
4.101. Evaluate

þ
C

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ 2zþ 2

p around the unit circle jzj ¼ 1 starting with z ¼ 1, assuming the integrand positive for

this value.

4.102. Let n be a positive integer. Show that

ð2p
0

esin nu cos(u� cos nu) du ¼
ð2p
0

esin nu sin(u� cos nu) du ¼ 0

ANSWERS TO SUPPLEMENTARY PROBLEMS

4.32. (a) 88/3, (b) 32, (c) 40, (d) 24 4.54. (a) 18pi, (b) 8i, (c) 40pi

4.33. (a) �48p, (b) 48p 4.55. 6pia2

4.34. (a)
511

3
� 49

5
i, (b)

518

3
� 57i, (c)

518

3
� 8i 4.59. ẑ ¼ 2ai

p
, ẑ ¼ �2ai

p

4.35. �1þ i 4.70. One possibility is p ¼ x2 � y2 þ 2y� x,

q ¼ 2xþ y� 2xy, f (z) ¼ iz2 þ (2� i)z

4.36. � 44

3
� 8

3
i in all cases 4.72. 338� 266i

4.38. (a) � 4

3
þ 8

3
i, (b) � 1

3
þ 79

30
i 4.73. 1

2
e�2(1� e�2)

4.39. (a) 0, (b) 4pi 4.74. (b) 0

4.40. 0 in all cases 4.79. (a) � 1

2
e�2z þ c, (b) � 1

2
cos z2 þ c,

(c)
1

3
ln (z3 þ 3zþ 2)þ c, (d)

1

10
sin5 2zþ c,

(e)
1

12
ln cosh(4z3)þ c

4.41. (96p 5a5 þ 80p 3a3 þ 30pa)=15

4.42.
248

15

4.43. 2pi in all cases

4.80. (a)
1

2
z sin 2zþ 1

4
cos 2zþ c, (b) �e�z(z2 þ 2zþ 2)þ c,

(c)
1

2
z2 ln z� 1

4
þ c,

(d) (z3 þ 6z) cosh z� 3(z2 þ 2) sinh zþ c

4.44. 8p (1þ i)

4.45. Common value ¼ �8

4.46. �18

4.81. (a)
2

3
, (b) � 2

5
, (c)

1

4
cosh 2� 1

2
sinh 2þ 1

2
pi sinh 2

4.48. pab

4.85.
4

5
1þ

ffiffiffiffiffiffiffiffiffiffiffi
zþ 1

p
 �5=2 � 4

3
1þ

ffiffiffiffiffiffiffiffiffiffiffi
zþ 1

p

Þ3=2 þ c

4.49.
3pa2

8

4.92.
p

2

4.50. Common value ¼ 120p

4.94.
32

3

4.51. (b) �2pep
2

4.52. (b) 24
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CHAP T E R 5

Cauchy’s Integral Formulas
and Related Theorems

5.1 Cauchy’s Integral Formulas

Let f (z) be analytic inside and on a simple closed curve C and let a be any point inside C [Fig. 5-1]. Then

f (a) ¼ 1

2pi

þ
C

f (z)

z� a
dz (5:1)

where C is traversed in the positive (counterclockwise) sense.
Also, the nth derivative of f(z) at z ¼ a is given by

f (n)(a) ¼ n!

2pi

þ
C

f (z)

(z� a)nþ1
dz n ¼ 1, 2, 3, . . . (5:2)

The result (5.1) can be considered a special case of (5.2) with n ¼ 0 if we define 0! ¼ 1.

y

x

a

C

Fig. 5-1

The results (5.1) and (5.2) are called Cauchy’s integral formulas and are quite remarkable because they
show that if a function f(z) is known on the simple closed curve C, then the values of the function and all its
derivatives can be found at all points inside C. Thus, if a function of a complex variable has a first
derivative, i.e., is analytic, in a simply-connected region R, all its higher derivatives exist in R. This is
not necessarily true for functions of real variables.
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5.2 Some Important Theorems

The following is a list of some important theorems that are consequences of Cauchy’s integral formulas.

1. Morera’s theorem (converse of Cauchy’s theorem)
If f (z) is continuous in a simply-connected region R and if

Þ
C
f (z) dz ¼ 0 around every simple

closed curve C in R, then f(z) is analytic in R.

2. Cauchy’s inequality
Suppose f(z) is analytic inside and on a circle C of radius r and center at z ¼ a. Then

j f (n)(a)j � M � n!
rn

n ¼ 0, 1, 2, . . . (5:3)

where M is a constant such that j f (z)j , M on C, i.e., M is an upper bound of j f (z)j on C.

3. Liouville’s theorem
Suppose that for all z in the entire complex plane, (i) f (z) is analytic and (ii) f (z) is bounded, i.e.,
j f (z)j , M for some constant M. Then f (z) must be a constant.

4. Fundamental theorem of algebra
Every polynomial equationP(z) ¼ a0 þ a1zþ a2z

2 þ � � � þ anz
n ¼ 0with degree n � 1 and an=0

has at least one root.
From this it follows that P(z) ¼ 0 has exactly n roots, due attention being paid to multiplicities

of roots.

5. Gauss’ mean value theorem
Suppose f(z) is analytic inside and on a circle Cwith center at a and radius r. Then f(a) is the mean
of the values of f (z) on C, i.e.,

f (a) ¼ 1

2p

ð2p
0

f aþ reiu

 �

du (5:4)

6. Maximum modulus theorem
Suppose f(z) is analytic inside and on a simple closed curve C and is not identically equal to a
constant. Then the maximum value of j f (z)j occurs on C.

7. Minimum modulus theorem
Suppose f(z) is analytic inside and on a simple closed curve C and f (z)=0 inside C. Then j f (z)j
assumes its minimum value on C.

8. The argument theorem
Let f(z) be analytic inside and on a simple closed curve C except for a finite number of poles
inside C. Then

1

2pi

þ
C

f 0(z)

f (z)
dz ¼ N � P (5:5)

where N and P are, respectively, the number of zeros and poles of f (z) inside C.
For a generalization of this theorem, see Problem 5.90.

9. Rouché’s theorem
Suppose f(z) and g(z) are analytic inside and on a simple closed curve C and suppose
jg(z)j , j f (z)j on C. Then f (z)þ g(z) and f (z) have the same number of zeros inside C.

10. Poisson’s integral formulas for a circle
Let f(z) be analytic inside and on the circle C defined by jzj ¼ R. Then, if z ¼ reiu is any point
inside C, we have

f (reiu) ¼ 1

2p

ð2p
0

(R2 � r2) f (Reif)

R2 � 2Rr cos(u� f)þ r2
df (5:6)
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If u(r, u) and v(r, u) are the real and imaginary parts of f (reiu) while u(R, f) and v(R, f) are
the real and imaginary parts of f (Reif), then

u(r, u) ¼ 1

2p

ð2p
0

(R2 � r2)u(R, f)

R2 � 2Rr cos(u� f)þ r2
df (5:7)

v(r, u) ¼ 1

2p

ð2p
0

(R2 � r2)v(R, f)

R2 � 2Rr cos(u� f)þ r2
df (5:8)

These results are called Poisson’s integral formulas for a circle. They express the values of a
harmonic function inside a circle in terms of its values on the boundary.

11. Poisson’s integral formulas for a half plane
Let f (z) be analytic in the upper half y � 0 of the z plane and let z ¼ jþ ih be any point in this
upper half plane. Then

f (z ) ¼ 1

p

ð1
�1

h f (x)

(x� j )2 þ h2
dx (5:9)

In terms of the real and imaginary parts of f (z); this can be written

u(j, h) ¼ 1

p

ð1
�1

hu(x, 0)

(x� j )2 þ h2
dx (5:10)

v(j, h) ¼ 1

p

ð1
�1

hv(x, 0)

(x� j )2 þ h2
dx (5:11)

These are called Poisson’s integral formulas for a half plane. They express the values of a
harmonic function in the upper half plane in terms of the values on the x axis [the boundary]
of the half plane.

