
3.118. Prove that r4U ¼ r2(r2U) ¼ @4U
@x4

þ 2
@4U

@x2@y2
þ @4U

@y4
¼ 16

@4U

@z2@�z2
.

3.119. Solve the partial differential equation
@4U

@x4
þ 2

@4U

@x2@y2
þ @4U

@y4
¼ 36(x2 þ y2).

ANSWERS TO SUPPLEMENTARY PROBLEMS

3.43. (a) 12þ 4i, (b) �5i, (c) 3=2þ 3i=2 3.50. (b) 2yþ x2 � y2, (c) iz2 þ 2z

3.46. (a) �i, i=(zþ i)2; (b) �1+2i, (19þ 4z� 3z2)=(z2 þ 2zþ 5)2 3.51. (b) x2 � y2 þ 2xy� 3x� 2y

3.53. (a) v ¼ 4xy� x3 þ 3xy2 þ c, f (z) ¼ 2z2 � iz3 þ ic, (b) Not harmonic

(c) yex cos yþ xex sin yþ c, zez þ ic, (d) �e2xy cos(x2 � y2)þ c, �ieix
2 þ ic

3.54. (b) �2 tan�1f(y� 2)=(x� 1)g, (c) 2i ln(z� 1� 2i) 3.55. 6þ 3i

3.56. (a) �8Dzþ i(Dz)2 ¼ �8 dz ¼ i(dz)2, (b) �8 dz, (c) i(dz)2 3.57. (a) 38� 2i, (b) 6� 42i

3.58. (a) �4Dzþ 3i(Dz)2, (b) �4 dz, (c) �4þ 3iDz, (d) �4

3.63. (a) (2þ 8i)z� 3, (b) 4zþ i, (c) 5i=(zþ 2i)2, (d) 4i� 8z, (e) �3i(iz� 1)�4

3.64. (a) �6=5þ 3i=5, (b) �108� 78i

3.67. (a) 3 sin(z=2) cos(z=2), (b) 3(2z� 3) tan2(z2 � 3zþ 4i) sec2(z2 � 3zþ 4i) (c) sec z

(d)
�z cscf(z2 þ 1)1=2g cotf(z2 þ 1)1=2g

(z2 þ 1)1=2
, (e) (1� z2) sin(zþ 2i)þ 2z cos(zþ 2i)

3.71. (a) 2 sin�1(2z� 1)=(z� z2)1=2, (b) �2z=(1þ z4) cot�1 z2, (c) �(sin zþ cos z)=(sin 2z)1=2,

(d) �1=2(zþ 1þ 3i)(zþ 3i)1=2, (e) (csc 2z)(1� 2z cot 2z)=(1� z2 csc2 2z), (f ) 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 3zþ 2i

p

3.72. �3[cosh(3zþ 2i)]=2(2z� z2)1=2t1=2 3.73. sec(t � 3i)f1þ t tan(t � 3i)g(t � t2)1=2

3.74. (a) (cos 2z)=(1� w), (b) fcos2 2z� 2(1� w)2 sin 2zg=(1� w)3, 3.75. �cosh4 p

3.76. (a) 2zln z�1 ln z, (b) f[sin(iz� 2)]tan
�1(zþ3i)gfi tan�1(zþ 3i) cot(iz� 2)þ [ln sin(iz� 2)]=[z2 þ 6iz� 8]g

3.77. (a) 24 cos(4z� 2þ 2i), (b) 4 csc 2z2 � 16z2 csc 2z2 cot 2z2

(c) 2 cosh(zþ 1)2 þ 4(zþ 1)2 sinh(zþ 1)2, (d) (1� ln z� ln2 z)=z2(1� ln2 z)3=2

(e) �i(1þ 3z)=4(1þ z)2z3=2

3.78. (a) (16þ 12i)=25, (b) 1� i
ffiffiffi
3

p
 �
=6, (c) �1=4 3.79. (a) 1/6, (b) empi=coshmp 3.80. 1 3.81. e�1=6

3.82. (a) z ¼ �1+ i; simple poles (d) z ¼ 0,+i; branch points

(b) z ¼ �3i; branch point, z ¼ 0; pole of order 2 (e) z ¼ �i; pole of order 3

(c) z ¼ 0; logarithmic branch point

3.85. (a) z ¼+1; simple pole

(b) z ¼ 1=
ffiffiffiffiffiffiffi
mp

p
, m ¼+1,+2,+3, . . .; simple poles, z ¼ 0; essential singularity, z ¼ 1; pole of order 2

(c) z ¼ 0; branch point, z ¼ 1; branch point

3.86. (a) x4 � 6x2y2 þ y4 ¼ b, (b) 2e�x sin yþ x2 � y2 ¼ b 3.87. r2 sin 2u ¼ b

3.90. (a) +i, (b) Velocity:
ffiffiffi
5

p
,

ffiffiffi
5

p
e�p=2. Acceleration: 4, 2e�p=2

3.92. (a) 3, 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16p2

p
, (b) 24, 24

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4p2

p
3.93. 24

ffiffiffiffiffi
10

p
, (b) 72

3.94. (a) (2xy� y2)þ i(x2 � 2xy), (b) 2y� 2x 3.95. (a) 8, (b) 12x, (c) j12yj, (d) 0

3.96. (a) (�4þ 5i)=
ffiffiffiffiffi
41

p
, (b) f2x� yþ i(2y� x)g=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5x2 � 8xyþ 5y2

p
3.97. x ¼ 8t þ 3, y ¼ 3t þ 2

3.104. z3 þ 2iz2 þ 6� 2i, 3.117. U ¼ 1
2
fln(x2 þ y2)g2 þ 2ftan�1(y=x)g2 þ F(xþ iy)þ G(x� iy)

3.119. U ¼ 1
16
(x2 þ y2)3 þ (xþ iy)F1(x� iy)þ G1(x� iy)þ (x� iy)F2(xþ iy)þ G2(xþ iy)
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CHAP T E R 4

Complex Integration
and Cauchy’s Theorem

4.1 Complex Line Integrals

Let f(z) be continuous at all points of a curve C [Fig. 4-1], which we shall assume has a finite length, i.e., C
is a rectifiable curve.

y

x

a

b
C

z1

zk–1 zn–1

zk

z2
x2

xk

xn

x1

Fig. 4-1

Subdivide C into n parts by means of points z1, z2, . . . , zn�1, chosen arbitrarily, and call a ¼ z0, b ¼ zn.
On each arc joining zk�1 to zk [where k goes from 1 to n], choose a point jk. Form the sum

Sn ¼ f (j1)(z1 � a)þ f (j2)(z2 � z1)þ � � � þ f (jn)(b� zn�1) (4:1)

On writing zk � zk�1 ¼ Dzk, this becomes

Sn ¼
Xn
k¼1

f (jk)(zk � zk�1) ¼
Xn
k¼1

f (jk)Dzk (4:2)

Let the number of subdivisions n increase in such a way that the largest of the chord lengths jDzkj
approaches zero. Then, since f(z) is continuous, the sum Sn approaches a limit that does not depend on
the mode of subdivision and we denote this limit by

ðb
a

f (z) dz or

ð
C

f (z) dz (4:3)
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called the complex line integral or simply line integral of f (z) along curve C, or the definite integral of f(z)
from a to b along curve C. In such a case, f(z) is said to be integrable along C. If f(z) is analytic at all points
of a region R and if C is a curve lying in R, then f(z) is continuous and therefore integrable along C.

4.2 Real Line Integrals

Let P(x, y) and Q(x, y) be real functions of x and y continuous at all points of curve C. Then the real line
integral of P dxþ Qdy along curve C can be defined in a manner similar to that given above and is
denoted by ð

C

[P(x, y) dxþ Q(x, y) dy] or

ð
C

P dxþ Qdy (4:4)

the second notation being used for brevity. If C is smooth and has parametric equations x ¼ f(t), y ¼ c(t)
where t1 � t � t2, it can be shown that the value of (4) is given byðt2

t1

[Pff(t), c(t)gf0(t) dt þ Qff(t), c(t)gc0(t) dt]

Suitable modifications can be made if C is piecewise smooth (see Problem 4.1).

4.3 Connection Between Real and Complex Line Integrals

Suppose f (z) ¼ u(x, y)þ iv(x, y) ¼ uþ iv. Then the complex line integral (3) can be expressed in terms of
real line integrals as follows: ð

C

f (z) dz ¼
ð
C

(uþ iv)(dxþ i dy)

¼
ð
C

u dx� v dyþ i

ð
C

v dxþ u dy (4:5)

For this reason, (4.5) is sometimes taken as a definition of a complex line integral.

4.4 Properties of Integrals

Suppose f (z) and g(z) are integrable along C. Then the following hold:

(a)

ð
C

f (z)þ g(z)g dz ¼
ð
C

f (z) dzþ
ð
C

g(z) dz

(b)

ð
C

Af (z) dz ¼ A

ð
C

f (z) dz where A ¼ any constant

(c)

ðb
a

f (z) dz ¼ �
ða
b

f (z) dz

(d)

ðb
a

f (z) dz ¼
ðm
a

f (z) dzþ
ðb
m

f (z) dz where points a, b, m are on C

(e)
��� ð
C

f (z) dz
��� � ML

where j f (z)j � M, i.e., M is an upper bound of j f (z)j on C, and L is the length of C.
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There are various other ways in which the above properties can be described. For example, if T, U, and V

are successive points on a curve, property (c) can be written
Ð
TUV

f (z) dz ¼ �
Ð
VUT

f (z) dz.

Similarly, if C, C1, and C2 represent curves from a to b, a tom, andm to b, respectively, it is natural for us
to consider C ¼ C1 þ C2 and to write property (d) as

ð
C1þC2

f (z) dz ¼
ð
C1

f (z) dzþ
ð
C2

f (z) dz

4.5 Change of Variables

Let z ¼ g(z ) be a continuous function of a complex variable z ¼ uþ iv. Suppose that curve C in the z plane
corresponds to curve C0 in the z plane and that the derivative g0(z ) is continuous on C0. Thenð

C

f (z) dz ¼
ð
C0

f fg(z )gg0(z ) dz (4:6)

These conditions are certainly satisfied if g is analytic in a region containing curve C0.

