CHAPTER 4 Complex Integration and Cauchy’s Theorem
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Cauchy’s Integral Formulas
and Related Theorems

5.1 Cauchy’s Integral Formulas

Let f(z) be analytic inside and on a simple closed curve C and let a be any point inside C [Fig. 5-1]. Then

=g § 10

T2

C

where C is traversed in the positive (counterclockwise) sense.
Also, the nth derivative of f(z) at z = a is given by

W®=m+'m)@n:u@m

i (Z _ a)n+l
C

The result (5.1) can be considered a special case of (5.2) with n = 0 if we define 0! = 1.

y

dz

Fig. 51

5.1

(5.2)

The results (5.1) and (5.2) are called Cauchy’s integral formulas and are quite remarkable because they
show that if a function f(z) is known on the simple closed curve C, then the values of the function and all its
derivatives can be found at all points inside C. Thus, if a function of a complex variable has a first
derivative, i.e., is analytic, in a simply-connected region R, all its higher derivatives exist in R. This is

not necessarily true for functions of real variables.
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5.2 Some Important Theorems

The following is a list of some important theorems that are consequences of Cauchy’s integral formulas.

1.

10.

Morera’s theorem (converse of Cauchy’s theorem)
If f(2) is continuous in a simply-connected region R and if §. f(z) dz = 0 around every simple
closed curve C in R, then f(z) is analytic in R.

Cauchy’s inequality
Suppose f(z) is analytic inside and on a circle C of radius r and center at z = a. Then

M - n!
) <=2 n=0,1,2... (5.3)
rn

where M is a constant such that |f(z)] < M on C, i.e., M is an upper bound of |f(z)| on C.

Liouville’s theorem
Suppose that for all z in the entire complex plane, (i) f(z) is analytic and (ii) f(z) is bounded, i.e.,
| f(z)] < M for some constant M. Then f(z) must be a constant.

Fundamental theorem of algebra
Every polynomial equation P(z) = ag + a1z + a»z*> + - - - + a,2" = 0 with degreen > landa, #0
has at least one root.

From this it follows that P(z) = 0 has exactly n roots, due attention being paid to multiplicities
of roots.

Gauss’ mean value theorem
Suppose f(z) is analytic inside and on a circle C with center at a and radius r. Then f(a) is the mean
of the values of f(z) on C, i.e.,

2m

_ 1 it
f(a)—zwjf(a—i-re )dG (5.4)

(=]

Maximum modulus theorem
Suppose f(z) is analytic inside and on a simple closed curve C and is not identically equal to a
constant. Then the maximum value of | f(z)| occurs on C.

Minimum modulus theorem
Suppose f(z) is analytic inside and on a simple closed curve C and f(z) # 0 inside C. Then | f(2)|
assumes its minimum value on C.

The argument theorem
Let f(z) be analytic inside and on a simple closed curve C except for a finite number of poles
inside C. Then

! jEf/(Z)dz=N—P (5.5)

2mi | f(2)

277
c

where N and P are, respectively, the number of zeros and poles of f(z) inside C.
For a generalization of this theorem, see Problem 5.90.

Rouché’s theorem
Suppose f(z) and g(z) are analytic inside and on a simple closed curve C and suppose
lg(z)] < |f(2)| on C. Then f(z) + g(z) and f(z) have the same number of zeros inside C.

Poisson’s integral formulas for a circle _
Let f(z) be analytic inside and on the circle C defined by |z| = R. Then, if z = re'’ is any point
inside C, we have

1 T (R* — ) f(Re'?)

oy _ L
flrey = 27 ) R? — 2Rrcos(0 — ¢) + r?
0

dé (5.6)
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If u(r, 6) and v(r, 6) are the real and imaginary parts of f(re'?) while u(R, ¢) and v(R, ¢) are
the real and imaginary parts of f(Re'?), then

2
1 (R> — P)u(R, ¢)
ulr, 0) = 27 J R? — 2Rrcos(0 — ¢) + 12 a¢ 57
0
1T ®=PuR B
oir, 6) = 27 J R? — 2Rrcos(0 — ¢) + 12 dé (5-8)
0

These results are called Poisson’s integral formulas for a circle. They express the values of a
harmonic function inside a circle in terms of its values on the boundary.

11. Poisson’s integral formulas for a half plane
Let f(z) be analytic in the upper half y > 0 of the z plane and let { = £+ in be any point in this
upper half plane. Then

00

1 nf(x)
= 5.9
£ WJ i (5.9)
In terms of the real and imaginary parts of f({), this can be written

1] mut, 0)
u(g, m) = WJ G_E 17 (5.10)

_ l R nu(x, 0)
u(g m) = W_J G EP+ o (5.11)

These are called Poisson’s integral formulas for a half plane. They express the values of a
harmonic function in the upper half plane in terms of the values on the x axis [the boundary]
of the half plane.

SOLVED PROBLEMS

Cauchy’s Integral Formulas

5.1. Letf(z) be analytic inside and on the boundary C of a simply-connected region R. Prove Cauchy’s

integral formula
fla) L ﬂ; Zfiz) dz

- 2ari a
c
Solution

Method 1. The function f(z)/(z — a) is analytic inside and on C except at the point z = a (see Fig. 5-2). By
Theorem 4.4, page 117, we have

Z—a Z—a
C r

§ 19D [ SO, o

where we can choose I" as a circle of radius € with center at a. Then an equation for I' is |z —a| = € or
7 —a = ee'¥ where 0 < 6 < 2. Substituting z = a + ee'?, dz = iee'?, the integral on the right of (1) becomes



CHAPTER 5 Cauchy’s Integral Formulas and Related Theorems

27 2
i0Y; 2,0
ﬂ;f(Z)dZ:J‘f(a—i_ee_G)lee de:l Jf(a+€€i0)d0
z—a ee'
r 0 0
Thus we have from (1),
27
jﬁﬁdz =i Jf(a + ee'%)do )
7—a

c 0

Taking the limit of both sides of (2) and making use of the continuity of f(z), we have

2
ﬁ;&dz = limi Jf(a + ee'%) do
Z—a e—~0
c 0
27 2
=i J 1irr(1)f(a+eei9)d0:i J fla)d6 = 2mi f(a) 3)
0 0
so that we have, as required,
1
o= 12
2m J z—a

o

Method 2. The right side of equation (1) of Method 1 can be written as
ff; f@ dz:%f(Z)_f(a)der% fl@ iz
z—a z—a z—a

@) —f(a)
Z—a

dz + 2 f(a)

———

using Problem 4.21. The required result will follow if we can show that

ﬂ; fO-f@, _,
z—a
r

But by Problem 3.21,

%wdz zi;f/(a)der%n dz = ffndz
T T

r r

Then choosing I" so small that for all points on I' we have n| < 6/2, we find

i‘;n dz| < <£)(27TE) =€
27

r

Thus Sﬁrn dz = 0 and the proof is complete.



