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CHAPTER 6

Infinite Series
Taylor’s and Laurent’s Series

6.1 Sequences of Functions

The ideas of Chapter 2, pages 48 and 49, for sequences and series of constants are easily extended to
sequences and series of functions.

Let u1(z), u2(2), .. .,un(2), ..., denoted briefly by {u,(z)}, be a sequence of functions of z defined and
single-valued in some region of the z plane. We call U(z) the limit of u,(z) as n — oo, and write
lim,,—, o u,(z) = U(2), if given any positive number €, we can find a number N [depending in general on
both € and z] such that

luy(z) —U(z)] < € foralln >N

In such a case, we say that the sequence converges or is convergent to U(z).

If a sequence converges for all values of z (points) in a region R, we call R the region of convergence of
the sequence. A sequence that is not convergent at some value (point) z is called divergent at z.

The theorems on limits given on page 49 can be extended to sequences of functions.

6.2 Series of Functions

From the sequence of functions {u,(z)}, let us form a new sequence {S,(z)} defined by

$1(2) = u1(2)
82(2) = u1(z) + ux(2)

Sn(@) = u1(2) + ua(2) + - - + uu(2)
where S,(z), called the nth partial sum, is the sum of the first n terms of the sequence {u,(z)}.

The sequence S;(z), S2(z), ... or {S,(z)} is symbolized by

[o0]

W@+ 1@+ =Y () (6.1)

n=1

called an infinite series. If lim,_, « S,,(z) = S(z), the series is called convergent and S(z) is its sum; otherwise,
the series is called divergent. We sometimes write Zzo:l un(z) as Y uy(z) or Y u, for brevity.
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As we have already seen, a necessary condition that the series (1) converges is lim,,_, » 1,(z) = 0, but this
is not sufficient. See, for example, Problem 2.150, and also Problems 6.67(c), 6.67(d), and 6.111(a).

If a series converges for all values of z (points) in a region R, we call R the region of convergence of the
series.

6.3 Absolute Convergence

A series Y o u,(z) is called absolutely convergent if the series of absolute values, i.e., Y . |u,(2)|,
converges.

If > %, u,(z) converges but > - |u,(z)| does not converge, we call > - u,(z) conditionally
convergent.

6.4 Uniform Convergence of Sequences and Series

In the definition of limit of a sequence of functions, it was pointed out that the number N depends in
general on € and the particular value of z. It may happen, however, that we can find a number N such
that |u,(z) — U(2)| < € for all n > N, where the same number N holds for all z in a region R [i.e., N
depends only on € and not on the particular value of z (point) in the region]. In such a case, we say that
u,(z) converges uniformly, or is uniformly convergent, to U(z) for all z in R.

Similarly, if the sequence of partial sums {S,(z)} converges uniformly to S(z) in a region, we say that the
infinite series (6.1) converges uniformly, or is uniformly convergent, to S(z) in the region.

We call R,(2) = upy1(2) + upya2(2) + - - - = S(z) — Su(z) the remainder of the infinite series (6.1)
after n terms. Then, we can equivalently say that the series is uniformly convergent to S(z) in R if,
given any € > 0, we can find a number N such that for all z in R,

IR.(2)| = |S(z) — S,(z)| < € foralln>N

6.5 Power Series

A series having the form

(o]

a+az—a)+taiz—a+- =) aiz—a) 6.2)
n=0

is called a power series in z — a. We shall sometimes shorten (6.2) to Y a,(z — a)".

Clearly the power series (6.2) converges for z = a, and this may indeed be the only point for which it
converges [see Problem 6.13(b)]. In general, however, the series converges for other points as well. In
such cases, we can show that there exists a positive number R such that (6.2) converges for [z —a| < R
and diverges for |z — a| > R, while for |z — a| = R, it may or may not converge.

Geometrically, if I' is a circle of radius R with center at z = a, then the series (6.2) converges at all points
inside I" and diverges at all points outside I', while it may or may not converge on the circle I'. We
can consider the special cases R = 0 and R = oo, respectively, to be the cases where (6.2) converges
only at z = a or converges for all (finite) values of z. Because of this geometrical interpretation, R is
often called the radius of convergence of (6.2) and the corresponding circle is called the circle of
convergence.
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6.6 Some Important Theorems

For reference purposes, we list here some important theorems involving sequences and series. Many of
these will be familiar from their analogs for real variables.

A. General Theorems

THEOREM 6.1.

THEOREM 6.2.

THEOREM 6.3.

THEOREM 6.4.

THEOREM 6.5.

THEOREM 6.6.

THEOREM 6.7.

If a sequence has a limit, the limit is unique [i.e., it is the only one].

Let u, =a, +ib,, n=1, 2, 3,..., where a, and b, are real. Then, a necessary and
sufficient condition that {u,} converge is that {a,} and {b,} converge.

Let {a,} be a real sequence with the property that

(1) Ap+1 2 ay or an+1 S an
(i1) |a,| < M (a constant)

Then {a,} converges.

If the first condition in Property (i) holds, the sequence is called monotonic increasing;
if the second condition holds, it is called monotonic decreasing. If Property (ii) holds, the
sequence is said to be bounded. Thus, the theorem states that every bounded monotonic
(increasing or decreasing) sequence has a limit.

A necessary and sufficient condition that {u,} converges is that given any € > 0, we can
find a number N such that |u, —u,| < eforallp > N, g > N.

This result, which has the advantage that the limit itself is not present, is called
Cauchy’s convergence criterion.

A necessary condition that Y u, converge is that lim,,_, o 1, = 0. However, the condition
is not sufficient.

Multiplication of each term of a series by a constant different from zero does not affect
the convergence or divergence. Removal (or addition) of a finite number of terms from
(or to) a series does not affect the convergence or divergence.

A necessary and sufficient condition that Zf;l (a, + ib,) converges, where a, and b, are
real, is that } -, a, and Y ., b, converge.

B. Theorems on Absolute Convergence

THEOREM 6.8.

THEOREM 6.9.

If Y | |uy| converges, then Y o u, converges. In words, an absolutely convergent
series is convergent.

The terms of an absolutely convergent series can be rearranged in any order and all such
rearranged series converge to the same sum. Also, the sum, difference, and product of
absolutely convergent series is absolutely convergent.

These are not so for conditionally convergent series (see Problem 6.127).

C. Special Tests for Convergence

THEOREM 6.10. (Comparison tests)

(a) If > |v,| converges and |u,| < |v,|, then > u, converges absolutely.

(b) If > |v,| diverges and |u,| > |v,|, then ) |u,| diverges but ) u, may or may not
converge.
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THEOREM 6.11. (Ratio test) Letlim,_ ]u,H_] / u”‘ = L. Then Y_ u, converges (absolutely) if L < 1 and
diverges if L > 1. If L = 1, the test fails.

THEOREM 6.12. (nth Root test)  Let lim, . ~/|tty] = L. Then ) u, converges (absolutely) if L < 1 and
diverges if L > 1. If L = 1, the test fails.

THEOREM 6.13. (Integral test) If f(x) > 0 for x > a, then )_ f(n) converges or diverges according as
limp;— o f:’ f(x)dx converges or diverges.

THEOREM 6.14. (Raabe’s test)  Let lim,_, n(l — |u,,Jr 1/ un|) = L. Then ) u, converges (absolutely) if
L > 1 and diverges or converges conditionally if L < 1. If L =1, the
test fails.

THEOREM 6.15. (Gauss’ test)  Suppose \un+1/u,,| =1—-(L/n)+ (cn/nz) where |c,| < M for all n > N.
Then ) u, converges (absolutely) if L > 1 and diverges or converges
conditionally if L < 1.

THEOREM 6.16. (Alternating series test)y If a, >0, a,41 <a, forn=1,2,3,... and lim, . a, =0,
thena; —ay+az —--- =) (—1)”‘1an converges.

D. Theorems on Uniform Convergence

THEOREM 6.17. (Weierstrass M test)  |u,(z)] < M,, where M,, is independent of z in a region R and
> M, converges, then ) u,(z) is uniformly convergent in R.

THEOREM 6.18.  The sum of a uniformly convergent series of continuous functions is continuous, i.e., if
un(2) is continuous in R and S(z) = > u,(z) is uniformly convergent in R, then S(z) is
continuous in R.

THEOREM 6.19.  Suppose {u,(z)} are continuous in R, S(z) = > u,(z) is uniformly convergent in R and
Cis a curve in R. Then

JS(z)dz = Jul(z)dz—l—Juz(z)dz—l—---
C C C

or

J [Y @)=Y J 1n(2) dz

C C

In words, a uniformly convergent series of continuous functions can be integrated
term by term.

THEOREM 6.20. Suppose u,(z) = (d/d2)u,(z) exists in R, ) u/(z) converges uniformly in R and
> uy(z) converges in R. Then (d/dz) Y un(z) = > u,(2).

THEOREM 6.21. Suppose {u,(z)} are analytic and ) u,(z) is uniformly convergent in R. Then
S(z) = Y u,(z) is analytic in R.
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E. Theorems on Power Series

THEOREM 6.22. A power series converges uniformly and absolutely in any region that lies entirely inside
its circle of convergence.

THEOREM 6.23. (a) A power series can be differentiated term by term in any region that lies entirely
inside its circle of convergence.
(b) A power series can be integrated term by term along any curve C that lies entirely
inside its circle of convergence.
(c) The sum of a power series is continuous in any region that lies entirely inside its
circle of convergence.

These follow from Theorems 6.17—-6.19 and 6.21.
THEOREM 6.24.  (Abel’s theorem)  Let Y a,7z" have radius of convergence R and suppose that zj is a
point on the circle of convergence such that ) _ a,z(} converges. Then, lim,_, ,, > a,7" =

Y anz} where z — zo from within the circle of convergence. Extensions to other power
series are easily made.

THEOREM 6.25.  Suppose Y _ a,z" converges to zero for all z such that |z| < R where R > 0. Then a,, = 0.
Equivalently, if Y a,z" = )_ b,z" for all z such that |z| < R, then a, = b,,.

6.7 Taylor’'s Theorem

Let f(z) be analytic inside and on a simple closed curve C. Let a and a + h be two points inside C. Then

2 n
fla+h) = f(@) + hf'(@) + %f”(a) T %f“’)(a) . 6.3)
orwritingz=a+h, h=z—a,
/7 (n)
f@) = f(a)+f(a)(z—a)+f()( @ttt ] ”( —a)y 4 (6.4)

This is called Taylor’s theorem and the series (6.3) or (6.4) is called a Taylor series or expansion for
fla+ h) or f(2).

The region of convergence of the series (6.4) is given by |z — a| < R, where the radius of convergence R
is the distance from a to the nearest singularity of the function f(z). On |z — a| = R, the series may or may
not converge. For |z — a| > R, the series diverges.

