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CHAPTER 4

Complex Integration
and Cauchy’s Theorem

4.1 Complex Line Integrals

Let f(z) be continuous at all points of a curve C [Fig. 4-1], which we shall assume has a finite length, i.e., C
is a rectifiable curve.

Fig. 4-1

Subdivide C into n parts by means of points z1, z3,. . ., Z,—1, chosen arbitrarily, and call a = zy, b = z,.
On each arc joining zz—; to z; [where k goes from 1 to n], choose a point &,. Form the sum

Sy =FENG1 — @) +f(E) 2 — 1)+ +FEND — 20-1) 4.1)
On writing z; — zx—1 = Az, this becomes
Su=Y_ f&)au—zu-1) =Y f(&Az 4.2)
k=1 k=1

Let the number of subdivisions n increase in such a way that the largest of the chord lengths |Azy|
approaches zero. Then, since f(z) is continuous, the sum S, approaches a limit that does not depend on
the mode of subdivision and we denote this limit by

b
Jf(z) dz or Jf(z) dz 4.3)
a C



CHAPTER 4 Complex Integration and Cauchy’s Theorem

called the complex line integral or simply line integral of f(z) along curve C, or the definite integral of f(z)
from a to b along curve C. In such a case, f(z) is said to be integrable along C. If f(z) is analytic at all points
of a region R and if C is a curve lying in R, then f(z) is continuous and therefore integrable along C.

4.2 Real Line Integrals

Let P(x, y) and Q(x, y) be real functions of x and y continuous at all points of curve C. Then the real line
integral of Pdx+ Qdy along curve C can be defined in a manner similar to that given above and is
denoted by

J [P(x, y)dx + O(x, y)dy] or Jde + Qdy “4.4)
C C

the second notation being used for brevity. If C is smooth and has parametric equations x = ¢(), y = (t)

where t; <t < 1,, it can be shown that the value of (4) is given by
153

J [P{p(1), P} (1) dt + O{(1), Y}/ (1) dt]

n

Suitable modifications can be made if C is piecewise smooth (see Problem 4.1).

4.3 Connection Between Real and Complex Line Integrals

Suppose f(z) = u(x, y) + iv(x, y) = u + iv. Then the complex line integral (3) can be expressed in terms of
real line integrals as follows:

Jf(z) dz = J(u + iv)(dx + i dy)

C

c
:Judx—vdy+ijvdx+udy 4.5)
c c

For this reason, (4.5) is sometimes taken as a definition of a complex line integral.

4.4 Properties of Integrals

Suppose f(z) and g(z) are integrable along C. Then the following hold:

@ |[f@+g}ydz= Jf () dz + Jg(z) dz

C C C

b) |Af(9)dz=A J f(z)dz where A = any constant
c c
b

a

© [f@dz= —Jf(z)dz
b

b b
@ | flrdz= J f@)dz + J f(z)dz  where points a, b, m are on C

J
a

©) J f@)de| < ML
c
where | f(z)] < M, i.e., M is an upper bound of |f(z)| on C, and L is the length of C.
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There are various other ways in which the above properties can be described. For example, if 7, U, and V
are successive points on a curve, property (c) can be written [, f(2)dz = — [, f(2) dz.

Similarly, if C, Cy, and C, represent curves from a to b, a to m, and m to b, respectively, it is natural for us
to consider C = C; + C, and to write property (d) as

J f)dz = Jf(z)dz+ Jf(z)dz

C1+C; C G

4.5 Change of Variables

Let z = g({) be a continuous function of a complex variable { = u + iv. Suppose that curve C in the z plane
corresponds to curve C’ in the { plane and that the derivative g'({) is continuous on C’. Then

jf(z) dz = j FleO)g @) de 6)

c c

These conditions are certainly satisfied if g is analytic in a region containing curve C’.

4.6 Simply and Multiply Connected Regions

A region R is called simply-connected if any simple closed curve [Section 3.13], which lies in R, can be
shrunk to a point without leaving R. A region R, which is not simply-connected, is called multiply-
connected.