SOLVED PROBLEMS

Cauchy’s Integral Formulas

5.1. Let f (z) be analytic inside and on the boundary C of a simply-connected regionR. Prove Cauchy’s
integral formula

f (a) ¼ 1

2pi

þ
C

f (z)

z� a
dz

Solution

Method 1. The function f (z)=(z� a) is analytic inside and on C except at the point z ¼ a (see Fig. 5-2). By

Theorem 4.4, page 117, we have

þ
C

f (z)

z� a
dz ¼

þ
G

f (z)

z� a
dz (1)

where we can choose G as a circle of radius e with center at a. Then an equation for G is jz� aj ¼ e or

z� a ¼ eeiu where 0 � u , 2p. Substituting z ¼ aþ eeiu, dz ¼ ieeiu, the integral on the right of (1) becomes
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þ
G

f (z)

z� a
dz ¼

ð2p
0

f (aþ eeiu)ieeiu

eeiu
du ¼ i

ð2p
0

f (aþ eeiu) du

Thus we have from (1),

þ
C

f (z)

z� a
dz ¼ i

ð2p
0

f (aþ eeiu) du (2)

Taking the limit of both sides of (2) and making use of the continuity of f (z), we have

þ
C

f (z)

z� a
dz ¼ lim

e!0
i

ð2p
0

f (aþ eeiu) du

¼ i

ð2p
0

lim
e!0

f (aþ eeiu) du ¼ i

ð2p
0

f (a) du ¼ 2pi f (a) (3)

so that we have, as required,

f (a) ¼ 1

2pi

þ
C

f (z)

z� a
dz

Method 2. The right side of equation (1) of Method 1 can be written as

þ
G

f (z)

z� a
dz ¼

þ
G

f (z)� f (a)

z� a
dzþ

þ
G

f (a)

z� a
dz

¼
þ
G

f (z)� f (a)

z� a
dzþ 2pi f (a)

using Problem 4.21. The required result will follow if we can show that

þ
G

f (z)� f (a)

z� a
dz ¼ 0

But by Problem 3.21,

þ
G

f (z)� f (a)

z� a
dz ¼

þ
G

f 0(a) dzþ
þ
G

h dz ¼
þ
G

h dz

Then choosing G so small that for all points on G we have jhj , d=2p, we find

þ
G

h dz

������
������ ,

d

2p

� �
(2pe) ¼ e

Thus
Þ
Gh dz ¼ 0 and the proof is complete.
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y

C

x

a

G

'

y

R
a + h

a

CG

x

'

Fig. 5-2 Fig. 5-3

5.2. Let f(z) be analytic inside and on the boundary C of a simply-connected region R. Prove that

f 0(a) ¼ 1

2pi

þ
C

f (z)

(z� a)2
dz

Solution

From Problem 5.1, if a and aþ h lie in R, we have

f (aþ h)� f (a)

h
¼ 1

2pi

þ
C

1

h

1

z� (aþ h)
� 1

z� a

� �
f (z) dz ¼ 1

2pi

þ
C

f (z) dz

(z� a� h)(z� a)

¼ 1

2pi

þ
C

f (z) dz

(z� a)2
þ h

2pi

þ
C

f (z) dz

(z� a� h)(z� a)2

The result follows on taking the limit as h ! 0 if we can show that the last term approaches zero.

To show this we use the fact that if G is a circle of radius e and center a which lies entirely in R
(see Fig. 5-3), then

h

2pi

þ
C

f (z) dz

(z� a� h)(z� a)2
¼ h

2pi

þ
G

f (z) dz

(z� a� h)(z� a)2

Choosing h so small in absolute value that aþ h lies in G and jhj , e=2, we have by Problem 1.7(c), and the

fact that G has equation jz� aj ¼ e,

jz� a� hj � jz� aj � jhj . e� e=2 ¼ e=2

Also since f(z) is analytic in R, we can find a positive number M such that j f (z)j , M.

Then, since the length of G is 2pe, we have

h

2pi

þ
G

f (z) dz

(z� a� h)(z� a)2

������
������ �

jhj
2p

M(2pe)

(e=2)(e2)
¼ 2jhjM

e2

and it follows that the left side approaches zero as h ! 0, thus completing the proof.

It is of interest to observe that the result is equivalent to

d

da
f (a) ¼ d

da

1

2pi

þ
C

f (z)

z� a
dz

8<
:

9=
; ¼ 1

2pi

þ
C

@

@a

f (z)

z� a

� �
dz

which is an extension to contour integrals of Leibnitz’s rule for differentiating under the integral sign.
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5.3. Prove that under the conditions of Problem 5.2,

f (n)(a) ¼ n!

2pi

þ
C

f (z)

(z� a)nþ1
dz n ¼ 0, 1, 2, 3, . . .

Solution

The cases where n ¼ 0 and 1 follow from Problems 5.1 and 5.2, respectively, provided we define f (0)(a) ¼ f (a)

and 0! ¼ 1.

To establish the case where n ¼ 2, we use Problem 5.2 where a and aþ h lie in R to obtain

f 0(aþ h)� f 0(a)

h
¼ 1

2pi

þ
C

1

h

1

(z� a� h)2
� 1

(z� a)2

� �
f (z) dz

¼ 2!

2pi

þ
C

f (z)

(z� a)3
dzþ h

2pi

þ
C

3(z� a)� 2h

(z� a� h)2(z� a)3
f (z) dz

The result follows on taking the limit as h ! 0 if we can show that the last term approaches zero. The proof

is similar to that of Problem 5.2, for using the fact that the integral around C equals the integral around G,
we have

h

2pi

þ
G

3(z� a)� 2h

(z� a� h)2(z� a)3
f (z) dz

������
������ �

jhj
2p

M(2pe)

(e=2)2(e3)
¼ 4jhjM

e 4

Since M exists such that jf3(z� a)� 2hg f (z)j , M.

In a similar manner, we can establish the result for n ¼ 3, 4, . . . (see Problems 5.36 and 5.37).

The result is equivalent to (see last paragraph of Problem 5.2)

dn

dan
f (a) ¼ dn

dan
1

2pi

þ
C

f (z)

(z� a)
dz

8<
:

9=
; ¼ 1

2pi

þ
C

@n

@an
f (z)

z� a

� �
dz

5.4. Suppose f(z) is analytic in a region R. Prove that f 0(z), f 00(z), . . . are analytic in R.

Solution

This follows from Problems 5.2 and 5.3.

5.5. Evaluate:

(a)

þ
C

sinpz2 þ cospz2

(z� 1)(z� 2)
dz, (b)

þ
C

e2z

(zþ 1)4
dz where C is the circle jzj ¼ 3.

Solution

(a) Since
1

(z� 1)(z� 2)
¼ 1

z� 2
� 1

z� 1
, we have

þ
C

sinpz2 þ cospz2

(z� 1)(z� 2)
dz ¼

þ
C

sinpz2 þ cospz2

z� 2
dz�

þ
C

sinpz2 þ cospz2

z� 1
dz

By Cauchy’s integral formula with a ¼ 2 and a ¼ 1, respectively, we haveþ
C

sinpz2 þ cospz2

z� 2
dz ¼ 2pifsinp(2)2 þ cosp(2)2g ¼ 2pi

þ
C

sinpz2 þ cospz2

z� 1
dz ¼ 2pifsinp(1)2 þ cosp(1)2g ¼ �2pi
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since z ¼ 1 and z ¼ 2 are inside C and sinpz2 þ cospz2 is analytic inside C. Then, the required integral

has the value 2pi� (�2pi) ¼ 4pi.

(b) Let f (z) ¼ e2z and a ¼ �1 in the Cauchy integral formula

f (n)(a) ¼ n!

2pi

þ
C

f (z)

(z� a)nþ1
dz (1)

If n ¼ 3, then f 000(z) ¼ 8e2z and f 000(�1) ¼ 8e�2. Hence (1) becomes

8e�2 ¼ 3!