CHAPTER 5 Cauchy’s Integral Formulas and Related Theorems

Fig. 52 Fig. 5-3

5.2. Let f(z) be analytic inside and on the boundary C of a simply-connected region R. Prove that

277

o [ f®@)

Solution

From Problem 5.1, if a and a + & lie in R, we have

f(a+h)—f(a)_iﬂ@1 IR ) PO _Lﬂ@ f()dz
h 2w S hlimat+h z—al’ P T 2w S a—a—hiz—a)
C C

1 i#f(z)dz N h + f@)dz

“2mi (z — a)? 2 m
C C

The result follows on taking the limit as # — 0 if we can show that the last term approaches zero.
To show this we use the fact that if I' is a circle of radius € and center a which lies entirely in R
(see Fig. 5-3), then

h ?i; f(2) dz _h i; f(2) dz
( (

2w J c—a-Me—a? 27 ] @—a—hi-a)
c r
Choosing & so small in absolute value that a 4+ & lies in I" and |h| < €/2, we have by Problem 1.7(c), and the
fact that I" has equation |z — a| = €,
lz—a—h|>|z—a|l—|h| > €e—€/2=¢€/2

Also since f(z) is analytic in R, we can find a positive number M such that | f(z)| < M.
Then, since the length of T" is 27r€, we have

h jﬁ f(z)dz _ |n M2me) _ 2iiM

Je—a-mGe—ar| " 2m2E@) @

2mi

and it follows that the left side approaches zero as 7 — 0, thus completing the proof.
It is of interest to observe that the result is equivalent to

4y d Lfi;f(z)dz _Lﬂ;ﬁ{f(z)}dz

da :% 2@ J z—a T 2mi | dalz—a
c c

which is an extension to contour integrals of Leibnitz’s rule for differentiating under the integral sign.
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5.3. Prove that under the conditions of Problem 5.2,

@) = 'ﬂ;(z f(z))mdz n=01,273,...

Solution

The cases where n = 0 and 1 follow from Problems 5.1 and 5.2, respectively, provided we define £ (a) = f(a)

and 0! = 1.
To establish the case where n = 2, we use Problem 5.2 where a and a + h lie in R to obtain
fllath) —fl@ 1 f'; 1 1 1
g 0 7 J T = — d
I i S lema-np  e—ap]/@%

_i!f{) A dz+ij£ D2 ey
_ 2 _ =
C

27 | (z—a)’ 27 | (z—a—h)(z
c

The result follows on taking the limit as # — O if we can show that the last term approaches zero. The proof
is similar to that of Problem 5.2, for using the fact that the integral around C equals the integral around T,
we have

2mi

h % 3(z—a) — F2)de |h| M27e) 4|h|M
P (z—a—h>2< )3 S 2m(e2@) e

Since M exists such that |{3(z — a) — 24} f(z)| < M.

In a similar manner, we can establish the result for n = 3, 4, ... (see Problems 5.36 and 5.37).
The result is equivalent to (see last paragraph of Problem 5.2)

SR RN IR S L
Tda |27 ] (z—a) T 2w | dat |z—a
c C

5.4. Suppose f(z) is analytic in a region R. Prove that f'(z), f”(z), . . . are analytic in R.

Solution
This follows from Problems 5.2 and 5.3.

5.5. Evaluate:

. 2 2 2z
(a) jﬁwdz, (b) %(i—l)ﬂzz where C is the circle |z| = 3.
Z

(z—1D(z—-2)
Solution
1 1
Si = — h
(a) Since G-De—2 -2 i-T we have
i; sin 7z + cos 7z? E{) sin 722 + cos 7z d i; sin 7z + cos 7Z? d
= z — 74
(z—D(z—-2) z—2 z—1

c
By Cauchy’s integral formula with @ = 2 and a = 1, respectively, we have

ff sin 722 + cos 7z

5 dz = 2mifsin m(2)* + cos m(2)*} = 2mi
i

c
4; sin 77> + cos 7z dz = 2mi{sin m(1)* + cos m(1)*} = —2mi
c

z—1
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since z = 1 and z = 2 are inside C and sin 7z> + cos 77> is analytic inside C. Then, the required integral
has the value 2mi — (—2mi) = 4.
(b) Letf(z) = ¢* and a = —1 in the Cauchy integral formula

(n) _L‘ f(Z)
[y =-— jgi(z_a)nﬂ dz (1)
C

If n = 3, then f”(z) = 8¢% and f”'(—1) = 8¢~2. Hence (1) becomes

| 2z
8¢ 2 = 3— fﬁ%dz
2@ ] (z+ 1)

C

from which we see that the required integral has the value 8ie=2/3.

5.6. Prove Cauchy’s integral formula for multiply-connected regions.

Solution

We present a proof for the multiply-connected region R G
bounded by the simple closed curves C; and C; as indi-
cated in Fig. 5-4. Extensions to other multiply-connected
regions are easily made (see Problem 5.40).
Construct a circle I" having center at any point a in R so
that I" lies entirely in R. Let R’ consist of the set of points
in R that are exterior to I'. Then, the function f(z)/(z — a)
is analytic inside and on the boundary of R’. Hence, by
Cauchy’s theorem for multiply-connected regions
(Problem 4.16),

Jﬁ%ﬂ@&_Ji§ﬂ@&_J,§ﬁQﬂ:0m

2@ | z—a 2@ Jz—a 2@ ) z—a Fig. 5-4
C C r

But, by Cauchy’s integral formula for simply-connected regions, we have

1
m>—§m& )

T 2miJz—a
r

so that from (1),

1 fj;f(Z) 1 jEJ‘(Z) &z 3)

f@ 2@ Jz—a ¢ 2@ Jz—a
C] CZ

Then, if C represents the entire boundary of R (suitably traversed so that an observer moving around C always
has R lying to his left), we can write (3) as

mwi&“&
2771 a
c

In a similar manner, we can show that the other Cauchy integral formulas

f(n)(a) — 2’17' % f(Z)

dz n=1,2,3,...
T (z_a)n+1
C

hold for multiply-connected regions (see Problem 5.40).
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Morera’s Theorem

5.7. Prove Morera’s theorem (the converse of Cauchy’s theorem): Suppose f(z) is continuous in a
simply-connected region R and suppose

i;f(z)dz =0

c
around every simple closed curve C in R. Then f(z) is analytic in R.
Solution

If §C f(2) dz = 0 independent of C, it follows by Problem 4.17, that F((z) = ja f(2) dzis independent of the path
joining a and z, so long as this path is in k.