For example, suppose R is the region defined by |z| < 2 shown shaded in Fig. 4-2. If I is any simple
closed curve lying in R [i.e., whose points are in R], we see that it can be shrunk to a point that lies in
R, and thus does not leave R, so that R is simply-connected. On the other hand, if R is the region
defined by 1 < |z| < 2, shown shaded in Fig. 4-3, then there is a simple closed curve I' lying in R that
cannot possibly be shrunk to a point without leaving R, so that R is multiply-connected.

G -
)

y

<

y

7@

0

\P
y

Fig. 4-2 Fig. 4-3 Fig. 4-4

Intuitively, a simply-connected region is one that does not have any “holes” in it, while a multiply-
connected region is one that does. The multiply-connected regions of Figs. 4-3 and 4-4 have, respectively,
one and three holes in them.
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4.7 Jordan Curve Theorem

Any continuous, closed curve that does not intersect itself and may or may not have a finite length, is called
a Jordan curve [see Problem 4.30]. An important theorem that, although very difficult to prove, seems intui-
tively obvious is the following.

Jordan Curve Theorem. A Jordan curve divides the plane into two regions having the curve as a
common boundary. That region, which is bounded [i.e., is such that all points of it satisfy |z] <M
where M is some positive constant], is called the interior or inside of the curve, while the other region is
called the exterior or outside of the curve.

Using the Jordan curve theorem, it can be shown that the region inside a simple closed curve is a
simply-connected region whose boundary is the simple closed curve.

4.8 Convention Regarding Traversal of a Closed Path

The boundary C of a region is said to be traversed in the positive sense or direction if an observer travelling
in this direction [and perpendicular to the plane] has the region to the left. This convention leads to the
directions indicated by the arrows in Figs. 4-2, 4-3, and 4-4. We use the special symbol

1; f(r)dz

C

to denote integration of f(z) around the boundary C in the positive sense. In the case of a circle [Fig. 4-2], the
positive direction is the counterclockwise direction. The integral around C is often called a contour integral.

4.9 Green’s Theorem in the Plane

Let P(x, y) and Q(x, y) be continuous and have continuous partial derivatives in a region R and on its bound-
ary C. Green’s theorem states that

TFde-l—Qdy:” (8Q_8P) dxdy 4.7
dox  dy
C R

The theorem is valid for both simply- and multiply-connected regions.

4.10 Complex Form of Green’s Theorem

Let F(z, z) be continuous and have continuous partial derivatives in a region R and on its boundary C,
where z = x + iy, z = x — iy are complex conjugate coordinates [see page 7]. Then Green’s theorem can
be written in the complex form

fi; F(z,2)dz=2i H%I_: dA 4.8)
C R ©

where dA represents the element of area dx dy.
For a generalization of (4.8), see Problem 4.56.
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4.11 Cauchy’s Theorem. The Cauchy-Goursat Theorem

Let f(z) be analytic in a region R and on its boundary C. Then

jgf(z) dz=0 (4.9)

C

This fundamental theorem, often called Cauchy’s integral theorem or simply Cauchy’s theorem, is valid for
both simply- and multiply-connected regions. It was first proved by use of Green’s theorem with the added
restriction that f'(z) be continuous in R [see Problem 4.11]. However, Goursat gave a proof which removed
this restriction. For this reason, the theorem is sometimes called the Cauchy—Goursat theorem [see
Problems 4.13-4.16] when one desires to emphasize the removal of this restriction.

4.12 Morera’s Theorem

Let f(z) be continuous in a simply-connected region R and suppose that

fi;f(z) dz=0 (4.10)
c
around every simple closed curve C in R. Then f(z) is analytic in R.
This theorem, due to Morera, is often called the converse of Cauchy’s theorem. It can be extended to

multiply-connected regions. For a proof, which assumes that f'(z) is continuous in R, see Problem 4.27.
For a proof, which eliminates this restriction, see Problem 5.7, Chapter 5.

