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diverges (since 0 r 0 = 5>4 7 1). In series (1), there is some cancelation in the partial 
sums, which may be assisting the convergence property of the series. However, if we make 
all of the terms positive in series (1) to form the new series

5 + 5
4 + 5

16
+ 5

64
+ g = aq

n = 0
`

 
5a-1

4 b
n

` = aq
n = 0

 5a14b
n

,

we see that it still converges. For a general series with both positive and negative terms, we 
can apply the tests for convergence studied before to the series of absolute values of its 
terms. In doing so, we are led naturally to the following concept.

DEFINITION A series a an converges absolutely (is absolutely convergent)  
if the corresponding series of absolute values, a 0 an 0 , converges.

THEOREM 12—The Absolute Convergence Test

If aq
n = 1
0 an 0  converges, then aq

n = 1
an converges.

Proof  For each n,

- 0 an 0 … an … 0 an 0 ,  so  0 … an + 0 an 0 … 2 0 an 0.
If Σq

n = 1 0 an 0  converges, then Σq
n = 1 2 0 an 0  converges and, by the Direct Comparison Test, 

the nonnegative series Σq
n = 1 (an + 0 an 0 )  converges. The equality an = (an + 0 an 0 ) - 0 an 0  

now lets us express Σq
n = 1 an as the difference of two convergent series:

aq
n = 1

an = aq
n = 1

(an + 0 an 0 - 0 an 0 ) = aq
n = 1

(an + 0 an 0 ) - aq
n = 1
0 an 0 .

Therefore, aq
n = 1 an converges. 

EXAMPLE 1  This example gives two series that converge absolutely.

(a) For aq
n = 1

(-1)n + 1 1
n2 = 1 - 1

4 + 1
9 - 1

16
+ g, the corresponding series of absolute 

  values is the convergent series

aq
n = 1

 1
n2 = 1 + 1

4 + 1
9 + 1

16
+ g.

 The original series converges because it converges absolutely.

(b) For aq
n = 1

 sin n
n2 =  sin 1

1 +  sin 2
4 +  sin 3

9 + g, which contains both positive and 

  negative terms, the corresponding series of absolute values is

aq
n = 1
` sin n

n2 ` =
� sin 1 �

1 +
� sin 2 �

4 + g,

 which converges by comparison with aq
n = 1(1>n2)  because � sin n � … 1 for every n. 

The original series converges absolutely; therefore it converges. 

So the geometric series (1) is absolutely convergent. We observed, too, that it is also con-
vergent. This situation is always true: An absolutely convergent series is convergent as 
well, which we now prove.

Caution
Be careful when using Theorem 12.  
A convergent series need not converge 
absolutely, as you will see in the next 
section.
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 10.5  Absolute Convergence; The Ratio and Root Tests 599

The Ratio Test

The Ratio Test measures the rate of growth (or decline) of a series by examining the ratio 
an + 1>an . For a geometric series a arn, this rate is a constant ((arn + 1)/(arn) = r), and the 
series converges if and only if its ratio is less than 1 in absolute value. The Ratio Test is a 
powerful rule extending that result.

Proof  

 (a) R * 1. Let r be a number between r and 1. Then the number e = r - r is positive. 
Since

` an + 1
an
` S r,

0 an + 1>an 0  must lie within e of r when n is large enough, say, for all n Ú N. In 
 particular,

` an + 1
an
` 6 r + e = r,  when n Ú N.

Hence

 0 aN + 1 0 6 r 0 aN 0 ,
 0 aN + 2 0 6 r 0 a N + 1 0 6 r2 0 aN 0 ,
 0 aN + 3 0 6 r 0 aN + 2 0 6 r3 0 aN 0 ,

 f
 0 aN + m 0 6 r 0 aN + m - 1 0 6 rm 0 aN 0 .

Therefore,

aq
m = N
0 am 0 = aq

m = 0
0 aN + m 0 … aq

m = 0
0 aN 0  rm = 0 aN 0 aq

m = 0
rm.

The geometric series on the right-hand side converges because 0 6 r 6 1, so the se-
ries of absolute values aq

m = N 0 am 0  converges by the Direct Comparison Test. Because 
adding or deleting finitely many terms in a series does not affect its convergence or 
divergence property, the series aq

n = 1 0 an 0  also converges. That is, the series a an is 
absolutely convergent.

(b) 1 * R " H. From some index M on,

` an + 1
an
` 7 1  and  0 aM 0 6 0 aM + 1 0 6 0 aM + 2 0 6 g.

The terms of the series do not approach zero as n becomes infinite, and the series 
 diverges by the nth-Term Test.

THEOREM 13—The Ratio Test
Let a an be any series and suppose that

lim
nSq

` an + 1
an
` = r.

Then (a) the series converges absolutely if r 6 1, (b) the series diverges if r 7 1 
or r is infinite, (c) the test is inconclusive if r = 1.

r is the Greek lowercase letter rho, 
which is pronounced “row.”
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600 Chapter 10 Infinite Sequences and Series

(c) R = 1. The two series

aq
n = 1

 1n  and  aq
n = 1

 1
n2

show that some other test for convergence must be used when r = 1.

For aq
n = 1

 1n : ` an + 1
an
` =

1>(n + 1)

1>n = n
n + 1 S 1.

