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10.1 Sequences

Sequences are fundamental to the study of infinite series and to many aspects of mathe-
matics. We saw one example of a sequence when we studied Newton’s Method in Section 
4.6. Newton’s Method produces a sequence of approximations xn that become closer and 
closer to the root of a differentiable function. Now we will explore general sequences of 
numbers and the conditions under which they converge to a finite number.

OVERVIEW In this chapter we introduce the topic of infinite series. Such series give us 
precise ways to express many numbers and functions, both familiar and new, as arithmetic 
sums with infinitely many terms. For example, we will learn that

p
4 = 1 - 1

3 + 1
5

- 1
7 + 1

9 - g 

and

cos x = 1 - x2

2 + x4

24 - x6

720 - x8

40,320 - g.

We need to develop a method to make sense of such expressions. Everyone knows 
how to add two numbers together, or even several. But how do you add together infinitely 
many numbers? Or, when adding together functions, how do you add infinitely many pow-
ers of x? In this chapter we answer these questions, which are part of the theory of infinite 
sequences and series. As with the differential and integral calculus, limits play a major role 
in the development of infinite series.

One common and important application of series occurs when making computations 
with complicated functions. A hard-to-compute function is replaced by an expression that 
looks like an “infinite degree polynomial,” an infinite series in powers of x, as we see with 
the cosine function given above. Using the first few terms of this infinite series can allow 
for highly accurate approximations of functions by polynomials, enabling us to work with 
more general functions than those we encountered before. These new functions are com-
monly obtained as solutions to differential equations arising in important applications of 
mathematics to science and engineering.

The terms “sequence” and “series” are sometimes used interchangeably in spoken 
language. In mathematics, however, each has a distinct meaning. A sequence is a type of 
infinite list, whereas a series is an infinite sum. To understand the infinite sums described 
by series, we are led to first study infinite sequences.

Infinite Sequences 
and Series

10

HISTORICAL ESSAY

Sequences and Series
www.goo.gl/WLjL57
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564 Chapter 10 Infinite Sequences and Series

Representing Sequences

A sequence is a list of numbers

a1 , a2 , a3 , . . . , an , . . .

in a given order. Each of a1, a2, a3 and so on represents a number. These are the terms of 
the sequence. For example, the sequence

2, 4, 6, 8, 10, 12, c, 2n, c

has first term a1 = 2, second term a2 = 4, and nth term an = 2n. The integer n is called 
the index of an, and indicates where an occurs in the list. Order is important. The sequence 
2, 4, 6, 8 . . . is not the same as the sequence 4, 2, 6, 8 . . . .

We can think of the sequence

a1, a2, a3, c, an , c

as a function that sends 1 to a1, 2 to a2, 3 to a3, and in general sends the positive integer n 
to the nth term an. More precisely, an infinite sequence of numbers is a function whose 
domain is the set of positive integers. For example, the function associated with the 
sequence

2, 4, 6, 8, 10, 12, c, 2n, c

sends 1 to a1 = 2, 2 to a2 = 4, and so on. The general behavior of this sequence is 
described by the formula an = 2n.

We can change the index to start at any given number n. For example, the sequence

12, 14, 16, 18, 20, 22c

is described by the formula an = 10 + 2n, if we start with n = 1. It can also be described 
by the simpler formula bn = 2n, where the index n starts at 6 and increases. To allow such 
simpler formulas, we let the first index of the sequence be any appropriate integer. In the 
sequence above, 5an6  starts with a1 while 5bn6  starts with b6.

Sequences can be described by writing rules that specify their terms, such as

 an = 2n,   bn = (-1)n + 1 1n ,   cn = n - 1
n ,   dn = (-1)n + 1,

or by listing terms:

 5an6 = 521, 22, 23, c, 2n, c6
 5bn6 = e1, -  12 , 13, -  14 , c, (-1)n + 1 1n , c f

 5cn6 = e0, 12, 23, 34, 4
5

, c, n - 1
n , c f

 5dn6 = 51, -1, 1, -1, 1, -1, c, (-1)n + 1, c6 .

We also sometimes write a sequence using its rule, as with

5an6 = 52n 6q
n = 1

and

5bn6 = e (-1)n + 1 1n f
q

n = 1
.

Figure 10.1 shows two ways to represent sequences graphically. The first marks the 
first few points from a1, a2, a3, c, an, con the real axis. The second method shows the 
graph of the function defining the sequence. The function is defined only on integer 
inputs, and the graph consists of some points in the xy-plane located at (1, a1),
(2, a2), . . . , (n, an), . . . .
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Convergence and Divergence

Sometimes the numbers in a sequence approach a single value as the index n increases. 
This happens in the sequence

e1, 12, 13, 14, c, 1n , c f

whose terms approach 0 as n gets large, and in the sequence

e 0, 12, 23, 34, 4
5

, c, 1 - 1
n , c f

whose terms approach 1. On the other hand, sequences like

521, 22, 23, c, 2n, c6
have terms that get larger than any number as n increases, and sequences like

51, -1, 1, -1, 1, -1, c, (-1)n + 1, c6
bounce back and forth between 1 and -1, never converging to a single value. The follow-
ing definition captures the meaning of having a sequence converge to a limiting value. It 
says that if we go far enough out in the sequence, by taking the index n to be larger than 
some value N, the difference between an and the limit of the sequence becomes less than 
any preselected number e 7 0.

0

an = "n

1 2

0 1 32 4 5

1

3

2

1

0 1 32 4 5

0

an =

1

0

1

0

a2 a4 a5 a3 a1

1

1
n

n

an

n

an

n

an

a1 a2 a3 a4 a5

a3 a2 a1

an = (−1)n+1 1
n

FIGURE 10.1 Sequences can be represented as points on the real line or 
as points in the plane where the horizontal axis n is the index number of the 
term and the vertical axis an is its value.

aN

(N, aN)

0 1 32 N n

L

L − e

L − e L + eL

L + e
(n, an)

0 a2 a3 a1 an

n

an

FIGURE 10.2 In the representation of a 
sequence as points in the plane, an S L if 
y = L is a horizontal asymptote of the se-
quence of points 5(n, an)6 . In this figure, 
all the an>s after aN  lie within e of L.

DEFINITIONS The sequence 5an6  converges to the number L if for every 
positive number e there corresponds an integer N such that

� an - L � 6 e  whenever  n 7 N.

If no such number L exists, we say that 5an6  diverges.
If 5an6  converges to L, we write limnSq  an = L, or simply an S L, and call 

L the limit of the sequence (Figure 10.2).

The definition is very similar to the definition of the limit of a function ƒ(x) as x tends 
to q (limxSq ƒ(x) in Section 2.6). We will exploit this connection to calculate limits of 
sequences.
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566 Chapter 10 Infinite Sequences and Series

EXAMPLE 1  Show that

(a) lim
nSq

 1n = 0  (b) lim
nSq

 k = k  (any constant k)

Solution

(a) Let e 7 0 be given. We must show that there exists an integer N such that

` 1n - 0 ` 6 e  whenever  n 7 N.

The inequality � 1>n - 0 � 6 e will hold if 1>n 6 e or n 7 1>e. If N is any in-
teger  greater than 1>e, the inequality will hold for all n 7 N. This proves that 
limnSq 1>n = 0.

(b) Let e 7 0 be given. We must show that there exists an integer N such that

� k - k � 6 e  whenever  n 7 N.

Since k - k = 0, we can use any positive integer for N and the inequality � k - k � 6 e
will hold. This proves that limnSq k = k for any constant k. 

DEFINITION The sequence 5an6  diverges to infinity if for every number M 
there is an integer N such that for all n larger than N, an 7 M. If this condition 
holds we write

lim
nSq

 an = q  or  an S q.

Similarly, if for every number m there is an integer N such that for all n 7 N  we 
have an 6 m, then we say 5an6  diverges to negative infinity and write

lim
nSq

 an = -q  or  an S -q.

EXAMPLE 2  Show that the sequence 51, -1, 1, -1, 1, -1, c, (-1)n + 1, c6  
diverges.

Solution Suppose the sequence converges to some number L. Then the numbers in the 
sequence eventually get arbitrarily close to the limit L. This can’t happen if they keep 
oscillating between 1 and -1. We can see this by choosing e = 1>2 in the definition of 
the limit. Then all terms an of the sequence with index n larger than some N must lie 
within e = 1>2 of L. Since the number 1 appears repeatedly as every other term of the 
sequence, we must have that the number 1 lies within the distance e = 1>2 of L. It fol-
lows that � L - 1 � 6 1>2, or equivalently, 1>2 6 L 6 3>2. Likewise, the number -1 
appears repeatedly in the sequence with arbitrarily high index. So we must also have that 
� L - (-1) � 6 1>2, or equivalently, -3>2 6 L 6 -1>2. But the number L cannot lie in 
both of the intervals (1 >2, 3 >2) and (-3>2, -1>2) because they have no overlap. There-
fore, no such limit L exists and so the sequence diverges.

Note that the same argument works for any positive number e smaller than 1, not 
just 1>2. 

The sequence 51n6  also diverges, but for a different reason. As n increases, its terms 
become larger than any fixed number. We describe the behavior of this sequence by writing

lim
nSq

2n = q.

In writing infinity as the limit of a sequence, we are not saying that the differences between the 
terms an and q become small as n increases. Nor are we asserting that there is some number 
infinity that the sequence approaches. We are merely using a notation that captures the idea that 
an eventually gets and stays larger than any fixed number as n gets large (see Figure 10.3a). 
The terms of a sequence might also decrease to negative infinity, as in Figure 10.3b.

0 1 32 N

M

n

an

0 N

m

n

an

1 32

(a)

(b)

FIGURE 10.3 (a) The sequence diverges 
to q because no matter what number M 
is chosen, the terms of the sequence after 
some index N all lie in the yellow band 
above M. (b) The sequence diverges to 
-q because all terms after some index N 
lie below any chosen number m.
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A sequence may diverge without diverging to infinity or negative infinity, as we saw 
in Example 2. The sequences 51, -2, 3, -4, 5, -6, 7, -8, c6  and 51, 0, 2, 0, 3, 0, c6
are also examples of such divergence.

The convergence or divergence of a sequence is not affected by the values of any 
number of its initial terms (whether we omit or change the first 10, 1000, or even the first 
million terms does not matter). From Figure 10.2, we can see that only the part of the 
sequence that remains after discarding some initial number of terms determines whether 
the sequence has a limit and the value of that limit when it does exist.

Calculating Limits of Sequences

Since sequences are functions with domain restricted to the positive integers, it is not sur-
prising that the theorems on limits of functions given in Chapter 2 have versions for 
sequences.

THEOREM 1 Let 5an6  and 5bn6  be sequences of real numbers, and let A and B 
be real numbers. The following rules hold if limnSq an = A and limnSq bn = B.

1. Sum Rule: limnSq (an + bn) = A + B

2. Difference Rule: limnSq (an - bn) = A - B

3. Constant Multiple Rule: limnSq (k # bn) = k # B (any number k)

4. Product Rule: limnSq (an
# bn) = A # B

5. Quotient Rule: limnSq 
an

bn
= A

B  if B ≠ 0

The proof is similar to that of Theorem 1 of Section 2.2 and is omitted.

EXAMPLE 3  By combining Theorem 1 with the limits of Example 1, we have:

(a) lim
nSq

 a-  1nb = -1 # lim
nSq

  1n = -1 # 0 = 0 Constant Multiple Rule and Example 1a

(b) lim
nSq

 an - 1
n b = lim

nSq
 a1 - 1

nb = lim
nSq

1 - lim
nSq

 1n = 1 - 0 = 1 
Difference Rule 
and Example 1a

(c) lim
nSq

  5
n2 = 5 # lim

nSq
  1n

# lim
nSq

  1n = 5 # 0 # 0 = 0 Product Rule

(d) lim
nSq

4 - 7n6

n6 + 3
= lim

nSq
 
(4>n6) - 7

1 + (3>n6)
= 0 - 7

1 + 0 = -7. 
Divide numerator and denominator 
by n6 and use the Sum and Quotient 
Rules.

 

 

Be cautious in applying Theorem 1. It does not say, for example, that each of the 
sequences 5an6  and 5bn6  have limits if their sum 5an + bn6  has a limit. For instance, 
5an6 = 51, 2, 3, c6  and 5bn6 = 5-1, -2, -3, c6  both diverge, but their sum 
5an + bn6 = 50, 0, 0, c6  clearly converges to 0.

One consequence of Theorem 1 is that every nonzero multiple of a divergent sequence 
5an6  diverges. Suppose, to the contrary, that 5can6  converges for some number c ≠ 0. 
Then, by taking k = 1>c in the Constant Multiple Rule in Theorem 1, we see that the 
sequence

e 1
c
# can f = 5an6

converges. Thus, 5can6  cannot converge unless 5an6  also converges. If 5an6  does not 
converge, then 5can6  does not converge.
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568 Chapter 10 Infinite Sequences and Series

The next theorem is the sequence version of the Sandwich Theorem in Section 2.2. 
You are asked to prove the theorem in Exercise 119. (See Figure 10.4.)

0

L

n
an

bn

cn

FIGURE 10.4 The terms of sequence 
5bn6  are sandwiched between those of 
5an6  and 5cn6 , forcing them to the same 
common limit L.

THEOREM 2—The Sandwich Theorem for Sequences
Let 5an6 , 5bn6 , and 5cn6  be sequences of real numbers. If an … bn … cn 
holds for all n beyond some index N, and if limnSq  an = limnSq  cn = L, then 
limnSq  bn = L also.