4.13 Indefinite Integrals

Suppose f(z) and F(z) are analytic in a region R and such that F'(z) = f(z). Then F(z) is called an indefinite
integral or anti-derivative of f(z) denoted by

F(z) = Jf(z)dz 4.11)

Just as in real variables, any two indefinite integrals differ by a constant. For this reason, an arbitrary con-
stant c is often added to the right of (11).

d
EXAMPLE 4.1: Since - (32% — 4sinz) = 6z — 4 cos z, we can write
z

J(Gz—4cosz) dz =372 —4sinz+c

4.14 Integrals of Special Functions

Using results on page 80 [or by direct differentiation], we can arrive at the results in Fig. 4-5 (omitting a
constant of integration).
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Zn-ﬁ-l
'dz = n#—1 18. cothzdz = Insinhz
n+1
dZ 1, .-
—=1Inz 19. |sechzdz =tan™ (sinhz)
Z J
edz=¢e 20. |cschzdz = —coth™!(cosh z)
aZ
ady = — 21. | sech?zdz = tanhz
Ina )
sinzdz = —cosz 22. csch? zdz = —cothz
coszdz = sinz 23. sechztanhzdz = —sechz
tanzdz = Insecz = —Incosz 24. cschzcothzdz = —cschz
. dz
cotzdz = Insinz 25. 7:ln(z+ 2+ az)
V2t a2
d. 1
sec zdz = In(sec z + tan z) 26. 2722 = —tan”! z or —— cot”! z
— Intan(z/2 + 7/4) r+a a  a a a
d. 1 —
csczdz = In(csc z — cot z) 27. 2722 = 2ln<Z a>
= Intan(z/2) v —a a \zta
2 dz . 12 12
sec“zdz =tanz 28. ————=3sin" — or —cos —
J Va2 -7 a a
dz 1 z
2
csc” zdz = —cotz 29. =—In
leva £ 2 a (a+«/cm>
d. 1 1
secztanzdz = secz 30. 7Z:fcos_lg or fsec_IE
JiZE—a? a z a a

z
csczeotzdz = —cscz 31. J\/Zz iaZdzzzsz + a?

a2
+ ?m(z—i— 2+ a2>

2
sinh zdz = coshz 32. |Va? —zzdz:gx/az —zz—k%sin’IE
a

e“(asinbz — bcos bz)

coshzdz = sinhz 33. e™sinbzdz =
a2 + b2

e™(acos bz + bsin bz)

tanh zdz = Incosh z 34. e cosbzdz =
(12 + bZ

Fig. 4-5
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4.15 Some Consequences of Cauchy’s Theorem

Let f(z) be analytic in a simply-connected region R. Then the following theorems hold.

THEOREM 4.1.  Suppose a and z are any two points in R. Then

jf (2)dz

is independent of the path in R joining a and z.

THEOREM 4.2.  Suppose a and z are any two points in R and

G(z) = J f(z2)dz

Then G(z) is analytic in R and G'(2) = f(2).

(4.12)

Occasionally, confusion may arise because the variable of integration z in (4.12) is the same as the upper
limit of integration. Since a definite integral depends only on the curve and limits of integration, any symbol
can be used for the variable of integration and, for this reason, we call it a dummy variable or dummy

symbol. Thus (4.12) can be equivalently written

(o) = jf(g)dz

THEOREM 4.3.  Suppose a and b are any two points in R and F'(z) = f(z). Then
b
Jf(z)dz = F(b) — F(a)
a
This can also be written in the form, familiar from elementary calculus,
b
JF’(z) dz = F(2)

a

b
or [F(2)]2 = F(b) — F(a)

a

1—i
EXAMPLE 4.2: J 4zdz =272

3i

1—i
=2(1 —i)* —2(3i)> = 18 — 4i

3i

(4.13)

(4.14)

(4.15)

THEOREM 4.4.  Let f(z) be analytic in a region bounded by two simple closed curves C and C; [where C|

lies inside C as in Fig. 4-6(a)] and on these curves. Then

%f(z)dz = %f(z)dz

c C

(4.16)

where C and C; are both traversed in the positive sense relative to their interiors [counter-

clockwise in Fig. 4-6(a)].

