f(x)-g(x)$. Show that if we impose on g the conditions

$$
\begin{array}{ll}
\text { i) } E(a)=0 & \text { The approximation error is zero at } x=a . \\
\text { ii) } \begin{array}{l}
\lim _{x \rightarrow a} \frac{E(x)}{(x-a)^{n}}=0, \\
\text { The error is negligible when compared to } \\
\text { (hen } \\
\text { (x-a) } .
\end{array} \\
\begin{aligned}
& g(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots \\
& \quad+\frac{f^{(n)}(a)}{n!}(x-a)^{n} .
\end{aligned}
\end{array}
$$

Thus, the Taylor polynomial $P_{n}(x)$ is the only polynomial of degree less than or equal to n whose error is both zero at $x=a$ and negligible when compared with $(x-a)^{n}$.

Quadratic Approximations The Taylor polynomial of order 2 generated by a twice-differentiable function $f(x)$ at $x=a$ is called the quadratic approximation of f at $x=a$. In Exercises 45-50, find the (a) linearization (Taylor polynomial of order 1) and (b) quadratic approximation of f at $x=0$.
45. $f(x)=\ln (\cos x)$
46. $f(x)=e^{\sin x}$
47. $f(x)=1 / \sqrt{1-x^{2}}$
48. $f(x)=\cosh x$
49. $f(x)=\sin x$

10.9 Convergence of Taylor Series

In the last section we asked when a Taylor series for a function can be expected to converge to the function that generates it. The finite-order Taylor polynomials that approximate the Taylor series provide estimates for the generating function. In order for these estimates to be useful, we need a way to control the possible errors we may encounter when approximating a function with its finite-order Taylor polynomials. How do we bound such possible errors? We answer the question in this section with the following theorem.

THEOREM 23-Taylor's Theorem

If f and its first n derivatives $f^{\prime}, f^{\prime \prime}, \ldots, f^{(n)}$ are continuous on the closed interval between a and b, and $f^{(n)}$ is differentiable on the open interval between a and b, then there exists a number c between a and b such that

$$
\begin{aligned}
f(b)=f(a) & +f^{\prime}(a)(b-a)+\frac{f^{\prime \prime}(a)}{2!}(b-a)^{2}+\cdots \\
& +\frac{f^{(n)}(a)}{n!}(b-a)^{n}+\frac{f^{(n+1)}(c)}{(n+1)!}(b-a)^{n+1}
\end{aligned}
$$

Taylor's Theorem is a generalization of the Mean Value Theorem (Exercise 49). There is a proof of Taylor's Theorem at the end of this section.

When we apply Taylor's Theorem, we usually want to hold a fixed and treat b as an independent variable. Taylor's formula is easier to use in circumstances like these if we change b to x. Here is a version of the theorem with this change.

Taylor's Formula

If f has derivatives of all orders in an open interval I containing a, then for each positive integer n and for each x in I,

$$
\begin{align*}
f(x)=f(a) & +f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots \\
& +\frac{f^{(n)}(a)}{n!}(x-a)^{n}+R_{n}(x) \tag{1}
\end{align*}
$$

where

$$
\begin{equation*}
R_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1} \quad \text { for some } c \text { between } a \text { and } x \tag{2}
\end{equation*}
$$

When we state Taylor's theorem this way, it says that for each $x \in I$,

$$
f(x)=P_{n}(x)+R_{n}(x)
$$

The function $R_{n}(x)$ is determined by the value of the $(n+1)$ st derivative $f^{(n+1)}$ at a point c that depends on both a and x, and that lies somewhere between them. For any value of n we want, the equation gives both a polynomial approximation of f of that order and a formula for the error involved in using that approximation over the interval I.

Equation (1) is called Taylor's formula. The function $R_{n}(x)$ is called the remainder of order \boldsymbol{n} or the error term for the approximation of f by $P_{n}(x)$ over I.

If $R_{n}(x) \rightarrow 0$ as $n \rightarrow \infty$ for all $x \in I$, we say that the Taylor series generated by f at $x=a$ converges to f on I, and we write

$$
f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}
$$

Often we can estimate R_{n} without knowing the value of c, as the following example illustrates.

EXAMPLE 1 Show that the Taylor series generated by $f(x)=e^{x}$ at $x=0$ converges to $f(x)$ for every real value of x.

Solution The function has derivatives of all orders throughout the interval $I=$ $(-\infty, \infty)$. Equations (1) and (2) with $f(x)=e^{x}$ and $a=0$ give

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}+R_{n}(x)
$$

Polynomial from
Section 10.8, Example 2
and

$$
R_{n}(x)=\frac{e^{c}}{(n+1)!} x^{n+1} \quad \text { for some } c \text { between } 0 \text { and } x
$$

Since e^{x} is an increasing function of x, e^{c} lies between $e^{0}=1$ and e^{x}. When x is negative, so is c, and $e^{c}<1$. When x is zero, $e^{x}=1$ so that $R_{n}(x)=0$. When x is positive, so is c, and $e^{c}<e^{x}$. Thus, for $R_{n}(x)$ given as above,

$$
\left|R_{n}(x)\right| \leq \frac{|x|^{n+1}}{(n+1)!} \quad \text { when } x \leq 0, \quad e^{c}<1 \text { since } c<0
$$

and

$$
\left|R_{n}(x)\right|<e^{x} \frac{x^{n+1}}{(n+1)!} \quad \text { when } x>0 . \quad e^{c}<e^{x} \text { since } c<x
$$

Finally, because

$$
\lim _{n \rightarrow \infty} \frac{x^{n+1}}{(n+1)!}=0 \quad \text { for every } x, \quad \text { Section 10.1, Theorem } 5
$$

$\lim _{n \rightarrow \infty} R_{n}(x)=0$, and the series converges to e^{x} for every x. Thus,

$$
\begin{equation*}
e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{k}}{k!}+\cdots \tag{3}
\end{equation*}
$$

The Number e as a Series

$$
e=\sum_{n=0}^{\infty} \frac{1}{n!}
$$

We can use the result of Example 1 with $x=1$ to write

$$
e=1+1+\frac{1}{2!}+\cdots+\frac{1}{n!}+R_{n}(1)
$$

where for some c between 0 and 1,

$$
R_{n}(1)=e^{c} \frac{1}{(n+1)!}<\frac{3}{(n+1)!} . \quad e^{c}<e^{1}<3
$$

Estimating the Remainder

It is often possible to estimate $R_{n}(x)$ as we did in Example 1. This method of estimation is so convenient that we state it as a theorem for future reference.

THEOREM 24-The Remainder Estimation Theorem
If there is a positive constant M such that $\left|f^{(n+1)}(t)\right| \leq M$ for all t between x and a, inclusive, then the remainder term $R_{n}(x)$ in Taylor's Theorem satisfies the inequality

$$
\left|R_{n}(x)\right| \leq M \frac{|x-a|^{n+1}}{(n+1)!}
$$

If this inequality holds for every n and the other conditions of Taylor's Theorem are satisfied by f, then the series converges to $f(x)$.

The next two examples use Theorem 24 to show that the Taylor series generated by the sine and cosine functions do in fact converge to the functions themselves.