An immediate consequence of Theorem 2 is that, if � bn � … cn and cn S 0, then 
bn S 0 because -cn … bn … cn. We use this fact in the next example.

EXAMPLE 4  Since 1>n S 0, we know that

(a) cos n
n S 0 because -  1n … cos n

n … 1
n ;

(b) 1
2n S 0 because 0 … 1

2n … 1
n ;

(c) (-1)n 1n S 0 because -  1n … (-1)n 1n … 1
n .

(d) If 0 an 0 S 0, then an S 0 because - 0 an 0 … an … 0 an 0 . 
The application of Theorems 1 and 2 is broadened by a theorem stating that applying 

a continuous function to a convergent sequence produces a convergent sequence. We state 
the theorem, leaving the proof as an exercise (Exercise 120).

1
3

0

1

(1, 2)

y = 2x

1

2

, 21/3

, 21/2

1
3

1
2

1
2

x

y

a      b

a      b

FIGURE 10.5 As n S q, 1>n S 0 
and 21>n S 20 (Example 6). The terms of 
51>n6  are shown on the x-axis; the terms 
of 521>n6  are shown as the y-values on the 
graph of ƒ(x) = 2x.

THEOREM 3—The Continuous Function Theorem for Sequences
Let 5an6  be a sequence of real numbers. If an S L and if ƒ is a function that is 
continuous at L and defined at all an, then ƒ(an) S ƒ(L).

EXAMPLE 5  Show that 2(n + 1)>n S 1.

Solution We know that (n + 1)>n S 1. Taking ƒ(x) = 1x and L = 1 in Theorem 3 
gives 2(n + 1)>n S 21 = 1. 

EXAMPLE 6  The sequence 51>n6  converges to 0. By taking an = 1>n, ƒ(x) = 2x, 
and L = 0 in Theorem 3, we see that 21>n = ƒ(1>n) S ƒ(L) = 20 = 1. The sequence 
521>n6  converges to 1 (Figure 10.5). 

Using L’Hôpital’s Rule

The next theorem formalizes the connection between limnSq  an and limxSq  ƒ(x). It 
enables us to use l’Hôpital’s Rule to find the limits of some sequences.

THEOREM 4 Suppose that ƒ(x) is a function defined for all x Ú n0 and that 
5an6  is a sequence of real numbers such that an = ƒ(n) for n Ú n0. Then

lim
nSq

 an = L  whenever  lim
xSq

 ƒ(x) = L.
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 10.1  Sequences 569

Proof  Suppose that limxSq ƒ(x) = L. Then for each positive number e there is a 
number M such that

� ƒ(x) - L � 6 e  whenever  x 7 M.

Let N be an integer greater than M and greater than or equal to n0. Since an = ƒ(n), it 
 follows that for all n 7 N  we have

 � an - L � = � ƒ(n) - L � 6 e. 

EXAMPLE 7  Show that

lim
nSq

 ln n
n = 0.

Solution The function (ln x)>x is defined for all x Ú 1 and agrees with the given 
sequence at positive integers. Therefore, by Theorem 4, limnSq (ln n)>n will equal 
limxSq (ln x)>x if the latter exists. A single application of l’Hôpital’s Rule shows that

lim
xSq

 ln x
x = lim

xSq
 
1>x
1 = 0

1 = 0.

We conclude that limnSq (ln n)>n = 0. 

When we use l’Hôpital’s Rule to find the limit of a sequence, we often treat n as a 
continuous real variable and differentiate directly with respect to n. This saves us from 
having to rewrite the formula for an as we did in Example 7.

EXAMPLE 8  Does the sequence whose nth term is

an = an + 1
n - 1b

n

converge? If so, find limnSq an.

Solution The limit leads to the indeterminate form 1q. We can apply l’Hôpital’s Rule if 
we first change the form to q # 0 by taking the natural logarithm of an:

ln an = ln an + 1
n - 1b

n

= n ln an + 1
n - 1b .

Then,

 lim
nSq

 ln an = lim
nSq

 n ln an + 1
n - 1b   q # 0 form

 = lim
nSq

 
ln an + 1

n - 1b
1>n   0

0
 form

 = lim
nSq

 
-2> (n2 - 1)

-1>n2   
L’Hôpital’s Rule: differentiate 
numerator and denominator.   

 = lim
nSq

  2n2

n2 - 1
= 2.   Simplify and evaluate.

Since ln an S 2 and ƒ(x) = ex is continuous, Theorem 4 tells us that

an = eln an S  e2.

The sequence 5an6  converges to e2. 
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570 Chapter 10 Infinite Sequences and Series

Commonly Occurring Limits

The next theorem gives some limits that arise frequently.

THEOREM 5 The following six sequences converge to the limits listed below:

1. lim
nSq

 ln n
n = 0 2. lim

nSq
2n n = 1

3. lim
nSq

 x1>n = 1  (x 7 0) 4. lim
nSq

 xn = 0  ( � x � 6 1)

5. lim
nSq

 a1 + x
nb

n

= ex  (any x) 6. lim
nSq

  x
n

n!
= 0  (any x)

In Formulas (3) through (6), x remains fixed as n S q.

Proof  The first limit was computed in Example 7. The next two can be proved by tak-
ing logarithms and applying Theorem 4 (Exercises 117 and 118). The remaining proofs are 
given in Appendix 5. 

Factorial Notation
The notation n! (“n factorial”)  
means the product 1 # 2 # 3gn  
of the integers from 1 to n.  
Notice that (n + 1)! = (n + 1) # n!. 
Thus, 4! = 1 # 2 # 3 # 4 = 24 and 
5! = 1 # 2 # 3 # 4 # 5 = 5 # 4! = 120. We 
define 0! to be 1. Factorials grow even 
faster than exponentials, as the table 
suggests. The values in the table are 
rounded.

 n en n!

 1  3  1

 5  148  120

10  22,026  3,628,800

20 4.9 * 108 2.4 * 1018

EXAMPLE 9  These are examples of the limits in Theorem 5.

(a) 
ln 1n22

n = 2 ln n
n S 2 # 0 = 0  Formula 1

(b) 2n n2 = n2>n = 1n1/n22 S (1)2 = 1 Formula 2

(c) 2n 3n = 31>n1n1/n2S 1 # 1 = 1 Formula 3 with x = 3 and Formula 2

(d) a-  12b
n

S 0 Formula 4 with x = -  
1
2

(e) an - 2
n b

n

= a1 + -2
n b

n

S e-2 Formula 5 with x = -2

(f) 100n

n!
S 0 Formula 6 with x = 100 

Recursive Definitions

So far, we have calculated each an directly from the value of n. But sequences are often 
defined recursively by giving

1. The value(s) of the initial term or terms, and

2. A rule, called a recursion formula, for calculating any later term from terms that 
precede it.

EXAMPLE 10

(a) The statements a1 = 1 and an = an - 1 + 1 for n 7 1 define the sequence 
1, 2, 3, c, n, c of positive integers. With a1 = 1, we have a2 = a1 + 1 = 2, 
a3 = a2 + 1 = 3, and so on.

(b) The statements a1 = 1 and an = n # an - 1 for n 7 1 define the sequence 
1, 2, 6, 24, c, n!, c of factorials. With a1 = 1, we have a2 = 2 # a1 = 2,  
a3 = 3 # a2 = 6, a4 =  4 # a3 = 24, and so on.
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(c) The statements a1 = 1, a2 = 1, and an + 1 = an + an - 1 for n 7 2 define the se-
quence 1, 1, 2, 3, 5, c of Fibonacci numbers. With a1 = 1 and a2 = 1, we have 
a3 = 1 + 1 = 2, a4 = 2 + 1 = 3, a5 = 3 + 2 = 5, and so on.

(d) As we can see by applying Newton’s method (see Exercise 145), the statements x0 = 1 
and xn + 1 = xn - 3 (sin xn - xn 

2)>(cos xn - 2xn)4  for n 7 0 define a sequence that, 
when it converges, gives a solution to the equation sin x - x2 = 0. 

DEFINITION A sequence 5an6  is bounded from above if there exists a num-
ber M such that an … M  for all n. The number M is an upper bound for 5an6 . 
If M is an upper bound for 5an6  but no number less than M is an upper bound 
for 5an6 , then M is the least upper bound for 5an6 .

A sequence 5an6  is bounded from below if there exists a number m such 
that an Ú m for all n. The number m is a lower bound for 5an6 . If m is a lower 
bound for 5an6  but no number greater than m is a lower bound for 5an6 , then m 
is the greatest lower bound for 5an6 .

If 5an6  is bounded from above and below, then 5an6  is bounded. If 5an6  
is not bounded, then we say that 5an6  is an unbounded sequence.

EXAMPLE 11

(a) The sequence 1, 2, 3, c, n, c has no upper bound because it eventually surpasses 
every number M. However, it is bounded below by every real number less than or equal 
to 1. The number m = 1 is the greatest lower bound of the sequence.

(b) The sequence 12, 23, 34, c, n
n + 1, c is bounded above by every real number  greater 

  than or equal to 1. The upper bound M = 1 is the least upper bound (Exercise 137). 

  The sequence is also bounded below by every number less than or equal to 12, which 
is its greatest lower bound. 

If a sequence 5an6  converges to the number L, then by definition there is a number N 
such that � an - L � 6 1 if n 7 N. That is,

L - 1 6 an 6 L + 1 for n 7 N.

If M is a number larger than L + 1 and all of the finitely many numbers a1, a2, c, aN, 
then for every index n we have an … M  so that 5an6  is bounded from above. Similarly, if 
m is a number smaller than L - 1 and all of the numbers a1, a2, c, aN, then m is a lower 
bound of the sequence. Therefore, all convergent sequences are bounded.

Although it is true that every convergent sequence is bounded, there are bounded 
sequences that fail to converge. One example is the bounded sequence 5(-1)n + 16  dis-
cussed in Example 2. The problem here is that some bounded sequences bounce around in 
the band determined by any lower bound m and any upper bound M (Figure 10.6). An 
important type of sequence that does not behave that way is one for which each term is at 
least as large, or at least as small, as its predecessor.

Convergent sequences are bounded

0

M

m

n

an

1 32

FIGURE 10.6 Some bounded sequences 
bounce around between their bounds and 
fail to converge to any limiting value.

DEFINITIONS A sequence 5an6  is nondecreasing if an … an + 1 for all n. That 
is, a1 … a2 … a3 … . . . . The sequence is nonincreasing if an Ú an + 1 for all n. 
The sequence 5an6  is monotonic if it is either nondecreasing or nonincreasing.

Bounded Monotonic Sequences

Two concepts that play a key role in determining the convergence of a sequence are those 
of a bounded sequence and a monotonic sequence.
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572 Chapter 10 Infinite Sequences and Series

EXAMPLE 12

(a) The sequence 1, 2, 3, c, n, c is nondecreasing.

(b) The sequence 12, 23, 34, c, n
n + 1, c is nondecreasing.

(c) The sequence 1, 12 , 14, 18, c, 1
2n  , c is nonincreasing.

(d) The constant sequence 3, 3, 3, c, 3, c is both nondecreasing and nonincreasing.

(e) The sequence 1, -1, 1, -1, 1, -1, c is not monotonic. 

A nondecreasing sequence that is bounded from above always has a least upper 
bound. Likewise, a nonincreasing sequence bounded from below always has a greatest 
lower bound. These results are based on the completeness property of the real numbers, 
discussed in Appendix 6. We now prove that if L is the least upper bound of a nondecreas-
ing sequence then the sequence converges to L, and that if L is the greatest lower bound of 
a nonincreasing sequence then the sequence converges to L.

THEOREM 6—The Monotonic Sequence Theorem
If a sequence 5an6  is both bounded and monotonic, then the sequence converges.

Proof  Suppose 5an6  is nondecreasing, L is its least upper bound, and we plot the 
points (1, a1), (2, a2), . . . , (n, an), . . . in the xy-plane. If M is an upper bound of the se-
quence, all these points will lie on or below the line y = M  (Figure 10.7). The line y = L is 
the lowest such line. None of the points (n, an) lies above y = L, but some do lie above any 
lower line y = L - e, if e is a positive number (because L - e is not an upper bound). 
The sequence converges to L because

 a. an … L for all values of n, and

 b. given any e 7 0, there exists at least one integer N for which aN 7 L - e.

The fact that 5an6  is nondecreasing tells us further that

an Ú aN 7 L - e  for all n Ú N.

Thus, all the numbers an beyond the Nth number lie within e of L. This is precisely the 
condition for L to be the limit of the sequence 5an6 .

The proof for nonincreasing sequences bounded from below is similar. 

It is important to realize that Theorem 6 does not say that convergent sequences are 
monotonic. The sequence 5(-1)n + 1>n6  converges and is bounded, but it is not monotonic 
since it alternates between positive and negative values as it tends toward zero. What the 
theorem does say is that a nondecreasing sequence converges when it is bounded from 
above, but it diverges to infinity otherwise.

Finding Terms of a Sequence
Each of Exercises 1–6 gives a formula for the nth term an of a 
sequence 5an6 . Find the values of a1, a2, a3, and a4.

 1. an = 1 - n
n2  2. an = 1

n!

 3. an =
(-1)n + 1

2n - 1
 4. an = 2 + (-1)n

 5. an = 2n

2n + 1 6. an = 2n - 1
2n

Each of Exercises 7–12 gives the first term or two of a sequence along 
with a recursion formula for the remaining terms. Write out the first 
ten terms of the sequence.

