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CHAPTER 10

STURM–LIOUVILLE

THEORY — ORTHOGONAL

FUNCTIONS

In the preceding chapter we developed two linearly independent solutions of the second-
order linear homogeneous differential equation and proved that no third, linearly inde-
pendent solution existed. In this chapter the emphasis shifts from solving the differential
equation to developing and understanding general properties of the solutions. There is a
close analogy between the concepts in this chapter and those of linear algebra in Chap-
ter 3. Functions here play the role of vectors there, and linear operators that of matri-
ces in Chapter 3. The diagonalization of a real symmetric matrix in Chapter 3 corre-
sponds here to the solution of an ODE defined by aself-adjoint operatorL in terms
of its eigenfunctions, which are the “continuous” analog of the eigenvectors in Chap-
ter 3. Examples for the corresponding analogy between Hermitian matrices and Her-
mitian operators are Hamiltonians in quantum mechanics and their energy eigenfunc-
tions.

In Section 10.1 the concepts of self-adjoint operator, eigenfunction, eigenvalue, and Her-
mitian operator are presented. The concept of adjoint operator, given first in terms of dif-
ferential equations, is then redefined in accordance with usage in quantum mechanics,
where eigenfunctions take complex values. The vital properties of reality of eigenvalues
and orthogonality of eigenfunctions are derived in Section 10.2. In Section 10.3 we dis-
cuss the Gram–Schmidt procedure for systematically constructuring sets of orthogonal
functions. Finally, the general property of the completeness of a set of eigenfunctions is
explored in Section 10.4, and Green’s functions from Chapter 9 are continued in Sec-
tion 10.5.
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622 Chapter 10 Sturm–Liouville Theory — Orthogonal Functions

10.1 SELF-ADJOINT ODES

In Chapter 9 we studied, classified, and solved linear, second-order ODEs corresponding
to linear, second-order differential operators of the general form

Lu(x)= p0(x)
d2

dx2
u(x)+ p1(x)

d

dx
u(x)+ p2(x)u(x). (10.1)

The coefficientsp0(x),p1(x), andp2(x) are real functions ofx, and over the region
of interest,a ≤ x ≤ b, the first 2− i derivatives ofpi(x) are continuous. Reference to
Eq. (9.118) shows thatP(x)= p1(x)/p0(x) andQ(x)= p2(x)/p0(x). Hence,p0(x) must
not vanish fora < x < b. Now, the zeros ofp0(x) are singular points (Section 9.4), and
the preceding statement means that our interval[a, b] must be given so that there are no
singular points in the interior of the interval. There may be and often are singular points on
the boundaries.

For a linear operatorL, the analog of a quadratic form for a matrix in Chapter 3 is the
integral

〈u|L|u〉 ≡ 〈u|Lu〉 ≡
∫ b

a

u(x)Lu(x)dx

=
∫ b

a

u{p0u
′′ + p1u

′ + p2u}dx, (10.2)

where the primes on the real functionu(x) denote derivatives, as usual, and, for simplicity,
u(x) is taken to be real. If we shift the derivatives to the first factor,u, in Eq. (10.2) by
integrating by parts once or twice, we are led to the equivalent expression,

〈u|L|u〉 =
[
u(x)(p1− p′0)u(x)

]b
x=a

+
∫ b

a

{
d2

dx2
[p0u] −

d

dx
[p1u] + p2u

}
udx. (10.3)

If we require that the integrals in Eqs. (10.2) and (10.3) be identicalfor all (twice differ-
entiable) functionsu, then the integrands have to be equal. The comparison then yields

u(p′′0 − p′1)u+ 2u(p′0− p1)u
′ = 0,

or

p′0(x)= p1(x), (10.4)

and, as a bonus, the terms at the boundariesx = a andx = b in Eq. (10.3) then also vanish.
Because of the analogy with the transposed matrix in Chapter 3, it is convenient to define

the linear operator in Eq. (10.3),

L̄u = d2

dx2
[p0u] −

d

dx
[p1u] + p2u

= p0
d2u

dx2
+ (2p′0− p1)

du

dx
+ (p′′0 − p′1+ p2)u, (10.5)
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as theadjoint1 operator L̄. We have defined the adjoint operatorL̄ and have shown that if
Eq. (10.4) is satisfied,〈L̄u|u〉 = 〈u|Lu〉. Following the same procedure we can show more
generally that〈v|Lu〉 = 〈Lv|u〉. When this condition is satisfied,

L̄u= Lu= d

dx

[
p(x)

du(x)

dx

]
+ q(x)u(x), (10.6)

the operatorL is said to beself-adjoint. Here, for the self-adjoint case,p0(x) is replaced
by p(x) andp2(x) by q(x) to avoid unnecessary subscripts. The form of Eq. (10.6) al-
lows carrying out two integrations by parts in Eq. (10.3) (and Eq. (10.22) and following)
without integrated terms.2 Note that a given operator is not inherently self-adjoint; its self-
adjointness depends on the properties of the function space in which it acts and on the
boundary conditions.

In a survey of the ODEs introduced in Section 9.3, Legendre’s equation and the linear
oscillator equation are self-adjoint, but others, such as the Laguerre and Hermite equations,
are not. However, the theory of linear, second-order, self-adjoint differential equations is
perfectly general because we canalways transform the non-self-adjoint operator into the
required self-adjoint form. Consider Eq. (10.1) withp′0 
= p1. If we multiply L by3

1

p0(x)
exp

[∫ x p1(t)

p0(t)
dt

]
,

we obtain

1

p0(x)
exp

[∫ x p1(t)

p0(t)
dt

]
Lu(x) = d

dx

{
exp

[∫ x p1(t)

p0(t)
dt

]
du(x)

dx

}

+ p2(x)

p0(x)
· exp

[∫ x p1(t)

p0(t)
dt

]
u, (10.7)

which is clearly self-adjoint (see Eq. (10.6)). Notice thep0(x) in the denominator. This is
why we requirep0(x) 
= 0, a < x < b. In the following development we assume thatL has
been put into self-adjoint form.