If the nearest singularity of f(z) is at infinity, the radius of convergence is infinite, i.e., the series con-
verges for all z.

If a =01in (6.3) or (6.4), the resulting series is often called a Maclaurin series.

6.8 Some Special Series

The following list shows some special series together with their regions of convergence. In the case of
multiple-valued functions, the principal branch is used.

2 2 2
Z
e BEAEAETRS Rl R j2] < oo
3005 n—1
2. sinz —Z_Z__|___ (=1 1 <

_— <
3l =1 2] < o0



CHAPTER 6 Infinite Series Taylor’s and Laurent’s Series

2 P2
3. cosz :1—54—1—---(—1) m+ 2] < o0
4. In(1+72) zz_é+i_...(_1)"—1i+... Izl < 1
2 3 n
5. tan”'z =z—§+§—~%4f”§2%+~- 2l <1
6. (1+2F :1+pz+p7(p27l)zz+~-+p(p_1)"’;'(p_n+l)z"+--- |zl <1

From the list above, note that the last is the binomial theorem or formula. If (1 + z)” is multiple-valued,
the result is valid for that branch of the function which has the value 1 when z = 0.

6.9 Laurent’s Theorem

Let C; and C; be concentric circles of radii R; and R;, respect-
ively, and center at a [Fig. 6-1]. Suppose that f(z) is single-
valued and analytic on C; and C, and, in the ring-shaped
region R [also called the annulus or annular region] between

y
C; and C,, is shown shaded in Fig. 6-1. Let a + & be any point <
in R. Then we have
. 2 a_q a_on a_s
flath) =ag+ah+al’ + + =54 42 (6.5) ’
where
1 /@)
== ¢ ——7d =0,1,2,... x
“ 2m+@—mﬁlz "
C
| (6.6) _
aﬂ=—f+&—mWV@ﬁ n=1,273... Flg. &1
217i

C

C; and G, being traversed in the positive direction with respect to
their interiors.

In the above integrations, we can replace C; and C, by any concentric circle C between C; and C, [see
Problem 6.100]. Then, the coefficients (6.6) can be written in a single formula,

1 f@)
hn=m—0——"d =0, +1, £2,... 6.7
2 ﬂ; (z—a)yt! © (©.7)
C
With an appropriate change of notation, we can write the above as

a_q a_n

fQ=a+az—a)+aiz—a)’+ -+ + st 6.8)
Z_a (Z—a)
where
_ -
”_mfi;(g_aymdi n=0, +1, £2,... 6.9)
C

This is called Laurent’s theorem and (6.5) or (6.8) with coefficients (6.6), (6.7), or (6.9) is called a Laurent
series Or expansion.

The part ag + a1(z — a) + ax(z — a)> + - - - is called the analytic part of the Laurent series, while the
remainder of the series, which consists of inverse powers of z — a, is called the principal part. If the prin-
cipal part is zero, the Laurent series reduces to a Taylor series.
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6.10 Classification of Singularities

It is possible to classify the singularities of a function f(z) by examination of its Laurent series. For this
purpose, we assume that in Fig. 6-1, R, = 0, so that f(z) is analytic inside and on C; except at 7z = a,
which is an isolated singularity [see page 81]. In the following, all singularities are assumed isolated
unless otherwise indicated.

1. Poles. If f(z) has the form (6.8) in which the principal part has only a finite number of terms
given by
a_y a_n a_p,
z—a (z—a) (z—a)

where a_, # 0, then z = a is called a pole of order n. If n = 1, it is called a simple pole.
If f(z) has a pole at z = a, then lim,_,, f(z) = o [see Problem 6.32].

2. Removable singularities. If a single-valued function f(z) is not defined at z = a but lim,_,, f(2)
exists, then z = a is called a removable singularity. In a such case, we define f(z) at z =a as
equal to lim,_,, f(z), and f(z) will then be analytic at a.

EXAMPLE 6.1: If f(z) =sinz/z, then z=0 is a removable singularity since f(0) is not defined
but lim,_,g sinz/z = 1. We define f(0) = lim,_,¢ sinz/z = 1. Note that in this case

3. Essential singularities. If f(z) is single-valued, then any singularity that is not a pole or removable
singularity is called an essential singularity. If z = a is an essential singularity of f(z), the principal
part of the Laurent expansion has infinitely many terms.

111
. i 1/z —
EXAMPLE 6.2: Since ¢'/* = 1 totoatas

The following two related theorems are of interest (see Problems 6.153-6.155):

+ -+, z=01s an essential singularity.

Casorati—Weierstrass theorem. In any neighborhood of an isolated essential singularity a,
an otherwise analytic function f(z) comes arbitrarily close to any complex number an infinite
number of times. In symbols, given any positive numbers 0 and € and any complex number A,
there exists a value of z inside the circle |z — a| = & for which | f(z) — A| < e.

Picard’s theorem. In the neighborhood of an isolated essential singularity a, an otherwise analytic
function f(z) takes on every complex value with perhaps one exception.

4. Branch points. A point 7 = 7 is called a branch point of a multiple-valued function f(z) if the
branches of f(z) are interchanged when z describes a closed path about zp [see page 45]. A
branch point is a non-isolated singularity. Since each of the branches of a multiple-valued function
is analytic, all of the theorems for analytic functions, in particular Taylor’s theorem, apply.

EXAMPLE 6.3: The branch of f(z) = z'/2, which has the value 1 for z =1, has a Taylor series of the
form ag + a1(z — 1) + ax(z — 1)> + - - - with radius of convergence R = 1 [the distance from z = 1 to the
nearest singularity, namely the branch point z = 0].

5. Singularities at infinity. By letting z = 1/w in f(z), we obtain the function f(1/w) = F(w). Then
the nature of the singularity for f(z) at z = oo [the point at infinity] is defined to be the same as that
of F(w) at w = 0.

EXAMPLE 6.4: f(z) = 7> has a pole of order 3 at z = o0, since F(w) = f(1/w) = 1/w? has a pole of order 3 at
w = 0. Similarly, f(z) = ¢ has an essential singularity at z = oo, since F(w) = f(1/w) = e'/* has an essential
singularity at w = 0.
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6.11 Entire Functions

A function that is analytic everywhere in the finite plane [i.e., everywhere except at o] is called an entire
function or integral function. The functions e?, sin z, cos z are entire functions.

An entire function can be represented by a Taylor series that has an infinite radius of convergence.
Conversely, if a power series has an infinite radius of convergence, it represents an entire function.

Note that by Liouville’s theorem [Chapter 5, page 145], a function which is analytic everywhere includ-
ing o0 must be a constant.

6.12 Meromorphic Functions

A function that is analytic everywhere in the finite plane except at a finite number of poles is called a
meromorphic function.

EXAMPLE 6.5: z/(z — 1)(z 4+ 3)?, which is analytic everywhere in the finite plane except at the poles z = 1 (simple
pole) and z = —3 (pole of order 2), is a meromorphic function.

6.13 Lagrange’s Expansion

Let z be that root of z = a + {¢(z) which has the value z = a when { = 0. Then, if ¢(z) is analytic inside and
on a circle C containing z = a, we have

0 n gn—1
z=a+ Zg— L pa@ry (6.10)
n=1

n! da"~!
More generally, if F(z) is analytic inside and on C, then

é«n dnfl
n! da*—1

F(z) = F(a) + Z {F'(@)[$(@)]"} (6.11)
n=1

The expansion (6.11) and the special case (6.10) are often referred to as Lagrange’s expansions.

6.14 Analytic Continuation

Suppose that we do not know the precise form of an analytic
function f(z) but only know that inside some circle of conver-
gence C; with center at a [Fig. 6-2], f(z) is represented by a
Taylor series

a+az—a)+az—a)’+--- (6.12)

Choosing a point b inside Cj, we can find the value of f(z) and
its derivatives at b from (6.13) and thus arrive at a new series

bo+biz—b)+byz—b) +--- (6.13)

having circle of convergence C,. If C, extends beyond C,
then the values of f(z) and its derivatives can be obtained in
this extended portion and so we have achieved more infor-
mation concerning f(z).

We say, in this case, that f(z) has been extended analytically beyond C; and call the process analytic
continuation or analytic extension.

The process can, of course, be repeated indefinitely. Thus, choosing point ¢ inside C,, we arrive at a new
series having circle of convergence C3 which may extend beyond C; and C;, etc.

The collection of all such power series representations, i.e., all possible analytic continuations, is defined
as the analytic function f(z) and each power series is sometimes called an element of f(z).
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In performing analytic continuations, we must avoid singularities. For example, there cannot be any singu-
larity in Fig. 6-2 that is both inside C, and on the boundary of Cy, otherwise (6.13) would diverge at this point.
In some cases, the singularities on a circle of convergence are so numerous that analytic continuation is
impossible. In these cases the boundary of the circle is called a natural boundary or barrier [see Problem
6.30]. The function represented by a series having a natural boundary is called a lacunary function.

In going from circle C; to circle C, [Fig. 6-2], we have chosen the path of centers a, b, c, . .. , p, which we
represent by path P,. Many other paths are also possible, e.g., a, ¥, ¢/, ..., p represented briefly by path P,.
A question arises as to whether one obtains the same series representation valid inside C,, when one chooses
different paths. The answer is yes, so long as the region bounded by paths P; and P, has no singularity.

For a further discussion of analytic continuation, see Chapter 10.

SOLVED PROBLEMS

Sequences and Series of Functions

6.1. Using the definition, prove that lim,,_m(l + E) =1 for all z.
n

Solution

Given any number € > 0, we must find N such that |1 + z/n — 1| < eforn > N. Then |z/n| < €,i.e., |z]/n < €
if n > |z|/e = N.

6.2. (a) Prove that the series z(1 —z) +7°(1 —z)+2°(1 —z)+--- converges for |z <1, and
(b) find its sum.
Solution
The sum of the first n terms of the series is
Si@=z1-2+ZA =)+ +7"(1—2)
=z—2+7 -2+ -+ - ="

Now [S,(2) —z| = |-z =zZ""' <e for (m+Dlnjzl <Ine ie, n+1>Ine/ln|z] or
n>(Ine/lnjzl) — 1.

If z=0, S,(0) =0 and |S,(0) — 0] < € for all n.

Hence lim,_, « S,(z) = z, the required sum for all z such that |z] < 1.

Another Method. Since S,(z) = z — "', we have [by Problem 2.41, in which we showed that lim,_, . 2" = 0
if 2] < 1]

Required sum = S(z) = lim S,(z) = lim (z — ") =z

Absolute and Uniform Convergence
6.3. (a) Prove that the series in Problem 6.2 converges uniformly to the sum z for |z] < %

(b) Does the series converge uniformly for |z| < 1? Explain.