4.6 Simply and Multiply Connected Regions

A region R is called simply-connected if any simple closed curve [Section 3.13], which lies in R, can be
shrunk to a point without leaving R. A region R, which is not simply-connected, is called multiply-
connected.

For example, suppose R is the region defined by jzj , 2 shown shaded in Fig. 4-2. If G is any simple
closed curve lying in R [i.e., whose points are in R], we see that it can be shrunk to a point that lies in
R, and thus does not leave R, so that R is simply-connected. On the other hand, if R is the region
defined by 1 , jzj , 2, shown shaded in Fig. 4-3, then there is a simple closed curve G lying in R that
cannot possibly be shrunk to a point without leaving R, so that R is multiply-connected.

y

x

Γ

|z| =
 2

Γ

y

x

|z| 
= 2

|z| 
= 1

y

x

Fig. 4-2 Fig. 4-3 Fig. 4-4

Intuitively, a simply-connected region is one that does not have any “holes” in it, while a multiply-
connected region is one that does. The multiply-connected regions of Figs. 4-3 and 4-4 have, respectively,
one and three holes in them.
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4.7 Jordan Curve Theorem

Any continuous, closed curve that does not intersect itself and may or may not have a finite length, is called
a Jordan curve [see Problem 4.30]. An important theorem that, although very difficult to prove, seems intui-
tively obvious is the following.

Jordan Curve Theorem. A Jordan curve divides the plane into two regions having the curve as a
common boundary. That region, which is bounded [i.e., is such that all points of it satisfy jzj , M
where M is some positive constant], is called the interior or inside of the curve, while the other region is
called the exterior or outside of the curve.

Using the Jordan curve theorem, it can be shown that the region inside a simple closed curve is a
simply-connected region whose boundary is the simple closed curve.

4.8 Convention Regarding Traversal of a Closed Path

The boundary C of a region is said to be traversed in the positive sense or direction if an observer travelling
in this direction [and perpendicular to the plane] has the region to the left. This convention leads to the
directions indicated by the arrows in Figs. 4-2, 4-3, and 4-4. We use the special symbolþ

C

f (z) dz

to denote integration of f(z) around the boundary C in the positive sense. In the case of a circle [Fig. 4-2], the
positive direction is the counterclockwise direction. The integral around C is often called a contour integral.

4.9 Green’s Theorem in the Plane

Let P(x, y) andQ(x, y) be continuous and have continuous partial derivatives in a regionR and on its bound-
ary C. Green’s theorem states thatþ

C

P dxþ Qdy ¼
ðð
R

@Q

@x
� @P

@y

� �
dx dy (4:7)

The theorem is valid for both simply- and multiply-connected regions.

4.10 Complex Form of Green’s Theorem

Let F(z, �z) be continuous and have continuous partial derivatives in a region R and on its boundary C,
where z ¼ xþ iy, �z ¼ x� iy are complex conjugate coordinates [see page 7]. Then Green’s theorem can
be written in the complex form þ

C

F(z, �z) dz ¼ 2i

ðð
R

@F

@�z
dA (4:8)

where dA represents the element of area dx dy.
For a generalization of (4.8), see Problem 4.56.
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4.11 Cauchy’s Theorem. The Cauchy–Goursat Theorem

Let f(z) be analytic in a region R and on its boundary C. Thenþ
C

f (z) dz ¼ 0 (4:9)

This fundamental theorem, often called Cauchy’s integral theorem or simply Cauchy’s theorem, is valid for
both simply- and multiply-connected regions. It was first proved by use of Green’s theorem with the added
restriction that f 0(z) be continuous inR [see Problem 4.11]. However, Goursat gave a proof which removed
this restriction. For this reason, the theorem is sometimes called the Cauchy–Goursat theorem [see
Problems 4.13–4.16] when one desires to emphasize the removal of this restriction.

4.12 Morera’s Theorem

Let f(z) be continuous in a simply-connected region R and suppose thatþ
C

f (z) dz ¼ 0 (4:10)

around every simple closed curve C in R. Then f (z) is analytic in R.
This theorem, due to Morera, is often called the converse of Cauchy’s theorem. It can be extended to

multiply-connected regions. For a proof, which assumes that f 0(z) is continuous in R, see Problem 4.27.
For a proof, which eliminates this restriction, see Problem 5.7, Chapter 5.

4.13 Indefinite Integrals

Suppose f(z) and F(z) are analytic in a regionR and such that F0(z) ¼ f (z). Then F(z) is called an indefinite
integral or anti-derivative of f (z) denoted by

F(z) ¼
ð
f (z) dz (4:11)

Just as in real variables, any two indefinite integrals differ by a constant. For this reason, an arbitrary con-
stant c is often added to the right of (11).

EXAMPLE 4.1: Since
d

dz
3z2 � 4 sin z

 �

¼ 6z� 4 cos z, we can writeð
(6z� 4 cos z) dz ¼ 3z2 � 4 sin zþ c

4.14 Integrals of Special Functions

Using results on page 80 [or by direct differentiation], we can arrive at the results in Fig. 4-5 (omitting a
constant of integration).
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1.

ð
zn dz ¼ znþ1

nþ 1
n=�1 18.

ð
coth z dz ¼ ln sinh z

2.

ð
dz

z
¼ ln z 19.

ð
sech z dz ¼ tan�1(sinh z)

3.

ð
ez dz ¼ ez 20.

ð
csch z dz ¼ �coth�1(cosh z)

4.

ð
az dz ¼ az

ln a
21.

ð
sech2 z dz ¼ tanh z

5.

ð
sin z dz ¼ �cos z 22.

ð
csch2 z dz ¼ �coth z

6.

ð
cos z dz ¼ sin z 23.

ð
sech z tanh z dz ¼ �sech z

7.

ð
tan z dz ¼ ln sec z ¼ �ln cos z 24.

ð
csch z coth z dz ¼ �csch z

8.

ð
cot z dz ¼ ln sin z 25.

ð
dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 + a2
p ¼ ln zþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 + a2

p� 


9.

ð
sec z dz ¼ ln(sec zþ tan z)

¼ ln tan(z=2þ p=4)
26.

ð
dz

z2 þ a2
¼ 1

a
tan�1 z

a
or � 1

a
cot�1 z

a

10.

ð
csc z dz ¼ ln(csc z� cot z)

¼ ln tan(z=2)
27.

ð
dz

z2 � a2
¼ 1

2a
ln

z� a

zþ a

� �

11.

ð
sec2 z dz ¼ tan z 28.

ð
dzffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � z2
p ¼ sin�1 z

a
or �cos�1 z

a

12.

ð
csc2 z dz ¼ �cot z 29.

ð
dz

z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 + z2

p ¼ 1

a
ln

z

aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 + z2

p
� �

13.

ð
sec z tan z dz ¼ sec z 30.

ð
dz

z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2

p ¼ 1

a
cos�1 a

z
or

1

a
sec�1 z

a

14.

ð
csc z cot z dz ¼ � csc z 31.

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 + a2

p
dz ¼ z

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 + a2

p

+
a2

2
ln zþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 + a2

p� 


15.

ð
sinh z dz ¼ cosh z 32.

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � z2

p
dz ¼ z

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � z2

p
þ a2

2
sin�1 z

a

16.

ð
cosh z dz ¼ sinh z 33.

ð
eax sin bz dz ¼ eaz a sin bz� b cos bzð Þ

a2 þ b2

17.

ð
tanh z dz ¼ ln cosh z 34.

ð
eax cos bz dz ¼ eax a cos bzþ b sin bzð Þ

a2 þ b2

Fig. 4-5
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4.15 Some Consequences of Cauchy’s Theorem

Let f(z) be analytic in a simply-connected region R. Then the following theorems hold.

THEOREM 4.1. Suppose a and z are any two points in R. Then

ðz
a

f (z) dz

is independent of the path in R joining a and z.

THEOREM 4.2. Suppose a and z are any two points in R and

G(z) ¼
ðz
a

f (z) dz (4:12)

Then G(z) is analytic in R and G0(z) ¼ f (z).

Occasionally, confusion may arise because the variable of integration z in (4.12) is the same as the upper
limit of integration. Since a definite integral depends only on the curve and limits of integration, any symbol
can be used for the variable of integration and, for this reason, we call it a dummy variable or dummy
symbol. Thus (4.12) can be equivalently written

G(z) ¼
ðz
a

f (z ) dz (4:13)

THEOREM 4.3. Suppose a and b are any two points in R and F0(z) ¼ f (z). Then

ðb
a

f (z) dz ¼ F(b)� F(a) (4:14)

This can also be written in the form, familiar from elementary calculus,

ðb
a

F0(z) dz ¼ F(z)

����
b

a

or [F(z)]ba ¼ F(b)� F(a) (4:15)

EXAMPLE 4.2:

ð1�i

3i

4z dz ¼ 2z2
����
1�i

3i

¼ 2ð1� iÞ2 � 2ð3iÞ2 ¼ 18� 4i

THEOREM 4.4. Let f(z) be analytic in a region bounded by two simple closed curves C and C1 [where C1

lies inside C as in Fig. 4-6(a)] and on these curves. Thenþ
C

f (z) dz ¼
þ
C1

f (z) dz (4:16)

where C and C1 are both traversed in the positive sense relative to their interiors [counter-
clockwise in Fig. 4-6(a)].

