- **4.101.** Evaluate $\oint_C \frac{dz}{\sqrt{z^2 + 2z + 2}}$ around the unit circle |z| = 1 starting with z = 1, assuming the integrand positive for this value.
- **4.102.** Let n be a positive integer. Show that

$$\int_{0}^{2\pi} e^{\sin n\theta} \cos(\theta - \cos n\theta) d\theta = \int_{0}^{2\pi} e^{\sin n\theta} \sin(\theta - \cos n\theta) d\theta = 0$$

ANSWERS TO SUPPLEMENTARY PROBLEMS

- **4.32.** (a) 88/3, (b) 32, (c) 40, (d) 24
- **4.33.** (a) -48π , (b) 48π
- **4.34.** (a) $\frac{511}{3} \frac{49}{5}i$, (b) $\frac{518}{3} 57i$, (c) $\frac{518}{3} 8i$
- **4.35.** -1+i
- **4.36.** $-\frac{44}{3} \frac{8}{3}i$ in all cases
- **4.38.** (a) $-\frac{4}{3} + \frac{8}{3}i$, (b) $-\frac{1}{3} + \frac{79}{30}i$
- **4.39.** (a) 0, (b) $4\pi i$
- **4.40.** 0 in all cases
- **4.41.** $(96\pi^5a^5 + 80\pi^3a^3 + 30\pi a)/15$
- **4.42.** $\frac{248}{15}$
- **4.43.** $2\pi i$ in all cases
- **4.44.** $8\pi(1+i)$
- **4.45.** Common value = -8
- **4.46.** -18
- **4.48.** πab
- **4.49.** $\frac{3\pi a^2}{8}$
- **4.50.** Common value = 120π
- **4.51.** (b) $-2\pi e^{\pi^2}$
- **4.52.** (b) 24

- **4.54.** (a) $18\pi i$, (b) 8i, (c) $40\pi i$
- **4.55.** $6\pi ia^2$
- **4.59.** $\hat{z} = \frac{2ai}{\pi}, \hat{\bar{z}} = \frac{-2ai}{\pi}$
- **4.70.** One possibility is $p = x^2 y^2 + 2y x$, q = 2x + y 2xy, $f(z) = iz^2 + (2 i)z$
- **4.72.** 338 266*i*
- **4.73.** $\frac{1}{2}e^{-2}(1-e^{-2})$
- **4.74.** (b) 0
- **4.79.** (a) $-\frac{1}{2}e^{-2z} + c$, (b) $-\frac{1}{2}\cos z^2 + c$,
 - (c) $\frac{1}{3}\ln(z^3 + 3z + 2) + c$, (d) $\frac{1}{10}\sin^5 2z + c$,
 - (e) $\frac{1}{12}\ln\cosh(4z^3) + c$
- **4.80.** (a) $\frac{1}{2}z\sin 2z + \frac{1}{4}\cos 2z + c$, (b) $-e^{-z}(z^2 + 2z + 2) + c$,
 - (c) $\frac{1}{2}z^2 \ln z \frac{1}{4} + c$,
 - (d) $(z^3 + 6z) \cosh z 3(z^2 + 2) \sinh z + c$
- **4.81.** (a) $\frac{2}{3}$, (b) $-\frac{2}{5}$, (c) $\frac{1}{4}\cosh 2 \frac{1}{2}\sinh 2 + \frac{1}{2}\pi i \sinh 2$
- **4.85.** $\frac{4}{5}(1+\sqrt{z+1})^{5/2} \frac{4}{3}(1+\sqrt{z+1})^{3/2} + c$
- **4.92.** $\frac{\pi}{2}$
- **4.94.** $\frac{32}{3}$

Cauchy's Integral Formulas and Related Theorems

5.1 Cauchy's Integral Formulas

Let f(z) be analytic inside and on a simple closed curve C and let a be any point inside C [Fig. 5-1]. Then

$$f(a) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - a} dz \tag{5.1}$$

where C is traversed in the positive (counterclockwise) sense.

Also, the *n*th derivative of f(z) at z = a is given by

$$f^{(n)}(a) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z-a)^{n+1}} dz \quad n = 1, 2, 3, \dots$$
 (5.2)

The result (5.1) can be considered a special case of (5.2) with n = 0 if we define 0! = 1.

Fig. 5-1

The results (5.1) and (5.2) are called *Cauchy's integral formulas* and are quite remarkable because they show that if a function f(z) is known on the simple closed curve C, then the values of the function and all its derivatives can be found at all points *inside* C. Thus, if a function of a complex variable has a first derivative, i.e., is analytic, in a simply-connected region \mathcal{R} , all its higher derivatives exist in \mathcal{R} . This is not necessarily true for functions of real variables.

5.2 Some Important Theorems

The following is a list of some important theorems that are consequences of Cauchy's integral formulas.

1. Morera's theorem (converse of Cauchy's theorem)

If f(z) is continuous in a simply-connected region \mathcal{R} and if $\oint_C f(z) dz = 0$ around every simple closed curve C in \mathcal{R} , then f(z) is analytic in \mathcal{R} .

2. Cauchy's inequality

Suppose f(z) is analytic inside and on a circle C of radius r and center at z = a. Then

$$|f^{(n)}(a)| \le \frac{M \cdot n!}{r^n} \quad n = 0, 1, 2, \dots$$
 (5.3)

where M is a constant such that $|f(z)| \le M$ on C, i.e., M is an upper bound of |f(z)| on C.

3. Liouville's theorem

Suppose that for all z in the entire complex plane, (i) f(z) is analytic and (ii) f(z) is bounded, i.e., |f(z)| < M for some constant M. Then f(z) must be a constant.

4. Fundamental theorem of algebra

Every polynomial equation $P(z) = a_0 + a_1 z + a_2 z^2 + \cdots + a_n z^n = 0$ with degree $n \ge 1$ and $a_n \ne 0$ has at least one root.

From this it follows that P(z) = 0 has exactly n roots, due attention being paid to multiplicities of roots.

5. Gauss' mean value theorem

Suppose f(z) is analytic inside and on a circle C with center at a and radius r. Then f(a) is the mean of the values of f(z) on C, i.e.,

$$f(a) = \frac{1}{2\pi} \int_{0}^{2\pi} f(a + re^{i\theta}) d\theta$$
 (5.4)

6. Maximum modulus theorem

Suppose f(z) is analytic inside and on a simple closed curve C and is not identically equal to a constant. Then the maximum value of |f(z)| occurs on C.

7. Minimum modulus theorem

Suppose f(z) is analytic inside and on a simple closed curve C and $f(z) \neq 0$ inside C. Then |f(z)| assumes its minimum value on C.

8. The argument theorem

Let f(z) be analytic inside and on a simple closed curve C except for a finite number of poles inside C. Then

$$\frac{1}{2\pi i} \oint_C \frac{f'(z)}{f(z)} dz = N - P \tag{5.5}$$

where N and P are, respectively, the number of zeros and poles of f(z) inside C.

For a generalization of this theorem, see Problem 5.90.

9. Rouché's theorem

Suppose f(z) and g(z) are analytic inside and on a simple closed curve C and suppose |g(z)| < |f(z)| on C. Then f(z) + g(z) and f(z) have the same number of zeros inside C.

10. Poisson's integral formulas for a circle

Let f(z) be analytic inside and on the circle C defined by |z| = R. Then, if $z = re^{i\theta}$ is any point inside C, we have

$$f(re^{i\theta}) = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{(R^2 - r^2)f(Re^{i\phi})}{R^2 - 2Rr\cos(\theta - \phi) + r^2} d\phi$$
 (5.6)

If $u(r, \theta)$ and $v(r, \theta)$ are the real and imaginary parts of $f(re^{i\theta})$ while $u(R, \phi)$ and $v(R, \phi)$ are the real and imaginary parts of $f(Re^{i\phi})$, then

$$u(r, \theta) = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{(R^2 - r^2)u(R, \phi)}{R^2 - 2Rr\cos(\theta - \phi) + r^2} d\phi$$
 (5.7)

$$v(r, \theta) = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{(R^2 - r^2)v(R, \phi)}{R^2 - 2Rr\cos(\theta - \phi) + r^2} d\phi$$
 (5.8)

These results are called *Poisson's integral formulas for a circle*. They express the values of a harmonic function inside a circle in terms of its values on the boundary.

11. Poisson's integral formulas for a half plane

Let f(z) be analytic in the upper half $y \ge 0$ of the z plane and let $\zeta = \xi + i\eta$ be any point in this upper half plane. Then

$$f(\zeta) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\eta f(x)}{(x - \xi)^2 + \eta^2} dx$$
 (5.9)

In terms of the real and imaginary parts of $f(\zeta)$, this can be written

$$u(\xi, \eta) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\eta u(x, 0)}{(x - \xi)^2 + \eta^2} dx$$
 (5.10)

$$v(\xi, \eta) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\eta v(x, 0)}{(x - \xi)^2 + \eta^2} dx$$
 (5.11)

These are called *Poisson's integral formulas for a half plane*. They express the values of a harmonic function in the upper half plane in terms of the values on the x axis [the boundary] of the half plane.