Then, by reasoning identical with that used in Problem 4.18, it follows that F(z) is analytic in R and
F'(z) = f(z). However, by Problem 5.2, it follows that F'(z) is also analytic if F(z) is. Hence, f(z) is analytic in R.

Cauchy’s Inequality

5.8. Let f(z) be analytic inside and on a circle C of radius r and center at z = a. Prove Cauchy’s
inequality

M -n!
|f(”)(a)| S—nn n=0,1,2,3,...
r

where M is a constant such that | f(z)| < M.
Solution

We have by Cauchy’s integral formulas,

(n) _L‘ f(Z) _
f (a)—zm.ﬁ;i(z_a)mdz n=0,1,23,...
C

Then, by Problem 4.3, since |z — a| = r on C and the length of C is 27,

2 rh

(Z _ a)n+1
Cc

Liouville’s Theorem

5.9. Prove Liouville’s theorem: Suppose for all z in the entire complex plane, (i) f(z) is analytic and (ii)
f(2) is bounded [i.e., we can find a constant M such that | f(z)| < M]. Then f(z) must be a constant.

Solution
Let a and b be any two points in the z plane. Suppose that C is a y
circle of radius r having center at a and enclosing point b (see
Fig. 5-5). €
From Cauchy’s integral formula, we have
10 1
10 ~f@ =5 TG e O
2m@i J z—b 2@ Jz—a
c c N
_b—a ?i; fl2)dz
2mi (z—=>b)z—a)
C

Fig. 5-5
Now we have

z—a|l=r, |z—bl=|z—a+a—bl>|z—a|l—|la—bl=r—|a—b|>r/2
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if we choose r so large that |a — b| < r/2. Then, since |f(z)| < M and the length of C is 27rr, we have by
Problem 4.3,

) — fla)| = |b—al % f(z) dz ' - |b—alMQar)  2|b—alM

20 J (z—b)(z — a)’ = 2ar/2r r

Letting r — oo, we see that | f(b) — f(a)| = 0 or f(b) = f(a), which shows that f(z) must be a constant.

Another Method. Letting n = 1 in Problem 5.8 and replacing a by z we have,
If'@l <M/r

Letting r — oo, we deduce that |f'(z)] = 0 and so f'(z) = 0. Hence, f(z) = constant, as required.

Fundamental Theorem of Algebra

5.10.

5.11.

Gauss’
5.12.

Prove the fundamental theorem of algebra: Every polynomial equation P(z) = ap+ a;z+
w? + -+ a,7" =0, where the degree n > 1 and a, #0, has at least one root.

Solution

If P(z) = 0 has no root, then f(z) = 1/P(z) is analytic for all z. Also, | f(z)| = 1/|P(z)| is bounded (and in fact
approaches zero) as |z] — .

Then by Liouville’s theorem (Problem 5.9), it follows that f(z) and thus P(z) must be a constant. Thus, we
are led to a contradiction and conclude that P(z) = 0 must have at least one root or, as is sometimes said, P(z)
has at least one zero.

Prove that every polynomial equation P(z) = ag + a1z + a2z + - - - + a,2" = 0, where the degree
n > 1 and a, # 0, has exactly n roots.

Solution

By the fundamental theorem of algebra (Problem 5.10), P(z) has at least one root. Denote this root by . Then
P(a) = 0. Hence

P@) —P(@) =ay+a1z+ @z + -+ a,d" — (ag + aya+ axa’ + - - + a,a)

=ai(z— @) +a(F —a®) + -+ a2 — o)
=(@zZ—- o0

where Q(z) is a polynomial of degree (n — 1).

Applying the fundamental theorem of algebra again, we see that Q(z) has at least one zero, which we can
denote by B [which may equal «], and so P(z) = (z — a)(z — B)R(z). Continuing in this manner, we see that
P(z) has exactly n zeros.

Mean Value Theorem

Let f(z) be analytic inside and on a circle C with center at a. Prove Gauss’ mean value theorem that
the mean of the values of f(z) on C is f(a).

Solution

By Cauchy’s integral formula,

27

1
flay =~ fjﬁ @) 4 (1)
Z a
C
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If C has radius r, the equation of C is |z — a| = r or z = a + re'?. Thus, (1) becomes

2

J fla + re'%ire'

fla) = do=

(=]

which is the required result.

Maximum Modulus Theorem

ret? 2m

2

L Jf(a +re®de

0

5.13. Prove the maximum modulus theorem: Suppose f(z) is analytic inside and on a simple closed curve
C. Then the maximum value of | f(z)| occurs on C, unless f(z) is a constant.

Solution

Method 1

Since f(z) is analytic and hence continuous inside and on C, it
follows that | f(z)| does have a maximum value M for at least
one value of z inside or on C. Suppose this maximum value is
not attained on the boundary of C but is attained at an interior
point a, i.e., |f(a)l=M. Let C; be a circle inside C with
center at a (see Fig. 5-6). If we exclude f(z) from being a constant
inside C;, then there must be a point inside C;, say b, such that
| f(b)] < M or, what is the same thing, |f(b)] = M — € where
€> 0.

Now, by the continuity of | f(z)| at b, we see that for any € > 0
we can find & > 0 such that

IIf @I = 1fD)I] < %6 whenever |z —b| < 8 (1)

ie.,

1 1 1
If@QI<IfO)+7e=M-et e=M-ze  (2)

Fig. 56

for all points interior to a circle C, with center at b and radius 6, as shown shaded in the figure.
Construct a circle C; with a center at a that passes through b (dashed in Fig. 5-6). On part of this circle

[namely that part PQ included in C,], we have from (2), |f(z)| <M —

circle, we have |f(z)| < M.

e On the remaining part of the

If we measure 6 counterclockwise from OP and let ZPOQ = «, it follows from Problem 5.12 that if

r=|b—a,

2T

fl@ :ijf(a-l-l’e’i(’))ah‘)—i-L Jf(a+ re'yde
2 2
0

o

Then

lf(@)] = %TJ
0

a 2
1 1
—(Mm== —
27TJ< 6) d0+277
0

o

2
. 1 .
If(a+ re'®)| do+ o= J If(a + re'®)| do

o

JMdH

o' 1 M
2W(M—§ >+ZT(27T_C()
£ M-
4w

ie., |f(a)| =M < M — (ae/4m), an impossible situation. By virtue of this contradiction, we conclude that
| f(2)| cannot attain its maximum at any interior point of C and so must attain its maximum on C.
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Method 2

From Problem 5.12, we have

2

1 .
(@) < EJ |f(a+re'®) do 3)

0

Let us suppose that | f(a)| is a maximum so that | f(a + re'®)| < |f(a)|. If |f(a + re'?)| < |f(a)| for one
value of 6 then, by continuity of f, it would hold for a finite arc, say 6; < 6 < 6,. But, in such case, the
mean value of |f(a + re'?)| is less than | f(a)|, which would contradict (3). It follows, therefore, that in any
6 neighborhood of a, i.e., for |z — a| < §, f(z) must be a constant. If f(z) is not a constant, the maximum
value of | f(z)| must occur on C.

