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10.7 Power Series

Now that we can test many infinite series of numbers for convergence, we can study sums 
that look like “infinite polynomials.” We call these sums power series because they are 
defined as infinite series of powers of some variable, in our case x. Like polynomials, 
power series can be added, subtracted, multiplied, differentiated, and integrated to give 
new power series. With power series we can extend the methods of calculus to a vast array 
of functions, making the techniques of calculus applicable in an even wider setting.

Power Series and Convergence

We begin with the formal definition, which specifies the notation and terminology used for 
power series.

DEFINITIONS A power series about x = 0 is a series of the form

 aq
n = 0

cn xn = c0 + c1 x + c2 x2 + g+ cn xn + g. (1)

A power series about x = a is a series of the form

aq
n = 0

cn(x - a)n = c0 + c1(x - a) + c2(x - a)2 + g + cn(x - a)n + g (2)

in which the center a and the coefficients c0, c1, c2,c, cn,c  are constants.

Equation (1) is the special case obtained by taking a = 0 in Equation (2). We will see 
that a power series defines a function ƒ(x) on a certain interval where it converges. More-
over, this function will be shown to be continuous and differentiable over the interior of 
that interval.

EXAMPLE 1  Taking all the coefficients to be 1 in Equation (1) gives the geometric 
power series

aq
n = 0

xn = 1 + x + x2 + g + xn + g.

This is the geometric series with first term 1 and ratio x. It converges to 1>(1 - x) for 
� x � 6 1. We express this fact by writing

 1
1 - x = 1 + x + x2 + g + xn + g,  -1 6 x 6 1. (3)

 

Up to now, we have used Equation (3) as a formula for the sum of the series on the 
right. We now change the focus: We think of the partial sums of the series on the right as 
polynomials Pn(x) that approximate the function on the left. For values of x near zero, we 
need take only a few terms of the series to get a good approximation. As we move toward 
x = 1, or -1, we must take more terms. Figure 10.17 shows the graphs of 
ƒ(x) = 1>(1 - x) and the approximating polynomials yn = Pn(x) for n = 0, 1, 2, and 8. 
The function ƒ(x) = 1>(1 - x) is not continuous on intervals containing x = 1, where it 
has a vertical asymptote. The approximations do not apply when x Ú 1.

Power Series for 
1

1 − x
1

1 - x
= aq

n = 0
 xn, � x � 6 1
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612 Chapter 10 Infinite Sequences and Series

EXAMPLE 2  The power series

 1 - 1
2  (x - 2) + 1

4  (x - 2)2 + g + a-  12b
n

(x - 2)n + g (4)

matches Equation (2) with a = 2, c0 = 1, c1 = -1>2, c2 = 1>4,c, cn = (-1>2)n. This

is a geometric series with first term 1 and ratio r = -  x - 2
2 . The series converges for

` x - 2
2 ` 6 1, which simplifies to 0 6 x 6 4. The sum is

1
1 - r =

1

1 + x - 2
2

=
2
x

,

so

2
x = 1 -

(x - 2)
2 +

(x - 2)2

4 - g + a-  12b
n

(x - 2)n + g,  0 6 x 6 4.

Series (4) generates useful polynomial approximations of ƒ(x) = 2>x for values of x near 2:

 P0(x) = 1

 P1(x) = 1 - 1
2 (x - 2) = 2 - x

2

 P2(x) = 1 - 1
2 (x - 2) + 1

4 (x - 2)2 = 3 - 3x
2 + x2

4 ,

and so on (Figure 10.18). 

The following example illustrates how we test a power series for convergence by 
using the Ratio Test to see where it converges and diverges.

EXAMPLE 3  For what values of x do the following power series converge?

(a) aq
n = 1

(-1)n - 1 x
n

n = x - x2

2 + x3

3 - g

(b) aq
n = 1

(-1)n - 1 x2n - 1

2n - 1 = x - x3

3 + x5

5
- g

0

1

1−1

2

3

4

5

7

8

9

y2 = 1 + x + x2

y1 = 1 + x

y0 = 1

y = 1
1 − x

y8 = 1 + x + x2 + x3 + x4 + x5 + x6
 + x7 + x8

x

y

FIGURE 10.17 The graphs of ƒ(x) = 1>(1 - x) in  
Example 1 and four of its polynomial approximations.