 7. a1 = 1, an + 1 = an + (1>2n)

 8. a1 = 1, an + 1 = an>(n + 1)

EXERCISES 10.1

0

L

L − e

M

N

y = L

y = M

x

y

FIGURE 10.7 If the terms of a nonde-
creasing sequence have an upper bound M, 
they have a limit L … M.
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 41. an = an + 1
2n
b a1 - 1

nb  42. an = a2 - 1
2nb a3 + 1

2nb

 43. an =
(-1)n + 1

2n - 1
 44. an = a-  

1
2
b

n

 45. an = A 2n
n + 1

 46. an = 1
(0.9)n

 47. an = sin ap
2

+ 1
nb  48. an = np cos (np)

 49. an = sin n
n  50. an = sin2 n

2n

 51. an = n
2n 52. an = 3n

n3

 53. an =
ln (n + 1)2n

 54. an = ln n
ln 2n

 55. an = 81>n 56. an = (0.03)1>n

 57. an = a1 + 7
nb

n

 58. an = a1 - 1
nb

n

 59. an = 2n 10n 60. an = 2n n2

 61. an = a3nb
1>n

 62. an = (n + 4)1>(n + 4)

 63. an = ln n
n1>n  64. an = ln n - ln (n + 1)

 65. an = 2n 4nn 66. an = 2n 32n + 1

 67. an = n!
nn  (Hint: Compare with 1 >n.)

 68. an =
(-4)n

n!
 69. an = n!

106n

 70. an = n!
2n # 3n 71. an = a1nb

1>(ln n)

 72. an =
(n + 1)!
(n + 3)!

 73. an =
(2n + 2)!
(2n - 1)!

 74. an = 3en + e-n

en + 3e-n 75. an = e-2n - 2e-3n

e-2n - e-n

 76.  an = a1 - 1
2
b + a1

2
- 1

3
b + a1

3
- 1

4
b  + g

   + a 1
n - 2

- 1
n - 1

b + a 1
n - 1

- 1
nb

 77.  an = (ln 3 - ln 2) + (ln 4 - ln 3) + (ln 5 - ln 4) + g
   +  (ln (n - 1) - ln (n - 2)) + (ln n - ln (n - 1))

 78. an = lna1 + 1
nb

n

 79. an = a3n + 1
3n - 1

b
n

 80. an = a n
n + 1

b
n

 81. an = a xn

2n + 1
b

1>n
, x 7 0

 82. an = a1 - 1
n 

2b
n

 83. an = 3n # 6n

2-n # n!

 84. an =
(10>11)n

(9/10)n + (11/12)n 85. an = tanh n

 86. an = sinh (ln n) 87. an = n2

2n - 1
  sin 

1
n

 9. a1 = 2, an + 1 = (-1)n + 1an>2
 10. a1 = -2, an + 1 = nan>(n + 1)

 11. a1 = a2 = 1, an + 2 = an + 1 + an

 12. a1 = 2, a2 = -1, an + 2 = an + 1>an

Finding a Sequence’s Formula
In Exercises 13–30, find a formula for the nth term of the sequence.

 13. 1, -1, 1, -1, 1,c  1’s with alternating signs

 14. -1, 1, -1, 1, -1,c  1’s with alternating signs

 15. 1, -4, 9, -16, 25,c  Squares of the positive 
integers, with alternating 
signs

 

 16. 1, -  
1
4

, 
1
9

, -  
1
16

, 
1
25

, c 
Reciprocals of squares of 
the positive integers, with 
alternating signs

 17. 1
9

, 
2
12

, 
22

15
, 

23

18
, 

24

21
, c 

Powers of 2 divided by 
multiples of 3

 18. -  

3
2

, -  

1
6

, 
1
12

, 
3
20

, 
5
30

, c 
Integers differing by 2 
divided by products of 
consecutive integers

 19. 0, 3, 8, 15, 24,c  Squares of the positive 
integers diminished by 1

 20. -3, -2, -1, 0, 1,c  Integers, beginning with -3

 21. 1, 5, 9, 13, 17,c  Every other odd positive 
integer

 22. 2, 6, 10, 14, 18,c  Every other even positive 
integer

 23. 
5
1

, 
8
2

, 
11
6

, 
14
24

, 
17
120

, c 
Integers differing by 3 
divided by factorials

 24. 1
25

, 
8

125
, 

27
625

, 
64

3125
, 

125
15,625

, c 
Cubes of positive integers 
divided by powers of 5

 25. 1, 0, 1, 0, 1,c  Alternating 1’s and 0’s

 26. 0, 1, 1, 2, 2, 3, 3, 4,c  Each positive integer 
repeated

 27. 1
2

- 1
3

, 
1
3

- 1
4

, 
1
4

- 1
5

, 
1
5

- 1
6

, . . .

 28. 25 - 24, 26 - 25, 27 - 26, 28 - 27, . . .

 29. sina 22
1 + 4

b , sina 23
1 + 9

b , sina 24
1 + 16

b , sina 25
1 + 25

b , . . .

 30. A5
8

, A 7
11

, A 9
14

, A11
17

, . . .

Convergence and Divergence
Which of the sequences 5an6  in Exercises 31–100 converge, and 
which diverge? Find the limit of each convergent sequence.

 31. an = 2 + (0.1)n 32. an =
n + (-1)n

n

 33. an = 1 - 2n
1 + 2n

 34. an = 2n + 1

1 - 32n

 35. an = 1 - 5n4

n4 + 8n3 36. an = n + 3
n2 + 5n + 6

 37. an = n2 - 2n + 1
n - 1

 38. an = 1 - n3

70 - 4n2

 39. an = 1 + (-1)n 40. an = (-1)n a1 - 1
nb
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574 Chapter 10 Infinite Sequences and Series

b. The fractions rn = xn>yn approach a limit as n increases. 
What is that limit? (Hint: Use part (a) to show that 
rn 

2 - 2 = {(1>yn)2 and that yn is not less than n.)

 111. Newton’s method The following sequences come from the 
 recursion formula for Newton’s method,

xn + 1 = xn -
ƒ(xn)
ƒ′(xn)

.

  Do the sequences converge? If so, to what value? In each case, 
begin by identifying the function ƒ that generates the sequence.

a. x0 = 1, xn + 1 = xn -
xn

2 - 2
2xn

=
xn

2
+ 1

xn

b. x0 = 1, xn + 1 = xn -
tan xn - 1

sec2 xn

c. x0 = 1, xn + 1 = xn - 1

 112. a.  Suppose that ƒ(x) is differentiable for all x in 30, 14  and that 
ƒ(0) = 0. Define sequence 5an6  by the rule an =  nƒ(1>n). 
Show that limnSq an = ƒ′(0). Use the result in part (a) to 
find the limits of the following sequences 5an6 .

b. an = n tan-1 
1
n c. an = n(e1>n - 1)

d. an = n lna1 + 2
nb

 113. Pythagorean triples A triple of positive integers a, b, and c 
is called a Pythagorean triple if a2 + b2 = c2. Let a be an odd 
positive integer and let

b = j a
2

2
k and c = l a

2

2
m

  be, respectively, the integer floor and ceiling for a2>2.

a

a2

2

u

l  m a2

2
j k

a. Show that a2 + b2 = c2. (Hint: Let a = 2n + 1 and 
 express b and c in terms of n.)

b. By direct calculation, or by appealing to the accompanying 
figure, find

lim
aSq

 

j a
2

2
k

l a
2

2
m

.

 88. an = na1 - cos 
1
nb  89. an = 2n sin 

12n
 90. an = (3n + 5n)1>n 91. an = tan-1 n

 92. an = 12n
  tan-1 n 93. an = a1

3
b

n

+ 122n

 94. an = 2n n2 + n 95. an =
(ln n)200

n

 96. an =
(ln n)52n

 97. an = n - 2n2 - n

 98. an = 12n2 - 1 - 2n2 + n

 99. an = 1
n L

n

1
 
1
x dx 100. an = L

n

1
 
1
xp dx, p 7 1

Recursively Defined Sequences
In Exercises 101–108, assume that each sequence converges and find 
its limit.

 101. a1 = 2, an + 1 = 72
1 + an

 102. a1 = -1, an + 1 =
an + 6
an + 2

 103. a1 = -4, an + 1 = 28 + 2an

 104. a1 = 0, an + 1 = 28 + 2an

 105. a1 = 5, an + 1 = 25an

 106. a1 = 3, an + 1 = 12 - 2an

 107. 2, 2 + 1
2

, 2 + 1

2 + 1
2

, 2 + 1

2 + 1

2 + 1
2

,c

 108. 21, 31 + 21, 41 + 31 + 21,

  51 + 41 + 31 + 21,c

Theory and Examples
 109. The first term of a sequence is x1 = 1. Each succeeding term is 

the sum of all those that come before it:

xn + 1 = x1 + x2 + g + xn.

  Write out enough early terms of the sequence to deduce a general 
formula for xn that holds for n Ú 2.

 110. A sequence of rational numbers is described as follows:

1
1

, 
3
2

, 
7
5

, 
17
12

, c, 
a
b

, 
a + 2b
a + b

, c.

  Here the numerators form one sequence, the denominators form 
a second sequence, and their ratios form a third sequence. Let xn 
and yn be, respectively, the numerator and the denominator of the 
nth fraction rn = xn>yn.

a. Verify that x1 2 - 2y1 2 = -1, x2 2 - 2y2 2 = +  1 and, more 
generally, that if a2 - 2b2 = -1 or + 1, then

(a + 2b)2 - 2(a + b)2 = +1 or -1,

respectively.
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 10.1  Sequences 575

 137. The sequence {n , (n + 1)} has a least upper bound of 1 
Show that if M is a number less than 1, then the terms of 
5n>(n + 1)6  eventually exceed M. That is, if M 6 1 there is 
an integer N such that n>(n + 1) 7 M  whenever n 7 N. Since 
n>(n + 1) 6 1 for every n, this proves that 1 is a least upper 
bound for 5n>(n + 1)6 .

 138. Uniqueness of least upper bounds Show that if M1 and M2 
are least upper bounds for the sequence 5an6 , then M1 = M2. 
That is, a sequence cannot have two different least upper bounds.

 139. Is it true that a sequence 5an6  of positive numbers must con-
verge if it is bounded from above? Give reasons for your answer.

 140. Prove that if 5an6  is a convergent sequence, then to every posi-
tive number e there corresponds an integer N such that

� am - an � 6 e whenever m 7 N and n 7 N.

 141. Uniqueness of limits Prove that limits of sequences are unique. 
That is, show that if L1 and L2 are numbers such that an S L1 
and an S L2, then L1 = L2.

 142. Limits and subsequences If the terms of one sequence appear 
in another sequence in their given order, we call the first sequence 
a subsequence of the second. Prove that if two sub-sequences of 
a sequence 5an6  have different limits L1 ≠ L2, then 5an6  di-
verges.

 143. For a sequence 5an6  the terms of even index are denoted by a2k 
and the terms of odd index by a2k + 1. Prove that if a2k S L and 
a2k + 1 S L, then an S L.

 144. Prove that a sequence 5an6  converges to 0 if and only if the 
sequence of absolute values 5 � an �6  converges to 0.

 145. Sequences generated by Newton’s method Newton’s meth-
od, applied to a differentiable function ƒ(x), begins with a start-
ing value x0 and constructs from it a sequence of numbers 5xn6  
that under favorable circumstances converges to a zero of ƒ. The 
recursion formula for the sequence is

xn + 1 = xn -
ƒ(xn)
ƒ′(xn)

.

a. Show that the recursion formula for ƒ(x) = x2 - a, a 7 0, 
can be written as xn + 1 = (xn + a>xn)>2.

b. Starting with x0 = 1 and a = 3, calculate successive terms 
of the sequence until the display begins to repeat. What 
number is being approximated? Explain.

 146. A recursive definition of P ,2 If you start with x1 = 1 and
  define the subsequent terms of 5xn6  by the rule 

xn = xn - 1 + cos xn - 1, you generate a sequence that converges 
rapidly to p>2. (a) Try it. (b) Use the accompanying figure to 
explain why the convergence is so rapid.

10

cos xn − 11

xn − 1

xn − 1
x

y

T

T

 114. The nth root of n!

a. Show that limnSq (2np)1>(2n) = 1 and hence, using Stirling’s 
approximation (Chapter 8, Additional Exercise 52a), that2n n! ≈ n

e for large values of n.

b. Test the approximation in part (a) for n = 40, 50, 60, c, 
as far as your calculator will allow.

 115. a.  Assuming that limnSq (1>nc) = 0 if c is any positive con-
stant, show that

lim
nSq

 
ln n
nc = 0

  if c is any positive constant.

b. Prove that limnSq (1>nc) = 0 if c is any positive constant. 
(Hint: If e = 0.001 and c = 0.04, how large should N be to 
ensure that � 1>nc - 0 � 6 e if n 7 N?)

 116. The zipper theorem Prove the “zipper theorem” for  sequences: 
If 5an6  and 5bn6  both converge to L, then the sequence

a1, b1, a2, b2,c , an, bn,c

  converges to L.

 117. Prove that limnSq2n n = 1.

 118. Prove that limnSq  x1>n = 1, (x 7 0).

 119. Prove Theorem 2. 120. Prove Theorem 3.

In Exercises 121–124, determine if the sequence is monotonic and if it 
is bounded.

 121. an = 3n + 1
n + 1

 122. an =
(2n + 3)!
(n + 1)!

 123. an = 2n3n

n!
 124. an = 2 - 2

n - 1
2n

Which of the sequences in Exercises 125–134 converge, and which 
diverge? Give reasons for your answers.