EXAMPLE 2 Show that the Taylor series for $\sin x$ at $x=0$ converges for all x.
Solution The function and its derivatives are

$$
\begin{array}{rlrlrl}
f(x) & = & \sin x, & f^{\prime}(x) & = & \cos x, \\
f^{\prime \prime}(x) & = & -\sin x, & f^{\prime \prime \prime}(x) & = & -\cos x, \\
\vdots & & & \vdots & \\
f^{(2 k)}(x)= & (-1)^{k} \sin x, & f^{(2 k+1)}(x) & =(-1)^{k} \cos x,
\end{array}
$$

so

$$
f^{(2 k)}(0)=0 \quad \text { and } \quad f^{(2 k+1)}(0)=(-1)^{k}
$$

The series has only odd-powered terms and, for $n=2 k+1$, Taylor's Theorem gives

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots+\frac{(-1)^{k} x^{2 k+1}}{(2 k+1)!}+R_{2 k+1}(x)
$$

All the derivatives of $\sin x$ have absolute values less than or equal to 1 , so we can apply the Remainder Estimation Theorem with $M=1$ to obtain

$$
\left|R_{2 k+1}(x)\right| \leq 1 \cdot \frac{|x|^{2 k+2}}{(2 k+2)!}
$$

From Theorem 5, Rule 6, we have $\left(|x|^{2 k+2} /(2 k+2)!\right) \rightarrow 0$ as $k \rightarrow \infty$, whatever the value of x, so $R_{2 k+1}(x) \rightarrow 0$ and the Maclaurin series for $\sin x$ converges to $\sin x$ for every x. Thus,

$$
\begin{equation*}
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots \tag{4}
\end{equation*}
$$

$$
\sin x=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+1}}{(2 k+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots .
$$

$\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots$
EXAMPLE 3 Show that the Taylor series for $\cos x$ at $x=0$ converges to $\cos x$ for every value of x.

Solution We add the remainder term to the Taylor polynomial for $\cos x$ (Section 10.8, Example 3) to obtain Taylor's formula for $\cos x$ with $n=2 k$:

$$
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots+(-1)^{k} \frac{x^{2 k}}{(2 k)!}+R_{2 k}(x)
$$

Because the derivatives of the cosine have absolute value less than or equal to 1 , the Remainder Estimation Theorem with $M=1$ gives

$$
\left|R_{2 k}(x)\right| \leq 1 \cdot \frac{|x|^{2 k+1}}{(2 k+1)!}
$$

For every value of $x, R_{2 k}(x) \rightarrow 0$ as $k \rightarrow \infty$. Therefore, the series converges to $\cos x$ for every value of x. Thus,

$$
\begin{equation*}
\cos x=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k}}{(2 k)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots \tag{5}
\end{equation*}
$$

Using Taylor Series

Since every Taylor series is a power series, the operations of adding, subtracting, and multiplying Taylor series are all valid on the intersection of their intervals of convergence.

EXAMPLE 4 Using known series, find the first few terms of the Taylor series for the given function by using power series operations.
(a) $\frac{1}{3}(2 x+x \cos x)$
(b) $e^{x} \cos x$

Solution

(a) $\frac{1}{3}(2 x+x \cos x)=\frac{2}{3} x+\frac{1}{3} x\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots+(-1)^{k} \frac{x^{2 k}}{(2 k)!}+\cdots\right)$ Taylor series

$$
=\frac{2}{3} x+\frac{1}{3} x-\frac{x^{3}}{3!}+\frac{x^{5}}{3 \cdot 4!}-\cdots=x-\frac{x^{3}}{6}+\frac{x^{5}}{72}-\cdots
$$

(b) $e^{x} \cos x=\left(1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots\right)\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots\right) \begin{aligned} & \text { Multiply the first } \\ & \text { series by each term } \\ & \text { of the second series. }\end{aligned}$

$$
\begin{aligned}
=\left(1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots\right) & -\left(\frac{x^{2}}{2!}+\frac{x^{3}}{2!}+\frac{x^{4}}{2!2!}+\frac{x^{5}}{2!3!}+\cdots\right) \\
& +\left(\frac{x^{4}}{4!}+\frac{x^{5}}{4!}+\frac{x^{6}}{2!4!}+\cdots\right)+\cdots
\end{aligned}
$$

$$
=1+x-\frac{x^{3}}{3}-\frac{x^{4}}{6}+\cdots
$$

By Theorem 20, we can use the Taylor series of the function f to find the Taylor series of $f(u(x)$) where $u(x)$ is any continuous function. The Taylor series resulting from this substitution will converge for all x such that $u(x)$ lies within the interval of convergence of
the Taylor series of f. For instance, we can find the Taylor series for $\cos 2 x$ by substituting $2 x$ for x in the Taylor series for $\cos x$:

$$
\begin{aligned}
\cos 2 x & =\sum_{k=0}^{\infty} \frac{(-1)^{k}(2 x)^{2 k}}{(2 k)!}=1-\frac{(2 x)^{2}}{2!}+\frac{(2 x)^{4}}{4!}-\frac{(2 x)^{6}}{6!}+\cdots \quad \text { Eq. (5) with } 2 \mathrm{x} \text { for } \mathrm{x} \\
& =1-\frac{2^{2} x^{2}}{2!}+\frac{2^{4} x^{4}}{4!}-\frac{2^{6} x^{6}}{6!}+\cdots \\
& =\sum_{k=0}^{\infty}(-1)^{k} \frac{2^{2 k} x^{2 k}}{(2 k)!}
\end{aligned}
$$

EXAMPLE 5 For what values of x can we replace $\sin x$ by $x-\left(x^{3} / 3!\right)$ and obtain an error whose magnitude is no greater than 3×10^{-4} ?

Solution Here we can take advantage of the fact that the Taylor series for $\sin x$ is an alternating series for every nonzero value of x. According to the Alternating Series Estimation Theorem (Section 10.6), the error in truncating

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots
$$

after $\left(x^{3} / 3!\right)$ is no greater than

$$
\left|\frac{x^{5}}{5!}\right|=\frac{|x|^{5}}{120}
$$

Therefore the error will be less than or equal to 3×10^{-4} if

$$
\frac{|x|^{5}}{120}<3 \times 10^{-4} \quad \text { or } \quad|x|<\sqrt[5]{360 \times 10^{-4}} \approx 0.514 . \quad \begin{aligned}
& \text { Rounded down, } \\
& \text { to be safe }
\end{aligned}
$$

The Alternating Series Estimation Theorem tells us something that the Remainder Estimation Theorem does not: namely, that the estimate $x-\left(x^{3} / 3!\right)$ for $\sin x$ is an underestimate when x is positive, because then $x^{5} / 120$ is positive.

Figure 10.25 shows the graph of $\sin x$, along with the graphs of a number of its approximating Taylor polynomials. The graph of $P_{3}(x)=x-\left(x^{3} / 3!\right)$ is almost indistinguishable from the sine curve when $0 \leq x \leq 1$.

FIGURE 10.25 The polynomials

$$
P_{2 n+1}(x)=\sum_{k=0}^{n} \frac{(-1)^{k} x^{2 k+1}}{(2 k+1)!}
$$

converge to $\sin x$ as $n \rightarrow \infty$. Notice how closely $P_{3}(x)$ approximates the sine curve for $x \leq 1$ (Example 5).