For another method, see Problem 5.57.

Minimum Modulus Theorem

5.14. Prove the minimum modulus theorem: Let f(z) be analytic inside and on a simple closed curve C.
Prove that if f(z) #0 inside C, then | f(z)| must assume its minimum value on C.

Solution

Since f(z) is analytic inside and on C and since f(z) #0 inside C, it follows that 1/f(z) is analytic inside C.
By the maximum modulus theorem, it follows that 1/|f(z)| cannot assume its maximum value inside C and
so |f(z)| cannot assume its minimum value inside C. Then, since |f(z)| has a minimum, this minimum
must be attained on C.

5.15. Give an example to show that if f(z) is analytic inside and on a simple closed curve C and f(z) = 0
at some point inside C, then | f(z)| need not assume its minimum value on C.

Solution

Letf(z) = zfor |z|] < 1, so that C is a circle with center at the origin and radius 1. We have f(z) = 0 atz = 0.
If z = re'?, then | f(z)| = r and it is clear that the minimum value of | f(z)| does not occur on C but occurs inside
C where r =0, i.e., at z = 0.

The Argument Theorem

5.16. Let f(z) be analytic inside and on a simple closed curve C except for a pole z = a of order (multi-
plicity) p inside C. Suppose also that inside C, f(z) has only one zero z = 3 of order (multiplicity)
n and no zeros on C. Prove that

B Sy
2mi ] fz) P

C

Solution

Let C; and I'; be non-overlapping circles lying inside C and enclosing z = « and z = 3, respectively. [See
Fig. 5-7.] Then

L (f@, 1 [f@, 1 [f©
2mi # 70 % 2w ﬁL 0% 2m ﬂ; o~ M

Cc Ci T
Since f(z) has a pole of order p at z = «, we have

F(z)
(z—a)?

f@) = 2



CHAPTER 5 Cauchy’s Integral Formulas and Related Theorems

where F(z) is analytic and different from zero inside and on C;. Then, taking logarithms in (2) and differen-
tiating, we find

@ _F@ __»p 3)
f@ F@ z—a
so that
1 f/(z) 1 %F/(z) p ﬂ; dz
— dz — — =0—p=— 4
2771%]‘(2) = 2mi | F(2) ¢ 2m Jz—« P P @
C C C
Since f(z) has a zero of order n at z = 3, we have
f@) =(@-Pp) "G Q)
where G(z) is analytic and different from zero inside and on I';.
Then, by logarithmic differentiation, we have
1@ n G
= + 6
f@ z—B G@ ©
so that
L [f@, _n f{’ dz 1 ﬁ;G’(z)
- — dz = 7
2mfff(z) == g 2wl e =" ™
r

Hence, from (1), (4), and (7), we have the required result

1 ﬂ;f@ 1 ﬂ;f@ +L§f’(Z)dZ:
f@7 7 2m | fR m'r f@

Fig. 57 Fig. 5-8

5.17. Let f(z) be analytic inside and on a simple closed curve C except for a finite number of poles inside
C. Suppose that f(z) # 0 on C. If N and P are, respectively, the number of zeros and poles of f(z)
inside C, counting multiplicities, prove that

1 fi; f’(z)

2 f(z) =N-=-P

Solution

Let oy, ap,..., a5 and B, B,,..., By be the respective poles and zeros of f(z) lying inside C [Fig. 5-8] and
suppose their multiplicities are py, ps, ..., pj and ny, na, ..., m.
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Enclose each pole and zero by non-overlapping circles Cy, C», ..., Cijand 'y, I', ..., T'x. This can always
be done since the poles and zeros are isolated.
Then, we have, using the results of Problem 5.16,

L[ @, I HOp S HOP
2m'i;f(z) Zﬁ%(z) +me+f<z>

r=1 r=1

J k
= an - Zpr
r=1 r=1

Rouché’s Theorem

5.18. Prove Rouché’s theorem: Suppose f(z) and g(z) are analytic inside and on a simple closed curve C
and suppose [g(z)| < |f(z)| on C. Then f(z) + g(z) and f(z) have the same number of zeros inside C.

Solution

Let F(z) = g(z)/f(z) so that g(z) = f(2)F(z) or briefly g = fF. Then, if N; and N, are the number of zeros
inside C of f 4 g and f, respectively, we have by Problem 5.17, using the fact that these functions have no
poles inside C,

1 / / 1 4
Nl:iﬂ;f—i_g dZ, N2 f’;fdz

2mi | f+ 2mi J f
C
Then
_Lj@f—i—fF—i—fF’ iﬂ;i lf’;f(l+F)+fF/d_L4;L’d
2 f+fF 2mi | F T 2w fa+Fp ST om
C C
1 f F f 1 F'
ﬁﬂﬁ F} jg? %f];l+FdZ
C
LJF’(l—F+F2—F3+-..)dz=0
2771
C

using the given fact that |F| < 1 on C so that the series is uniformly convergent on C and term by term
integration yields the value zero. Thus, Ny = N, as required.

5.19. Use Rouché’s theorem (Problem 5.18) to prove that every polynomial of degree n has exactly n
zeros (fundamental theorem of algebra).