 125. an = 1 - 1
n 126. an = n - 1

n

 127. an = 2n - 1
2n  128. an = 2n - 1

3n

 129. an = ((-1)n + 1)an + 1
n b

 130. The first term of a sequence is x1 = cos (1). The next terms are 
x2 = x1 or cos (2), whichever is larger; and x3 = x2 or cos (3), 
whichever is larger (farther to the right). In general,

xn + 1 = max 5xn, cos (n + 1)6 .

 131. an = 1 + 22n2n
 132. an = n + 1

n

 133. an = 4n + 1 + 3n

4n  134. a1 = 1, an + 1 = 2an - 3

In Exercises 135–136, use the definition of convergence to prove the 
given limit.

 135. lim
nSq

 
sin n

n = 0 136. lim
nSq
a1 - 1

n2b = 1

T
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576 Chapter 10 Infinite Sequences and Series

COMPUTER EXPLORATIONS
Use a CAS to perform the following steps for the sequences in 
 Exercises 147–158.

a. Calculate and then plot the first 25 terms of the sequence. 
Does the sequence appear to be bounded from above or 
below? Does it appear to converge or diverge? If it does 
converge, what is the limit L?

b. If the sequence converges, find an integer N such that 
� an - L � … 0.01 for n Ú N. How far in the sequence do 
you have to get for the terms to lie within 0.0001 of L?

 147. an = 2n n 148. an = a1 + 0.5
n b

n

 149. a1 = 1, an + 1 = an + 1
5n

 150. a1 = 1, an + 1 = an + (-2)n

 151. an = sin n 152. an = n sin 
1
n

 153. an = sin n
n  154. an = ln n

n

 155. an = (0.9999)n 156. an = (123456)1>n

 157. an = 8n

n!
 158. an = n41

19n

10.2 Infinite Series

An infinite series is the sum of an infinite sequence of numbers

a1 + a2 + a3 + g + an + g
The goal of this section is to understand the meaning of such an infinite sum and to 
develop methods to calculate it. Since there are infinitely many terms to add in an infinite 
series, we cannot just keep adding to see what comes out. Instead we look at the result of 
summing just the first n terms of the sequence. The sum of the first n terms

sn = a1 + a2 + a3 + g + an

is an ordinary finite sum and can be calculated by normal addition. It is called the nth 
 partial sum. As n gets larger, we expect the partial sums to get closer and closer to a limiting 
value in the same sense that the terms of a sequence approach a limit, as discussed in 
 Section 10.1.

For example, to assign meaning to an expression like

1 + 1
2 + 1

4 + 1
8 + 1

16
+ g

we add the terms one at a time from the beginning and look for a pattern in how these par-
tial sums grow.

Partial sum Value
Suggestive expression 

for partial sum

First:  s1 = 1 1 2 - 1

Second:  s2 = 1 + 1
2

3
2 2 - 1

2

Third:  s3 = 1 + 1
2 + 1

4
7
4 2 - 1

4
f f f f

nth:  sn = 1 + 1
2 + 1

4 + g + 1
2n - 1

2n - 1
2n - 1     2 - 1

2n - 1

Indeed there is a pattern. The partial sums form a sequence whose nth term is

sn = 2 - 1
2n - 1 .
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This sequence of partial sums converges to 2 because limnSq (1>2n - 1) = 0. We say

“the sum of the infinite series 1 + 1
2 + 1

4 + g + 1
2n - 1 + g is 2.”

Is the sum of any finite number of terms in this series equal to 2? No. Can we actually add 
an infinite number of terms one by one? No. But we can still define their sum by defining 
it to be the limit of the sequence of partial sums as n S q, in this case 2 (Figure 10.8). 
Our knowledge of sequences and limits enables us to break away from the confines of 
finite sums.

HISTORICAL BIOGRAPHY

Blaise Pascal
(1623–1662)
www.goo.gl/9NNLtv

DEFINITIONS Given a sequence of numbers 5an6 , an expression of the form

a1 + a2 + a3 + g + an + g
is an infinite series. The number an is the nth term of the series. The sequence 
5sn6  defined by

  s1 = a1

  s2 = a1 + a2

 f

sn = a1 + a2 + g + an = an

k = 1
 ak

 f

is the sequence of partial sums of the series, the number sn being the nth 
 partial sum. If the sequence of partial sums converges to a limit L, we say that 
the series converges and that its sum is L. In this case, we also write

a1 + a2 + g + an + g = aq
n = 1

 an = L.

If the sequence of partial sums of the series does not converge, we say that the 
series diverges.

We can represent each term in an infinite series by the area of a rectangle. If all the 
terms an in the series are positive, then the series converges if the total area is finite, and 
diverges otherwise. Figure 10.9a shows an example where the series converges and Figure 
10.9b shows an example where it diverges. The convergence of the total area is related to 
the convergence or divergence of improper integrals, as we found in Section 8.8. We make 
this connection explicit in the next section, where we develop an important test for conver-
gence of series, the Integral Test.

When we begin to study a given series a1 + a2 + g + an + g, we might not 
know whether it converges or diverges. In either case, it is convenient to use sigma nota-
tion to write the series as

aq
n = 1

 an,  aq
k = 1

 ak,  or  a  an  
A useful shorthand 
when summation 
from 1 to q is 
understood

  

0

1

21�2 1�8

1�4

FIGURE 10.8 As the lengths 1, 1>2, 1>4, 1>8, . . . are added one by one, the sum 
 approaches 2.
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578 Chapter 10 Infinite Sequences and Series

Geometric Series

Geometric series are series of the form

a + ar + ar2 + g + arn - 1 + g = aq
n = 1

 ar 

n - 1

in which a and r are fixed real numbers and a ≠ 0. The series can also be written as gq
n = 0 arn. The ratio r can be positive, as in

1 + 1
2 + 1

4 + g + a12b
n - 1

+ g ,  r = 1>2 , a = 1

or negative, as in

1 - 1
3 + 1

9 - g + a-  13b
n - 1

+ g .  r = -1>3 , a = 1

If r = 1, the nth partial sum of the geometric series is

sn = a + a(1) + a(1)2 + g + a(1)n - 1 = na,

and the series diverges because limnSq sn = {q, depending on the sign of a. If r = -1, 
the series diverges because the nth partial sums alternate between a and 0 and never 
approach a single limit. If � r � ≠ 1, we can determine the convergence or divergence of 
the series in the following way:

 sn = a + ar + ar2 + g + arn - 1   Write the nth partial sum.

 rsn = ar + ar2 + g + arn - 1 + arn  Multiply sn by r .

 sn - rsn = a - arn   Subtract rsn from sn. Most of 
the terms on the right cancel.

Factor.

  

 sn(1 - r) = a(1 - rn)   

 sn =
a(1 - rn)

1 - r ,  (r ≠ 1).   We can solve for sn if r ≠ 1.

If � r � 6 1, then rn S 0 as n S q (as in Section 10.1), so sn S a>(1 - r) in this case.  
On the other hand, if � r � 7 1, then � rn � S q and the series diverges.

If � r � 6 1, the geometric series a + ar + ar2 + g + arn - 1 + gconverges 
to a>(1 - r):

aq
n = 1

 arn - 1 = a
1 - r ,  � r � 6 1.

If � r � Ú 1, the series diverges.

a1

(a)

1

2

a2
a3 a4 a5 a6

an =

1 2 3 4 5 6
x

2
n2

y

 

a1

(b)

1

2

a2 a3 a4 a5 a6

an = 1 + 

1 2 3 4 5 6

1
n

y

x

FIGURE 10.9 The sum of a series with positive terms can be interpreted 
as a total area of an infinite collection of rectangles. The series converges 
when the total area of the rectangles is finite (a) and diverges when the total 
area is unbounded (b). Note that  the total area can be infinite even if the area 
of the rectangles is decreasing.
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The formula a>(1 - r) for the sum of a geometric series applies only when the sum-
mation index begins with n = 1 in the expression gq

n = 1 arn - 1 (or with the index n = 0 if 
we write the series as gq

n = 0 arn).

EXAMPLE 1  The geometric series with a = 1>9 and r = 1>3 is

 1
9 + 1

27 + 1
81 + g = aq

n = 1
 19 a13b

n - 1

=
1>9

1 - (1>3)
= 1

6
. 

EXAMPLE 2  The series

aq
n = 0

 
(-1)n 5

4n = 5 - 5
4 + 5

16
- 5

64
+ g

is a geometric series with a = 5 and r = -1>4. It converges to

 a
1 - r = 5

1 + (1>4)
= 4. 

EXAMPLE 3  You drop a ball from a meters above a flat surface. Each time the ball 
hits the surface after falling a distance h, it rebounds a distance rh, where r is positive but 
less than 1. Find the total distance the ball travels up and down (Figure 10.10).

Solution The total distance is

s = a + 2ar + 2ar2 + 2ar3 + g = a + 2ar
1 - r = a 1 + r

1 - r .
(+++++)+++++*

 This sum is 2ar>(1 - r).

If a = 6 m and r = 2>3, for instance, the distance is

 s = 6 # 1 + (2>3)

1 - (2>3)
= 6 a5>3

1>3b = 30 m. 

EXAMPLE 4  Express the repeating decimal 5.232323c as the ratio of two integers.

Solution From the definition of a decimal number, we get a geometric series

 5.232323 c = 5 + 23
100 + 23

(100)2 + 23
(100)3 + g

 = 5 + 23
100 a1 + 1

100 + a 1
100b

2

+ gb   
a = 1,
r = 1>100

 (++++++)++++++*
 1>(1 - 0.01)

 = 5 + 23
100 a 1

0.99b = 5 + 23
99 = 518

99  

Unfortunately, formulas like the one for the sum of a convergent geometric series are 
rare and we usually have to settle for an estimate of a series’ sum (more about this later). 
The next example, however, is another case in which we can find the sum exactly.

EXAMPLE 5  Find the sum of the “telescoping” series aq
n = 1

 1
n(n + 1) .

ar

ar2

ar3

(a)

a

(b)

FIGURE 10.10 (a) Example 3 shows 
how to use a geometric series to calcu-
late the total vertical distance traveled 
by a bouncing ball if the height of each 
rebound is reduced by the factor r. (b) A 
 stroboscopic photo of a bouncing ball. 
(Source: PSSC Physics, 2nd ed., Reprinted 
by permission of Educational Develop-
ment Center, Inc.)
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Solution We look for a pattern in the sequence of partial sums that might lead to a for-
mula for sk. The key observation is the partial fraction decomposition

1
n(n + 1) = 1

n - 1
n + 1,

so

ak

n = 1
 1
n(n + 1) = ak

n = 1
 a1n - 1

n + 1b

and

sk = a11 - 1
2 b + a12 - 1

3 b + a13 - 1
4 b + g+  a1

k
- 1

k + 1
b .

Removing parentheses and canceling adjacent terms of opposite sign collapses the sum to

sk = 1 - 1
k + 1

.

We now see that sk S 1 as k S q. The series converges, and its sum is 1:

 aq
n = 1

 1
n(n + 1) = 1. 

THEOREM 7 If aq
n = 1

 an converges, then an S 0.

The nth-Term Test for Divergence

aq
n = 1

 an diverges if lim
nSq

 an fails to exist or is different from zero.

Theorem 7 leads to a test for detecting the kind of divergence that occurred in Example 6.

EXAMPLE 7  The following are all examples of divergent series.

(a) aq
n = 1

 n2 diverges because n2 S q.

The nth-Term Test for a Divergent Series

One reason that a series may fail to converge is that its terms don’t become small.

EXAMPLE 6  The series

aq
n = 1

 n + 1
n = 2

1 + 3
2 + 4

3 + g +  n + 1
n + g

diverges because the partial sums eventually outgrow every preassigned number. Each 
term is greater than 1, so the sum of n terms is greater than n. 

We now show that limnSq an must equal zero if the series gq
n = 1 an converges. To see 

why, let S represent the series’ sum and sn = a1 + a2 + g+  an the nth partial sum. 
When n is large, both sn and sn - 1 are close to S, so their difference, an, is close to zero. 
More formally,

an = sn - sn - 1 S S - S = 0.   Difference Rule  
for sequences

This establishes the following theorem.

Caution
Theorem 7 does not say that g∞

n = 1 an 
converges if an S 0. It is possible for  
a series to diverge when an S 0.  
(See Example 8.)
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(b) aq
n = 1

 n + 1
n  diverges because n + 1

n S 1.  limnSq an ≠ 0

(c) aq
n = 1

 (-1)n + 1 diverges because limnSq (-1)n + 1 does not exist.

(d) aq
n = 1

 -n
2n + 5

 diverges because limnSq  
-n

2n + 5
= -  12 ≠ 0. 

THEOREM 8 If gan = A and gbn = B are convergent series, then

1. Sum Rule: g (an + bn) = gan + gbn = A + B

2. Difference Rule: g (an - bn) = gan - gbn = A - B

3. Constant Multiple Rule: gkan = kgan = kA  (any number k).

Proof  The three rules for series follow from the analogous rules for sequences in 
 Theorem 1, Section 10.1. To prove the Sum Rule for series, let

An = a1 + a2 + g +  an, Bn = b1 + b2 + g+  bn.

Then the partial sums of g (an + bn) are

 sn = (a1 + b1) + (a2 + b2) + g+  (an + bn)

 = (a1 + g+  an) + (b1 + g+  bn)

 = An + Bn.

Since An S A and Bn S B, we have sn S A + B by the Sum Rule for sequences. The 
proof of the Difference Rule is similar.