0 2

1

1

y1 = 2 −

y2 = 3 −     +

y0 = 1
(2, 1)

y =

3

2 3x
2

x2

4

2
x

x
2
x

y

FIGURE 10.18 The graphs of 
ƒ(x) = 2>x and its first three polynomial 
approximations (Example 2).
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(c) aq
n = 0

 x
n

n!
= 1 + x + x2

2!
+ x3

3!
+ g

(d) aq
n = 0

n!xn = 1 + x + 2!x2 + 3!x3 + g

Solution Apply the Ratio Test to the series g � un � , where un is the nth term of the power 
series in question.

(a) ` un + 1
un
` = ` xn + 1

n + 1
# n
x ` = n

n + 1 � x � S � x � .

By the Ratio Test, the series converges absolutely for � x � 6 1 and diverges for  
� x � 7 1. At x = 1, we get the alternating harmonic series 
1 - 1>2 + 1>3 - 1>4 + g, which converges. At x = -1, we get -1 - 1>2 -  
1>3 - 1>4 - g, the negative of the harmonic series, which diverges. Series (a) 
converges for -1 6 x … 1 and diverges elsewhere.

−1 0 1
x

We will see in Example 6 that this series converges to the function ln (1 + x) on the 
interval (-1, 14  (see Figure 10.19).

Diverges

Converges

y = ln(1 + x)

−2
x

y
y = x

y = x  − − + − − − + −x2

2
x3

3
x4

4
x5

5

y = x  − − + − − −x2

2
x3

3
x4

4

y = x  − − + −x2

2
x3

3

y = x  − −x
2

2

1

−1

−2

2

21−1

FIGURE 10.19 The power series x - x2

2
+ x3

3
- x4

4
+ g  

converges on the interval (-1, 14 . 

(b) ` un + 1
un
` = ` x2n + 1

2n + 1
# 2n - 1

x2n - 1 ` = 2n - 1
2n + 1 x2 S x2.  2(n + 1) - 1 = 2n + 1

 By the Ratio Test, the series converges absolutely for x2 6 1 and diverges for x2 7 1.  
At x = 1 the series becomes 1 - 1>3 +  1>5 - 1>7 + g,  which converges by the 
Alternating Series Theorem. It also converges at x = -1 because it is again an alternat-
ing series that satisfies the conditions for convergence. The value at x = -1 is the nega-
tive of the value at x = 1. Series (b) converges for -1 … x … 1 and diverges elsewhere.

−1 0 1
x

(c) ` un + 1
un
` = ` xn + 1

(n + 1)!
# n!
xn ` =

� x �
n + 1 S 0 for every x.  n!

(n + 1)! = 1 # 2 # 3 gn
1 # 2 # 3 gn # (n + 1)

The series converges absolutely for all x.

0
x
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614 Chapter 10 Infinite Sequences and Series

Proof  The proof uses the Direct Comparison Test, with the given series compared to 
a converging geometric series.

Suppose the series gq
n = 0  an cn converges. Then limnSq  an cn = 0 by the nth-Term 

Test. Hence, there is an integer N such that � an cn � 6 1 for all n 7 N, so that

 � an � 6 1
� c �n  for n 7 N. (5)

Now take any x such that � x � 6 � c � , so that � x �  >  � c � 6 1. Multiplying both sides of 
Equation (5) by � x � n gives

� an � � x �n 6
� x �n

� c �n  for n 7 N.

Since � x>c � 6 1, it follows that the geometric series gq
n = 0 � x>c �n converges. By the 

 Direct Comparison Test (Theorem 10), the series gq
n = 0 � an � � x 

n �  converges, so the origi-
nal power series gq

n = 0  an x 

n converges absolutely for - � c � 6 x 6 � c �  as claimed by the 
theorem. (See Figure 10.20.)

Now suppose that the series gq
n = 0  an x 

n diverges at x = d. If x is a number with 
� x � 7 � d �  and the series converges at x, then the first half of the theorem shows that the 
series also converges at d, contrary to our assumption. So the series diverges for all x with 
� x � 7 � d � . 

To simplify the notation, Theorem 18 deals with the convergence of series of the form gan xn. For series of the form gan(x - a)n we can replace x - a by x′ and apply the 
results to the series gan(x′)n.