1The adjoint operator bears a somewhat forced relationship to theadjoint matrix. A better justification for the nomenclature
is found in a comparison of theself-adjoint operator (plus appropriate boundary conditions) with theself-adjoint matrix. The
significant properties are developed in Section 10.2. Because of these properties, we are interested inself-adjoint operators.
2The full importance of the self-adjoint form (plus boundary conditions) will become apparent in Section 10.2. In addition,
self-adjoint forms will be required for developing Green’s functions in Section 10.5.
3If we multiply L by f (x)/p0(x) and then demand that

f ′(x)= fp1

p0
,

so that the new operator will be self-adjoint, we obtain

f (x)= exp

[∫ x p1(t)

p0(t)
dt

]
.
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Eigenfunctions, Eigenvalues

Schrödinger’s wave equation

Hψ(x)=Eψ(x)

is the major example of an eigenvalue equation in physics; here the differential operator
L is defined by the HamiltonianH and may no longer be real, and the eigenvalue be-
comes the total energyE of the system. The eigenfunctionψ(x) may be complex and is
usually called awave function. A variational formulation of this Schrödinger equation
appears in Section 17.7. Based on spherical, cylindrical, or some other symmetry prop-
erties, a three- or four-dimensional PDE or eigenvalue equation such as the Schrödinger
equation may separate into eigenvalue equations in a single variable each. Examples are
Eqs. (9.41), (9.42), (9.50), and (9.53). However, sometimes an eigenvalue equation takes
the more general self-adjoint form

Lu(x)+ λw(x)u(x)= 0, (10.8)

where the constantλ is the eigenvalue4 andw(x) is a known weight or density func-
tion; w(x) > 0 except possibly at isolated points at whichw(x) = 0. (In Section 10.1,
w(x)≡ 1.) For a given choice of the parameterλ, a function uλ(x), which satisfies
Eq. (10.8)and the imposed boundary conditions, is called aneigenfunctioncorrespond-
ing toλ. The constantλ is then called aneigenvalueby mathematicians. There is no guar-
antee that an eigenfunctionuλ(x) will exist for an arbitrary choice of the parameterλ.
Indeed, the requirement that there be an eigenfunction often restricts the acceptable values
of λ to a discrete set. Examples of this for the Legendre, Hermite, and Chebyshev equa-
tions appear in the exercises of Section 9.5. Here we have the mathematical approach to
the process of quantization in quantum mechanics.

The inner product of two functions,〈v|u〉 =
∫ b

a
v∗(x)w(x)u(x) dx, depends on the

weight function and generalizes our previous definition, wherew(x) ≡ 1. The weight
function also modifies the definition oforthogonality of two eigenfunctions: They are
orthogonal if their inner product〈uλ′ |uλ〉 = 0. The extra weight functionw(x) appears
sometimes as an asymptotic wave functionψ∞ that is a common factor in all solutions
of a PDE such as the Schrödinger equation, for example, when the potentialV (x)→ 0 as
x →∞ in H = T + V . We can findψ∞ when we setV = 0 in the Schrödinger equa-
tion. Another source forw(x) may be a nonzero angular momentum barrierl(l + 1)/x2

in a PDE or separated ODE Eq. (9.65) that has a regular singularity and dominates at
x → 0. In such a case the indicial equation, such as Eq. (9.87) or (9.103), shows that
the wave function hasxl as an overall factor. Since the wave function enters twice in
matrix elements and orthogonality relations, the weight functions in Table 10.1 come
from these common factors in both radial wave functions. This is how the exp(−x) for
Laguerre polynomials arises andxk exp(−x) for associated Laguerre polynomials in Ta-
ble 10.1.

4Note that this mathematical definition of the eigenvalue differs by a sign from the usage in physics.
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Table 10.1

Equation p(x) q(x) λ w(x)

Legendrea 1− x2 0 l(l + 1) 1
Shifted Legendrea x(1− x) 0 l(l + 1) 1
Associated Legendrea 1− x2 −m2/(1− x2) l(l + 1) 1
Chebyshev I (1− x2)1/2 0 n2 (1− x2)−1/2

Shifted Chebyshev I [x(1− x)]1/2 0 n2 [x(1− x)]−1/2

Chebyshev II (1− x2)3/2 0 n(n+ 2) (1− x2)1/2

Ultraspherical (Gegenbauer) (1− x2)α+1/2 0 n(n+ 2α) (1− x2)α−1/2

Besselb, 0≤ x ≤ a x −n2/x a2 x

Laguerre, 0≤ x <∞ xe−x 0 α e−x

Associated Laguerrec xk+1e−x 0 α− k xke−x

Hermite, 0≤ x <∞ e−x
2

0 2α e−x
2

Simple harmonic oscillatord 1 0 n2 1

a l = 0,1, . . . ,−l ≤m≤ l are integers and−1≤ x ≤ 1, 0≤ x ≤ 1 for shifted Legendre.
bOrthogonality of Bessel functions is rather special. Compare Section 11.2. for details. A second type of orthogonality
is developed in Eq. (11.174).
ck is a non-negative integer. For more details, see Table 10.2.
dThis will form the basis for Chapter 14, Fourier series.

Example 10.1.1 LEGENDRE’S EQUATION

Legendre’s equation is given by

(
1− x2)u′′ − 2xu′ + n(n+ 1)u= 0, −1≤ x ≤ 1. (10.9)

From Eqs. (10.1), (10.8), and (10.9),

p0(x) = 1− x2= p, w(x)= 1,

p1(x) = −2x = p′, λ= n(n+ 1),

p2(x) = 0= q.