SOLVED PROBLEMS

Cauchy's Integral Formulas

5.1. Let f(z) be analytic inside and on the boundary C of a simply-connected region \mathcal{R} . Prove *Cauchy's integral formula*

$$f(a) = \frac{1}{2\pi i} \oint \frac{f(z)}{z - a} dz$$

Solution

Method 1. The function f(z)/(z-a) is analytic inside and on C except at the point z=a (see Fig. 5-2). By Theorem 4.4, page 117, we have

$$\oint_C \frac{f(z)}{z - a} dz = \oint_\Gamma \frac{f(z)}{z - a} dz \tag{1}$$

where we can choose Γ as a circle of radius ϵ with center at a. Then an equation for Γ is $|z - a| = \epsilon$ or $z - a = \epsilon e^{i\theta}$ where $0 \le \theta < 2\pi$. Substituting $z = a + \epsilon e^{i\theta}$, $dz = i\epsilon e^{i\theta}$, the integral on the right of (1) becomes

$$\oint_{\Gamma} \frac{f(z)}{z - a} dz = \int_{0}^{2\pi} \frac{f(a + \epsilon e^{i\theta})i\epsilon e^{i\theta}}{\epsilon e^{i\theta}} d\theta = i \int_{0}^{2\pi} f(a + \epsilon e^{i\theta}) d\theta$$

Thus we have from (1),

$$\oint_C \frac{f(z)}{z - a} dz = i \int_0^{2\pi} f(a + \epsilon e^{i\theta}) d\theta \tag{2}$$

Taking the limit of both sides of (2) and making use of the continuity of f(z), we have

$$\oint_C \frac{f(z)}{z - a} dz = \lim_{\epsilon \to 0} i \int_0^{2\pi} f(a + \epsilon e^{i\theta}) d\theta$$

$$= i \int_0^{2\pi} \lim_{\epsilon \to 0} f(a + \epsilon e^{i\theta}) d\theta = i \int_0^{2\pi} f(a) d\theta = 2\pi i f(a) \tag{3}$$

so that we have, as required,

$$f(a) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - a} dz$$

Method 2. The right side of equation (1) of Method 1 can be written as

$$\oint_{\Gamma} \frac{f(z)}{z - a} dz = \oint_{\Gamma} \frac{f(z) - f(a)}{z - a} dz + \oint_{\Gamma} \frac{f(a)}{z - a} dz$$
$$= \oint_{\Gamma} \frac{f(z) - f(a)}{z - a} dz + 2\pi i f(a)$$

using Problem 4.21. The required result will follow if we can show that

$$\oint_{\Gamma} \frac{f(z) - f(a)}{z - a} dz = 0$$

But by Problem 3.21,

$$\oint_{\Gamma} \frac{f(z) - f(a)}{z - a} dz = \oint_{\Gamma} f'(a) dz + \oint_{\Gamma} \eta dz = \oint_{\Gamma} \eta dz$$

Then choosing Γ so small that for all points on Γ we have $|\eta| < \delta/2\pi$, we find

$$\left| \oint_{\Gamma} \eta \, dz \right| < \left(\frac{\delta}{2\pi} \right) (2\pi\epsilon) = \epsilon$$

Thus $\oint_{\Gamma} \eta \, dz = 0$ and the proof is complete.

5.2. Let f(z) be analytic inside and on the boundary C of a simply-connected region \mathcal{R} . Prove that

$$f'(a) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z-a)^2} dz$$

Solution

From Problem 5.1, if a and a + h lie in \mathcal{R} , we have

$$\frac{f(a+h) - f(a)}{h} = \frac{1}{2\pi i} \oint_C \frac{1}{h} \left\{ \frac{1}{z - (a+h)} - \frac{1}{z - a} \right\} f(z) dz = \frac{1}{2\pi i} \oint_C \frac{f(z) dz}{(z - a - h)(z - a)}$$

$$= \frac{1}{2\pi i} \oint_C \frac{f(z) dz}{(z - a)^2} + \frac{h}{2\pi i} \oint_C \frac{f(z) dz}{(z - a - h)(z - a)^2}$$

The result follows on taking the limit as $h \to 0$ if we can show that the last term approaches zero.

To show this we use the fact that if Γ is a circle of radius ϵ and center a which lies entirely in \mathcal{R} (see Fig. 5-3), then

$$\frac{h}{2\pi i} \oint\limits_C \frac{f(z)\,dz}{(z-a-h)(z-a)^2} = \frac{h}{2\pi i} \oint\limits_\Gamma \frac{f(z)\,dz}{(z-a-h)(z-a)^2}$$

Choosing h so small in absolute value that a+h lies in Γ and $|h| < \epsilon/2$, we have by Problem 1.7(c), and the fact that Γ has equation $|z-a| = \epsilon$,

$$|z-a-h| \ge |z-a| - |h| > \epsilon - \epsilon/2 = \epsilon/2$$

Also since f(z) is analytic in \mathcal{R} , we can find a positive number M such that |f(z)| < M. Then, since the length of Γ is $2\pi\epsilon$, we have

$$\left| \frac{h}{2\pi i} \oint_{\Gamma} \frac{f(z) dz}{(z - a - h)(z - a)^2} \right| \le \frac{|h|}{2\pi} \frac{M(2\pi\epsilon)}{(\epsilon/2)(\epsilon^2)} = \frac{2|h|M}{\epsilon^2}$$

and it follows that the left side approaches zero as $h \to 0$, thus completing the proof.

It is of interest to observe that the result is equivalent to

$$\frac{d}{da}f(a) = \frac{d}{da}\left\{\frac{1}{2\pi i} \oint_C \frac{f(z)}{z - a} dz\right\} = \frac{1}{2\pi i} \oint_C \frac{\partial}{\partial a} \left\{\frac{f(z)}{z - a}\right\} dz$$

which is an extension to contour integrals of Leibnitz's rule for differentiating under the integral sign.

5.3. Prove that under the conditions of Problem 5.2,

$$f^{(n)}(a) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z-a)^{n+1}} dz \quad n = 0, 1, 2, 3, \dots$$

Solution

The cases where n = 0 and 1 follow from Problems 5.1 and 5.2, respectively, provided we define $f^{(0)}(a) = f(a)$

To establish the case where n=2, we use Problem 5.2 where a and a+h lie in \mathcal{R} to obtain

$$\frac{f'(a+h) - f'(a)}{h} = \frac{1}{2\pi i} \oint_C \frac{1}{h} \left\{ \frac{1}{(z-a-h)^2} - \frac{1}{(z-a)^2} \right\} f(z) dz$$
$$= \frac{2!}{2\pi i} \oint_C \frac{f(z)}{(z-a)^3} dz + \frac{h}{2\pi i} \oint_C \frac{3(z-a) - 2h}{(z-a-h)^2 (z-a)^3} f(z) dz$$

The result follows on taking the limit as $h \to 0$ if we can show that the last term approaches zero. The proof is similar to that of Problem 5.2, for using the fact that the integral around C equals the integral around Γ , we have

$$\left| \frac{h}{2\pi i} \oint_{\Gamma} \frac{3(z-a) - 2h}{(z-a-h)^2 (z-a)^3} f(z) dz \right| \le \frac{|h|}{2\pi} \frac{M(2\pi\epsilon)}{(\epsilon/2)^2 (\epsilon^3)} = \frac{4|h|M}{\epsilon^4}$$

Since M exists such that $|\{3(z-a)-2h\}|f(z)| < M$.

In a similar manner, we can establish the result for $n = 3, 4, \dots$ (see Problems 5.36 and 5.37).

The result is equivalent to (see last paragraph of Problem 5.2)

$$\frac{d^n}{da^n} f(a) = \frac{d^n}{da^n} \left\{ \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z-a)} dz \right\} = \frac{1}{2\pi i} \oint_C \frac{\partial^n}{\partial a^n} \left\{ \frac{f(z)}{z-a} \right\} dz$$

5.4. Suppose f(z) is analytic in a region \mathcal{R} . Prove that f'(z), f''(z), ... are analytic in \mathcal{R} .

Solution

This follows from Problems 5.2 and 5.3.

5.5. Evaluate:

(a)
$$\oint_C \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)} dz$$
, (b) $\oint_C \frac{e^{2z}}{(z+1)^4} dz$ where C is the circle $|z| = 3$.

(a) Since
$$\frac{1}{(z-1)(z-2)} = \frac{1}{z-2} - \frac{1}{z-1}$$
, we have
$$\oint_C \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)} dz = \oint_C \frac{\sin \pi z^2 + \cos \pi z^2}{z-2} dz - \oint_C \frac{\sin \pi z^2 + \cos \pi z^2}{z-1} dz$$

By Cauchy's integral formula with a = 2 and a = 1, respectively, we have

$$\oint_C \frac{\sin \pi z^2 + \cos \pi z^2}{z - 2} dz = 2\pi i \{ \sin \pi (2)^2 + \cos \pi (2)^2 \} = 2\pi i$$

$$\oint_C \frac{\sin \pi z^2 + \cos \pi z^2}{z - 1} dz = 2\pi i \{ \sin \pi (1)^2 + \cos \pi (1)^2 \} = -2\pi i$$

since z=1 and z=2 are inside C and $\sin \pi z^2 + \cos \pi z^2$ is analytic inside C. Then, the required integral has the value $2\pi i - (-2\pi i) = 4\pi i$.