Solution

(2) InProblem 6.2, we have shown that |S,(z) — z| < eforalln > (In €/In|z|) — 1, i.e., the series converges to
the sum z for |z| < 1 and thus for |z| < 1.
Now if |z| <1, the largest value of (Ine/ln|z]) —1 occurs where |z| = % and is given by
(In€/In(1/2)) — 1 = N. It follows that |S,(z) — z| < € for all n > N where N depends only on € and not
on the particular z in |z| < % Thus, the series converges uniformly to z for |z] < %



CHAPTER 6 Infinite Series Taylor’s and Laurent’s Series

(b) The same argument given in part (a) serves to show that the series converges uniformly to sum z for
|z] < .9 or|z] <.99 by using N = (In€/In(.9)) — 1 and N = (In €/In(.99)) — 1, respectively.

However, it is clear that we cannot extend the argument to |z| < 1 since this would require
N = (In€/In1) — 1, which is infinite, i.e., there is no finite value of N that can be used in this case.
Thus, the series does not converge uniformly for |z| < 1.

6.4. (a) Prove that the sequence {1 /1+ nz} is uniformly convergent to zero for all z such that |z| > 2.

(b) Can the region of uniform convergence in (a) be extended? Explain.

Solution

(a) Wehave |(1/1 +nz) — 0| < ewhen 1/|1 +nz| < eor |1 +nz| > 1/e.Now, |1 +nz| < |1| + |nz| = 1 + nlz]
and 1 +n|z| > |1 +nz| > 1/efor n > (1/e — 1/|z]). Thus, the sequence converges to zero for |z| > 2.

To determine whether it converges uniformly to zero, note that the largest value of (1/e—1/|z|)
in |z| > 2 occurs for |z| =2 and is given by %{(l/e) — 1} = N. It follows that |(1/1 +nz) —0| < € for all
n> N where N depends only on € and not on the particular z in |z| > 2. Thus, the sequence is
uniformly convergent to zero in this region.

(b) If &is any positive number, the largest value of ((1/€) — 1)/|z] in |z| > & occurs for |z| = 6 and is given by
((1/e) — 1)/4. As in part (a), it follows that the sequence converges uniformly to zero for all z such that
|z] > &, i.e., in any region that excludes all points in a neighborhood of z = 0.

Since & can be chosen arbitrarily close to zero, it follows that the region of (a) can be extended

considerably.

6.5. Show that (a) the sum function in Problem 6.2 is discontinuous at z = 1, (b) the limit in Problem 6.4
is discontinuous at z = 0.
Solution

(a) From Problem 6.2, S,(z) = z — """, 8(z) = limy—so0 Su(2). If 2] < 1, 8(2) = limyso0 Su(z) = 2. If 2 =1,
Su(z) = S,(1) =0 and lim,_, «» S,(1) = 0. Hence, S(z) is discontinuous at z = 1.

(b) From Problem 6.4, if we write u,(z) = 1/1 + nzand U(z) = lim,— » u,(z), we have U(z) = 0ifz # 0 and 1
if z = 0. Thus, U(z) is discontinuous at z = 0.

These are consequences of the fact [see Problem 6.16] that if a series of continuous functions is uniformly
convergent in a region R, then the sum function must be continuous in R. Hence, if the sum function is not
continuous, the series cannot be uniformly convergent. A similar result holds for sequences.

6.6. Prove that the series of Problem 6.2 is absolutely convergent for |z] < 1.
Solution
Let 7,(2) = |z(1 = )| + 122(1 = )| + -+ + "1 = )l = [T — 2lflel + [zl + |2 + - - + [2I")

1=z
= l—
| Z||Z|{]—|z|}

If |z| < 1, then lim,_,  |z|" = 0 and lim,_,« T, () exists so that the series converges absolutely.

Note that the series of absolute values converges in this case to |1 — z||z|/1 — |z].

Special Convergence Tests

6.7. Suppose Y |v,| converges and |u,| < |v,l,n=1,2,3,.... Prove that ) |u,| also converges
(i.e., establish the comparison test for convergence).
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6.8.

6.9.

6.10.

Solution
Let Sy = [ur| + luz| + - -+ + [un|, Ty = 01| + [v2] + - - + |vnl.
Since Y |v,| converges, lim,_,« T, exists and equals 7, say. Also since |v,| >0, T, < T.

Then S, = |ui| + lua| + -+ + |u| < 01| + 02| +- -+ |vu| =T 0or 0= S, <T.
Thus, S, is a bounded monotonic increasing sequence and must have a limit [Theorem 6.3, page 171],
i.e., > |u,| converges.

1 1 1 1
Prove that I + > + 3 4= ZJ converges for any constant p > 1.
Solution
We have
11
I
1 1 1 1 1

1 1 1 1<1 1 1 1_1
R R R TR A TR TR T

etc., where we consider 1, 2, 4, 8, . .. terms of the series. It follows that the sum of any finite number of terms of
the given series is less than the geometric series

1 1 1 1 1

T T R T R e Y T

which converges for p > 1. Thus the given series, sometimes called the p series, converges.
By using a method analogous to that used here together with the comparison test for divergence [Theorem
6.10(b), page 171], we can show that Zf;l 1/n? diverges for p < 1.

Prove that an absolutely convergent series is convergent.

Solution

Given that ) |u,| converges, we must show that )  u, converges. Let

Su=u+uy+---+uy and Ty = |u| + luz| +--- + |upyl

Then
S+ Ty = (ur + [u]) + (uz + uz]) + - - - + (uy + luml)
< 2ur| + 2|ual + -+ - + 2[uml
Since ) |u,| converges and u, + |u,| >0 for n =1, 2, 3,..., it follows that Sy + Ty is a bounded

monotonic increasing sequence and so limy_, o (Sps + Tar) exists.
Also since limy_, Tjs exists [because, by hypothesis, the series is absolutely convergent],

A}I_EHOO Su = A}l_{noo Su+Ty —Ty) = A}I—I>noo Sy +Tu) — A}I_IPOQ Ty

must also exist and the result is proved.

n

ad Z
Prove that ———— converges (absolutely) for |z| < 1.
X converzes ( y) for || =

Solution
| Zn | z | n 1 1
< <

If |zl < 1, th = .
2l = L then D T an D) = F 1) =2

Taking u, = 7"/n(n+ 1), v, = 1 /n* in the comparison test and recognizing that Y 1 /n? converges by
Problem 6.8 with p = 2, we see that ) |u,| converges, i.e., > u, converges absolutely.



6.11.

6.12.

6.13.
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Establish the ratio test for convergence.

Solution

We must show that if lim,_ ‘u,,+1/un‘ =L <1, then Y_ |u,| converges or, by Problem 6.9, Y u, is
(absolutely) convergent.

By hypothesis, we can choose an integer N so large that for all n > N,
constant such that L < r < 1. Then

Mn+1/u,1| < r where r is some

luny1] < rluy]

lunyal < rluysr| < rluy]

lunss] < rluysal < 7 luyl
etc. By addition,

|+l o] 4+ < ]+ 77 + 77 4

and so Y |u,| converges by the comparison test since 0 < r < 1.

: : & @+
Find the region of convergence of the series ) ———5—.
n=1(n+ 1)°4"

Solution

2 n—1 2)"
_@+2) (z+2) Hence, excluding

If u, =—->5—, then upy) = ———
(n+ 14 T 2P v
7z = —2 for which the given series converges, we have

z+2)(n+1)
4 (m+2)]

Up+1
uVl

_lz+2

1m 4

n— oo

lim

n— 0o

Then the series converges (absolutely) for |z 4 2|/4 <1, i.e., X

|z4+2| < 4. The point z = —2 is included in |z 42| < 4. -2
If |z 4+ 2|/4 = 1, i.e., |z + 2| = 4, the ratio test fails. However,

it is seen that in this case

(Z+ Z)n—l
(n+ D34

1 1
= < —
4n+17° —n

and since )_ 1 /n’ converges [p series with p = 3], the given Fig. 6-3
series converges (absolutely).
It follows that the given series converges (absolutely) for
|z+ 2| < 4. Geometrically, this is the set of all points inside and on the circle of radius 4 with center at
7z = —2, called the circle of convergence [shown shaded in Fig. 6-3]. The radius of convergence is equal to 4.

o (_l)nleZn—l

Find the region of convergence of the series (a) ), ", D)
n—1)!

. (b)Y nlZ"
Solution
(@) Ifu, =(=1)""'22""1/@2n — 1), then u,y; = (—1)"72""'/(2n + 1). Hence, excluding z = 0 for which the

given series converges, we have

i 1“4 iy _Z@n-DY im (2n — D!z
n>o| u, | n-w|  Qu4+ D! | e 2n+ 12n)2n — 1)
|zI?

"% (20 + D)2n)
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for all finite z. Thus the series converges (absolutely) for all z, and we say that the series converges for
|z] < 0. We can equivalently say that the circle of convergence is infinite or that the radius of convergence
is infinite.

(b) If u, = n'z", u,y; = (n+ 1)!Iz""'. Then excluding z = 0 for which the given series converges, we have

! n+1
lim ot | = lim (n+ DY = lim (n+ )|z| = o
n—>o0| U, n— oo nlz" n—oo
Thus, the series converges only for z = 0.
Theorems on Uniform Convergence
6.14. Prove the Weierstrass M test, i.e., if in a region R, |u,(z)| <M,,n=1,2,3,..., where M,
are positive constants such that Y M, converges, then Y u,(z) is uniformly (and absolutely)
convergent in R.
Solution
The remainder of the series Y u,(z) after n terms is R, (2) = up+1(2) + Up12(z) + - - - . Now
[Ra()| = [un11(2) + ttn42(2) + - - - | < [un1 (D] + ltp42(2) + - - -
< Mn+1 +Mn+2 + -
But M,+1 + M, + - - - can be made less than € by choosing n > N, since ) . M,, converges. Since N is clearly
independent of z, we have |R,(z)| < e for n > N, and the series is uniformly convergent. The absolute conver-
gence follows at once from the comparison test.
6.15. Test for uniform convergence in the indicated region:

0o Zn © cosnz
a — |zl <1; (b 1<zl <25 (¢ 7l < 1.
(),,;nWH ()Z2+2 4 ()Z
Solution
(a) If un(z):rh/ziﬁ, then |u,(2)| _JL__ 31/2 if |z] < 1. Calling M, = 1/n*/?, we see that 3 M,

converges (p series with p = 3/2). Hence, by the Weierstrass M test, the given series converges uniformly

(and absolutely) for |z|] < 1.