Recall that our series solutions of Legendre’s equation (Exercise 9.5.5)5 diverged unlessn
was restricted to one of the integers. This represents a quantization of the eigenvalueλ. �

When the equations of Chapter 9 are transformed into the self-adjoint form, we find
the following values of the coefficients and parameters (Table 10.1). The coefficientp(x)

is the coefficient of the second derivative of the eigenfunction. The eigenvalueλ is the
parameter that is available in a term of the formλw(x)u(x); anyx dependence apart from
the eigenfunction becomes the weighting functionw(x). If there is another term containing
the eigenfunction (not the derivatives), the coefficient of the eigenfunction in this additional
term is identified asq(x). If no such term is present,q(x) is zero.

5Compare also Exercise 5.2.15 and 12.10.



626 Chapter 10 Sturm–Liouville Theory — Orthogonal Functions

Example 10.1.2 DEUTERON

Further insight into the concepts of eigenfunction and eigenvalue may be provided by an
extremely simple model of the deuteron, a bound state of a neutron and proton. From
experiment, the binding energy of about 2 MeV≪Mc2, with M =Mp =Mn, the common
neutron and proton mass whose small mass difference we neglect. Due to the short range
of the nuclear force, the deuteron properties do not depend much on the detailed shape of
the interaction potential. Thus, the neutron–proton nuclear interaction may be modeled by
a spherically symmetric square well potential:V = V0 < 0 for 0≤ r < a,V = 0 for r > a.
The Schrödinger wave equation is

− h̄2

M
∇2ψ + Vψ =Eψ, (10.10)

where the energy eigenvalueE < 0 for a bound state. For the ground state the orbital angu-
lar momentuml = 0 because forl 
= 0 there is the additional positive angular momentum
barrier. So, withψ = ψ(r), we may writeu(r) = rψ(r), and, using Exercise 2.5.18, the
wave equation becomes

d2u

dr2
+ k2

1u= 0, (10.11)

with

k2
1 =

M

h̄2
(E − V0) > 0 (10.12)

for the interior range, 0≤ r < a. Fora < r <∞, we have

d2u

dr2
− k2

2u= 0, (10.13)

with

k2
2 =−

ME

h̄2
> 0. (10.14)

The boundary condition thatψ remain finite atr = 0 impliesu(0)= 0 and

u1(r)= sink1r, 0≤ r < a. (10.15)

In the range outside the potential well, we have a linear combination of the two exponen-
tials,

u2(r)=Aexpk2r +B exp(−k2r), a < r <∞. (10.16)

Continuity of particle and current density demand thatu1(a) = u2(a) and thatu′1(a) =
u′2(a). Thesejoining , or matching, conditionsgive

sink1a =Aexpk2a +B exp(−k2a),

k1 cosk1a = k2Aexpk2a − k2B exp(−k2a).
(10.17)

The condition that we actually have a bound proton–neutron combination is that∫∞
0 u2(r) dr = 1. This constraint can be met if we impose a boundary condition thatψ(r)
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FIGURE 10.1 A deuteron eigenfunction.

remain finite asr→∞. And this, in turn, means thatA= 0. Dividing the preceding pair
of equations (to cancelB), we obtain

tank1a =−
k1

k2
=−

√
E − V0

−E , (10.18)

a transcendental equation for the energyE with only certain discrete solutions. IfE is such
that Eq. (10.18) can be satisfied, our solutionsu1(r) andu2(r) can satisfy the boundary
conditions. If Eq. (10.18) is not satisfied,no acceptable solution exists. The values of
E for which Eq. (10.18) is satisfied are the eigenvalues; the corresponding functionsu1
andu2 (orψ ) are the eigenfunctions. For the deuteron, problem there is one (and only one)
negative value ofE satisfying Eq. (10.18); that is, the deuteron has one and only one bound
state.

Now, what happens ifE does not satisfy Eq. (10.18), that is, ifE 
= E0 is not an
eigenvalue? In graphical form, imagine thatE and thereforek1 are varied slightly. For
E =E1 <E0, k1 is reduced and sink1a has not turned down enough to match exp(−k2a).
The joining conditions, Eq. (10.17), requireA> 0 and the wave function goes to+∞ ex-
ponentially. ForE = E2 > E0, k1 is larger, sink1a peaks sooner and has descended more
rapidly atr = a. The joining conditions demandA< 0, and the wave function goes to−∞
exponentially. Only forE = E0, an eigenvalue, will the wave function have the required
negative exponential asymptotic behavior (see Fig. 10.1). �

Boundary Conditions

In the foregoing definition of eigenfunction, it was noted that the eigenfunctionuλ(x) was
required to satisfy certain imposed boundary conditions. The termboundary conditions
includes as a special case the concept ofinitial conditions . For instance, specifying the
initial positionx0 and the initial velocityv0 in some dynamical problem would correspond
to the Cauchy boundary conditions. The only difference in the present usage of boundary



628 Chapter 10 Sturm–Liouville Theory — Orthogonal Functions

conditions in these one-dimensional problems is that we are going to apply the conditions
onboth ends of the allowed range of the variable.

Usually the form of the differential equation or the boundary conditions on the solutions
will guarantee that at the ends of our interval (that is, at the boundary, as suggested by
Eq. (10.3)) the following products will vanish:

p(x)v∗(x)
du(x)

dx

∣∣∣∣
x=a

= 0 and p(x)v∗(x)
du(x)

dx

∣∣∣∣
x=b

= 0. (10.19)

Hereu(x) andv(x) are solutions of the particular ODE (Eq. (10.8)) being considered.
A reason for this particular form of Eq. (10.19) is suggested shortly. If we recall the radial
wave functionu of the hydrogen atom withu(0)= 0 anddu/dr ∼ e−kr → 0 asr→∞,

then both boundary conditions are satisfied. Similarly in the deuteron Example 10.1.2,
sink1r → 0 asr → 0 andd(e−k2r)/dr → 0 asr →∞, both boundary conditions are
obeyed. We can, however, work with a somewhat less restrictive set of boundary condi-
tions,

v∗pu′
∣∣
x=a = v∗pu′

∣∣
x=b, (10.20)

in whichu(x) andv(x) are solutions of the differential equation corresponding to the same
or to different eigenvalues. Equation (10.20) might well be satisfied if we were dealing with
a periodic physical system, such as a crystal lattice.