To prove the Constant Multiple Rule for series, observe that the partial sums of gkan 
form the sequence

sn = ka1 + ka2 + g+  kan = k(a1 + a2 + g+  an) = kAn,

which converges to kA by the Constant Multiple Rule for sequences. 

As corollaries of Theorem 8, we have the following results. We omit the proofs.

1. Every nonzero constant multiple of a divergent series diverges.

2. If gan converges and gbn diverges, then g (an + bn) and g (an - bn) both 
diverge.

EXAMPLE 8  The series

1 + 1
2 + 1

2 + 1
4 + 1

4 + 1
4 + 1

4 + g + 1
2n + 1

2n + g + 1
2n + g

 (+)+* (+++)+++* (++++)++++*
 2 terms 4 terms 2n terms

diverges because the terms can be grouped into infinitely many clusters each of which 
adds to 1, so the partial sums increase without bound. However, the terms of the series 
form a sequence that converges to 0. Example 1 of Section 10.3 shows that the harmonic 
series g1>n also behaves in this manner. 

Combining Series

Whenever we have two convergent series, we can add them term by term, subtract them 
term by term, or multiply them by constants to make new convergent series.
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Caution Remember that g (an + bn) can converge even if both gan and gbn diverge. 
For example, gan = 1 + 1 + 1 + g and gbn = (-1) + (-1) + (-1) + . . . di-
verge, whereas g (an + bn) = 0 + 0 + 0 + gconverges to 0. 

EXAMPLE 9  Find the sums of the following series.

(a)  aq
n = 1

 3
n - 1 - 1
6n - 1 = aq

n = 1
 a 1

2n - 1 - 1
6n - 1b

   = aq
n = 1

 1
2n - 1 - aq

n = 1
 1
6n - 1  Difference Rule

   = 1
1 - (1>2)

- 1
1 - (1>6)

 Geometric series with a = 1 and r = 1>2, 1>6

   = 2 - 6
5

= 4
5

(b) aq
n = 0

 42n = 4aq
n = 0

 12n  Constant Multiple Rule

   = 4a 1
1 - (1>2)

b  Geometric series with a = 1, r = 1>2 

   = 8  

Adding or Deleting Terms

We can add a finite number of terms to a series or delete a finite number of terms without 
altering the series’ convergence or divergence, although in the case of convergence this 
will usually change the sum. If gq

n = 1 an converges, then gq
n = k an converges for any k 7 1 

and

aq
n = 1

 an = a1 + a2 +  g+  ak - 1 + aq
n = k

 an.

Conversely, if gq
n = k an converges for any k 7 1, then gq

n = 1 an converges. Thus,

aq
n = 1

 1
5n = 1

5
+ 1

25
+ 1

125
+ aq

n = 4
 1
5n

and

aq
n = 4

 1
5n = aaq

n = 1
 1
5nb - 1

5
- 1

25
- 1

125
.

The convergence or divergence of a series is not affected by its first few terms. Only the 
“tail” of the series, the part that remains when we sum beyond some finite number of ini-
tial terms, influences whether it converges or diverges.

Reindexing

As long as we preserve the order of its terms, we can reindex any series without altering its 
convergence. To raise the starting value of the index h units, replace the n in the formula 
for an by n - h:

aq
n = 1

 an = aq
n = 1 + h

 an - h = a1 + a2 + a3 + g.

To lower the starting value of the index h units, replace the n in the formula for an by n + h:

aq
n = 1

 an = aq
n = 1 - h

 an + h = a1 + a2 + a3 + g.

HISTORICAL BIOGRAPHY

Richard Dedekind
(1831–1916)
www.goo.gl/aPN8sH

M10_HASS8986_14_SE_C10_563-648.indd   582 10/12/16   2:22 PM

www.ebook3000.com



 10.2  Infinite Series 583

We saw this reindexing in starting a geometric series with the index n = 0 instead of the 
index n = 1, but we can use any other starting index value as well. We usually give prefer-
ence to indexings that lead to simple expressions.

EXAMPLE 10  We can write the geometric series

aq
n = 1

 1
2n - 1 = 1 + 1

2 + 1
4 + g

as

aq
n = 0

  12n ,  aq
n = 5

  1
2n - 5 ,  or even  aq

n = -4
  1
2n + 4 .

The partial sums remain the same no matter what indexing we choose to use. 

Finding nth Partial Sums
In Exercises 1–6, find a formula for the nth partial sum of each series 
and use it to find the series’ sum if the series converges.

 1. 2 + 2
3

+ 2
9

+ 2
27

+ g+ 2
3n - 1 + g

 2. 
9

100
+ 9

1002 + 9
1003 + g + 9

100n + g

 3. 1 - 1
2

+ 1
4

- 1
8

+ g + (-1)n - 1 
1

2n - 1 + g

 4. 1 - 2 + 4 - 8 + g + (-1)n - 1 2n - 1 + g

 5. 1
2 # 3

+ 1
3 # 4

+ 1
4 # 5

+ g + 1
(n + 1)(n + 2)

+ g

 6. 
5

1 # 2
+ 5

2 # 3
+ 5

3 # 4
+ g + 5

n(n + 1)
+ g

Series with Geometric Terms
In Exercises 7–14, write out the first eight terms of each series to 
show how the series starts. Then find the sum of the series or show 
that it diverges.

 7. aq
n = 0

 
(-1)n

4n  8. aq
n = 2

 
1
4n

 9. aq
n = 1

 a1 - 7
4nb  10. aq

n = 0
(-1)n 

5
4n

 11. aq
n = 0

 a 5
2n + 1

3nb  12. aq
n = 0

 a 5
2n - 1

3nb

 13. aq
n = 0

 a 1
2n +

(-1)n

5n b  14. aq
n = 0

 a2
n + 1

5n b

In Exercises 15–22, determine if the geometric series converges or 
diverges. If a series converges, find its sum.

 15. 1 + a2
5
b + a2

5
b

2

+ a2
5
b

3

+ a2
5
b

4

+ g 

 16. 1 + (-3) + (-3)2 + (-3)3 + (-3)4 + g

 17. a1
8
b + a1

8
b

2

+ a1
8
b

3

+ a1
8
b

4

+ a1
8
b

5

+ g

 18. a-2
3
b

2

+ a-2
3
b

3

+ a-2
3
b

4

+ a-2
3
b

5

+ a-2
3
b

6

+ g

 19. 1 - a2eb + a2eb
2

- a2eb
3

+ a2eb
4

 - g

 20. a1
3
b

-2

- a1
3
b

-1

+ 1 - a1
3
b + a1

3
b

2

 - g

 21. 1 + a10
9
b

2

+ a10
9
b

4

+ a10
9
b

6

+ a10
9
b

8

 + g

 22. 
9
4

- 27
8

+ 81
16

- 243
32

+ 729
64

- g

Repeating Decimals
Express each of the numbers in Exercises 23–30 as the ratio of two 
integers.

 23. 0.23 = 0.23 23 23c
 24. 0.234 = 0.234 234 234c
 25. 0.7 = 0.7777c
 26. 0.d = 0.ddddc , where d is a digit

 27. 0.06 = 0.06666c
 28. 1.414 = 1.414 414 414c
 29. 1.24123 = 1.24 123 123 123c
 30. 3.142857 = 3.142857 142857c

Using the nth-Term Test
In Exercises 31–38, use the nth-Term Test for divergence to show that 
the series is divergent, or state that the test is inconclusive.

 31. aq
n = 1

 
n

n + 10
 32. aq

n = 1
 

n(n + 1)
(n + 2)(n + 3)

 33. aq
n = 0

 
1

n + 4
 34. aq

n = 1
 

n
n2 + 3

EXERCISES 10.2
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 69. aq
n = 1

 ln a n
n + 1

b  70. aq
n = 1

 lna n
2n + 1

b

 71. aq
n = 0

 a e
pb

n

 72. aq
n = 0

 
enp

pne

 73. aq
n = 1

 a n
n + 1

- n + 2
n + 3

b

 74. aq
n = 2

 asin apn b - sin a p

n - 1
b b

 75. aq
n = 1

 acos apn b + sin apn b b

 76. aq
n = 0

 (ln (4en - 1) - ln (2en + 1))

Geometric Series with a Variable x
In each of the geometric series in Exercises 77–80, write out the first 
few terms of the series to find a and r, and find the sum of the series. 
Then express the inequality � r � 6 1 in terms of x and find the values 
of x for which the inequality holds and the series converges.

 77. aq
n = 0

(-1)nxn 78. aq
n = 0

(-1)nx2n

 79. aq
n = 0

3ax - 1
2
b

n

 80. aq
n = 0

 
(-1)n

2
 a 1

3 + sin x
b

n

In Exercises 81–86, find the values of x for which the given geometric 
series converges. Also, find the sum of the series (as a function of x) 
for those values of x.

 81. aq
n = 0

2nxn 82. aq
n = 0

(-1)nx-2n

 83. aq
n = 0

(-1)n(x + 1)n 84. aq
n = 0

 a-  
1
2
b

n

(x - 3)n

 85. aq
n = 0

 sinn x 86. aq
n = 0

 (ln x)n

Theory and Examples
 87. The series in Exercise 5 can also be written as

aq
n = 1

 
1

(n + 1)(n + 2)
 and aq

n = -1
 

1
(n + 3)(n + 4)

.

  Write it as a sum beginning with (a) n = -2, (b) n = 0,  
(c) n = 5.

 88. The series in Exercise 6 can also be written as

aq
n = 1

 
5

n(n + 1)
 and aq

n = 0
 

5
(n + 1)(n + 2)

.

  Write it as a sum beginning with (a) n = -1, (b) n = 3,  
(c) n = 20.

 89. Make up an infinite series of nonzero terms whose sum is

a. 1  b. -3  c. 0.

 90. (Continuation of Exercise 89.) Can you make an infinite series of 
nonzero terms that converges to any number you want? Explain.

 91. Show by example that g(an>bn) may diverge even though gan 
and gbn converge and no bn equals 0.

 35. aq
n = 1

 cos 
1
n 36. aq

n = 0
 

en

en + n

 37. aq
n = 1

 ln  
1
n 38. aq

n = 0
 cos np

Telescoping Series
In Exercises 39–44, find a formula for the nth partial sum of the series 
and use it to determine if the series converges or diverges. If a series 
converges, find its sum.

 39. aq
n = 1

 a1n - 1
n + 1

b  40. aq
n = 1

 a 3
n2 - 3

(n + 1)2b

 41. aq
n = 1

 1ln 2n + 1 - ln 2n2 42. aq
n = 1

 (tan (n) - tan (n - 1))

 43. aq
n = 1

 acos-1 a 1
n + 1

b - cos-1 a 1
n + 2

b b

 44. aq
n = 1

 12n + 4 - 2n + 32

Find the sum of each series in Exercises 45–52.

 45. aq
n = 1

 
4

(4n - 3)(4n + 1)
 46. aq

n = 1
 

6
(2n - 1)(2n + 1)

 47. aq
n = 1

 
40n

(2n - 1)2(2n + 1)2 48. aq
n = 1

  
2n + 1

n2(n + 1)2

 49. aq
n = 1

 a 12n
- 12n + 1

b  50. aq
n = 1

 a 1
21>n - 1

21>(n + 1)
b

 51. aq
n = 1

 a 1
ln (n + 2)

- 1
ln (n + 1)

b

 52. aq
n = 1

(tan-1 (n) - tan-1 (n + 1))

Convergence or Divergence
Which series in Exercises 53–76 converge, and which diverge? Give 
reasons for your answers. If a series converges, find its sum.

 53. aq
n = 0

 a 122
b

n

 54. aq
n = 0
1222n

 55. aq
n = 1

(-1)n + 1 
3
2n 56. aq

n = 1
(-1)n + 1n

 57. aq
n = 0

 cos anp
2
b  58. aq

n = 0
 
cos np

5n

 59. aq
n = 0

 e-2n 60. aq
n = 1

 ln 
1
3n

 61. aq
n = 1

 
2

10n 62. aq
n = 0

  
1
xn , � x � 7 1

 63. aq
n = 0

 
2n - 1

3n  64. aq
n = 1

 a1 - 1
nb

n

 65. aq
n = 0

 
n!

1000n 66. aq
n = 1

  
nn

n!

 67. aq
n = 1

 
2n + 3n

4n  68. aq
n = 1

 
2n + 4n

3n + 4n
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 103. The Cantor set To construct this set, we begin with the closed 
interval 30, 14 . From that interval, remove the middle open 
interval (1>3, 2>3), leaving the two closed intervals 30, 1>34  
and 32>3, 14 . At the second step we remove the open middle 
third interval from each of those remaining. From 30, 1>34  
we remove the open interval (1>9, 2>9), and from 32>3, 14  
we remove (7>9, 8>9), leaving behind the four closed intervals 
30, 1>94 , 3 2>9,1>3 4 , 3 2>3, 7>9 4 , and 3 8>9, 1 4 . At the 
next step, we remove the middle open third interval from each 
closed interval left behind, so (1>27, 2>27) is removed from  
3 0, 1>9 4 , leaving the closed intervals 3 0, 1>27 4  and  
3 2>27, 1>9 4 ; (7>27, 8>27 ) is removed from 3 2>9, 1>3 4 , 
leaving behind 3 2>9, 7>27 4  and 3 8>27, 1>3 4 , and so forth. 
We continue this process repeatedly without stopping, at each 
step removing the open third interval from every closed interval 
remaining behind from the preceding step. The numbers remain-
ing in the interval 30, 1 4 , after all open middle third intervals have 
been removed, are the points in the Cantor set (named after Georg 
Cantor, 1845–1918). The set has some interesting properties.

a. The Cantor set contains infinitely many numbers in 3 0, 1 4 . 
List 12 numbers that belong to the Cantor set.

b. Show, by summing an appropriate geometric series, that the 
total length of all the open middle third intervals that have 
been removed from 3 0, 1 4  is equal to 1.

