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 30. Circumferences of circles As usual, when faced with a new 
formula, it is a good idea to try it on familiar objects to be sure it 
gives results consistent with past experience. Use the length for-
mula in Equation (3) to calculate the circumferences of the follow-
ing circles (a 7 0).

a. r = a  b. r = a cos u  c. r = a sin u

Theory and Examples
 31. Average value If ƒ is continuous, the average value of the polar 

coordinate r over the curve r = ƒ(u), a … u … b, with respect to 
u is given by the formula

rav = 1
b - a

 L
b

a

ƒ(u) du.

Use this formula to find the average value of r with respect to u 
over the following curves (a 7 0).

a. The cardioid r = a(1 - cos u)

b. The circle r = a

c. The circle r = a cos u, -p>2 … u … p>2
 32. r = ƒ(U)  vs.  r = 2ƒ (U)  Can anything be said about the rela-

tive lengths of the curves r = ƒ(u), a … u … b, and r = 2ƒ(u), 
a … u … b? Give reasons for your answer.

11.6 Conic Sections

In this section we define and review parabolas, ellipses, and hyperbolas geometrically and 
derive their standard Cartesian equations. These curves are called conic sections or conics 
because they are formed by cutting a double cone with a plane (Figure 11.39). This 

HISTORICAL BIOGRAPHY

Gregory St. Vincent
(1584–1667)
www.goo.gl/WZD6Hz

Circle: plane perpendicular
to cone axis

Ellipse: plane oblique
to cone axis

Point: plane through
cone vertex only

Single line: plane
tangent to cone

Pair of intersecting lines

Parabola: plane parallel
to side of cone

Hyperbola: plane
parallel to cone axis

(a)

(b)

FIGURE 11.39 The standard conic sections (a) are the curves in which a plane cuts a double cone. Hyperbolas come in two parts, 
called branches. The point and lines obtained by passing the plane through the cone’s vertex (b) are degenerate conic sections.
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 11.6  Conic Sections 681

If the focus F lies on the directrix L, the parabola is the line through F perpendicular to 
L. We consider this to be a degenerate case and assume henceforth that F does not lie on L.

A parabola has its simplest equation when its focus and directrix straddle one of the 
coordinate axes. For example, suppose that the focus lies at the point F(0, p) on the posi-
tive y-axis and that the directrix is the line y = -p (Figure 11.40). In the notation of the 
figure, a point P(x, y) lies on the parabola if and only if PF = PQ. From the distance 
 formula,

PF = 2(x - 0)2 + ( y - p)2 = 2x2 + (y - p)2

PQ = 2(x - x)2 + ( y - (-p))2 = 2( y + p)2.

When we equate these expressions, square, and simplify, we get

 y = x2

4p  or  x2 = 4py.  Standard form  (1)

These equations reveal the parabola’s symmetry about the y-axis. We call the y-axis the 
axis of the parabola (short for “axis of symmetry”).

The point where a parabola crosses its axis is the vertex. The vertex of the parabola 
x2 = 4py lies at the origin (Figure 11.40). The positive number p is the parabola’s focal 
length.

If the parabola opens downward, with its focus at (0, -p) and its directrix the line 
y = p, then Equations (1) become

y = -  x
2

4p  and  x2 = -4py.

By interchanging the variables x and y, we obtain similar equations for parabolas opening 
to the right or to the left (Figure 11.41).

Directrix: y = −p

The vertex lies
halfway between
directrix and focus.

Q(x, −p)

P(x, y)

F(0, p)
Focus

p

p

x2 = 4py

L

x

y

FIGURE 11.40 The standard form of the 
parabola x2 = 4py, p 7 0.

DEFINITIONS A set that consists of all the points in a plane equidistant from 
a given fixed point and a given fixed line in the plane is a parabola. The fixed 
point is the focus of the parabola. The fixed line is the directrix.

 geometric method was the only way that conic sections could be described by Greek 
mathematicians, since they did not have our tools of Cartesian or polar coordinates. In the 
next section we express the conics in polar coordinates.

Parabolas

Vertex

Directrix
x = −p

0

Focus

F(p, 0)

y2 = 4px

x

y

(a)

Directrix
x = p

0

Focus

F(−p, 0)

y2 = −4px

Vertex

x

y

(b)

FIGURE 11.41 (a) The parabola y2 = 4px. (b) The parabola 
y2 = -4px.
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682 Chapter 11 Parametric Equations and Polar Coordinates

EXAMPLE 1  Find the focus and directrix of the parabola y2 = 10x.

Solution We find the value of p in the standard equation y2 = 4px:

4p = 10,  so  p = 10
4 = 5

2.

Then we find the focus and directrix for this value of p:

 Focus:  ( p, 0) = a52, 0b

  Directrix:  x = -p  or  x = -  52 . 

Ellipses

DEFINITIONS An ellipse is the set of points in a plane whose distances from 
two fixed points in the plane have a constant sum. The two fixed points are the 
foci of the ellipse.

The line through the foci of an ellipse is the ellipse’s focal axis. The point on 
the axis halfway be-tween the foci is the center. The points where the focal axis 
and ellipse cross are the ellipse’s vertices (Figure 11.42).

If the foci are F1(-c, 0) and F2(c, 0) (Figure 11.43), and PF1 + PF2 is denoted by 2a, 
then the coordinates of a point P on the ellipse satisfy the equation2(x + c)2 + y2 + 2(x - c)2 + y2 = 2a.

To simplify this equation, we move the second radical to the right-hand side, square, 
 isolate the remaining radical, and square again, obtaining

 x2

a2 +
y2

a2 - c2 = 1. (2)

Since PF1 + PF2 is greater than the length F1 F2 (by the triangle inequality for triangle 
PF1 F2), the number 2a is greater than 2c. Accordingly, a 7 c and the number a2 - c2 in 
Equation (2) is positive.