(b) Let $f(z) = e^{2z}$ and a = -1 in the Cauchy integral formula

$$f^{(n)}(a) = \frac{n!}{2\pi i} \oint \frac{f(z)}{(z-a)^{n+1}} dz \tag{1}$$

If n = 3, then $f'''(z) = 8e^{2z}$ and $f'''(-1) = 8e^{-2}$. Hence (1) becomes

$$8e^{-2} = \frac{3!}{2\pi i} \oint_C \frac{e^{2z}}{(z+1)^4} dz$$

from which we see that the required integral has the value $8\pi i e^{-2}/3$.

5.6. Prove Cauchy's integral formula for multiply-connected regions.

Solution

We present a proof for the multiply-connected region \mathcal{R} bounded by the simple closed curves C_1 and C_2 as indicated in Fig. 5-4. Extensions to other multiply-connected regions are easily made (see Problem 5.40).

Construct a circle Γ having center at any point a in \mathcal{R} so that Γ lies entirely in \mathcal{R} . Let \mathcal{R}' consist of the set of points in \mathcal{R} that are exterior to Γ . Then, the function f(z)/(z-a) is analytic inside and on the boundary of \mathcal{R}' . Hence, by Cauchy's theorem for multiply-connected regions (Problem 4.16),

$$\frac{1}{2\pi i} \oint_{C} \frac{f(z)}{z - a} dz - \frac{1}{2\pi i} \oint_{C} \frac{f(z)}{z - a} dz - \frac{1}{2\pi i} \oint_{C} \frac{f(z)}{z - a} dz = 0$$
 (1)

Fig. 5-4

But, by Cauchy's integral formula for simply-connected regions, we have

$$f(a) = \frac{1}{2\pi i} \oint_{\Gamma} \frac{f(z)}{z - a} dz \tag{2}$$

so that from (1),

$$f(a) = \frac{1}{2\pi i} \oint_{C_1} \frac{f(z)}{z - a} dz - \frac{1}{2\pi i} \oint_{C_2} \frac{f(z)}{z - a} dz$$
 (3)

Then, if C represents the entire boundary of \mathcal{R} (suitably traversed so that an observer moving around C always has \mathcal{R} lying to his left), we can write (3) as

$$f(a) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - a} dz$$

In a similar manner, we can show that the other Cauchy integral formulas

$$f^{(n)}(a) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z-a)^{n+1}} dz \quad n = 1, 2, 3, \dots$$

hold for multiply-connected regions (see Problem 5.40).

Morera's Theorem

5.7. Prove *Morera's theorem* (the converse of Cauchy's theorem): Suppose f(z) is continuous in a simply-connected region \mathcal{R} and suppose

$$\oint_C f(z) \, dz = 0$$

around every simple closed curve C in \mathcal{R} . Then f(z) is analytic in \mathcal{R} .

Solution

If $\oint_C f(z) dz = 0$ independent of C, it follows by Problem 4.17, that $F(z) = \int_a^z f(z) dz$ is independent of the path joining a and z, so long as this path is in \mathcal{R} .

Then, by reasoning identical with that used in Problem 4.18, it follows that F(z) is analytic in \mathcal{R} and F'(z) = f(z). However, by Problem 5.2, it follows that F'(z) is also analytic if F(z) is. Hence, f(z) is analytic in \mathcal{R} .

Cauchy's Inequality

5.8. Let f(z) be analytic inside and on a circle C of radius r and center at z = a. Prove Cauchy's inequality

$$|f^{(n)}(a)| \le \frac{M \cdot n!}{r^n}$$
 $n = 0, 1, 2, 3, ...$

where M is a constant such that |f(z)| < M.

Solution

We have by Cauchy's integral formulas,

$$f^{(n)}(a) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z-a)^{n+1}} dz \quad n = 0, 1, 2, 3, \dots$$

Then, by Problem 4.3, since |z - a| = r on C and the length of C is $2\pi r$,

$$|f^{(n)}(a)| = \frac{n!}{2\pi} \left| \oint_C \frac{f(z)}{(z-a)^{n+1}} dz \right| \le \frac{n!}{2\pi} \cdot \frac{M}{r^{n+1}} \cdot 2\pi r = \frac{M \cdot n!}{r^n}$$

Liouville's Theorem

5.9. Prove *Liouville's theorem*: Suppose for all z in the entire complex plane, (i) f(z) is analytic and (ii) f(z) is bounded [i.e., we can find a constant M such that |f(z)| < M]. Then f(z) must be a constant.

Solution

Let a and b be any two points in the z plane. Suppose that C is a circle of radius r having center at a and enclosing point b (see Fig. 5-5).

From Cauchy's integral formula, we have

$$f(b) - f(a) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - b} dz - \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - a} dz$$
$$= \frac{b - a}{2\pi i} \oint_C \frac{f(z) dz}{(z - b)(z - a)}$$

Fig. 5-5

Now we have

$$|z-a|=r$$
, $|z-b|=|z-a+a-b| \ge |z-a|-|a-b|=r-|a-b| \ge r/2$

if we choose r so large that |a - b| < r/2. Then, since |f(z)| < M and the length of C is $2\pi r$, we have by Problem 4.3,

$$|f(b) - f(a)| = \frac{|b - a|}{2\pi} \left| \oint_C \frac{f(z) dz}{(z - b)(z - a)} \right| \le \frac{|b - a|M(2\pi r)}{2\pi (r/2)r} = \frac{2|b - a|M}{r}$$

Letting $r \to \infty$, we see that |f(b) - f(a)| = 0 or f(b) = f(a), which shows that f(z) must be a constant.

Another Method. Letting n = 1 in Problem 5.8 and replacing a by z we have,

$$|f'(z)| \leq M/r$$

Letting $r \to \infty$, we deduce that |f'(z)| = 0 and so f'(z) = 0. Hence, f(z) = constant, as required.

Fundamental Theorem of Algebra

5.10. Prove the fundamental theorem of algebra: Every polynomial equation $P(z) = a_0 + a_1 z + a_2 z^2 + \cdots + a_n z^n = 0$, where the degree $n \ge 1$ and $a_n \ne 0$, has at least one root.

Solution

If P(z) = 0 has no root, then f(z) = 1/P(z) is analytic for all z. Also, |f(z)| = 1/|P(z)| is bounded (and in fact approaches zero) as $|z| \to \infty$.

Then by Liouville's theorem (Problem 5.9), it follows that f(z) and thus P(z) must be a constant. Thus, we are led to a contradiction and conclude that P(z) = 0 must have at least one root or, as is sometimes said, P(z) has at least one zero.

5.11. Prove that every polynomial equation $P(z) = a_0 + a_1 z + a_2 z^2 + \cdots + a_n z^n = 0$, where the degree $n \ge 1$ and $a_n \ne 0$, has exactly n roots.

Solution

By the fundamental theorem of algebra (Problem 5.10), P(z) has at least one root. Denote this root by α . Then $P(\alpha) = 0$. Hence

$$P(z) - P(\alpha) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n - (a_0 + a_1 \alpha + a_2 \alpha^2 + \dots + a_n \alpha^n)$$

= $a_1(z - \alpha) + a_2(z^2 - \alpha^2) + \dots + a_n(z^n - \alpha^n)$
= $(z - \alpha)Q(z)$

where O(z) is a polynomial of degree (n-1).

Applying the fundamental theorem of algebra again, we see that Q(z) has at least one zero, which we can denote by β [which may equal α], and so $P(z) = (z - \alpha)(z - \beta)R(z)$. Continuing in this manner, we see that P(z) has exactly n zeros.

Gauss' Mean Value Theorem

5.12. Let f(z) be analytic inside and on a circle C with center at a. Prove Gauss' mean value theorem that the mean of the values of f(z) on C is f(a).

Solution

By Cauchy's integral formula,

$$f(a) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - a} dz \tag{1}$$

If C has radius r, the equation of C is |z-a|=r or $z=a+re^{i\theta}$. Thus, (1) becomes

$$f(a) = \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{f(a + re^{i\theta})ire^{i\theta}}{re^{i\theta}} d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} f(a + re^{i\theta}) d\theta$$

which is the required result.

Maximum Modulus Theorem

5.13. Prove the maximum modulus theorem: Suppose f(z) is analytic inside and on a simple closed curve C. Then the maximum value of |f(z)| occurs on C, unless f(z) is a constant.

Solution

Method 1

Since f(z) is analytic and hence continuous inside and on C, it follows that |f(z)| does have a maximum value M for at least one value of z inside or on C. Suppose this maximum value is not attained on the boundary of C but is attained at an interior point a, i.e., |f(a)| = M. Let C_1 be a circle inside C with center at a (see Fig. 5-6). If we exclude f(z) from being a constant inside C_1 , then there must be a point inside C_1 , say b, such that |f(b)| < M or, what is the same thing, $|f(b)| = M - \epsilon$ where $\epsilon > 0$.

Now, by the continuity of |f(z)| at b, we see that for any $\epsilon > 0$ we can find $\delta > 0$ such that

$$||f(z)| - |f(b)|| < \frac{1}{2}\epsilon$$
 whenever $|z - b| < \delta$ (1)

i.e.,

$$|f(z)| < |f(b)| + \frac{1}{2}\epsilon = M - \epsilon + \frac{1}{2}\epsilon = M - \frac{1}{2}\epsilon$$
 (2)

for all points interior to a circle C_2 with center at b and radius δ , as shown shaded in the figure.

Construct a circle C_3 with a center at a that passes through b (dashed in Fig. 5-6). On part of this circle [namely that part PQ included in C_2], we have from (2), $|f(z)| < M - \frac{1}{2}\epsilon$. On the remaining part of the circle, we have $|f(z)| \leq M$.