 104. Helga von Koch’s snowflake curve Helga von Koch’s snow-
flake is a curve of infinite length that encloses a region of finite 
area. To see why this is so, suppose the curve is generated by 
starting with an equilateral triangle whose sides have length 1.

a. Find the length Ln of the nth curve Cn and show that 
limnSq  Ln = q.

b. Find the area An of the region enclosed by Cn and show that 
limnSq  An = (8>5) A1.

C1 C4C3C2

 105. The largest circle in the accompanying figure has radius 1. Con-
sider the sequence of circles of maximum area inscribed in semi-
circles of diminishing size. What is the sum of the areas of all of 
the circles?

 92. Find convergent geometric series A = gan and B = gbn that 
illustrate the fact that gan bn may converge without being equal 
to AB.

 93. Show by example that g(an>bn) may converge to something 
other than A >B even when A = gan, B = gbn ≠ 0, and no bn 
equals 0.

 94. If gan converges and an 7 0 for all n, can anything be said 
about g(1>an)? Give reasons for your answer.

 95. What happens if you add a finite number of terms to a divergent 
series or delete a finite number of terms from a divergent series? 
Give reasons for your answer.

 96. If gan converges and gbn diverges, can anything be said about 
their term-by-term sum g(an + bn)? Give reasons for your 
 answer.

 97. Make up a geometric series garn - 1 that converges to the number 
5 if

a. a = 2 b. a = 13>2.

 98. Find the value of b for which

1 + eb + e2b + e3b + g = 9.

 99. For what values of r does the infinite series

1 + 2r + r2 + 2r3 + r4 + 2r5 + r6 + g
  converge? Find the sum of the series when it converges.

 100. The accompanying figure shows the first five of a sequence of 
squares. The outermost square has an area of 4 m2. Each of the 
other squares is obtained by joining the midpoints of the sides 
of the squares before it. Find the sum of the areas of all the 
squares.

 101. Drug dosage A patient takes a 300 mg tablet for the control of 
high blood pressure every morning at the same time. The concen-
tration of the drug in the patient’s system decays exponentially at 
a constant hourly rate of k = 0.12.

a. How many milligrams of the drug are in the patient’s system 
just before the second tablet is taken? Just before the third 
tablet is taken?

b. In the long run, after taking the medication for at least six 
months, what quantity of drug is in the patient’s body just 
before taking the next regularly scheduled morning tablet?

 102. Show that the error (L - sn) obtained by replacing a convergent 
geometric series with one of its partial sums sn is arn>(1 - r).
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10.3 The Integral Test

The most basic question we can ask about a series is whether it converges. In this section 
we begin to study this question, starting with series that have nonnegative terms. Such a 
series converges if its sequence of partial sums is bounded. If we establish that a given 
series does converge, we generally do not have a formula available for its sum. So to get an 
estimate for the sum of a convergent series, we investigate the error involved when using a 
partial sum to approximate the total sum.

Nondecreasing Partial Sums

Suppose that gq
n = 1 an is an infinite series with an Ú 0 for all n. Then each partial sum is 

greater than or equal to its predecessor because sn + 1 = sn + an, so

s1 … s2 … s3 … g … sn … sn + 1 … g.

Since the partial sums form a nondecreasing sequence, the Monotonic Sequence Theorem 
(Theorem 6, Section 10.1) gives the following result.

Corollary of Theorem 6
A series gq

n = 1 an of nonnegative terms converges if and only if its partial sums are 
bounded from above.

EXAMPLE 1  As an application of the above corollary, consider the harmonic series

aq
n = 1

 1n = 1 + 1
2 + 1

3 + g + 1
n + g.

Although the nth term 1 >n does go to zero, the series diverges because there is no upper 
bound for its partial sums. To see why, group the terms of the series in the following way:

1 + 1
2 + a13 + 1

4b + a1
5

+ 1
6

+ 1
7 + 1

8b + a19 + 1
10 + g + 1

16
b + g .

 (+)+* (+++)+++* (++++)++++*
 7  24 = 1

2 7  48 = 1
2 7  8

16 = 1
2

The sum of the first two terms is 1.5. The sum of the next two terms is 1>3 + 1>4, which 
is greater than 1>4 + 1>4 = 1>2. The sum of the next four terms is 1>5 + 1>6 +  
1>7 + 1>8, which is greater than 1>8 + 1>8 + 1>8 + 1>8 = 1>2. The sum of the next 
eight terms is 1>9 + 1>10 + 1>11 + 1>12 + 1>13 + 1>14 + 1>15 + 1>16, which is 
greater than 8>16 = 1>2. The sum of the next 16 terms is greater than 16>32 = 1>2, and 
so on. In general, the sum of 2n terms ending with 1>2n + 1 is greater than 2n>2n + 1 = 1>2. 
If n = 2k, the partial sum sn is greater than k >2, so the sequence of partial sums is not 
bounded from above. The harmonic series diverges. 

The Integral Test

We now introduce the Integral Test with a series that is related to the harmonic series, but 
whose nth term is 1>n2 instead of 1 >n.

EXAMPLE 2  Does the following series converge?

aq
n = 1

 1
n2 = 1 + 1

4 + 1
9 + 1

16
+ g + 1

n2 + g
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Solution We determine the convergence of gq
n = 1(1>n2)  by comparing it with 

1q
1 (1>x2) dx. To carry out the comparison, we think of the terms of the series as values of 

the function ƒ(x) = 1>x2 and interpret these values as the areas of rectangles under the 
curve y = 1>x2.

As Figure 10.11 shows,

 sn = 1
12 + 1

22 + 1
32 + g + 1

n2

 = ƒ(1) + ƒ(2) + ƒ(3) + g + ƒ(n)

 6 ƒ(1) + L
n

1
 1
x2 dx   Rectangle areas sum to less 

than area under graph.
 

 6 1 + L
q

1
 1
x2 dx   1n

1 (1>x2) dx 6 1q
1 (1>x2) dx

 6 1 + 1 = 2.   As in Section 8.8, Example 3, 

1q
1 (1>x2) dx = 1.

Thus the partial sums of gq
n = 1 (1>n2)  are bounded from above (by 2) and the series 

 converges. 

0 1

Graph of f (x) =

(1, f (1)) 

(2, f (2))

(3, f (3))
(n, f (n))

2 3 4 … n − 1 n …

1
x2

1
n2

1
22

1
12

1
32

1
42

x

y

FIGURE 10.11 The sum of the areas 
of the rectangles under the graph of 
ƒ(x) = 1>x2 is less than the area under the 
graph (Example 2).

Caution
The series and integral need not have the 
same value in the convergent case. You 
will see in Example 6 that

g∞
n = 1 (1>n2) ≠ 1∞

1 (1>x2) dx = 1.

THEOREM 9—The Integral Test
Let 5an6  be a sequence of positive terms. Suppose that an = ƒ(n), where ƒ is a 
continuous, positive, decreasing function of x for all x Ú N  (N a positive inte-
ger). Then the series gq

n = N  an and the integral 1q
N  ƒ(x) dx both converge or both 

diverge.

Proof  We establish the test for the case N = 1. The proof for general N is similar.
We start with the assumption that ƒ is a decreasing function with ƒ(n) = an for ev-

ery n. This leads us to observe that the rectangles in Figure 10.12a, which have areas 
a1, a2, . . . , an, collectively enclose more area than that under the curve y = ƒ(x) from 
x = 1 to x = n + 1. That is,

 L
n + 1

1
 ƒ(x) dx … a1 + a2 + g + an.

In Figure 10.12b the rectangles have been faced to the left instead of to the right. If we 
momentarily disregard the first rectangle of area a1, we see that

a2 + a3 + g + an … L
n

1
 ƒ(x) dx.

If we include a1, we have

a1 + a2 + g + an … a1 + L
n

1
 ƒ(x) dx.

Combining these results gives

 L
n + 1

1
 ƒ(x) dx … a1 + a2 + g + an … a1 + L

n

1
 ƒ(x) dx.

These inequalities hold for each n, and continue to hold as n S q.
If 1q

1  ƒ(x) dx is finite, the right-hand inequality shows that gan is finite. If 1q
1  ƒ(x) dx 

is infinite, the left-hand inequality shows that gan is infinite. Hence the series and the 
 integral are either both finite or both infinite. 

0 1 2 n3 n + 1

a1
a2

an

(a)

0 1 2 n3 n − 1

a1

a3
an

(b)

a2

x

y

x

y

y = f (x)

y = f (x)

FIGURE 10.12 Subject to the conditions 
of the Integral Test, the series gq

n = 1 an and 
the integral 1q

1  ƒ(x) dx both converge or 
both diverge.
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588 Chapter 10 Infinite Sequences and Series

EXAMPLE 3  Show that the p-series

aq
n = 1

 1n 

p = 1
1p + 1

2p + 1
3p + g + 1

n 

p + g

( p a real constant) converges if p 7 1, and diverges if p … 1.

Solution If p 7 1, then ƒ(x) = 1>xp is a positive decreasing function of x. Since

  L
q

1
 1xp  dx = L

q

1
 x-p dx = lim

bSq
 c x-p + 1

-p + 1 d 1
b

  Evaluate the improper integral

 = 1
1 - p  lim

bSq
 a 1

b 

p - 1 - 1b   

 = 1
1 - p (0 - 1) = 1

p - 1,   bp - 1 S q as b S q 
because p - 1 7 0.

the series converges by the Integral Test. We emphasize that the sum of the p-series is not 
1>(p - 1). The series converges, but we don’t know the value it converges to.

If p … 0, the series diverges by the nth-term test. If 0 6 p 6 1, then 1 - p 7 0 and

 L
q

1
 1xp  dx = 1

1 - p  lim
bSq

(b1 - p - 1) = q.

Therefore, the series diverges by the Integral Test.
If p = 1, we have the (divergent) harmonic series

1 + 1
2 + 1

3 + g + 1
n + g.

In summary, we have convergence for p 7 1 but divergence for all other values of p. 

The p-series aH
n = 1

 
1

n p

converges if p 7 1, diverges if p … 1.

EXAMPLE 4  The series gq
n = 1 (1>(n2 + 1)) is not a p-series, but it converges by the 

Integral Test. The function ƒ(x) = 1>(x2 + 1) is positive, continuous, and decreasing for 
x Ú 1, and

  L
q

1
 1
x2 + 1

 dx = lim
bSq

 3arctan x41
b

 = lim
bSq
3arctan b - arctan 14

 = p
2 - p

4 = p
4 .

The Integral Test tells us that the series converges, but it does not say that p>4 or any 
other number is the sum of the series. 

EXAMPLE 5  Determine the convergence or divergence of the series.

(a) aq
n = 1

 ne- n2
   (b) aq

n = 1
 1
2 ln n

The p-series with p = 1 is the harmonic series (Example 1). The p-Series Test 
shows that the harmonic series is just barely divergent; if we increase p to 1.000000001, 
for instance, the series converges!

The slowness with which the partial sums of the harmonic series approach infinity is 
impressive. For instance, it takes more than 178 million terms of the harmonic series to 
move the partial sums beyond 20. (See also Exercise 49b.)
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Error Estimation

For some convergent series, such as the geometric series or the telescoping series in 
Example 5 of Section 10.2, we can actually find the total sum of the series. That is, we 
can find the limiting value S  of the sequence of partial sums. For most convergent series, 
however, we cannot easily find the total sum. Nevertheless, we can estimate the sum by 
adding the first n terms to get sn, but we need to know how far off sn is from the total 
sum S. An approximation to a function or to a number is more useful when it is accom-
panied by a bound on the size of the worst possible error that could occur. With such an 
error bound we can try to make an estimate or approximation that is close enough for 
the problem at hand. Without a bound on the error size, we are just guessing and hoping 
that we are close to the actual answer. We now show a way to bound the error size using 
integrals.

Suppose that a series Σan with positive terms is shown to be convergent by the 
 Integral Test, and we want to estimate the size of the remainder Rn measuring the difference 
between the total sum S of the series and its nth partial sum sn. That is, we wish to estimate

Rn = S - sn = an + 1 +  an + 2 +  an + 3 + g.

To get a lower bound for the remainder, we compare the sum of the areas of the 
rectangles with the area under the curve y = ƒ(x) for x Ú n (see Figure 10.13a). We 
see that

Rn =  an + 1 +  an + 2 +  an + 3 + g Ú L
q

n + 1
ƒ(x) dx.

Similarly, from Figure 10.13b, we find an upper bound with

Rn = an + 1 +  an + 2 +  an + 3 + g … L
q

n
ƒ(x) dx.

These comparisons prove the following result, giving bounds on the size of the 
remainder.

Solutions
(a) We apply the Integral Test and find that

  L
q

1

x
ex2   dx = 1

2  L
q

1

du
eu   u = x2, du = 2x dx 

 = lim
bSq

 c-  12 e-u d
b

1

 = lim
bSq
a-  1

2eb + 1
2eb = 1

2e .

 Since the integral converges, the series also converges.