The algebraic steps leading to Equation (2) can be reversed to show that every point P 
whose coordinates satisfy an equation of this form with 0 6 c 6 a also satisfies the 
equation PF1 + PF2 = 2a. A point therefore lies on the ellipse if and only if its coordi-
nates satisfy Equation (2).

If we let b denote the positive square root of a2 - c2,

 b = 2a2 - c2, (3)

then a2 - c2 = b2 and Equation (2) takes the form

 x2

a2 +
y2

b2 = 1. (4)

Equation (4) reveals that this ellipse is symmetric with respect to the origin and both 
coordinate axes. It lies inside the rectangle bounded by the lines x = {a and y = {b. It 
crosses the axes at the points ({a, 0) and (0, {b). The tangents at these points are 
 perpendicular to the axes because

dy
dx

= -  b
2x

a2y
,  Obtained from Eq. (4)  

by implicit differentiation

which is zero if x = 0 and infinite if y = 0.

Vertex VertexFocus FocusCenter

Focal axis

FIGURE 11.42 Points on the focal axis 
of an ellipse.

x

y

Focus Focus

Center0F1(−c, 0)
F2(c, 0)

P(x, y)

a

b

FIGURE 11.43 The ellipse defined by 
the equation PF1 + PF2 = 2a is the graph 
of the equation (x2>a2) + (y2>b2) = 1, 
where b2 = a2 - c2.
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 11.6  Conic Sections 683

The major axis of the ellipse in Equation (4) is the line segment of length 2a joining 
the points ({a, 0). The minor axis is the line segment of length 2b joining the points 
(0, {b). The number a itself is the semimajor axis, the number b the semiminor axis. 
The number c, found from Equation (3) as

c = 2a2 - b2,

is the center-to-focus distance of the ellipse. If a = b then the ellipse is a circle.

EXAMPLE 2  The ellipse

 x2

16
+

y2

9 = 1 (5)

shown in Figure 11.44 has

 Semimajor axis: a = 216 = 4,  Semiminor axis: b = 29 = 3,

 Center@to@focus distance: c = 216 - 9 = 27,

 Foci: ({c, 0) = 1{27, 02 ,
 Vertices: ({a, 0) = ({4, 0) ,

  Center: (0, 0).  

If we interchange x and y in Equation (5), we have the equation

 x2

9 +
y2

16
= 1. (6)

The major axis of this ellipse is now vertical instead of horizontal, with the foci and vertices on 
the y-axis. We can determine which way the major axis runs simply by finding the intercepts of 
the ellipse with the coordinate axes. The longer of the two axes of the ellipse is the major axis.

x

y

(0, 3)

(0, −3)

Vertex
(4, 0)

Vertex
(−4, 0)

Focus Focus

Center

0(−"7, 0) ("7, 0)

x2

16
y2

9
+      = 1

FIGURE 11.44 An ellipse with its major 
axis horizontal (Example 2).

Standard-Form Equations for Ellipses Centered at the Origin

Foci on the x-axis: x2

a2 +
y2

b2 = 1 (a 7 b)

 Center@to@focus distance: c = 2a2 - b2

 Foci: ({c, 0)

 Vertices: ({a, 0)

Foci on the y-axis: x2

b2 +
y2

a2 = 1 (a 7 b)

 Center@to@focus distance: c = 2a2 - b2

 Foci: (0, {c)

 Vertices: (0, {a)

In each case, a is the semimajor axis and b is the semiminor axis.

Hyperbolas

DEFINITIONS A hyperbola is the set of points in a plane whose distances 
from two fixed points in the plane have a constant difference. The two fixed 
points are the foci of the hyperbola.

The line through the foci of a hyperbola is the focal axis. The point on the 
axis halfway between the foci is the hyperbola’s center. The points where the 
 focal axis and hyperbola cross are the vertices (Figure 11.45).

Focus Focus

Center

Focal axis

Vertices

FIGURE 11.45 Points on the focal axis 
of a hyperbola.
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684 Chapter 11 Parametric Equations and Polar Coordinates

If the foci are F1(-c, 0) and F2(c, 0) (Figure 11.46) and the constant difference is 2a, 
then a point (x, y) lies on the hyperbola if and only if

 2(x + c)2 + y2 - 2(x - c)2 + y2 = {2a. (7)

To simplify this equation, we move the second radical to the right-hand side, square, 
 isolate the remaining radical, and square again, obtaining

 x2

a2 +
y2

a2 - c2 = 1. (8)

So far, this looks just like the equation for an ellipse. But now a2 - c2 is negative because 
2a, being the difference of two sides of triangle PF1 F2, is less than 2c, the third side.

The algebraic steps leading to Equation (8) can be reversed to show that every point P 
whose coordinates satisfy an equation of this form with 0 6 a 6 c also satisfies Equation 
(7). A point therefore lies on the hyperbola if and only if its coordinates satisfy Equation (8).

If we let b denote the positive square root of c2 - a2,

 b = 2c2 - a2, (9)

then a2 - c2 = -b2 and Equation (8) takes the compact form

 x2

a2 -
y2

b2 = 1. (10)

The differences between Equation (10) and the equation for an ellipse (Equation 4) are the 
minus sign and the new relation

c2 = a2 + b2.  From Eq. (9)

Like the ellipse, the hyperbola is symmetric with respect to the origin and coordinate axes. 
It crosses the x-axis at the points ({a, 0). The tangents at these points are vertical because

dy
dx

= b2x
a2y

  Obtained from Eq. (10) by 
implicit differentiation

 

and this is infinite when y = 0. The hyperbola has no y-intercepts; in fact, no part of the 
curve lies between the lines x = -a and x = a.

The lines

y = {b
a x

are the two asymptotes of the hyperbola defined by Equation (10). The fastest way to find 
the equations of the asymptotes is to replace the 1 in Equation (10) by 0 and solve the new 
equation for y:

x2

a2 -
y2

b2 = 1 S  x
2

a2 -
y2

b2 = 0 S  y = {b
a x.