Equations (10.19) and (10.20) are written in terms ofv∗, complex conjugate. When the
solutions are real,v = v∗ and the asterisk may be ignored. However, in Fourier exponential
expansions and in quantum mechanics the functions will be complex and the complex
conjugate will be needed.

Example 10.1.3 INTEGRATION INTERVAL [a,b]

ForL= d2/dx2, a possible eigenvalue equation is

d2

dx2
u(x)+ n2u(x)= 0, (10.21)

with eigenfunctions

un = cosnx, vm = sinmx.

Equation (10.20) becomes

−nsinmx sinnx
∣∣b
a
= 0, or mcosmx cosnx

∣∣b
a
= 0,

interchangingun andvm. Since sinmx and cosnx are periodic with period 2π (for n and
m integral), Eq. (10.20) is clearly satisfied ifa = x0 andb = x0 + 2π . If a problem pre-
scribes a different interval, the eigenfunctions and eigenvalues will change along with the
boundary conditions. The functions must always be chosen so that the boundary condi-
tions (Eq. (10.20) etc.) are satisfied. For this case (Fourier series) the usual choices are
x0 = 0 leading to(0,2π) andx0 =−π leading to(−π,π). Here and throughout the fol-
lowing several chaptersthe orthogonality interval is so that the boundary conditions
(Eq. (10.20))will be satisfied. The interval[a, b] and the weighting factorw(x) for the
most commonly encountered second-order differential equations are listed in Table 10.2.�



10.1 Self-Adjoint ODEs 629

Table 10.2

Equation a b w(x)

Legendre −1 1 1
Shifted Legendre 0 1 1
Associated Legendre −1 1 1
Chebyshev I −1 1 (1− x2)−1/2

Shifted Chebyshev I 0 1 [x(1− x)]−1/2

Chebyshev II −1 1 (1− x2)1/2

Laguerre 0 ∞ e−x
Associated Laguerre 0 ∞ xke−x

Hermite −∞ ∞ e−x
2

Simple harmonic oscillator 0 2π 1
−π π 1

1. The orthogonality interval[a, b] is determined by the boundary condi-
tions of Section 10.1.
2. The weighting function is established by putting the ODE in self-
adjoint form.

Hermitian Operators

We now prove an important property of the self-adjoint, second-order differential operator
(Eq. (10.8)), in conjunction with solutionsu(x) andv(x) that satisfy boundary conditions
given by Eq. (10.20). This is motivated by applications in quantum mechanics.

By integratingv∗ (complex conjugate) times the second-order self-adjoint differential
operatorL (operating onu) over the rangea ≤ x ≤ b, we obtain

∫ b

a

v∗Ludx =
∫ b

a

v∗(pu′)′ dx +
∫ b

a

v∗qudx (10.22)

using Eq. (10.6). Integrating by parts, we have
∫ b

a

v∗(pu′)′ dx = v∗pu′
∣∣b
a
−
∫ b

a

v∗ ′pu′ dx. (10.23)

The integrated part vanishes on application of the boundary conditions (Eq. (10.20)). Inte-
grating the remaining integral by parts a second time, we have

−
∫ b

a

v∗ ′pu′ dx =−v∗′pu
∣∣b
a
+
∫ b

a

u(pv∗ ′)′ dx. (10.24)

Again, the integrated part vanishes in an application of Eq. (10.20). A combination of
Eqs. (10.22) to (10.24) gives us

∫ b

a

v∗Ludx =
∫ b

a

u(Lv)∗ dx. (10.25)

This property, given by Eq. (10.25), is expressed by saying that the operatorL is Her-
mitian with respect to the functionsu(x) andv(x), which satisfy the boundary conditions
specified by Eq. (10.20). Note that if this Hermitian property follows from self-adjointness
in a Hilbert space, then it includes that boundary conditions are imposed on all functions
of that space.
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Hermitian Operators in Quantum Mechanics

The proceeding development in this section has focused on the classical second-order dif-
ferential operators of mathematical physics. Generalizing our Hermitian operator theory
as required in quantum mechanics, we have an extension: The operators need be neither
second-order differential operators nor real.px =−ih̄(∂/∂x) will be a Hermitian operator.
We simply assume (as is customary in quantum mechanics) that the wave functions satisfy
appropriate boundary conditions: vanishing sufficiently strongly at infinity or having peri-
odic behavior (as in a crystal lattice, or unit intensity for scattering problems). The operator
L is calledHermitian if

∫
ψ∗1Lψ2dτ =

∫
(Lψ1)

∗ψ2dτ. (10.26)

Apart from the simple extension to complex quantities, this definition is identical with
Eq. (10.25).

Theadjoint A† of an operatorA is defined by

∫
ψ∗1A

†ψ2dτ ≡
∫

(Aψ1)
∗ψ2dτ. (10.27)

This generalizes our classical, second-derivative-operator–oriented definition, Eq. (10.5).
Here the adjoint is defined in terms of the resultant integral, with theA† as part of the
integrand. Clearly, ifA = A† (self-adjoint) and satisfies the aforementioned boundary
conditions, thenA is Hermitian.