The result shows that if we wish to integrate f(z) along curve C, we can equivalently replace C by any

curve C; so long as f(z) is analytic in the region between C and C; as in Fig. 4-6(a).
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(a) (b)
Fig. 4-6

THEOREM 4.5.  Let f(z) be analytic in a region bounded by the non-overlapping simple closed curves
C, Cy, Cy, Cs,...,C, where Cy, Cy, ..., C, are inside C [as in Fig. 4-6(b)] and on
these curves. Then

%f(z)dz = f{;f(z)dz—l- %f(z)dz—# -+ J)f(z)dz 4.17)

Ci Cy

This is a generalization of Theorem 4.4.

SOLVED PROBLEMS

Line Integrals

4.1. Evaluate ( % D (2y 4 x2) dx + (3x — y) dy along: (a) the parabola x = 2¢, y = 2 + 3; (b) straight lines
from (0, 3) to (2, 3) and then from (2, 3) to (2, 4); (c) a straight line from (0, 3) to (2, 4).

Solution
(a) The points (0, 3) and (2, 4) on the parabola correspond to t = 0 and ¢ = 1, respectively. Then, the given
integral equals
1 1
I [2( +3) + 20 12dt + [3(20) — (£ + 3)]2t dt = [(24:2 +12-28 —6ndr ==
t=0 0

(b) Along the straight line from (0, 3) to (2, 3), y = 3, dy = 0 and the line integral equals
2 2

J (6+xH)dx+(3x—3)0 = J (6 +x)dx = %
x=0 x=0
Along the straight line from (2, 3) to (2, 4), x = 2, dx = 0 and the line integral equals
4
J 2y +4H0+(6—-y)dy =

y=3 Y

Then, the required value = 44/3 +5/2 = 103/6.

5
(6—y)dy—§
3

|| ey
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(c) An equation for the line joining (0, 3) and (2, 4) is 2y — x = 6. Solving for x, we have x = 2y — 6. Then,
the line integral equals

4

97

[2+ 2y = 67 ]2y + 1325 = 6 = y1dy = [ 8 =39y + S4ydy =
3

|| ey

y=3

The result can also be obtained by using y = %(x + 6).

4.2. Evaluate [.Zdz from z =0 to z = 4 + 2i along the curve C given by: (a) z = £ +it,

(b) the line from z = 0 to z = 2i and then the line from z = 2i to z = 4 + 2i.

Solution

(a) The points z =0 and z = 4 + 2i on C correspond to t = 0 and ¢ = 2, respectively. Then, the line integral
equals

2 2 2
J B +ind@* +it) = J(ﬂ —iNQt+i)dt = J(zﬁ —i? +10dr=10 —%
0 0

t=0
Another Method. The given integral equals

J(x — iy)dx + idy) = dex Fydy+ indy —ydx
o C C
The parametric equations of C are x = 2, y =t from ¢ = 0 to ¢ = 2. Then, the line integral equals

2

2
J ()2t dr) + (O dD) + i J )(dr) — ()2t dp)
=0 t=0

2 2
o
- J(zﬁ +t)dt+iJ(—t2)dt: 10—§’
0 0

(b) The given line integral equals

J(x— iy)(dx +idy) = dex—i—ydy—i—ijxdy —ydx
c c c

The line from z = 0 to z = 2i is the same as the line from (0, 0) to (0, 2) for which x = 0, dx = 0 and the
line integral equals

ydy =2

|| Sy 02

2
0)(0) +ydy+i J (0)(dy) — ¥(0) =

y=0 y=0 y=0

The line from z = 2i to z = 4 4 2i is the same as the line from (0, 2) to (4, 2) for whichy =2, dy =0
and the line integral equals
4