If we measure θ counterclockwise from *OP* and let $\angle POQ = \alpha$, it follows from Problem 5.12 that if r = |b - a|

$$f(a) = \frac{1}{2\pi} \int_{0}^{\alpha} f(\alpha + re^{i\theta}) d\theta + \frac{1}{2\pi} \int_{\alpha}^{2\pi} f(a + re^{i\theta}) d\theta$$

Then

$$\begin{split} |f(a)| &\leq \frac{1}{2\pi} \int\limits_{0}^{\alpha} |f(a+re^{i\theta})| \, d\theta + \frac{1}{2\pi} \int\limits_{\alpha}^{2\pi} |f(a+re^{i\theta})| \, d\theta \\ &\leq \frac{1}{2\pi} \int\limits_{0}^{\alpha} \left(M - \frac{1}{2}\epsilon \right) d\theta + \frac{1}{2\pi} \int\limits_{\alpha}^{2\pi} M \, d\theta \\ &= \frac{\alpha}{2\pi} \left(M - \frac{1}{2}\epsilon \right) + \frac{M}{2\pi} (2\pi - \alpha) \\ &\neq M - \frac{\alpha\epsilon}{4\pi} \end{split}$$

i.e., $|f(a)| = M \le M - (\alpha \epsilon/4\pi)$, an impossible situation. By virtue of this contradiction, we conclude that |f(z)| cannot attain its maximum at any interior point of C and so must attain its maximum on C.

Fig. 5-6

Method 2

From Problem 5.12, we have

$$|f(a)| \le \frac{1}{2\pi} \int_{0}^{2\pi} |f(a + re^{i\theta})| d\theta$$
 (3)

Let us suppose that |f(a)| is a maximum so that $|f(a+re^{i\theta})| \le |f(a)|$. If $|f(a+re^{i\theta})| < |f(a)|$ for one value of θ then, by continuity of f, it would hold for a finite arc, say $\theta_1 < \theta < \theta_2$. But, in such case, the mean value of $|f(a+re^{i\theta})|$ is less than |f(a)|, which would contradict (3). It follows, therefore, that in any δ neighborhood of a, i.e., for $|z-a| < \delta$, f(z) must be a constant. If f(z) is not a constant, the maximum value of |f(z)| must occur on C.

For another method, see Problem 5.57.

Minimum Modulus Theorem

5.14. Prove the *minimum modulus theorem*: Let f(z) be analytic inside and on a simple closed curve C. Prove that if $f(z) \neq 0$ inside C, then |f(z)| must assume its minimum value on C.

Solution

Since f(z) is analytic inside and on C and since $f(z) \neq 0$ inside C, it follows that 1/f(z) is analytic inside C. By the maximum modulus theorem, it follows that 1/|f(z)| cannot assume its maximum value inside C and so |f(z)| cannot assume its minimum value inside C. Then, since |f(z)| has a minimum, this minimum must be attained on C.

5.15. Give an example to show that if f(z) is analytic inside and on a simple closed curve C and f(z) = 0 at some point inside C, then |f(z)| need not assume its minimum value on C.

Solution

Let f(z) = z for $|z| \le 1$, so that C is a circle with center at the origin and radius 1. We have f(z) = 0 at z = 0. If $z = re^{i\theta}$, then |f(z)| = r and it is clear that the minimum value of |f(z)| does not occur on C but occurs inside C where r = 0, i.e., at z = 0.

The Argument Theorem

5.16. Let f(z) be analytic inside and on a simple closed curve C except for a pole $z = \alpha$ of order (multiplicity) p inside C. Suppose also that inside C, f(z) has only one zero $z = \beta$ of order (multiplicity) p and no zeros on C. Prove that

$$\frac{1}{2\pi i} \oint_C \frac{f'(z)}{f(z)} dz = n - p$$

Solution

Let C_1 and Γ_1 be non-overlapping circles lying inside C and enclosing $z = \alpha$ and $z = \beta$, respectively. [See Fig. 5-7.] Then

$$\frac{1}{2\pi i} \oint_C \frac{f'(z)}{f(z)} dz = \frac{1}{2\pi i} \oint_{C_1} \frac{f'(z)}{f(z)} dz + \frac{1}{2\pi i} \oint_{\Gamma_1} \frac{f'(z)}{f(z)} dz \tag{1}$$

Since f(z) has a pole of order p at $z = \alpha$, we have

$$f(z) = \frac{F(z)}{(z - \alpha)^p} \tag{2}$$

where F(z) is analytic and different from zero inside and on C_1 . Then, taking logarithms in (2) and differentiating, we find

$$\frac{f'(z)}{f(z)} = \frac{F'(z)}{F(z)} - \frac{p}{z - \alpha} \tag{3}$$

so that

$$\frac{1}{2\pi i} \oint_C \frac{f'(z)}{f(z)} dz = \frac{1}{2\pi i} \oint_C \frac{F'(z)}{F(z)} dz - \frac{p}{2\pi i} \oint_C \frac{dz}{z - \alpha} = 0 - p = -p \tag{4}$$

Since f(z) has a zero of order n at $z = \beta$, we have

$$f(z) = (z - \beta)^n G(z) \tag{5}$$

where G(z) is analytic and different from zero inside and on Γ_1 .

Then, by logarithmic differentiation, we have

$$\frac{f'(z)}{f(z)} = \frac{n}{z - \beta} + \frac{G'(z)}{G(z)} \tag{6}$$

so that

$$\frac{1}{2\pi i} \oint_{\Gamma_1} \frac{f'(z)}{f(z)} dz = \frac{n}{2\pi i} \oint_{\Gamma_1} \frac{dz}{z - \beta} + \frac{1}{2\pi i} \oint_{\Gamma_2} \frac{G'(z)}{G(z)} dz = n \tag{7}$$

Hence, from (1), (4), and (7), we have the required result

$$\frac{1}{2\pi i} \oint_C \frac{f'(z)}{f(z)} dz = \frac{1}{2\pi i} \oint_{C_1} \frac{f'(z)}{f(z)} dz + \frac{1}{2\pi i} \oint_{\Gamma_1} \frac{f'(z)}{f(z)} dz = n - p$$

Fig. 5-7

Fig. 5-8

5.17. Let f(z) be analytic inside and on a simple closed curve C except for a finite number of poles inside C. Suppose that $f(z) \neq 0$ on C. If N and P are, respectively, the number of zeros and poles of f(z) inside C, counting multiplicities, prove that

$$\frac{1}{2\pi i} \oint_C \frac{f'(z)}{f(z)} dz = N - P$$

Solution

Let $\alpha_1, \alpha_2, \ldots, \alpha_j$ and $\beta_1, \beta_2, \ldots, \beta_k$ be the respective poles and zeros of f(z) lying inside C [Fig. 5-8] and suppose their multiplicities are p_1, p_2, \ldots, p_j and n_1, n_2, \ldots, n_k .

Enclose each pole and zero by non-overlapping circles C_1 , C_2 , ..., C_j and Γ_1 , Γ_2 , ..., Γ_k . This can always be done since the poles and zeros are isolated.

Then, we have, using the results of Problem 5.16,

$$\frac{1}{2\pi i} \oint_{C} \frac{f'(z)}{f(z)} dz = \sum_{r=1}^{j} \frac{1}{2\pi i} \oint_{\Gamma_{r}} \frac{f'(z)}{f(z)} dz + \sum_{r=1}^{k} \frac{1}{2\pi i} \oint_{C_{r}} \frac{f'(z)}{f(z)} dz$$
$$= \sum_{r=1}^{j} n_{r} - \sum_{r=1}^{k} p_{r}$$
$$= N - P$$

Rouché's Theorem

5.18. Prove *Rouché's theorem*: Suppose f(z) and g(z) are analytic inside and on a simple closed curve C and suppose |g(z)| < |f(z)| on C. Then f(z) + g(z) and f(z) have the same number of zeros inside C.

Solution

Let F(z) = g(z)/f(z) so that g(z) = f(z)F(z) or briefly g = fF. Then, if N_1 and N_2 are the number of zeros inside C of f + g and f, respectively, we have by Problem 5.17, using the fact that these functions have no poles inside C,

$$N_1 = \frac{1}{2\pi i} \oint_C \frac{f' + g'}{f + g} dz, \qquad N_2 = \frac{1}{2\pi i} \oint_C \frac{f'}{f} dz$$

Then

$$N_{1} - N_{2} = \frac{1}{2\pi i} \oint_{C} \frac{f' + f'F + fF'}{f + fF} dz - \frac{1}{2\pi i} \oint_{C} \frac{f'}{f} dz = \frac{1}{2\pi i} \oint_{C} \frac{f'(1+F) + fF'}{f(1+F)} dz - \frac{1}{2\pi i} \oint_{C} \frac{f'}{f} dz$$
$$= \frac{1}{2\pi i} \oint_{C} \left\{ \frac{f'}{f} + \frac{F'}{1+F} \right\} dz - \frac{1}{2\pi i} \oint_{C} \frac{f'}{f} dz = \frac{1}{2\pi i} \oint_{C} \frac{F'}{1+F} dz$$
$$= \frac{1}{2\pi i} \int_{C} F'(1-F+F^{2}-F^{3}+\cdots) dz = 0$$

using the given fact that |F| < 1 on C so that the series is uniformly convergent on C and term by term integration yields the value zero. Thus, $N_1 = N_2$ as required.