For aq
n = 1

1
n2 : ` an + 1

an
` =

1>(n + 1)2

1>n2 = a n
n + 1b

2

S 12 = 1.

In both cases, r = 1, yet the first series diverges, whereas the second converges. 

The Ratio Test is often effective when the terms of a series contain factorials of 
expressions involving n or expressions raised to a power involving n.

EXAMPLE 2  Investigate the convergence of the following series.

(a) aq
n = 0

 2
n + 5
3n     (b) aq

n = 1
 
(2n)!
n!n!     (c) aq

n = 1
 4

nn!n!
(2n)!

Solution We apply the Ratio Test to each series.

(a) For the series aq
n = 0 (2n + 5)/3n,

` an + 1
an
` =

(2n + 1 + 5)>3n + 1

(2n + 5)>3n = 1
3

# 2n + 1 + 5
2n + 5

= 1
3

# a2 + 5 # 2- n

1 + 5 # 2- nb S 1
3

# 2
1 = 2

3.

 The series converges absolutely (and thus converges) because r = 2>3 is less than 1. 
This does not mean that 2>3 is the sum of the series. In fact,

aq
n = 0

 2
n + 5
3n = aq

n = 0
a23b

n

+ aq
n = 0

 53n = 1
1 - (2/3) + 5

1 - (1/3) = 21
2 .

(b) If an =
(2n)!
n!n! , then an + 1 =

(2n + 2)!
(n + 1)!(n + 1)! and

 ̀
an + 1
an
` =

n!n!(2n + 2)(2n + 1)(2n)!
(n + 1)!(n + 1)!(2n)!

 =
(2n + 2)(2n + 1)
(n + 1)(n + 1) = 4n + 2

n + 1 S 4.

 The series diverges because r = 4 is greater than 1.

(c) If an = 4nn!n!/(2n)!, then

 ̀
an + 1
an
` =

4n + 1(n + 1)!(n + 1)!
(2n + 2)(2n + 1)(2n)! 

#  
(2n)!

4nn!n!

 =
4(n + 1)(n + 1)
(2n + 2)(2n + 1) =

2(n + 1)
2n + 1 S 1.

Because the limit is r = 1, we cannot decide from the Ratio Test whether the series 
converges. However, when we notice that an + 1>an = (2n + 2)>(2n + 1), we con-
clude that an + 1 is always greater than an because (2n + 2)>(2n + 1) is always greater 
than 1. Therefore, all terms are greater than or equal to a1 = 2, and the nth term does 
not  approach zero as n S q. The series diverges. 
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 10.5  Absolute Convergence; The Ratio and Root Tests 601

The Root Test

The convergence tests we have so far for Σan work best when the formula for an is 
 relatively simple. However, consider the series with the terms

an = en>2n ,  n odd
1>2n ,  n even.

To investigate convergence we write out several terms of the series:

 aq
n = 1

 an = 1
21 + 1

22 + 3
23 + 1

24 + 5
25 + 1

26 + 7
27 + g

 = 1
2 + 1

4 + 3
8 + 1

16
+ 5

32 + 1
64

+ 7
128 + g.

Clearly, this is not a geometric series. The nth term approaches zero as n S q, so the nth-
Term Test does not tell us if the series diverges. The Integral Test does not look promising. 
The Ratio Test produces

` an + 1
an
` = µ

1
2n , n odd

n + 1
2 , n even

As n S q, the ratio is alternately small and large and therefore has no limit. However, we 
will see that the following test establishes that the series converges.

THEOREM 14—The Root Test
Let a an be any series and suppose that

lim
nSq

2n 0 an 0 = r.

Then (a) the series converges absolutely if r 6 1, (b) the series diverges if r 7 1 
or r is infinite, (c) the test is inconclusive if r = 1.

Proof  

(a) R * 1. Choose an e 7 0 so small that r + e 6 1. Since 2n 0 an 0 S r, the terms 2n 0 an 0  eventually get to within e of r. So there exists an index M  such that2n 0 an 0 6 r + e  when n Ú M.

Then it is also true that

0 an 0 6 (
 

r + e)n  for n Ú M.

Now, gq
n = M (r + e)n is a geometric series with ratio (r + e) 6 1 and therefore 

 converges. By the Direct Comparison Test, gq
n = M  0 an 0  converges. Adding finitely 

many terms to a series does not affect its convergence or divergence, so the series

aq
n = 1
0 an 0 = 0 a1 0 + g + 0 aM - 1 0 + aq

n = M
0 an 0

also converges. Therefore, gan converges absolutely.

(b) 1 * R " H. For all indices beyond some integer M, we have 2n 0 an 0 7 1, so that 
0 an 0 7 1 for n 7 M. The terms of the series do not converge to zero. The series di-
verges by the nth-Term Test.

(c) R = 1. The series gq
n = 1 (1>n) and gq

n = 1 (1>n2) show that the test is not conclusive 
when r = 1. The first series diverges and the second converges, but in both cases 

 2n 0 an 0 S 1. 
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602 Chapter 10 Infinite Sequences and Series

EXAMPLE 3  Consider again the series with terms an = en>2n, n odd
1>2n, n even.

Does gan converge?

Solution We apply the Root Test, finding that2n 0 an 0 = e2n n>2, n odd 
1>2, n even.