Theexpectation valueof an operatorL is defined as

〈L〉 =
∫

ψ∗Lψ dτ. (10.28a)

In the framework of quantum mechanics〈L〉 corresponds to the result of a measurement
of the physical quantity represented byL when the physical system is in a state described
by the wave functionψ . If we requireL to be Hermitian, it is easy to show that〈L〉 is
real (as would be expected from a measurement in a physical theory). Taking the complex
conjugate of Eq. (10.28a), we obtain

〈L〉∗ =
[∫

ψ∗Lψ dτ

]∗
=
∫

ψL∗ψ∗ dτ.

Rearranging the factors in the integrand, we have

〈L〉∗ =
∫

(Lψ)∗ψ dτ.

Then, applying our definition of Hermitian operator, Eq. (10.26), we get

〈L〉∗ =
∫

ψ∗Lψ dτ = 〈L〉, (10.28b)

or 〈L〉 is real. It is worth noting thatψ is not necessarily an eigenfunction ofL.
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Exercises

10.1.1 Show that Laguerre’s ODE, Eq. (13.52), may be put into self-adjoint form by multiply-
ing by e−x and thatw(x)= e−x is the weighting function.

10.1.2 Show that the Hermite ODE, Eq. (13.10), may be put into self-adjoint form by multi-
plying by e−x

2
and that this givesw(x)= e−x

2
as the appropriate density function.

10.1.3 Show that the Chebyshev (type I) ODE, Eq. (13.100), may be put into self-adjoint form
by multiplying by (1− x2)−1/2 and that this givesw(x)= (1− x2)−1/2 as the appro-
priate density function.

10.1.4 Show the following when the linear second-order differential equation is expressed in
self-adjoint form:

(a) The Wronskian is equal to a constant divided by the initial coefficientp:

W(x)= C

p(x)
.

(b) A second solution is given by

y2(x)= Cy1(x)

∫ x dt

p(t)[y1(t)]2
.

10.1.5 Un(x), the Chebyshev polynomial (type II), satisfies the ODE, Eq. (13.101),

(
1− x2)U ′′n (x)− 3xU ′n(x)+ n(n+ 2)Un(x)= 0.

(a) Locate the singular points that appear in the finite plane, and show whether they
are regular or irregular.

(b) Put this equation in self-adjoint form.
(c) Identify the complete eigenvalue.
(d) Identify the weighting function.

10.1.6 For the very special caseλ = 0 andq(x) = 0 the self-adjoint eigenvalue equation be-
comes

d

dx

[
p(x)

du(x)

dx

]
= 0,

satisfied by

du

dx
= 1

p(x)
.

Use this to obtain a “second” solution of the following:

(a) Legendre’s equation,
(b) Laguerre’s equation,
(c) Hermite’s equation.
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ANS. (a)u2(x)=
1

2
ln

1+ x

1− x
,

(b) u2(x)− u2(x0)=
∫ x

x0

et
dt

t
,

(c) u2(x)=
∫ x

0
et

2
dt .

These second solutions illustrate the divergent behavior usually found in a second solu-
tion.
Note. In all three casesu1(x)= 1.

10.1.7 Given that Lu = 0 and gLu is self-adjoint, show that for the adjoint operator
L̄, L̄(gu)= 0.

10.1.8 For a second-order differential operatorL that is self-adjoint show that

∫ b

a

[y2Ly1− y1Ly2]dx = p(y′1y2− y1y
′
2)
∣∣b
a
.

10.1.9 Show that if a functionψ is required to satisfy Laplace’s equation in a finite region
of space and to satisfy Dirichlet boundary conditions over the entire closed bounding
surface, thenψ is unique.
Hint. One of the forms of Green’s theorem, Section 1.11, will be helpful.

10.1.10 Consider the solutions of the Legendre, Chebyshev, Hermite, and Laguerre equations to
be polynomials. Show that the ranges of integration that guarantee that the Hermitian
operator boundary conditions will be satisfied are

(a) Legendre[−1,1], (b) Chebyshev[−1,1],
(c) Hermite(−∞,∞), (d) Laguerre[0,∞).

10.1.11 Within the framework of quantum mechanics (Eqs. (10.26) and following), show that
the following are Hermitian operators:

(a) momentump=−ih̄∇ ≡−i h

2π
∇

(b) angular momentumL =−ih̄r ×∇ ≡−i h
2π r ×∇.

Hint. In Cartesian formL is a linear combination of noncommuting Hermitian opera-
tors.

10.1.12 (a) A is a non-Hermitian operator. In the sense of Eqs. (10.26) and (10.27), show that

A+A† and i(A−A†)

are Hermitian operators.
(b) Using the preceding result, show that every non-Hermitian operator may be written

as a linear combination of two Hermitian operators.
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10.1.13 U and V are two arbitrary operators, not necessarily Hermitian. In the sense of
Eq. (10.27), show that

(UV )†= V †U†.

Note the resemblance to Hermitian adjoint matrices.
Hint. Apply the definition of adjoint operator, Eq. (10.27).

10.1.14 Prove that the product of two Hermitian operators is Hermitian (Eq. (10.26)) if and only
if the two operators commute.

10.1.15 A andB are noncommuting quantum mechanical operators:

AB −BA= iC.

Show thatC is Hermitian. Assume that appropriate boundary conditions are satisfied.

10.1.16 The operatorL is Hermitian. Show that〈L2〉 ≥ 0.

10.1.17 A quantum mechanical expectation value is defined by

〈A〉 =
∫

ψ∗(x)Aψ(x)dx,

whereA is a linear operator. Show that demanding that〈A〉 be real means thatA must
be Hermitian — with respect toψ(x).

10.1.18 From the definition of adjoint, Eq. (10.27), show thatA†† = A in the sense that∫
ψ∗1A

††ψ2dτ =
∫
ψ∗1Aψ2dτ . The adjoint of the adjoint is the original operator.