The result shows that if we wish to integrate f(z) along curve C, we can equivalently replace C by any
curve C1 so long as f (z) is analytic in the region between C and C1 as in Fig. 4-6(a).
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C

C1

C2

Cn

y

x

(a) (b)

C

C1

Fig. 4-6

THEOREM 4.5. Let f(z) be analytic in a region bounded by the non-overlapping simple closed curves
C, C1, C2, C3, . . . , Cn where C1, C2, . . . , Cn are inside C [as in Fig. 4-6(b)] and on
these curves. Thenþ

C

f (z) dz ¼
þ
C1

f (z) dzþ
þ
C2

f (z) dzþ � � � þ
þ
Cn

f (z) dz (4:17)

This is a generalization of Theorem 4.4.

SOLVED PROBLEMS

Line Integrals

4.1. Evaluate
Ð (2,4)
(0,3)

(2yþ x2) dxþ (3x� y) dy along: (a) the parabola x ¼ 2t, y ¼ t2 þ 3; (b) straight lines
from (0, 3) to (2, 3) and then from (2, 3) to (2, 4); (c) a straight line from (0, 3) to (2, 4).

Solution

(a) The points (0, 3) and (2, 4) on the parabola correspond to t ¼ 0 and t ¼ 1, respectively. Then, the given

integral equals

ð1
t¼0

[2(t2 þ 3)þ (2t)2]2 dt þ [3(2t)� (t2 þ 3)]2t dt ¼
ð1
0

(24t2 þ 12� 2t3 � 6t) dt ¼ 33

2

(b) Along the straight line from (0, 3) to (2, 3), y ¼ 3, dy ¼ 0 and the line integral equals

ð2
x¼0

(6þ x2) dxþ (3x� 3)0 ¼
ð2

x¼0

(6þ x2) dx ¼ 44

3

Along the straight line from (2, 3) to (2, 4), x ¼ 2, dx ¼ 0 and the line integral equals

ð4
y¼3

(2yþ 4)0þ (6� y) dy ¼
ð4

y¼3

(6� y) dy ¼ 5

2

Then, the required value ¼ 44=3þ 5=2 ¼ 103=6.
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(c) An equation for the line joining (0, 3) and (2, 4) is 2y� x ¼ 6. Solving for x, we have x ¼ 2y� 6. Then,

the line integral equals

ð4
y¼3

2yþ (2y� 6)2
� �

2 dyþ [3(2y� 6)� y] dy ¼
ð4
3

(8y2 � 39yþ 54) dy ¼ 97

6

The result can also be obtained by using y ¼ 1
2
(xþ 6).

4.2. Evaluate
Ð
C
�z dz from z ¼ 0 to z ¼ 4þ 2i along the curve C given by: (a) z ¼ t2 þ it,

(b) the line from z ¼ 0 to z ¼ 2i and then the line from z ¼ 2i to z ¼ 4þ 2i.

Solution

(a) The points z ¼ 0 and z ¼ 4þ 2i on C correspond to t ¼ 0 and t ¼ 2, respectively. Then, the line integral

equals

ð2
t¼0

(t2 þ it) d(t2 þ it) ¼
ð2
0

(t2 � it)(2t þ i) dt ¼
ð2
0

(2t3 � it2 þ t) dt ¼ 10� 8i

3

Another Method. The given integral equalsð
C

(x� iy)(dxþ i dy) ¼
ð
C

x dxþ y dyþ i

ð
C

x dy� y dx

The parametric equations of C are x ¼ t2, y ¼ t from t ¼ 0 to t ¼ 2. Then, the line integral equals

ð2
t¼0

(t2)(2t dt)þ (t)(dt)þ i

ð2
t¼0

(t2)(dt)� (t)(2t dt)

¼
ð2
0

(2t3 þ t) dt þ i

ð2
0

(�t2) dt ¼ 10� 8i

3

(b) The given line integral equalsð
C

(x� iy)(dxþ i dy) ¼
ð
C

x dxþ y dyþ i

ð
C

x dy� y dx

The line from z ¼ 0 to z ¼ 2i is the same as the line from (0, 0) to (0, 2) for which x ¼ 0, dx ¼ 0 and the

line integral equals

ð2
y¼0

(0)(0)þ y dyþ i

ð2
y¼0

(0)(dy)� y(0) ¼
ð2

y¼0

y dy ¼ 2

The line from z ¼ 2i to z ¼ 4þ 2i is the same as the line from (0, 2) to (4, 2) for which y ¼ 2, dy ¼ 0

and the line integral equalsð4
x¼0

x dxþ 2 � 0þ i

ð4
x¼0

x � 0� 2 dx ¼
ð4
0

x dxþ i

ð4
0

�2 dx ¼ 8� 8i

Then, the required value ¼ 2þ (8� 8i) ¼ 10� 8i.
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4.3. Suppose f (z) is integrable along a curve C having finite length L and suppose there exists a positive
number M such that j f (z)j � M on C. Prove that

ð
C

f (z) dz

������
������ � ML

Solution

By definition, we have on using the notation of page 111,ð
C

f (z) dz ¼ lim
n!1

Xn
k¼1

f (jk)Dzk (1)

Now

Xn
k¼1

f (jk)Dzk

�����
����� �

Xn
k¼1

j f (jk) j jDzkj

� M
Xn
k¼1

jDzkj

� ML

(2)

wherewe have used the facts that j f (z)j � M for all points z onC and that
Pn

k¼1 jDzkj represents the sumof all the

chord lengths joining points zk�1 and zk, where k ¼ 1, 2, . . . , n, and that this sum is not greater than the length

of C.

Taking the limit of both sides of (2), using (1), the required result follows. It is possible to show, more

generally, that ð
C

f (z) dz

������
������ �

ð
C

j f (z)j jdzj

Green’s Theorem in the Plane

4.4. Prove Green’s theorem in the plane if C is a simple closed curve which has the property that any
straight line parallel to the coordinate axes cuts C in at most two points.

Solution

Let the equations of the curves EGF and EHF (see Fig. 4-7) be y ¼ Y1(x) and y ¼ Y2(x), respectively. If R is

the region bounded by C, we have

ðð
R

@P

@y
dx dy ¼

ðf
x¼e

ðY2(x)
y¼Y1(x)

@P

@y
dy

2
64

3
75dx

¼
ðf
x¼e

P(x, y)
���Y2(x)
y¼Y1(x)

dx ¼
ðf
e

[P(x, Y2)� P(x, Y1)] dx

¼ �
ðf
e

P(x, Y1) dx�
ðe
f

P(x, Y2) dx ¼ �
þ
C

P dx

Then þ
C

P dx ¼ �
ðð
R

@P

@y
dx dy (1)
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Similarly, let the equations of curves GEH and GFH be x ¼ X1( y) and x ¼ X2( y), respectively. Then

ðð
R

@Q

@x
dx dy ¼

ðh
y¼g

ðX2(y)

x¼X1(y)

@Q

@x
dx

2
64

3
75 dy ¼

ðh
g

[Q(X2, y)� Q(X1, y)] dy

¼
ðg
h

Q(X1, y) dyþ
ðh
g

Q(X2, y) dy ¼
þ
C

Q dy

Then þ
C

Q dy ¼
ðð
R

@Q

@x
dx dy (2)

Adding (1) and (2), þ
C

P dxþ Qdy ¼
ðð
R

@Q

@x
� @P

@y

� �
dx dy

y
h

g

e f

G

E

H

F

x

(1, 1)

R

y =
 x
2

y
2  = x

x

y

C

O

Fig. 4-7 Fig. 4-8

4.5. Verify Green’s theorem in the plane forþ
C

(2xy� x2) dxþ (xþ y2) dy

where C is the closed curve of the region bounded by y ¼ x2 and y2 ¼ x.

Solution

The plane curves y ¼ x2 and y2 ¼ x intersect at (0, 0) and (1, 1). The positive direction in traversing C is as

shown in Fig. 4-8.

Along y ¼ x2, the line integral equals

ð1
x¼0

(2x)(x2)� x2
� �

dxþ xþ (x2)2
� �

d(x2) ¼
ð1
0

(2x3 þ x2 þ 2x5) dx ¼ 7

6

Along y2 ¼ x, the line integral equals

ð0
y¼1

f2( y2)( y)� ( y2)2g d( y2)þ f y2 þ y2g dy ¼
ð0
1

(4y4 � 2y5 þ 2y2) dy ¼ � 17

15
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Then the required integral ¼ 7=6� 17=15 ¼ 1=30. On the other hand,

ðð
R

@Q

@x
� @P

@y

� �
dx dy ¼

ðð
R

@

@x
(xþ y2)� @

@y
(2xy� x2)

� �
dx dy

¼
ðð
R

(1� 2x) dx dy ¼
ð1

x¼0

ðffiffixp

y¼x2

(1� 2x) dy dx

¼
ð1

x¼0

( y� 2xy)

������
ffiffi
x

p

y¼x2

dx ¼
ð1
0

(x1=2 � 2x3=2 � x2 þ 2x3) dx ¼ 1

30

Hence, Green’s theorem is verified.

4.6. Extend the proof of Green’s theorem in the plane given in Problem 4.4 to curves C for which lines
parallel to the coordinate axes may cut C in more than two points.

Solution

Consider a simple closed curve C such as shown in Fig. 4-9 in which lines parallel to the axes may meet C in

more than two points. By constructing line ST, the region is divided into two regions R1 and R2 which are of

the type considered in Problem 4.4 and for which Green’s theorem applies, i.e.,ð
STUS

P dxþ Qdy ¼
ðð
R1

@Q

@x
� @P

@y

� �
dx dy (1)

ð
SVTS

P dxþ Qdy ¼
ðð
R

@Q

@x
� @P

@y

� �
dx dy (2)

Adding the left-hand sides of (1) and (2), we have, omitting the integrand Pdxþ Qdy in each case,ð
STUS

þ
ð

SVTS

¼
ð
ST

þ
ð

TUS

þ
ð

SVT

þ
ð
TS

¼
ð

TUS

þ
ð

SVT

¼
ð

TUSVT

using the fact that
Ð
ST

¼ �
Ð
TS
.