 (++)++* (++)++* (++)++*
 hyperbola 0 for 1 asymptotes

EXAMPLE 3  The equation

 x2

4 -
y2

5
= 1 (11)

is Equation (10) with a2 = 4 and b2 = 5 (Figure 11.47). We have

 Center@to@focus distance: c = 2a2 + b2 = 24 + 5 = 3,

 Foci: ({c, 0) = ({3, 0),  Vertices: ({a, 0) = ({2, 0),

 Center: (0, 0),

  Asymptotes: x2

4 -
y2

5
= 0 or y = {25

2  x.  

x

y

0F1(−c, 0) F2(c, 0)

x = −a x = a

P(x, y)

FIGURE 11.46 Hyperbolas have two 
branches. For points on the right-hand 
branch of the hyperbola shown here, 
PF1 - PF2 = 2a. For points on the left-
hand branch, PF2 - PF1 = 2a. We then 
let b = 2c2 - a2.

x

y

F(3, 0)F(−3, 0)

2−2

y = −       x"5
2

y =        x"5
2

x2

4
y2

5
−      = 1

FIGURE 11.47 The hyperbola and its 
asymptotes in Example 3.
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If we interchange x and y in Equation (11), the foci and vertices of the resulting 
hyperbola will lie along the y-axis. We still find the asymptotes in the same way as before, 
but now their equations will be y = {2x>25.

Standard-Form Equations for Hyperbolas Centered at the Origin

Foci on the x-axis: x2

a2 -
y2

b2 = 1

  Center@to@focus distance: c = 2a2 + b2

  Foci: ({c, 0)

  Vertices: ({a, 0)

  Asymptotes: x2

a2 -
y2

b2 = 0 or y = {b
a x

Foci on the y-axis: 
y2

a2 - x2

b2 = 1

  Center@to@focus distance: c = 2a2 + b2

  Foci: (0, {c)

  Vertices: (0, {a)

  Asymptotes: 
y2

a2 - x2

b2 = 0 or y = {a
b

 x

Notice the difference in the asymptote equations (b >a in the first, a >b in the second).

We shift conics using the principles reviewed in Section 1.2, replacing x by x + h and 
y by y + k.

EXAMPLE 4  Show that the equation x2 - 4y2 + 2x + 8y - 7 = 0 represents a 
hyperbola. Find its center, asymptotes, and foci.

Solution We reduce the equation to standard form by completing the square in x and y 
as follows:

(x2 + 2x) - 4( y2 - 2y) = 7

(x2 + 2x + 1) - 4( y2 - 2y + 1) = 7 + 1 - 4

(x + 1)2

4 - ( y - 1)2 = 1.

This is the standard form Equation (10) of a hyperbola with x replaced by x + 1 and y 
replaced by y - 1. The hyperbola is shifted one unit to the left and one unit upward, and it 
has center x + 1 = 0 and y - 1 = 0, or x = -1 and y = 1. Moreover,

a2 = 4,  b2 = 1,  c2 = a2 + b2 = 5,

so the asymptotes are the two lines

x + 1
2 - ( y - 1) = 0  and  x + 1

2 + ( y - 1) = 0,

or

y - 1 = {1
2 (x + 1).

The shifted foci have coordinates 1-1 {  25, 12. 
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686 Chapter 11 Parametric Equations and Polar Coordinates

Identifying Graphs
Match the parabolas in Exercises 1–4 with the following equations:

x2 = 2y, x2 = -6y, y2 = 8x, y2 = -4x.

Then find each parabola’s focus and directrix.

 1. 

x

y  2. 

x

y

 3. 

x

y  4. 

x

y

Match each conic section in Exercises 5–8 with one of these  
equations:

 
x2

4
+

y2

9
= 1,  

x2

2
+ y2 = 1, 

 
y2

4
- x2 = 1,  

x2

4
-

y2

9
= 1.

Then find the conic section’s foci and vertices. If the conic section is a 
hyperbola, find its asymptotes as well.

 5. 

x

y  6. 

x

y

 7. 

x

y  8. 

x

y

Parabolas
Exercises 9–16 give equations of parabolas. Find each parabola’s 
focus and directrix. Then sketch the parabola. Include the focus and 
directrix in your sketch.

 9. y2 = 12x 10. x2 = 6y 11. x2 = -8y

 12. y2 = -2x 13. y = 4x2 14. y = -8x2

 15. x = -3y2 16. x = 2y2

EXERCISES 11.6

Shifting Conic Sections
You may wish to review Section 1.2 before solving Exercises 39–56.

 39. The parabola y2 = 8x is shifted down 2 units and right 1 unit to 
generate the parabola ( y + 2)2 = 8(x - 1).

a. Find the new parabola’s vertex, focus, and directrix.

b. Plot the new vertex, focus, and directrix, and sketch in the 
parabola.

 40. The parabola x2 = -4y is shifted left 1 unit and up 3 units to 
generate the parabola (x + 1)2 = -4(y - 3).

a. Find the new parabola’s vertex, focus, and directrix.

b. Plot the new vertex, focus, and directrix, and sketch in the 
parabola.

Ellipses
Exercises 17–24 give equations for ellipses. Put each equation in stan-
dard form. Then sketch the ellipse. Include the foci in your sketch.

 17. 16x2 + 25y2 = 400 18. 7x2 + 16y2 = 112

 19. 2x2 + y2 = 2 20. 2x2 + y2 = 4

 21. 3x2 + 2y2 = 6 22. 9x2 + 10y2 = 90

 23. 6x2 + 9y2 = 54 24. 169x2 + 25y2 = 4225

Exercises 25 and 26 give information about the foci and vertices of 
ellipses centered at the origin of the xy-plane. In each case, find the 
ellipse’s standard-form equation from the given information.