2pi

þ
C

e2z

(zþ 1)4
dz

from which we see that the required integral has the value 8pie�2=3.

5.6. Prove Cauchy’s integral formula for multiply-connected regions.

Solution

We present a proof for the multiply-connected region R
bounded by the simple closed curves C1 and C2 as indi-

cated in Fig. 5-4. Extensions to other multiply-connected

regions are easily made (see Problem 5.40).

Construct a circle G having center at any point a inR so

that G lies entirely in R. Let R0 consist of the set of points
in R that are exterior to G. Then, the function f (z)=(z� a)

is analytic inside and on the boundary of R0. Hence, by
Cauchy’s theorem for multiply-connected regions

(Problem 4.16),

1

2pi

þ
C1

f (z)

z� a
dz� 1

2pi

þ
C1

f (z)

z� a
dz� 1

2pi

þ
G

f (z)

z� a
dz ¼ 0 (1)

But, by Cauchy’s integral formula for simply-connected regions, we have

f (a) ¼ 1

2pi

þ
G

f (z)

z� a
dz (2)

so that from (1),

f (a) ¼ 1

2pi

þ
C1

f (z)

z� a
dz� 1

2pi

þ
C2

f (z)

z� a
dz (3)

Then, if C represents the entire boundary ofR (suitably traversed so that an observer moving around C always

has R lying to his left), we can write (3) as

f (a) ¼ 1

2pi

þ
C

f (z)

z� a
dz

In a similar manner, we can show that the other Cauchy integral formulas

f (n)(a) ¼ n!

2pi

þ
C

f (z)

(z� a)nþ1
dz n ¼ 1, 2, 3, . . .

hold for multiply-connected regions (see Problem 5.40).

C1

C2

a R

G

Fig. 5-4
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Morera’s Theorem

5.7. Prove Morera’s theorem (the converse of Cauchy’s theorem): Suppose f (z) is continuous in a
simply-connected region R and suppose þ

C

f (z) dz ¼ 0

around every simple closed curve C in R. Then f (z) is analytic in R.

Solution

If
Þ
C
f (z) dz ¼ 0 independent of C, it follows by Problem 4.17, that F(z) ¼

Ð z
a
f (z) dz is independent of the path

joining a and z, so long as this path is in R.

Then, by reasoning identical with that used in Problem 4.18, it follows that F(z) is analytic in R and

F0(z) ¼ f (z). However, by Problem 5.2, it follows thatF0(z) is also analytic ifF(z) is. Hence, f (z) is analytic inR.

Cauchy’s Inequality

5.8. Let f(z) be analytic inside and on a circle C of radius r and center at z ¼ a. Prove Cauchy’s
inequality

j f (n)(a)j � M � n!
rn

n ¼ 0, 1, 2, 3, . . .

where M is a constant such that j f (z)j , M.

Solution

We have by Cauchy’s integral formulas,

f (n)(a) ¼ n!

2pi

þ
C

f (z)

(z� a)nþ1
dz n ¼ 0, 1, 2, 3, . . .

Then, by Problem 4.3, since jz� aj ¼ r on C and the length of C is 2pr,

j f (n)(a)j ¼ n!

2p

þ
C

f (z)

(z� a)nþ1
dz

������
������ �

n!

2p
� M

rnþ1
� 2pr ¼ M � n!

rn

Liouville’s Theorem

5.9. Prove Liouville’s theorem: Suppose for all z in the entire complex plane, (i) f (z) is analytic and (ii)
f(z) is bounded [i.e., we can find a constant M such that j f (z)j , M ]. Then f(z) must be a constant.

Solution

Let a and b be any two points in the z plane. Suppose that C is a

circle of radius r having center at a and enclosing point b (see

Fig. 5-5).

From Cauchy’s integral formula, we have

f (b)� f (a) ¼ 1

2pi

þ
C

f (z)

z� b
dz� 1

2pi

þ
C

f (z)

z� a
dz

¼ b� a

2pi

þ
C

f (z) dz

(z� b)(z� a)

Now we have

jz� aj ¼ r, jz� bj ¼ jz� aþ a� bj � jz� aj � ja� bj ¼ r � ja� bj � r=2

y

C r

a

x

b

Fig. 5-5
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if we choose r so large that ja� bj , r=2. Then, since j f (z)j , M and the length of C is 2pr, we have by

Problem 4.3,

j f (b)� f (a)j ¼ jb� aj
2p

þ
C

f (z) dz

(z� b)(z� a)

������
������ �

jb� ajM(2pr)

2p(r=2)r
¼ 2jb� ajM

r

Letting r ! 1, we see that j f (b)� f (a)j ¼ 0 or f (b) ¼ f (a), which shows that f(z) must be a constant.

Another Method. Letting n ¼ 1 in Problem 5.8 and replacing a by z we have,

j f 0(z)j � M=r

Letting r ! 1, we deduce that j f 0(z)j ¼ 0 and so f 0(z) ¼ 0. Hence, f (z) ¼ constant, as required.

Fundamental Theorem of Algebra

5.10. Prove the fundamental theorem of algebra: Every polynomial equation P(z) ¼ a0 þ a1zþ
a2z

2 þ � � � þ anz
n ¼ 0, where the degree n � 1 and an=0, has at least one root.

Solution

If P(z) ¼ 0 has no root, then f (z) ¼ 1=P(z) is analytic for all z. Also, j f (z)j ¼ 1=jP(z)j is bounded (and in fact

approaches zero) as jzj ! 1.

Then by Liouville’s theorem (Problem 5.9), it follows that f(z) and thus P(z) must be a constant. Thus, we

are led to a contradiction and conclude that P(z) ¼ 0 must have at least one root or, as is sometimes said, P(z)

has at least one zero.

5.11. Prove that every polynomial equation P(z) ¼ a0 þ a1zþ a2z
2 þ � � � þ anz

n ¼ 0, where the degree
n � 1 and an=0, has exactly n roots.

Solution

By the fundamental theorem of algebra (Problem 5.10), P(z) has at least one root. Denote this root by a. Then
P(a) ¼ 0. Hence

P(z)� P(a) ¼ a0 þ a1zþ a2z
2 þ � � � þ anz

n � (a0 þ a1aþ a2a
2 þ � � � þ ana

n)

¼ a1(z� a)þ a2(z
2 � a2)þ � � � þ an(z

n � an)

¼ (z� a)Q(z)

where Q(z) is a polynomial of degree (n� 1).

Applying the fundamental theorem of algebra again, we see that Q(z) has at least one zero, which we can

denote by b [which may equal a], and so P(z) ¼ (z� a)(z� b)R(z). Continuing in this manner, we see that

P(z) has exactly n zeros.

Gauss’ Mean Value Theorem

5.12. Let f(z) be analytic inside and on a circle C with center at a. Prove Gauss’ mean value theorem that
the mean of the values of f(z) on C is f(a).

Solution

By Cauchy’s integral formula,

f (a) ¼ 1

2pi

þ
C

f (z)

z� a
dz (1)
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If C has radius r, the equation of C is jz� aj ¼ r or z ¼ aþ reiu. Thus, (1) becomes

f (a) ¼ 1

2pi

ð2p
0

f (aþ reiu)ireiu

reiu
du ¼ 1

2p

ð2p
0

f (aþ reiu) du

which is the required result.

Maximum Modulus Theorem

5.13. Prove the maximum modulus theorem: Suppose f(z) is analytic inside and on a simple closed curve
C. Then the maximum value of j f (z)j occurs on C, unless f (z) is a constant.

Solution

Method 1

Since f (z) is analytic and hence continuous inside and on C, it

follows that j f (z)j does have a maximum value M for at least

one value of z inside or on C. Suppose this maximum value is

not attained on the boundary of C but is attained at an interior

point a, i.e., j f (a)j ¼ M. Let C1 be a circle inside C with

center at a (see Fig. 5-6). If we exclude f(z) from being a constant

inside C1, then there must be a point inside C1, say b, such that

j f (b)j , M or, what is the same thing, j f (b)j ¼ M � e where

e . 0.