A Proof of Taylor's Theorem

We prove Taylor's theorem assuming $a<b$. The proof for $a>b$ is nearly the same.
The Taylor polynomial

$$
P_{n}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

and its first n derivatives match the function f and its first n derivatives at $x=a$. We do not disturb that matching if we add another term of the form $K(x-a)^{n+1}$, where K is any constant, because such a term and its first n derivatives are all equal to zero at $x=a$. The new function

$$
\phi_{n}(x)=P_{n}(x)+K(x-a)^{n+1}
$$

and its first n derivatives still agree with f and its first n derivatives at $x=a$.
We now choose the particular value of K that makes the curve $y=\phi_{n}(x)$ agree with the original curve $y=f(x)$ at $x=b$. In symbols,

$$
\begin{equation*}
f(b)=P_{n}(b)+K(b-a)^{n+1}, \quad \text { or } \quad K=\frac{f(b)-P_{n}(b)}{(b-a)^{n+1}} . \tag{6}
\end{equation*}
$$

With K defined by Equation (6), the function

$$
F(x)=f(x)-\phi_{n}(x)
$$

measures the difference between the original function f and the approximating function ϕ_{n} for each x in $[a, b]$.

We now use Rolle's Theorem (Section 4.2). First, because $F(a)=F(b)=0$ and both F and F^{\prime} are continuous on $[a, b]$, we know that

$$
F^{\prime}\left(c_{1}\right)=0 \quad \text { for some } c_{1} \text { in }(a, b) .
$$

Next, because $F^{\prime}(a)=F^{\prime}\left(c_{1}\right)=0$ and both F^{\prime} and $F^{\prime \prime}$ are continuous on $\left[a, c_{1}\right]$, we know that

$$
F^{\prime \prime}\left(c_{2}\right)=0 \quad \text { for some } c_{2} \text { in }\left(a, c_{1}\right)
$$

Rolle's Theorem, applied successively to $F^{\prime \prime}, F^{\prime \prime \prime}, \ldots, F^{(n-1)}$, implies the existence of

$$
\begin{array}{lll}
c_{3} & \text { in }\left(a, c_{2}\right) & \text { such that } F^{\prime \prime \prime}\left(c_{3}\right)=0, \\
c_{4} & \text { in }\left(a, c_{3}\right) & \text { such that } F^{(4)}\left(c_{4}\right)=0, \\
& \vdots & \\
c_{n} & \text { in }\left(a, c_{n-1}\right) & \text { such that } F^{(n)}\left(c_{n}\right)=0 .
\end{array}
$$

Finally, because $F^{(n)}$ is continuous on $\left[a, c_{n}\right]$ and differentiable on $\left(a, c_{n}\right)$, and $F^{(n)}(a)=F^{(n)}\left(c_{n}\right)=0$, Rolle's Theorem implies that there is a number c_{n+1} in $\left(a, c_{n}\right)$ such that

$$
\begin{equation*}
F^{(n+1)}\left(c_{n+1}\right)=0 . \tag{7}
\end{equation*}
$$

If we differentiate $F(x)=f(x)-P_{n}(x)-K(x-a)^{n+1}$ a total of $n+1$ times, we get

$$
\begin{equation*}
F^{(n+1)}(x)=f^{(n+1)}(x)-0-(n+1)!K . \tag{8}
\end{equation*}
$$

Equations (7) and (8) together give

$$
\begin{equation*}
K=\frac{f^{(n+1)}(c)}{(n+1)!} \quad \text { for some number } c=c_{n+1} \text { in }(a, b) . \tag{9}
\end{equation*}
$$

Equations (6) and (9) give

$$
f(b)=P_{n}(b)+\frac{f^{(n+1)}(c)}{(n+1)!}(b-a)^{n+1} .
$$

This concludes the proof.

EXERCISES 10.9

Finding Taylor Series

Use substitution (as in Example 4) to find the Taylor series at $x=0$ of the functions in Exercises 1-12.

1. $e^{-5 x}$
2. $e^{-x / 2}$
3. $5 \sin (-x)$
4. $\sin \left(\frac{\pi x}{2}\right)$
5. $\cos 5 x^{2}$
6. $\cos \left(x^{2 / 3} / \sqrt{2}\right)$
7. $\ln \left(1+x^{2}\right)$
8. $\tan ^{-1}\left(3 x^{4}\right)$
9. $\frac{1}{1+\frac{3}{4} x^{3}}$
10. $\frac{1}{2-x}$
11. $\ln (3+6 x)$
12. $e^{-x^{2}+\ln 5}$

Use power series operations to find the Taylor series at $x=0$ for the functions in Exercises 13-30.
13. $x e^{x}$
14. $x^{2} \sin x$
15. $\frac{x^{2}}{2}-1+\cos x$
16. $\sin x-x+\frac{x^{3}}{3!}$
17. $x \cos \pi x$
18. $x^{2} \cos \left(x^{2}\right)$
19. $\cos ^{2} x\left(\right.$ Hint: $\cos ^{2} x=(1+\cos 2 x) / 2$. $)$
20. $\sin ^{2} x$
21. $\frac{x^{2}}{1-2 x}$
22. $x \ln (1+2 x)$
23. $\frac{1}{(1-x)^{2}}$
24. $\frac{2}{(1-x)^{3}}$
25. $x \tan ^{-1} x^{2}$
26. $\sin x \cdot \cos x$
27. $e^{x}+\frac{1}{1+x}$
28. $\cos x-\sin x$
29. $\frac{x}{3} \ln \left(1+x^{2}\right)$
30. $\ln (1+x)-\ln (1-x)$

Find the first four nonzero terms in the Maclaurin series for the functions in Exercises 31-38.
31. $e^{x} \sin x$
32. $\frac{\ln (1+x)}{1-x}$
33. $\left(\tan ^{-1} x\right)^{2}$
34. $\cos ^{2} x \cdot \sin x$
35. $e^{\sin x}$
36. $\sin \left(\tan ^{-1} x\right)$
37. $\cos \left(e^{x}-1\right)$
38. $\cos \sqrt{x}+\ln (\cos x)$

Error Estimates

39. Estimate the error if $P_{3}(x)=x-\left(x^{3} / 6\right)$ is used to estimate the value of $\sin x$ at $x=0.1$.
40. Estimate the error if $P_{4}(x)=1+x+\left(x^{2} / 2\right)+\left(x^{3} / 6\right)+\left(x^{4} / 24\right)$ is used to estimate the value of e^{x} at $x=1 / 2$.
41. For approximately what values of x can you replace $\sin x$ by $x-\left(x^{3} / 6\right)$ with an error of magnitude no greater than 5×10^{-4} ? Give reasons for your answer.
42. If $\cos x$ is replaced by $1-\left(x^{2} / 2\right)$ and $|x|<0.5$, what estimate can be made of the error? Does $1-\left(x^{2} / 2\right)$ tend to be too large, or too small? Give reasons for your answer.
43. How close is the approximation $\sin x=x$ when $|x|<10^{-3}$? For which of these values of x is $x<\sin x$?
44. The estimate $\sqrt{1+x}=1+(x / 2)$ is used when x is small. Estimate the error when $|x|<0.01$.
45. The approximation $e^{x}=1+x+\left(x^{2} / 2\right)$ is used when x is small. Use the Remainder Estimation Theorem to estimate the error when $|x|<0.1$.
46. (Continuation of Exercise 45.) When $x<0$, the series for e^{x} is an alternating series. Use the Alternating Series Estimation Theorem to estimate the error that results from replacing e^{x} by $1+x+\left(x^{2} / 2\right)$ when $-0.1<x<0$. Compare your estimate with the one you obtained in Exercise 45.