Therefore,

1
2 … 2n 0 an 0 … 2n n

2 .

Since 2n n S 1 (Section 10.1, Theorem 5), we have limnSq2n 0 an 0 = 1>2 by the Sandwich 
Theorem. The limit is less than 1, so the series converges absolutely by the Root Test. 

EXAMPLE 4  Which of the following series converge, and which diverge?

(a) aq
n = 1

 n
2

2n    (b) aq
n = 1

 2
n

n3    (c) aq
n = 1

 a 1
1 + nb

n

Solution We apply the Root Test to each series, noting that each series has positive terms.

(a) aq
n = 1

 n
2

2n converges because Bn n2

2n = 2n n22n 2n
=
12n n22

2  S  1
2

2 6 1.

(b) aq
n = 1

 2
n

n3 diverges because An 2n

n3 = 2
12n n23 S  2

13 7 1.

(c) aq
n = 1

 a 1
1 + nb

n

 converges because Bn a 1
1 + nb

n

= 1
1 + n S  0 6 1. 

Using the Ratio Test
In Exercises 1–8, use the Ratio Test to determine if each series 
 converges absolutely or diverges.

 1. aq
n = 1

 
2n

n!
 2. aq

n = 1
 (-1)n 

n + 2
3n

 3. aq
n = 1

 
(n - 1)!

(n + 1)2 4. aq
n = 1

 
2n + 1

n3n - 1

 5. aq
n = 1

 
n4

(-4)n 6. aq
n = 2

 
3n + 2

ln n

 7. aq
n = 1

 (-1)n 
n2(n + 2)!

n! 32n  8. aq
n = 1

 
n5n

(2n + 3) ln (n + 1)

Using the Root Test
In Exercises 9–16, use the Root Test to determine if each series 
 converges absolutely or diverges.

 9. aq
n = 1

 
7

(2n + 5)n 10. aq
n = 1

 
4n

(3n)n

 11. aq
n = 1

 a4n + 3
3n - 5

b
n

 12. aq
n = 1

 a- lnae2 + 1
nb b

n + 1

 13. aq
n = 1

  
-8

(3 + (1>n))2n 14. aq
n = 1

 sinn a 12n
b

 15. aq
n = 1

 (-1)n a1 - 1
nb

n2

  (Hint: lim
nSq

 (1 + x>n)n = ex)

 16. aq
n = 2

 
(-1)n

n1 + n

Determining Convergence or Divergence
In Exercises 17–46, use any method to determine if the series 
 converges or diverges. Give reasons for your answer.

 17. aq
n = 1

 
n22

2n  18. aq
n = 1

(-1)n n2e-n

 19. aq
n = 1

n!(-e)-n 20. aq
n = 1

 
n!

10n

 21. aq
n = 1

 
n10

10n 22. aq
n = 1

 an - 2
n b

n

EXERCISES 10.5
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 23. aq
n = 1

 
2 + (-1)n

1.25n  24. aq
n = 1

 
(-2)n

3n

 25. aq
n = 1

 (-1)n a1 - 3
nb

n

 26. aq
n = 1

 a1 - 1
3n
b

n

 27. aq
n = 1

 
ln n
n3  28. aq

n = 1
 
(- ln n)n

nn

 29. aq
n = 1

 a1n - 1
n2b  30. aq

n = 1
 a1n - 1

n2b
n

 31. aq
n = 1

 
en

ne 32. aq
n = 1

 
n ln n
(-2)n

 33. aq
n = 1

 
(n + 1)(n + 2)

n!
 34. aq

n = 1
e-n(n3)

 35. aq
n = 1

 
(n + 3)!
3!n!3n  36. aq

n = 1
 
n2n(n + 1)!

3nn!

 37. aq
n = 1

 
n!

(2n + 1)!
 38. aq

n = 1
 

n!
(-n)n

 39. aq
n = 2

 
-n

(ln n)n 40. aq
n = 2

 
n

(ln n)(n>2)

 41. aq
n = 1

 
n! ln n

n(n + 2)!
 42. aq

n = 1
 
(-3)n

n32n

 43. aq
n = 1

 
(n!)2

(2n)!
 44. aq

n = 1
 
(2n + 3)(2n + 3)

3n + 2

 45. aq
n = 3

 
2n

n2  46. aq
n = 3

 
2n2

n2n

Recursively Defined Terms Which of the series gq
n = 1 an defined 

by the formulas in Exercises 47–56 converge, and which diverge? 
Give reasons for your answers.

 47. a1 = 2, an + 1 = 1 + sin n
n  an

 48. a1 = 1, an + 1 = 1 + tan-1 n
n  an

 49. a1 = 1
3

, an + 1 = 3n - 1
2n + 5

 an

 50. a1 = 3, an + 1 = n
n + 1

 an

 51. a1 = 2, an + 1 = 2
n an

 52. a1 = 5, an + 1 = 2n n
2

 an

 53. a1 = 1, an + 1 = 1 + ln n
n  an

 54. a1 = 1
2

, an + 1 = n + ln n
n + 10

 an

 55. a1 = 1
3

, an + 1 = 2n an

 56. a1 = 1
2

, an + 1 = (an)n + 1

Convergence or Divergence
Which of the series in Exercises 57–64 converge, and which diverge? 
Give reasons for your answers.

