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(a) u(x0)∼−
2

πx2
0

∫ ∞

0
xv(x) dx,

(b) v(x0)∼
2

πx0

∫ ∞

0
u(x)dx.

In quantum mechanics relations of this form are often calledsum rules.

7.2.5 (a) Given the integral equation

1

1+ x2
0

= 1

π
P

∫ ∞

−∞

u(x)

x − x0
dx,

use Hilbert transforms to determineu(x0).
(b) Verify that the integral equation of part (a) is satisfied.
(c) Fromf (z)|y=0= u(x)+ iv(x), replacex by z and determinef (z). Verify that the

conditions for the Hilbert transforms are satisfied.
(d) Are the crossing conditions satisfied?

ANS. (a)u(x0)=
x0

1+ x2
0

, (c) f (z)= (z+ i)−1.

7.2.6 (a) If the real part of the complex index of refraction (squared) is constant (no optical
dispersion), show that the imaginary part is zero (no absorption).

(b) Conversely, if there is absorption, show that there must be dispersion. In other
words, if the imaginary part ofn2− 1 is not zero, show that the real part ofn2− 1
is not constant.

7.2.7 Givenu(x) = x/(x2+ 1) andv(x)=−1/(x2+ 1), show by direct evaluation of each
integral that

∫ ∞

−∞

∣∣u(x)
∣∣2dx =

∫ ∞

−∞

∣∣v(x)
∣∣2dx.

ANS.
∫ ∞

−∞

∣∣u(x)
∣∣2dx =

∫ ∞

−∞

∣∣v(x)
∣∣2dx = π

2
.

7.2.8 Takeu(x) = δ(x), a delta function, andassumethat the Hilbert transform equations
hold.

(a) Show that

δ(w)= 1

π2

∫ ∞

−∞

dy

y(y −w)
.

(b) With changes of variablesw = s− t andx = s− y, transform theδ representation
of part (a) into

δ(s − t)= 1

π2

∫ ∞

−∞

dx

(x − s)(s − t)
.

Note. Theδ function is discussed in Section 1.15.
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7.2.9 Show that

δ(x)= 1

π2

∫ ∞

−∞

dt

t (t − x)

is a valid representation of the delta function in the sense that
∫ ∞

−∞
f (x)δ(x) dx = f (0).

Assume thatf (x) satisfies the condition for the existence of a Hilbert transform.
Hint. Apply Eq. (7.84) twice.

7.3 METHOD OF STEEPEST DESCENTS

Analytic Landscape

In analyzing problems in mathematical physics, one often finds it desirable to know the
behavior of a function for large values of the variable or some parameters, that is, the
asymptotic behavior of the function. Specific examples are furnished by the gamma func-
tion (Chapter 8) and various Bessel functions (Chapter 11). All these analytic functions are
defined by integrals

I (s)=
∫

C

F(z, s) dz, (7.100)

whereF is analytic inz and depends on a real parameters. We write F(z) whenever
possible.

So far we have evaluated such definite integrals of analytic functions along the real axis
by deforming the pathC to C′ in the complex plane, so|F | becomes small for allz onC′.
This method succeeds as long as only isolated poles occur in the area betweenC andC′.
The poles are taken into account by applying the residue theorem of Section 7.1. The
residues give a measure of the simple poles, where|F | →∞, which usually dominate and
determine the value of the integral.

The behavior of the integral in Eq. (7.100) clearly depends on the absolute value|F | of
the integrand. Moreover, the contours of|F | often become more pronounced ass becomes
large. Let us focus on a plot of|F(x+ iy)|2=U2(x, y)+V 2(x, y), rather than the real part
ℜF =U and the imaginary partℑF = V separately. Such a plot of|F |2 over the complex
plane is called theanalytic landscape, after Jensen, who, in 1912, proved that it hasonly
saddle points and troughs but no peaks. Moreover, the troughs reach down all the way
to the complex plane. In the absence of (simple) poles,saddle pointsare next in line to
dominate the integral in Eq. (7.100). Hence the namesaddle point method. At a saddle
point the real (or imaginary) partU of F has a local maximum, which implies that

∂U

∂x
= ∂U

∂y
= 0,

and therefore by the use of the Cauchy–Riemann conditions of Section 6.2,

∂V

∂x
= ∂V

∂y
= 0,
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so V has a minimum, or vice versa, andF ′(z) = 0. Jensen’s theorem preventsU and
V from having either a maximum or a minimum. See Fig. 7.18 for a typical shape (and
Exercises 6.2.3 and 6.2.4).Our strategy will be to choose the pathC so that it runs over
the saddle point, which gives the dominant contribution, and in the valleys elsewhere.
If there are several saddle points, we treat each alike, and their contributions will add to
I (s→∞).