Solution

Suppose the polynomial to be ag+ aiz+ axz* + -+ ap", where a, #0. Choose f(z) =a,z" and
gD =a)taztam?+- +a,_2 L
If C is a circle having center at the origin and radius r > 1, then on C we have

8@ lao+aiz4+am? 4 +a, 12" _ laol +lai|r + las|r* + -+ + lap |

f@ lanz"| - lan|r"
- laolr"™" + lay|[r"™" + |aa| ™ + -+ lap [P aol + lai| + laz| 4 - - - + |an—i]
- lan|r" lanlr

Then, by choosing r large enough, we can make ’g(z)/f(z)’ <1, i.e., |g(@)| < |f(z)|. Hence, by Rouché’s
theorem, the given polynomial f(z) + g(z) has the same number of zeros as f(z) = a,z". But, since this last
function has n zeros all located at z = 0, f(z) + g(z) also has n zeros and the proof is complete.
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5.20. Prove that all the roots of z” — 573 + 12 = 0 lie between the circles |z| = 1 and |z] = 2.
Solution

Consider the circle Ci: |z] = 1. Let f(z) = 12, g(z) = z/ — 5z°. On C; we have

lg@@)| =2/ = 52| < 12| +152'] <6 < 12 = | f(2)|

Hence, by Rouché’s theorem, f(z) + g(z) = z/ — 5z° + 12 has the same number of zeros inside |z] = 1 as
f(z) = 12, i.e., there are no zeros inside Cj.
Consider the circle Cy: |z] = 2. Let f(z) = 7, g(z) = 12 — 5z°. On C, we have

lg@| = 12 = 52| < [12] 4152 <60 <27 = | f(2)|

Hence, by Rouché’s theorem, f(z) + g(z) = 2z’ — 5z° + 12 has the same number of zeros inside |z] =2 as
f(2) =7/, i.e., all the zeros are inside C,.
Hence, all the roots lie inside |z| = 2 but outside |z| = 1, as required.

Poisson’s Integral Formulas for a Circle

5.21. (a) Let f(z) be analytic inside and on the circle C defined by |z| = R, and let z = re’? be any point
inside C (see Fig. 5-9). Prove that

2

o 1 R — 2 Rei®) 4
Jre )_ETJRZ—ZRVCOS(O—Q'))-FVZJC( e de
0

(b) Let u(r, 6) and v(r, 6) be the real and imaginary parts of f(re'®). Prove that

2

o L[ _R=rHuR $dp
u(r, 0) = 2’7TJ R% — 2Rrcos(6 — ¢) + r2
0

1
v(r, ) = —

TR =) uR, ¢dd
277J

R%? — 2Rrcos(0 — ¢) + r?
0

The results are called Poisson’s integral formulas for the circle.

Solution

(a) Since z = re'? is any point inside C, we have by Cauchy’s integral formula

: 1 )
f@ =f(re) = 5 } S 4, )
rl w—2z
c
The inverse of the point z with respect to C lies outside C and is given by

R?/7. Hence, by Cauchy’s theorem,

_ 1 S(w)
T 2mi fi; w— Rz/zdw @ Fig. 5-9

C
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If we subtract (2) from (1), we find

1
= ﬁ“ - R2/ }f(w)dw
C
1 7—R%*/Z
mf( oy sy AU ©)

Now, let z = re’® and w = Re'®. Then, since z = re™?, (3) yields

0, _ 1 Tl — R/ fReDiRP dd 1 [ (2 — RO DFRe®) dp
fre®) = 2mi J (Re'® — rel®}{Rei® — (R2/r)ei®} ~— 2 J (Rei® — rei®)(rei® — Rei?)
0 0

T ®PAr®ehag 1T R =R dd
- [ J 2Rr cos(f — ) + 12

7 ) (Rel® — rei®)(Re—i¢ — re=i%) ~ 211 | R2 —
0 0
(b) Since f(re'®) = u(r, 6) + iv(r, ) and f(Re'?) = u(R, ¢) + iv(R, ¢), we have from part (a),

u(r, 6) 4+ iv(r, 0) =

J(R2 ){u(R, ¢) + iv(R, $)}dd
— 2Rrcos(6 — ) + 12

0
0 R Pu®R ddd i [ R PR ) deb
_ZTJRz—2ch0s(6’—<15)—i—r2 ZTJRz—ZRFCOS(G—¢)+r2
0 0

Then the required result follows on equating real and imaginary parts.

Poisson’s Integral Formulas for a Half Plane
5.22. Derive Poisson’s formulas for the half plane [see page 146].

Solution

Let C be the boundary of a semicircle of radius R [see Fig. 5-10] containing { as an interior point. Since C
encloses ¢ but does not enclose ¢, we have by Cauchy’s integral formula,

_ L [/@ _ 1 [ /@
f(g)_Zﬂ'iﬂ;z—édZ’ 0= ZWZE';Z_g
C C

Then, by subtraction,

1 1 [ (- DfR)dz
_ L —— == =
&) %f(z){ y _g}z Zﬂii(z—g)(z—ﬁ

Letting { = €+ i, Z: & — im, this can be written

1 nf(x) dx lJ M f(2) dZ_
1o WJR(X—§)2+772 WF(Z—Z)(Z—D
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where I is the semicircular arc of C. As R — oo, this last integral approaches zero [see Problem 5.76] and
we have

L[ af@x
16 = Lo“f)z*”z

m

Writing  f({) =f(E+in) =u(é n) +iv(€ n), fx)=u(x, 0)+ iv(x, 0), we obtain as required,

u€, n) =—

o

Gt v(& m=—

1 ]o nu(x, 0) dx l T nu(x, 0) dx

x—9* +n

Fig. 5-10 Fig. 511

Miscellaneous Problems

5.23. Letf(z) be analytic in a region R bounded by two concentric circles C; and C, and on the boundary
[Fig. 5-11]. Prove that, if z¢ is any point in R, then

1 1
Fzo) = — f(@) dz __$ f(@)
m ) z—20 2@ ) 72— 20

Cy C

dz

Solution

Method 1. Construct cross-cut EH connecting circles C; and C,. Then f(z) is analytic in the region bounded by
EFGEHKJHE. Hence, by Cauchy’s integral formula,

1 Z
fzo) = T &dZ
l Z—20
EFGEHKJHE
1 1 1 1
=— % /@ dz 4+ — J 1@ dz 4+ — § f@ dz + — J /@ dz
2771 z—20 2w ) 7— 20 2771 7—20 2w ) 72— 2
EFGE EH HKJH HE
1
_ % f(@ d — 1.4; f@ dz
2 ) z— 20 2 ) z— 20

Cy G

since the integrals along EH and HE cancel.

Similar results can be established for the derivatives of f(z).
Method 2. The result also follows from equation (3) of Problem 5.6 if we replace the simple closed curves C;
and C; by the circles of Fig. 5-11.