5.19. Use Rouché's theorem (Problem 5.18) to prove that every polynomial of degree n has exactly n zeros (fundamental theorem of algebra).

Solution

Suppose the polynomial to be $a_0 + a_1z + a_2z^2 + \cdots + a_nz^n$, where $a_n \neq 0$. Choose $f(z) = a_nz^n$ and $g(z) = a_0 + a_1z + a_2z^2 + \cdots + a_{n-1}z^{n-1}$.

If C is a circle having center at the origin and radius r > 1, then on C we have

$$\left| \frac{g(z)}{f(z)} \right| = \frac{|a_0 + a_1 z + a_2 z^2 + \dots + a_{n-1} z^{n-1}|}{|a_n z^n|} \le \frac{|a_0| + |a_1| r + |a_2| r^2 + \dots + |a_{n-1}| r^{n-1}}{|a_n| r^n} \\
\le \frac{|a_0| r^{n-1} + |a_1| r^{n-1} + |a_2| r^{n-1} + \dots + |a_{n-1}| r^{n-1}}{|a_n| r^n} = \frac{|a_0| + |a_1| + |a_2| + \dots + |a_{n-1}|}{|a_n| r}$$

Then, by choosing r large enough, we can make |g(z)/f(z)| < 1, i.e., |g(z)| < |f(z)|. Hence, by Rouché's theorem, the given polynomial f(z) + g(z) has the same number of zeros as $f(z) = a_n z^n$. But, since this last function has n zeros all located at z = 0, f(z) + g(z) also has n zeros and the proof is complete.

5.20. Prove that all the roots of $z^7 - 5z^3 + 12 = 0$ lie between the circles |z| = 1 and |z| = 2.

Solution

Consider the circle C_1 : |z| = 1. Let f(z) = 12, $g(z) = z^7 - 5z^3$. On C_1 we have

$$|g(z)| = |z^7 - 5z^3| \le |z^7| + |5z^3| \le 6 < 12 = |f(z)|$$

Hence, by Rouché's theorem, $f(z) + g(z) = z^7 - 5z^3 + 12$ has the same number of zeros inside |z| = 1 as f(z) = 12, i.e., there are no zeros inside C_1 .

Consider the circle C_2 : |z| = 2. Let $f(z) = z^7$, $g(z) = 12 - 5z^3$. On C_2 we have

$$|g(z)| = |12 - 5z^3| \le |12| + |5z^3| \le 60 < 2^7 = |f(z)|$$

Hence, by Rouché's theorem, $f(z) + g(z) = z^7 - 5z^3 + 12$ has the same number of zeros inside |z| = 2 as $f(z) = z^7$, i.e., all the zeros are inside C_2 .

Hence, all the roots lie inside |z| = 2 but outside |z| = 1, as required.

Poisson's Integral Formulas for a Circle

5.21. (a) Let f(z) be analytic inside and on the circle C defined by |z| = R, and let $z = re^{i\theta}$ be any point inside C (see Fig. 5-9). Prove that

$$f(re^{i\theta}) = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{R^2 - r^2}{R^2 - 2Rr\cos(\theta - \phi) + r^2} f(Re^{i\phi}) d\phi$$

(b) Let $u(r, \theta)$ and $v(r, \theta)$ be the real and imaginary parts of $f(re^{i\theta})$. Prove that

$$u(r, \theta) = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{(R^2 - r^2) u(R, \phi) d\phi}{R^2 - 2Rr\cos(\theta - \phi) + r^2}$$

$$v(r, \theta) = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{(R^2 - r^2) v(R, \phi) d\phi}{R^2 - 2Rr\cos(\theta - \phi) + r^2}$$

The results are called *Poisson's integral formulas for the circle*.

Solution

(a) Since $z = re^{i\theta}$ is any point inside C, we have by Cauchy's integral formula

$$f(z) = f(re^{i\theta}) = \frac{1}{2\pi i} \oint_C \frac{f(w)}{w - z} dw \tag{1}$$

The *inverse of the point z* with respect to C lies outside C and is given by R^2/\bar{z} . Hence, by Cauchy's theorem,

$$0 = \frac{1}{2\pi i} \oint_C \frac{f(w)}{w - R^2/\overline{z}} dw \tag{2}$$

Fig. 5-9

If we subtract (2) from (1), we find

$$f(z) = \frac{1}{2\pi i} \oint_C \left\{ \frac{1}{w - z} - \frac{1}{w - R^2/\bar{z}} \right\} f(w) dw$$

$$= \frac{1}{2\pi i} \oint_C \frac{z - R^2/\bar{z}}{(w - z)(w - R^2/\bar{z})} f(w) dw$$
(3)

Now, let $z = re^{i\theta}$ and $w = Re^{i\phi}$. Then, since $\bar{z} = re^{-i\theta}$, (3) yields

$$\begin{split} f(re^{i\theta}) &= \frac{1}{2\pi i} \int\limits_{0}^{2\pi} \frac{\{re^{i\theta} - (R^2/r)e^{i\theta}\}f(Re^{i\phi})iRe^{i\phi}\,d\phi}{\{Re^{i\phi} - re^{i\theta}\}\{Re^{i\phi} - (R^2/r)e^{i\theta}\}} = \frac{1}{2\pi} \int\limits_{0}^{2\pi} \frac{(r^2 - R^2)e^{i(\theta + \phi)}f(Re^{i\phi})\,d\phi}{(Re^{i\phi} - re^{i\theta})(re^{i\phi} - Re^{i\theta})} \\ &= \frac{1}{2\pi} \int\limits_{0}^{2\pi} \frac{(R^2 - r^2)f(Re^{i\phi})\,d\phi}{(Re^{i\phi} - re^{i\theta})(Re^{-i\phi} - re^{-i\theta})} = \frac{1}{2\pi} \int\limits_{0}^{2\pi} \frac{(R^2 - r^2)f(Re^{i\phi})\,d\phi}{R^2 - 2Rr\cos(\theta - \phi) + r^2} \end{split}$$

(b) Since $f(re^{i\theta}) = u(r, \theta) + iv(r, \theta)$ and $f(Re^{i\phi}) = u(R, \phi) + iv(R, \phi)$, we have from part (a),

$$u(r, \theta) + iv(r, \theta) = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{(R^2 - r^2)\{u(R, \phi) + iv(R, \phi)\} d\phi}{R^2 - 2Rr\cos(\theta - \phi) + r^2}$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} \frac{(R^2 - r^2)u(R, \phi) d\phi}{R^2 - 2Rr\cos(\theta - \phi) + r^2} + \frac{i}{2\pi} \int_{0}^{2\pi} \frac{(R^2 - r^2)v(R, \phi) d\phi}{R^2 - 2Rr\cos(\theta - \phi) + r^2}$$

Then the required result follows on equating real and imaginary parts.

Poisson's Integral Formulas for a Half Plane

5.22. Derive Poisson's formulas for the half plane [see page 146].

Solution

Let C be the boundary of a semicircle of radius R [see Fig. 5-10] containing ζ as an interior point. Since C encloses ζ but does not enclose $\bar{\zeta}$, we have by Cauchy's integral formula,

$$f(\zeta) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - \zeta} dz, \quad 0 = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - \overline{\zeta}} dz$$

Then, by subtraction,

$$f(\zeta) = \frac{1}{2\pi i} \oint_C f(z) \left\{ \frac{1}{z - \zeta} - \frac{1}{z - \bar{\zeta}} \right\} dz = \frac{1}{2\pi i} \oint_C \frac{(\zeta - \bar{\zeta})f(z) dz}{(z - \zeta)(z - \bar{\zeta})}$$

Letting $\zeta = \xi + i\eta$, $\bar{\zeta} = \xi - i\eta$, this can be written

$$f(\zeta) = \frac{1}{\pi} \int_{-R}^{R} \frac{\eta f(x) dx}{(x - \xi)^2 + \eta^2} + \frac{1}{\pi} \int_{\Gamma} \frac{\eta f(z) dz}{(z - \zeta)(z - \overline{\zeta})}$$

where Γ is the semicircular arc of C. As $R \to \infty$, this last integral approaches zero [see Problem 5.76] and we have

$$f(\zeta) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\eta f(x) dx}{(x - \xi)^2 + \eta^2}$$

Writing $f(\zeta) = f(\xi + i\eta) = u(\xi, \eta) + iv(\xi, \eta)$, f(x) = u(x, 0) + iv(x, 0), we obtain as required,

$$u(\xi, \eta) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\eta u(x, 0) dx}{(x - \xi)^2 + \eta^2}, \quad v(\xi, \eta) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\eta v(x, 0) dx}{(x - \xi)^2 + \eta^2}$$

 $\begin{array}{c}
C_1 \\
C_2 \\
K \\
J
\end{array}$

Fig. 5-11

Miscellaneous Problems

5.23. Let f(z) be analytic in a region \mathcal{R} bounded by two concentric circles C_1 and C_2 and on the boundary [Fig. 5-11]. Prove that, if z_0 is any point in \mathcal{R} , then

$$f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz - \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz$$

Solution

Method 1. Construct cross-cut EH connecting circles C_1 and C_2 . Then f(z) is analytic in the region bounded by EFGEHKJHE. Hence, by Cauchy's integral formula,

$$f(z_0) = \frac{1}{2\pi i} \oint_{EFGEHKJHE} \frac{f(z)}{z - z_0} dz$$

$$= \frac{1}{2\pi i} \oint_{EFGE} \frac{f(z)}{z - z_0} dz + \frac{1}{2\pi i} \int_{EH} \frac{f(z)}{z - z_0} dz + \frac{1}{2\pi i} \oint_{HKJH} \frac{f(z)}{z - z_0} dz + \frac{1}{2\pi i} \int_{HE} \frac{f(z)}{z - z_0} dz$$

$$= \frac{1}{2\pi i} \oint_{C_1} \frac{f(z)}{z - z_0} dz - \frac{1}{2\pi i} \oint_{C_2} \frac{f(z)}{z - z_0} dz$$

since the integrals along EH and HE cancel.