Theory and Examples

47. Use the identity $\sin ^{2} x=(1-\cos 2 x) / 2$ to obtain the Maclaurin series for $\sin ^{2} x$. Then differentiate this series to obtain the Maclaurin series for $2 \sin x \cos x$. Check that this is the series for $\sin 2 x$.
48. (Continuation of Exercise 47.) Use the identity $\cos ^{2} x=$ $\cos 2 x+\sin ^{2} x$ to obtain a power series for $\cos ^{2} x$.
49. Taylor's Theorem and the Mean Value Theorem Explain how the Mean Value Theorem (Section 4.2, Theorem 4) is a special case of Taylor's Theorem.
50. Linearizations at inflection points Show that if the graph of a twice-differentiable function $f(x)$ has an inflection point at $x=a$, then the linearization of f at $x=a$ is also the quadratic approximation of f at $x=a$. This explains why tangent lines fit so well at inflection points.
51. The (second) second derivative test Use the equation

$$
f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}\left(c_{2}\right)}{2}(x-a)^{2}
$$

to establish the following test.
Let f have continuous first and second derivatives and suppose that $f^{\prime}(a)=0$. Then
a. f has a local maximum at a if $f^{\prime \prime} \leq 0$ throughout an interval whose interior contains a;
b. f has a local minimum at a if $f^{\prime \prime} \geq 0$ throughout an interval whose interior contains a.
52. A cubic approximation Use Taylor's formula with $a=0$ and $n=3$ to find the standard cubic approximation of $f(x)=$ $1 /(1-x)$ at $x=0$. Give an upper bound for the magnitude of the error in the approximation when $|x| \leq 0.1$.
53. a. Use Taylor's formula with $n=2$ to find the quadratic approximation of $f(x)=(1+x)^{k}$ at $x=0$ (k a constant).
b. If $k=3$, for approximately what values of x in the interval $[0,1]$ will the error in the quadratic approximation be less than $1 / 100$?

54. Improving approximations of $\boldsymbol{\pi}$

a. Let P be an approximation of π accurate to n decimals. Show that $P+\sin P$ gives an approximation correct to $3 n$ decimals. (Hint: Let $P=\pi+x$.)
T b. Try it with a calculator.
55. The Taylor series generated by $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ is $\sum_{n=0}^{\infty} a_{n} x^{n} \quad$ A function defined by a power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ with a radius of convergence $R>0$ has a Taylor series that converges to the function at every point of $(-R, R)$. Show this by showing that the Taylor series generated by $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ is the series $\sum_{n=0}^{\infty} a_{n} x^{n}$ itself.

An immediate consequence of this is that series like

$$
x \sin x=x^{2}-\frac{x^{4}}{3!}+\frac{x^{6}}{5!}-\frac{x^{8}}{7!}+\cdots
$$

and

$$
x^{2} e^{x}=x^{2}+x^{3}+\frac{x^{4}}{2!}+\frac{x^{5}}{3!}+\cdots
$$

obtained by multiplying Taylor series by powers of x, as well as series obtained by integration and differentiation of convergent power series, are themselves the Taylor series generated by the functions they represent.
56. Taylor series for even functions and odd functions (Continuation of Section 10.7, Exercise 59.) Suppose that $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ converges for all x in an open interval $(-R, R)$. Show that
a. If f is even, then $a_{1}=a_{3}=a_{5}=\cdots=0$, i.e., the Taylor series for f at $x=0$ contains only even powers of x.
b. If f is odd, then $a_{0}=a_{2}=a_{4}=\cdots=0$, i.e., the Taylor series for f at $x=0$ contains only odd powers of x.

COMPUTER EXPLORATIONS

Taylor's formula with $n=1$ and $a=0$ gives the linearization of a function at $x=0$. With $n=2$ and $n=3$ we obtain the standard quadratic and cubic approximations. In these exercises we explore the errors associated with these approximations. We seek answers to two questions:
a. For what values of x can the function be replaced by each approximation with an error less than 10^{-2} ?
b. What is the maximum error we could expect if we replace the function by each approximation over the specified interval?
Using a CAS, perform the following steps to aid in answering questions (a) and (b) for the functions and intervals in Exercises 57-62.

Step 1: Plot the function over the specified interval.
Step 2: Find the Taylor polynomials $P_{1}(x), P_{2}(x)$, and $P_{3}(x)$ at $x=0$.
Step 3: Calculate the $(n+1)$ st derivative $f^{(n+1)}(c)$ associated with the remainder term for each Taylor polynomial. Plot the derivative as a function of c over the specified interval and estimate its maximum absolute value, M.
Step 4: Calculate the remainder $R_{n}(x)$ for each polynomial. Using the estimate M from Step 3 in place of $f^{(n+1)}(c)$, plot $R_{n}(x)$ over the specified interval. Then estimate the values of x that answer question (a).
Step 5: Compare your estimated error with the actual error $E_{n}(x)=\left|f(x)-P_{n}(x)\right|$ by plotting $E_{n}(x)$ over the specified interval. This will help answer question (b).
Step 6: Graph the function and its three Taylor approximations together. Discuss the graphs in relation to the information discovered in Steps 4 and 5.
57. $f(x)=\frac{1}{\sqrt{1+x}}, \quad|x| \leq \frac{3}{4}$
58. $f(x)=(1+x)^{3 / 2}, \quad-\frac{1}{2} \leq x \leq 2$
59. $f(x)=\frac{x}{x^{2}+1}, \quad|x| \leq 2$
60. $f(x)=(\cos x)(\sin 2 x), \quad|x| \leq 2$
61. $f(x)=e^{-x} \cos 2 x, \quad|x| \leq 1$
62. $f(x)=e^{x / 3} \sin 2 x, \quad|x| \leq 2$

We can use Taylor series to solve problems that would otherwise be intractable. For example, many functions have antiderivatives that cannot be expressed using familiar functions. In this section we show how to evaluate integrals of such functions by giving them as Taylor series. We also show how to use Taylor series to evaluate limits that lead to indeterminate forms and how Taylor series can be used to extend the exponential function from real to complex numbers. We begin with a discussion of the binomial series, which comes from the Taylor series of the function $f(x)=(1+x)^{m}$, and conclude the section with Table 10.1, which lists some commonly used Taylor series.

The Binomial Series for Powers and Roots

The Taylor series generated by $f(x)=(1+x)^{m}$, when m is constant, is

$$
\begin{align*}
1+m x+\frac{m(m-1)}{2!} x^{2} & +\frac{m(m-1)(m-2)}{3!} x^{3}+\cdots \\
& +\frac{m(m-1)(m-2) \cdots(m-k+1)}{k!} x^{k}+\cdots . \tag{1}
\end{align*}
$$

This series, called the binomial series, converges absolutely for $|x|<1$. To derive the series, we first list the function and its derivatives:

$$
\begin{aligned}
f(x) & =(1+x)^{m} \\
f^{\prime}(x) & =m(1+x)^{m-1} \\
f^{\prime \prime}(x) & =m(m-1)(1+x)^{m-2} \\
f^{\prime \prime \prime}(x) & =m(m-1)(m-2)(1+x)^{m-3} \\
& \vdots \\
f^{(k)}(x) & =m(m-1)(m-2) \cdots(m-k+1)(1+x)^{m-k}
\end{aligned}
$$

We then evaluate these at $x=0$ and substitute into the Taylor series formula to obtain Series (1).