4 4
dex—l—Z-O—l—i J x~0—2dx:[xdx+i[—2dx:8—8i
0 0

4

x=0 x:

Then, the required value =2 + (8 — 8i) = 10 — 8i.
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4.3. Suppose f(z) is integrable along a curve C having finite length L and suppose there exists a positive
number M such that | f(z)| < M on C. Prove that

Jf (2)dz| <ML
C
Solution

By definition, we have on using the notation of page 111,

Jf(z) dz = lim ) f(&)Az (M
D fEAL] < Y 1fE ] 1Az
k=1 k=1
- (2)
<M Z [ Azl
k=1
<ML
where we have used the facts that | f(z)| < M for all points z on C and that ZZZI |Az; | represents the sum of all the
chord lengths joining points z;_; and zz, where k = 1, 2, ..., n, and that this sum is not greater than the length
of C.

Taking the limit of both sides of (2), using (1), the required result follows. It is possible to show, more
generally, that

Jf(z)dz < Jlf(z)l dz)
C

C
Green’s Theorem in the Plane

4.4. Prove Green’s theorem in the plane if C is a simple closed curve which has the property that any
straight line parallel to the coordinate axes cuts C in at most two points.

Solution

Let the equations of the curves EGF and EHF (see Fig. 4-7) be y = Y;(x) and y = Y»(x), respectively. If R is
the region bounded by C, we have

P " ap

”—dxdy: J J —dy |dx

J dy ay

R x=e | y=Y|(x)

s s
Y2(x)
- J Pay| ) = J[P(x, ¥s) — P(x, Y1)l dx

y=r(x

f e
=— JP(x, Yi)dx — J P(x, V2)dx = — cj; Pdx
e f C
Then

%de:—ﬂgdxdy Y]
c R
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Similarly, let the equations of curves GEH and GFH be x = X;(y) and x = X,(y), respectively. Then

5 h Xa(y) 5 h

[[5axas= [ | | 2ar|d=[1000 0 - 0ti idy
X ox

R y=g | x=X,(») 8

g h
= JQ(Xl’y)dy + JQ(Xz,y)dy = % Qdy
Then h g c

il
ﬂ;Qdyzﬂa%dxdy @

C R

Adding (1) and (2),

SFde—i— Qdy = “(%—%) dxdy
c

R

y
h . c (L

Fig. 4-7 Fig. 4-8

4.5. Verify Green’s theorem in the plane for

§<2xy — ) dx+ (x4 yP) dy
C

where C is the closed curve of the region bounded by y = x? and y* = x.

Solution

The plane curves y = x* and y*> = x intersect at (0, 0) and (1, 1). The positive direction in traversing C is as
shown in Fig. 4-8.
Along y = x?, the line integral equals
1 1 .
J {(2x)(x2) — x2} dx + {x + (x2)2} d(x?) = J(2x3 +x2 4+ 20)dx = 13

x=0 0

Along y*> = x, the line integral equals
0 0 7
J 2020 = G + {3+ dy = [(4y4 — 2+ 2N dy =2
y=1 1
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Then the required integral = 7/6 — 17/15 = 1/30. On the other hand,

90 oP 9 9
” (?g_?y) dxdy = ﬂ {a(ﬁyz) ~ @ —xz)} dxdy
R R

1 VX
:”(1 —2x)dxdy = J J (1 —2x)dydx
R x=0 y—y2
1 VX 1
= J (y —2xy) dx:J(x1/2—2x3/2—x2+2x3)dx=3]—0
x=0 y=x? 0

Hence, Green’s theorem is verified.

4.6. Extend the proof of Green’s theorem in the plane given in Problem 4.4 to curves C for which lines
parallel to the coordinate axes may cut C in more than two points.