Hint. The functionsψ1 andψ2 of Eq. (10.27) represent a class of functions. The sub-
scripts 1 and 2 may be interchanged or replaced by other subscripts.

10.1.19 The Schrödinger wave equation for the deuteron (with a Woods–Saxon potential) is

− h̄2

2M
∇2ψ + V0

1+ exp[(r − r0)/a]
ψ =Eψ.

HereE = −2.224 MeV, a is a “thickness parameter,” 0.4× 10−13 cm. Expressing
lengths in fermis (10−13 cm) and energies in million electron volts (MeV), we may
rewrite the wave equation as

d2

dr2
(rψ)+ 1

41.47

[
E − V0

1+ exp((r − r0)/a)

]
(rψ)= 0.

E is assumed known from experiment. The goal is to findV0 for a specified value of
r0 (say,r0 = 2.1). If we let y(r) = rψ(r), theny(0) = 0 and we takey′(0) = 1. Find
V0 such thaty(20.0) = 0. (This should bey(∞), but r = 20 is far enough beyond the
range of nuclear forces to approximate infinity.)

ANS. Fora = 0.4 andr0= 2.1 fm,V0=−34.159 MeV.

10.1.20 Determine the nuclear potential well parameterV0 of Exercise 10.1.19 as a function of
r0 for r = 2.00(0.05)2.25 fermis. Express your results as a power law

|V0|rν0 = k.

Determine the exponentν and the constantk. This power-law formulation is useful for
accurate interpolation.
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10.1.21 In Exercise 10.1.19 it was assumed that 20 fermis was a good approximation to infinity.
Check on this by calculatingV0 for rψ(r)= 0 at (a)r = 15, (b)r = 20, (c)r = 25, and
(d) r = 30. Sketch your results. Taker0= 2.10 anda = 0.4 (fermis).

10.1.22 For a quantum particle moving in a potential well,V (x) = 1
2mω2x2, the Schrödinger

wave equation is

− h̄2

2m

d2ψ(x)

dx2
+ 1

2
mω2x2ψ(x)=Eψ(x),

or

d2ψ(z)

dz2
− z2ψ(z)=−2E

h̄ω
ψ(z),

wherez = (mω/h̄)1/2x. Since this operator is even, we expect solutions of definite
parity. For the initial conditions that follow, integrate out from the origin and determine
the minimum constant 2E/h̄ω that will lead toψ(∞)= 0 in each case. (You may take
z= 6 as an approximation of infinity.)

(a) For an even eigenfunction,

ψ(0)= 1, ψ ′(0)= 0.

(b) For an odd eigenfunction,

ψ(0)= 0, ψ ′(0)= 1.

Note. Analytical solutions appear in Section 13.1.

10.2 HERMITIAN OPERATORS

Hermitian, or self-adjoint, operators with appropriate boundary conditions have three prop-
erties that are of extreme importance in physics, both classical and quantum.

1. The eigenvalues of a Hermitian operator are real.
2. A Hermitian operator possesses an orthogonal set of eigenfunctions.
3. The eigenfunctions of a Hermitian operator form a complete set.6

Real Eigenvalues

We proceed to prove the first two of these three properties. Let

Lui + λiwui = 0. (10.29)

6This third property is not universal. Itdoeshold for our linear, second-order differential operators in Sturm–Liouville (self-
adjoint) form. Completeness is defined and discussed in Section 10.4. A proof that the eigenfunctions of our linear, second-order,
self-adjoint, differential equations form a complete set may be developed from the calculus of variations of Section 17.8.
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Assuming the existence of a second eigenvalue and eigenfunction,

Luj + λjwuj = 0. (10.30)

Then, taking the complex conjugate, we obtain

L∗u∗j + λ∗jwu∗j = 0. (10.31)

Herew(x) ≥ 0 is a real function. But we permitλk , the eigenvalues, anduk , the eigen-
functions, to be complex. Multiplying Eq. (10.29) byu∗j and Eq. (10.31) byui and then
subtracting, we have

u∗jLui − uiL
∗u∗j = (λ∗j − λi)wuiu

∗
j . (10.32)

We integrate over the rangea ≤ x ≤ b:

∫ b

a

u∗jLui dx −
∫ b

a

uiL
∗u∗j dx = (λ∗j − λi)

∫ b

a

uiu
∗
jwdx. (10.33)

SinceL is Hermitian, the left-hand side vanishes by Eq. (10.26) and

(λ∗j − λi)

∫ b

a

uiu
∗
jwdx = 0. (10.34)

If i = j , the integral cannot vanish [w(x) > 0, apart from isolated points], except in the
trivial caseui = 0. Hence the coefficient(λ∗i − λi) must be zero,

λ∗i = λi, (10.35)

which says that the eigenvalue is real. Sinceλi can represent any one of the eigenvalues,
this proves the first property. This is an exact analog of the nature of the eigenvalues of real
symmetric (and of Hermitian) matrices (compare Section 3.5).

The analog of the spectral decomposition of a real symmetric matrix in Section 3.5 for
a Hermitian operatorL with a discrete set of eigenvaluesλi takes the form

L=
∑

i

λi |ui〉〈ui |, f (L)=
∑

i

f (λi)|ui〉〈ui |

with eigenvectors|ui〉 and any infinitely differentiable functionf .
Real eigenvalues of Hermitian operators have a fundamental significance in quantum

mechanics. In quantum mechanics the eigenvalues correspond to precisely measurable
quantities, such as energy and angular momentum. With the theory formulated in terms
of Hermitian operators, this proof of real eigenvalues guarantees that the theory will pre-
dict real numbers for these measurable physical quantities. In Section 17.8 it will be seen
that the set of real eigenvalues has a lower bound (for nonrelativistic problems).
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Orthogonal Eigenfunctions

If we now takei 
= j and if λi 
= λj in Eq. (10.34), the integral of the product of the two
different eigenfunctions must vanish:

∫ b

a

uiu
∗
jwdx = 0. (10.36)

This condition, calledorthogonality, is the continuum analog of the vanishing of a scalar
product of two vectors.7 We say that the eigenfunctionsui(x) anduj (x) are orthogonal
with respect to the weighting functionw(x) over the interval[a, b]. Equation (10.36) con-
stitutes a partial proof of the second property of our Hermitian operators. Again, the precise
analogy with matrix analysis should be noted. Indeed, we can establish a one-to-one corre-
spondence between this Sturm–Liouville theory of differential equations and the treatment
of Hermitian matrices. Historically, this correspondence has been significant in establishing
the mathematical equivalence of matrix mechanics developed by Heisenberg and wave me-
chanics developed by Schrödinger. Today, the two diverse approaches are merged into the
theory of quantum mechanics, and the mathematical formulation that is more convenient
for a particular problem is used for that problem. Actually the mathematical alternatives do
not end here. Integral equations, Chapter 16, form a third equivalent and sometimes more
convenient or more powerful approach.

This proof of orthogonality is not quite complete. There is a loophole, because we may
haveui 
= uj but still haveλi = λj . Such a case is labeleddegenerate. Illustrations of
degeneracy are given at the end of this section. Ifλi = λj , the integral in Eq. (10.34) need
not vanish. This means that linearly independent eigenfunctions corresponding to the same
eigenvalue are not automatically orthogonal and that some other method must be sought
to obtain an orthogonal set. Although the eigenfunctions in this degenerate case may not
be orthogonal, they can always be made orthogonal. One method is developed in the next
section. See also Eq. (4.21) for degeneracy due to symmetry.

We shall see in succeeding chapters that it is just as desirable to have a given set of
functions orthogonal as it is to have an orthogonal coordinate system. We can work with
nonorthogonal functions, but they are likely to prove as messy as an oblique coordinate
system.

Example 10.2.1 FOURIER SERIES — ORTHOGONALITY

To continue Example 10.1.3, the eigenvalue equation, Eq. (10.21),

d2

dx2
y(x)+ n2y(x)= 0,

7From the definition of Riemann integral,

∫ b

a
f (x)g(x)dx = lim

N→∞

( N∑

i=1

f (xi )g(xi )�x

)
,

wherex0= a, xN = b, andxi − xi−1=�x. If we interpretf (xi ) andg(xi ) as theith components of anN -component vector,
then this sum (and therefore this integral) corresponds directly to a scalar product of vectors, Eq. (1.24). The vanishing of the
scalar product is the condition fororthogonality of the vectors — or functions.
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may describe a quantum mechanical particle in a box, or perhaps a vibrating violin
string, a classical harmonic oscillator with degenerate eigenfunctions — cosnx,sinnx —
and eigenvaluesn2, n an integer.

With n real (here taken to be integral), the orthogonality integrals become

(a)
∫ x0+2π

x0

sinmx sinnx dx = Cnδnm,

(b)
∫ x0+2π

x0

cosmx cosnx dx =Dnδnm,

(c)
∫ x0+2π

x0

sinmx cosnx dx = 0.

For an interval of 2π the preceding analysis guarantees the Kronecker delta in (a) and
(b) but not the zero in (c) because (c) may involve degenerate eigenfunctions. However,
inspection shows that (c) always vanishes for all integralm andn.

Our Sturm–Liouville theory says nothing about the values ofCn andDn because homo-
geneous ODEs have solutions whose scaling is arbitrary. Actual calculation yields

Cn =
{
π, n 
= 0,

0, n= 0,
Dn =

{
π, n 
= 0,

2π, n= 0.

These orthogonality integrals form the basis of the Fourier series developed in Chap-
ter 14. �

Example 10.2.2 EXPANSION IN ORTHOGONAL EIGENFUNCTIONS—SQUARE WAVE

The property of completeness (see Eq. (1.190) and Section 10.4) means that certain classes
of functions (for example, sectionally or piecewise continuous) may be represented by a
series of orthogonal eigenfunctions. Consider the square-wave shape

f (x)=





h

2
, 0< x < π,

−h

2
, −π < x < 0.

(10.37)

This function may be expanded in any of a variety of eigenfunctions — Legendre, Hermite,
Chebyshev, and so on. The choice of eigenfunction is made on the basis of convenience or
an application. To illustrate the expansion technique, let us choose the eigenfunctions of
Example 10.2.1, cosnx and sinnx.

The eigenfunction series is conveniently (and conventionally) written as

f (x)= a0

2
+

∞∑

m=1

(am cosmx + bm sinmx).

Upon multiplyingf (t) by cosnt or sinnt and integrating, only thenth term survives, by
the orthogonality integrals of Example 10.2.1, thus yielding the coefficients

an =
1

π

∫ π

−π
f (t)cosnt dt, bn =

1

π

∫ π

−π
f (t)sinnt dt, n= 0,1,2 . . . .
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Direct substitution of±h/2 for f (t) yields

an = 0,

which is expected here because of the antisymmetry,f (−x)=−f (x), and

bn =
h

nπ
(1− cosnπ)=





0, n even,

2h

nπ
, n odd.

Hence the eigenfunction (Fourier) expansion of the square wave is

f (x)= 2h

π

∞∑

n=0

sin(2n+ 1)x

2n+ 1
. (10.38)

Additional examples, using other eigenfunctions, appear in Chapters 11 and 12. �

Degeneracy

The concept of degeneracy was introduced earlier. IfN linearly independent eigenfunc-
tions correspond to the same eigenvalue, the eigenvalue is said to beN -fold degenerate.
A particularly simple illustration is provided by the eigenvalues and eigenfunctions of the
classical harmonic oscillator equation, Example 10.2.1. For each eigenvaluen2, there are
two possible solutions: sinnx and cosnx (and any linear combination,n an integer). We
say the eigenfunctions are degenerate or the eigenvalue is degenerate.