If m is an integer greater than or equal to zero, the series stops after $(m+1)$ terms because the coefficients from $k=m+1$ on are zero.

If m is not a positive integer or zero, the series is infinite and converges for $|x|<1$. To see why, let u_{k} be the term involving x^{k}. Then apply the Ratio Test for absolute convergence to see that

$$
\left|\frac{u_{k+1}}{u_{k}}\right|=\left|\frac{m-k}{k+1} x\right| \rightarrow|x| \quad \text { as } k \rightarrow \infty
$$

Our derivation of the binomial series shows only that it is generated by $(1+x)^{m}$ and converges for $|x|<1$. The derivation does not show that the series converges to $(1+x)^{m}$. It does, but we leave the proof to Exercise 58. The following formulation gives a succinct way to express the series.

The Binomial Series

For $-1<x<1$,

$$
(1+x)^{m}=1+\sum_{k=1}^{\infty}\binom{m}{k} x^{k}
$$

where we define

$$
\binom{m}{1}=m, \quad\binom{m}{2}=\frac{m(m-1)}{2!},
$$

and

$$
\binom{m}{k}=\frac{m(m-1)(m-2) \cdots(m-k+1)}{k!} \quad \text { for } k \geq 3
$$

EXAMPLE 1 If $m=-1$,

$$
\binom{-1}{1}=-1, \quad\binom{-1}{2}=\frac{-1(-2)}{2!}=1
$$

and

$$
\binom{-1}{k}=\frac{-1(-2)(-3) \cdots(-1-k+1)}{k!}=(-1)^{k}\left(\frac{k!}{k!}\right)=(-1)^{k} .
$$

With these coefficient values and with x replaced by $-x$, the binomial series formula gives the familiar geometric series

$$
(1+x)^{-1}=1+\sum_{k=1}^{\infty}(-1)^{k} x^{k}=1-x+x^{2}-x^{3}+\cdots+(-1)^{k} x^{k}+\cdots .
$$

EXAMPLE 2 We know from Section 3.9, Example 1, that $\sqrt{1+x} \approx 1+(x / 2)$ for $|x|$ small. With $m=1 / 2$, the binomial series gives quadratic and higher-order approximations as well, along with error estimates that come from the Alternating Series Estimation Theorem:

$$
\begin{aligned}
&(1+x)^{1 / 2}= 1+\frac{x}{2}+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!} x^{2} \\
&+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{3!} x^{3} \\
&+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)}{4!} x^{4}+\cdots \\
&= 1+\frac{x}{2}-\frac{x^{2}}{8}+\frac{x^{3}}{16}-\frac{5 x^{4}}{128}+\cdots
\end{aligned}
$$

Substitution for x gives still other approximations. For example,

$$
\begin{gathered}
\sqrt{1-x^{2}} \approx 1-\frac{x^{2}}{2}-\frac{x^{4}}{8} \quad \text { for }\left|x^{2}\right| \text { small } \\
\sqrt{1-\frac{1}{x}} \approx 1-\frac{1}{2 x}-\frac{1}{8 x^{2}} \quad \text { for }\left|\frac{1}{x}\right| \text { small, that is, }|x| \text { large. }
\end{gathered}
$$

Evaluating Nonelementary Integrals

Sometimes we can use a familiar Taylor series to find the sum of a given power series in terms of a known function. For example,

$$
x^{2}-\frac{x^{6}}{3!}+\frac{x^{10}}{5!}-\frac{x^{14}}{7!}+\cdots=\left(x^{2}\right)-\frac{\left(x^{2}\right)^{3}}{3!}+\frac{\left(x^{2}\right)^{5}}{5!}-\frac{\left(x^{2}\right)^{7}}{7!}+\cdots=\sin x^{2}
$$

Additional examples are provided in Exercises 59-62.
Taylor series can be used to express nonelementary integrals in terms of series. Integrals like $\int \sin x^{2} d x$ arise in the study of the diffraction of light.

EXAMPLE 3 Express $\int \sin x^{2} d x$ as a power series.
Solution From the series for $\sin x$ we substitute x^{2} for x to obtain

$$
\sin x^{2}=x^{2}-\frac{x^{6}}{3!}+\frac{x^{10}}{5!}-\frac{x^{14}}{7!}+\frac{x^{18}}{9!}-\cdots
$$

Therefore,

$$
\int \sin x^{2} d x=C+\frac{x^{3}}{3}-\frac{x^{7}}{7 \cdot 3!}+\frac{x^{11}}{11 \cdot 5!}-\frac{x^{15}}{15 \cdot 7!}+\frac{x^{19}}{19 \cdot 9!}-\cdots
$$

EXAMPLE 4 Estimate $\int_{0}^{1} \sin x^{2} d x$ with an error of less than 0.001.
Solution From the indefinite integral in Example 3, we easily find that

$$
\int_{0}^{1} \sin x^{2} d x=\frac{1}{3}-\frac{1}{7 \cdot 3!}+\frac{1}{11 \cdot 5!}-\frac{1}{15 \cdot 7!}+\frac{1}{19 \cdot 9!}-\cdots
$$

The series on the right-hand side alternates, and we find by numerical evaluations that

$$
\frac{1}{11 \cdot 5!} \approx 0.00076
$$

is the first term to be numerically less than 0.001 . The sum of the preceding two terms gives

$$
\int_{0}^{1} \sin x^{2} d x \approx \frac{1}{3}-\frac{1}{42} \approx 0.310
$$

With two more terms we could estimate

$$
\int_{0}^{1} \sin x^{2} d x \approx 0.310268
$$

with an error of less than 10^{-6}. With only one term beyond that we have

$$
\int_{0}^{1} \sin x^{2} d x \approx \frac{1}{3}-\frac{1}{42}+\frac{1}{1320}-\frac{1}{75600}+\frac{1}{6894720} \approx 0.310268303
$$

with an error of about 1.08×10^{-9}. To guarantee this accuracy with the error formula for the Trapezoidal Rule would require using about 8000 subintervals.