Now, by the continuity of j f (z)j at b, we see that for any e . 0

we can find d . 0 such that

jj f (z)j � j f (b)jj , 1

2
e whenever jz� bj , d (1)

i.e.,

j f (z)j , j f (b)j þ 1

2
e ¼ M � eþ 1

2
e ¼ M � 1

2
e (2)

for all points interior to a circle C2 with center at b and radius d, as shown shaded in the figure.

Construct a circle C3 with a center at a that passes through b (dashed in Fig. 5-6). On part of this circle

[namely that part PQ included in C2], we have from (2), j f (z)j , M � 1
2
e. On the remaining part of the

circle, we have j f (z)j � M.

If we measure u counterclockwise from OP and let /POQ ¼ a, it follows from Problem 5.12 that if

r ¼ jb� aj,

f (a) ¼ 1

2p

ða
0

f (aþ reiu) duþ 1

2p

ð2p
a

f (aþ reiu) du

Then

j f (a)j � 1

2p

ða
0

j f (aþ reiu)j duþ 1

2p

ð2p
a

j f (aþ reiu)j du

� 1

2p

ða
0

M � 1

2
e

� �
duþ 1

2p

ð2p
a

M du

¼ a

2p
M � 1

2
e

� �
þ M

2p
(2p� a)

= M � ae

4p

i.e., j f (a)j ¼ M � M � (ae=4p), an impossible situation. By virtue of this contradiction, we conclude that

j f (z)j cannot attain its maximum at any interior point of C and so must attain its maximum on C.

C1

C2

C3

O

Q

a

P

b

a

Fig. 5-6
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Method 2

From Problem 5.12, we have

jf (a)j � 1

2p

ð2p
0

j f (aþ reiu)j du (3)

Let us suppose that j f (a)j is a maximum so that j f (aþ reiu)j � jf (a)j. If j f (aþ reiu)j , j f (a)j for one
value of u then, by continuity of f, it would hold for a finite arc, say u1 , u , u2. But, in such case, the

mean value of j f (aþ reiu)j is less than j f (a)j, which would contradict (3). It follows, therefore, that in any

d neighborhood of a, i.e., for jz� aj , d, f (z) must be a constant. If f (z) is not a constant, the maximum

value of j f (z)j must occur on C.

For another method, see Problem 5.57.

Minimum Modulus Theorem

5.14. Prove the minimum modulus theorem: Let f(z) be analytic inside and on a simple closed curve C.
Prove that if f (z)=0 inside C, then j f (z)j must assume its minimum value on C.

Solution

Since f(z) is analytic inside and on C and since f (z)=0 inside C, it follows that 1/f(z) is analytic inside C.

By the maximum modulus theorem, it follows that 1=j f (z)j cannot assume its maximum value inside C and

so j f (z)j cannot assume its minimum value inside C. Then, since j f (z)j has a minimum, this minimum

must be attained on C.

5.15. Give an example to show that if f (z) is analytic inside and on a simple closed curve C and f (z) ¼ 0
at some point inside C, then j f (z)j need not assume its minimum value on C.

Solution

Let f (z) ¼ z for jzj � 1, so that C is a circle with center at the origin and radius 1. We have f (z) ¼ 0 at z ¼ 0.

If z ¼ reiu, then j f (z)j ¼ r and it is clear that the minimum value of j f (z)j does not occur on C but occurs inside

C where r ¼ 0, i.e., at z ¼ 0.

The Argument Theorem

5.16. Let f(z) be analytic inside and on a simple closed curve C except for a pole z ¼ a of order (multi-
plicity) p inside C. Suppose also that inside C, f(z) has only one zero z ¼ b of order (multiplicity)
n and no zeros on C. Prove that

1

2pi

þ
C

f 0(z)

f (z)
dz ¼ n� p

Solution

Let C1 and G1 be non-overlapping circles lying inside C and enclosing z ¼ a and z ¼ b, respectively. [See
Fig. 5-7.] Then

1

2pi

þ
C

f 0(z)

f (z)
dz ¼ 1

2pi

þ
C1

f 0(z)

f (z)
dzþ 1

2pi

þ
G1

f 0(z)

f (z)
dz (1)

Since f (z) has a pole of order p at z ¼ a, we have

f (z) ¼ F(z)

(z� a) p
(2)
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where F(z) is analytic and different from zero inside and on C1. Then, taking logarithms in (2) and differen-

tiating, we find

f 0(z)

f (z)
¼ F0(z)

F(z)
� p

z� a
(3)

so that

1

2pi

þ
C1

f 0(z)

f (z)
dz ¼ 1

2pi

þ
C1

F0(z)

F(z)
dz� p

2pi

þ
C1

dz

z� a
¼ 0� p ¼ �p (4)

Since f (z) has a zero of order n at z ¼ b, we have

f (z) ¼ (z� b)nG(z) (5)

where G(z) is analytic and different from zero inside and on G1.

Then, by logarithmic differentiation, we have

f 0(z)

f (z)
¼ n

z� b
þ G0(z)

G(z)
(6)

so that

1

2pi

þ
G1

f 0(z)

f (z)
dz ¼ n

2pi

þ
G1

dz

z� b
þ 1

2pi

þ
G0(z)

G(z)
dz ¼ n (7)

Hence, from (1), (4), and (7), we have the required result

1

2pi

þ
C

f 0(z)

f (z)
dz ¼ 1

2pi

þ
C1

f 0(z)

f (z)
dzþ 1

2pi

þ
G1

f 0(z)

f (z)
dz ¼ n� p

C
C1

a

G1 b

C

C1

Cj

aj

bk

a1
b1

G1

Gk

Fig. 5-7 Fig. 5-8

5.17. Let f(z) be analytic inside and on a simple closed curve C except for a finite number of poles inside
C. Suppose that f (z)=0 on C. If N and P are, respectively, the number of zeros and poles of f(z)
inside C, counting multiplicities, prove that

1

2pi

þ
C

f 0(z)

f (z)
dz ¼ N � P

Solution

Let a1, a2, . . . , aj and b1, b2, . . . , bk be the respective poles and zeros of f(z) lying inside C [Fig. 5-8] and

suppose their multiplicities are p1, p2, . . . , pj and n1, n2, . . . , nk.
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Enclose each pole and zero by non-overlapping circles C1, C2, . . . , Cj and G1, G2, . . . , Gk. This can always

be done since the poles and zeros are isolated.

Then, we have, using the results of Problem 5.16,

1

2pi

þ
C

f 0(z)

f (z)
dz ¼

Xj
r¼1

1

2pi

þ
Gr

f 0(z)

f (z)
dzþ

Xk
r¼1

1

2pi

þ
Cr

f 0(z)

f (z)
dz

¼
Xj
r¼1

nr �
Xk
r¼1

pr

¼ N � P

Rouché’s Theorem

5.18. Prove Rouché’s theorem: Suppose f(z) and g(z) are analytic inside and on a simple closed curve C
and suppose jg(z)j , j f (z)j on C. Then f (z)þ g(z) and f(z) have the same number of zeros inside C.

Solution

Let F(z) ¼ g(z)=f (z) so that g(z) ¼ f (z)F(z) or briefly g ¼ fF. Then, if N1 and N2 are the number of zeros

inside C of f þ g and f, respectively, we have by Problem 5.17, using the fact that these functions have no

poles inside C,

N1 ¼
1

2pi

þ
C

f 0 þ g0

f þ g
dz, N2 ¼

1

2pi

þ
C

f 0

f
dz

Then

N1 � N2 ¼
1

2pi

þ
C

f 0 þ f 0F þ fF0

f þ fF
dz� 1

2pi

þ
C

f 0

f
dz ¼ 1

2pi

þ
C

f 0(1þ F)þ fF0

f (1þ F)
dz� 1

2pi

þ
C

f 0

f
dz

¼ 1

2pi

þ
C

f 0

f
þ F0

1þ F

� �
dz� 1

2pi

þ
C

f 0

f
dz ¼ 1

2pi

þ
C

F0

1þ F
dz

¼ 1

2pi

ð
C

F0(1� F þ F2 � F3 þ � � � ) dz ¼ 0

using the given fact that jFj , 1 on C so that the series is uniformly convergent on C and term by term

integration yields the value zero. Thus, N1 ¼ N2 as required.