 25. Foci: 1{22, 02 Vertices: ({2, 0)

 26. Foci: (0, {4) Vertices: (0, {5)

Hyperbolas
Exercises 27–34 give equations for hyperbolas. Put each equation in 
standard form and find the hyperbola’s asymptotes. Then sketch the 
hyperbola. Include the asymptotes and foci in your sketch.

 27. x2 - y2 = 1 28. 9x2 - 16y2 = 144

 29. y2 - x2 = 8 30. y2 - x2 = 4

 31. 8x2 - 2y2 = 16 32. y2 - 3x2 = 3

 33. 8y2 - 2x2 = 16 34. 64x2 - 36y2 = 2304

 37. Vertices: ({3, 0)

  Asymptotes: y = {4
3

 x

 38. Vertices: (0, {2)

  Asymptotes: y = {1
2

 x

 36. Foci: ({2, 0)

  Asymptotes: y = { 123
 x

Exercises 35–38 give information about the foci, vertices, and asymp-
totes of hyperbolas centered at the origin of the xy-plane. In each case, 
find the hyperbola’s standard-form equation from the information 
given.

 35. Foci: 10, {222
  Asymptotes: y = {x
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 11.6  Conic Sections 687

Exercises 53–56 give equations for hyperbolas and tell how many 
units up or down and to the right or left each hyperbola is to be 
shifted. Find an equation for the new hyperbola, and find the new 
 center, foci, vertices, and asymptotes.

 53. 
x2

4
-

y2

5
= 1, right 2, up 2

 54. 
x2

16
-

y2

9
= 1, left 2, down 1

 55. y2 - x2 = 1, left 1, down 1

 56. 
y2

3
- x2 = 1, right 1, up 3

Find the center, foci, vertices, asymptotes, and radius, as appropriate, 
of the conic sections in Exercises 57–68.

 57. x2 + 4x + y2 = 12

 58. 2x2 + 2y2 - 28x + 12y + 114 = 0

 59. x2 + 2x + 4y - 3 = 0 60. y2 - 4y - 8x - 12 = 0

 61. x2 + 5y2 + 4x = 1 62. 9x2 + 6y2 + 36y = 0

 63. x2 + 2y2 - 2x - 4y = -1

 64. 4x2 + y2 + 8x - 2y = -1

 65. x2 - y2 - 2x + 4y = 4 66. x2 - y2 + 4x - 6y = 6

 67. 2x2 - y2 + 6y = 3 68. y2 - 4x2 + 16x = 24

Theory and Examples
 69. If lines are drawn parallel to the coordinate axes through a point P 

on the parabola y2 = kx, k 7 0, the parabola partitions the rect-
angular region bounded by these lines and the coordinate axes into 
two smaller regions, A and B.

a. If the two smaller regions are revolved about the y-axis, show 
that they generate solids whose volumes have the ratio 4:1.

b. What is the ratio of the volumes generated by revolving the 
regions about the x-axis?

0
x

y

A

B

P

y2 = kx

 70. Suspension bridge cables hang in parabolas The suspension 
bridge cable shown in the accompanying figure supports a uni-
form load of w pounds per horizontal foot. It can be shown that if 
H is the horizontal tension of the cable at the origin, then the curve 
of the cable satisfies the equation

dy
dx

= w
H  x.

  Show that the cable hangs in a parabola by solving this differential 
equation subject to the initial condition that y = 0 when x = 0.

x

y

Bridge cable

0

 41. The ellipse (x2>16) + (y2>9) = 1 is shifted 4 units to the right 
and 3 units up to generate the ellipse

(x - 4)2

16
+

(y - 3)2

9
= 1.

a. Find the foci, vertices, and center of the new ellipse.

b. Plot the new foci, vertices, and center, and sketch in the new 
ellipse.

 42. The ellipse (x2>9) + (y2>25) = 1 is shifted 3 units to the left 
and 2 units down to generate the ellipse

(x + 3)2

9
+

( y + 2)2

25
= 1.

a. Find the foci, vertices, and center of the new ellipse.

b. Plot the new foci, vertices, and center, and sketch in the new 
ellipse.

 43. The hyperbola (x2>16) - (y2>9) = 1 is shifted 2 units to the 
right to generate the hyperbola

(x - 2)2

16
-

y2

9
= 1.

a. Find the center, foci, vertices, and asymptotes of the new 
hyperbola.

b. Plot the new center, foci, vertices, and asymptotes, and sketch 
in the hyperbola.

 44. The hyperbola (y2>4) - (x2>5) = 1 is shifted 2 units down to 
generate the hyperbola

( y + 2)2

4
- x2

5
= 1.

a. Find the center, foci, vertices, and asymptotes of the new 
hyperbola.

b. Plot the new center, foci, vertices, and asymptotes, and sketch 
in the hyperbola.

Exercises 45–48 give equations for parabolas and tell how many units 
up or down and to the right or left each parabola is to be shifted. Find 
an equation for the new parabola, and find the new vertex, focus, and 
directrix.

 45. y2 = 4x, left 2, down 3 46. y2 = -12x, right 4, up 3

 47. x2 = 8y, right 1, down 7 48. x2 = 6y, left 3, down 2

Exercises 49–52 give equations for ellipses and tell how many units up 
or down and to the right or left each ellipse is to be shifted. Find an 
equation for the new ellipse, and find the new foci, vertices, and center.

 49. 
x2

6
+

y2

9
= 1, left 2, down 1

 50. 
x2

2
+ y2 = 1, right 3, up 4

 51. 
x2

3
+

y2

2
= 1, right 2, up 3

 52. 
x2

16
+

y2

25
= 1, left 4, down 5
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688 Chapter 11 Parametric Equations and Polar Coordinates

 71. The width of a parabola at the focus Show that the number 
4p is the width of the parabola x2 = 4py (p 7 0) at the focus by 
showing that the line y = p cuts the parabola at points that are 4p 
units apart.