The Radius of Convergence of a Power Series

The theorem we have just proved and the examples we have studied lead to the conclusion 
that a power series gcn(x - a)n behaves in one of three possible ways. It might converge 
only at x = a, or converge everywhere, or converge on some interval of radius R centered 

0 @d @−@d @ −R

series
diverges

series
diverges

series
converges

R−@ c @ @ c @
x

FIGURE 10.20 Convergence of gan x 

n 
at x = c implies absolute convergence on 
the interval - � c � 6 x 6 � c � ; diver-
gence at x = d implies divergence for 
� x � 7 � d � . The corollary to Theorem 18 
asserts the existence of a radius of con-
vergence R Ú 0. For � x � 6 R the series 
converges absolutely and for � x � 7 R it 
diverges.

THEOREM 18—The Convergence Theorem for Power Series
If the power series

 aq
n = 0

an xn = a0 + a1 x + a2 x2 + g converges at x = c ≠ 0, then it converges

absolutely for all x with � x � 6 � c � . If the series diverges at x = d, then it 
 diverges for all x with � x � 7 � d � .

(d) ` un + 1
un
` = ` (n + 1)!xn + 1

n!xn ` = (n + 1) � x � S q unless x = 0.

The series diverges for all values of x except x = 0.

0
x
 

The previous example illustrated how a power series might converge. The next result 
shows that if a power series converges at more than one value, then it converges over an 
entire interval of values. The interval might be finite or infinite and contain one, both, or 
none of its endpoints. We will see that each endpoint of a finite interval must be tested 
independently for convergence or divergence.
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 10.7  Power Series 615

at x = a. We prove this as a Corollary to Theorem 18. When we also consider the conver-
gence at the endpoints of an interval, there are six different possibilities. These are shown 
in Figure 10.21.

x  − a x  + a

Converges on [x − a, x  + a ]

(a)

a

Diverges

 

a

x  − a x  + a

Diverges

Converges on [x − a, x  + a )

(b)

a

x  − a x  + a

Diverges

Converges on (x − a, x  + a ]

(c)  

a

x  − a x  + a

Diverges

Converges on (x − a, x  + a )

(d)

a

Converges everywhere

(e)  

Diverges

a

Converges only at x = a 

(f)

FIGURE 10.21 The six possibilities for an interval of convergence.

Corollary to Theorem 18
The convergence of the series gcn(x - a)n is described by one of the following 
three cases:

1. There is a positive number R such that the series diverges for x with 
� x - a � 7 R but converges absolutely for x with � x - a � 6 R. The series  
may or may not converge at either of the endpoints x = a - R and x = a + R.

2. The series converges absolutely for every x  (R = q).

3. The series converges at x = a and diverges elsewhere (R = 0).

Proof  We first consider the case where a = 0, so that we have a power series gq
n = 0  cn x 

n centered at 0. If the series converges everywhere we are in Case 2. If it con-
verges only at x = 0 then we are in Case 3. Otherwise there is a nonzero number d such 
that gq

n = 0  cndn diverges. Let S be the set of values of x for which gq
n = 0  cn x 

n converges. 
The set S does not include any x with � x � 7 � d � , since Theorem 18 implies the series 
diverges at all such values. So the set S is bounded. By the Completeness Property of the 
Real Numbers (Appendix 6) S has a least upper bound R. (This is the smallest number with 
the property that all elements of S are less than or equal to R.) Since we are not in Case 3, 
the series converges at some number b ≠ 0 and, by Theorem 18, also on the open interval 
(- � b � , � b � ). Therefore, R 7 0.

If � x � 6 R then there is a number c in S with � x � 6 c 6 R, since otherwise R would 
not be the least upper bound for S. The series converges at c since c∊S, so by Theorem 18 
the series converges absolutely at x.
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616 Chapter 10 Infinite Sequences and Series

Now suppose � x � 7 R. If the series converges at x, then Theorem 18 implies it con-
verges absolutely on the open interval (- � x � , � x � ), so that S contains this interval. Since R 
is an upper bound for S, it follows that � x � … R, which is a contradiction. So if � x � 7 R 
then the series diverges. This proves the theorem for power series centered at a = 0.

For a power series centered at an arbitrary point x = a, set x′ = x - a and repeat the 
argument above, replacing x with x′. Since x′ = 0 when x = a, convergence of the series gq

n = 0 � cn(x′)n �  on a radius R open interval centered at x′ = 0 corresponds to convergence 
of the series gq

n = 0 � cn(x - a)n �  on a radius R open interval centered at x = a. 