Adding the right-hand sides of (1) and (2), omitting the integrand,ðð
R1

þ
ðð
R2

¼
ðð
R

Then ð
TUSVT

P dxþ Qdy ¼
ðð
R

@Q

@x
� @P

@y

� �
dx dy

and the theorem is proved. We have proved Green’s theorem for the simply-connected region of Fig. 4-9

bounded by the simple closed curve C. For more complicated regions, it may be necessary to construct

more lines, such as ST, to establish the theorem.

Green’s theorem is also true for multiply-connected regions, as shown in Problem 4.7.
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y
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C

V

S

T
R1

R2

O

y
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KL

A

H

J

GD
E

F R

Fig. 4-9 Fig. 4-10

4.7. Show that Green’s theorem in the plane is also valid for a multiply-connected region R such as
shown shaded in Fig. 4-10.

Solution

The boundary ofR, which consists of the exterior boundary AHJKLA and the interior boundary DEFGD, is to

be traversed in the positive direction so that a person traveling in this direction always has the region on his/her
left. It is seen that the positive directions are as indicated in the figure.

In order to establish the theorem, construct a line, such as AD, called a cross-out, connecting the exterior and

interior boundaries. The region bounded by ADEFGDALKJHA is simply-connected, and so Green’s theorem is

valid. Then þ
ADEFGDALKJHA

P dxþ Qdy ¼
ðð
R

@Q

@x
� @P

@y

� �
dx dy

But the integral on the left, leaving out the integrand, is equal to

ð
AD

þ
ð

DEFGD

þ
ð
DA

þ
ð

ALKJHA

¼
ð

DEFGD

þ
ð

ALKJHA

since
Ð
AD

¼ �
Ð
DA
. Thus, if C1 is the curve ALKJHA, C2 is the curve DEFGD and C is the boundary of R con-

sisting of C1 and C2 (traversed in the positive directions with respect to R), then
Ð
C1
þ
Ð
C2

¼
Þ
C
and soþ

C

P dxþ Qdy ¼
ðð
R

@Q

@x
� @P

@y

� �
dx dy

4.8. Let P(x, y) and Q(x, y) be continuous and have continuous first partial derivatives at each point of a
simply-connected regionR. Prove that a necessary and sufficient condition that

Þ
C
P dxþ Qdy ¼ 0

around every closed path C in R is that @P=@y ¼ @Q=@x identically in R.

Solution

Sufficiency. Suppose @P=@y ¼ @Q=@x. Then, by Green’s theorem,þ
C

P dxþ Qdy ¼
ðð
R

@Q

@x
� @P

@y

� �
dx dy ¼ 0

where R is the region bounded by C.
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Necessity. Suppose
Þ
C
P dxþ Qdy ¼ 0 around every closed path C inR and that @P=@y=@Q=@x at some point

of R. In particular, suppose @P=@y� @Q=@x . 0 at the point (x0, y0).

By hypothesis, @P=@y and @Q=@x are continuous inR so that there must be some region t containing (x0, y0)
as an interior point for which @P=@y� @Q=@x . 0. If G is the boundary of t, then by Green’s theorem

þ
G

Pdxþ Qdy ¼
ðð
t

@Q

@x
� @P

@y

� �
dx dy . 0

contradicting the hypothesis that
Þ
C
P dxþ Qdy ¼ 0 for all closed curves in R. Thus, @Q=@x� @P=@y cannot

be positive.

Similarly, we can show that @Q=@x� @P=@y cannot be negative and it follows that it must be identically

zero, i.e., @P=@y ¼ @Q=@x identically in R.

The results can be extended to multiply-connected regions.

4.9. Let P and Q be defined as in Problem 4.8. Prove
that a necessary and sufficient condition thatÐ B
A
P dxþ Qdy be independent of the path in R

joining points A and B is that @P=@y ¼ @Q=@x
identically in R.

Solution

Sufficiency. If @P=@y ¼ @Q=@x, then by Problem 4.8

ð
ADBEA

P dxþ Qdy ¼ 0

[see Fig. 4-11]. From this, omitting for brevity the

integrand Pdxþ Qdy, we have

ð
ADB

þ
ð

BEA

¼ 0,

ð
ADB

¼ �
ð

BEA

¼
ð

AEB

and so

ð
C1

¼
ð
C2

i.e., the integral is independent of the path.

Necessity. If the integral is independent of the path, then for all paths C1 and C2 in R, we have

ð
C1

¼
ð
C2

,

ð
ADB

¼
ð

AEB

and

ð
ADBEA

¼ 0

From this, it follows that the line integral around any closed path in R is zero and hence, by Problem 4.8, that

@P=@y ¼ @Q=@x.
The results can be extended to multiply-connected regions.

Complex Form of Green’s Theorem

4.10. Suppose B(z, �z) is continuous and has continuous partial derivatives in a region R and on its
boundary C, where z ¼ xþ iy and �z ¼ x� iy. Prove that Green’s theorem can be written in
complex form as

þ
C

B(z, �z) dz ¼ 2i

ðð
R

@B

@�z
dx dy

y

x

E

A

D

C1

C2

B

Fig. 4-11
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Solution

Let B(z, �z) ¼ P(x, y)þ iQ(x, y). Then, using Green’s theorem, we have

þ
C

B(z, �z) dz ¼
þ
C

(Pþ iQ)(dxþ i dy) ¼
þ
C

P dx� Qdyþ i

þ
C

Q dxþ Pdy

¼ �
ðð
R

@Q

@x
þ @P

@y

� �
dx dyþ i

ðð
R

@P

@x
� @Q

@y

� �
dx dy

¼ i

ðð
R

@P

@x
� @Q

@y

� �
þ i

@P

@y
þ @Q

@x

� �� 	
dx dy

¼ 2i

ðð
R

@B

@�z
dx dy

from Problem 3.34, page 101. The result can also be written in terms of curl B [see page 85].

Cauchy’s Theorem and the Cauchy–Goursat Theorem

4.11. Prove Cauchy’s theorem
Þ
C
f (z) dz ¼ 0 if f(z) is analytic with derivative f 0(z) which is continuous at

all points inside and on a simple closed curve C.

Solution

Since f (z) ¼ uþ iv is analytic and has a continuous derivative

f 0(z) ¼ @u

@x
þ i

@v

@x
¼ @v

@y
� i

@u

@y

it follows that the partial derivatives

@u

@x
¼ @v

@y
(1)

@v

@x
¼ � @u

@y
(2)

are continuous inside and on C. Thus, Green’s theorem can be applied and we haveþ
C

f (z) dz ¼
þ
C

(uþ iv)(dxþ i dy) ¼
þ
C

u dx� v dyþ i

þ
C

v dxþ u dy

¼
ðð
R

� @v

@x
� @u

@y

� �
dx dyþ i

ðð
R

@u

@x
� @v

@y

� �
dx dy ¼ 0

using the Cauchy–Riemann equations (1) and (2).

By using the fact that Green’s theorem is applicable to multiply-connected regions, we can extend the result

to multiply-connected regions under the given conditions on f (z).

The Cauchy–Goursat theorem [see Problems 4.13–4.16] removes the restriction that f 0(z) be continuous.

Another Method.
The result can be obtained from the complex form of Green’s theorem [Problem 4.10] by noting that if

B(z, �z) ¼ f (z) is independent of �z, then @B=@�z ¼ 0 and so
Þ
C
f (z) dz ¼ 0.
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4.12. Prove (a)
Þ
C
dz ¼ 0, (b)

Þ
C
z dz ¼ 0, (c)

Þ
C
(z� z0) dz ¼ 0 where C is any simple closed curve and z0

is a constant.

Solution

These follow at once from Cauchy’s theorem since the functions 1, z, and z� z0 are analytic inside C and have

continuous derivatives.

The results can also be established directly from the definition of an integral (see Problem 4.90).

4.13. Prove the Cauchy–Goursat theorem for the case of a triangle.

A

E

B CF

D

ΔI

ΔII ΔIII

ΔIV
Δn

z0

Fig. 4-12 Fig. 4-13

Solution

Consider any triangle in the z plane such as ABC, denoted briefly by D, in Fig. 4-12. Join the midpoints D, E,

and F of sides AB, AC, and BC, respectively, to form four triangles (DI, DII, DIII, and DIV).

If f(z) is analytic inside and on triangle ABC, we have, omitting the integrand on the right,þ
ABCA

f (z) dz ¼
ð

DAE

þ
ð

EBF

þ
ð

FCD

¼
ð

DAE

þ
ð
ED

8<
:

9=
;þ

ð
EBF

þ
ð
FE

8<
:

9=
;þ

ð
FCD

þ
ð
DF

8<
:

9=
;þ

ð
DE

þ
ð
EF

þ
ð
FD

8<
:

9=
;

¼
ð

DAED

þ
ð

EBFE

þ
ð

FCDF

þ
ð

DEFD

¼
þ
DI

f (z) dzþ
þ
DII

f (z) dzþ
þ
DIII

f (z) dzþ
þ
DIV

f (z) dz

where, in the second line, we have made use of the fact thatð
ED

¼ �
ð
DE

,

ð
FE

¼ �
ð
EF

,

ð
DF

¼ �
ð
FD

Then

þ
D

f (z) dz

������
������ �

þ
DI

f (z) dz

�������
�������þ

þ
DII

f (z) dz

�������
�������þ

þ
DIII

f (z) dz

�������
�������þ

þ
DIV

f (z) dz

�������
������� (1)

Let D1 be the triangle corresponding to that term on the right of (1) having largest value (if there are two or

more such terms, then D1 is any of the associated triangles). Then

þ
D

f (z) dz

������
������ � 4

þ
D1

f (z) dz

�������
������� (2)
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By joining midpoints of the sides of triangle D1, we obtain similarly a triangle D2 such that

þ
D1

f (z) dz

�������
������� � 4

þ
D2

f (z) dz

�������
������� (3)

so that

þ
D

f (z) dz

������
������ � 42

þ
D2

f (z) dz

�������
������� (4)

After n steps, we obtain a triangle Dn such that

þ
D

f (z) dz

������
������ � 4n

þ
Dn

f (z) dz

�������
������� (5)

Now D, D1, D2, D3, . . . is a sequence of triangles, each of which is contained in the preceding (i.e., a sequence
of nested triangles), and there exists a point z0 which lies in every triangle of the sequence.