 57. aq
n = 1

 
2nn!n!
(2n)!

 58. aq
n = 1

 
(-1)n (3n)!

n!(n + 1)!(n + 2)!

 59. aq
n = 1

 
(n!)n

(nn)2 60. aq
n = 1

 (-1)n 
(n!)n

n(n2)

 61. aq
n = 1

 
nn

2(n2)
 62. aq

n = 1
 

nn

(2n)2

 63. aq
n = 1

 
1 # 3 # g # (2n - 1)

4n2nn!

 64. aq
n = 1

 
1 # 3 # g # (2n - 1)

32 # 4 # g # (2n)4(3n + 1)

 65. Assume that bn is a sequence of positive numbers converging to 
4>5. Determine if the following series converge or diverge.

a. aq
n = 1

 (bn)1>n b. aq
n = 1

 a5
4
b

n

(bn)

c. aq
n = 1

 (bn)n d. aq
n = 1

 
1000n

n! + bn

 66. Assume that bn is a sequence of positive numbers converging to 
1>3. Determine if the following series converge or diverge.

a. aq
n = 1

 
bn + 1bn

n 4n  b. aq
n = 1

 
nn

n! b2
1 b2

2gb2
n

Theory and Examples
 67. Neither the Ratio Test nor the Root Test helps with p-series. Try 

them on

aq
n = 1

 
1
np

  and show that both tests fail to provide information about conver-
gence.

 68. Show that neither the Ratio Test nor the Root Test provides infor-
mation about the convergence of

aq
n = 2

 
1

(ln n) p
  ( p constant).

 69. Let an = en>2n, if n is a prime number
1>2n, otherwise.

  Does gan converge? Give reasons for your answer.

 70. Show that gq
n = 1 2(n2)>n! diverges. Recall from the Laws of 

   Exponents that 2(n2) = (2n)n.
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604 Chapter 10 Infinite Sequences and Series

10.6 Alternating Series and Conditional Convergence

A series in which the terms are alternately positive and negative is an alternating series. 
Here are three examples:

 1 - 1
2 + 1

3 - 1
4 + 1

5
- g +

(-1)n + 1

n + g (1)

  -2 + 1 - 1
2 + 1

4 - 1
8 + g +

(-1)n4
2n + g (2)

 1 - 2 + 3 - 4 + 5 - 6 + g + (-1)n + 1n + g (3)

We see from these examples that the nth term of an alternating series is of the form

an = (-1)n + 1un  or  an = (-1)nun

where un = � an �  is a positive number.
Series (1), called the alternating harmonic series, converges, as we will see in a 

moment. Series (2), a geometric series with ratio r = -1>2, converges to 
-2> 31 + (1>2)4  =  -4>3. Series (3) diverges because the nth term does not approach zero.

We prove the convergence of the alternating harmonic series by applying the Alternat-
ing Series Test. This test is for convergence of an alternating series and cannot be used to 
conclude that such a series diverges. If we multiply (u1 - u2 + u3 - u4 + g) by -1, 
we see that the test is also valid for the alternating series -u1 + u2 -  u3 + u4 - g, as 
with the one in Series (2) given above.

THEOREM 15—The Alternating Series Test
The series

aq
n = 1

(-1)n + 1un = u1 - u2 + u3 - u4 + g

converges if the following conditions are satisfied:

1. The un>s are all positive.

2. The un>s are eventually nonincreasing: un Ú un + 1 for all n Ú N, for some 
integer N.

3. un S 0.

Proof  We look at the case where u1, u2, u3, u4, . . . is nonincreasing, so that N = 1. If 
n is an even integer, say n = 2m, then the sum of the first n terms is

 s2m = (u1 - u2) + (u3 - u4) + g + (u2m - 1 - u2m)

 = u1 - (u2 - u3) - (u4 - u5) - g - (u2m - 2 - u2m - 1) - u2m.

The first equality shows that s2m is the sum of m nonnegative terms, since each term in 
 parentheses is positive or zero. Hence s2m + 2 Ú s2m, and the sequence 5s2m6  is non- 
decreasing. The second equality shows that s2m … u1. Since 5s2m6  is nondecreasing and 
bounded from above, it has a limit, say

 lim
mSq

 s2m = L.  Theorem 6 (4)

If n is an odd integer, say n = 2m + 1, then the sum of the first n terms is 
s2m + 1 = s2m + u2m + 1. Since un S 0,

lim
mSq

 u2m + 1 = 0

L0

+u1

−u2

+u3

−u4

s2 s4 s3 s1

x

FIGURE 10.15 The partial sums of an 
alternating series that satisfies the hypoth-
eses of Theorem 15 for N = 1 straddle the 
limit from the beginning.
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 10.6  Alternating Series and Conditional Convergence 605

and, as m S q,

 s2m + 1 = s2m + u2m + 1 S L + 0 = L. (5)

Combining the results of Equations (4) and (5) gives limnSq sn = L (Section 10.1,  
Exercise 143). 

EXAMPLE 1  The alternating harmonic series

aq
n = 1

(-1)n + 1 1n = 1 - 1
2 + 1

3 - 1
4 + g

clearly satisfies the three requirements of Theorem 15 with N = 1; it therefore converges 
by the Alternating Series Test. Notice that the test gives no information about what the 
sum of the series might be. Figure 10.16 shows histograms of the partial sums of the diver-
gent harmonic series and those of the convergent alternating harmonic series. It turns out 
that the alternating harmonic series converges to ln 2. 