1 1 1
(b) The given series is TE + ¥z + P12 + - - - . The first two terms can be omitted without affecting

the uniform convergence of the series. For n > 3 and 1 < |z| < 2, we have

1 2
o
Since Y o 52/ n? converges, it follows from the Weierstrass M test (with M,, = 2/n?) that the given series
converges uniformly (and absolutely) for 1 < |z] < 2.
Note that the convergence, and thus uniform convergence, breaks down if |z| = 1 or |z| = 2 [namely at
z = +i and z = +2i]. Hence, the series cannot converge uniformly for 1 < |z| < 2.
(c) If z=x+ iy, we have

1
In* + 22 > P — || = n* —4 > Enz or

cos nzg einz + e*inz einxfny + e*inerny
n3 2n3 2n3
e (cos nx + i sin nx) n " (cos nx — isin nx)

2n3 2n3

The series

i ”y(cos nx — isinnx) d =, e (cos nx + i sin nx)
wi 3

2n3
n=1



6.16.

6.17.
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cannot converge for y > 0 and y < 0, respectively [since, in these cases, the nth term does not approach
zero]. Hence, the series does not converge for all z such that |z| < 1, and so cannot possibly be uniformly
convergent in this region.

The series does converge for y =0, i.e., if z is real. In this case, z = x and the series becomes
>, cos nx/n’. Then, since |cos nx/n’| < 1/n’ and >l /n® converges, it follows from the Weier-
strass M test (with M, = 1/n’) that the given series converges uniformly in any interval on the real axis.

Prove Theorem 6.18, page 172, i.e., if u,(z), n = 1, 2, 3, ..., are continuous in R and Zle u,(z) is
uniformly convergent to S(z) in R, then S(z) is continuous in R.

Solution

If S,(z) = u1(2) + ua(z) + - - - + u,(2), and R, (2) = up41(2) + upi2(2) + - - - is the remainder after n terms, it is
clear that

8(z) = Su(2) + Ry(z) and  S(z+h) =Su(z+h) +Ru(z+h)

and so

S(z+ h) —8(2) = Su(z+ h) —8,(2) + Ru(z + h) —R,(2) (1)

where z and z + & are in ‘K.
Since S,,(z) is the sum of a finite number of continuous functions, it must also be continuous. Then, given
€ > 0, we can find 6 so that

[Su(z+ h) — Su(z)| < €/3 whenever |h| < & 2
Since the series, by hypothesis, is uniformly convergent, we can choose N so that for all z in R,
Ry(z)] < €/3 and |R,(z+h)| <e€/3 forn>N 3)
Then, from (1), (2), and (3),
ISz +h) = S@)| < ISulz+ h) — S, + IRz + )| + [R,(2)] < €
for |h| < 6 and all z in R, and so the continuity is established.

Prove Theorem 6.19, page 172, i.e., suppose {u,(z)}, n =1, 2, 3,..., are continuous in R,
S(z) = Z:’:l u,(z) is uniformly convergent in R and C'is a curve in R. Then

JS(Z) dz = J (Z un(Z)) dz = Zjun(z) dz

C o n=1 n=1 C

Solution

As in Problem 6.16, we have S(z) = S,,(z) + R,(z) and, since these are continuous in R [by Problem 6.16], their
integrals exist, i.e.,

JS<z>dz _ jsn(n d:+ JRn(z) dz — jm(z) iz + jm(z) dodooo Jun(n dz + J&(z) -
C C C C C C C

By hypothesis, the series is uniformly convergent, so that, given any € > 0, we can find a number N
independent of z in R such that |R,(z)| < € when n > N. Denoting by L the length of C, we have [using
Property (e), page 112]

JR,I(z) dz| < eL
c

Then UC S(z) dz — fc S,(2) dz’ can be made as small as we like by choosing n large enough, and the result is
proved.
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Theorems on Power Series

6.18.

6.19.

6.20.

6.21.

Suppose a power series Y a,z" converges for z = zy #0. Prove that it converges:
(a) absolutely for |z] < |zg|, (b) uniformly for |z| < |z;| where |z;] < |zo].

Solution

(a) Since ) a,zj converges, lim,_, « a,z; = 0 and so we can make |a,zj| < 1 by choosing n large enough, i.e.,
lan| < 1/|z0|" for n > N. Then

ey

00 o0 00
D land' = lallal" <>

|z|"
|n
N+1 N+1 Nt1 <0

|z

But the last series in (1) converges for |z| < |zp| and so, by the comparison test, the first series converges,
i.e., the given series is absolutely convergent.

(b) Let M, = |z1]"/|z0|". Then Y_ M, converges, since |z1| < |zo|. As in part (a), |a,z"| < M, for |z| < |z1| so
that, by the Weierstrass M test, Y a,z" is uniformly convergent.
It follows that a power series is uniformly convergent in any region that lies entirely inside its circle of
convergence.

Prove that both the power series Y .. a,z" and the corresponding series of derivatives

> o na,?"" have the same radius of convergence.

Solution

Let R > 0 be the radius of convergence of Y a,z". Let 0 < |z9| < R. Then, as in Problem 6.18, we can choose
N so that |a,| < 1/|zo|" for n > N.

Thus the terms of the series ) |na, 7"~ = > nlay||z|"~! can for n > N be made less than corresponding
terms of the series Y n(|z"~!/|z0|"), which converges, by the ratio test, for |z] < |zo] < R.

Hence, Y na,z"~! converges absolutely for all points such that |z| < |z9| (no matter how close |z is to R),
i.e., for |z] < R.

If, however, |z] > R, 1im,_« a,2" #0 and thus lim,_, e na,z"~' # 0, so that }_ na,z*~' does not converge.

Thus, R is the radius of convergence of ) na,z"~'. This is also true if R = 0.

Note that the series of derivatives may or may not converge for values of z such that |z| = R.

Prove that in any region, which lies entirely within its circle of convergence, a power series (a) rep-
resents a continuous function, say f(z), (b) can be integrated term by term to yield the integral of f(z),
(c) can be differentiated term by term to yield the derivative of f(z).

Solution
We consider the power series Y a,z", although analogous results hold for > a,(z — a)".

(a) This follows from Problem 6.16 and the fact that each term «,z" of the series is continuous.

(b) This follows from Problem 6.17 and the fact that each term a,z" of the series is continuous and thus
integrable.

(c) From Problem 6.19, the derivative of a power series converges within the circle of convergence of the
original power series and therefore is uniformly convergent in any region entirely within the circle of con-
vergence. Thus, the required result follows from Theorem 6.20, page 172.

Prove that the series Y | 7"/ n” has a finite value at all points inside and on its circle of convergence
but that is not true for the series of derivatives.

Solution

By the ratio test, the series converges for |z| < 1 and diverges for |z| > 1. If |z| = 1, then |"/n?| = 1/n? and
the series is convergent (absolutely). Thus, the series converges for |z] < 1 and so has a finite value inside and
on its circle of convergence.



CHAPTER 6 Infinite Series Taylor’s and Laurent’s Series

The series of derivatives is ) ... 1z”_1 /n. By the ratio test, the series converges for |z| < 1. However, the
series does not converge for all z such that |z| = 1, for example, if z = 1, the series diverges.

Taylor’s Theorem

6.22. Prove Taylor’s theorem: If f(z) is analytic inside a circle C with center at a, then for all z inside C,

/ ”( ) S ”’( )
f@=f@+f(@z-a)+—~@—a)’+ z—ay +--
Solution
Let z be any point inside C. Construct a circle C; with center at a and enclosing z C
(see Fig. 6-4). Then, by Cauchy’s integral formula,
1 (w)
10 =547 M
| w— z
Cy
We have Flg 6-4
I 1 1 { 1 }
w—z_(w—a)—(z—a)_w—a 1—(z—a)/w—a)
1 z—a z—a\? z—a\n!
_w—a=1+<w—a>+(w—a) +'“+<w—a>
z—a\" 1
+(w—a> 1 —(z—a)/(w—a)}
or
1 1 z—a (z — a)? (z—a)y"! z—a\n 1
= > REE . ( ) 2)
w—z w—a Ww-—a) W-—a) w—a) —a -z
Multiplying both sides of (2) by f(w) and using (1), we have
L[ fw) z—a [ fw @—ay § fw)
f(z)—sz#;w_adw+ i %(w—a)z aw +-- -+ i w—ay aw + U, 3)
Ci Cy C
where
1 z—a\" f(w)
n—A__. - d
v 2770 f{;(w — a) w—z
C
Using Cauchy’s integral formulas
!
(1) — n ﬂ d =0.1,.2.3
(@ 277'i§;(w—a)"+1 w n=0,1,23,...
C
(3) becomes
% (n—1)
10 =@ +f@e -0+ 506 - ap 41 LD ar 4,
If we can now show that lim,,_, U, = 0, we will have proved the required result. To do this, we note that since
w is on Cj,
‘Z —a ‘ =y<l1
w—a

where v is a constant. Also, we have |f(w)| < M where M is a constant, and

w—zl=lw-a—-G-—alzr—lz—d
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where r is the radius of C;. Hence, from Property (e), Page 112, we have

1 —a\" j(w
v, =1 ﬂ;(z ) Jw) dw
2ar w—a/ w—z
C
1 y'M v'Mr,
<—— 271 =——
27 r — |z — 4 r —|z—al

and we see that lim,_,» U, = 0, completing the proof.

6.23. Let f(z) = In(1 + z), where we consider the branch that has the zero value when z = 0. (a) Expand
f(2) in a Taylor series about z = 0. (b) Determine the region of convergence for the series in (a).
(c) Expand In(1 + z/1 — z) in a Taylor series about z = 0.

Solution
() f@) =1In(1 +2), f(0)=0
/ _ L _ —1 / _
f(z)—1+z—(l+z) s fo=1
ff@Q=-1+27 f'0) =—1

@ = (=D)(=2)1 +2)72, 17(0) = 2!

fU0@) = (=)'l + 970, R 0) = (1))

Then
1! 0 g 0
f@ =1In(1 +2) =£(0) +£'(0)z +%z2 +%z3 +oe-
2.2
T2 3 7,
Another Method. 1f |z] < 1,
1
——=1-z+Z -2+
I+z
Then integrating from O to z yields
2 3 4
=z
In(1 —_ 4t L
n(l +z)=z 5 + 372 +
(b) The nth term is u, = (—1)"~'z"/n. Using the ratio test,
lim |2 = i |22 ‘ =zl
n—>oo| U, n—o|n 4 1
and the series converges for |z| < 1. The series can be shown to converge for |z| = 1 except for z = —1.

This result also follows from the fact that the series converges in a circle that extends to the nearest
singularity (i.e., z = —1) of f(z).
(c) From the result in (a) we have, on replacing z by —z,

2 3 4
7z
In(1 s s
n(l+z) =z 2+3 4+
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both series convergent for |z| < 1. By subtraction, we have

1+z 3 5 © 2Z2n+1
1 =2
n(l—z) <+3+5+ ) Z2n—i—1

which converges for |z| < 1. We can also show that this series converges for |z| = 1 except for z = +1.