(b) Again applying the Integral Test,

  L
q

1

dx
2 ln x = L

q

0

eu du
2u   u = ln x, x = eu, dx = eu du

 = L
q

0
ae

2b
u

du

 = lim
bSq

1
 ln 1e

22 a a
e
2b

b

- 1b = q.  (e>2) 7 1

The improper integral diverges, so the series diverges also. 

an+2

0

(a)

x

y

n n+1 n+2 n+3 n+4

an+1

Remainder terms

an+3 an+4

···
···

···
···

(b)

0
x

y

n n+1 n+2 n+3 n+4

Remainder terms

an+2

an+1

an+3 an+4

FIGURE 10.13 The remainder when 
using n terms is (a) larger than the integral 
of ƒ over 3n + 1, q). (b) smaller than the 
integral of ƒ over 3n, q).
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590 Chapter 10 Infinite Sequences and Series

If we add the partial sum sn to each side of the inequalities in (1), we get

 sn + L
q

n + 1
ƒ(x) dx … S … sn + L

q

n
ƒ(x) dx (2)

since sn + Rn = S. The inequalities in (2) are useful for estimating the error in approxi-
mating the sum of a series known to converge by the Integral Test. The error can be no 
larger than the length of the interval containing S, with endpoints given by (2).

EXAMPLE 6  Estimate the sum of the series Σ(1>n2) using the inequalities in (2) and 
n = 10.

Solution We have that

 L
q

n
 1
x2 dx = lim

bSq
 c-1

x d
n

b

= lim
bSq

 a-1
b

+ 1
nb = 1

n .

Using this result with the inequalities in (2), we get

s10 + 1
11 … S … s10 + 1

10.

Taking s10 = 1 + (1>4) + (1>9) + (1>16) + g + (1>100) ≈ 1.54977, these last 
inequalities give

1.64068 … S … 1.64977.

If we approximate the sum S by the midpoint of this interval, we find that

aq
n = 1

 1
n2 ≈ 1.6452.

The error in this approximation is then less than half the length of the interval, so the error 
is less than 0.005. Using a trigonometric Fourier series (studied in advanced calculus), it 
can be shown that S is equal to p2>6 ≈ 1.64493. 

Bounds for the Remainder in the Integral Test
Suppose 5ak6  is a sequence of positive terms with ak = ƒ(k), where ƒ is a con-
tinuous positive decreasing function of x for all x Ú n, and that Σan converges 
to S. Then the remainder Rn = S - sn satisfies the inequalities

  L
q

n + 1
ƒ(x) dx … Rn … L

q

n
ƒ(x) dx. (1)

The p-series for p = 2

aq
n = 1

 
1
n2 = p2

6
≈ 1.64493

Applying the Integral Test
Use the Integral Test to determine if the series in Exercises 1–12 con-
verge or diverge. Be sure to check that the conditions of the Integral 
Test are satisfied.

 1. aq
n = 1

 
1
n2 2. aq

n = 1
 

1
n0.2 3. aq

n = 1
 

1
n2 + 4

 4. aq
n = 1

 
1

n + 4
 5. aq

n = 1
 e-2n 6. aq

n = 2
 

1
n(ln n)2

 7. aq
n = 1

 
n

n2 + 4
 8. aq

n = 2
 
ln (n2)

n

 9. aq
n = 1

 
n2

en>3 10. aq
n = 2

 
n - 4

n2 - 2n + 1

 11. aq
n = 1

 
72n + 4

 12. aq
n = 2

 
1

5n + 102n

EXERCISES 10.3
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partial sums just grow too slowly. To see what we mean, 
suppose you had started with s1 = 1 the day the universe was 
formed, 13 billion years ago, and added a new term every 
second. About how large would the partial sum sn be today, 
assuming a 365-day year?

 50. Are there any values of x for which gq
n = 1 (1>nx) converges? Give 

reasons for your answer.

 51. Is it true that if gq
n = 1 an is a divergent series of positive numbers, 

then there is also a divergent series gq
n = 1 bn of positive numbers 

with bn 6 an for every n? Is there a “smallest” divergent series of 
positive numbers? Give reasons for your answers.

 52. (Continuation of Exercise 51.) Is there a “largest” convergent 
 series of positive numbers? Explain.

 53. gHn = 1 11 ,2n + 12 diverges

a. Use the accompanying graph to show that the partial sum 

s50 = g50
n = 1 11>2n + 12 satisfies

 L
51

1
 

12x + 1
 dx 6 s50 6 L

50

0
 

12x + 1
 dx.

Conclude that 11.5 6 s50 6 12.3.

0

1

1 2 3 4 5 ···

···

48 49 50 51
x

y

"x + 1

1
f (x) = 

b. What should n be in order that the partial sum

sn = gn
i= 1 11>2i + 12 satisfy sn 7 1000?

 54. gHn = 1 (1>n4) converges

a. Use the accompanying graph to find an upper bound for the 

 error if s30 = g30
n = 1 (1>n4) is used to estimate the value of gq

n = 1 (1>n4).

29

2×10−6

30 31 32 33
x

y

x4
1f (x) = 

···

b. Find n so that the partial sum sn = gn
i= 1 (1>i4)  estimates the 

value of gq
n = 1 (1>n4)  with an error of at most 0.000001.

 55. Estimate the value of gq
n = 1 (1>n3)  to within 0.01 of its exact 

 value.

 56. Estimate the value of gq
n = 2 (1> (n2 + 4) )  to within 0.1 of its 

 exact value.

 57. How many terms of the convergent series gq
n = 1 (1>n1.1)  should 

be used to estimate its value with error at most 0.00001?

Determining Convergence or Divergence
Which of the series in Exercises 13–46 converge, and which diverge? 
Give reasons for your answers. (When you check an answer, remem-
ber that there may be more than one way to determine the series’ con-
vergence or divergence.)

 13. aq
n = 1

 
1

10n 14. aq
n = 1

 e-n 15. aq
n = 1

 
n

n + 1

 16. aq
n = 1

 
5

n + 1
 17. aq

n = 1
 

32n
 18. aq

n = 1
 

-2

n2n

 19. aq
n = 1

 -  

1
8n 20. aq

n = 1
 
-8
n  21. aq

n = 2
 
ln n

n

 22. aq
n = 2

 
ln n2n

 23. aq
n = 1

 
2n

3n 24. aq
n = 1

 
5n

4n + 3

 25. aq
n = 0

 
-2

n + 1
 26. aq

n = 1
 

1
2n - 1

 27. aq
n = 1

 
2n

n + 1

 28. aq
n = 1

 a1 + 1
nb

n

 29. aq
n = 2

 
2n
ln n

 30. aq
n = 1

 
12n12n + 12

 31. aq
n = 1

 
1

(ln 2)n 32. aq
n = 1

 
1

(ln 3)n

 33. aq
n = 3

 
(1>n)

(ln n)2ln2 n - 1
 34. aq

n = 1
 

1
n(1 + ln2 n)

 35. aq
n = 1

 n sin 
1
n 36. aq

n = 1
 n tan 

1
n

 37. aq
n = 1

 
en

1 + e2n 38. aq
n = 1

 
2

1 + en

 39. aq
n = 1

 
en

10 + en 40. aq
n = 1

 
en

(10 + en)2

 41. aq
n = 2

2n + 2 - 2n + 12n + 12n + 2
 42. aq

n = 3

72n + 1 ln 2n + 1

 43. aq
n = 1

 
8 tan-1 n
1 + n2  44. aq

n = 1
 

n
n2 + 1

 45. aq
n = 1

 sech n 46. aq
n = 1

 sech2 n

Theory and Examples
For what values of a, if any, do the series in Exercises 47 and 48 con-
verge?

 47. aq
n = 1

 a a
n + 2

- 1
n + 4

b  48. aq
n = 3

 a 1
n - 1

- 2a
n + 1

b

 49. a.  Draw illustrations like those in Figures 10.12a and 10.12b to 
show that the partial sums of the harmonic series satisfy the 
inequalities

 ln (n + 1) = L
n + 1

1
 
1
x dx … 1 + 1

2
+ g+ 1

n

 … 1 + L
n

1
 
1
x dx = 1 + ln n.

b. There is absolutely no empirical evidence for the divergence 
of the harmonic series even though we know it diverges. The 

T
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592 Chapter 10 Infinite Sequences and Series

a. By taking ƒ(x) = 1>x in the proof of Theorem 9, show that

ln (n + 1) … 1 + 1
2

+ g + 1
n … 1 + ln n

or

0 6 ln (n + 1) - ln n … 1 + 1
2

+ g+ 1
n - ln n … 1.

Thus, the sequence

an = 1 + 1
2

+ g + 1
n - ln n

is bounded from below and from above.

b. Show that

1
n + 1

6 L
n + 1

n
 
1
x  dx = ln (n + 1) - ln n,

and use this result to show that the sequence 5an6  in part (a) 
is decreasing.
Since a decreasing sequence that is bounded from below 
converges, the numbers an defined in part (a) converge:

1 + 1
2

+ g + 1
n - ln n S g.

The number g, whose value is 0.5772 . . . , is called Euler’s 
constant.

 64. Use the Integral Test to show that the series

aq
n = 0

e-n2

  converges.

 65. a.  For the series g (1>n3) , use the inequalities in Equation (2) 
with n = 10 to find an interval containing the sum S.

b. As in Example 5, use the midpoint of the interval found in 
part (a) to approximate the sum of the series. What is the 
maximum error for your approximation?

 66. Repeat Exercise 65 using the series g (1>n4).

 67. Area Consider the sequence 51>n6q
n = 1. On each subinterval 

(1>(n + 1), 1>n) within the interval 30, 14 , erect the rectangle 
with area an having height 1 >n and width equal to the length of the 
subinterval. Find the total area aan of all the rectangles. (Hint: 
Use the result of Example 5 in Section 10.2.)

 68. Area Repeat Exercise 67, using trapezoids instead of rectangles. 
That is, on the subinterval (1>(n + 1), 1>n), let an denote the area 
of the trapezoid having heights y = 1>(n + 1) at x = 1>(n + 1) 
and y = 1>n at x = 1>n.

 58. How many terms of the convergent series gq
n = 4 1> (n (ln n)3)  

should be used to estimate its value with error at most 0.01?

 59. The Cauchy condensation test The Cauchy condensation test 
says: Let 5an6  be a nonincreasing sequence (an Ú an + 1 for all n) 
of positive terms that converges to 0. Then gan converges if and 
only if g2na2n converges. For example, g(1>n) diverges because g2n # (1>2n) = g1 diverges. Show why the test works.

 60. Use the Cauchy condensation test from Exercise 59 to show that

a. aq
n = 2

 
1

n ln n
 diverges;

b. aq
n = 1

 
1
np converges if p 7 1 and diverges if p … 1.

 61. Logarithmic p-series

a. Show that the improper integral

 L
q

2
 

dx
x (ln x)p ( p a positive constant)

converges if and only if p 7 1.

b. What implications does the fact in part (a) have for the con-
vergence of the series

aq
n = 2

 
1

n (ln n)p ?

Give reasons for your answer.

 62. (Continuation of Exercise 61.) Use the result in Exercise 61 to de-
termine which of the following series converge and which diverge. 
Support your answer in each case.

a. aq
n = 2

 
1

n (ln n)
 b. aq

n = 2
 

1
n (ln n)1.01

c. aq
n = 2

 
1

n ln (n3)
 d. aq

n = 2
 

1
n (ln n)3

 63. Euler’s constant Graphs like those in Figure 10.12 suggest that 
as n increases there is little change in the difference between the 
sum

1 + 1
2

+ g+ 1
n

  and the integral

ln n = L
n

1
 
1
x  dx.

  To explore this idea, carry out the following steps.

10.4 Comparison Tests

We have seen how to determine the convergence of geometric series, p-series, and a few 
others. We can test the convergence of many more series by comparing their terms to those 
of a series whose convergence is already known.
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Proof  The series gan and gbn have nonnegative terms. The Corollary of Theorem 6 
stated in Section 10.3 tells us that the series gan and gbn converge if and only if their 
partial sums are bounded from above.

In Part (1) we assume that gbn converges to some number M. The partial sums gN
n = 1 an are all bounded from above by M = gbn, since

sN = a1 + a2 +  g+  aN … b1 + b2 + g+ bN … aq
n = 1

bn = M.

Since the partial sums of gan are bounded from above, the Corollary of Theorem 6  implies 
that gan converges. We conclude that when gbn converges, then so does gan.  Figure 10.12 
illustrates this result, with each term of each series interpreted as the area of a  rectangle.

In Part (2), where we assume that gan diverges, the partial sums of gq
n = 1 bn are not 

bounded from above. If they were, the partial sums for gan would also be bounded from 
above, since

a1 + a2 + g+ aN … b1 + b2 + g+ bN,

and this would mean that gan converges. We conclude that if gan diverges, then so does gbn.  

EXAMPLE 1  We apply Theorem 10 to several series.

(a) The series

aq
n = 1

 5
5n - 1

 diverges because its nth term

5
5n - 1

= 1

n - 1
5

7 1
n

 is greater than the nth term of the divergent harmonic series.

(b) The series

aq
n = 0

 1
n!

= 1 + 1
1!

+ 1
2!

+ 1
3!

+ g

 converges because its terms are all positive and less than or equal to the corresponding 
terms of

1 + aq
n = 0

 12n = 1 + 1 + 1
2 + 1

22 + g.

 The geometric series on the left converges and we have

1 + aq
n = 0

 12n = 1 + 1
1 - (1>2)

= 3.

 The fact that 3 is an upper bound for the partial sums of gq
n = 0  (1>n!) does not 

mean that the series converges to 3. As we will see in Section 10.9, the series con-
verges to e.