Since z0 lies inside or on the boundary of D, it follows that f (z) is analytic at z0. Then, by Problem 3.21,

page 95,

f (z) ¼ f (z0)þ f 0(z0)(z� z0)þ h(z� z0) (6)

where, for any e . 0, we can find d such that jh j , e whenever jz� z0j , d.
Thus, by integration of both sides of (6) and using Problem 4.12,þ

Dn

f (z) dz ¼
þ
Dn

h(z� z0) dz (7)

Now, if P is the perimeter of D, then the perimeter of Dn is Pn ¼ P=2n. If z is any point on Dn, then as seen

from Fig. 4-13, we must have jz� z0j , P=2n , d. Hence, from (7) and Property e, page 112, we have

þ
Dn

f (z) dz

�������
������� ¼

þ
Dn

h(z� z0) dz

�������
������� � e � P

2n
� P
2n

¼ eP2

4n

Then (5) becomes

þ
D

f (z) dz

������
������ � 4n � eP

2

4n
¼ eP2

Since e can be made arbitrarily small, it follows that, as required,þ
D

f (z) dz ¼ 0

4.14. Prove the Cauchy–Goursat theorem for any closed polygon.

Solution

Consider, for example, a closed polygon ABCDEFA such as indicated in Fig. 4-14. By constructing the

lines BF, CF, and DF, the polygon is subdivided into triangles. Then, by Cauchy’s theorem for triangles

[Problem 4.13] and the fact that the integrals along BF and FB, CF and FC, and DF and FD cancel, we
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find as required ð
ABCDEFA

f (z) dz ¼
ð

ABFA

f (z) dzþ
ð

BCFB

f (z) dzþ
ð

CDFC

f (z) dzþ
ð

DEFD

f (z) dz ¼ 0

where we suppose that f(z) is analytic inside and on the polygon.

It should be noted that we have proved the result for simple polygons whose sides do not cross. A proof can

also be given for any polygon that intersects itself (see Problem 4.66).

D

E

F

A

B

C

zn–1

z0 = znz1

z2

z3

C

Fig. 4-14 Fig. 4-15

4.15. Prove the Cauchy–Goursat theorem for any simple closed curve.

Solution

Let us assume that C is contained in a region R in which f (z) is analytic.

Choose n points of subdivision z1, z2, . . . , zn on curve C [Fig. 4-15] where, for convenience of notation, we

consider z0 ¼ zn. Construct polygon P by joining these points.

Let us define the sum

Sn ¼
Xn
k¼1

f (zk)Dzk

where Dzk ¼ zk � zk�1. Since

lim Sn ¼
þ
C

f (z) dz

where the limit on the left means that n ! 1 in such a way that the largest of jDzkj ! 0. It follows that, given

any e . 0, we can choose N so that for n . N

þ
C

f (z) dz� Sn

������
������ ,

e

2
(1)

Consider now the integral along polygon P. Since this is zero by Problem 4.14, we have

þ
P

f (z) dz ¼ 0 ¼
ðz1
z0

f (z) dzþ
ðz2
z1

f (z) dzþ � � � þ
ðzn

zn�1

f (z) dz

¼
ðz1
z0

f f (z)� f (z1)þ f (z1)g dzþ � � � þ
ðzn

zn�1

f f (z)� f (zn)þ f (zn)g dz

¼
ðz1
z0

f f (z)� f (z1)g dzþ � � � þ
ðzn

zn�1

f f (z)� f (zn)g dzþ Sn
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so that

Sn ¼
ðz1
z0

f f (z1)� f (z)g dzþ � � � þ
ðzn

zn�1

f f (zn)� f (z)g dz (2)

Let us now choose N so large that on the lines joining z0 and z1, z1 and z2, . . . , zn�1 and zn,

j f (z1)� f (z) j , e

2L
, j f (z2)� f (z) j , e

2L
, . . . , j f (zn)� f (z)j , e

2L
(3)

where L is the length of C. Then, from (2) and (3), we have

jSnj �
ðz1
z0

f f (z1)� f (z)g dz

������
������þ

ðz2
z1

f f (z2)� f (z)g dz

������
������þ � � � þ

ðzn
zn�1

f f (zn)� f (z)g dz

������
������

or

jSnj �
e

2L
fjz1 � z0j þ jz2 � z1j þ � � � þ jzn � zn�1jg ¼

e

2
(4)

From þ
C

f (z) dz ¼
þ
C

f (z) dz� Sn þ Sn

we have, using (1) and (4),

þ
C

f (z) dz

������
������ �

þ
C

f (z) dz� Sn

������
������þ jSnj ,

e

2
þ e

2
¼ e

Thus, since e is arbitrary, it follows that
Þ
C
f (z) dz ¼ 0 as required.

4.16. Prove the Cauchy–Goursat theorem for multiply-connected regions.

Solution

We shall present a proof for the multiply-connected region R bounded by the simple closed curves C1 and C2

as indicated in Fig. 4-16. Extensions to other multiply-connected regions are easily made (see Problem 4.67).

G

I

J

H A

F

E

C1

C2

D

B

R

Fig. 4-16

Construct cross-cut AH. Then the region bounded by ABDEFGAHJIHA is simply-connected so that by

Problem 4.15, þ
ABDEFGAHJIHA

f (z) dz ¼ 0

Hence ð
ABDEFGA

f (z) dzþ
ð
AH

f (z) dzþ
ð

HJIH

f (z) dzþ
ð
HA

f (z) dz ¼ 0
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Since
Ð
AH

f (z) dz ¼ �
Ð
HA

f (z) dz, this becomesð
ABDEFGA

f (z) dzþ
ð

HJIH

f (z) dz ¼ 0

This, however, amounts to saying that þ
C

f (z) dz ¼ 0

where C is the complete boundary of R (consisting of ABDEFGA and HJIH) traversed in the sense that an

observer walking on the boundary always has the region R on his/her left.

Consequences of Cauchy’s Theorem

4.17. Suppose f (z) is analytic in a simply-connected region R. Prove that
Ð b
a
f (z) dz is independent of the

path in R joining any two points a and b in R [as in Fig. 4-17].

Solution

By Cauchy’s theorem, ð
ADBEA

f (z) dz ¼ 0

or ð
ADB

f (z) dzþ
ð

BEA

f (z) dz ¼ 0

Hence ð
ADB

f (z) dz ¼ �
ð

BEA

f (z) dz ¼
ð

AEB

f (z) dz

Thus

ð
C1

f (z) dz ¼
ð
C2

f (z) dz ¼
ðb
a

f (z) dz

which yields the required result.

y

x

A

B

b

D

C1

C2

E

a

y

R

x

z a
z + Dz

Fig. 4-17 Fig. 4-18
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4.18. Let f (z) be analytic in a simply-connected region R and let a and z be points in R. Prove that
(a) F(z) ¼

Ð z
a
f (u) du is analytic in R and (b) F0(z) ¼ f (z).

Solution

We have

F(zþ Dz)� F(z)

Dz
� f (z) ¼ 1

Dz

ðzþDz

a

f (u) du�
ðz
a

f (u) du

8<
:

9=
;� f (z)

¼ 1

Dz

ðzþDz

z

f f (u)� f (z)g du

(1)

By Cauchy’s theorem, the last integral is independent of the path joining z and zþ Dz so long as the path is in

R. In particular, we can choose as a path the straight line segment joining z and zþ Dz (see Fig. 4-18) provided
we choose jDzj small enough so that this path lies in R.

Now, by the continuity of f (z), we have for all points u on this straight line path j f (u)� f (z)j , e whenever
ju� zj , d, which will certainly be true if jDzj , d.

Furthermore, we have

ðzþDz

z

f (u)� f (z)
� �

du

������
������ , ejDzj (2)

so that from (1)

F(zþ Dz)� F(z)

Dz
� f (z)

����
���� ¼ 1

jDzj

ðzþDz

z

[ f (u)� f (z)] du

������
������ , e

for jDzj , d. This, however, amounts to saying that

lim
Dz!0

F(zþ Dz)� F(z)

Dz
¼ f (z),

i.e., F(z) is analytic and F0(z) ¼ f (z).

4.19. A function F(z) such that F0(z) ¼ f (z) is called an indefinite integral of f(z) and is denoted byÐ
f (z) dz. Show that (a)

Ð
sin z dz ¼ �cos zþ c, (b)

Ð
dz=z ¼ ln zþ cwhere c is an arbitrary constant.

Solution

(a) Since d=dz(�cos zþ c) ¼ sin z, we have
Ð
sin z dz ¼ �cos zþ c.

(b) Since d=dz(ln zþ c) ¼ 1=z, we have
Ð
dz=z ¼ ln zþ c.

4.20. Let f(z) be analytic in a region R bounded by two simple closed curves C1 and C2 [shaded in
Fig. 4-19] and also on C1 and C2. Prove that

Þ
C1
f (z) dz ¼

Þ
C2
f (z) dz, where C1 and C2 are both tra-

versed in the positive sense relative to their interiors [counterclockwise in Fig. 4-19].

Solution

Construct cross-cut DE. Then, since f (z) is analytic in the region R, we have by Cauchy’s theoremð
DEFGEDHJKLD

f (z) dz ¼ 0

or ð
DE

f (z) dzþ
ð

EFGE

f (z) dzþ
ð
ED

f (z) dzþ
ð

DHJKLD

f (z) dz ¼ 0
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Hence since
Ð
DE

f (z) dz ¼ �
Ð
ED

f (z) dz,ð
DHJKLD

f (z) dz ¼ �
ð

EFGE

f (z) dz ¼
ð

EGFE

f (z) dz or

þ
C1

f (z) dz ¼
þ
C2

f (z) dz

L

R

E
F

K

G

D

H
J

C1

C2

C

G

a
Œ

Fig. 4-19 Fig. 4-20

4.21. Evaluate
Þ
C
dz=z� a where C is any simple closed curve C and z ¼ a is (a) outside C, (b) inside C.

Solution

(a) If a is outside C, then f (z) ¼ 1=(z� a) is analytic everywhere inside and on C. Hence, by Cauchy’s

theorem,
Þ
C
dx=z� a ¼ 0:

(b) Suppose a is inside C and let G be a circle of radius e with center at z ¼ a so that G is inside C (this can be

done since z ¼ a is an interior point).