 72. The asymptotes of (x2 ,a2) − (  y2 ,b2) = 1 Show that the 
vertical distance between the line y = (b>a)x and the upper half 

  of the right-hand branch y = (b>a)2x2 - a2 of the hyperbola 
(x2>a2) - (y2>b2) = 1 approaches 0 by showing that

lim
xSq

 aba x - b
a2x2 - a2b = b

a lim
xSq

 1x - 2x2 - a22 = 0.

  Similar results hold for the remaining portions of the hyperbola 
and the lines y = {(b>a)x.

 73. Area Find the dimensions of the rectangle of largest area that 
can be inscribed in the ellipse x2 + 4y2 = 4 with its sides parallel 
to the coordinate axes. What is the area of the rectangle?

 74. Volume Find the volume of the solid generated by revolving  
the region enclosed by the ellipse 9x2 + 4y2 = 36 about the  
(a) x-axis, (b) y-axis.

 75. Volume The “triangular” region in the first quadrant bounded by 
the x-axis, the line x = 4, and the hyperbola 9x2 - 4y2 = 36 is 
revolved about the x-axis to generate a solid. Find the volume of 
the solid.

 76. Tangents Show that the tangents to the curve y2 = 4px from 
any point on the line x = -p are perpendicular.

 77. Tangents Find equations for the tangents to the circle 
(x - 2)2 + ( y - 1)2 = 5 at the points where the circle crosses 
the coordinate axes.

 78. Volume The region bounded on the left by the y-axis, on the 
right by the hyperbola x2 - y2 = 1, and above and below by the 
lines y = {3 is revolved about the y-axis to generate a solid. Find 
the volume of the solid.

 79. Centroid Find the centroid of the region that is bounded below 
by the x-axis and above by the ellipse (x2>9) + (y2>16) = 1.

 80. Surface area The curve y = 2x2 + 1, 0 … x … 22, which 
is part of the upper branch of the hyperbola y2 - x2 = 1, is re-
volved about the x-axis to generate a surface. Find the area of the 
surface.

 81. The reflective property of parabolas The accompanying fig-
ure shows a typical point P(x0, y0) on the parabola y2 = 4px. The 
line L is tangent to the parabola at P. The parabola’s focus lies at 
F( p, 0). The ray L′ extending from P to the right is parallel to the 
x-axis. We show that light from F to P will be reflected out along 
L′ by showing that b equals a. Establish this equality by taking 
the following steps.

a. Show that tan b = 2p>y0 .

b. Show that tan f = y0>(x0 - p).

c. Use the identity

tan a =
tan f - tan b

1 + tan f tan b

to show that tan a = 2p>y0.

  Since a and b are both acute, tan b = tan a implies b = a.
   This reflective property of parabolas is used in applications 

like car headlights, radio telescopes, and satellite TV dishes.

x

y

0 F( p, 0)

P(x0, y0)

f

a

b

b

L

L′

y0

y2 = 4px

11.7 Conics in Polar Coordinates

Polar coordinates are especially important in astronomy and astronautical engineering 
because satellites, moons, planets, and comets all move approximately along ellipses, 
parabolas, and hyperbolas that can be described with a single relatively simple polar coor-
dinate equation. We develop that equation here after first introducing the idea of a conic 
section’s eccentricity. The eccentricity reveals the conic section’s type (circle, ellipse, 
parabola, or hyperbola) and the degree to which it is “squashed” or flattened.

Eccentricity

Although the center-to-focus distance c does not appear in the standard Cartesian equation

x2

a2 +
y2

b2 = 1,  (a 7 b)

for an ellipse, we can still determine c from the equation c = 2a2 - b2. If we fix a and 
vary c over the interval 0 … c … a, the resulting ellipses will vary in shape. They are cir-
cles if c = 0 (so that a = b) and flatten, becoming more oblong, as c increases. If c = a, 
the foci and vertices overlap and the ellipse degenerates into a line segment. Thus we are 
led to consider the ratio e = c>a. We use this ratio for hyperbolas as well, except in this 
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case c equals 2a2 + b2 instead of 2a2 - b2. We refer to this ratio as the eccentricity of 
the ellipse or hyperbola.

DEFINITION
The eccentricity of the ellipse (x2>a2) + (y2>b2) = 1 (a 7 b) is

e = c
a = 2a2 - b2

a .

The eccentricity of the hyperbola (x2>a2) - (y2>b2) = 1 is

e = c
a = 2a2 + b2

a .

The eccentricity of a parabola is e = 1.

Whereas a parabola has one focus and one directrix, each ellipse has two foci and two 
directrices. These are the lines perpendicular to the major axis at distances {a>e from 
the center. From Figure 11.48 we see that a parabola has the property

 PF = 1 # PD (1)

for any point P on it, where F is the focus and D is the point nearest P on the directrix. For 
an ellipse, it can be shown that the equations that replace Equation (1) are

 PF1 = e # PD1,  PF2 = e # PD2 . (2)

Here, e is the eccentricity, P is any point on the ellipse, F1 and F2 are the foci, and D1 and 
D2 are the points on the directrices nearest P (Figure 11.49).

In both Equations (2) the directrix and focus must correspond; that is, if we use the 
distance from P to F1, we must also use the distance from P to the directrix at the same 
end of the ellipse. The directrix x = -a>e corresponds to F1(-c, 0), and the directrix 
x = a>e corresponds to F2(c, 0).

As with the ellipse, it can be shown that the lines x = {a>e act as directrices for the 
hyperbola and that

 PF1 = e # PD1  and  PF2 = e # PD2 . (3)

Here P is any point on the hyperbola, F1 and F2 are the foci, and D1 and D2 are the points 
nearest P on the directrices (Figure 11.50).

In both the ellipse and the hyperbola, the eccentricity is the ratio of the distance 
between the foci to the distance between the vertices (because c>a = 2c>2a).