5.24. Prove that, forn=1,2,3,...,

2
J cos”'0d6 =
0

1:3:5-Qn—1),
2-4-6---(2n)
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Solution

Letz =¢. Then,dz =ie' d0=izd6 or dO=dz/iz and cos 0= + ¢ ") =1z + 1/z). Hence,

if C is the unit circle |z] = 1, we have

i 1 2"dz
Jcosz”edﬂ— = ( )}

2
0

1 -1y 2n\ g lk lzn
22,114;1{ <> <)+ —l—(k)(z () ++(5) fe
c
-1 n-3 2n\ oy okt —2n
fj;{z ( ) +<k)z +- 4z }dz
c
1 (2n 1 [2n

zzz—ni-2m<n>_ﬁ(n>2'n'

1 @n) Cn)2n— 121 —=2)--(m)n—1)---1
22 i - 221p1n!
_l~3~5-~(2n—1)2
T 2.4.6---2n

5.25. Suppose f(z) = u(x, y) + iv(x, y) is analytic in a region R. Prove that u and v are harmonic in R.

Solution

In Problem 3.6, we proved that u and v are harmonic in R, i.e., satisfy the equation (8 ¢/dx*) + (8*$/dy*) = 0,
under the assumption of existence of the second partial derivatives of u and v, i.e., the existence of ”(z).

This assumption is no longer necessary since we have in fact proved in Problem 5.4 that, if f(z) is analytic
in R, then all the derivatives of f(z) exist.

5.26. Prove Schwarz’s theorem: Let f(z) be analytic for |z] < R, f(0) = 0, and |f(z)] < M. Then

M|z|

If @I = —%=

Solution

The function f(z)/z is analytic in |z| < R. Hence, on |z| = R, we have by the maximum modulus theorem,

fQ| _M
z |~ R

However, since this inequality must also hold for points inside |z| = R, we have for |z| < R, |f(2)| < M|z|/R
as required.

5.27. Let
x“sin(1/x) x#0
feo = { 7

where x is real. Show that the function f(x) (a) has a first derivative at all values of x for which
0 < x <1 but (b) does not have a second derivative in 0 < x < 1. (¢) Reconcile these conclusions
with the result of Problem 5.4.
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5.28.

Solution

(a) The only place where there is any question as to existence of the first derivative is at x = 0. But, atx = 0,

the derivative is

_ fO+A0) —f0) . (Ax)*sin(1/Ax) — 0
AIXITO Ax - Al)glo Ax

= Aligo Axsin(1/Ax) =0

and so exists.
At all other values of x in 0 < x < 1, the derivative is given (using elementary differentiation rules) by

x2 cos(1/x){—1/x*} + (2x) sin(1/x) = 2xsin(1/x) — cos(1/x)

(b) From part (a), we have

2xsin(1/x) —cos(1/x) x#0

f/(x):{o x=0

The second derivative exists for all x such that 0 < x < 1. At x = 0, the second derivative is given by

. f[(0+ Ax) — f(0) . 2Axsin(1/Ax) — cos(1/Ax) — 0
lim —————~———~ = lim
Ax—0 Ax Ax—0 Ax
{2 sin(1/Ax) — (1/Ax) cos(1/Ax)}

= lim
Ax—0
which does not exist.
It follows that the second derivative of f(x) does not exist in 0 < x < 1.
(¢) According to Problem 5.4, if f(z) is analytic in a region R, then all higher derivatives exist and are ana-

lytic in R. The above results do not conflict with this, since the function f(z) = z? sin(1/z) is not analytic
in any region which includes z = 0.

(a) Let F(z) be analytic inside and on a simple closed curve C except for a pole of order m at 7 = a
inside C. Prove that

1 m—1

1 fi; F(2)dz = lim {2 — a)"F(2))

2 a (m— 1) dzm!
c

(b) How would you modify the result in (a) if more than one pole were inside C?
Solution

(a) If F(2) has a pole of order m at z = a, then F(z) = f(z)/(z — a)™ where f(z) is analytic inside and on C, and
f(a)#0. Then, by Cauchy’s integral formula,

1 L[ f@ V@ 1 ] ,
2 fj;F(Z)dZ " 2mi f'; oo BT o T D (€T @)
C C

(b) Suppose there are two poles at z = a; and z = a, inside C, of orders m; and m,, respectively. Let I'; and
I'; be circles inside C having radii €; and €, and centers at a; and ay, respectively (see Fig. 5-12). Then

1 1 1
ﬁ%F(Z)dzzﬁ%F(Z)dzﬁ-ﬁE’;F(z)dz ¢))
C T I
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Fig. 512

If F(z) has a pole of order m; at z = ay, then

F(z) = % where fi(z) is analytic and fi(a;) #0
Z—a
If F(z) has a pole of order m, at z = ay, then
F(z) = fzi(@m where f>(z) is analytic and f>(a>) # 0
(z—a)™

Then, by (1) and part (a),

1 1 f1@) 1 £
7 | PO = 5 P e 5

C Iy I

1 dml
= lim —— 4" F
zial (my — D'dzm — {(Z ar) (@)}

. 1 ar—1 .
i i (@~ @) F Q)

If the limits on the right are denoted by R; and R,, we can write

%F(z) dz =2mi(Ry + Ry)
c

where R; and R, are called the residues of F(z) at the poles z = a; and z = a,.

In general, if F(z) has a number of poles inside C with residues R;, R», ..., then fﬁc F(2)dz =2mi
times the sum of the residues. This result is called the residue theorem. Applications of this theorem,
together with generalization to singularities other than poles, are treated in Chapter 7.

¥4

5.29. Evaluate Ei; dz where C is the circle |z] = 4.

(22 + m)?
C
Solution
Z Z
The poles of ¢ > = - f — are at z = +mi inside C and are both of order two.
Z+ 7)) (z— m)(z+ m)
. ... 1d e T+
Residue at z = 7 is lim —— { (z — mi)? = .
—mi 1ldz {( ) (z— 7Ti)2(z + 7Ti)2} 473
1d et T—1
Residue at z = —7i is 11m —— 1 (z+ = .
mi 1ldz {( m™* (z —7Ti)2(z+7Ti)2} 4

Then {)wfiﬂz)zdz = 2 (sum of residues) = Zﬂi(z;l + Z;l> = 7%_
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SUPPLEMENTARY PROBLEMS

Cauchy’s Integral Formulas

1
5.30. Evaluate i fi; dz if Cis: (a) the circle |z] =3, (b) the circle |z] = 1.