6.24. (a) Expand f(z) = sinz in a Taylor series about z = /4
(b) Determine the region of convergence of this series.

Solution
@ f(z) =sinz f(2) = cosz, f'(2) = —sinz, f"(z) = —cosz, f¥(z) = sinz, ...
f(m/4) =N2/2, f(7m/4) = V2/2, ' (w/4) = —V2/2, " (7/4) = —V2/2, N (7/4) = V2/2, . ..
Then, since a = /4,

(@G —ay n @)z —a)

f@) =f@) +f(@)z—a) + 5 3 4
V2 V2 V2 V2
7"*'7( - /4)_ﬁ( — m/4) _ﬁ(Z—W/4) +-
V2 @— /4 (@ —m/4)’

:7{l+(z—77/4)— 3 - 3 +}

Another Method. Let u = 7z — /4 or z = u + /4. Then, we have,

sinz = sin(u 4+ m/4) = sinu cos(/4) + cos u sin(/4)

= f(smu + cosu)

I PR P (RN
:g 1+u ; Z—j—i—ﬁ-ﬁ- }

=§ 1+ — m/4) (2_5/4)2—(2_37:/4)3+---}

(b) Since the singularity of sin z nearest to 77/4 is at infinity, the series converges for all finite values of z, i.e.,
|z] < oo. This can also be established by the ratio test.

Laurent’s Theorem

6.25. Prove Laurent’s theorem: Suppose f(z) is analytic inside and on the boundary of the ring-shaped
region R bounded by two concentric circles C; and C, with center at a and respective radii r;
and r, (r; > rp) (see Fig. 6-5). Then for all zin R,

f@ = Zan(z—a) +Z —

where
1 J(w)
= — —d :0,1,2,...
" 271'1'51;(w—a)'”rl v
C
1
a_nz—.fff(—w),ldw n=1,2,3,...
2mi | (w—a)™t

C
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Solution

By Cauchy’s integral formula [see Problem 5.23, page 159], we have
1 1
) :7% fm . 7% fw . )

27 Jw—z 2w fw—z ?
Cy G '

Consider the first integral in (1). As in Problem 6.22, equation (2), we have

G

1 1
w—z w—afl —(z—a)/(w—a)} Fig. 6-5
_ 1 z—a —a'' jz—ay 1
Tw—a (w—a?  (w—a) (w—a)w—z @
so that
L [ fw) _ 1 [ fw) z—a [ f(w)
ﬁﬂ;w—zdw_%ri§w—adw+ 270 f{;(w—a)2 dw
G Ci C
z—a)" [ f(w)
+--+ i i)(w—a)” w+ U,
C
=apt+az—a)+--+a,_1z—a)"' + U,
where
SRS O X T (0 PP B
"Tomifw—a " T 2mfw—a? 7 ' T 2m f(w—a)
C C G
and

U, :L%(Z—a)nf(w) dw
2@ J\w—a/ w—2z
G
Let us now consider the second integral in (1). We have on interchanging w and z in (2),
I 1
w—z (@—afl—Ww-a)/iz—a)

1 w—a (w—a)"! (w—a)" 1
z-a (z—a) @-a "\z—a)z-w
so that
1 fw) 1 fw) lﬁ;w—a
__ dw = dw+— ¢
27Ti§;W—Z v 2771‘?1;2—61 Ry (Z_a)zf(w)dw
C; G (&)
1 _ -1
+---+—.§i;%f(w)dw+v,,
271 (z—a)
(&}
a_ a_p a_p
— +V,
i—a (z—a) (z—a)
where

an =5 jﬁ Fonydw, as=-— % (0 — @) fO0) dw, . ay = 43 (0 — @) fow) dw
Ly 271 2770
Cy G G

and

3

“
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From (1), (3), and (4), we have
f@={a+aGz—a)+ - +a,_1cz—a)""}

+{a“+ PR }+U +V,
z—a (z—ay (z—a) e

(&)

The required result follows if we can show that (a) lim,—.« U, = 0 and (b) lim,_, V,, = 0. The proof of (a)
follows from Problem 6.22. To prove (b), we first note that since w is on Cy,

w—a
=k<1

z—a
where « is a constant. Also, we have |f(w)| < M where M is a constant and
lz—wl=lz—a)-w—-a)l=|z—al—n
Hence, from Property (e), page 112, we have
1 _ n
W= L %(W a) fw) J
21 z—a) z—w
G

1 K'M K'"Mr,
<——2m =
2w |z—al—r lz—al —r

Then, lim,_, « V,, = 0 and the proof is complete.

6.26. Find Laurent series about the indicated singularity for each of the following functions:

e . B z—sinz . 1 _
(a)m’ e=1 © =5+ =0 (€) 2@-3)7 e=3
(b) (z— 3)sin L d —= . =2

¢ +2° T G+ Dhe+t2)’ -7

Name the singularity in each case and give the region of convergence of each series.

Solution

(@) Letz—1=wu. Thenz=1+4 u and

2z eZ+2u 2 2

)
:E.eu u3{1+2 “r‘

e j—
(Z _ ])3 - I/l3
e? + 2¢? + 2¢2 +4e +2€( Dt
= —_— —_— Z —_—
=1 @-1* z—1 3
z=11s a pole of order 3, or triple pole.
The series converges for all values of z#1.

2uy? <2u)3 uy*
2! TR +}

(b) Letz+2 =wuorz=u—2. Then

o1 1 1
(z—3’)smz+2 (u—S)smf (u—S){u W—i—ﬁ—}
_ 5 1 " 5 n 1
- u 3u? 3w Syt
5 1 5 1
== - 7T 3t i~
Z+2 6(z+2) 6(z+2) 120(z + 2)
7= —2 18 an essential singularity.
The series converges for all values of z# —2.
z—sinz 1 2 2 7
© R . B
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z =0 1is a removable singularity.
The series converges for all values of z.
(d) Letz+ 2 = u. Then

Z u—2 2—u 1 2—u(1+ I B T
= = . = u u u
z4+1)(z+2) m—1u u 1—u u

2 2
=Sl Ut = I @D+ @2+
u z+2

z = —21s a pole of order 1, or simple pole.
The series converges for all values of z such that 0 < [z 42| < 1.

(e) Let z—3 = u. Then, by the binomial theorem,

1 1 1
2@ =37 WG +u’ 91 +u/3)?

{1 )+ B R

9u?

L2 1 4
02 27u 27 243"
1 2 1 4z—3

(z )+___

Toz—37 27(z-3) 27 243

z =13 1s a pole of order 2 or double pole.
The series converges for all values of z such that 0 < |z — 3| < 3.

1
6.27. Expand f(z) = ———— in a Laurent series valid for:
pand f(z) (z+D+3)

@1<zl<3, ®Mz]>3, ©0<|z4+1<2, @)zl <1

Solution

(a) Resolving into partial fractions,

crv=a(e) ()
G+ DEz+3) 2\z+1) 2\z+3

If |z > 1,

I _1( 1 1+) LR N T
24+ 1) 2z(14+1/2) 2z z 2 2 2z 272 273 24

If |z] <3,

Lot a2 2 N_1_ =z 2 2
2z+3) 6(1+z/3) 6 39 27 6 18 54 162

Then, the required Laurent expansion valid for both |z] > 1 and |z] < 3,1i.e., 1 < |z] <3, 1is

1 1 1 1 1 z £ 7

P I R P T R VRN TS

(b) If |z] > 1, we have as in part (a),
1 1 1 1 1

2t 2z 22 2 2T
If |z] > 3,
1 1 1 3 9 27 1 3 9 27
— = ——t 55t ) = tsEs o5t
2(z+3) 2z(14+3/z) 2z Z z 2z 2z% 22 2z
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Then the required Laurent expansion valid for both |z| > 1 and |z| > 3, i.e., |z| > 3, is by subtraction

1 4 13 40
2 2 F 7
(¢) Letz+ 1 =u. Then
1 1 1 1 u W o
@+ DE+3) u@+2) " 2u(l4+u/2)  2u 2 4 8
S ) (+1)2
2@+ 48 ¢
valid for |u] <2, u#0or 0 < |z4+ 1] <2.
@ If|z < 1,
1 1 1 1 1 1 1
- = _(1— 2_ 34y =—___ 22234,
R R T R ARl S LR LI R

If |z] < 3, we have by part (a),

L1z, 2 2
2z+3) 6 18 54 162

Then the required Laurent expansion, valid for both |z] < 1 and |z] < 3, i.e., |z] < 1, is by subtraction

L4 13, 405,
3797 Tt

This is a Taylor series.
Lagrange’s Expansion
6.28. Prove Lagrange’s expansion (6.11) on page 176.

Solution

Let us assume that C is taken so that there is only one simple zero of z = a + {¢(z) inside C. Then, from
Problem 5.90, page 167, with g(z) = z and f(z) = z — a — {¢(z), we have

! W{ 1= o) }dw

CTom P w—a—Zm)

:zlm'cww R e K
=2lm_cw (1= L) {io ¢>”<w>/<w—a)>

e e T
:“_gz;f:i{(jn(a)"} +Z2ﬂ:n+ d)n(vjz))" v

0 n dnfl
=a+ Zﬁ @)

Analytic Continuation
and (b) Z —

2n+1 = (2 )n+1

6.29. Show that the series (a) Z are analytic continuations of each other.
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Solution

(a) By the ratio test, the series converges for |z| < 2 (shaded in Fig. 6-6). In this circle, the series, which is a
geometric series with first term % and ratio z/2 can be summed and represents the function

[V
1—z/2 2-z2
y
(b) By the ratio test, the series converges for
|z —i)/2—i)| <1, ie., |z—i] <+/5 (see Fig. 6-6). In lz—il= 5
this circle, the series, which is a geometric series with \s5
first term 1/(2 —i) and ratio (z—1i)/(2—1i), can be )
summed and represents the function ! 2 N
1/(2—1) 1
1-@-0/CQ-0) 2-z =2
Since the power series represent, the same function in
the regions common to the interiors of the circles |z| = 2 Fig. 6-6
and |z — i| = /5, it follows that they are analytic continu-
ations of each other.
6.30. Prove that the series 1 +z+z*+z* +2*+.-- =1+ Y"1 z* cannot be continued analytically
beyond |z| = 1.
Solution
Let F(z) =1+z+22+2*+28+--- . Then,
F)=z+F@), F@Q=z+2+F&), F@Q=z+2++FH+---.
From these, it is clear that the values of z givenby z =1, 22 =1, z* = 1, 28 = 1, ... are all singularities of

F(2). These singularities all lie on the circle |z| = 1. Given any small arc of this circle, there will be infinitely
many such singularities. These represent an impassable barrier and analytic continuation beyond |z] =1 is
therefore impossible. The circle |z| = 1 constitutes a natural boundary.