Eccentricity = distance between foci
distance between vertices

In an ellipse, the foci are closer together than the vertices and the ratio is less than 1. In a 
hyperbola, the foci are farther apart than the vertices and the ratio is greater than 1.

The “focus–directrix” equation PF = e # PD unites the parabola, ellipse, and hyper-
bola in the following way. Suppose that the distance PF of a point P from a fixed point F 
(the focus) is a constant multiple of its distance from a fixed line (the directrix). That is, 
suppose

 PF = e # PD, (4)

where e is the constant of proportionality. Then the path traced by P is

(a) a parabola if e = 1,

(b) an ellipse of eccentricity e if e 6 1, and

(c) a hyperbola of eccentricity e if e 7 1.

0 F(c, 0)

D P(x, y)

x

y
Directrix

x = −c

FIGURE 11.48 The distance from the 
focus F to any point P on a parabola equals 
the distance from P to the nearest point D 
on the directrix, so PF = PD.

x

y
Directrix 1
x = −

a
e

Directrix 2
x = a

eb

−b

0

a
c = ae

a
e

D1 D2
P(x, y)

F1(−c, 0) F2(c, 0)

FIGURE 11.49 The foci and directrices 
of the ellipse (x2>a2) + (y2>b2) = 1. 
Directrix 1 corresponds to focus F1 and 
directrix 2 to focus F2.

Directrix 1
x = − a

e

Directrix 2
x = a

e

a

c = ae

a
e

F1(−c, 0) F2(c, 0)

D2D1
P(x, y)

x

y

0

FIGURE 11.50 The foci and directrices 
of the hyperbola (x2>a2) - (  y2>b2) = 1. 
No matter where P lies on the hyperbola, 
PF1 = e # PD1 and PF2 = e # PD2.
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690 Chapter 11 Parametric Equations and Polar Coordinates

As e increases (e S 1-), ellipses become more oblong, and (e S q) hyperbolas flatten 
toward two lines parallel to the directrix. There are no coordinates in Equation (4), and 
when we try to translate it into Cartesian coordinate form, it translates in different ways 
depending on the size of e. However, as we are about to see, in polar coordinates the equa-
tion PF = e # PD translates into a single equation regardless of the value of e.

Given the focus and corresponding directrix of a hyperbola centered at the origin and 
with foci on the x-axis, we can use the dimensions shown in Figure 11.50 to find e. Know-
ing e, we can derive a Cartesian equation for the hyperbola from the equation PF = e # PD, 
as in the next example. We can find equations for ellipses centered at the origin and with 
foci on the x-axis in a similar way, using the dimensions shown in Figure 11.49.

Conic section

P

F B

r

r cos u

Focus at
origin

D

x
k

x = k

Directrix

FIGURE 11.52 If a conic section is put 
in the position with its focus placed at the 
origin and a directrix perpendicular to the 
initial ray and right of the origin, we can 
find its polar equation from the conic’s 
focus–directrix equation.

Polar Equation for a Conic with Eccentricity e

 r = ke
1 + e cos u , (5)

where x = k 7 0 is the vertical directrix.

EXAMPLE 1  Find a Cartesian equation for the hyperbola centered at the origin that 
has a focus at (3, 0) and the line x = 1 as the corresponding directrix.

Solution We first use the dimensions shown in Figure 11.50 to find the hyperbola’s 
eccentricity. The focus is (see Figure 11.51)

(c, 0) = (3, 0),  so  c = 3.

Again from Figure 11.50, the directrix is the line

x = a
e = 1,  so  a = e.

When combined with the equation e = c>a that defines eccentricity, these results give

e = c
a = 3

e ,  so  e2 = 3 and e = 23.

Knowing e, we can now derive the equation we want from the equation PF = e # PD. 
In the coordinates of Figure 11.51, we have

 PF = e # PD   Eq. (4)

 2(x - 3)2 + ( y - 0)2 = 23 � x - 1 �   e = 23 

 x2 - 6x + 9 + y2 = 3(x2 - 2x + 1)  Square both sides.

 2x2 - y2 = 6   Simplify.

 x
2

3 -
y2

6
= 1.  

Polar Equations

To find a polar equation for an ellipse, parabola, or hyperbola, we place one focus at the 
origin and the corresponding directrix to the right of the origin along the vertical line 
x = k (Figure 11.52). In polar coordinates, this makes

PF = r

and

PD = k - FB = k - r cos u.

The conic’s focus–directrix equation PF = e # PD then becomes

r = e(k - r cos u),

which can be solved for r to obtain the following expression.

0 1 F(3, 0)

D(1, y)

P(x, y)

x

x = 1

y

x2

3
y2

6
−      = 1

FIGURE 11.51 The hyperbola and  
directrix in Example 1.
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EXAMPLE 2  Here are polar equations for three conics. The eccentricity values iden-
tifying the conic are the same for both polar and Cartesian coordinates.

 e = 1
2 :  ellipse    r = k

2 + cos u

 e = 1 :  parabola    r = k
1 + cos u

  e = 2 :  hyperbola  r = 2k
1 + 2 cos u 

You may see variations of Equation (5), depending on the location of the directrix. If 
the directrix is the line x = -k to the left of the origin (the origin is still a focus), we 
replace Equation (5) with

r = ke
1 - e cos u .

The denominator now has a (-) instead of a (+). If the directrix is either of the lines y = k 
or y = -k, the equations have sines in them instead of cosines, as shown in Figure 11.53.

EXAMPLE 3  Find an equation for the hyperbola with eccentricity 3 >2 and directrix 
x = 2.

Solution We use Equation (5) with k = 2 and e = 3>2:

 r =
2(3>2)

1 + (3>2) cos u
  or  r = 6

2 + 3 cos u . 

EXAMPLE 4  Find the directrix of the parabola r = 25
10 + 10 cos u .