Similar results can be established for the derivatives of f(z).

Method 2. The result also follows from equation (3) of Problem 5.6 if we replace the simple closed curves C_1 and C_2 by the circles of Fig. 5-11.

5.24. Prove that, for $n = 1, 2, 3, \ldots$,

$$\int_{0}^{2\pi} \cos^{2n}\theta \, d\theta = \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots (2n)} 2\pi$$

Solution

Let $z = e^{i\theta}$. Then, $dz = ie^{i\theta} d\theta = iz d\theta$ or $d\theta = dz/iz$ and $\cos \theta = \frac{1}{2}(e^{i\theta} + e^{-i\theta}) = \frac{1}{2}(z + 1/z)$. Hence, if C is the unit circle |z| = 1, we have

$$\int_{0}^{2\pi} \cos^{2n}\theta \, d\theta = \oint_{C} \left\{ \frac{1}{2} \left(z + \frac{1}{z} \right) \right\}^{2n} \frac{dz}{iz}$$

$$= \frac{1}{2^{2n}i} \oint_{C} \frac{1}{z} \left\{ z^{2n} + \binom{2n}{1} (z^{2n-1}) \left(\frac{1}{z} \right) + \dots + \binom{2n}{k} (z^{2n-k}) \left(\frac{1}{z} \right)^{k} + \dots + \left(\frac{1}{z} \right)^{2n} \right\} dz$$

$$= \frac{1}{2^{2n}i} \oint_{C} \left\{ z^{2n-1} + \binom{2n}{1} z^{2n-3} + \dots + \binom{2n}{k} z^{2n-2k-1} + \dots + z^{-2n} \right\} dz$$

$$= \frac{1}{2^{2n}i} \cdot 2\pi i \binom{2n}{n} = \frac{1}{2^{2n}} \binom{2n}{n} 2\pi$$

$$= \frac{1}{2^{2n}} \frac{(2n)!}{n!n!} 2\pi = \frac{(2n)(2n-1)(2n-2) \cdots (n)(n-1) \cdots 1}{2^{2n}n!n!} 2\pi$$

$$= \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots 2n} 2\pi$$

5.25. Suppose f(z) = u(x, y) + iv(x, y) is analytic in a region \mathcal{R} . Prove that u and v are harmonic in \mathcal{R} .

Solution

In Problem 3.6, we proved that u and v are harmonic in \mathcal{R} , i.e., satisfy the equation $(\partial^2 \phi/\partial x^2) + (\partial^2 \phi/\partial y^2) = 0$, under the assumption of existence of the second partial derivatives of u and v, i.e., the existence of f''(z).

This assumption is no longer necessary since we have in fact proved in Problem 5.4 that, if f(z) is analytic in \mathcal{R} , then *all* the derivatives of f(z) exist.

5.26. Prove Schwarz's theorem: Let f(z) be analytic for $|z| \le R$, f(0) = 0, and $|f(z)| \le M$. Then

$$|f(z)| \le \frac{M|z|}{R}$$

Solution

The function f(z)/z is analytic in $|z| \le R$. Hence, on |z| = R, we have by the maximum modulus theorem,

$$\left|\frac{f(z)}{z}\right| \le \frac{M}{R}$$

However, since this inequality must also hold for points inside |z| = R, we have for $|z| \le R$, $|f(z)| \le M|z|/R$ as required.

5.27. Let

$$f(x) = \begin{cases} x^2 \sin(1/x) & x \neq 0\\ 0 & x = 0 \end{cases}$$

where x is real. Show that the function f(x) (a) has a first derivative at all values of x for which $0 \le x \le 1$ but (b) does not have a second derivative in $0 \le x \le 1$. (c) Reconcile these conclusions with the result of Problem 5.4.

Solution

(a) The only place where there is any question as to existence of the first derivative is at x = 0. But, at x = 0, the derivative is

$$\lim_{\Delta x \to 0} \frac{f(0 + \Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{(\Delta x)^2 \sin(1/\Delta x) - 0}{\Delta x} = \lim_{\Delta x \to 0} \Delta x \sin(1/\Delta x) = 0$$

and so exists.

At all other values of x in 0 < x < 1, the derivative is given (using elementary differentiation rules) by

$$x^2\cos(1/x)\{-1/x^2\} + (2x)\sin(1/x) = 2x\sin(1/x) - \cos(1/x)$$

(b) From part (a), we have

$$f'(x) = \begin{cases} 2x \sin(1/x) - \cos(1/x) & x \neq 0 \\ 0 & x = 0 \end{cases}$$

The second derivative exists for all x such that $0 \le x \le 1$. At x = 0, the second derivative is given by

$$\lim_{\Delta x \to 0} \frac{f'(0 + \Delta x) - f'(0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{2\Delta x \sin(1/\Delta x) - \cos(1/\Delta x) - 0}{\Delta x}$$
$$= \lim_{\Delta x \to 0} \left\{ 2 \sin(1/\Delta x) - (1/\Delta x) \cos(1/\Delta x) \right\}$$

which does not exist.

It follows that the second derivative of f(x) does not exist in $0 \le x \le 1$.

- (c) According to Problem 5.4, if f(z) is analytic in a region \mathcal{R} , then all higher derivatives exist and are analytic in \mathcal{R} . The above results do not conflict with this, since the function $f(z) = z^2 \sin(1/z)$ is not analytic in any region which includes z = 0.
- **5.28.** (a) Let F(z) be analytic inside and on a simple closed curve C except for a pole of order m at z=a inside C. Prove that

$$\frac{1}{2\pi i} \oint_C F(z) dz = \lim_{z \to a} \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} \{ (z-a)^m F(z) \}$$

(b) How would you modify the result in (a) if more than one pole were inside C?

Solution

(a) If F(z) has a pole of order m at z = a, then $F(z) = f(z)/(z - a)^m$ where f(z) is analytic inside and on C, and $f(a) \neq 0$. Then, by Cauchy's integral formula,

$$\frac{1}{2\pi i} \oint_C F(z) dz = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z-a)^m} dz = \frac{f^{(m-1)}(a)}{(m-1)!} = \lim_{z \to a} \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} \{ (z-a)^m F(z) \}$$

(b) Suppose there are two poles at $z = a_1$ and $z = a_2$ inside C, of orders m_1 and m_2 , respectively. Let Γ_1 and Γ_2 be circles inside C having radii ϵ_1 and ϵ_2 and centers at a_1 and a_2 , respectively (see Fig. 5-12). Then

$$\frac{1}{2\pi i} \oint_C F(z) dz = \frac{1}{2\pi i} \oint_{\Gamma_1} F(z) dz + \frac{1}{2\pi i} \oint_{\Gamma_2} F(z) dz \tag{1}$$

Fig. 5-12

If F(z) has a pole of order m_1 at $z = a_1$, then

$$F(z) = \frac{f_1(z)}{(z - a_1)^{m_1}} \quad \text{where } f_1(z) \text{ is analytic and } f_1(a_1) \neq 0$$

If F(z) has a pole of order m_2 at $z = a_2$, then

$$F(z) = \frac{f_2(z)}{(z - a_2)^{m_2}} \quad \text{where } f_2(z) \text{ is analytic and } f_2(a_2) \neq 0$$

Then, by (1) and part (a),

$$\begin{split} \frac{1}{2\pi i} \oint_C F(z) \, dz &= \frac{1}{2\pi i} \oint_{\Gamma_1} \frac{f_1(z)}{(z - a_1)^{m_1}} dz + \frac{1}{2\pi i} \oint_{\Gamma_2} \frac{f_2(z)}{(z - a_2)^{m_2}} dz \\ &= \lim_{z \to a_1} \frac{1}{(m_1 - 1)!} \frac{d^{m_1} - 1}{dz^{m_1} - 1} \{ (z - a_1)^{m_1} F(z) \} \\ &+ \lim_{z \to a_2} \frac{1}{(m_2 - 1)!} \frac{d^{m_2} - 1}{dz^{m_2} - 1} \{ (z - a_2)^{m_2} F(z) \} \end{split}$$

If the limits on the right are denoted by R_1 and R_2 , we can write

$$\oint_C F(z) dz = 2\pi i (R_1 + R_2)$$

where R_1 and R_2 are called the *residues* of F(z) at the poles $z = a_1$ and $z = a_2$.

In general, if F(z) has a number of poles inside C with residues R_1, R_2, \ldots , then $\oint_C F(z) dz = 2\pi i$ times the sum of the residues. This result is called the *residue theorem*. Applications of this theorem, together with generalization to singularities other than poles, are treated in Chapter 7.