Miscellaneous Problems

6.31. Let {fi(2)}, k=1, 2, 3,... be a sequence of functions analytic in a region R. Suppose that

FQ =) A
k=1

is uniformly convergent in R. Prove that F(z) is analytic in R.

Solution

Let S,(z) = Y _;_; fk(z). By definition of uniform convergence, given any € > 0, we can find a positive integer
N depending on € and not on z such that for all z in R,

|F(z) — Su(z)] <€ foralln>N 1

Now suppose that C is any simple closed curve lying entirely in R and denote its length by L. Then, by
Problem 6.16, since fi(z), k =1, 2, 3,... are continuous, F(z) is also continuous so that fj;c F(z) dz exists.
Also, using (1), we see that for n > N,

ﬁ; F(z)dz — Z i;fk(z) dz| = i;{F(z) - S.(2)} dz
o

C k=1 &



6.32.

6.33.
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Because € can be made as small as we please, we can see that

jﬁp(z) dz=>" jﬁﬂ(z) dz

c k=1¢

But, by Cauchy’s theorem, §c Jx(z)dz = 0. Hence

fi;F(Z)dZZO

o

and so by Morera’s theorem (page 145, Chapter 5), F(z) must be analytic.

Prove that an analytic function cannot be bounded in the neighborhood of an isolated singularity.

Solution
Let f(z) be analytic inside and on a circle C of radius r, except at the isolated singularity z = a taken to be the
center of C. Then, by Laurent’s theorem, f(z) has a Laurent expansion

00

f@=Y az-af (1)

k=—0o0
where the coefficients a; are given by equation (6.7), page 174. In particular,
1
= %Ldz n=1,2,3,... 2)

a., = —
n 2 (z— a)fn+l
C

Now, if |f(z)] < M for a constant M, i.e., if f(z) is bounded, then from (2),

1 1
la_p| = =— % (z— a)"flf(z)dz <— VM 20 = MF"
2 2
c
Hence, since r can be made arbitrarily small, we have a_, =0, n=1,2,3,...,1ie, a1 =a_=a_3 =
--- =0, and the Laurent series reduces to a Taylor series about z = a. This shows that f(z) is analytic at
Z = a so that z = a is not a singularity, contrary to hypothesis. This contradiction shows that f(z) cannot be
bounded in the neighborhood of an isolated singularity.

Prove that if z # 0, then

ol/2aG=1/2) _ Z J ()"

where
! 2
J(a) = — J cos(nf — asinf)dd n=0,1,2,...
2
0
Solution

The point z = 0 is the only finite singularity of the function e!/2*@~1/2 and it follows that the function must
have a Laurent series expansion of the form

ol/2a=1/2) _ Z J()7" M

which holds for |z| > 0. By equation (6.7), page 174, the coefficients J,(«) are given by

@) =5 b de @)

1 el/2az=1/z2)
2171 f';
C

where C is any simple closed curve having z = 0 inside.
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Let us, in particular, choose C to be a circle of radius 1 having center at the origin; that is, the equation of C
is |z] = 1 or z = €. Then (2) becomes
1 Zﬂel/Zoz(e"e—e’m) " 1 x4 sin ind
D Y _ iasin 6—in
Ju(a) = i J prCTE ie'”df = 27TJ e do
0

2 27 2T
1 ; 1
— | cos(asin @ —n0)do+—— | sin(asin 0 —n6)do = — | cos(nd— asin 6)do
2T 2ar 2
0 0 0

using the fact that / = foz Tsin(asin  — nf) dO = 0. This last result follows since, on letting 0 =27 — ¢,
we find

2m

2m
I= J sin(—asin g — 27 +nep)dep = — J sin(asin ¢ — np)ddp = —
0

0

so that / = —I and I = 0. The required result is thus established.
The function J,(«) is called a Bessel function of the first kind of order n.
For further discussion of Bessel functions, see Chapter 10.

6.34. The Legendre polynomials P,(t), n =0, 1, 2, 3, ... are defined by Rodrigues’ formula

Py(t) = ( - D"

2"n! dt"
(a) Prove that if C is any simple closed curve enclosing the point z = ¢, then

L1 [ E@=
P (t) % m (Z t)n—H

This is called Schlaefli’s representation for P,(t), or Schlaefli’s formula.

(b) Prove that
21

P(t)_—J(t—}-\/ —1cos0)"do

(=}

Solution

(a) By Cauchy’s integral formulas, if C encloses point ¢,

y
n! f@
ey — & c
10 =2 g =2 51; Lo
Then, taking f(f) = (> — 1)" so that f(z) = (z — 1)", we have
the required result
1 2 n
Pu() =~ 'W( 1) x
_ 11 jL(Z -1 Fig. 6-7
My n+1 d
2" (z—1)
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(b) Choose C as a circle with center at # and radius /|#2 — 1| as shown in Fig. 6-7. Then, an equation for C is
lz—tl =2 =1lorz=1t+ 1 —1€% 0 < 6 < 27. Using this in part (a), we have

2 . .
L J (t + VP2 — 19 — 1)'Vi2 — 1ie?
T 2 (V12 = Teit)yrt!
0

do

2 . . .
(22— 1)+ 20V — 1€ + (2 — 1)e?®)"e= ™0

11
_ . d
2" 27 @ -2 ’
0
2T . .
1 1 [({(®=De ¥ +2t/12 — 1+ (2 — Det)"
_ .t de
2n 2 ™ —1y?
0
2
11 ({22 — 1+ 2(2 — 1) cos 6} 46
Ton o @ = ?
0
! 2T
:—J (t+ 1> —1cos 0)"do
2ar
0

For further discussion of Legendre polynomials, see Chapter 10.

SUPPLEMENTARY PROBLEMS

Sequences and Series of Functions

6.35.

6.36.

6.37.

6.38.

6.39.

6.40.

6.41.

6.42.

6.43.

6.44.

6.45.

-2z . nz

(a) lim =

Using the definition, prove:
n—o n—4z

Let lim, o u,(z) = U(z) and lim,_. e v,(2) = V(). Prove that (a) lim, . e{u,(2) £ v,(2)} = U(z) + V(2),
(b) limy_ 0 {1, (2)00(2)} = URQV(2), (C) lim,_, 0 () /04(2) = UR)/V(2) if V() # 0.
i anl

2n

n=1

1z 22

P that th i
(a) Prove thai eserles2 2t

converges for |z| < 2 and (b) find its sum.

(a) Determine the set of values of z for which the series Zf;o (=1)"(Z" 4+ 2"*1) converges and (b) find its sum.
(a) For what values of z does the series Z:’:] 1 /(z2 + 1)" converge and (b) what is its sum?

Suppose lim,,_,  |u,(z)| = 0. Prove that lim,_, » u,(z) = 0. Is the converse true? Justify your answer.

Prove that for all finite z, lim, . z"/n! = 0.

Let {a,}, n =1, 2, 3,... be a sequence of positive numbers having zero as a limit. Suppose that |u,(z)| < a, for
n=1,2,3,.... Prove that lim,_, « u,(z) = 0.

Prove that the convergence or divergence of a series is not affected by adding (or removing) a finite number of
terms.

Let S, =z+222+32 +---+n", Ty, =z+22+22+---+ 7" (a) Show that S, = (T, — nz"*!)/(1 — 2). (b) Use

(a) to find the sum of the series Y .| nz" and determine the set of values for which the series converges.

Find the sum of the series Y o, (n + 1)/2".
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Absolute and Uniform Convergence

6.46.

6.47.

6.48.

6.49.

6.50.

6.51.

6.52.

6.53.

6.54.

6.55.

(a) Prove that u,,(z) = 3z +47%/n, n =1, 2, 3,. .., converges uniformly to 3z for all z inside or on the circle |z| = 1.
(b) Can the circle of part (a) be enlarged? Explain.

(a) Determine whether the sequence u,(z) = nz/(n> + z%) [Problem 6.35(b)] converges uniformly to zero for all z
inside |z| = 3. (b) Does the result of (a) hold for all finite values of z?

Prove that the series 1 4 az 4+ a?z> + - - - converges uniformly to 1/(1 — az) inside or on the circle |z| = R where
R < 1/]al.

Investigate the (a) absolute and (b) uniform convergence of the series

z 283-2 283—-2° z23-27°
3ttt T

Investigate the (a) absolute and (b) uniform convergence of the series in Problem 6.38.
Investigate the (a) absolute and (b) uniform convergence of the series in Problem 6.39.

Let {a,} be a sequence of positive constants having limit zero; and suppose that for all z in a region
R, |un(z)| <ay,n=1,2,3,.... Prove that lim,_, » u,(z) = 0 uniformly in R.

(a) Prove that the sequence u,(z) = nze "% converges to zero for all finite z such that Re{z?} > 0, and represent this
region geometrically. (b) Discuss the uniform convergence of the sequence in (a).

Suppose Y ooy and Y o b, converge absolutely. Prove that Y ., ¢,, Where ¢, = aob, + aib,—1 + - - - + aybo,
converges absolutely.

Suppose each of two series is absolutely and uniformly convergent in R. Prove that their product is absolutely and
uniformly convergent in R.

Special Convergence Tests

6.56.

6.57.

6.58.

6.59.

6.60.

6.61.

6.62.

6.63.
6.64.

Test for convergence:

> 1 > n > n+3 2, (=1 > 2n—1
<a);2n+1’ (b);:«;n_r <c>;3n2_n+2, <d>;4n+3, ("’); ——

Investigate the convergence of:

o0 1 0 (—1)" 00 1 o 1
(a)nX:I:n+|Z|’ (b)"X:l:n_F'Z" (C);"2+|Z|’ (d)nX:l:n2+Z

nen'n’i/4

en—1°

00
Investigate the convergence of Z
n=0

Find the region of convergence of:

= @t =1 (241! N
@ 2 r Dt (b);nz.3n<z—1>’ (C); T

n=0

n(—1)"z—i)"

Investigate the region of absolute convergence of _
; 4n(n2 4 1)3/?

o 2ming
e
Find the region of convergence of E —.
porc (n+ 1)3/2

Prove that the series Y ., (+/n + 1 — /n) diverges although the nth term approaches zero.

Let N be a positive integer and suppose that for all n > N, |u,| > 1/(nInn). Prove that Y - | u, diverges.

Establish the validity of the (a) nth root test [Theorem 6.12], (b) integral test [Theorem 6.13], on page 141.
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6.65. Find the interval of convergence of 1 + 2z + 72 +2723 +z* +22° + - -.