Arctangents

In Section 10.7, Example 5, we found a series for $\tan ^{-1} x$ by differentiating to get

$$
\frac{d}{d x} \tan ^{-1} x=\frac{1}{1+x^{2}}=1-x^{2}+x^{4}-x^{6}+\cdots
$$

and then integrating to get

$$
\tan ^{-1} x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots .
$$

However, we did not prove the term-by-term integration theorem on which this conclusion depended. We now derive the series again by integrating both sides of the finite formula

$$
\begin{equation*}
\frac{1}{1+t^{2}}=1-t^{2}+t^{4}-t^{6}+\cdots+(-1)^{n} t^{2 n}+\frac{(-1)^{n+1} t^{2 n+2}}{1+t^{2}} \tag{2}
\end{equation*}
$$

in which the last term comes from adding the remaining terms as a geometric series with first term $a=(-1)^{n+1} t^{2 n+2}$ and ratio $r=-t^{2}$. Integrating both sides of Equation (2) from $t=0$ to $t=x$ gives

$$
\tan ^{-1} x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots+(-1)^{n} \frac{x^{2 n+1}}{2 n+1}+R_{n}(x)
$$

where

$$
R_{n}(x)=\int_{0}^{x} \frac{(-1)^{n+1} t^{2 n+2}}{1+t^{2}} d t
$$

The denominator of the integrand is greater than or equal to 1 ; hence

$$
\left|R_{n}(x)\right| \leq \int_{0}^{|x|} t^{2 n+2} d t=\frac{|x|^{2 n+3}}{2 n+3}
$$

If $|x| \leq 1$, the right side of this inequality approaches zero as $n \rightarrow \infty$. Therefore $\lim _{n \rightarrow \infty} R_{n}(x)=0$ if $|x| \leq 1$ and

$$
\begin{align*}
& \tan ^{-1} x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}, \quad|x| \leq 1 \tag{3}\\
& \tan ^{-1} x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots, \quad|x| \leq 1
\end{align*}
$$

We take this route instead of finding the Taylor series directly because the formulas for the higher-order derivatives of $\tan ^{-1} x$ are unmanageable. When we put $x=1$ in Equation (3), we get Leibniz's formula:

$$
\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\cdots+\frac{(-1)^{n}}{2 n+1}+\cdots
$$

Because this series converges very slowly, it is not used in approximating π to many decimal places. The series for $\tan ^{-1} x$ converges most rapidly when x is near zero. For that reason, people who use the series for $\tan ^{-1} x$ to compute π use various trigonometric identities.

For example, if

$$
\alpha=\tan ^{-1} \frac{1}{2} \quad \text { and } \quad \beta=\tan ^{-1} \frac{1}{3}
$$

then

$$
\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}=\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{6}}=1=\tan \frac{\pi}{4}
$$

and therefore

$$
\frac{\pi}{4}=\alpha+\beta=\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{3}
$$

Now Equation (3) may be used with $x=1 / 2$ to evaluate $\tan ^{-1}(1 / 2)$ and with $x=1 / 3$ to give $\tan ^{-1}(1 / 3)$. The sum of these results, multiplied by 4 , gives π.

Evaluating Indeterminate Forms

We can sometimes evaluate indeterminate forms by expressing the functions involved as Taylor series.

EXAMPLE 5 Evaluate

$$
\lim _{x \rightarrow 1} \frac{\ln x}{x-1}
$$

Solution We represent $\ln x$ as a Taylor series in powers of $x-1$. This can be accomplished by calculating the Taylor series generated by $\ln x$ at $x=1$ directly or by replacing x by $x-1$ in the series for $\ln (1+x)$ in Section 10.7, Example 6. Either way, we obtain

$$
\ln x=(x-1)-\frac{1}{2}(x-1)^{2}+\cdots
$$

from which we find that

$$
\lim _{x \rightarrow 1} \frac{\ln x}{x-1}=\lim _{x \rightarrow 1}\left(1-\frac{1}{2}(x-1)+\cdots\right)=1
$$

Of course, this particular limit can be evaluated using l'Hôpital's Rule just as well.

EXAMPLE 6 Evaluate

$$
\lim _{x \rightarrow 0} \frac{\sin x-\tan x}{x^{3}}
$$

Solution The Taylor series for $\sin x$ and $\tan x$, to terms in x^{5}, are

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots, \quad \tan x=x+\frac{x^{3}}{3}+\frac{2 x^{5}}{15}+\cdots
$$

Subtracting the series term by term, it follows that

$$
\sin x-\tan x=-\frac{x^{3}}{2}-\frac{x^{5}}{8}-\cdots=x^{3}\left(-\frac{1}{2}-\frac{x^{2}}{8}-\cdots\right)
$$

Division of both sides by x^{3} and taking limits then gives

$$
\lim _{x \rightarrow 0} \frac{\sin x-\tan x}{x^{3}}=\lim _{x \rightarrow 0}\left(-\frac{1}{2}-\frac{x^{2}}{8}-\cdots\right)=-\frac{1}{2} .
$$

If we apply series to calculate $\lim _{x \rightarrow 0}((1 / \sin x)-(1 / x))$, we not only find the limit successfully but also discover an approximation formula for $\csc x$.

EXAMPLE $7 \quad$ Find $\lim _{x \rightarrow 0}\left(\frac{1}{\sin x}-\frac{1}{x}\right)$.

Solution Using algebra and the Taylor series for $\sin x$, we have

$$
\begin{aligned}
\frac{1}{\sin x}-\frac{1}{x} & =\frac{x-\sin x}{x \sin x}=\frac{x-\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots\right)}{x \cdot\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots\right)} \\
& =\frac{x^{3}\left(\frac{1}{3!}-\frac{x^{2}}{5!}+\cdots\right)}{x^{2}\left(1-\frac{x^{2}}{3!}+\cdots\right)}=x \cdot \frac{\frac{1}{3!}-\frac{x^{2}}{5!}+\cdots}{1-\frac{x^{2}}{3!}+\cdots} .
\end{aligned}
$$

Therefore,

$$
\lim _{x \rightarrow 0}\left(\frac{1}{\sin x}-\frac{1}{x}\right)=\lim _{x \rightarrow 0}\left(x \cdot \frac{\frac{1}{3!}-\frac{x^{2}}{5!}+\cdots}{1-\frac{x^{2}}{3!}+\cdots}\right)=0
$$

From the quotient on the right, we can see that if $|x|$ is small, then

$$
\frac{1}{\sin x}-\frac{1}{x} \approx x \cdot \frac{1}{3!}=\frac{x}{6} \quad \text { or } \quad \csc x \approx \frac{1}{x}+\frac{x}{6} .
$$

Euler's Identity

A complex number is a number of the form $a+b i$, where a and b are real numbers and $i=\sqrt{-1}$ (see Appendix 7). If we substitute $x=i \theta\left(\theta\right.$ real) in the Taylor series for e^{x} and use the relations

$$
i^{2}=-1, \quad i^{3}=i^{2} i=-i, \quad i^{4}=i^{2} i^{2}=1, \quad i^{5}=i^{4} i=i,
$$

and so on, to simplify the result, we obtain

$$
\begin{aligned}
e^{i \theta} & =1+\frac{i \theta}{1!}+\frac{i^{2} \theta^{2}}{2!}+\frac{i^{3} \theta^{3}}{3!}+\frac{i^{4} \theta^{4}}{4!}+\frac{i^{5} \theta^{5}}{5!}+\frac{i^{6} \theta^{6}}{6!}+\cdots \\
& =\left(1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}-\frac{\theta^{6}}{6!}+\cdots\right)+i\left(\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\cdots\right)=\cos \theta+i \sin \theta
\end{aligned}
$$

This does not prove that $e^{i \theta}=\cos \theta+i \sin \theta$ because we have not yet defined what it means to raise e to an imaginary power. Rather, it tells us how to define $e^{i \theta}$ so that its properties are consistent with the properties of the exponential function for real numbers.