R is called the radius of convergence of the power series, and the interval of radius 
R centered at x = a is called the interval of convergence. The interval of convergence 
may be open, closed, or half-open, depending on the particular series. At points x with 
� x - a � 6 R, the series converges absolutely. If the series converges for all values of x, 
we say its radius of convergence is infinite. If it converges only at x = a, we say its radius 
of convergence is zero.

How to Test a Power Series for Convergence
1. Use the Ratio Test (or Root Test) to find the largest open interval where the 

series converges absolutely,

� x - a � 6 R  or  a - R 6 x 6 a + R.

2. If R is finite, test for convergence or divergence at each endpoint, as in  
 Examples 3a and b. Use a Comparison Test, the Integral Test, or the  Alternating 
Series Test.

3. If R is finite, the series diverges for � x - a � 7 R (it does not even converge 
conditionally) because the nth term does not approach zero for those values of x.

THEOREM 19—Series Multiplication for Power Series
If A(x) = gq

n = 0  an xn and B(x) = gq
n = 0  bn xn converge absolutely for � x � 6 R, 

and

cn = a0 bn + a1 bn - 1 + a2 bn - 2 + g+ an - 1b1 + an b0 = an

k = 0
ak bn - k ,

then gq
n = 0 cn xn converges absolutely to A(x)B(x) for � x � 6 R:

aaq
n = 0

an xnb aaq
n = 0

bn xnb = aq
n = 0

cn xn .

Operations on Power Series

On the intersection of their intervals of convergence, two power series can be added and 
subtracted term by term just like series of constants (Theorem 8). They can be multiplied 
just as we multiply polynomials, but we often limit the computation of the product to the 
first few terms, which are the most important. The following result gives a formula for the 
coefficients in the product, but we omit the proof. (Power series can also be divided in a 
way similar to division of polynomials, but we do not give a formula for the general coef-
ficient here.)

Finding the general coefficient cn in the product of two power series can be very 
tedious and the term may be unwieldy. The following computation provides an illustration 
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 10.7  Power Series 617

of a product where we find the first few terms by multiplying the terms of the second 
series by each term of the first series:

aaq
n = 0

 xnb # aaq
n = 0

 (-1)n xn + 1

n + 1b

= (1 + x + x2 + g) ax - x2

2 + x3

3 - gb  Multiply second series . . .

= ax - x2

2 + x3

3 - gb + ax2 - x3

2 + x4

3 - gb + ax3 - x4

2 + x5

3 - gb + g
 (1+1+)++11* (1+1+)++11* (1+1+)++11*
 by 1 by x by x2

= x + x2

2 + 5x3

6
- x4

6
 g. and gather the first four powers.

We can also substitute a function ƒ(x) for x in a convergent power series.

THEOREM 20 If gq
n = 0  an xn converges absolutely for � x � 6 R and ƒ is a con-

tinuous function, then gq
n = 0  an (ƒ(x))n converges absolutely on the set of points x 

where � ƒ(x) � 6 R.

Since 1>(1 - x) = gq
n = 0  xn converges absolutely for � x � 6 1, it follows from 

 Theorem 20 that 1> (1 - 4x2) = gq
n = 0 (4x2)n converges absolutely when x satisfies 

� 4x2 � 6 1 or equivalently when � x � 6 1>2.
Theorem 21 says that a power series can be differentiated term by term at each inte-

rior point of its interval of convergence. A proof is outlined in Exercise 64.

THEOREM 21—Term-by-Term Differentiation
If gcn(x - a)n has radius of convergence R 7 0, it defines a function

ƒ(x) = aq
n = 0

cn(x - a)n  on the interval  a - R 6 x 6 a + R.

This function ƒ has derivatives of all orders inside the interval, and we obtain the 
derivatives by differentiating the original series term by term:

 ƒ′(x) = aq
n = 1

ncn(x - a)n - 1 ,

 ƒ″(x) = aq
n = 2

n(n - 1)cn(x - a)n - 2 ,

and so on. Each of these derived series converges at every point of the interval 
a - R 6 x 6 a + R.