(a)

1.0

1.5

0.5

2.0

1 2 3 4 5 76
x

y

1 + − + − + − + − + −
1
2

1
3

1
4

1
5

1
6

1 + − + − + − + −
1
2

1
3

1
4

1
5

1 + − + − + −
1
2

1
3

1
4

1 + − + −
1
2

1
3

1 + −
1
2

1

sn increases, eventually becomes
larger than any constant M

M

 (b)

0.50

0.75

0.25

1.00

1 2

ln 2

3 4 5 76
x

y

1 − − + − − − + − − −
1
2

1
3

1
4

1
5

1
6

1 − − + − − − + −
1
2

1
3

1
4

1
5

1 − − + − − −
1
2

1
3

1
4

1 − − + −
1
2

1
3

1 − −
1
2

1

FIGURE 10.16 (a) The harmonic series diverges, with partial sums that eventually exceed 
any constant. (b) The alternating harmonic series converges to ln 2 ≈ .693.

Rather than directly verifying the definition un Ú un + 1, a second way to show that the 
sequence {un} is nonincreasing is to define a differentiable function ƒ(x) satisfying 
ƒ(n) = un. That is, the values of ƒ match the values of the sequence at every positive inte-
ger n. If ƒ′(x) … 0 for all x greater than or equal to some positive integer N, then ƒ(x) is 
nonincreasing for x Ú N. It follows that ƒ(n) Ú ƒ(n + 1), or un Ú un + 1, for n Ú N.

EXAMPLE 2  We show that the sequence un = 10n>(n2 + 16) is eventually nonin-
creasing. Define ƒ(x) =  10x>(x2 + 16). Then from the Derivative Quotient Rule,

ƒ′(x) =
10(16 - x2)

(x2 + 16)2 … 0  whenever x Ú 4.

It follows that un Ú un + 1 for n Ú 4. That is, the sequence 5un6  is nonincreasing for 
n Ú 4. 

A graphical interpretation of the partial sums (Figure 10.15) shows how an alternating 
series converges to its limit L when the three conditions of Theorem 15 are satisfied with 
N = 1. Starting from the origin of the x-axis, we lay off the positive distance s1 = u1. To 
find the point corresponding to s2 = u1 - u2, we back up a distance equal to u2. Since 
u2 … u1, we do not back up any farther than the origin. We continue in this seesaw fash-
ion, backing up or going forward as the signs in the series demand. But for n Ú N, each 
forward or backward step is shorter than (or at most the same size as) the preceding step 
because un + 1 … un. And since the nth term approaches zero as n increases, the size of step 
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606 Chapter 10 Infinite Sequences and Series

we take forward or backward gets smaller and smaller. We oscillate back and forth across 
the limit L, and the amplitude of oscillation approaches zero. The limit L lies between any 
two successive sums sn and sn + 1 and hence differs from sn by an amount less than un + 1.

Because

� L - sn � 6 un + 1  for n Ú N,

we can make useful estimates of the sums of convergent alternating series.

THEOREM 16—The Alternating Series Estimation Theorem
If the alternating series aq

n = 1 (-1)n + 1un satisfies the three conditions of  
Theorem 15, then for  n Ú N ,

sn = u1 - u2 + g + (-1)n + 1un

approximates the sum L of the series with an error whose absolute value is less 
than un + 1, the absolute value of the first unused term. Furthermore, the sum L lies 
between any two successive partial sums sn and sn + 1, and the remainder, L - sn, 
has the same sign as the first unused term.

We leave the verification of the sign of the remainder for Exercise 87.

EXAMPLE 3  We try Theorem 16 on a series whose sum we know:

aq
n = 0

(-1)n 12n = 1 - 1
2 + 1

4 - 1
8 + 1

16
- 1

32 + 1
64

- 1
128 + 1

256
- g.

The theorem says that if we truncate the series after the eighth term, we throw away a total 
that is positive and less than  1>256. The sum of the first eight terms is s8 = 0.6640625 
and the sum of the first nine terms is s9 =  0.66796875. The sum of the geometric series is

1
1 - (-1>2)

= 1
3>2 = 2

3,

and we note that 0.6640625 6 (2>3) 6 0.66796875. The difference,  (2>3) -
0.6640625 = 0.0026041666 . . . , is positive and is less than (1>256) = 0.00390625. 

Conditional Convergence

If we replace all the negative terms in the alternating series in Example 3, changing them 
to positive terms instead, we obtain the geometric series g1>2n . The original series and 
the new series of absolute values both converge (although to different sums). For an abso-
lutely convergent series, changing infinitely many of the negative terms in the series to 
positive values does not change its property of still being a convergent series. Other con-
vergent series may behave differently. The convergent alternating harmonic series has 
infinitely many negative terms, but if we change its negative terms to positive values, the 
resulting series is the divergent harmonic series. So the presence of infinitely many nega-
tive terms is essential to the convergence of the alternating harmonic series. The following 
terminology distinguishes these two types of convergent series.

DEFINITION A series that is convergent but not absolutely convergent is called 
conditionally convergent.