By Problem 4.20, þ
C

dz

z� a
¼
þ
G

dz

z� a
(1)

Now on G, jz� aj ¼ e or z� a ¼ eeiu, i.e., z ¼ aþ eeiu, 0 � u , 2p. Thus, since dz ¼ ieeiu du, the
right side of (1) becomes

ð2p
u¼0

ieeiu du

eeiu
¼ i

ð2p
0

du ¼ 2pi

which is the required value.

4.22. Evaluate

þ
C

dz

(z� a)n
, n ¼ 2, 3, 4, . . . where z ¼ a is inside the simple closed curve C.

Solution

As in Problem 4.21, þ
C

dz

(z� a)n
¼
þ
G

dz

(z� a)n

¼
ð2p
0

ieeiu du

eneinu
¼ i

e n�1

ð2p
0

e(1�n)iu du

¼ i

e n�1

e(1�n)iu

(1� n)i

����
2p

0

¼ 1

(1� n)e n�1
[e2(1�n)pi � 1] ¼ 0

where n=1.
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4.23. Let C be the curve y ¼ x3 � 3x2 þ 4x� 1 joining points (1, 1) and (2, 3). Find the value ofÐ
C
(12z2 � 4iz) dz.

Solution

Method 1. By Problem 4.17, the integral is independent of the path joining (1, 1) and (2, 3). Hence, any path can

be chosen. In particular, let us choose the straight line paths from (1, 1) to (2, 1) and then from (2, 1) to (2, 3).

Case 1. Along the path from (1, 1) to (2, 1), y ¼ 1, dy ¼ 0 so that z ¼ xþ iy ¼ xþ i, dz ¼ dx. Then, the

integral equals

ð2
x¼1

�
12(xþ i)2 � 4i(xþ i)

�
dx ¼

�
4(xþ i)3 � 2i(xþ i)2

�����
2

1

¼ 20þ 30i

Case 2. Along the path from (2, 1) to (2, 3), x ¼ 2, dx ¼ 0 so that z ¼ xþ iy ¼ 2þ iy, dz ¼ i dy. Then, the

integral equals

ð3
y¼1

�
12(2þ iy)2 � 4i(2þ iy)

�
i dy ¼

�
4(2þ iy)3 � 2i(2þ iy)2

�����
3

1

¼�176þ 8i

Then, adding the required value ¼ (20þ 30i)þ (�176þ 8i) ¼ �156þ 38i.

Method 2. The given integral equals

ð2þ3i

1þi

(12z2 � 4iz) dz ¼ (4z3 � 2iz2)

����
2þ3i

1þi

¼ �156þ 38i

It is clear that Method 2 is easier.

Integrals of Special Functions

4.24. Determine (a)
Ð
sin 3z cos 3z dz, (b)

Ð
cot(2zþ 5) dz.

Solution

(a) Method 1. Let sin 3z ¼ u. Then, du ¼ 3 cos 3z dz or cos 3z dz ¼ du=3. Thenð
sin 3z cos 3z dz ¼

ð
u
du

3
¼ 1

3

ð
u du ¼ 1

3

u2

2
þ c

¼ 1

6
u2 þ c ¼ 1

6
sin2 3zþ c

Method 2. ð
sin 3z cos 3z dz ¼ 1

3

ð
sin 3z d(sin 3z) ¼ 1

6
sin2 3zþ c

Method 3. Let cos 3z ¼ u. Then, du ¼ �3 sin 3z dz or sin 3z dz ¼ �du=3. Thenð
sin 3z cos 3z dz ¼ � 1

3

ð
u du ¼ � 1

6
u2 þ c1 ¼ � 1

6
cos2 3zþ c1

Note that the results of Methods 1 and 3 differ by a constant.

(b) Method 1. ð
cot(2xþ 5) dz ¼

ð
cos(2zþ 5)

sin(2zþ 5)
dz
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Let u ¼ sin(2zþ 5). Then du ¼ 2 cos(2zþ 5) dz and cos(2zþ 5) dz ¼ du=2. Thusð
cos(2zþ 5) dz

sin(2zþ 5)
¼ 1

2

ð
du

u
¼ 1

2
ln uþ c ¼ 1

2
ln sin(2zþ 5)þ c

Method 2. ð
cot(2zþ 5) dz ¼

ð
cos(2zþ 5)

sin(2zþ 5)
dz ¼ 1

2

ð
dfsin(2zþ 5)g
sin(2zþ 5)

¼ 1

2
ln sin(2zþ 5)þ c

4.25. (a) Prove that
Ð
F(z)G0(z) dz ¼ F(z)G(z)�

Ð
F0(z)G(z) dz.

(b) Find
Ð
ze2z dz and

Ð 1
0
ze2z dz.

(c) Find
Ð
z2 sin 4z dz and

Ð 2p
0

z2 sin 4z dz.

(d) Evaluate
Ð
C
(zþ 2)eiz dz along the parabola C defined by p2y ¼ x2 from (0, 0) to (p, 1).

Solution

(a) We have

dfF(z)G(z)g ¼ F(z)G0(z) dzþ F0(z)G(z) dz

Integrating both sides yieldsð
dfF(z)G(z)g ¼ F(z)G(z) ¼

ð
F(z)G0(z) dzþ

ð
F0(z)G(z) dz

Then ð
F(z)G0(z) dz ¼ F(z)G(z)�

ð
F0(z)G(z) dz

The method is often called integration by parts.

(b) Let F(z) ¼ z, G0(z) ¼ e2z. Then F0(z) ¼ 1 and G(z) ¼ 1
2
e2z, omitting the constant of integration. Thus, by

part (a), ð
ze2z dz ¼

ð
F(z)G0(z) dz ¼ F(z)G(z)�

ð
F0(z)G(z) dz

¼ (z)
1

2
e2z

� �
�
ð
1 � 1

2
e2z dz ¼ 1

2
ze2z � 1

4
e2z þ c

Hence ð1
0

ze2z dz ¼ 1

2
ze2z � 1

4
e2z þ c

� �����1
0

¼ 1

2
e2 � 1

4
e2 þ 1

4
¼ 1

4
(e2 þ 1)

(c) Integrating by parts choosing F(z) ¼ z2, G0(z) ¼ sin 4z, we haveð
z2 sin 4z dz ¼ (z2) � 1

4
cos 4z

� �
�
ð
(2z) � 1

4
cos 4z

� �
dz

¼ � 1

4
z2 cos 4zþ 1

2

ð
z cos 4z dz

Integrating this last integral by parts, this time choosing F(z) ¼ z and G0(z) ¼ cos 4z, we findð
z cos 4z dz ¼ (z)

1

4
sin 4z

� �
�
ð
(1)

1

4
sin 4z

� �
dz ¼ 1

4
z sin 4zþ 1

16
cos 4z
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Hence ð
z2 sin 4z dz ¼ � 1

4
z2 cos 4zþ 1

8
z sin 4zþ 1

32
cos 4zþ c

and

ð2p
0

z2 sin 4z dz ¼ �p2 þ 1

32
� 1

32
¼ �p3

The double integration by parts can be indicated in a suggestive manner by writing

ð
z2 sin 4z dz ¼ (z2) � 1

4
cos 4z

� �
� (2z) � 1

16
sin 4z

� �
þ (2)

1

64
cos 4z

� �
þ c

¼ � 1

4
z2 cos 4z þ 1

8
z sin 4zþ 1

32
cos 4z

where the first parentheses in each term (after the first) is obtained by differentiating z2 successively, the

second parentheses is obtained by integrating sin 4z successively, and the terms alternate in sign.

(d) The points (0, 0) and (p, 1) correspond to z ¼ 0 and z ¼ pþ i. Since (zþ 2)eiz is analytic, we see by

Problem 4.17 that the integral is independent of the path and is equal to

ð1þi

0

(zþ 2)eizdz ¼ (zþ 2)
eiz

i

� �
� (1)(�eiz)

� �����
pþi

0

¼ (pþ iþ 2)
ei(pþi)

i

� �
þ ei(pþi) � 2

i
� 1

¼ �2e�1 � 1þ i(2þ pe�1 þ 2e�1)

4.26. Show that

ð
dz

z2 þ a2
¼ 1

a
tan�1 z

a
þ c1 ¼

1

2ai
ln

z� ai

zþ ai

� �
þ c2.

Solution

Let z ¼ a tan u. Then ð
dz

z2 þ a2
¼
ð

a sec2 u du

a2(tan2 uþ 1)
¼ 1

a

ð
du ¼ 1

a
tan�1 z

a
þ c1

Also,

1

z2 þ a2
¼ 1

(z� ai)(zþ ai)
¼ 1

2ai

1

z� ai
� 1

zþ ai

� �

and so ð
dz

z2 þ a2
¼ 1

2ai

ð
dz

z� ai
� 1

2ai

ð
dz

zþ ai

¼ 1

2ai
ln(z� ai)� 1

2ai
ln(zþ ai)þ c2 ¼

1

2ai
ln

z� ai

zþ ai

� �
þ c2
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Miscellaneous Problems

4.27. Prove Morera’s theorem [page 115] under the assumption that f (z) has a continuous derivative inR.

Solution

If f(z) has a continuous derivative in R, then we can apply Green’s theorem to obtainþ
C

f (z) dz ¼
þ
C

u dx� v dyþ i

þ
C

v dxþ u dy

¼
ðð
R

� @v

@x
� @u

@y

� �
dx dyþ i

ðð
R

@u

@x
� @v

@y

� �
dx dy

Then, if
Þ
C
f (z) dz ¼ 0 around every closed path C in R, we must haveþ

C

u dx� v dy ¼ 0,

þ
C

v dxþ u dy ¼ 0

around every closed path C in R. Hence, from Problem 4.8, the Cauchy–Riemann equations

@u

@x
¼ @v

@y
,

@v

@x
¼ � @u

@y

are satisfied and thus (since these partial derivatives are continuous) it follows [Problem 3.5] that

uþ iv ¼ f (z) is analytic.