z—2

5.31. Evaluate dz if C is the circle |z| = 5.

5.32. Evaluate

dz if Cis: (a) thecircle |z— 1| =4, (b) the ellipse |z — 2| + |z + 2| = 6.
-

feve
=

cos m2

5.33. Evaluate <l; dz around a rectangle with vertices at: (a) 2 + i, —2 + i;(b) —i, 2 — i, 2+, i.

C

1 eZI
5.34. Show that — oy %

dz = sint if t > 0 and C is the circle |z| = 3.
2+1
c

5.35. Evaluate i#e—;dz where C is the circle |z| = 2.
z
c

5.36. Suppose C is a simple closed curve enclosing z =a and f(z) is analytic inside and on C. Prove that

m f@dz
fay= 2771%(1—61)4

5.37. Prove Cauchy’s integral formulas for all positive integral values of n. [Hint: Use mathematical induction.]

- 6 . 6
5.38. Given C is the circle |z| = 1. Find the value of (a) ﬁ; Sz dz, (b) i;&d
z— b4
C

76 -6y
1 eZI
5.39. Evaluate — E’; ————dz when t > 0 and C is the circle |z] = 3.
2mi ) (224 1)

5.40. Prove Cauchy’s integral formulas for the multiply-connected region of Fig. 4-26, page 140.

Morera’s Theorem
5.41. (a) Determine whether G(z) = LZ d{/{ is independent of the path joining 1 and z.
(b) Discuss the relationship of your answer to part (a) with Morera’s theorem.
5.42. Does Morera’s theorem apply in a multiply-connected region? Justify your answer.

5.43. (a) Suppose P(x, y) and Q(x, y) are conjugate harmonic functions and C is any simple closed curve. Prove that
$coPdx+ Qdy =0.

(b) Suppose for all simple closed curves C in a region R, SQCde + Qdy =0. Is it true that P and Q are
conjugate harmonic functions, i.e., is the converse of (a) true? Justify your conclusion.

Cauchy’s Inequality

5.44. (a) Use Cauchy’s inequality to obtain estimates for the derivatives of sin z at z = 0 and (b) determine how
good these estimates are.

5.45. (a) Show that if f(z) = 1/(1 — z), then f*(z) = n!/(1 — z)"*1.

(b) Use (a) to show that the Cauchy inequality is “best possible”, i.e., the estimate of growth of the nth deriva-
tive cannot be improved for all functions.
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5.46. Prove that the equality in Cauchy’s inequality (5.3), page 145, holds in the case n = m if and only if
f@ =kM(z—a)"/r™, where |k| = 1.

5.47. Discuss Cauchy’s inequality for the function f(z) = e~/ < in the neighborhood of z = 0.

Liouville’s Theorem

5.48. The function of a real variable defined by f(x) = sinx is (a) analytic everywhere and (b) bounded, i.e.,
[sinx| <1 for all x but it is certainly not a constant. Does this contradict Liouville’s theorem? Explain.

5.49. Suppose a > 0 and b > 0 are constants and a non-constant function F(z) is such that F(z + a) = F(z), and
F(z + bi) = F(z). Prove that F(z) cannot be analytic in the rectangle 0 <x <a, 0 <y <b.

Fundamental Theorem of Algebra

5.50. (a) Carry out the details of proof of the fundamental theorem of algebra to show that the particular function
f(z) = 2 — 2% — 2z + 2 has exactly four zeros. (b) Determine the zeros of f(z).

5.51. Determine all the roots of the equations: (a)z> —3z4+4i=0, (b)z*+2+1=0.

Gauss’ Mean Value Theorem

2
1 ;
5.52. Evaluate o J sin?(7r/6 + 2¢'%) d 6.
T
0

5.53. Show that the mean value of any harmonic function over a circle is equal to the value of the function at the
center.

5.54. Find the mean value of x> — y> 4 2y over the circle |z — 5 + 2i| = 3.
5.55. Prove that fow Insin 6d6 = —rIn 2. [Hint. Consider f(z) = In(1 + z).]

Maximum Modulus Theorem

5.56. Find the maximum of |f(z)| in |z] < 1 for the functions f(z) given by: (a) 2> —3z4+2, (b) * +2>+1,
(¢)cos 3z, (d) 2z+1)/(2z—1).

5.57. (a) Let f(z) be analytic inside and on the simple closed curve C enclosing z = a, prove that

F@y = —— ﬂi IFAC) A
27l z—a
C

(b) Use (a) to prove that | f(a)|" < M"/27D where D is the minimum distance from a to the curve C and M is
the maximum value of |f(z)| on C.

(c) By taking the nth root of both sides of the inequality in (b) and letting n — oo, prove the maximum
modulus theorem.

5.58. Let U(x, y) be harmonic inside and on a simple closed curve C. Prove that the (a) maximum and (b) minimum
values of U(x, y) are attained on C. Are there other restrictions on U(x, y)?

5.59. Given C is the circle |z| = 1. Verify Problem 5.58 for the functions (a) x> —y> and (b) x* — 3xy?.

5.60. Is the maximum modulus theorem valid for multiply-connected regions? Justify your answer.
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The Argument Theorem
1@
f@

5.61. Letf(z) =2z —3iz%> +2z— 1 +i. Evaluate i# dz where C encloses all the zeros of f(z).

5.62. Letf(z) =

2 1 2 1 /
L)g. Evaluate — ﬁ; r@ dz where C is the circle |z| = 4.
(2 +2z+2) 2 2 f@)

5.63. Evaluate 5';1;((;) dz if C is the circle |z| = m and (a) f(z) = sin 7z, (b) f(z) = cos 71z, (¢) f(z) = tan 7z

dz.

5.64. Let f(z) =z* — 22> + 22 — 122+ 20 and C is the circle |z| = 5. Evaluate % Zj:((i)
z
c

Rouché’s Theorem
5.65. If a > e, prove that the equation az" = ¢° has n roots inside |z| = 1.
5.66. Prove that ze* = a where a #0 is real has infinitely many roots.

5.67. Prove that tanz = az, a > 0 has (a) infinitely many real roots, (b) only two pure imaginary roots if 0 < a < 1,
(c) all real roots if a > 1.

5.68. Prove that ztanz = a, a > 0 has infinitely many real roots but no imaginary roots.

Poisson’s Integral Formulas for a Circle
2

R2 _ r2
5.69. Show that
ow tha JR2 — 2Rrcos(0 — ¢) +
0

" d¢ =2

(a) with, (b) without Poisson’s integral formula for a circle.

5.70. Show that:

2
COSP o} : 2
% cos(sin 6), (b) J Md(ﬁ = 2T jeost sin(sin 6).

2
€% cos(sin ¢) 2w
@ J dé =5 5_4cos@— &) 3

5—4 cos(6— @) 3
0 0

5.71. (a) Prove that the function
2rsin 6

2
u(r, 0):7tan_1<172>, 0<r<1,0<6<2w
T —-r

is harmonic inside the circle |z| = 1.