To prove that there are no peaks, assume there is one atz0. That is,|F(z0)|2 > |F(z)|2
for all z of a neighborhood|z− z0| ≤ r . If

F(z)=
∞∑

n=0

an(z− z0)
n

is the Taylor expansion atz0, the mean valuem(F) on the circlez = z0 + r exp(iϕ) be-
comes

m(F) ≡ 1

2π

∫ 2π

0

∣∣F
(
z0+ reiϕ

)∣∣2dϕ

= 1

2π

∫ 2π

0

∞∑

m,n=0

a∗manr
m+nei(n−m)ϕ dϕ

=
∞∑

n=0

|an|2r2n ≥ |a0|2=
∣∣F(z0)

∣∣2, (7.101)

using orthogonality,12π
∫ 2π

0 expi(n−m)ϕ dϕ = δnm. Sincem(F) is the mean value of|F |2
on the circle of radiusr , there must be a pointz1 on it so that|F(z1)|2≥m(F)≥ |F(z0)|2,
which contradicts our assumption. Hence there can be no such peak.

Next, let us assume there is a minimum atz0 so that 0< |F(z0)|2 < |F(z)|2 for all z of
a neighborhood ofz0. In other words, the dip in the valley does not go down to the complex
plane. Then|F(z)|2 > 0 and, since 1/F (z) is analytic there, it has a Taylor expansion and
z0 would be a peak of 1/|F(z)|2, which is impossible. This proves Jensen’s theorem. We
now turn our attention back to the integral in Eq. (7.100).

Saddle Point Method

Since each saddle pointz0 necessarily lies above the complex plane, that is,|F(z0)|2 > 0,
we write F in exponential form,ef (z,s), in its vicinity without loss of generality. Note
that having no zero in the complex plane is a characteristic property of the exponential
function. Moreover, any saddle point withF(z)= 0 becomes a trough of|F(z)|2 because
|F(z)|2 ≥ 0. A case in point is the functionz2 at z = 0, whered(z2)/dz = 2z = 0. Here
z2= (x+ iy)2= x2− y2+2ixy, and 2xy has a saddle point atz= 0, and so hasx2− y2,

but |z|4 has a trough there.
At z0 the tangential plane is horizontal; that is,∂F

∂z
|z=z0 = 0, or equivalently∂f

∂z
|z=z0 = 0.

This condition locates the saddle point.Our next goal is to determine thedirection of
steepest descent.At z0, f has a power series

f (z)= f (z0)+
1

2
f ′′(z0)(z− z0)

2+ · · · , (7.102)
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FIGURE 7.18 A saddle point.

or

f (z)= f (z0)+
1

2

(
f ′′(z0)+ ε

)
(z− z0)

2, (7.103)

upon collecting all higher powers in the (small)ε. Let us takef ′′(z0) 
= 0 for simplicity.
Then

f ′′(z0)(z− z0)
2=−t2, t real, (7.104)

defines a line throughz0 (saddle pointaxis in Fig. 7.18). Atz0, t = 0. Along the axis
ℑf ′′(z0)(z − z0)

2 is zero andv = ℑf (z) ≈ ℑf (z0) is constant ifε in Eq. (7.103) is ne-
glected. Equation (7.104) can also be expressed in terms of angles,

arg(z− z0)=
π

2
− 1

2
argf ′′(z0)= constant. (7.105)