A more involved example is furnished by the physical system of an electron in an atom
(nonrelativistic treatment, spin neglected). From the Schrödinger equation, Eq. (13.84) for
hydrogen, the total energy of the electron is our eigenvalue. We may label itEnLM by using
the quantum numbersn,L, andM as subscripts. For each distinct set of quantum numbers
(n,L,M) there is a distinct, linearly independent eigenfunctionψnLM(r, θ,ϕ). For hydro-
gen, the energyEnLM is independent ofL andM , reflecting the spherical (andSO(4))
symmetry of the Coulomb potential. With 0≤ L ≤ n − 1 and−L ≤M ≤ L, the eigen-
value isn2-fold degenerate (including the electron spin would raise this to 2n2). In atoms
with more than one electron, the electrostatic potential is no longer a simpler−1 potential.
The energy depends onL as well as onn, althoughnot onM;EnLM is still (2L+ 1)-fold
degenerate. This degeneracy — due to rotational invariance of the potential — may be re-
moved by applying an external magnetic field, breaking spherical symmetry and giving rise
to the Zeeman effect. As a rule, the eigenfunctions form a Hilbert space, that is, a complete
vector space of functions with a metric defined by the inner product (see Section 10.4 for
more details and examples).

Often an underlying symmetry, such as rotational invariance, is causing the degenera-
cies. States belonging to the same energy eigenvalue then will form a multiplet or repre-
sentation of the symmetry group. The powerful group-theoretical methods are treated in
Chapter 4 in some detail.
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Exercises

10.2.1 The functionsu1(x) andu2(x) are eigenfunctions of the same Hermitian operator but
for distinct eigenvaluesλ1 andλ2. Prove thatu1(x) andu2(x) are linearly independent.

10.2.2 (a) The vectorsen are orthogonal to each other:en · em = 0 for n 
=m. Show that they
are linearly independent.

(b) The functionsψn(x) are orthogonal to each other over the interval[a, b] and with
respect to the weighting functionw(x). Show that theψn(x) are linearly indepen-
dent.

10.2.3 Given that

P1(x)= x and Q0(x)=
1

2
ln

(
1+ x

1− x

)

are solutions of Legendre’s differential equation corresponding to different eigenval-
ues:

(a) Evaluate their orthogonality integral

∫ 1

−1

x

2
ln

(
1+ x

1− x

)
dx.

(b) Explain why these two functions are not orthogonal, that is, why the proof of
orthogonality does not apply.

10.2.4 T0(x)= 1 andV1(x)= (1− x2)1/2 are solutions of the Chebyshev differential equation
corresponding to different eigenvalues. Explain, in terms of the boundary conditions,
why these two functions are not orthogonal.

10.2.5 (a) Show that the first derivatives of the Legendre polynomials satisfy a self-adjoint
differential equation with eigenvalueλ= n(n+ 1)− 2.

(b) Show that these Legendre polynomial derivatives satisfy an orthogonality relation

∫ 1

−1
P ′m(x)P

′
n(x)

(
1− x2)dx = 0, m 
= n.

Note. In Section 12.5,(1− x2)1/2P ′n(x) will be labeled an associated Legendre polyno-
mial,P 1

n (x).

10.2.6 A set of functionsun(x) satisfies the Sturm–Liouville equation

d

dx

[
p(x)

d

dx
un(x)

]
+ λnw(x)un(x)= 0.

The functionsum(x) andun(x) satisfy boundary conditions that lead to orthogonality.
The corresponding eigenvaluesλm andλn are distinct. Prove that for appropriate bound-
ary conditions,u′m(x) andu′n(x) are orthogonal withp(x) as a weighting function.



640 Chapter 10 Sturm–Liouville Theory — Orthogonal Functions

10.2.7 A linear operatorA hasn distinct eigenvalues andn corresponding eigenfunctions:
Aψi = λiψi . Show that then eigenfunctions are linearly independent.A is not neces-
sarily Hermitian.
Hint. Assume linear dependence — thatψn =

∑n−1
i=1 aiψi . Use this relation and the

operator–eigenfunction equation first in one order and then in the reverse order. Show
that a contradiction results.

10.2.8 (a) Show that the Liouville substitution

u(x)= v(ξ)
[
p(x)w(x)

]−1/4
, ξ =

∫ x

a

[
w(t)

p(t)

]1/2

dt

transforms

d

dx

[
p(x)

d

dx
u

]
+
[
λw(x)− q(x)

]
u(x)= 0

into

d2v

dξ2
+
[
λ−Q(ξ)

]
v(ξ)= 0,

where

Q(ξ)= q(x(ξ))

w(x(ξ))
+
[
p
(
x(ξ)

)
w
(
x(ξ)

)]−1/4 d2

dξ2
(pw)1/4.

(b) If v1(ξ) andv2(ξ) are obtained fromu1(x) andu2(x), respectively, by a Liouville
substitution, show that

∫ b

a
w(x)u1u2dx is transformed into

∫ c

0 v1(ξ)v2(ξ) dξ with

c=
∫ b

a
[w
p
]1/2dx.

10.2.9 The ultraspherical polynomialsC(α)
n (x) are solutions of the differential equation

{
(1− x2)

d2

dx2
− (2α + 1)x

d

dx
+ n(n+ 2α)

}
C(α)
n (x)= 0.

(a) Transform this differential equation into self-adjoint form.
(b) Show that theC(α)

n (x) are orthogonal for differentn. Specify the interval of inte-
gration and the weighting factor.

Note. Assume that your solutions are polynomials.

10.2.10 With L not self-adjoint,

Lui + λiwui = 0

and

L̄vj + λjwvj = 0.