6.66. Prove Raabe’s test (Theorem 6.14) on page 172.

1 1 1 1-4 1-4.7
6.67. Test for convergence: (a) 21n22+3ln23+41n24+”.’ (b) 7+ﬁ+5 T 11+.. ,
()2+2~7+2-7'12+ @ 1n2+ln3+1n4+
?575 051015 2 "3 s

Theorems on Uniform Convergence and Power Series

6.68. Determine the regions in which each of the following series is uniformly convergent:

ol Zn o (Z_i)Zn
(a);3n+1, (b); — ,<)Z(+1)n ()Zn2+|Z|2

n=1

6.69. Prove Theorem 6.20, page 172.
6.70. State and prove theorems for sequences analogous to Theorems 6.18, 6.19, and 6.20, page 172, for series.

6.71. (a) By differentiating both sides of the identity

1
—1_Z:1+z+z2+z3+-~ 2l <1

find the sum of the series Y .., nz" for |z| < 1. Justify all steps.

(b) Find the sum of the series Y o n7" for |z] < L.

6.72. Let z be real and such that 0 < z < 1, and let u,(z) = nze ™%
1 1

(2) Find lim J uy(2)dz,  (b) Find J [ lim un(z)] dz
0 0
(c) Explain why the answers to (a) and (b) are not equal [see Problem 6.53].

6.73. Prove Abel’s theorem [Theorem 6.24, page 173].

6.74. (a) Prove that 1/(1+7) =1—2>+z* =0 +.. for |z < 1.

(b) If we choose that branch of f(z) = tan™! z such that £(0) = 0, use (a) to prove that

[ dz 2 2 7
-1
t _ L
an -z J1+z2 ity ts g
0

(c) Prove thatg: 1 —%4—%—%-}---. .
6.75. Prove Theorem 6.25, page 173.
6.76. (a) Determine Y(z) = Zf;o a,Z" such that for all zin |z] < 1, Y'(z) = Y(2), Y(0) = 1. State all theorems used and
verify that the result obtained is a solution.
(b) Is the result obtained in (a) valid outside of |z| < 1? Justify your answer.
(c) Show that Y(z) = ¢ satisfies the differential equation and conditions in (a).

(d) Can we identify the series in (a) with ¢*? Explain.

6.77. (a) Use series methods on the differential equation Y”(z) + ¥Y(z) =0, Y(0) = 0, Y'(0) = 1 to obtain the series
expansion

(b) How could you obtain a corresponding series for cos z?
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Taylor’s Theorem

6.78. Expand each of the following functions in a Taylor series about the indicated point and determine the region of
convergence in each case.
(@) e z=0 (© 1/A+2;z=1 (e) ze¥;z=—1
(b) cosziz=m/2 (d) 22 =37 +4z—2;z=2

6.79. Suppose each of the following functions were expanded into a Taylor series about the indicated points. What would
be the region of convergence? Do not perform the expansion.

(a) sinz/(22+4);2=0, (©) @+3)/@—DE—4;z=2, () €/zz—1);z=4i, (2 secmz;z=1
(b) z/(e*+1); z=0, (d) e~ sinh(z +2); z=0, (f) zcoth2z; z =0,

6.80. Verify the expansions 1, 2, 3 for ¢°, sinz, and cos z on page 173.

, 0 M
6.81. Show that sinz> =z BETITERE TR lz| < oo.
| 350
6.82. Prove that tan™ z:z—§+g—7+--~, lz] < 1.
72 27
6.83. Show that: (a) tanz:z—i-?—i-ﬁ—i--", |z| < /2,
(b) secz=1+i+5—z4+-~-, Iz| < 7/2, (c) cscz:l—l—g—}—ﬁ—i—-n, o<zl <m
2 24 z 6 360

6.84. By replacing z by iz in the expansion of Problem 6.82, obtain the result in Problem 6.23(c) on page 185.
6.85. How would you obtain series for (a) tanh z, (b) sech z, (c) csch z from the series in Problem 6.83?

6.86. Prove the uniqueness of the Taylor series expansion of f(z) about z = a.

[Hint. Assume f(z) = Y v gcn(z —a)' =Y oo du(z — @)" and show that ¢, = d,, n =0, 1,2, 3,... ]
6.87. Prove the binomial Theorem 6.6 on page 174.

6.88. Suppose we choose that branch of +/1 + z3 having the value 1 for z = 0. Show that

z 4 270 <1

6.89. (a) Choosing that branch of sin™' z having the value zero for z = 0, show that

3 5 7
z 1-3z 1-3-5¢2
3 5 7+ |z]

t2 45246

8]

(b) Prove that the result in (a) is valid for z = i.

6.90. (a) Expand f(z) = In(3 — iz) in powers of z — 2i, choosing that branch of the logarithm for which f(0) = In 3, and
(b) determine the region of convergence.

Laurent’s Theorem

6.91. Expand f(z) = 1/(z — 3) in a Laurent series valid for (a) |z| < 3, (b) |z| > 3.

6.92. Expand f(z) = in a Laurent series valid for:

-z
z—-D2 -2
@ |zl <1, b)) 1 <|z1<2, (@ |z1>2, @ |z—=1]>1, (¢) 0<|z=2| <.
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6.93. Expand f(z) = 1/z(z — 2) in a Laurent series valid for (a) 0 < |z] <2, (b) |z| > 2.

6.94. Find an expansion of f(z) = z/(z> + 1) valid for |z — 3] > 2.

6.95. Expand f(z) = 1/(z — 2)? in a Laurent series valid for (a) |z] <2, (b) |z| > 2.

6.96. Expand each of the following functions in a Laurent series about z = 0, naming the type of singularity in each case.
(@ (1 —cosz)/z, (b) €¢/z%, (c) z 'coshz™!, (d) 2e 7

6.97. Suppose tan z is expanded into a Laurent series about z = /2. Show that: (a) the principal part is —1/(z — 7/2),
(b) the series converges for 0 < |z — 7/2| < /2, (c) z = m/2 is a simple pole.

6.98. Determine and classify all the singularities of the functions:
(@) 1/@2sinz— 1% (b) z/(e"F=1), (c) cos(z +z72), (d) tan""(2+2z+2), () z/(¢* —1).

6.99. (a) Expand f(z) = ¢““~? in a Laurent series about z = 2 and (b) determine the region of convergence of this series.
(c) Classify the singularities of f(z).

6.100. Establish the result (6.7), page 174, for the coefficients in a Laurent series.
6.101. Prove that the only singularities of a rational function are poles.

6.102. Prove the converse of Problem 6.101, i.e., if the only singularities of a function are poles, the function must be
rational.

Lagrange’s Expansion
6.103. Show that the root of the equation z = 1 4 {z¥, which is equal to 1 when { = 0, is given by

Bp)3p—1) (4p)4p — 1)(4p — 2)
3! 4!

2,
e=1+i+ 0+ £+ SREr
6.104. Calculate the root in Problem 6.103 if p = 1/2 and { = 1, (a) by series and (b) exactly. Compare the two answers.

6.105. By considering the equation z = o + %{(zz — 1), show that

f‘l dl‘l 5
_ 1 n
"n! da® (@ )

1 00
V1=2al+ 2 ;2

6.106. Show how Lagrange’s expansion can be used to solve Kepler’s problem of determining the root of z = a + {sinz
for which z = a when { = 0.

6.107. Prove the Lagrange expansion (6.11) on page 176.

Analytic Continuation

6.108. (a) Prove that

1 00 Z+i n
F =
2(2) l+in2:(;(l+i)

is an analytic continuation of Fi(z) = Y .., 2", showing graphically the regions of convergence of the series.

(b) Determine the function represented by all analytic continuations of F(z).
R _n+l

6.109. Let Fi(d) =) "
n=0

(a) Find an analytic continuation of F(z), which converges for z = 3 — 4i.

(b) Determine the value of the analytic continuation in (a) for z = 3 — 4i.

6.110. Prove that the series z!' 4+ 7% +z* 4 - - - has the natural boundary |z| = 1.



CHAPTER 6 Infinite Series Taylor’s and Laurent’s Series

Miscellaneous Problems

6.111. (a) Prove that > - | 1/n” diverges if the constant p < 1.
(b) Prove that if p is complex, the series in (a) converges if Re{p} > 1.
(c) Investigate the convergence or divergence of the series in (a) if Re{p} < 1.

6.112. Test for convergence or divergence:

1 3 -1
a c sin” (1 e coth
<>Zn+l © 2 nsin”l(A/w) (@) ) coth”n
n+sinn 2 @) 2,
d f "
(b) Zle”-l-(Z @ ;nlnn ® ;ne
6.113. Euler presented the following argument to show that Y =, 7" = 0:
L_Z+ZZ+ZS+"'_§:Z” L _ 1 _1+l+i+...—§z”
11—z Tt -1 -1z Tz 2 B

Then adding, % " = 0. Explain the fallacy.

=1 =1 =D

. . — < =(z— —
6.114. Show that for [z —1| <1, zlnz=(z—-1)+ 2 73 3

6.115. Expand sin’ z in a Maclaurin series.

2 Z2 Z2

- + +
1+22 (1+22? A+22)°
(a) Show that the sum of the first n terms is S,(z) = 1 + 2% — 1/(1 + 22"\

6.116. Given the series 72 +

(b) Show that the sum of the series is 1 4 z2 for z#0, and 0 for z = 0; and hence that z =0 is a point of
discontinuity.

(c) Show that the series is not uniformly convergent in the region |z| < & where & > 0.

3z-3
6.117. If F(z) = 27, find a Laurent series of F(z) about z = 1 convergent for % <|lz—1|<1.
Q2z—1D(z—2)

6.118. Let G(z) = (tan~! z)/z*. (a) Expand G(z) in a Laurent series. (b) Determine the region of convergence of the series
in (a). (c) Evaluate fﬁc G(z) dz where C is a square with vertices at 2 + 2i, —2 + 2i.

6.119. Consider each of the functions ze!/ (sm 2)/z, 1/z(4 — z) which have singularities at z = 0:
(a) give a Laurent expansion about z = 0 and determine the region of convergence;
(b) state in each case whether z = 0 is a removable singularity, essential singularity or a pole;
(c) evaluate the integral of the function about the circle |z| = 2.

[

6.120. (a) Investigate the convergence of Zm (b) Does your answer to (a) contradict Problem 6.8.
n

n=1
6.121. (a) Show that the following series, where z = x + iy, converges absolutely in the region bounded by
sin?x 4 sinh®y = 1:
sinz sinfz  sin’z
1241 2241 32+1

(b) Graph the region of (a).

6.122. If |z| > 0, prove that cosh(z + 1/z) = co + c1(z + 1/2) + c2(z%> + 1/2%) + - - - where

2

1
Cn=— J cos n¢cosh(2 cos ¢p) do
2
0



6.123.

6.124.

6.125.

6.126.

6.127.

6.128.

6.129.

6.130.

6.131.

6.132.

6.133.

6.134.
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If f(z) has simple zeros at 1 — i and 1 + i, double poles at —1 4 i and —1 — i, but no other finite singularities, prove
that the function must be given by

2?2 —27+2

f(2) = Ki(zz T2t 27

where « is an arbitrary constant.