Solution We divide the numerator and denominator by 10 to put the equation in  standard 
polar form:

r =
5>2

1 + cos u .

This is the equation

r = ke
1 + e cos u

with k = 5>2 and e = 1. The equation of the directrix is x = 5>2. 

From the ellipse diagram in Figure 11.54, we see that k is related to the eccentricity e 
and the semimajor axis a by the equation

k = a
e - ea.

From this, we find that ke = a(1 - e2). Replacing ke in Equation (5) by a(1 - e2) gives 
the standard polar equation for an ellipse.

Center
Focus at
origin

ea

a

a
e

x

Directrix
x = k

FIGURE 11.54 In an ellipse with semi-
major axis a, the focus–directrix distance 
is k = (a>e) - ea, so ke = a(1 - e2).

Focus at origin

Directrix x = k

r = ke
1 + e cos u

x

(a)

Focus at origin

Directrix x = −k

r = ke
1 − e cos u

x

(b)

Directrix y = k

r = ke
1 + e sin u

y

Focus at
origin

(c)

Directrix y = −k

r = ke
1 − e sin u

y
Focus at origin

(d)

FIGURE 11.53 Equations for conic sec-
tions with eccentricity e 7 0 but different 
locations of the directrix. The graphs here 
show a parabola, so e = 1.
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The Standard Polar Equation for Lines
If the point P0(r0, u0) is the foot of the perpendicular from the origin to the line L, 
and r0 Ú 0, then an equation for L is

 r cos (u - u0) = r0. (7)

Notice that when e = 0, Equation (6) becomes r = a, which represents a circle.

Lines

Suppose the perpendicular from the origin to line L meets L at the point P0(r0, u0), with 
r0 Ú 0 (Figure 11.55). Then, if P(r, u) is any other point on L, the points P, P0, and O are 
the vertices of a right triangle, from which we can read the relation

r0 = r cos (u - u0).

For example, if u0 = p>3 and r0 = 2, we find that

 r cos au - p
3 b = 2

 r acos u cos p3 + sin u sin p3 b = 2

 12 r cos u + 23
2  r sin u = 2,  or  x + 23 y = 4.

Circles

To find a polar equation for the circle of radius a centered at P0(r0, u0), we let P(r, u) be a 
point on the circle and apply the Law of Cosines to triangle OP0 P (Figure 11.56). This 
gives

a2 = r0 

2 + r2 - 2r0 r cos (u - u0).

If the circle passes through the origin, then r0 = a and this equation simplifies to

 a2 = a2 + r2 - 2ar cos (u - u0)

 r2 = 2ar cos (u - u0)

 r = 2a cos (u - u0).

If the circle’s center lies on the positive x-axis, u0 = 0 and we get the further simplification

 r = 2a cos u. (8)

If the center lies on the positive y-axis, u = p>2, cos (u - p>2) = sin u, and the 
equation r = 2a cos (u - u0) becomes

 r = 2a sin u. (9)

Equations for circles through the origin centered on the negative x- and y-axes can be 
obtained by replacing r with -r  in the above equations.

x

y

O

u0

r0

u

r

L

P(r, u)

P0(r0 , u0)

FIGURE 11.55 We can obtain a polar 
equation for line L by reading the relation 
r0 = r cos (u - u0) from the right triangle 
OP0 P.

O
x

y

u0

r0
u

r

a

P(r, u)

P0(r0 , u0)

FIGURE 11.56 We can get a polar  
equation for this circle by applying the 
Law of Cosines to triangle OP0 P.

Polar Equation for the Ellipse with Eccentricity e and Semimajor Axis a

 r =
a(1 - e2)

1 + e cos u (6)
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EXAMPLE 5  Here are several polar equations given by Equations (8) and (9) for 
circles through the origin and having centers that lie on the x- or y-axis. 

Radius
 Center  
(polar coordinates)

 Polar  
 equation

 3  (3, 0)  r = 6 cos u

 2  (2, p>2)  r = 4 sin u

 1 >2  (-1>2, 0)  r = -cos u

 1  (-1, p>2)  r = -2 sin u

Ellipses and Eccentricity
In Exercises 1–8, find the eccentricity of the ellipse. Then find and 
graph the ellipse’s foci and directrices.

 1. 16x2 + 25y2 = 400 2. 7x2 + 16y2 = 112

 3. 2x2 + y2 = 2 4. 2x2 + y2 = 4

 5. 3x2 + 2y2 = 6 6. 9x2 + 10y2 = 90

 7. 6x2 + 9y2 = 54 8. 169x2 + 25y2 = 4225

EXERCISES 11.7

Exercises 25–28 give the eccentricities and the vertices or foci of 
hyperbolas centered at the origin of the xy-plane. In each case, find the 
hyperbola’s standard-form equation in Cartesian coordinates.

 25. Eccentricity: 3

  Vertices: (0, {1)

 26. Eccentricity: 2

  Vertices: ({2, 0)

 27. Eccentricity: 3

  Foci: ({3, 0)

 28. Eccentricity: 1.25

  Foci: (0, {5)

 10. Foci: ({8, 0)

  Eccentricity: 0.2

 12. Vertices: ({10, 0)

  Eccentricity: 0.24

 11. Vertices: (0, {70)

  Eccentricity: 0.1

Exercises 9–12 give the foci or vertices and the eccentricities of 
ellipses centered at the origin of the xy-plane. In each case, find the 
ellipse’s standard-form equation in Cartesian coordinates.

 9. Foci: (0, {3)

  Eccentricity: 0.5

 15. Focus: (-4, 0)

  Directrix: x = -16

Exercises 13–16 give foci and corresponding directrices of ellipses 
centered at the origin of the xy-plane. In each case, use the dimensions 
in Figure 11.49 to find the eccentricity of the ellipse. Then find the 
ellipse’s standard-form equation in Cartesian coordinates.