The alternating harmonic series is conditionally convergent, or converges conditionally. 
The next example extends that result to the alternating p-series.
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EXAMPLE 4  If p is a positive constant, the sequence 51>np6  is a decreasing 
sequence with limit zero. Therefore, the alternating p-series

aq
n = 1

 
(-1)n - 1

np = 1 - 1
2p + 1

3p - 1
4p + g,  p 7 0

converges.
If p 7 1, the series converges absolutely as an ordinary p-series. If 0 6 p … 1, the 

series converges conditionally by the alternating series test. For instance,

  Absolute convergence 1p = 3>22: 1 - 1
23>2 + 1

33>2 - 1
43>2 + g

  Conditional convergence 1p = 1>22: 1 - 122
+ 123

- 124
+ g 

We need to be careful when using a conditionally convergent series. We have seen with 
the alternating harmonic series that altering the signs of infinitely many terms of a condi-
tionally convergent series can change its convergence status. Even more, simply changing 
the order of occurrence of infinitely many of its terms can also have a significant effect, as 
we now discuss.

Rearranging Series

We can always rearrange the terms of a finite collection of numbers without changing their 
sum. The same result is true for an infinite series that is absolutely convergent (see 
 Exercise 96 for an outline of the proof ).

THEOREM 17—The Rearrangement Theorem for Absolutely Convergent 
Series
If gq

n = 1 an converges absolutely, and b1, b2,c , bn,c is any arrangement of 
the sequence 5an6 , then gbn converges absolutely and

aq
n = 1

bn = aq
n = 1

an.

On the other hand, if we rearrange the terms of a conditionally convergent series, we 
can get different results. In fact, for any real number r, a given conditionally convergent 
series can be rearranged so its sum is equal to r. (We omit the proof of this fact.) Here’s an 
example of summing the terms of a conditionally convergent series with different order-
ings, with each ordering giving a different value for the sum.

EXAMPLE 5  We know that the alternating harmonic series gq
n = 1 (-1)n + 1>n con-

verges to some number L. Moreover, by Theorem 16, L lies between the successive partial 
sums s2 = 1>2 and s3 = 5>6, so L ≠ 0. If we multiply the series by 2 we obtain

 2L = 2 aq
n = 1

 
(-1)n + 1

n = 2a1 - 1
2 + 1

3 - 1
4 + 1

5
- 1

6
+ 1

7 - 1
8 + 1

9 - 1
10 + 1

11 - gb

 = 2 - 1 + 2
3 - 1

2 + 2
5

- 1
3 + 2

7 - 1
4 + 2

9 - 1
5

+ 2
11 - g.

Now we change the order of this last sum by grouping each pair of terms with the same 
odd denominator, but leaving the negative terms with the even denominators as they are 
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placed (so the denominators are the positive integers in their natural order). This rear-
rangement gives

 (2 - 1) - 1
2 + a23 - 1

3b - 1
4 + a2

5
- 1

5
b - 1

6
+ a27 - 1

7b - 1
8 + g

 = a1 - 1
2 + 1

3 - 1
4 + 1

5
- 1

6
+ 1

7 - 1
8 + 1

9 - 1
10 + 1

11 - gb

 = aq
n = 1

(-1)n + 1

n = L.

So by rearranging the terms of the conditionally convergent series gq
n = 12(-1)n + 1>n, the 

series becomes gq
n = 1(-1)n + 1>n, which is the alternating harmonic series itself. If the two 

series are the same, it would imply that 2L = L, which is clearly false since L ≠ 0. 

Example 5 shows that we cannot rearrange the terms of a conditionally convergent 
series and expect the new series to be the same as the original one. When we use a condi-
tionally convergent series, the terms must be added together in the order they are given to 
obtain a correct result. In contrast, Theorem 17 guarantees that the terms of an absolutely 
convergent series can be summed in any order without affecting the result.

Summary of Tests to Determine Convergence or Divergence

We have developed a variety of tests to determine convergence or divergence for an infi-
nite series of constants. There are other tests we have not presented which are sometimes 
given in more advanced courses. Here is a summary of the tests we have considered.

1. The nth-Term Test for Divergence: Unless an S 0, the series diverges.

2. Geometric series: g  arn converges if � r � 6 1; otherwise it diverges.

3. p-series: g1>np converges if p 7 1; otherwise it diverges.

4. Series with nonnegative terms: Try the Integral Test or try comparing to a 
known series with the Direct Comparison Test or the Limit Comparison Test. 
Try the Ratio or Root Test.

5. Series with some negative terms: Does g � an �  converge by the Ratio or Root 
Test, or by another of the tests listed above? Remember, absolute convergence 
implies convergence.

6. Alternating series: gan converges if the series satisfies the conditions of 
the Alternating Series Test.

Determining Convergence or Divergence
In Exercises 1–14, determine if the alternating series converges or 
diverges. Some of the series do not satisfy the conditions of the Alter-
nating Series Test.

 1. aq
n = 1

(-1)n + 1 
12n

 2. aq
n = 1

(-1)n + 1 
1

n3>2

 3. aq
n = 1

(-1)n + 1 
1

n3n 4. aq
n = 2

(-1)n 
4

(ln n)2

 5. aq
n = 1

(-1)n 
n

n2 + 1
 6. aq

n = 1
(-1)n + 1  

n2 + 5
n2 + 4

 7. aq
n = 1

(-1)n + 1  
2n

n2 8. aq
n = 1

(-1)n 
10n

(n + 1)!