22 sin(nr/ 4)

Prove that for all z, e*sinz = '
n!

n=1

Show thatIn2 =1 —%+1—1+... justifying all steps. [Hint. Use Problem 6.23.]

0o

z
Investigate the uniform convergence of the series Z

[1+(n— Dzl +nz]

[Hznt. Resolve the nth term into partial fractions and show that the nth partial sum is S,(z) =1 — (1/1 + nz).]

Given 1 — % + % - % + - - - converges to S. Prove that the rearranged series

1+111
3 2

5

1

1 1
7 4

1
e __4...=Z¢§.
+ +-Et

+o-5+

BN W

1
9
Explain.

[Hint. Take % of the first series and write it as 0 + % + 0 —% + 0+ %—|— -+~ ; then add term by term to the first
series. Note that S = In 2, as shown in Problem 6.125.]

Prove that the hypergeometric series

1_*_7 +a(a+1)b(b+1) » cata+1D(a+2)b(b+ 1)b+2) 4
LT 12 cerD) © 1-2:3-clc+ Dct+2) ©

(a) converges absolutely if |z] <1,

(b) diverges for |z| > 1,

(c) converges absolutely for z = 1 if Refa + b — ¢} <0,

(d) satisfies the differential equation z(1 — 2)Y” + {¢ — (@ + b + 1)z}Y’ — abY = 0.

Prove that for |z] < 1,

(sin-12)? +2z+2~4 z6+246zs+
i — A L

JTET3 T35 3357
Prove that Y o, 1/n'" diverges.
Show that : : + : : + 2In2 -1

owthat — — —+————+.--=2In2 — 1.
l- 2-3 3.4 4.5
541 2
Locate and name all the singularities of ‘ 3+ 5 sin( & )
(z—=17Bz+2) z—3

By using only properties of infinite series, prove that

2 3 b2 b3 (+b)2
(@) {1+a+ S+ }{1+b+2—!+§+-~} {1+( b+ }

& o & 2 &S & d 2
Suppose f(z) = Y o anz" converges for |z| < R and 0 < r < R. Prove that

2m

1 i0y2 _ S 2.2n
;ij(re a6 =3 lanl’r

0
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6.135. Use Problem 6.134 to prove Cauchy’s inequality (page 145), namely

M- nl
20 <% n=012...
rn

6.136. Suppose a function has six zeros of order 4, and four poles of orders 3, 4, 7, and 8, but no other singularities in the
finite plane. Prove that it has a pole of order 2 at z = .

6.137. State whether each of the following functions are entire, meromorphic or neither:

(a) €%, (©) (1 —cosz)/z, (e) zsin(1/2), (g) siny/z//z
(b) cot 2z, (d) cosh 22, ) z+1/z, (h) +/sinz
1 1 1
6.138. Let —7r < 6 < 7. Prove that In(2 cos 6/2) = cos 0 — icos 20+ gcos 360 — Zcos46 + -

6.139. (a) Expand 1/In(1 4 z) in a Laurent series about z = 0 and (b) determine the region of convergence.

6.140. Let SG2) =ap+ajz+axz> + . Giving restrictions if any, prove that

S(z
1(_)z200+(00+a1)2+(a0+01+Clz)22+"-

6.141. Show that the following series (a) is not absolutely convergent but (b) is uniformly convergent for all values of z.

1 1 n 1 1 +
T4z 2410z 341zl 4+1z

6.142. Prove that ) . | 7"/n converges at all points of |z| < 1 except z = 1.

6.143. Prove that the solution of z = a + {e°, which has the value a when { = 0, is given by

e nn—lenagn
i=a+y ——=—
n!
n=1

if | < |e~@+D],
cos26 cos30
2! + 3!
6.145. Let F(z) be analytic in the finite plane and suppose that F(z) has period 2, i.e., F(z 4+ 2) = F(z). Prove that

6.144. Find the sum of the series 1 + cos 6 +

27

0o ) 1 .
F(2) = Z aye’™ where a, = o J F(2)e™"™ dz
0

n=—oo
The series is called the Fourier series for F(z).
6.146. Prove that the following series is equal to 77/4 if 0 < 6 < 77, and to —7/4 if —m < 6 < O:
sin 0+%sin30+ésin50+ e
6.147. Prove that |z| = 1 is a natural boundary for the series Y . 27"z%.

6.148. Suppose f(z) is analytic and not identically zero in the region 0 < |z — z9| < R, and suppose lim,_,,, f(z) = 0.
Prove that there exists a positive integer n such that f(z) = (z — z9)"g(z) where g(2) is analytic at zo and different

from zero.
6.149. Suppose f(z) is analytic in a deleted neighborhood of zy and lim,_, ,, | f(z)| = 0. Prove that z = zy is a pole of f(2).

6.150. Explain why Problem 6.149 does not hold for f(x) = e!/*" where x is real.



6.151.

6.152.

6.153.

6.154.

6.155.

6.156.

6.157.

6.158.

6.159.

6.160.

6.161.

6.162.

6.163.
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(a) Show that the function f(z) = e!/* can assume any value except zero.
(b) Discuss the relationship of the result of (a) to the Casorati—Weierstrass theorem and Picard’s theorem.

(a) Determine whether the function g(z) = z2 — 3z 4+ 2 can assume any complex value.
(b) Is there any relationship of the result in (a) to the theorems of Casorati—Weierstrass and Picard? Explain.

Prove the Casorati—Weierstrass theorem stated on page 175. [Hint. Use the fact that if z =a is an essential
singularity of f(z), then it is also an essential singularity of 1/{f(z) — A}.]

(a) Prove that along any ray through z = 0, |z + €°| — 0.

(b) Does the result in (a) contradict the Casorati—Weierstrass theorem?

(a) Prove that an entire function f(z) can assume any value whatsoever, with perhaps one exception.
(b) Illustrate the result of (a) by considering f(z) = ¢° and stating the exception in this case.

(c) What is the relationship of the result to the Casorati—Weierstrass and Picard theorems?

Prove that every entire function has a singularity at infinity. What type of singularity must this be? Justify your
answer.

In(1 + 2) 1, 1 1\,
P that: — C=7z—1 — 1 — -z -, <1
rove that:  (a) 1. ¢ ( +2)z +\I+5+5)2 |z]
(b) fn(1+ 2P =2 — (142 EJF I+l 2 lz] <1
pTor = 2) 73 273) % -

Find the sum of the following series if |a| < 1:
(@) Yo na"sinnb, (b) Y.° n*a"sinnd
2

2

i Z
h tht smzzl — - < .
Show that e tzts-g-5t s i <o

(a) Show that Z:o:l 7" /n* converges for |z < 1.

(b) Show that the function F(z), defined as the collection of all possible analytic continuations of the series in (a),
has a singular point at z = 1.

(c) Reconcile the results of (a) and (b).

Let Y 2, a,z" converge inside a circle of convergence of radius R. There is a theorem which states that the function
F(z) defined by the collection of all possible continuations of this series, has at least one singular point on the circle
of convergence. (a) Illustrate the theorem by several examples. (b) Can you prove the theorem?

Show that
R U dd ©
o Tr _% AN :
i JRZ “2ReosO- 177 2 ;(R) {an cosnf + by sinné}
) —
where
| 21 i 27
n =7J U(d)cosnddd, b, =7J U sinnddeb
a v
0 0
Let
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6.164.

6.165.

(a) Show that the numbers B,,, called the Bernoulli numbers, satisfy the recursion formula (B 4 1)" = B" where B* is
formally replaced by By after expanding. (b) Using (a) or otherwise, determine By, . .., Bg.

z
(a) Prove that — 1 =5 (cothi — 1).
(b) Use Problem 6.163 and part (a) to show that By =0ifk=1,2,3,....

Derive the series expansions:

(a) cothz-l—l—g—%—k ~+%2;fn+m, |zl <
() corz=! S Eh )"Bz("z%f” o <
(c) tanz =z + 33 +%+ (=t 2% = Bi;;n(zz)z"*l , |z| < /2
(d) cscz —1—1— 6 +%+ (=1t 27 &;;FZ’ZZ%_I ooy ld<mw

[Hint. For (a), use Problem 6.164; for (b) replace z by iz in (a); for (c) use tanz = cotz — 2 cot 2z; for (d) use
cscz = cotz 4 tanz/2.]

ANSWERS TO SUPPLEMENTARY PROBLEMS

6.37.
6.38.
6.44.
6.49.

6.50.
6.51.
6.53.
6.56.
6.57.

6.58.
6.59.
6.60.
6.68.
6.71.
6.72.
6.79.

6.90.

6.91.

(@) Su(2) = {1 —(2/2)"}/(2 — 2) and lim, . S,(2) exists if |z] < 2, (b) S(z) = 1/(2 —2)
@ |zZ1<1,()1 6.39. (a) All z such that |22 + 1| > 1, (b) 1/2°
(b) z/(1—2% |zl < 1 6.45. 4

(a) Converges absolutely if |z —3| <3 or z=0. (b) Converges uniformly for |z —3| < R where 0 <R < 3;
does not converge uniformly in any neighborhood that includes z = 0.

(a) Converges absolutely if |z| < 1. (b) Converges uniformly if |z| < R where R < 1.

(a) Converges absolutely if |72 + 1| > 1. (b) Converges uniformly if |z 4+ 1| > R where R > 1.
(b) Not uniformly convergent in any region that includes z = 0.

(a) conv., (b) conv., (c) div., (d) conv., (e) div.

(a) Diverges for all finite z. (b) Converges for all z. (c) Converges for all z.

(d) Converges for all z except z = —nn=1,2,3,....

Conv. 6.61. Converges if Imz > 0.

@ [z+i <L, ®) |+ 1D/z=DI<3,() lz| <o 6.65. |z] < 1.

Conv. Abs. for |z —i| < 4. 6.67. (a) conv., (b) conv., (c) div., (d) div.
(a) |zl <R where R <3, (b)|z—i| <1, (c)|z] = Rwhere R > 1, (d) all z.

(@) z/(1 —z)* [compare Problem 6.44], (b) z(1 +z2)/(1 — 2)*

2 3

@ 1/2,(®) 0 6.76. (a) Y(z)—1+z+2,+3,+

@ Iz <2,0) |zl < (©) lz—2| < 1, (d) |z] < oo, (e) |z —4i| <4, (D) |z| <7/2,(g) lz— 11 < 1/2
iz — 2l)+(z—2i)2 i(z =20  (z—2i*
5 2.52 3.5 4.5%
11 1 1,

_____ 2 = 3. -1 -2 3 4 97,4
(a) 3 9z 27z 81Z ®)z7 +3z27"+927° + 27777 +

(a) In5 —

(b) |z —2i| <5