EXAMPLE 4  Find series for ƒ′(x) and ƒ″(x) if

 ƒ(x) = 1
1 - x = 1 + x + x2 + x3 + x4 + g+ xn + g

 = aq
n = 0

xn,  -1 6 x 6 1.
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618 Chapter 10 Infinite Sequences and Series

Solution We differentiate the power series on the right term by term:

 ƒ′(x) = 1
(1 - x)2 = 1 + 2x + 3x2 + 4x3 + g+ nxn - 1 + g

 = aq
n = 1

nxn - 1,  -1 6 x 6 1;

 ƒ″(x) = 2
(1 - x)3 = 2 + 6x + 12x2 + g + n(n - 1)xn - 2 + g

  = aq
n = 2

n(n - 1)xn - 2,  -1 6 x 6 1.  

THEOREM 22—Term-by-Term Integration
Suppose that

ƒ(x) = aq
n = 0

cn(x - a)n

converges for a - R 6 x 6 a + R(R 7 0). Then

aq
n = 0

cn 
(x - a)n + 1

n + 1

converges for a - R 6 x 6 a + R and

 Lƒ(x) dx = aq
n = 0

cn 
(x - a)n + 1

n + 1 + C

for a - R 6 x 6 a + R.

EXAMPLE 5  Identify the function

ƒ(x) = aq
n = 0

(-1)n x2n + 1

2n + 1 = x - x3

3 + x5

5
- g ,  -1 … x … 1.

Solution We differentiate the original series term by term and get

 ƒ′(x) = 1 - x2 + x4 - x6 + g,  -1 6 x 6 1. Theorem 21

Caution Term-by-term differentiation might not work for other kinds of series. For 
 example, the trigonometric series

aq
n = 1

 
sin(n!x)

n2

converges for all x. But if we differentiate term by term we get the series

aq
n = 1

 
n! cos(n!x)

n2 ,

which diverges for all x. This is not a power series since it is not a sum of positive integer 
powers of x. 

It is also true that a power series can be integrated term by term throughout its interval 
of convergence. The proof is outlined in Exercise 65.
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This is a geometric series with first term 1 and ratio -x2, so

ƒ′(x) = 1
1 - (-x2)

= 1
1 + x2 .

We can now integrate ƒ′(x) = 1> (1 + x2)  to get

 L ƒ′(x) dx = L  dx
1 + x2 = tan-1 x + C.

The series for ƒ(x) is zero when x = 0, so C = 0. Hence

 ƒ(x) = x - x3

3 + x5

5
- x7

7 + g = tan-1 x,  -1 6 x 6 1. (6)

It can be shown that the series also converges to tan-1 x at the endpoints x = {1, but we 
omit the proof. 

Notice that the original series in Example 5 converges at both endpoints of the origi-
nal interval of convergence, but Theorem 22 can only guarantee the convergence of the 
differentiated series inside the interval.

EXAMPLE 6  The series

1
1 + t = 1 - t + t2 - t3 + g

converges on the open interval -1 6 t 6 1. Therefore,

 ln (1 + x) = L
x

0
 1
1 + t dt = t - t2

2 + t3

3 - t4

4 + g d
0

x

  Theorem 22

 = x - x2

2 + x3

3 - x4

4 + g

or

ln (1 + x) = aq
n = 1

(-1)n - 1 xn

n ,   -1 6 x 6 1.

It can also be shown that the series converges at x = 1 to the number ln 2, but that was not 
guaranteed by the theorem. A proof of this is outlined in Exercise 61. 

The Number P as a Series

p
4 = tan-11 = aq

n = 0
 

(-1)n

2n + 1

Alternating Harmonic Series Sum

ln 2 = aq
n = 1

(-1)n - 1

n

Intervals of Convergence
In Exercises 1–36, (a) find the series’ radius and interval of conver-
gence. For what values of x does the series converge (b) absolutely, 
(c) conditionally?

 1. aq
n = 0

xn 2. aq
n = 0

(x + 5)n

 3. aq
n = 0

(-1)n(4x + 1)n 4. aq
n = 1

 
(3x - 2)n

n

 5. aq
n = 0

 
(x - 2)n

10n  6. aq
n = 0

(2x)n

 7. aq
n = 0

 
nxn

n + 2
 8. aq

n = 1
 
(-1)n(x + 2)n

n

 9. aq
n = 1

 
xn

n2n 3n
 10. aq

n = 1
 
(x - 1)n2n

 11. aq
n = 0

 
(-1)nxn

n!
 12. aq

n = 0
 
3nxn

n!