Since|F(z)|2 = exp(2ℜf ) varies monotonically withℜf , |F(z)|2 ≈ exp(−t2) falls off
exponentially from its maximum att = 0 along this axis. Hence the namesteepest descent.
The line throughz0 defined by

f ′′(z0)(z− z0)
2=+t2 (7.106)

is orthogonal to this axis (dashedin Fig. 7.18), which is evident from its angle,

arg(z− z0)=−
1

2
argf ′′(z0)= constant, (7.107)

when compared with Eq. (7.105). Here|F(z)|2 grows exponentially.
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The curvesℜf (z) = ℜf (z0) go throughz0, so ℜ[(f ′′(z0) + ε)(z − z0)
2] = 0, or

(f ′′(z0)+ ε)(z− z0)
2= it for real t . Expressing this in angles as

arg(z− z0) =
π

4
− 1

2
arg
(
f ′′(z0)+ ε

)
, t > 0, (7.108a)

arg(z− z0) = −
π

4
− 1

2
arg
(
f ′′(z0)+ ε

)
, t < 0, (7.108b)

and comparing with Eqs. (7.105) and (7.107) we note that these curves (dot-dashed in
Fig. 7.18) divide the saddle point region into four sectors, two withℜf (z) > ℜf (z0)

(hence|F(z)| > |F(z0)|), shown shaded in Fig. 7.18, and two withℜf (z) < ℜf (z0)

(hence|F(z)|< |F(z0)|). They are at±π
4 angles from the axis. Thus, the integration path

has to avoid the shaded areas, where|F | rises. If a path is chosen to run up the slopes above
the saddle point, the large imaginary part off (z) leads to rapid oscillations ofF(z)= ef (z)

and cancelling contributions to the integral.
So far, ourtreatment has been general, except forf ′′(z0) 
= 0, which can be relaxed.

Now we are ready tospecialize the integrandF further in order to tie up the path selection
with the asymptotic behavior ass→∞.

We assume thats appears linearly in the exponent, that is, we replace expf (z, s)→
exp(sf (z)). This dependence ons ensures that the saddle point contribution atz0 grows
with s→∞ providing steep slopes, as is the case in most applications in physics. In order
to account for the region far away from the saddle point that is not influenced bys, we
include another analytic function,g(z), which varies slowly near the saddle point and is
independent ofs.

Altogether, then,our integral has the more appropriate and specific form

I (s)=
∫

C

g(z)esf (z) dz. (7.109)

The path of steepest descent is the saddle point axis when we neglect the higher-order
terms,ε, in Eq. (7.103). Withε, the path of steepest descent is the curve close to the axis
within the unshaded sectors, wherev = ℑf (z) is strictly constant, whileℑf (z) is only
approximately constant on the axis. We approximateI (s) by the integral along the piece
of the axis inside the patch in Fig. 7.18, where (compare with Eq. (7.104))

z= z0+ xeiα, α = π

2
− 1

2
argf ′′(z0), a ≤ x ≤ b. (7.110)

We find

I (s)≈ eiα
∫ b

a

g
(
z0+ xeiα

)
exp

[
sf
(
z0+ xeiα

)]
dx, (7.111a)

and the omitted part is small and can be estimated becauseℜ(f (z)− f (z0)) has an upper
negative bound,−R say, that depends on the size of the saddle point patch in Fig. 7.18
(that is, the values ofa, b in Eq. (7.110)) that we choose. In Eq. (7.111) we use the power
expansions

f
(
z0+ xeiα

)
= f (z0)+

1

2
f ′′(z0)e

2iαx2+ · · · ,
(7.111b)

g
(
z0+ xeiα

)
= g(z0)+ g′(z0)e

iαx + · · · ,
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and recall from Eq. (7.110) that

1

2
f ′′(z0)e

2iα =−1

2

∣∣f ′′(z0)
∣∣< 0.

We find for the leading term fors→∞:

I (s)= g(z0)e
sf (z0)+iα

∫ b

a

e−
1
2s|f ′′(z0)|x2

dx. (7.112)

Since the integrand in Eq. (7.112) is essentially zero whenx departs appreciably from
the origin, we letb→∞ anda→−∞. The small error involved is straightforward to
estimate. Noting that the remaining integral is just a Gauss error integral,

∫ ∞

−∞
e−

1
2a

2x2
dx = 1

a

∫ ∞

−∞
e−

1
2x

2
dx =

√
2π

a
,

we finally obtain

I (s)=
√

2πg(z0)e
sf (z0)eiα

|sf ′′(z0)|1/2
, (7.113)

where the phaseα was introduced in Eqs. (7.110) and (7.105).
A note of warning: We assumed that the only significant contribution to the integral

came from the immediate vicinity of the saddle point(s)z = z0. This condition must be
checked for each new problem (Exercise 7.3.5).