 9. aq
n = 1

(-1)n + 1 a n
10
b

n

 10. aq
n = 2

(-1)n + 1 
1

ln n

EXERCISES 10.6
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Error Estimation
In Exercises 49–52, estimate the magnitude of the error involved in 
using the sum of the first four terms to approximate the sum of the 
entire series.

 49. aq
n = 1

(-1)n + 1 
1
n 50. aq

n = 1
(-1)n + 1 

1
10n

 51. aq
n = 1

(-1)n + 1 
(0.01)n

n    
As you will see in Section 10.7,  
the sum is ln

 
(1.01).

 52. 1
1 + t

= aq
n = 0

(-1)n tn, 0 6 t 6 1

In Exercises 53–56, determine how many terms should be used to 
estimate the sum of the entire series with an error of less than 0.001.

 53. aq
n = 1

(-1)n 
1

n2 + 3
 54. aq

n = 1
(-1)n + 1 

n
n2 + 1

 55. aq
n = 1

(-1)n + 1 
1

1n + 32n23 56. aq
n = 1

(-1)n 
1

ln (ln (n + 2))

In Exercises 57–82, use any method to determine whether the series 
converges or diverges. Give reasons for your answer.

 57. aq
n = 1

 
3n

nn  58. aq
n = 1

 
3n

n3

 59. aq
n = 1

 a 1
n + 2

- 1
n + 3

b  60. aq
n = 1

 a 1
2n + 1

- 1
2n + 2

b

 61. aq
n = 0

 (-1)n 
(n + 2)!

(2n)!
 62. aq

n = 2
 
(3n)!

(n!)3

 63. aq
n = 1

 n-2>25 64. aq
n = 2

 
3

10 + n4>3

 65. aq
n = 1

 a1 - 2
nb

n2

 66. aq
n = 0

 an + 1
n + 2

b
n

 67. aq
n = 1

 
n - 2

n2 + 3n
 a-2

3
b

n

 68. aq
n = 0

 
n + 1

(n + 2)!
 a3

2
b

n

 69. 1
2

- 1
2

+ 1
2

- 1
2

+ 1
2

- 1
2

+ g

 70. 1 - 1
8

+ 1
64

- 1
512

+ 1
4096

- g

 71. aq
n = 3

 sin a 11n
b  72. aq

n = 1
 tan (n1>n)

 73. aq
n = 2

 
n

ln n
 74. aq

n = 2
 

1

n2ln n

 75. aq
n = 2

 ln an + 2
n + 1

b  76. aq
n = 2

 aln n
n b

3

 77. aq
n = 2

 
1

1 + 2 + 22 + g+ 2n

 78. aq
n = 2

 
1 + 3 + 32 + g + 3n-1

1 + 2 + 3 + g + n

 11. aq
n = 1

(-1)n + 1  
ln n
n  12. aq

n = 1
(-1)n ln a1 + 1

nb

 13. aq
n = 1

(-1)n + 1  
2n + 1
n + 1

 14. aq
n = 1

(-1)n + 1  
32n + 12n + 1

Absolute and Conditional Convergence
Which of the series in Exercises 15–48 converge absolutely, which 
converge, and which diverge? Give reasons for your answers.

 15. aq
n = 1

(-1)n + 1(0.1)n 16. aq
n = 1

(-1)n + 1 
(0.1)n

n

 17. aq
n = 1

(-1)n 
12n

 18. aq
n = 1

 
(-1)n

1 + 2n

 19. aq
n = 1

(-1)n + 1 
n

n3 + 1
 20. aq

n = 1
(-1)n + 1  

n!
2n

 21. aq
n = 1

(-1)n 
1

n + 3
 22. aq

n = 1
(-1)n  

sin n
n2

 23. aq
n = 1

(-1)n + 1 
3 + n
5 + n

 24. aq
n = 1

 
(-2)n + 1

n + 5n

 25. aq
n = 1

(-1)n + 1 
1 + n

n2  26. aq
n = 1

(-1)n + 112n 102

 27. aq
n = 1

(-1)nn2(2>3)n 28. aq
n = 2

(-1)n + 1 
1

n ln n

 29. aq
n = 1

(-1)n 
tan-1 n
n2 + 1

 30. aq
n = 1

(-1)n 
ln n

n - ln n

 31. aq
n = 1

(-1)n 
n

n + 1
 32. aq

n = 1
(-5)-n

 33. aq
n = 1

 
(-100)n

n!
 34. aq

n = 1
 

(-1)n - 1

n2 + 2n + 1

 35. aq
n = 1

 
cos np

n2n
 36. aq

n = 1
 
cos np

n

 37. aq
n = 1

 
(-1)n(n + 1)n

(2n)n  38. aq
n = 1

 
(-1)n + 1(n!)2

(2n)!

 39. aq
n = 1

(-1)n 
(2n)!
2nn!n

 40. aq
n = 1

(-1)n 
(n!)2 3n

(2n + 1)!