 13. aq
n = 1

 
4nx2n

n  14. aq
n = 1

 
(x - 1)n

n33n

 15. aq
n = 0

 
xn2n2 + 3

 16. aq
n = 0

 
(-1)nxn + 12n + 3

EXERCISES 10.7

M10_HASS8986_14_SE_C10_563-648.indd   619 10/12/16   2:24 PM



620 Chapter 10 Infinite Sequences and Series

 45. aq
n = 0

 a2x
2

- 1b
n

 46. aq
n = 0

(ln x)n

 47. aq
n = 0

 ax
2 + 1

3
b

n

 48. aq
n = 0

 ax
2 - 1

2
b

n

Using the Geometric Series

 49. In Example 2 we represented the function ƒ(x) = 2>x as a power 
series about x = 2. Use a geometric series to represent ƒ(x) as a 
power series about x = 1, and find its interval of convergence.

 50. Use a geometric series to represent each of the given functions as a 
power series about x = 0, and find their intervals of convergence.

a. ƒ(x) = 5
3 - x

 b. g(x) = 3
x - 2

 51. Represent the function g(x) in Exercise 50 as a power series about 
x = 5, and find the interval of convergence.

 52. a. Find the interval of convergence of the power series

aq
n = 0

 
8

4n + 2 x
n.     

b. Represent the power series in part (a) as a power series about 
x = 3 and identify the interval of convergence of the new 
series. (Later in the chapter you will understand why the new 
interval of convergence does not necessarily include all of the 
numbers in the original interval of convergence.)

Theory and Examples

 53. For what values of x does the series

1 - 1
2

 (x - 3) + 1
4

 (x - 3)2 + g + a-  
1
2
b

n

(x - 3)n + g

  converge? What is its sum? What series do you get if you differen-
tiate the given series term by term? For what values of x does the 
new series converge? What is its sum?

 54. If you integrate the series in Exercise 53 term by term, what new 
series do you get? For what values of x does the new series con-
verge, and what is another name for its sum?

 55. The series

sin x = x - x3

3!
+ x5

5!
- x7

7!
+ x9

9!
- x11

11!
+ g

  converges to sin x for all x.

a. Find the first six terms of a series for cos x. For what values 
of x should the series converge?

b. By replacing x by 2x in the series for sin x, find a series that 
converges to sin 2x for all x.

c. Using the result in part (a) and series multiplication, calculate 
the first six terms of a series for 2 sin x cos x. Compare your 
answer with the answer in part (b).

 56. The series

ex = 1 + x + x2

2!
+ x3

3!
+ x4

4!
+ x5

5!
+ g

  converges to ex for all x.

a. Find a series for (d>dx)ex. Do you get the series for ex? 
 Explain your answer.

 17. aq
n = 0

 
n(x + 3)n

5n  18. aq
n = 0

 
nxn

4n(n2 + 1)

 19. aq
n = 0

 
2nxn

3n  20. aq
n = 1
2n n(2x + 5)n

 21. aq
n = 1

 (2 + (-1)n) # (x + 1)n - 1

 22. aq
n = 1

 
(-1)n 32n(x - 2)n

3n

 23. aq
n = 1

 a1 + 1
nb

n

 xn 24. aq
n = 1

(ln n)xn

 25. aq
n = 1

nnxn 26. aq
n = 0

n!(x - 4)n

 27. aq
n = 1

 
(-1)n + 1(x + 2)n

n2n  28. aq
n = 0

(-2)n(n + 1)(x - 1)n

 29. aq
n = 2

 
xn

n(ln n)2 

 30. aq
n = 2

 
xn

n ln n
Get the information you need about 

a 1>(n ln n) from Section 10.3, Exercise 60.

 31. aq
n = 1

 
(4x - 5)2n + 1

n3>2  32. aq
n = 1

 
(3x + 1)n + 1

2n + 2

 33. aq
n = 1

 
1

2 # 4 # 6g(2n)
 xn

 34. aq
n = 1

 
3 # 5 # 7g(2n + 1)

n2 # 2n  xn + 1

 35. aq
n = 1

 
1 + 2 + 3 + g + n

12 + 22 + 32 + g + n2 x
n

 36. aq
n = 1

 12n + 1 - 2n2(x - 3)n

In Exercises 37–40, find the series’ radius of convergence.