DEFINITION

$$
\begin{equation*}
\text { For any real number } \theta, e^{i \theta}=\cos \theta+i \sin \theta \tag{4}
\end{equation*}
$$

Equation (4), called Euler's identity, enables us to define $e^{a+b i}$ to be $e^{a} \cdot e^{b i}$ for any complex number $a+b i$. So

$$
e^{a+i b}=e^{a}(\cos b+i \sin b)
$$

One consequence of this identity is the equation

$$
e^{i \pi}=-1
$$

When written in the form $e^{i \pi}+1=0$, this equation combines five of the most important constants in mathematics.

TABLE 10.1 Frequently Used Taylor Series

$$
\begin{aligned}
& \frac{1}{1-x}=1+x+x^{2}+\cdots+x^{n}+\cdots=\sum_{n=0}^{\infty} x^{n}, \quad|x|<1 \\
& \frac{1}{1+x}=1-x+x^{2}-\cdots+(-x)^{n}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} x^{n}, \quad|x|<1 \\
& e^{x}=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}+\cdots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}, \quad|x|<\infty \\
& \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots+(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}, \quad|x|<\infty \\
& \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots+(-1)^{n} \frac{x^{2 n}}{(2 n)!}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}, \quad|x|<\infty \\
& \ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots+(-1)^{n-1} \frac{x^{n}}{n}+\cdots=\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{n}}{n}, \quad-1<x \leq 1 \\
& \tan ^{-1} x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\cdots+(-1)^{n} \frac{x^{2 n+1}}{2 n+1}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}, \quad|x| \leq 1
\end{aligned}
$$

EXERCISES 10.10

Binomial Series

Find the first four terms of the binomial series for the functions in Exercises 1-10.

1. $(1+x)^{1 / 2}$
2. $(1+x)^{1 / 3}$
3. $(1-x)^{-3}$
4. $(1-2 x)^{1 / 2}$
5. $\left(1+\frac{x}{2}\right)^{-2}$
6. $\left(1-\frac{x}{3}\right)^{4}$
7. $\left(1+x^{3}\right)^{-1 / 2}$
8. $\left(1+x^{2}\right)^{-1 / 3}$
9. $\left(1+\frac{1}{x}\right)^{1 / 2}$
10. $\frac{x}{\sqrt[3]{1+x}}$

Find the binomial series for the functions in Exercises 11-14.
11. $(1+x)^{4}$
12. $\left(1+x^{2}\right)^{3}$
13. $(1-2 x)^{3}$
14. $\left(1-\frac{x}{2}\right)^{4}$

Approximations and Nonelementary Integrals
In Exercises 15-18, use series to estimate the integrals' values with an error of magnitude less than 10^{-5}. (The answer section gives the integrals' values rounded to seven decimal places.)
15. $\int_{0}^{0.6} \sin x^{2} d x$
16. $\int_{0}^{0.4} \frac{e^{-x}-1}{x} d x$
17. $\int_{0}^{0.5} \frac{1}{\sqrt{1+x^{4}}} d x$
18. $\int_{0}^{0.35} \sqrt[3]{1+x^{2}} d x$

T Use series to approximate the values of the integrals in Exercises 1922 with an error of magnitude less than 10^{-8}.
19. $\int_{0}^{0.1} \frac{\sin x}{x} d x$
20. $\int_{0}^{0.1} e^{-x^{2}} d x$
21. $\int_{0}^{0.1} \sqrt{1+x^{4}} d x$
22. $\int_{0}^{1} \frac{1-\cos x}{x^{2}} d x$
23. Estimate the error if $\cos t^{2}$ is approximated by $1-\frac{t^{4}}{2}+\frac{t^{8}}{4!}$ in the integral $\int_{0}^{1} \cos t^{2} d t$.
24. Estimate the error if $\cos \sqrt{t}$ is approximated by $1-\frac{t}{2}+\frac{t^{2}}{4!}-\frac{t^{3}}{6!}$ in the integral $\int_{0}^{1} \cos \sqrt{t} d t$.

In Exercises 25-28, find a polynomial that will approximate $F(x)$ throughout the given interval with an error of magnitude less than 10^{-3}.
25. $F(x)=\int_{0}^{x} \sin t^{2} d t, \quad[0,1]$
26. $F(x)=\int_{0}^{x} t^{2} e^{-t^{2}} d t, \quad[0,1]$
27. $F(x)=\int_{0}^{x} \tan ^{-1} t d t$,
(a) $[0,0.5]$
(b) $[0,1]$
28. $F(x)=\int_{0}^{x} \frac{\ln (1+t)}{t} d t$,
(a) $[0,0.5]$
(b) $[0,1]$

Indeterminate Forms
Use series to evaluate the limits in Exercises 29-40.
29. $\lim _{x \rightarrow 0} \frac{e^{x}-(1+x)}{x^{2}}$
30. $\lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}}{x}$
31. $\lim _{t \rightarrow 0} \frac{1-\cos t-\left(t^{2} / 2\right)}{t^{4}}$
32. $\lim _{\theta \rightarrow 0} \frac{\sin \theta-\theta+\left(\theta^{3} / 6\right)}{\theta^{5}}$
33. $\lim _{y \rightarrow 0} \frac{y-\tan ^{-1} y}{y^{3}}$
34. $\lim _{y \rightarrow 0} \frac{\tan ^{-1} y-\sin y}{y^{3} \cos y}$
35. $\lim _{x \rightarrow \infty} x^{2}\left(e^{-1 / x^{2}}-1\right)$
36. $\lim _{x \rightarrow \infty}(x+1) \sin \frac{1}{x+1}$
37. $\lim _{x \rightarrow 0} \frac{\ln \left(1+x^{2}\right)}{1-\cos x}$
38. $\lim _{x \rightarrow 2} \frac{x^{2}-4}{\ln (x-1)}$
39. $\lim _{x \rightarrow 0} \frac{\sin 3 x^{2}}{1-\cos 2 x}$
40. $\lim _{x \rightarrow 0} \frac{\ln \left(1+x^{3}\right)}{x \cdot \sin x^{2}}$

Using Table 10.1
In Exercises 41-52, use Table 10.1 to find the sum of each series.
41. $1+1+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\cdots$
42. $\left(\frac{1}{4}\right)^{3}+\left(\frac{1}{4}\right)^{4}+\left(\frac{1}{4}\right)^{5}+\left(\frac{1}{4}\right)^{6}+\cdots$
43. $1-\frac{3^{2}}{4^{2} \cdot 2!}+\frac{3^{4}}{4^{4} \cdot 4!}-\frac{3^{6}}{4^{6} \cdot 6!}+\cdots$
44. $\frac{1}{2}-\frac{1}{2 \cdot 2^{2}}+\frac{1}{3 \cdot 2^{3}}-\frac{1}{4 \cdot 2^{4}}+\cdots$
45. $\frac{\pi}{3}-\frac{\pi^{3}}{3^{3} \cdot 3!}+\frac{\pi^{5}}{3^{5} \cdot 5!}-\frac{\pi^{7}}{3^{7} \cdot 7!}+\cdots$
46. $\frac{2}{3}-\frac{2^{3}}{3^{3} \cdot 3}+\frac{2^{5}}{3^{5} \cdot 5}-\frac{2^{7}}{3^{7} \cdot 7}+\cdots$
47. $x^{3}+x^{4}+x^{5}+x^{6}+\cdots$
48. $1-\frac{3^{2} x^{2}}{2!}+\frac{3^{4} x^{4}}{4!}-\frac{3^{6} x^{6}}{6!}+\cdots$
49. $x^{3}-x^{5}+x^{7}-x^{9}+x^{11}-\cdots$
50. $x^{2}-2 x^{3}+\frac{2^{2} x^{4}}{2!}-\frac{2^{3} x^{5}}{3!}+\frac{2^{4} x^{6}}{4!}-\cdots$
51. $-1+2 x-3 x^{2}+4 x^{3}-5 x^{4}+\cdots$
52. $1+\frac{x}{2}+\frac{x^{2}}{3}+\frac{x^{3}}{4}+\frac{x^{4}}{5}+\cdots$