THEOREM 10—Direct Comparison Test
Let gan and gbn be two series with 0 … an … bn for all n. Then

1. If gbn converges, then gan also converges.

2. If gan diverges, then gbn also diverges.

n
1 2 3 4 5 n−1 n

b1

b2

b3

b4 b5
bn

a1 a2
a3

a4
a5 an

···

y

bn−1

FIGURE 10.14 If the total area gbn 
of the taller bn rectangles is finite, then 
so is the total area gan of the shorter an 
rectangles.

HISTORICAL BIOGRAPHY

Albert of Saxony
(ca. 1316–1390)
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594 Chapter 10 Infinite Sequences and Series

(c) The series

5 + 2
3 + 1

7 + 1 + 1
2 + 21

+ 1
4 + 22

+ 1
8 + 23

 +  g+  1
2n + 2n

+ g

 converges. To see this, we ignore the first three terms and compare the remaining terms 
with those of the convergent geometric series gq

n = 0 (1>2n). The term 1>12n + 2n2 
of the truncated sequence is less than the corresponding term 1>2n of the geometric 
series. We see that term by term we have the comparison

1 + 1
2 + 21

+ 1
4 + 22

+ 1
8 + 23

 +  g…  1 + 1
2 + 1

4 + 1
8 + g.

 So the truncated series and the original series converge by an application of the Direct 
Comparison Test. 

The Limit Comparison Test

We now introduce a comparison test that is particularly useful for series in which an is a 
rational function of n.

THEOREM 11—Limit Comparison Test
Suppose that an 7 0 and bn 7 0 for all n Ú N  (N an integer).

1. If lim
nSq

  
an

bn
= c and c 7 0, then gan and gbn both converge or both diverge.

2. If lim
nSq

  
an

bn
= 0 and gbn converges, then gan converges.

3. If lim
nSq

  
an

bn
= q and gbn diverges, then gan diverges.

Proof  We will prove Part 1. Parts 2 and 3 are left as Exercises 57a and b.
Since c>2 7 0, there exists an integer N such that

` an

bn
- c ` 6 c

2  whenever  n 7 N .  
Limit definition with 
e = c>2, L = c, and 
an replaced by an>bn

 

Thus, for n 7 N,

 -  c2 6
an

bn
- c 6 c

2,

 c2 6
an

bn
6 3c

2 ,

 ac
2bbn 6 an 6 a3c

2 bbn .

If gbn converges, then g (3c>2)bn converges and gan converges by the Direct  
Comparison Test. If gbn diverges, then g (c>2)bn diverges and gan diverges by the Direct 
Comparison Test. 

EXAMPLE 2  Which of the following series converge, and which diverge?

(a) 3
4 + 5

9 + 7
16

+ 9
25

+ g = aq
n = 1

 2n + 1
(n + 1)2 = aq

n = 1
 2n + 1
n2 + 2n + 1
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(b) 1
1 + 1

3 + 1
7 + 1

15
+ g = aq

n = 1
 1
2n - 1

(c) 1 + 2 ln 2
9 + 1 + 3 ln 3

14 + 1 + 4 ln 4
21 + g= aq

n = 2
 1 + n ln n

n2 + 5

Solution We apply the Limit Comparison Test to each series.

(a) Let an = (2n + 1)>(n2 + 2n + 1). For large n, we expect an to behave like 
2n>n2 = 2>n since the leading terms dominate for large n, so we let bn = 1>n. Since

aq
n = 1

bn = aq
n = 1

 1n  diverges

 and

lim
nSq

  
an

bn
= lim

nSq
  2n2 + n
n2 + 2n + 1

= 2,

 gan diverges by Part 1 of the Limit Comparison Test. We could just as well have taken 
bn = 2>n, but 1 >n is simpler.

(b) Let an = 1>(2n - 1). For large n, we expect an to behave like 1>2n, so we let 
bn = 1>2n. Since

aq
n = 1

bn = aq
n = 1

 12n  converges

 and

 lim
nSq

  
an

bn
= lim

nSq
  2n

2n - 1 = lim
nSq

  1
1 - (1>2n)

= 1,

  gan converges by Part 1 of the Limit Comparison Test.

(c) Let an = (1 + n ln n)>(n2 + 5). For large n, we expect an to behave like (n ln n)>n2 =  
(ln n)>n, which is greater than 1 >n for n Ú 3, so we let bn = 1>n. Since

aq
n = 2

bn = aq
n = 2

 1n  diverges

 and

 lim
nSq

  
an

bn
= lim

nSq
  n + n2 ln n

n2 + 5
= q,

 gan diverges by Part 3 of the Limit Comparison Test. 

EXAMPLE 3  Does aq
n = 1

 ln n
n3>2  converge?

Solution Because ln n grows more slowly than nc for any positive constant c (Section 10.1, 
Exercise 115), we can compare the series to a convergent p-series. To get the p-series, we 
see that

ln n
n3>2 6 n1>4

n3>2 = 1
n5>4
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for n sufficiently large. Then taking an = (ln n)>n3>2 and bn = 1>n5>4, we have

 lim
nSq

  
an

bn
= lim

nSq
  ln n
n1>4

 = lim
nSq

  
1>n

(1>4) n-3>4  l’Hôpital’s Rule

 = lim
nSq

  4
n1>4 = 0.

Since gbn = g (1>n5>4)  is a p-series with p 7 1, it converges. Therefore gan con-
verges by Part 2 of the Limit Comparison Test. 

Direct Comparison Test
In Exercises 1–8, use the Direct Comparison Test to determine if each 
series converges or diverges.

 1. aq
n = 1

 
1

n2 + 30
 2. aq

n = 1
 
n - 1
n4 + 2

 3. aq
n = 2

 
12n - 1

 4. aq
n = 2

 
n + 2
n2 - n

 5. aq
n = 1

 
cos2 n
n3>2  6. aq

n = 1
 

1
n3n

 7. aq
n = 1

 A n + 4
n4 + 4

 8. aq
n = 1

 
2n + 12n2 + 3

Limit Comparison Test
In Exercises 9–16, use the Limit Comparison Test to determine if each 
series converges or diverges.

 9. aq
n = 1

 
n - 2

n3 - n2 + 3

  ( Hint: Limit Comparison with gq
n = 1 (1>n2) )

 10. aq
n = 1

 A n + 1
n2 + 2

  1Hint: Limit Comparison with gq
n = 1 11>2n 22

 11. aq
n = 2

 
n(n + 1)

(n2 + 1)(n - 1)
 12. aq

n = 1
 

2n

3 + 4n

 13. aq
n = 1

 
5n2n 4n

 14. aq
n = 1

 a2n + 3
5n + 4

b
n

 15. aq
n = 2

 
1

ln n

  (Hint: Limit Comparison with gq
n = 2 (1>n))

 16. aq
n = 1

 lna1 + 1
n2b

  ( Hint: Limit Comparison with gq
n = 1 (1>n2) )

Determining Convergence or Divergence
Which of the series in Exercises 17–56 converge, and which diverge? 
Use any method, and give reasons for your answers.

 17. aq
n = 1

 
1

22n + 23 n
 18. aq

n = 1
 

3

n + 2n
 19. aq

n = 1
 
sin2 n

2n

 20. aq
n = 1

 
1 + cos n

n2  21. aq
n = 1

 
2n

3n - 1
 22. aq

n = 1
 
n + 1

n22n

 23. aq
n = 1

 
10n + 1

n(n + 1)(n + 2)
 24. aq

n = 3
 

5n3 - 3n
n2(n - 2)(n2 + 5)

 25. aq
n = 1

 a n
3n + 1

b
n

 26. aq
n = 1

 
12n3 + 2

 27. aq
n = 3

 
1

ln (ln n)

 28. aq
n = 1

 
(ln n)2

n3  29. aq
n = 2

 
12n ln n

 30. aq
n = 1

 
(ln n)2

n3>2

 31. aq
n = 1

 
1

1 + ln n
 32. aq

n = 2
 
ln (n + 1)

n + 1
 33. aq

n = 2
 

1

n2n2 - 1

 34. aq
n = 1

 
2n

n2 + 1
 35. aq

n = 1
 
1 - n

n2n  36. aq
n = 1

 
n + 2n

n22n

 37. aq
n = 1

 
1

3n - 1 + 1
 38. aq

n = 1
 
3n - 1 + 1

3n  39. aq
n = 1

 
n + 1

n2 + 3n
# 1
5n

 40. aq
n = 1

 
2n + 3n

3n + 4n 41. aq
n = 1

 
2n - n

n2n  42. aq
n = 1

 
ln n2n en

 43. aq
n = 2

 
1
n!

  (Hint: First show that (1>n!) … (1>n(n - 1)) for n Ú 2.)

 44. aq
n = 1

 
(n - 1)!
(n + 2)!

 45. aq
n = 1

 sin 
1
n 46. aq

n = 1
 tan 

1
n

 47. aq
n = 1

 
tan-1 n

n1.1  48. aq
n = 1

 
sec-1 n

n1.3  49. aq
n = 1

 
coth n

n2

 50. aq
n = 1

 
tanh n

n2  51. aq
n = 1

 
1

n2n n
 52. aq

n = 1
 
2n n
n2

 53. aq
n = 1

 
1

1 + 2 + 3 + g+ n
 54. aq

n = 1
 

1
1 + 22 + 32 + g+ n2

 55. aq
n = 2

 
n

(ln n)2 56. aq
n = 2

 
(ln n)2

n

EXERCISES 10.4
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COMPUTER EXPLORATIONS
 73. It is not yet known whether the series

aq
n = 1

 
1

n3 sin2 n

  converges or diverges. Use a CAS to explore the behavior of the 
series by performing the following steps.

a. Define the sequence of partial sums

sk = ak

n = 1
 

1
n3 sin2 n

.

What happens when you try to find the limit of sk as k S q? 
Does your CAS find a closed form answer for this limit?

b. Plot the first 100 points (k, sk) for the sequence of partial 
sums. Do they appear to converge? What would you estimate 
the limit to be?

c. Next plot the first 200 points (k, sk). Discuss the behavior in 
your own words.

d. Plot the first 400 points (k, sk). What happens when k = 355? 
Calculate the number 355>113. Explain from you calculation 
what happened at k = 355. For what values of k would you 
guess this behavior might occur again?

 74. a. Use Theorem 8 to show that

S = aq
n = 1

 
1

n(n + 1)
+ aq

n = 1
a 1

n2 - 1
n(n + 1)

b

where S = aq
n = 1(1>n2) , the sum of a convergent p-series.

b. From Example 5, Section 10.2, show that

S = 1 + aq
n = 1

 
1

n2(n + 1)
.

c. Explain why taking the first M terms in the series in part (b) 
gives a better approximation to S than taking the first M terms 
in the original series aq

n = 1(1>n2).

d. We know the exact value of S is p2>6. Which of the sums

a1000000

n = 1

1
n2 or 1 + a1000

n = 1
 

1
n2(n + 1)

gives a better approximation to S?

Theory and Examples
 57. Prove (a) Part 2 and (b) Part 3 of the Limit Comparison Test.

 58. If gq
n = 1an is a convergent series of nonnegative numbers, can 

 anything be said about gq
n = 1(an>n)? Explain.

 59. Suppose that an 7 0 and bn 7 0 for n Ú N  (N an integer). If 
limnSq (an>bn) = q and gan converges, can anything be said 
about gbn? Give reasons for your answer.

 60. Prove that if gan is a convergent series of nonnegative terms, then gan
2 converges.

 61. Suppose that an 7 0 and lim
nSq

 an = q. Prove that gan diverges.

 62. Suppose that an 7 0 and lim
nSq

 n2an = 0. Prove that gan 
 converges.

 63. Show that gq
n = 2 ((ln n)q>np)  converges for -q 6 q 6 q and 

p 7 1.

  (Hint: Limit Comparison with gq
n = 2 1>nr  for 1 6 r 6 p.)

 64. (Continuation of Exercise 63.) Show that gq
n = 2 ((ln n)q>n 

p) 
 diverges for -q 6 q 6 q and 0 6 p 6 1.

  (Hint: Limit Comparison with an appropriate p-series.)

 65. Decimal numbers Any real number in the interval 30, 14 can be 
represented by a decimal (not necessarily unique) as

0.d1d2d3d4 . . . =
d1

10
+

d2

102 +
d3

103 +
d4

104 + g,

  where di is one of the integers 0, 1, 2, 3, . . . , 9. Prove that the 
series on the right-hand side always converges.

 66. If gan is a convergent series of positive terms, prove that  g sin (an) converges.

In Exercises 67–72, use the results of Exercises 63 and 64 to deter-
mine if each series converges or diverges.

 67. aq
n = 2

 
(ln n)3

n4  68. aq
n = 2

 A ln n
n

 69. aq
n = 2

 
(ln n)1000

n1.001  70. aq
n = 2

 
(ln n)1>5

n0.99

 71. aq
n = 2

 
1

n1.1(ln n)3 72. aq
n = 2

 
12n # ln n

10.5 Absolute Convergence; The Ratio and Root Tests

When some of the terms of a series are positive and others are negative, the series may or 
may not converge. For example, the geometric series

 5 - 5
4 + 5

16
- 5

64
 + g= aq

n = 0
5a-1

4 b
n

 (1)

converges (since 0 r 0 = 1
4 6 1), whereas the different geometric series

 1 - 5
4 + 25

16
- 125

64
+ g = aq

n = 0
a-5

4 b
n

 (2)
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