Example 7.3.1 ASYMPTOTIC FORM OF THE HANKEL FUNCTION H
(1)
ν (s)

In Section 11.4 it is shown that the Hankel functions, which satisfy Bessel’s equation, may
be defined by

H (1)
ν (s) = 1

πi

∫ ∞eiπ

C1,0
e(s/2)(z−1/z) dz

zν+1
, (7.114)

H (2)
ν (s) = 1

πi

∫ 0

C2,∞e−iπ
e(s/2)(z−1/z) dz

zν+1
. (7.115)

The contourC1 is the curve in the upper half-plane of Fig. 7.19. The contourC2 is in the
lower half-plane. We apply the method of steepest descents to the first Hankel function,
H

(1)
ν (s), which is conveniently in the form specified by Eq. (7.109), withf (z) given by

f (z)= 1

2

(
z− 1

z

)
. (7.116)

By differentiating, we obtain

f ′(z)= 1

2
+ 1

2z2
. (7.117)
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FIGURE 7.19 Hankel function contours.

Settingf ′(z)= 0, we obtain

z= i,−i. (7.118)

Hence there are saddle points atz=+i andz=−i. At z= i, f ′′(i)=−i, or argf ′′(i)=
−π/2, so the saddle point direction is given by Eq. (7.110) asα = π

2 + π
4 = 3

4π. For the

integral forH (1)
ν (s) we must choose the contour through the pointz=+i so that it starts at

the origin, moves out tangentially to the positive real axis, and then moves around through
the saddle point atz=+i in the direction given by the angleα = 3π/4 and then on out to
minus infinity, asymptotic with the negative real axis. The path of steepest ascent, which we
must avoid, has the phase−1

2 argf ′′(i)= π
4 , according to Eq. (7.107), and is orthogonal

to the axis, our path of steepest descent.
Direct substitution into Eq. (7.113) withα = 3π/4 now yields

H (1)
ν (s) = 1

πi

√
2πi−ν−1e(s/2)(i−1/i)e3πi/4

|(s/2)(−2/i3)|1/2

=
√

2

πs
e(iπ/2)(−ν−2)eisei(3π/4). (7.119)

By combining terms, we obtain

H (1)
ν (s)≈

√
2

πs
ei(s−ν(π/2)−π/4) (7.120)

as the leading term of the asymptotic expansion of the Hankel functionH
(1)
ν (s). Additional

terms, if desired, may be picked up from the power series off andg in Eq. (7.111b). The
other Hankel function can be treated similarly using the saddle point atz=−i. �

Example 7.3.2 ASYMPTOTIC FORM OF THE FACTORIAL FUNCTION Ŵ(1+ s)

In many physical problems, particularly in the field of statistical mechanics, it is desir-
able to have an accurate approximation of the gamma or factorial function of very large
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numbers. As developed in Section 8.1, the factorial function may be defined by the Euler
integral

Ŵ(1+ s)=
∫ ∞

0
ρse−ρ dρ = ss+1

∫ ∞

0
es(ln z−z) dz. (7.121)

Here we have made the substitutionρ = zs in order to convert the integral to the form
required by Eq. (7.109). As before, we assume thats is real and positive, from which it fol-
lows that the integrand vanishes at the limits 0 and∞. By differentiating thez-dependence
appearing in the exponent, we obtain

df (z)

dz
= d

dz
(ln z− z)= 1

z
− 1, f ′′(z)=− 1

z2
, (7.122)

which shows that the pointz= 1 is a saddle point and argf ′′(1)= arg(−1)= π. According
to Eq. (7.109) we let

z− 1= xeiα, α = π

2
− 1

2
argf ′′(1)= π

2
− π

2
= 0, (7.123)

with x small, to describe the contour in the vicinity of the saddle point. From this we see
that the direction of steepest descent is along the real axis, a conclusion that we could have
reached more or less intuitively.