. 1 o<o<m
(b) Show that rlirlni U, 0) = [_1 T<0<2m

(c) Can you derive the expression for U(r, 6) from Poisson’s integral formula for a circle?

5.72. Suppose f(z) is analytic inside and on the circle C defined by |z] = R and suppose z = re'’

Show that

is any point inside C.

/ iO_iT
f(re)—%

0

R(R* — r)f(Re'®) sin(6 — o)
[R2 — 2Rrcos(0 — ¢) + r2]?

dé

5.73. Verify that the functions u and v of equations (5.7) and (5.8), page 146, satisfy Laplace’s equation.
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Poisson’s Integral Formulas for a Half Plane

5.74.

5.75.
5.76.
5.71.

5.78.

Find a function that is harmonic in the upper half plane y > 0 and that on the x axis takes the values —1 if
x<Oand1ifx>0.

Work Problem 5.74 if the function takes the values —1 if x < —1,0if —1 <x < 1,and 1 if x > 1.
Prove the statement made in Problem 5.22 that the integral over I" approaches zero as R — oo.

Prove that under suitable restrictions on f(x),

(<]

1 e
171413)1+7T J (x — 5)2 + nzdx —f(é:)

and state these restrictions.

Verify that the functions u and v of equations (5.10) and (5.11), page 146, satisfy Laplace’s equation.

Miscellaneous Problems

5.79.

5.80.

5.81.

5.82.

5.83.

5.84.

5.85.
5.86.
5.87.
5.88.

5.89.

1 2d
Evaluate — i{> L& where C is the square with vertices at +2, +2 + 4i.
2mi | 2 +4
c

21z

Evaluate i» cos dz where C is the circle |z| = 1 and # > 0.

2
c
(a) Show that ﬂ;

c
(b) Use (a) to show that

d
& 2miif Cis the circle |z] = 2.
z+1

(x+ Ddx+ydy (x+ Ddy—ydx
— 5 =0 3 5 =27
(x+ 1) +y? (x+ 1 +y?

and verify these results directly.

Find all functions f(z) that are analytic everywhere in the entire complex plane and that satisfy the conditions
(@) f(2 —i) = 4i and (b) | f(z) | < €* for all z.
Let f(z) be analytic inside and on a simple closed curve C. Prove that
27
@ f'(@) = %T J efla+e)do  (b)

0

2
(n)
f (a) _ L J e—niﬁf(a + ei(?) do
0

n! 2
Prove that 8z* — 6z 4+ 5 = 0 has one root in each quadrant.

Show that (a) [02 e 0 cos(sin ) d0 =0, (b) jg T ¢ 9 sin(sin 0) dO = 2.

Extend the result of Problem 5.23 so as to obtain formulas for the derivatives of f(z) at any point in R.

Prove that z3¢!~* = 1 has exactly two roots inside the circle |z| = 1.
Suppose ¢ > 0 and C is any simple closed curve enclosing z = —1. Prove that
1 Zezt t2
— ¢ ————dz=(t—= )"
2 % z+1)° < 2
c

Find all functions f(z) that are analytic in |z| < 1 and that satisfy the conditions (a) f(0) = 1 and (b) | f(z)| > 1
for |z] < 1.
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5.90.

5.91.

5.92.

5.93.

5.94.
5.95.

5.96.

5.97.
5.98.

5.99.

5.100.
5.101.

5.102.
5.103.

Let f(z) and g(z) be analytic inside and on a simple closed curve C except that f(z) has zeros at a;, as, ..., a,
and poles at by, by, ..., b, of orders (multiplicities) py, p2, ..., pmand g1, g2, ..., g, respectively. Prove that

1 "/ m n
3§ o0 5= > pistan = Y- st
C f( ) k=1 k=1

Suppose f(z) = ap?" + a7 + a2 4+ --- +a, where ay #0, ai, ..., a, are complex constants and C
encloses all the zeros of f(z). Evaluate

1 [z2f ) 1 i;zz '@
—_— d: —_— d:
@3 jl;f() Ot e ©

and mterpret the results.

Find all functions f(z) that are analytic in the region |z| < 1 and are such that (a) f(0) = 3 and (b) | f(z)| < 3 for
all z such that |z| < 1.

Prove that z° 4 192z 4+ 640 = 0 has one root in the first and fourth quadrants and two roots in the second and
third quadrants.

Prove that the function xy(x> — y?) cannot have an absolute maximum or minimum inside the circle |z] = 1.

(a) If a function is analytic in a region R, is it bounded in R? (b) In view of your answer to (a), is it necessary to
state that f(z) is bounded in Liouville’s theorem?

Find all functions f(z) that are analytic everywhere, have a zero of order two at z = 0, satisfy the condition
|f'(2)| < 6|z| for all z, and are such that f(i) = —2.

Prove that all the roots of z° + z — 16i = 0 lie between the circles |z| = 1 and |z] = 2.

Let U be harmonic inside and on a simple closed curve C. Prove that

ou
—ds=0
ﬁ;an s

C

where n is a unit normal to C in the z plane and s is the arc length parameter.

A theorem of Cauchy states that all the roots of the equation " 4+ a;2"~' + a2 2 + - - - + a, = 0, where
ai, a, ..., a, are real, lie inside the circle |z| = 1 + max{ay, as, ..., a,}, i.e., |z| = 1 plus the maximum of
the values aj, ay, ..., a,. Verify this theorem for the special cases:

@2 —2+z—-1=0, O)F+2+1=0, (©)z*—722—2z4+2=0, (d)z*+3z2—6z+10=0.

Prove the theorem of Cauchy stated in Problem 5.99.
Let P(z) be any polynomial. If m is any positive integer and w = ¢>™/™, prove that

P(1) +P((1))+P((1)2) 4+ ... +P(wm—l)
m

= P(0)

and give a geometric interpretation.
Is the result of Problem 5.101 valid for any function f(z)? Justify your answer.

Prove Jensen’s theorem: Suppose f(z) is analytic inside and on the circle |z| = R except for zeros at
ai, a, ..., a, of multiplicities py, p»,..., p, and poles at by, b, ..., b, of multiplicities qi, 2, ..., gn,
respectively, and suppose f(0) is finite and different from zero. Then

2w

1
Jlnlf(Re"’)IdG 1n|f(0>|+Zpk1n< ) qu (|b |)
0

[Hint. Consider §c Inz{f'(2)/f(2)} dz where C is the circle |z| = R.]