5.19. Use Rouché’s theorem (Problem 5.18) to prove that every polynomial of degree n has exactly n
zeros (fundamental theorem of algebra).

Solution

Suppose the polynomial to be a0 þ a1zþ a2z
2 þ � � � þ anz

n, where an=0. Choose f (z) ¼ anz
n and

g(z) ¼ a0 þ a1zþ a2z
2 þ � � � þ an�1z

n�1.

If C is a circle having center at the origin and radius r . 1, then on C we have

g(z)

f (z)

����
���� ¼ ja0 þ a1zþ a2z

2 þ � � � þ an�1z
n�1j

janznj
� ja0j þ ja1jr þ ja2jr2 þ � � � þ jan�1jrn�1

janjrn

� ja0jrn�1 þ ja1jrn�1 þ ja2jrn�1 þ � � � þ jan�1jrn�1

janjrn
¼ ja0j þ ja1j þ ja2j þ � � � þ jan�1j

janjr

Then, by choosing r large enough, we can make g(z)=f (z)
�� �� , 1, i.e., jg(z)j , j f (z)j. Hence, by Rouché’s

theorem, the given polynomial f (z)þ g(z) has the same number of zeros as f (z) ¼ anz
n. But, since this last

function has n zeros all located at z ¼ 0, f (z)þ g(z) also has n zeros and the proof is complete.
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5.20. Prove that all the roots of z7 � 5z3 þ 12 ¼ 0 lie between the circles jzj ¼ 1 and jzj ¼ 2.

Solution

Consider the circle C1: jzj ¼ 1. Let f (z) ¼ 12, g(z) ¼ z7 � 5z3. On C1 we have

jg(z)j ¼ jz7 � 5z3j � jz7j þ j5z3j � 6 , 12 ¼ j f (z)j

Hence, by Rouché’s theorem, f (z)þ g(z) ¼ z7 � 5z3 þ 12 has the same number of zeros inside jzj ¼ 1 as

f (z) ¼ 12, i.e., there are no zeros inside C1.

Consider the circle C2: jzj ¼ 2. Let f (z) ¼ z7, g(z) ¼ 12� 5z3. On C2 we have

jg(z)j ¼ j12� 5z3j � j12j þ j5z3j � 60 , 27 ¼ j f (z)j

Hence, by Rouché’s theorem, f (z)þ g(z) ¼ z7 � 5z3 þ 12 has the same number of zeros inside jzj ¼ 2 as

f (z) ¼ z7, i.e., all the zeros are inside C2.

Hence, all the roots lie inside jzj ¼ 2 but outside jzj ¼ 1, as required.

Poisson’s Integral Formulas for a Circle

5.21. (a) Let f(z) be analytic inside and on the circle C defined by jzj ¼ R, and let z ¼ reiu be any point
inside C (see Fig. 5-9). Prove that

f (reiu) ¼ 1

2p

ð2p
0

R2 � r2

R2 � 2Rr cos(u� f)þ r2
f (Reif) df

(b) Let u(r, u) and v(r, u) be the real and imaginary parts of f (reiu). Prove that

u(r, u) ¼ 1

2p

ð2p
0

(R2 � r2) u(R, f) df

R2 � 2Rr cos(u� f)þ r2

v(r, u) ¼ 1

2p

ð2p
0

(R2 � r2) v(R, f) df

R2 � 2Rr cos(u� f)þ r2

The results are called Poisson’s integral formulas for the circle.

Solution

(a) Since z ¼ reiu is any point inside C, we have by Cauchy’s integral formula

f (z) ¼ f (reiu) ¼ 1

2pi

þ
C

f (w)

w� z
dw (1)

The inverse of the point z with respect to C lies outside C and is given by

R2=�z. Hence, by Cauchy’s theorem,

0 ¼ 1

2pi

þ
C

f (w)

w� R2=�z
dw (2)

C

R

z = reiq

Fig. 5-9
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If we subtract (2) from (1), we find

f (z) ¼ 1

2pi

þ
C

1

w� z
� 1

w� R2=�z

� �
f (w) dw

¼ 1

2pi

þ
C

z� R2=�z

(w� z)(w� R2=�z)
f (w) dw (3)

Now, let z ¼ reiu and w ¼ Reif. Then, since �z ¼ re�iu, (3) yields

f (reiu) ¼ 1

2pi

ð2p
0

freiu � (R2=r)eiug f (Reif)iReif df
fReif � reiugfReif � (R2=r)eiug ¼ 1

2p

ð2p
0

(r2 � R2)ei(uþf)f (Reif) df

(Reif � reiu)(reif � Reiu)

¼ 1

2p

ð2p
0

(R2 � r2) f (Reif) df

(Reif � reiu)(Re�if � re�iu)
¼ 1

2p

ð2p
0

(R2 � r2) f (Reif) df

R2 � 2Rr cos(u� f)þ r2

(b) Since f (reiu) ¼ u(r, u)þ iv(r, u) and f (Reif) ¼ u(R, f)þ iv(R, f), we have from part (a),

u(r, u)þ iv(r, u) ¼ 1

2p

ð2p
0

(R2 � r2)fu(R, f)þ iv(R, f)g df
R2 � 2Rr cos(u� f)þ r2

¼ 1

2p

ð2p
0

(R2 � r2)u(R, f) df

R2 � 2Rr cos(u� f)þ r2
þ i

2p

ð2p
0

(R2 � r2)v(R, f) df

R2 � 2Rr cos(u� f)þ r2

Then the required result follows on equating real and imaginary parts.

Poisson’s Integral Formulas for a Half Plane

5.22. Derive Poisson’s formulas for the half plane [see page 146].

Solution

Let C be the boundary of a semicircle of radius R [see Fig. 5-10] containing z as an interior point. Since C

encloses z but does not enclose �z, we have by Cauchy’s integral formula,

f (z ) ¼ 1

2pi

þ
C

f (z)

z� z
dz, 0 ¼ 1

2pi

þ
C

f (z)

z� �z
dz

Then, by subtraction,

f (z ) ¼ 1

2pi

þ
C

f (z)
1

z� z
� 1

z� �z

� �
dz ¼ 1

2pi

þ
C

(z� �z ) f (z) dz

(z� z )(z� �z )

Letting z ¼ jþ ih, �z ¼ j� ih, this can be written

f (z ) ¼ 1

p

ðR
�R

h f (x) dx

(x� j )2 þ h2
þ 1

p

ð
G

h f (z) dz

(z� z )(z� �z )
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where G is the semicircular arc of C. As R ! 1, this last integral approaches zero [see Problem 5.76] and

we have

f (z ) ¼ 1

p

ð1
�1

h f (x) dx

(x� j )2 þ h2

Writing f (z ) ¼ f (jþ ih) ¼ u(j, h)þ iv(j, h), f (x) ¼ u(x, 0)þ iv(x, 0), we obtain as required,

u(j, h) ¼ 1

p

ð1
�1

hu(x, 0) dx

(x� j)2 þ h2
, v(j, h) ¼ 1

p

ð1
�1

hv(x, 0) dx

(x� j)2 þ h2

y

C

x
R–R

z

z
–

C1

C2

GKH

JR

F

z0
E

Fig. 5-10 Fig. 5-11

Miscellaneous Problems

5.23. Let f(z) be analytic in a regionR bounded by two concentric circles C1 and C2 and on the boundary
[Fig. 5-11]. Prove that, if z0 is any point in R, then

f (z0) ¼
1

2pi

þ
C1

f (z)

z� z0
dz� 1

2pi

þ
C2

f (z)

z� z0
dz

Solution

Method 1. Construct cross-cut EH connecting circles C1 and C2. Then f(z) is analytic in the region bounded by

EFGEHKJHE. Hence, by Cauchy’s integral formula,

f (z0) ¼
1

2pi

þ
EFGEHKJHE

f (z)

z� z0
dz

¼ 1

2pi

þ
EFGE

f (z)

z� z0
dzþ 1

2pi

ð
EH

f (z)

z� z0
dzþ 1

2pi

þ
HKJH

f (z)

z� z0
dzþ 1

2pi

ð
HE

f (z)

z� z0
dz

¼ 1

2pi

þ
C1

f (z)

z� z0
dz� 1

2pi

þ
C2

f (z)

z� z0
dz

since the integrals along EH and HE cancel.