Theory and Examples

53. Replace x by $-x$ in the Taylor series for $\ln (1+x)$ to obtain a series for $\ln (1-x)$. Then subtract this from the Taylor series for $\ln (1+x)$ to show that for $|x|<1$,

$$
\ln \frac{1+x}{1-x}=2\left(x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\cdots\right)
$$

54. How many terms of the Taylor series for $\ln (1+x)$ should you add to be sure of calculating $\ln (1.1)$ with an error of magnitude less than 10^{-8} ? Give reasons for your answer.
55. According to the Alternating Series Estimation Theorem, how many terms of the Taylor series for $\tan ^{-1} 1$ would you have to add to be sure of finding $\pi / 4$ with an error of magnitude less than 10^{-3} ? Give reasons for your answer.
56. Show that the Taylor series for $f(x)=\tan ^{-1} x$ diverges for $|x|>1$.
57. Estimating Pi About how many terms of the Taylor series for $\tan ^{-1} x$ would you have to use to evaluate each term on the righthand side of the equation

$$
\pi=48 \tan ^{-1} \frac{1}{18}+32 \tan ^{-1} \frac{1}{57}-20 \tan ^{-1} \frac{1}{239}
$$

with an error of magnitude less than 10^{-6} ? In contrast, the convergence of $\sum_{n=1}^{\infty}\left(1 / n^{2}\right)$ to $\pi^{2} / 6$ is so slow that even 50 terms will not yield two-place accuracy.
58. Use the following steps to prove that the binomial series in Equation (1) converges to $(1+x)^{m}$.
a. Differentiate the series

$$
f(x)=1+\sum_{k=1}^{\infty}\binom{m}{k} x^{k}
$$

to show that

$$
f^{\prime}(x)=\frac{m f(x)}{1+x}, \quad-1<x<1 .
$$

b. Define $g(x)=(1+x)^{-m} f(x)$ and show that $g^{\prime}(x)=0$.
c. From part (b), show that

$$
f(x)=(1+x)^{m} .
$$

59. a. Use the binomial series and the fact that

$$
\frac{d}{d x} \sin ^{-1} x=\left(1-x^{2}\right)^{-1 / 2}
$$

to generate the first four nonzero terms of the Taylor series for $\sin ^{-1} x$. What is the radius of convergence?
b. Series for $\cos ^{-1} \boldsymbol{x}$ Use your result in part (a) to find the first five nonzero terms of the Taylor series for $\cos ^{-1} x$.
60. a. Series for $\sinh ^{-1} \boldsymbol{x}$ Find the first four nonzero terms of the Taylor series for

$$
\sinh ^{-1} x=\int_{0}^{x} \frac{d t}{\sqrt{1+t^{2}}}
$$

b. Use the first three terms of the series in part (a) to estimate $\sinh ^{-1} 0.25$. Give an upper bound for the magnitude of the estimation error.
61. Obtain the Taylor series for $1 /(1+x)^{2}$ from the series for $-1 /(1+x)$.
62. Use the Taylor series for $1 /\left(1-x^{2}\right)$ to obtain a series for $2 x /\left(1-x^{2}\right)^{2}$.
63. Estimating Pi The English mathematician Wallis discovered the formula

$$
\frac{\pi}{4}=\frac{2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdot 8 \cdot \cdots}{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdot 7 \cdot \cdots}
$$

Find π to two decimal places with this formula.
64. The complete elliptic integral of the first kind is the integral

$$
K=\int_{0}^{\pi / 2} \frac{d \theta}{\sqrt{1-k^{2} \sin ^{2} \theta}}
$$

where $0<k<1$ is constant.
a. Show that the first four terms of the binomial series for $1 / \sqrt{1-x}$ are

$$
(1-x)^{-1 / 2}=1+\frac{1}{2} x+\frac{1 \cdot 3}{2 \cdot 4} x^{2}+\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} x^{3}+\cdots .
$$

b. From part (a) and the reduction integral Formula 67 at the back of the book, show that

$$
K=\frac{\pi}{2}\left[1+\left(\frac{1}{2}\right)^{2} k^{2}+\left(\frac{1 \cdot 3}{2 \cdot 4}\right)^{2} k^{4}+\left(\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}\right)^{2} k^{6}+\cdots\right] .
$$

65. Series for $\sin ^{-1} \boldsymbol{x}$ Integrate the binomial series for $\left(1-x^{2}\right)^{-1 / 2}$ to show that for $|x|<1$,

$$
\sin ^{-1} x=x+\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdot \cdots \cdot(2 n-1)}{2 \cdot 4 \cdot 6 \cdot \cdots \cdot(2 n)} \frac{x^{2 n+1}}{2 n+1}
$$

66. Series for $\tan ^{-1} \boldsymbol{x}$ for $|x|>1$ Derive the series

$$
\begin{aligned}
& \tan ^{-1} x=\frac{\pi}{2}-\frac{1}{x}+\frac{1}{3 x^{3}}-\frac{1}{5 x^{5}}+\cdots, \quad x>1 \\
& \tan ^{-1} x=-\frac{\pi}{2}-\frac{1}{x}+\frac{1}{3 x^{3}}-\frac{1}{5 x^{5}}+\cdots, \quad x<-1,
\end{aligned}
$$

by integrating the series

$$
\frac{1}{1+t^{2}}=\frac{1}{t^{2}} \cdot \frac{1}{1+\left(1 / t^{2}\right)}=\frac{1}{t^{2}}-\frac{1}{t^{4}}+\frac{1}{t^{6}}-\frac{1}{t^{8}}+\cdots
$$

in the first case from x to ∞ and in the second case from $-\infty$ to x.

Euler's Identity

67. Use Equation (4) to write the following powers of e in the form $a+b i$.
a. $e^{-i \pi}$
b. $e^{i \pi / 4}$
c. $e^{-i \pi / 2}$
68. Use Equation (4) to show that

$$
\cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2} \quad \text { and } \quad \sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i}
$$

69. Establish the equations in Exercise 68 by combining the formal Taylor series for $e^{i \theta}$ and $e^{-i \theta}$.
70. Show that
a. $\cosh i \theta=\cos \theta$,
b. $\sinh i \theta=i \sin \theta$.
71. By multiplying the Taylor series for e^{x} and $\sin x$, find the terms through x^{5} of the Taylor series for $e^{x} \sin x$. This series is the imaginary part of the series for

$$
e^{x} \cdot e^{i x}=e^{(1+i) x}
$$

Use this fact to check your answer. For what values of x should the series for $e^{x} \sin x$ converge?
72. When a and b are real, we define $e^{(a+i b) x}$ with the equation

$$
e^{(a+i b) x}=e^{a x} \cdot e^{i b x}=e^{a x}(\cos b x+i \sin b x)
$$