 41. aq
n = 1

(-1)n 12n + 1 - 2n2 42. aq
n = 1

(-1)n 12n2 + n - n2

 43. aq
n = 1

(-1)n 12n + 1n - 2n2

 44. aq
n = 1

 
(-1)n2n + 2n + 1

 45. aq
n = 1

(-1)n sech n 46. aq
n = 1

(-1)n csch n

 47. 1
4

- 1
6

+ 1
8

- 1
10

+ 1
12

- 1
14

+ g

 48. 1 + 1
4

- 1
9

- 1
16

+ 1
25

+ 1
36

- 1
49

- 1
64

+ g
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 90. Show that if gq
n = 1  an converges absolutely, then

` aq
n = 1

an ` … aq
n = 1

 � an � .

 91. Show that if gq
n = 1 an and gq

n = 1 bn both converge absolutely, then 
so do the following.

a. aq
n = 1

(an + bn) b. aq
n = 1

(an - bn)

c. aq
n = 1

 kan (k any number)

 92. Show by example that gq
n = 1 an  bn may diverge even if gq

n = 1  an 
and gq

n = 1 bn both converge.

 93. If gan converges absolutely, prove that g an  

2 converges.

 94. Does the series

aq
n = 1
a1

n
- 1

n2b

  converge or diverge? Justify your answer.

 95. In the alternating harmonic series, suppose the goal is to arrange 
the terms to get a new series that converges to -1>2. Start the new 
arrangement with the first negative term, which is -1>2. When-
ever you have a sum that is less than or equal to -1>2, start intro-
ducing positive terms, taken in order, until the new total is greater 
than -1>2. Then add negative terms until the total is less than or 
equal to -1>2 again. Continue this process until your partial sums 
have been above the target at least three times and finish at or be-
low it. If sn is the sum of the first n terms of your new series, plot 
the points (n, sn) to illustrate how the sums are behaving.

 96. Outline of the proof of the Rearrangement Theorem  
(Theorem 17)

a. Let e be a positive real number, let L = gq
n = 1  an, and let 

sk = g k
n = 1  an. Show that for some index N1 and for some 

index N2 Ú N1,

aq
n = N1

 � an � 6 e
2
 and � sN2

- L � 6 e
2

.

Since all the terms a1, a2,c, aN2
 appear somewhere in 

the sequence 5bn6 , there is an index N3 Ú N2 such that if 
n Ú N3, then 1gn

k = 1 bk2 - sN2
 is at most a sum of terms am 

with m Ú N1. Therefore, if n Ú N3,

 ̀ an

k = 1
bk - L ` … ` an

k = 1
bk - sN2

` + � sN2
- L �

 … aq
k = N1

� ak � + � sN2
- L � 6 e.

b. The argument in part (a) shows that if gq
n = 1   an converges 

absolutely then gq
n = 1  bn converges and gq

n = 1  bn = gq
n = 1  an. 

Now show that because gq
n = 1   an  converges, gq

n = 1  bn 
 converges to gq

n = 1  an.

T

 79. aq
n = 0

 (-1)n 
en

en + en2 80. aq
n = 0

 
(2n + 3)(2n + 3)

3n + 2

 81. aq
n = 1

 
n23n

3 # 5 # 7g(2n + 1)
 82. aq

n = 1
 
4 # 6 # 8g(2n)

5n + 1(n + 2)!

Approximate the sums in Exercises 83 and 84 with an error of magni-
tude less than 5 * 10-6.

 83. aq
n = 0

(-1)n 
1

(2n)!
   As you will see in Section 10.9, the sum is  

cos 1, the cosine of 1 radian.

 84. aq
n = 0

(-1)n 
1
n!

     
As you will see in Section 10.9  
the sum is e−1.

Theory and Examples

 85. a. The series

1
3

- 1
2

+ 1
9

- 1
4

+ 1
27

- 1
8

+ g + 1
3n - 1

2n + g

does not meet one of the conditions of Theorem 14. Which 
one?

b. Use Theorem 17 to find the sum of the series in part (a).

 86. The limit L of an alternating series that satisfies the conditions of 
Theorem 15 lies between the values of any two consecutive partial 
sums. This suggests using the average

sn + sn + 1

2
= sn + 1

2
(-1)n + 2an + 1

  to estimate L. Compute

s20 + 1
2

 #  
1
21

  as an approximation to the sum of the alternating harmonic series. 
The exact sum is ln 2 = 0.69314718 .c

 87. The sign of the remainder of an alternating series that 
 satisfies the conditions of Theorem 15 Prove the assertion in  
Theorem 16 that whenever an alternating series satisfying the 
conditions of Theorem 15 is approximated with one of its partial 
sums, then the remainder (sum of the unused terms) has the same 
sign as the first unused term. (Hint: Group the remainder’s terms 
in consecutive pairs.)

 88. Show that the sum of the first 2n terms of the series

1 - 1
2

+ 1
2

- 1
3

+ 1
3

- 1
4

+ 1
4

- 1
5

+ 1
5

- 1
6

+ g

  is the same as the sum of the first n terms of the series

1
1 # 2

+ 1
2 # 3

+ 1
3 # 4

+ 1
4 # 5

+ 1
5 # 6

+ g.

  Do these series converge? What is the sum of the first 2n + 1 
terms of the first series? If the series converge, what is their sum?

 89. Show that if gq
n = 1  an diverges, then gq

n = 1 � an �  diverges.

T

T
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