Similar results can be established for the derivatives of f (z).

Method 2. The result also follows from equation (3) of Problem 5.6 if we replace the simple closed curves C1

and C2 by the circles of Fig. 5-11.

5.24. Prove that, for n ¼ 1, 2, 3, . . . ,

ð2p
0

cos2nu du ¼ 1 � 3 � 5 � � � (2n� 1)

2 � 4 � 6 � � � (2n) 2p
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Solution

Let z ¼ eiu. Then, dz ¼ ieiu du ¼ iz du or du ¼ dz=iz and cos u ¼ 1
2
(eiu þ e�iu) ¼ 1

2
(zþ 1=z). Hence,

if C is the unit circle jzj ¼ 1, we have

ð2p
0

cos2n u du ¼
þ
C

1

2
zþ 1

z

� �� �2n
dz

iz

¼ 1

22ni

þ
C

1

z
z2n þ 2n

1

� �
(z2n�1)

1

z

� �
þ � � � þ 2n

k

� �
(z2n�k)

1

z

� �k

þ � � � þ 1

z

� �2n
( )

dz

¼ 1

22ni

þ
C

z2n�1 þ 2n

1

� �
z2n�3 þ � � � þ 2n

k

� �
z2n�2k�1 þ � � � þ z�2n

� �
dz

¼ 1

22ni
� 2pi 2n

n

� �
¼ 1

22n
2n

n

� �
2p

¼ 1

22n
(2n)!

n!n!
2p ¼ (2n)(2n� 1)(2n� 2) � � � (n)(n� 1) � � � 1

22nn!n!
2p

¼ 1 � 3 � 5 � � � (2n� 1)

2 � 4 � 6 � � � 2n 2p

5.25. Suppose f (z) ¼ u(x, y)þ iv(x, y) is analytic in a region R. Prove that u and v are harmonic in R.

Solution

In Problem 3.6, we proved that u and v are harmonic inR, i.e., satisfy the equation (@2f=@x2)þ (@2f=@y2) ¼ 0,

under the assumption of existence of the second partial derivatives of u and v, i.e., the existence of f 00(z).
This assumption is no longer necessary since we have in fact proved in Problem 5.4 that, if f (z) is analytic

in R, then all the derivatives of f (z) exist.

5.26. Prove Schwarz’s theorem: Let f(z) be analytic for jzj � R, f (0) ¼ 0, and j f (z)j � M. Then

j f (z)j � Mjzj
R

Solution

The function f(z)/z is analytic in jzj � R. Hence, on jzj ¼ R, we have by the maximum modulus theorem,

f (z)

z

����
���� � M

R

However, since this inequality must also hold for points inside jzj ¼ R, we have for jzj � R, j f (z)j � Mjzj=R
as required.

5.27. Let

f (x) ¼ x2 sin(1=x) x= 0

0 x¼ 0

�

where x is real. Show that the function f(x) (a) has a first derivative at all values of x for which
0 � x � 1 but (b) does not have a second derivative in 0 � x � 1. (c) Reconcile these conclusions
with the result of Problem 5.4.
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Solution

(a) The only place where there is any question as to existence of the first derivative is at x ¼ 0. But, at x ¼ 0,

the derivative is

lim
Dx!0

f (0þ Dx)� f (0)

Dx
¼ lim

Dx!0

(Dx)2 sin(1=Dx)� 0

Dx
¼ lim

Dx!0
Dx sin(1=Dx) ¼ 0

and so exists.

At all other values of x in 0 � x � 1, the derivative is given (using elementary differentiation rules) by

x2 cos(1=x)f�1=x2g þ (2x) sin(1=x) ¼ 2x sin(1=x)� cos(1=x)

(b) From part (a), we have

f 0(x) ¼ 2x sin(1=x)� cos(1=x) x=0

0 x ¼ 0

n

The second derivative exists for all x such that 0 , x � 1. At x ¼ 0, the second derivative is given by

lim
Dx!0

f 0(0þ Dx)� f 0(0)

Dx
¼ lim

Dx!0

2Dx sin(1=Dx)� cos(1=Dx)� 0

Dx

¼ lim
Dx!0

f2 sin(1=Dx)� (1=Dx) cos(1=Dx)g

which does not exist.

It follows that the second derivative of f (x) does not exist in 0 � x � 1.

(c) According to Problem 5.4, if f (z) is analytic in a region R, then all higher derivatives exist and are ana-

lytic inR. The above results do not conflict with this, since the function f (z) ¼ z2 sin(1=z) is not analytic

in any region which includes z ¼ 0.

5.28. (a) Let F(z) be analytic inside and on a simple closed curve C except for a pole of order m at z ¼ a
inside C. Prove that

1

2pi

þ
C

F(z) dz ¼ lim
z!a

1

(m� 1)!

dm�1

dzm�1
f(z� a)mF(z)g

(b) How would you modify the result in (a) if more than one pole were inside C?

Solution

(a) If F(z) has a pole of orderm at z ¼ a, then F(z) ¼ f (z)=(z� a)m where f(z) is analytic inside and on C, and

f (a)=0. Then, by Cauchy’s integral formula,

1

2pi

þ
C

F(z) dz ¼ 1

2pi

þ
C

f (z)

(z� a)m
dz ¼ f (m�1)(a)

(m� 1)!
¼ lim

z!a

1

(m� 1)!

dm�1

dzm�1
f(z� a)mF(z)g

(b) Suppose there are two poles at z ¼ a1 and z ¼ a2 inside C, of orders m1 and m2, respectively. Let G1 and

G2 be circles inside C having radii e1 and e2 and centers at a1 and a2, respectively (see Fig. 5-12). Then

1

2pi

þ
C

F(z) dz ¼ 1

2pi

þ
G1

F(z) dzþ 1

2pi

þ
G2

F(z) dz (1)
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G1
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'

2'

Fig. 5-12

If F(z) has a pole of order m1 at z ¼ a1, then

F(z) ¼ f1(z)

(z� a1)
m1

where f1(z) is analytic and f1(a1)=0

If F(z) has a pole of order m2 at z ¼ a2, then

F(z) ¼ f2(z)

(z� a2)
m2

where f2(z) is analytic and f2(a2)=0

Then, by (1) and part (a),

1

2pi

þ
C

F(z) dz ¼ 1

2pi

þ
G1

f1(z)

(z� a1)
m1

dzþ 1

2pi

þ
G2

f2(z)

(z� a2)
m2

dz

¼ lim
z!a1

1

(m1 � 1)!

dm1�1

dzm1�1
f(z� a1)

m1F(z)g

þ lim
z!a2

1

(m2 � 1)!

dm2�1

dzm2�1
f(z� a2)

m2F(z)g

If the limits on the right are denoted by R1 and R2, we can writeþ
C

F(z) dz ¼ 2pi(R1 þ R2)

where R1 and R2 are called the residues of F(z) at the poles z ¼ a1 and z ¼ a2.

In general, if F(z) has a number of poles inside C with residues R1, R2, . . . , then
Þ
C
F(z) dz ¼ 2pi

times the sum of the residues. This result is called the residue theorem. Applications of this theorem,

together with generalization to singularities other than poles, are treated in Chapter 7.

5.29. Evaluate

þ
C

ez

(z2 þ p2)2
dz where C is the circle jzj ¼ 4.

Solution

The poles of
ez

(z2 þ p2)2
¼ ez

(z� pi)2(zþ pi)2
are at z ¼+pi inside C and are both of order two.