5.29. Evaluate $\oint_C \frac{e^z}{(z^2 + \pi^2)^2} dz$ where C is the circle |z| = 4.

Solution

The poles of $\frac{e^z}{(z^2 + \pi^2)^2} = \frac{e^z}{(z - \pi i)^2 (z + \pi i)^2}$ are at $z = \pm \pi i$ inside C and are both of order two.

Residue at
$$z = \pi i$$
 is $\lim_{z \to \pi i} \frac{1}{1!} \frac{d}{dz} \left\{ (z - \pi i)^2 \frac{e^z}{(z - \pi i)^2 (z + \pi i)^2} \right\} = \frac{\pi + i}{4\pi^3}$.

Residue at
$$z = -\pi i$$
 is $\lim_{z \to -\pi i} \frac{1}{1!} \frac{d}{dz} \left\{ (z + \pi i)^2 \frac{e^z}{(z - \pi i)^2 (z + \pi i)^2} \right\} = \frac{\pi - i}{4\pi^3}$.

Then
$$\oint_C \frac{e^z}{(z^2 + \pi^2)^2} dz = 2\pi i \text{ (sum of residues)} = 2\pi i \left(\frac{\pi + i}{4\pi^3} + \frac{\pi - i}{4\pi^3}\right) = \frac{i}{\pi}.$$

SUPPLEMENTARY PROBLEMS

Cauchy's Integral Formulas

- **5.30.** Evaluate $\frac{1}{2\pi i} \oint_C \frac{e^z}{z-2} dz$ if C is: (a) the circle |z| = 3, (b) the circle |z| = 1.
- **5.31.** Evaluate $\oint_C \frac{\sin 3z}{z + \pi/2} dz$ if C is the circle |z| = 5.
- **5.32.** Evaluate $\oint_C \frac{e^{3z}}{z \pi i} dz$ if C is: (a) the circle |z 1| = 4, (b) the ellipse |z 2| + |z + 2| = 6.
- **5.33.** Evaluate $\frac{1}{2\pi i} \oint \frac{\cos \pi 2}{z^2 1} dz$ around a rectangle with vertices at: (a) $2 \pm i$, $-2 \pm i$; (b) -i, 2 i, 2 + i, i.
- **5.34.** Show that $\frac{1}{2\pi i} \oint_C \frac{e^{zt}}{z^2 + 1} dz = \sin t$ if t > 0 and C is the circle |z| = 3.
- **5.35.** Evaluate $\oint_C \frac{e^{iz}}{z^3} dz$ where *C* is the circle |z| = 2.
- **5.36.** Suppose C is a simple closed curve enclosing z = a and f(z) is analytic inside and on C. Prove that $f'''(a) = \frac{3!}{2\pi i} \oint_C \frac{f(z) dz}{(z-a)^4}.$
- **5.37.** Prove Cauchy's integral formulas for all positive integral values of *n*. [*Hint*: Use mathematical induction.]
- **5.38.** Given C is the circle |z| = 1. Find the value of (a) $\oint_C \frac{\sin^6 z}{z \pi/6} dz$, (b) $\oint_C \frac{\sin^6 z}{(z \pi/6)^3} dz$.
- **5.39.** Evaluate $\frac{1}{2\pi i} \oint_C \frac{e^{zt}}{(z^2+1)^2} dz$ when t > 0 and C is the circle |z| = 3.
- **5.40.** Prove Cauchy's integral formulas for the multiply-connected region of Fig. 4-26, page 140.

Morera's Theorem

- **5.41.** (a) Determine whether $G(z) = \int_1^z d\zeta/\zeta$ is independent of the path joining 1 and z.
 - (b) Discuss the relationship of your answer to part (a) with Morera's theorem.
- **5.42.** Does Morera's theorem apply in a multiply-connected region? Justify your answer.
- **5.43.** (a) Suppose P(x, y) and Q(x, y) are conjugate harmonic functions and C is any simple closed curve. Prove that $\oint_C P dx + Q dy = 0$.
 - (b) Suppose for all simple closed curves C in a region \mathcal{R} , $\oint_C P dx + Q dy = 0$. Is it true that P and Q are conjugate harmonic functions, i.e., is the converse of (a) true? Justify your conclusion.

Cauchy's Inequality

- **5.44.** (a) Use Cauchy's inequality to obtain estimates for the derivatives of $\sin z$ at z = 0 and (b) determine how good these estimates are.
- **5.45.** (a) Show that if f(z) = 1/(1-z), then $f^{(n)}(z) = n!/(1-z)^{n+1}$.
 - (b) Use (a) to show that the Cauchy inequality is "best possible", i.e., the estimate of growth of the *n*th derivative cannot be improved for *all* functions.

- **5.46.** Prove that the equality in Cauchy's inequality (5.3), page 145, holds in the case n = m if and only if $f(z) = kM(z a)^m/r^m$, where |k| = 1.
- **5.47.** Discuss Cauchy's inequality for the function $f(z) = e^{-1/z^2}$ in the neighborhood of z = 0.

Liouville's Theorem

- **5.48.** The function of a real variable defined by $f(x) = \sin x$ is (a) analytic everywhere and (b) bounded, i.e., $|\sin x| \le 1$ for all x but it is certainly not a constant. Does this contradict Liouville's theorem? Explain.
- **5.49.** Suppose a > 0 and b > 0 are constants and a non-constant function F(z) is such that F(z + a) = F(z), and F(z + bi) = F(z). Prove that F(z) cannot be analytic in the rectangle 0 < x < a, 0 < y < b.

Fundamental Theorem of Algebra

- **5.50.** (a) Carry out the details of proof of the fundamental theorem of algebra to show that the particular function $f(z) = z^4 z^2 2z + 2$ has exactly four zeros. (b) Determine the zeros of f(z).
- **5.51.** Determine all the roots of the equations: (a) $z^3 3z + 4i = 0$, (b) $z^4 + z^2 + 1 = 0$.

Gauss' Mean Value Theorem

- **5.52.** Evaluate $\frac{1}{2\pi} \int_{0}^{2\pi} \sin^2(\pi/6 + 2e^{i\theta}) d\theta$.
- **5.53.** Show that the mean value of any harmonic function over a circle is equal to the value of the function at the center.
- **5.54.** Find the mean value of $x^2 y^2 + 2y$ over the circle |z 5 + 2i| = 3.
- **5.55.** Prove that $\int_0^{\pi} \ln \sin \theta d\theta = -\pi \ln 2$. [*Hint*. Consider $f(z) = \ln(1+z)$.]

Maximum Modulus Theorem

- **5.56.** Find the maximum of |f(z)| in $|z| \le 1$ for the functions f(z) given by: (a) $z^2 3z + 2$, (b) $z^4 + z^2 + 1$, (c) $\cos 3z$, (d) (2z + 1)/(2z 1).
- **5.57.** (a) Let f(z) be analytic inside and on the simple closed curve C enclosing z = a, prove that

$${f(a)}^n = \frac{1}{2\pi i} \oint_C \frac{{f(z)}^n}{z-a} dz \quad n = 0, 1, 2, \dots$$

- (b) Use (a) to prove that $|f(a)|^n \le M^n/2\pi D$ where D is the minimum distance from a to the curve C and M is the maximum value of |f(z)| on C.
- (c) By taking the *n*th root of both sides of the inequality in (b) and letting $n \to \infty$, prove the maximum modulus theorem.
- **5.58.** Let U(x, y) be harmonic inside and on a simple closed curve C. Prove that the (a) maximum and (b) minimum values of U(x, y) are attained on C. Are there other restrictions on U(x, y)?
- **5.59.** Given C is the circle |z| = 1. Verify Problem 5.58 for the functions (a) $x^2 y^2$ and (b) $x^3 3xy^2$.
- **5.60.** Is the maximum modulus theorem valid for multiply-connected regions? Justify your answer.

The Argument Theorem

- **5.61.** Let $f(z) = z^5 3iz^2 + 2z 1 + i$. Evaluate $\oint_C \frac{f'(z)}{f(z)} dz$ where C encloses all the zeros of f(z).
- **5.62.** Let $f(z) = \frac{(z^2 + 1)^2}{(z^2 + 2z + 2)^3}$. Evaluate $\frac{1}{2\pi i} \oint_C \frac{f'(z)}{f(z)} dz$ where C is the circle |z| = 4.
- **5.63.** Evaluate $\oint_C \frac{f'(z)}{f(z)} dz$ if C is the circle $|z| = \pi$ and (a) $f(z) = \sin \pi z$, (b) $f(z) = \cos \pi z$, (c) $f(z) = \tan \pi z$.
- **5.64.** Let $f(z) = z^4 2z^3 + z^2 12z + 20$ and C is the circle |z| = 5. Evaluate $\oint_C \frac{zf'(z)}{f(z)} dz$.

Rouché's Theorem

- **5.65.** If a > e, prove that the equation $az^n = e^z$ has n roots inside |z| = 1.
- **5.66.** Prove that $ze^z = a$ where $a \ne 0$ is real has infinitely many roots.
- **5.67.** Prove that $\tan z = az$, a > 0 has (a) infinitely many real roots, (b) only two pure imaginary roots if 0 < a < 1, (c) all real roots if a > 1.
- **5.68.** Prove that $z \tan z = a$, a > 0 has infinitely many real roots but no imaginary roots.