4.28. A force field is given by F ¼ 3zþ 5. Find the work done in moving an object in this force field along
the parabola z ¼ t2 þ it from z ¼ 0 to z ¼ 4þ 2i.

Solution

Total work done ¼
ð
C

F � dz ¼ Re

ð
C

F � dz ¼ Re

ð
C

(3�zþ 5) dz

8<
:

9=
;

¼ Re 3

ð
C

�z dzþ 5

ð
C

dz

8<
:

9=
; ¼ Re 3 10� 1

2
i

� �
þ 5(4þ 2i)

� �
¼ 50

using the result of Problem 4.2.

4.29. Find: (a)

ð
eax sin bx dx, (b)

ð
eax cos bx dx.

Solution

Omitting the constant of integration, we haveð
e(aþib)x dx ¼ e(aþib)x

aþ ib

which can be writtenð
eax(cos bxþ i sin bx) dx ¼ eax(cos bxþ i sin bx)

aþ ib
¼ eax(cos bxþ i sin bx)(a� ib)

a2 þ b2
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Then equating real and imaginary parts,ð
eax cos bx dx ¼ eax(a cos bxþ b sin bx)

a2 þ b2ð
eax sin bx dx ¼ eax(a sin bx� b cos bx)

a2 þ b2

4.30. Give an example of a continuous, closed, non-intersecting curve that lies in a bounded regionR but
which has an infinite length.

Solution

Consider equilateral triangle ABC [Fig. 4-21] with sides of unit length. By trisecting each side, construct equi-

lateral triangles DEF, GHJ, and KLM. Then omitting sides DF, GJ, and KM, we obtain the closed

non-intersecting curve ADEFBGHJCKLMA of Fig. 4-22.

A C

B

B

H

J

C
KM

L

A

E

D

F G

Fig. 4-21 Fig. 4-22 Fig. 4-23

The process can now be continued by trisecting sides DE, EF, FB, BG, GH, etc., and constructing equilat-

eral triangles as before. By repeating the process indefinitely [see Fig. 4-23], we obtain a continuous closed

non-intersecting curve that is the boundary of a region with finite area equal to

1

4

ffiffiffi
3

p
þ (3)

1

3

� �2
ffiffiffi
3

p

4
þ (9)

1

9

� �2
ffiffiffi
3

p

4
þ (27)

1

27

� �2
ffiffiffi
3

p

4
þ � � �

¼
ffiffiffi
3

p

4
1þ 1

3
þ 1

9
þ � � �

� �
¼

ffiffiffi
3

p

4

1

1� 1=3
¼ 3

ffiffiffi
3

p

8

or 1.5 times the area of triangle ABC, and which has infinite length (see Problem 4.91).

4.31. Let F(x, y) and G(x, y) be continuous and have continuous first and second partial derivatives in a
simply-connected region R bounded by a simple closed curve C. Prove thatþ

C

F
@G

@y
dx� @G

@x
dy

� �
¼ �

ðð
R

F
@2G

@x2
þ @2G

@y2

� �
þ @F

@x

@G

@x
þ @F

@y

@G

@y

� �� 	
dx dy

Solution

Let P ¼ F
@G

@y
, Q ¼ �F

@G

@x
in Green’s theorem soþ

C

P dxþ Qdy ¼
ðð
R

@Q

@x
� @P

@y

� �
dx dy
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Then as requiredþ
C

F
@G

@y
dx� @G

@x
dy

� �
¼
ðð
R

@

@x
�F

@G

@x

� �
� @

@y
F
@G

@y

� �� �
dx dy

¼ �
ðð
R

F
@2G

@x2
þ @2G

@y2

� �
þ @F

@x

@G

@x
þ @F

@y

@G

@y

� �� 	
dx dy

SUPPLEMENTARY PROBLEMS

Line Integrals

4.32. Evaluate
Ð (2,5)
(0,1)

(3xþ y) dxþ (2y� x) dy along (a) the curve y ¼ x2 þ 1, (b) the straight line joining (0, 1) and

(2, 5), (c) the straight lines from (0, 1) to (0, 5) and then from (0, 5) to (2, 5), (d) the straight lines from (0, 1) to

(2, 1) and then from (2, 1) to (2, 5).

4.33. (a) Evaluate
Þ
C
(xþ 2y) dxþ ( y� 2x) dy around the ellipse C defined by x ¼ 4 cos u, y ¼ 3 sin u, 0 � u , 2p

if C is described in a counterclockwise direction.

(b) What is the answer to (a) if C is described in a clockwise direction?

4.34. Evaluate
Ð
C
(x2 � iy2) dz along (a) the parabola y ¼ 2x2 from (1, 2) to (2, 8), (b) the straight lines from (1, 1)

to (1, 8) and then from (1, 8) to (2, 8), (c) the straight line from (1, 1) to (2, 8).

4.35. Evaluate
Þ
C
jzj2 dz around the square with vertices at (0, 0), (1, 0), (1, 1), (0, 1).

4.36. Evaluate
Ð
C
(z2 þ 3z) dz along (a) the circle jzj ¼ 2 from (2, 0) to (0, 2) in a counterclockwise direction, (b) the

straight line from (2, 0) to (0, 2), (c) the straight lines from (2, 0) to (2, 2) and then from (2, 2) to (0, 2).

4.37. Suppose f (z) and g(z) are integrable. Prove that

(a)

ðb
a

f (z) dz ¼ �
ða
b

f (z) dz, (b)

ð
C

f2f (z)� 3ig(z)g dz ¼ 2

ð
C

f (z) dz� 3i

ð
C

g(z) dz.

4.38. Evaluate
Ð 2�i

i
(3xyþ iy2) dz (a) along the straight line joining z ¼ i and z ¼ 2� i,

(b) along the curve x ¼ 2t � 2, y ¼ 1þ t � t2.

4.39. Evaluate
Þ
C
�z2 dz around the circles (a) jzj ¼ 1, (b) jz� 1j ¼ 1.

4.40. Evaluate
Þ
C
(5z4 � z3 þ 2) dz around (a) the circle jzj ¼ 1, (b) the square with vertices at (0, 0), (1, 0), (1, 1),

and (0, 1), (c) the curve consisting of the parabolas y ¼ x2 from (0, 0) to (1, 1) and y2 ¼ x from (1, 1) to (0, 0).

4.41. Evaluate
Ð
C
(z2 þ 1)2 dz along the arc of the cycloid x ¼ a(u� sin u), y ¼ a(1� cos u) from the point where

u ¼ 0 to the point where u ¼ 2p.

4.42. Evaluate
Ð
C
�z2 dzþ z2 d�z along the curve C defined by z2 þ 2z�zþ �z2 ¼ (2� 2i)zþ (2þ 2i)�z from the point

z ¼ 1 to z ¼ 2þ 2i.

4.43. Evaluate
Þ
C
dz=z� 2 around

(a) the circle jz� 2j ¼ 4, (b) the circle jz� 1j ¼ 5, (c) the square with vertices at 3+ 3i,�3+ 3i.

4.44. Evaluate
Þ
C
(x2 þ iy2) ds around the circle jzj ¼ 2 where s is the arc length.

Green’s Theorem in the Plane

4.45. Verify Green’s theorem in the plane for
Þ
C
(x2 � 2xy) dxþ ( y2 � x3y) dy where C is a square with vertices at

(0, 0), (2, 0), (2, 2), and (0, 2).
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4.46. Evaluate
Þ
C
(5xþ 6y� 3) dxþ (3x� 4yþ 2) dy around a triangle in the xy plane with vertices at (0, 0), (4, 0),

and (4, 3).

4.47. Let C be any simple closed curve bounding a region having area A. Prove that

A ¼ 1

2

þ
C

x dy� y dx

4.48. Use the result of Problem 4.47 to find the area bounded by the ellipse x ¼ a cos u, y ¼ b sin u, 0 � u , 2p.

4.49. Find the area bounded by the hypocycloid x2=3 þ y2=3 ¼
a2=3 shown shaded in Fig. 4-24. [Hint. Parametric

equations are x ¼ a cos3 u, y ¼ a sin3 u, 0 � u , 2p.]

4.50. Verify Green’s theorem in the plane for
Þ
C
x2y dxþ

( y3 � xy2) dy where C is the boundary of the region

enclosed by the circles x2 þ y2 ¼ 4, x2 þ y2 ¼ 16.

4.51. (a) Prove that
Þ
C
(y2 cos x� 2ey) dxþ (2y sin x� 2xey)

dy ¼ 0 around any simple closed curve C.

(b) Evaluate the integral in (a) along the parabola y ¼ x2

from (0, 0) to (p, p2).

4.52. (a) Show that
Ð (3,2)
(2,1)

(2xy3 � 2y2 � 6y) dxþ (3x2y2 � 4xy� 6x) dy is independent of the path joining points (2, 1)

and (3, 2). (b) Evaluate the integral in (a).

Complex Form of Green’s Theorem

4.53. If C is a simple closed curve enclosing a region of area A, prove that A ¼ 1

2i

þ
C

�z dz.

4.54. Evaluate
Þ
C
�z dz around (a) the circle jz� 2j ¼ 3, (b) the square with vertices at z ¼ 0, 2, 2i, and 2þ 2i,

(c) the ellipse jz� 3j þ jzþ 3j ¼ 10.