Residue at z ¼ pi is lim
z!pi

1

1!

d

dz
(z� pi)2

ez

(z� pi)2(zþ pi)2

� �
¼ pþ i

4p3
.

Residue at z ¼ �pi is lim
z!�pi

1

1!

d

dz
(zþ pi)2

ez

(z� pi)2(zþ pi)2

� �
¼ p� i

4p3
.

Then

þ
C

ez

(z2 þ p2)2
dz ¼ 2pi (sum of residues) ¼ 2pi

pþ i

4p3
þ p� i

4p3

� �
¼ i

p
.

162 CHAPTER 5 Cauchy’s Integral Formulas and Related Theorems



SUPPLEMENTARY PROBLEMS

Cauchy’s Integral Formulas

5.30. Evaluate
1

2pi

þ
C

ez

z� 2
dz if C is: (a) the circle jzj ¼ 3, (b) the circle jzj ¼ 1.

5.31. Evaluate

þ
C

sin 3z

zþ p=2
dz if C is the circle jzj ¼ 5.

5.32. Evaluate

þ
C

e3z

z� pi
dz if C is: (a) the circle jz� 1j ¼ 4, (b) the ellipse jz� 2j þ jzþ 2j ¼ 6.

5.33. Evaluate
1

2pi

þ
C

cosp2

z2 � 1
dz around a rectangle with vertices at: (a) 2+ i, �2+ i; (b) �i, 2� i, 2þ i, i.

5.34. Show that
1

2pi

þ
C

ezt

z2 þ 1
dz ¼ sin t if t . 0 and C is the circle jzj ¼ 3.

5.35. Evaluate

þ
C

eiz

z3
dz where C is the circle jzj ¼ 2.

5.36. Suppose C is a simple closed curve enclosing z ¼ a and f(z) is analytic inside and on C. Prove that

f 000(a) ¼ 3!

2pi

þ
C

f (z) dz

(z� a)4
.

5.37. Prove Cauchy’s integral formulas for all positive integral values of n. [Hint: Use mathematical induction.]

5.38. Given C is the circle jzj ¼ 1. Find the value of (a)

þ
C

sin6 z

z� p=6
dz, (b)

þ
C

sin6 z

(z� p=6)3
dz.

5.39. Evaluate
1

2pi

þ
C

ezt

(z2 þ 1)2
dz when t . 0 and C is the circle jzj ¼ 3.

5.40. Prove Cauchy’s integral formulas for the multiply-connected region of Fig. 4-26, page 140.

Morera’s Theorem

5.41. (a) Determine whether G(z) ¼
Ð z
1
dz=z is independent of the path joining 1 and z.

(b) Discuss the relationship of your answer to part (a) with Morera’s theorem.

5.42. Does Morera’s theorem apply in a multiply-connected region? Justify your answer.

5.43. (a) Suppose P(x, y) and Q(x, y) are conjugate harmonic functions and C is any simple closed curve. Prove thatÞ
C
P dxþ Qdy ¼ 0.

(b) Suppose for all simple closed curves C in a region R,
Þ
C
P dxþ Qdy ¼ 0. Is it true that P and Q are

conjugate harmonic functions, i.e., is the converse of (a) true? Justify your conclusion.

Cauchy’s Inequality

5.44. (a) Use Cauchy’s inequality to obtain estimates for the derivatives of sin z at z ¼ 0 and (b) determine how

good these estimates are.

5.45. (a) Show that if f (z) ¼ 1=(1� z), then f (n)(z) ¼ n!=(1� z)nþ1.

(b) Use (a) to show that the Cauchy inequality is “best possible”, i.e., the estimate of growth of the nth deriva-

tive cannot be improved for all functions.
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5.46. Prove that the equality in Cauchy’s inequality (5.3), page 145, holds in the case n ¼ m if and only if

f (z) ¼ kM(z� a)m=r m, where jkj ¼ 1.

5.47. Discuss Cauchy’s inequality for the function f (z) ¼ e�1=z2 in the neighborhood of z ¼ 0.

Liouville’s Theorem

5.48. The function of a real variable defined by f (x) ¼ sin x is (a) analytic everywhere and (b) bounded, i.e.,

jsin xj � 1 for all x but it is certainly not a constant. Does this contradict Liouville’s theorem? Explain.

5.49. Suppose a . 0 and b . 0 are constants and a non-constant function F(z) is such that F(zþ a) ¼ F(z), and

F(zþ bi) ¼ F(z). Prove that F(z) cannot be analytic in the rectangle 0 � x � a, 0 � y � b.

Fundamental Theorem of Algebra

5.50. (a) Carry out the details of proof of the fundamental theorem of algebra to show that the particular function

f (z) ¼ z4 � z2 � 2zþ 2 has exactly four zeros. (b) Determine the zeros of f(z).

5.51. Determine all the roots of the equations: (a) z3 � 3zþ 4i ¼ 0, (b) z4 þ z2 þ 1 ¼ 0.

Gauss’ Mean Value Theorem

5.52. Evaluate
1

2p

ð2p
0

sin2(p=6þ 2eiu) du:

5.53. Show that the mean value of any harmonic function over a circle is equal to the value of the function at the

center.

5.54. Find the mean value of x2 � y2 þ 2y over the circle jz� 5þ 2ij ¼ 3.

5.55. Prove that
Ð p
0
ln sin u du ¼ �p ln 2. [Hint. Consider f (z) ¼ ln(1þ z).]

Maximum Modulus Theorem

5.56. Find the maximum of j f (z)j in jzj � 1 for the functions f (z) given by: (a) z2 � 3zþ 2, (b) z4 þ z2 þ 1,

(c) cos 3z, (d) (2zþ 1)=(2z� 1).

5.57. (a) Let f (z) be analytic inside and on the simple closed curve C enclosing z ¼ a, prove that

f f (a)gn ¼ 1

2pi

þ
C

f f (z)gn
z� a

dz n ¼ 0, 1, 2, . . .

(b) Use (a) to prove that j f (a)jn � Mn=2pD where D is the minimum distance from a to the curve C andM is

the maximum value of j f (z)j on C.

(c) By taking the nth root of both sides of the inequality in (b) and letting n ! 1, prove the maximum

modulus theorem.

5.58. Let U(x, y) be harmonic inside and on a simple closed curve C. Prove that the (a) maximum and (b) minimum

values of U(x, y) are attained on C. Are there other restrictions on U(x, y)?

5.59. Given C is the circle jzj ¼ 1. Verify Problem 5.58 for the functions (a) x2 � y2 and (b) x3 � 3xy2.

5.60. Is the maximum modulus theorem valid for multiply-connected regions? Justify your answer.
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The Argument Theorem

5.61. Let f (z) ¼ z5 � 3iz2 þ 2z� 1þ i. Evaluate

þ
C

f 0(z)

f (z)
dz where C encloses all the zeros of f(z).

5.62. Let f (z) ¼ (z2 þ 1)2

(z2 þ 2zþ 2)3
. Evaluate

1

2pi

þ
C

f 0(z)

f (z)
dz where C is the circle jzj ¼ 4.

5.63. Evaluate

þ
C

f 0(z)

f (z)
dz if C is the circle jzj ¼ p and (a) f (z) ¼ sinpz, (b) f (z) ¼ cospz, (c) f (z) ¼ tanpz.

5.64. Let f (z) ¼ z4 � 2z3 þ z2 � 12zþ 20 and C is the circle jzj ¼ 5. Evaluate

þ
C

zf 0(z)

f (z)
dz.

Rouché’s Theorem

5.65. If a . e, prove that the equation azn ¼ ez has n roots inside jzj ¼ 1.

5.66. Prove that zez ¼ a where a=0 is real has infinitely many roots.

5.67. Prove that tan z ¼ az, a . 0 has (a) infinitely many real roots, (b) only two pure imaginary roots if 0 , a , 1,

(c) all real roots if a � 1.