 37. aq
n = 1

 
n!

3 # 6 # 9g3n
 xn

 38. aq
n = 1

 a 2 # 4 # 6g(2n)
2 # 5 # 8g(3n - 1)

b
2

 xn

 39. aq
n = 1

 
(n!)2

2n(2n)!
 xn

 40. aq
n = 1

 a n
n + 1

b
n2

 xn

  (Hint: Apply the Root Test.)

In Exercises 41–48, use Theorem 20 to find the series’ interval of con-
vergence and, within this interval, the sum of the series as a function 
of x.

 41. aq
n = 0

 3nxn 42. aq
n = 0

 (ex - 4)n

 43. aq
n = 0

 
(x - 1)2n

4n  44. aq
n = 0

 
(x + 1)2n

9n

Get the information you need about 

a 1>(n(ln n)2) from Section 10.3, Exercise 61.
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 10.7  Power Series 621

b. Find a series for 1ex dx. Do you get the series for ex? Ex-
plain your answer.

c. Replace x by -x in the series for ex to find a series that con-
verges to e-x for all x. Then multiply the series for ex and e-x 
to find the first six terms of a series for e-x # ex.

 57. The series

tan x = x + x3

3
+ 2x5

15
+ 17x7

315
+ 62x9

2835
+ g

  converges to tan x for -p>2 6 x 6 p>2.

a. Find the first five terms of the series for ln � sec x � . For what 
values of x should the series converge?

b. Find the first five terms of the series for sec2 x. For what 
values of x should this series converge?

c. Check your result in part (b) by squaring the series given for 
sec x in Exercise 58.

 58. The series

sec x = 1 + x2

2
+ 5

24
 x4 + 61

720
 x6 + 277

8064
 x8 + g

  converges to sec x for -p>2 6 x 6 p>2.

a. Find the first five terms of a power series for the function 
ln � sec x + tan x � . For what values of x should the series 
converge?

b. Find the first four terms of a series for sec x tan x. For what 
values of x should the series converge?

c. Check your result in part (b) by multiplying the series for  
sec x by the series given for tan x in Exercise 57.

 59. Uniqueness of convergent power series

a. Show that if two power series gq
n = 0 an xn and gq

n = 0  bn xn 
are convergent and equal for all values of x in an open 
interval (-c, c), then an = bn for every n. (Hint: Let 
ƒ(x) = gq

n = 0 an xn = gq
n = 0 bn xn. Differentiate term by term to 

show that an and bn both equal ƒ(n)(0)>(n!).)
b. Show that if gq

n = 0  an xn = 0 for all x in an open interval 
(-c, c), then an = 0 for every n.

 60. The sum of the series gHn = 0 (n2 ,2n)  To find the sum of this se-
ries, express 1>(1 - x) as a geometric series, differentiate both 
sides of the resulting equation with respect to x, multiply both 
sides of the result by x, differentiate again, multiply by x again, 
and set x equal to 1 >2. What do you get?

 61. The sum of the alternating harmonic series This exercise will 
show that

aq
n = 1

(-1)n+1

n = ln 2.

Let hn be the nth partial sum of the harmonic series, and let sn be 
the nth partial sum of the alternating harmonic series.

a. Use mathematical induction or algebra to show that 

s2n = h2n - hn.

b. Use the results in Exercise 63 in Section 10.3 to conclude that

lim
nSq

 (hn - ln n) = g

 and

lim
nSq

 (h2n - ln 2n) = g,

where g is Euler’s constant.

c. Use these facts to show that

aq
n = 1

(-1)n+1

n = lim
nSq

s2n = ln 2.