Poisson's Integral Formulas for a Circle

5.69. Show that
$$\int_{0}^{2\pi} \frac{R^2 - r^2}{R^2 - 2Rr\cos(\theta - \phi) + r^2} d\phi = 2\pi$$

- (a) with, (b) without Poisson's integral formula for a circle.
- **5.70.** Show that:

(a)
$$\int_{0}^{2\pi} \frac{e^{\cos\phi}\cos(\sin\phi)}{5-4\cos(\theta-\phi)} d\phi = \frac{2\pi}{3}e^{\cos\theta}\cos(\sin\theta), \quad \text{(b)} \int_{0}^{2\pi} \frac{e^{\cos\phi}\sin(\sin\phi)}{5-4\cos(\theta-\phi)} d\phi = \frac{2\pi}{3}e^{\cos\theta}\sin(\sin\theta).$$

5.71. (a) Prove that the function

$$U(r, \theta) = \frac{2}{\pi} \tan^{-1} \left(\frac{2r \sin \theta}{1 - r^2} \right), \quad 0 < r < 1, 0 \le \theta < 2\pi$$

is harmonic inside the circle |z| = 1.

- (b) Show that $\lim_{r \to 1^-} U(r, \theta) = \begin{cases} 1 & 0 < \theta < \pi \\ -1 & \pi < \theta < 2\pi \end{cases}$
- (c) Can you derive the expression for $U(r, \theta)$ from Poisson's integral formula for a circle?
- **5.72.** Suppose f(z) is analytic inside and on the circle C defined by |z| = R and suppose $z = re^{i\theta}$ is any point inside C. Show that

$$f'(re^{i\theta}) = \frac{i}{2\pi} \int_{0}^{2\pi} \frac{R(R^2 - r^2)f(Re^{i\phi})\sin(\theta - \phi)}{[R^2 - 2Rr\cos(\theta - \phi) + r^2]^2} d\phi$$

5.73. Verify that the functions u and v of equations (5.7) and (5.8), page 146, satisfy Laplace's equation.

Poisson's Integral Formulas for a Half Plane

- **5.74.** Find a function that is harmonic in the upper half plane y > 0 and that on the x axis takes the values -1 if x < 0 and 1 if x > 0.
- **5.75.** Work Problem 5.74 if the function takes the values -1 if x < -1, 0 if -1 < x < 1, and 1 if x > 1.
- **5.76.** Prove the statement made in Problem 5.22 that the integral over Γ approaches zero as $R \to \infty$.
- **5.77.** Prove that under suitable restrictions on f(x),

$$\lim_{\eta \to 0+} \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\eta f(x)}{(x-\xi)^2 + \eta^2} dx = f(\xi)$$

and state these restrictions.

5.78. Verify that the functions u and v of equations (5.10) and (5.11), page 146, satisfy Laplace's equation.

Miscellaneous Problems

- **5.79.** Evaluate $\frac{1}{2\pi i} \oint_C \frac{z^2 dz}{z^2 + 4}$ where C is the square with vertices at ± 2 , $\pm 2 + 4i$.
- **5.80.** Evaluate $\oint_C \frac{\cos^2 tz}{z^3} dz$ where C is the circle |z| = 1 and t > 0.
- **5.81.** (a) Show that $\oint_C \frac{dz}{z+1} = 2\pi i$ if C is the circle |z| = 2.
 - (b) Use (a) to show that

$$\oint_C \frac{(x+1)\,dx + y\,dy}{(x+1)^2 + y^2} = 0, \qquad \oint_C \frac{(x+1)\,dy - y\,dx}{(x+1)^2 + y^2} = 2\,\pi$$

and verify these results directly.

- **5.82.** Find all functions f(z) that are analytic everywhere in the entire complex plane and that satisfy the conditions (a) f(2-i) = 4i and (b) $|f(z)| < e^2$ for all z.
- **5.83.** Let f(z) be analytic inside and on a simple closed curve C. Prove that

(a)
$$f'(a) = \frac{1}{2\pi} \int_{0}^{2\pi} e^{-i\theta} f(a + e^{i\theta}) d\theta$$
 (b) $\frac{f^{(n)}(a)}{n!} = \frac{1}{2\pi} \int_{0}^{2\pi} e^{-ni\theta} f(a + e^{i\theta}) d\theta$

- **5.84.** Prove that $8z^4 6z + 5 = 0$ has one root in each quadrant.
- **5.85.** Show that (a) $\int_0^{2\pi} e^{\cos\theta} \cos(\sin\theta) d\theta = 0$, (b) $\int_0^{2\pi} e^{\cos\theta} \sin(\sin\theta) d\theta = 2\pi$.
- **5.86.** Extend the result of Problem 5.23 so as to obtain formulas for the derivatives of f(z) at any point in \mathcal{R} .
- **5.87.** Prove that $z^3 e^{1-z} = 1$ has exactly two roots inside the circle |z| = 1.
- **5.88.** Suppose t > 0 and C is any simple closed curve enclosing z = -1. Prove that

$$\frac{1}{2\pi i} \oint_C \frac{ze^{zt}}{(z+1)^3} dz = \left(t - \frac{t^2}{2}\right)e^{-t}$$

5.89. Find all functions f(z) that are analytic in |z| < 1 and that satisfy the conditions (a) f(0) = 1 and (b) $|f(z)| \ge 1$ for |z| < 1.

5.90. Let f(z) and g(z) be analytic inside and on a simple closed curve C except that f(z) has zeros at a_1, a_2, \ldots, a_m and poles at b_1, b_2, \ldots, b_n of orders (multiplicities) p_1, p_2, \ldots, p_m and q_1, q_2, \ldots, q_n , respectively. Prove that

$$\frac{1}{2\pi i} \oint_C g(z) \frac{f'(z)}{f(z)} dz = \sum_{k=1}^m p_k g(a_k) - \sum_{k=1}^n q_k g(b_k)$$

5.91. Suppose $f(z) = a_0 z^n + a_1 z^{n-1} + a_2 z^{n-2} + \dots + a_n$ where $a_0 \neq 0, a_1, \dots, a_n$ are complex constants and C encloses all the zeros of f(z). Evaluate

(a)
$$\frac{1}{2\pi i} \oint_C \frac{z f'(z)}{f(z)} dz$$
 (b) $\frac{1}{2\pi i} \oint_C \frac{z^2 f'(z)}{f(z)} dz$

and interpret the results.

- **5.92.** Find all functions f(z) that are analytic in the region $|z| \le 1$ and are such that (a) f(0) = 3 and (b) $|f(z)| \le 3$ for all z such that |z| < 1.
- **5.93.** Prove that $z^6 + 192z + 640 = 0$ has one root in the first and fourth quadrants and two roots in the second and third quadrants.
- **5.94.** Prove that the function $xy(x^2 y^2)$ cannot have an absolute maximum or minimum inside the circle |z| = 1.
- **5.95.** (a) If a function is analytic in a region \mathcal{R} , is it bounded in \mathcal{R} ? (b) In view of your answer to (a), is it necessary to state that f(z) is bounded in Liouville's theorem?
- **5.96.** Find all functions f(z) that are analytic everywhere, have a zero of order two at z = 0, satisfy the condition $|f'(z)| \le 6|z|$ for all z, and are such that f(i) = -2.
- **5.97.** Prove that all the roots of $z^5 + z 16i = 0$ lie between the circles |z| = 1 and |z| = 2.
- **5.98.** Let U be harmonic inside and on a simple closed curve C. Prove that

$$\oint_C \frac{\partial U}{\partial n} ds = 0$$

where n is a unit normal to C in the z plane and s is the arc length parameter.

- **5.99.** A theorem of Cauchy states that all the roots of the equation $z^n + a_1 z^{n-1} + a_2 z^{n-2} + \cdots + a_n = 0$, where a_1, a_2, \ldots, a_n are real, lie inside the circle $|z| = 1 + \max\{a_1, a_2, \ldots, a_n\}$, i.e., |z| = 1 plus the maximum of the values a_1, a_2, \ldots, a_n . Verify this theorem for the special cases:

 (a) $z^3 z^2 + z 1 = 0$, (b) $z^4 + z^2 + 1 = 0$, (c) $z^4 z^2 2z + 2 = 0$, (d) $z^4 + 3z^2 6z + 10 = 0$.
- **5.100.** Prove the theorem of Cauchy stated in Problem 5.99.
- **5.101.** Let P(z) be any polynomial. If m is any positive integer and $\omega = e^{2\pi i/m}$, prove that

$$\frac{P(1) + P(\omega) + P(\omega^{2}) + \dots + P(\omega^{m-1})}{m} = P(0)$$

and give a geometric interpretation.

- **5.102.** Is the result of Problem 5.101 valid for any function f(z)? Justify your answer.
- **5.103.** Prove *Jensen's theorem*: Suppose f(z) is analytic inside and on the circle |z| = R except for zeros at a_1, a_2, \ldots, a_m of multiplicities p_1, p_2, \ldots, p_m and poles at b_1, b_2, \ldots, b_n of multiplicities q_1, q_2, \ldots, q_n , respectively, and suppose f(0) is finite and different from zero. Then

$$\frac{1}{2\pi} \int_{0}^{2\pi} \ln|f(Re^{i\theta})| \, d\theta = \ln|f(0)| + \sum_{k=1}^{m} p_k \ln\left(\frac{R}{|a_k|}\right) - \sum_{k=1}^{n} q_k \ln\left(\frac{R}{|b_k|}\right)$$

[*Hint*. Consider $\oint_C \ln z \{f'(z)/f(z)\} dz$ where C is the circle |z| = R.]