4.55. Evaluate
Þ
C
(8�zþ 3z) dz around the hypocycloid x2=3 þ y2=3 ¼ a2=3.

4.56. Let P(z, �z) and Q(z, �z) be continuous and have continuous partial derivatives in a regionR and on its boundary

C. Prove that þ
C

P(z, �z) dzþ Q(z, �z) d�z ¼ 2i

ðð
R

@P

@�z
� @Q

@z

� �
dA

4.57. Show that the area in Problem 4.53 can be written in the form A ¼ 1

4i

þ
C

�z dz� z d�z.

4.58. Show that the centroid of the region of Problem 4.53 is given in conjugate coordinates by (ẑ, �̂z) where

ẑ ¼ � 1

4Ai

þ
C

z2 d�z, �̂z ¼ 1

4Ai

þ
C

�z2 dz

4.59. Find the centroid of the region bounded above by jzj ¼ a . 0 and below by Im z ¼ 0.

Cauchy’s Theorem and the Cauchy–Goursat Theorem

4.60. Verify Cauchy’s theorem for the functions (a) 3z2 þ iz� 4, (b) 5 sin 2z, (c) 3 cosh(zþ 2)

where C is the square with vertices at 1+ i,�1+ i.

y

x

Fig. 4-24
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4.61. Verify Cauchy’s theorem for the function z3 � iz2 � 5zþ 2i if C is

(a) the circle jzj ¼ 1, (b) the circle jz� 1j ¼ 2, (c) the ellipse jz� 3ij þ jzþ 3ij ¼ 20.

4.62. Let C be the circle jz� 2j ¼ 5. (a) Determine whether

þ
C

dz

z� 3
¼ 0. (b) Does your answer to (a) contradict

Cauchy’s theorem?

4.63. For any simple closed curve C, explain clearly the relationship between the observationsþ
C

(x2 � y2 þ 2y) dxþ (2x� 2xy) dy ¼ 0 and

þ
C

(z2 � 2iz) dz ¼ 0

4.64. By evaluating
Þ
C
ez dz around the circle jzj ¼ 1, show that

ð2p
0

ecos u cos(uþ sin u) du ¼
ð2p
0

ecos u sin(uþ sin u) du ¼ 0

4.65. State and prove Cauchy’s theorem for multiply-connected regions.

4.66. Prove the Cauchy–Goursat theorem for a polygon, such as ABCDEFGA shown in Fig. 4-25, which may inter-

sect itself.

4.67. Prove the Cauchy–Goursat theorem for the multiply-connected regionR shown shaded in Fig. 4-26.

B

A

GE

F

C

D

R

Fig. 4-25 Fig. 4-26

4.68. (a) Prove the Cauchy–Goursat theorem for a rectangle and (b) show how the result of (a) can be used to prove

the theorem for any simple closed curve C.

4.69. Let P and Q be continuous and have continuous first partial derivatives in a region R. Let C be any simple

closed curve in R and suppose that for any such curveþ
C

P dxþ Qdy ¼ 0

(a) Prove that there exists an analytic function f(z) such that Ref f (z) dzg ¼ Pdxþ Qdy is an exact differential.

(b) Determine p and q in terms of P and Q such that Imf f (z) dzg ¼ p dxþ q dy and verify thatÞ
C
p dxþ q dy ¼ 0.

(c) Discuss the connection between (a) and (b) and Cauchy’s theorem.

4.70. Illustrate the results of Problem 4.69 if P ¼ 2xþ y� 2xy, Q ¼ x� 2y� x2 þ y2 by finding p, q, and f(z).

4.71. Let P and Q be continuous and have continuous partial derivatives in a region R. Suppose that for any

simple closed curve C in R, we have
Þ
C
P dxþ Qdy ¼ 0.

(a) Prove that
Þ
C
Q dx� Pdy ¼ 0. (b) Discuss the relationship of (a) with Cauchy’s theorem.
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Consequences of Cauchy’s Theorem

4.72. Show directly that
Ð 4�3i

3þ4i
(6z2 þ 8iz) dz has the same value along the following paths C joining the points 3þ 4i

and 4� 3i: (a) a straight line, (b) the straight lines from 3þ 4i to 4þ 4i and then from 4þ 4i to 4� 3i,

(c) the circle jzj ¼ 5. Determine this value.

4.73. Show that
Ð
C
e�2z dz is independent of the path C joining the points 1� pi and 2þ 3pi and determine its value.

4.74. Given G(z) ¼
Ð z
p�pi cos 3z dz. (a) Prove that G(z) is independent of the path joining p� pi and the arbitrary

point z. (b) Determine G(pi). (c) Prove that G0(z) ¼ cos 3z.

4.75. Given G(z) ¼
Ð z
1þi

sin z2 dz. (a) Prove that G(z) is an analytic function of z. (b) Prove that G0(z) ¼ sin z2.

4.76. For the real line integral
Ð
C
P dxþ Qdy, state and prove a theorem corresponding to:

(a) Problem 4.17, (b) Problem 4.18, (c) Problem 4.20.

4.77. Prove Theorem 4.5, page 118 for the region of Fig. 4-26.

4.78. (a) If C is the circle jzj ¼ R, show that lim
R!1

þ
C

z2 þ 2z� 5

(z2 þ 4)(z2 þ 2zþ 2)
dz ¼ 0

(b) Use the result of (a) to deduce that if C1 is the circle jz� 2j ¼ 5, thenþ
C1

z2 þ 2z� 5

(z2 þ 4)(z2 þ 2zþ 2)
dz ¼ 0

(c) Is the result in (b) true if C1 is the circle jzþ 1j ¼ 2? Explain.

Integrals of Special Functions

4.79. Find each of the following integrals:

(a)

ð
e�2z dz, (b)

ð
z sin z2 dz, (c)

ð
z2 þ 1

z3 þ 3zþ 2
dz, (d)

ð
sin4 2z cos 2z dz, (e)

ð
z2 tanh(4z3) dz

4.80. Find each of the following integrals:

(a)

ð
z cos 2z dz, (b)

ð
z2e�z dz, (c)

ð
z ln z dz, (d)

ð
z3 sinh z dz.

4.81. Evaluate each of the following: (a)

ð2pi
pi

e3z dz, (b)

ðpi
0

sinh 5z dz, (c)

ðpþi

0

z cos 2z dz.

4.82. Show that
Ð p=2
0

sin2 z dz ¼
Ð p=2
0

cos2 z dz ¼ p=4.

4.83. Show that

ð
dz

z2 � a2
¼ 1

2a
ln

z� a

zþ a

� �
þ c1 ¼

1

a
coth�1 z

a
þ c2.

4.84. Show that if we restrict ourselves to the same branch of the square root,ð
z
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2zþ 5

p
dz ¼ 1

20
(2zþ 5)5=2 � 5

6
(2zþ 5)3=2 þ c

4.85. Evaluate
Ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
ffiffiffiffiffiffiffiffiffiffiffi
zþ 1

pp
dz, stating conditions under which your result is valid.

Miscellaneous Problems

4.86. Use the definition of an integral to prove that along any arbitrary path joining points a and b,

(a)

ðb
a

dz ¼ b� a, (b)

ðb
a

z dz ¼ 1

2
(b2 � a2).
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4.87. Prove the theorem concerning change of variable on page XX. [Hint. Express each side as two real line

integrals and use the Cauchy–Riemann equations.]

4.88. Let u(x, y) be harmonic and have continuous derivatives, of order two at least, in a region R.

(a) Show that the following integral is independent of the path in R joining (a, b) to (x, y):

v(x, y) ¼
ð(x,y)

(a,b)

� @u

@y
dxþ @u

@x
dy

(b) Prove that uþ iv is an analytic function of z ¼ xþ iy in R.

(c) Prove that v is harmonic in R.

4.89. Work Problem 4.88 for the special cases (a) u ¼ 3x2yþ 2x2 � y3 � 2y2, (b) u ¼ xex cos y� yex sin y. [See

Problem 4.53(a) and (c), page XX.]

4.90. Using the definition of an integral, verify directly that when C is a simple closed curve and z0 is any constant.

(a)

þ
C

dz ¼ 0, (b)

þ
C

z dz ¼ 0, (c)

þ
C

(z� z0) dz ¼ 0

4.91. Find the length of the closed curve of Problem 4.30 after n steps and verify that as n ! 1, the length of the

curve becomes infinite.

4.92. Evaluate

ð
C

dz

z2 þ 4
along the line xþ y ¼ 1 in the direction of increasing x.

4.93. Show that
Ð1
0
xe�x sin x dx ¼ 1

2
.

4.94. Evaluate

ð�2þ2
ffiffi
3

p
i

�2�2
ffiffi
3

p
i

z1=2 dz along a straight line path if we choose that branch of z1=2 such that z1=2 ¼ 1 for z ¼ 1.

4.95. Does Cauchy’s theorem hold for the function f (z) ¼ z1=2 where C is the circle jzj ¼ 1? Explain.

4.96. Does Cauchy’s theorem hold for a curve, such as

EFGHFJE in Fig. 4-27, which intersects itself? Justify

your answers.

4.97. If n is the direction of the outward drawn normal to a

simple closed curve C, s is the arc length parameter and

U is any continuously differentiable function, prove that

@U

@n
¼ @U

@x

dx

ds
þ @U

@y

dy

ds

4.98. Prove Green’s first identity,ðð
R

Ur2V dx dyþ
ðð
R

@U

@x

@V

@x
þ @U

@y

@V

@y

� �
dx dy ¼

þ
C

U
@V

@n
ds

whereR is the region bounded by the simple closed curve C, r2 ¼ (@2=@x2)þ (@2=@y2), while n and s are as in

Problem 4.97.

4.99. Use Problem 4.98 to prove Green’s second identityðð
R

(Ur2V � Vr2U) dA ¼
þ
C

U
@V

@n
� V

@U

@n

� �
ds

where dA is an element of area of R.

4.100. Write the result of Problem 4.31 in terms of the operator r.
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Fig. 4-27
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