 62. Assume that the series ganxn converges for x = 4 and diverges 
for x = 7. Answer true (T), false (F), or not enough information 
given (N) for the following statements about the series.

a. Converges absolutely for x = -4

b. Diverges for x = 5

c. Converges absolutely for x = -8.5

d. Converges for x = -2

e. Diverges for x = 8

f. Diverges for x = -6

g. Converges absolutely for x = 0

h. Converges absolutely for x = -7.1

 63. Assume that the series gan(x - 2)n converges for x = -1 and 
diverges for x = 6. Answer true (T), false (F), or not enough in-
formation given (N) for the following statements about the series.

a. Converges absolutely for x = 1

b. Diverges for x = -6

c. Diverges for x = 2

d. Converges for x = 0

e. Converges absolutely for x = 5

f. Diverges for x = 4.9

g. Diverges for x = 5.1

h. Converges absolutely for x = 4

 64. Proof of Theorem 21 Assume that a = 0 in Theorem 21 
and that ƒ(x) = gq

n = 0 cnxn converges for -R 6 x 6 R. Let 
  g(x) = gq

n = 1 ncnxn-1. This exercise will prove that ƒ′(x) = g(x), 

  that is, lim
hS0

 
ƒ(x + h) - ƒ(x)

h
= g(x).

a. Use the Ratio Test to show that g(x) converges for 
-R 6 x 6 R.

b. Use the Mean Value Theorem to show that 

(x + h)n - xn

h
= ncn-1

n

 for some cn between x and x + h for n = 1, 2, 3, . . . .

c. Show that2 g(x) -
ƒ(x + h) - ƒ(x)

h
2 = 2 aq

n = 2
nan1xn-1 - cn-1

n 2 2
d. Use the Mean Value Theorem to show that

xn-1 - cn-1
n

x - cn
= (n - 1) dn-2

n-1

 for some dn-1 between x and cn for n = 2, 3, 4, . . . .
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10.8 Taylor and Maclaurin Series

We have seen how geometric series can be used to generate a power series for functions 
such as ƒ(x) = 1>(1 - x) or g(x) = 3>(x - 2). Now we expand our capability to repre-
sent a function with a power series. This section shows how functions that are infinitely 
differentiable generate power series called Taylor series. In many cases, these series pro-
vide useful polynomial approximations of the original functions. Because approximation 
by polynomials is extremely useful to both mathematicians and scientists, Taylor series are 
an important application of the theory of infinite series.

Series Representations

We know from Theorem 21 that within its interval of convergence I the sum of a power 
series is a continuous function with derivatives of all orders. But what about the other way 
around? If a function ƒ(x) has derivatives of all orders on an interval, can it be expressed as 
a power series on at least part of that interval? And if it can, what are its coefficients?

We can answer the last question readily if we assume that ƒ(x) is the sum of a power 
series about x = a,

 ƒ(x) = aq
n = 0

an(x - a)n

 = a0 + a1(x - a) + a2(x - a)2 + g + an(x - a)n + g
with a positive radius of convergence. By repeated term-by-term differentiation within the 
interval of convergence I, we obtain

 ƒ′(x) = a1 + 2a2(x - a) + 3a3(x - a)2 + g + nan(x - a)n - 1 + g,

 ƒ″(x) = 1 # 2a2 + 2 # 3a3(x - a) + 3 # 4a4(x - a)2 + g,

 ƒ‴(x) = 1 # 2 # 3a3 + 2 # 3 # 4a4(x - a) + 3 # 4 # 5a5(x - a)2 + g,

with the nth derivative being

ƒ(n)(x) = n!an + a sum of terms with (x - a) as a factor.

Since these equations all hold at x = a, we have

ƒ′(a) = a1,  ƒ″(a) = 1 # 2a2,  ƒ‴(a) = 1 # 2 # 3a3,

and, in general,
ƒ(n)(a) = n!an .

e. Explain why 0 x - cn 0 6 h and why 
0 dn-1 0 … a = max5 0 x 0 , 0 x + h 0 6 .

f. Show that

` g(x) -
ƒ(x + h) - ƒ(x)

h
` … � h � aq

n = 2
0 n(n - 1)ana

n-2 0

g. Show that gq
n = 2 n(n - 1)an-2 converges for -R 6 x 6 R.

h. Let h S 0 in part (f) to conclude that

lim
hS0

 
ƒ(x + h) - ƒ(x)

h
= g(x).

 65. Proof of Theorem 22 Assume that a = 0 in Theorem 22 and 

  that ƒ(x) = aq
n = 0

cnxn converges for -R 6 x 6 R. Let 

  g(x) = aq
n = 0

 
cn

n + 1
 xn+1. This exercise will prove that g′(x) = ƒ(x).

a. Use the Ratio Test to show that g(x) converges for 
-R 6 x 6 R.

b. Use Theorem 21 to show that g′(x) = ƒ(x), that is,

 Lƒ(x) dx = g(x) + C.
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