 14. Focus: (4, 0)

  Directrix: x = 16
3

 16. Focus: 1-22, 02
  Directrix: x = -222

 13. Focus: 125, 02
  Directrix: x = 925

Hyperbolas and Eccentricity
In Exercises 17–24, find the eccentricity of the hyperbola. Then find 
and graph the hyperbola’s foci and directrices.

 17. x2 - y2 = 1 18. 9x2 - 16y2 = 144

 19. y2 - x2 = 8 20. y2 - x2 = 4

 21. 8x2 - 2y2 = 16 22. y2 - 3x2 = 3

 23. 8y2 - 2x2 = 16 24. 64x2 - 36y2 = 2304

Eccentricities and Directrices
Exercises 29–36 give the eccentricities of conic sections with one 
focus at the origin along with the directrix corresponding to that focus. 
Find a polar equation for each conic section.

 29. e = 1, x = 2 30. e = 1, y = 2

 31. e = 5, y = -6 32. e = 2, x = 4

 33. e = 1>2, x = 1 34. e = 1>4, x = -2

 35. e = 1>5, y = -10 36. e = 1>3, y = 6

Parabolas and Ellipses
Sketch the parabolas and ellipses in Exercises 37–44. Include the 
directrix that corresponds to the focus at the origin. Label the vertices 
with appropriate polar coordinates. Label the centers of the ellipses as 
well.

 37. r = 1
1 + cos u

 38. r = 6
2 + cos u

 

 39. r = 25
10 - 5 cos u

 40. r = 4
2 - 2 cos u

 41. r = 400
16 + 8 sin u

 42. r = 12
3 + 3 sin u

 43. r = 8
2 - 2 sin u

 44. r = 4
2 - sin u
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Lines
Sketch the lines in Exercises 45–48 and find Cartesian equations for 
them.

 45. r cos au - p

4
b = 22 46. r cos au + 3p

4
b = 1

 47. r cos au - 2p
3
b = 3 48. r cos au + p

3
b = 2

Find a polar equation in the form r cos (u - u0) = r0 for each of the 
lines in Exercises 49–52.

 49. 22 x + 22 y = 6 50. 23 x - y = 1

 51. y = -5 52. x = -4

Circles
Sketch the circles in Exercises 53–56. Give polar coordinates for their 
centers and identify their radii.

 53. r = 4 cos u 54. r = 6 sin u 

 55. r = -2 cos u 56. r = -8 sin u

Find polar equations for the circles in Exercises 57–64. Sketch each 
circle in the coordinate plane and label it with both its Cartesian and 
polar equations.

 57. (x - 6)2 + y2 = 36 58. (x + 2)2 + y2 = 4

 59. x2 + ( y - 5)2 = 25 60. x2 + ( y + 7)2 = 49

 61. x2 + 2x + y2 = 0 62. x2 - 16x + y2 = 0

 63. x2 + y2 + y = 0 64. x2 + y2 - 4
3

 y = 0

Examples of Polar Equations
Graph the lines and conic sections in Exercises 65–74.

 65. r = 3 sec (u - p>3) 66. r = 4 sec (u + p>6)

 67. r = 4 sin u 68. r = -2 cos u

 69. r = 8>(4 + cos u) 70. r = 8>(4 + sin u)

T

 71. r = 1>(1 - sin u) 72. r = 1>(1 + cos u)

 73. r = 1>(1 + 2 sin u) 74. r = 1>(1 + 2 cos u)

 75. Perihelion and aphelion A planet travels about its sun in an 
ellipse whose semimajor axis has length a. (See accompanying 
figure.)

a. Show that r = a(1 - e) when the planet is closest to the sun 
and that r = a(1 + e) when the planet is farthest from the sun.

b. Use the data in the table in Exercise 76 to find how close each 
planet in our solar system comes to the sun and how far away 
each planet gets from the sun.

Aphelion
(farthest
from sun)

Perihelion
(closest
to sun)

Planet

Sun

u
a

 76. Planetary orbits Use the data in the table below and Equation 
(6) to find polar equations for the orbits of the planets.

 Planet
 Semimajor axis  
(astronomical units) Eccentricity

Mercury  0.3871 0.2056

Venus  0.7233 0.0068

Earth  1.000 0.0167

Mars  1.524 0.0934

Jupiter  5.203 0.0484

Saturn  9.539 0.0543

Uranus  19.18 0.0460

Neptune  30.06 0.0082

 1. What is a parametrization of a curve in the xy-plane? Does a func-
tion y = ƒ(x) always have a parametrization? Are parametriza-
tions of a curve unique? Give examples.

 2. Give some typical parametrizations for lines, circles, parabolas, 
ellipses, and hyperbolas. How might the parametrized curve differ 
from the graph of its Cartesian equation?

 3. What is a cycloid? What are typical parametric equations for 
 cycloids? What physical properties account for the importance of 
cycloids?

 4. What is the formula for the slope dy>dx of a parametrized curve 
x = ƒ(t), y = g(t)? When does the formula apply? When can you 
expect to be able to find d2y>dx2 as well? Give examples.

 5. How can you sometimes find the area bounded by a parametrized 
curve and one of the coordinate axes?

 6. How do you find the length of a smooth parametrized curve 
x = ƒ(t), y = g(t), a … t … b? What does smoothness have to 
do with length? What else do you need to know about the param-
etrization in order to find the curve’s length? Give examples.

 7. What is the arc length function for a smooth parametrized curve? 
What is its arc length differential?

 8. Under what conditions can you find the area of the surface gener-
ated by revolving a curve x = ƒ(t), y = g(t), a … t … b, about 
the x-axis? the y-axis? Give examples.

 9. What are polar coordinates? What equations relate polar coordi-
nates to Cartesian coordinates? Why might you want to change 
from one coordinate system to the other?

 10. What consequence does the lack of uniqueness of polar coordi-
nates have for graphing? Give an example.

CHAPTER 11 Questions to Guide Your Review
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