Direct substitution into Eq. (7.113) withα = 0 now gives

Ŵ(1+ s)≈
√

2πss+1e−s

|s(−1−2)|1/2
. (7.124)

Thus the first term in the asymptotic expansion of the factorial function is

Ŵ(1+ s)≈
√

2πssse−s . (7.125)

This result is the first term in Stirling’s expansion of the factorial function. The method of
steepest descent is probably the easiest way of obtaining this first term. If more terms in
the expansion are desired, then the method of Section 8.3 is preferable. �

In the foregoing example the calculation was carried out by assumings to be real. This
assumption is not necessary. We may show (Exercise 7.3.6) that Eq. (7.125) also holds
when s is replaced by the complex variablew, provided only that the real part ofw be
required to be large and positive.

Asymptotic limits of integral representations of functions are extremely important in
many approximations and applications in physics:

∫

C

g(z)esf (z) dz∼
√

2πg(z0)e
sf (z0)eiα√

|sf ′′(z0)|
, f ′(z0)= 0.

The saddle point method is one method of choice for deriving them and belongs in the
toolkit of every physicist and engineer.
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Exercises

7.3.1 Using the method of steepest descents, evaluate the second Hankel function, given by

H (2)
ν (s)= 1

πi

∫ 0

−∞C2

e(s/2)(z−1/z) dz

zν+1
,

with contourC2 as shown in Fig. 7.19.

ANS.H (2)
ν (s)≈

√
2

πs
e−i(s−π/4−νπ/2).

7.3.2 Find the steepest path and leading asymptotic expansion for the Fresnel integrals∫ s

0 cosx2dx,
∫ s

0 sinx2dx.

Hint. Use
∫ 1

0 eisz
2
dz.

7.3.3 (a) In applying the method of steepest descent to the Hankel functionH
(1)
ν (s), show

that

ℜ
[
f (z)

]
<ℜ

[
f (z0)

]
= 0

for z on the contourC1 but away from the pointz= z0= i.
(b) Show that

ℜ
[
f (z)

]
> 0 for 0< r < 1,





π

2
< θ ≤ π

−π ≤ θ <
π

2

and

ℜ
[
f (z)

]
< 0 for r > 1, −π

2
< θ <

π

2

(Fig. 7.20). This is whyC1 may not be deformed to pass through the second saddle
point,z=−i. Compare with and verify the dot-dashed lines in Fig. 7.18 for this case.

FIGURE 7.20
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7.3.4 Determine the asymptotic dependence of the modified Bessel functionsIν(x), given

Iν(x)=
1

2πi

∫

C

e(x/2)(t+1/t) dt

tν+1
.

The contour starts and ends att =−∞, encircling the origin in a positive sense. There
are two saddle points. Only the one atz=+1 contributes significantly to the asymptotic
form.

7.3.5 Determine the asymptotic dependence of the modified Bessel function of the second
kind,Kν(x), by using

Kν(x)=
1

2

∫ ∞

0
e(−x/2)(s+1/s) ds

s1−ν .

7.3.6 Show that Stirling’s formula,

Ŵ(1+ s)≈
√

2πssse−s,

holds for complex values ofs (with ℜ(s) large and positive).
Hint. This involves assigning a phase tos and then demanding thatℑ[sf (z)] = constant
in the vicinity of the saddle point.

7.3.7 AssumeH (1)
ν (s) to have a negative power-series expansion of the form

H (1)
ν (s)=

√
2

πs
ei(s−ν(π/2)−π/4)

∞∑

n=0

a−ns−n,

with the coefficient of the summation obtained by the method of steepest descent. Sub-
stitute into Bessel’s equation and show that you reproduce the asymptotic series for
H

(1)
ν (s) given in Section 11.6.

Additional Readings

Nussenzveig, H. M.,Causality and Dispersion Relations, Mathematics in Science and Engineering Series,
Vol. 95. New York: Academic Press (1972). This is an advanced text covering causality and dispersion re-
lations in the first chapter and then moving on to develop the implications in a variety of areas of theoretical
physics.

Wyld, H. W., Mathematical Methods for Physics. Reading, MA: Benjamin/Cummings (1976), Perseus Books
(1999). This is a relatively advanced text that contains an extensive discussion of the dispersion relations.