5.68. Prove that z tan z ¼ a, a . 0 has infinitely many real roots but no imaginary roots.

Poisson’s Integral Formulas for a Circle

5.69. Show that

ð2p
0

R2 � r2

R2 � 2Rr cos(u� f)þ r2
df ¼ 2p

(a) with, (b) without Poisson’s integral formula for a circle.

5.70. Show that:

(a)

ð2p
0

ecosf cos(sinf)

5� 4 cos(u� f)
df ¼ 2p

3
ecosu cos(sin u), (b)

ð2p
0

ecosf sin(sinf)

5� 4 cos(u� f)
df ¼ 2p

3
ecos u sin(sin u):

5.71. (a) Prove that the function

U(r, u) ¼ 2

p
tan�1 2r sin u

1� r2

� �
, 0 , r , 1, 0 � u , 2p

is harmonic inside the circle jzj ¼ 1.

(b) Show that lim
r!1�

U(r, u) ¼ 1 0 , u , p
�1 p , u , 2p:

n

(c) Can you derive the expression for U(r, u) from Poisson’s integral formula for a circle?

5.72. Suppose f(z) is analytic inside and on the circle C defined by jzj ¼ R and suppose z ¼ reiu is any point inside C.

Show that

f 0(reiu) ¼ i

2p

ð2p
0

R(R2 � r2)f (Reif) sin(u� f)

[R2 � 2Rr cos(u� f)þ r2]2
df

5.73. Verify that the functions u and v of equations (5.7) and (5.8), page 146, satisfy Laplace’s equation.
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Poisson’s Integral Formulas for a Half Plane

5.74. Find a function that is harmonic in the upper half plane y . 0 and that on the x axis takes the values �1 if

x , 0 and 1 if x . 0.

5.75. Work Problem 5.74 if the function takes the values �1 if x , �1, 0 if �1 , x , 1, and 1 if x . 1.

5.76. Prove the statement made in Problem 5.22 that the integral over G approaches zero as R ! 1.

5.77. Prove that under suitable restrictions on f(x),

lim
h!0þ

1

p

ð1
�1

h f (x)

(x� j )2 þ h 2
dx ¼ f (j )

and state these restrictions.

5.78. Verify that the functions u and v of equations (5.10) and (5.11), page 146, satisfy Laplace’s equation.

Miscellaneous Problems

5.79. Evaluate
1

2pi

þ
C

z2 dz

z2 þ 4
where C is the square with vertices at +2, +2þ 4i.

5.80. Evaluate

þ
C

cos2 tz

z3
dz where C is the circle jzj ¼ 1 and t . 0.

5.81. (a) Show that

þ
C

dz

zþ 1
¼ 2pi if C is the circle jzj ¼ 2.

(b) Use (a) to show that þ
C

(xþ 1) dxþ y dy

(xþ 1)2 þ y2
¼ 0,

þ
C

(xþ 1) dy� y dx

(xþ 1)2 þ y2
¼ 2p

and verify these results directly.

5.82. Find all functions f(z) that are analytic everywhere in the entire complex plane and that satisfy the conditions

(a) f (2� i) ¼ 4i and (b) j f (z) j , e2 for all z.

5.83. Let f (z) be analytic inside and on a simple closed curve C. Prove that

(a) f 0(a) ¼ 1

2p

ð2p
0

e�iuf (aþ eiu) du (b)
f (n)(a)

n!
¼ 1

2p

ð2p
0

e�niuf (aþ eiu) du

5.84. Prove that 8z4 � 6zþ 5 ¼ 0 has one root in each quadrant.

5.85. Show that (a)
Ð 2p
0

ecos u cos(sin u) du ¼ 0, (b)
Ð 2p
0

ecos u sin(sin u) du ¼ 2p.

5.86. Extend the result of Problem 5.23 so as to obtain formulas for the derivatives of f(z) at any point in R.

5.87. Prove that z3e1�z ¼ 1 has exactly two roots inside the circle jzj ¼ 1.

5.88. Suppose t . 0 and C is any simple closed curve enclosing z ¼ �1. Prove that

1

2pi

þ
C

zezt

(zþ 1)3
dz ¼ t � t2

2

� �
e�t

5.89. Find all functions f(z) that are analytic in jzj , 1 and that satisfy the conditions (a) f (0) ¼ 1 and (b) j f (z)j � 1

for jzj , 1.
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5.90. Let f(z) and g(z) be analytic inside and on a simple closed curve C except that f(z) has zeros at a1, a2, . . . , am
and poles at b1, b2, . . . , bn of orders (multiplicities) p1, p2, . . . , pm and q1, q2, . . . , qn, respectively. Prove that

1

2pi

þ
C

g(z)
f 0(z)

f (z)
dz ¼

Xm
k¼1

pkg(ak)�
Xn
k¼1

qkg(bk)

5.91. Suppose f (z) ¼ a0z
n þ a1z

n�1 þ a2z
n�2 þ � � � þ an where a0=0, a1, . . . , an are complex constants and C

encloses all the zeros of f (z). Evaluate

(a)
1

2pi

þ
C

z f 0(z)

f (z)
dz (b)

1

2pi

þ
C

z2 f 0(z)

f (z)
dz

and interpret the results.

5.92. Find all functions f (z) that are analytic in the region jzj � 1 and are such that (a) f (0) ¼ 3 and (b) j f (z)j � 3 for

all z such that jzj , 1.

5.93. Prove that z6 þ 192zþ 640 ¼ 0 has one root in the first and fourth quadrants and two roots in the second and

third quadrants.

5.94. Prove that the function xy(x2 � y2) cannot have an absolute maximum or minimum inside the circle jzj ¼ 1.

5.95. (a) If a function is analytic in a regionR, is it bounded inR? (b) In view of your answer to (a), is it necessary to

state that f (z) is bounded in Liouville’s theorem?

5.96. Find all functions f (z) that are analytic everywhere, have a zero of order two at z ¼ 0, satisfy the condition

j f 0(z)j � 6jzj for all z, and are such that f (i) ¼ �2.

5.97. Prove that all the roots of z5 þ z� 16i ¼ 0 lie between the circles jzj ¼ 1 and jzj ¼ 2.

5.98. Let U be harmonic inside and on a simple closed curve C. Prove thatþ
C

@U

@n
ds ¼ 0

where n is a unit normal to C in the z plane and s is the arc length parameter.

5.99. A theorem of Cauchy states that all the roots of the equation zn þ a1z
n�1 þ a2z

n�2 þ � � � þ an ¼ 0, where

a1, a2, . . . , an are real, lie inside the circle jzj ¼ 1þmaxfa1, a2, . . . , ang, i.e., jzj ¼ 1 plus the maximum of

the values a1, a2, . . . , an. Verify this theorem for the special cases:

(a) z3 � z2 þ z� 1 ¼ 0, (b) z4 þ z2 þ 1 ¼ 0, (c) z4 � z2 � 2zþ 2 ¼ 0, (d) z4 þ 3z2 � 6zþ 10 ¼ 0.

5.100. Prove the theorem of Cauchy stated in Problem 5.99.

5.101. Let P(z) be any polynomial. If m is any positive integer and v ¼ e2pi=m, prove that

P(1)þ P(v)þ P(v2)þ � � � þ P(vm�1)

m
¼ P(0)

and give a geometric interpretation.

5.102. Is the result of Problem 5.101 valid for any function f(z)? Justify your answer.

5.103. Prove Jensen’s theorem: Suppose f(z) is analytic inside and on the circle jzj ¼ R except for zeros at

a1, a2, . . . , am of multiplicities p1, p2, . . . , pm and poles at b1, b2, . . . , bn of multiplicities q1, q2, . . . , qn,

respectively, and suppose f(0) is finite and different from zero. Then

1

2p

ð2p
0

ln j f (Reiu)j du ¼ ln j f (0)j þ
Xm
k¼1

pk ln
R

jakj

� �
�
Xn
k¼1

qk ln
R

jbkj

� �

[Hint. Consider
Þ
C
ln zf f 0(z)=f (z)g dz where C is the circle jzj ¼ R.]
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