Solution

Consider a simple closed curve C such as shown in Fig. 4-9 in which lines parallel to the axes may meet C in
more than two points. By constructing line S7, the region is divided into two regions R and R, which are of
the type considered in Problem 4.4 and for which Green’s theorem applies, i.e.,

Pdx+Qdy = %—% dxdy (1)
ox  dy
STUS R
Pdx+ Qdy = o _op dx dy 2)
ox dy
SVTS R

Adding the left-hand sides of (1) and (2), we have, omitting the integrand P dx + Q dy in each case,
[« ]=]]]+]-]+]- ]
STUS  SVIS ST TUS SVI TS TUS SVI  TUSVT

using the fact that [, = — [
Adding the right-hand sides of (1) and (2), omitting the integrand,
<[]
Ri R: R

Then

0 oP
Pdx+Qdy = ”(8—5—@) dxdy
R

TUSVT

and the theorem is proved. We have proved Green’s theorem for the simply-connected region of Fig. 4-9
bounded by the simple closed curve C. For more complicated regions, it may be necessary to construct
more lines, such as S7, to establish the theorem.

Green’s theorem is also true for multiply-connected regions, as shown in Problem 4.7.
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Fig. 4-9 Fig. 4-10

4.7. Show that Green’s theorem in the plane is also valid for a multiply-connected region R such as

4.8

shown shaded in Fig. 4-10.

Solution

The boundary of R, which consists of the exterior boundary AHJKLA and the interior boundary DEFGD, is to
be traversed in the positive direction so that a person traveling in this direction always has the region on his/her
left. It is seen that the positive directions are as indicated in the figure.

In order to establish the theorem, construct a line, such as AD, called a cross-out, connecting the exterior and
interior boundaries. The region bounded by ADEFGDALKJHA is simply-connected, and so Green’s theorem is

valid. Then
a oP
Pdx+ Qdy = ﬂ 90 Y geay
ox  dy
R

But the integral on the left, leaving out the integrand, is equal to

ADEFGDALKJHA

BRI
AD  DEFGD DA  ALKJHA DEFGD  ALKJHA

since IAD = _L)A- Thus, if C is the curve ALKJHA, C; is the curve DEFGD and C is the boundary of R con-
sisting of C; and C, (traversed in the positive directions with respect to R), then JCI + J“G = §C and so

%de—i—Qdy = ” <@—8—P) dxdy
ox  dy
c R

Let P(x, y) and Q(x, y) be continuous and have continuous first partial derivatives at each point of a
simply-connected region R. Prove that a necessary and sufficient condition that fﬁc Pdx+Qdy=0
around every closed path C in R is that dP/dy = dQ/ax identically in R.

Solution

Sufficiency. Suppose dP/dy = dQ/dx. Then, by Green’s theorem,

4; de+Qdy:JJ<%2—a£>dxdy:0
c Ay
R

where R is the region bounded by C.
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Necessity. Suppose §C P dx + Qdy = 0 around every closed path C in R and that dP/dy # dQ/dx at some point
of R. In particular, suppose dP/dy — 0Q/dx > 0 at the point (xo, yo).

By hypothesis, dP/dy and dQ/dx are continuous in R so that there must be some region T containing (xo, yo)
as an interior point for which dP/dy — 9Q/ax > 0. If I is the boundary of 7, then by Green’s theorem

EFde—i—Qdy: ”(%—%)dxdy>0
J J

T

contradicting the hypothesis that fﬁc Pdx+ Qdy = 0 for all closed curves in R. Thus, dQ/dx — dP/dy cannot
be positive.

Similarly, we can show that dQ/dx — dP/dy cannot be negative and it follows that it must be identically
zero, i.e., 0P/dy = 0Q/dx identically in R.

The results can be extended to multiply-connected regions.

4.9. Let P and Q be defined as in Problem 4.8. Prove
that a necessary and sufficient condition that y
Jdex + Qdy be independent of the path in R
joining points A and B is that 0P/dy = dQ/dx G
identically in R. D 3
Solution A < c,
Sufficiency. If 9P/dy = 9Q/dx, then by Problem 4.8 "
Pdx+Qdy=0 x
ADBEA
Fig. 411

[see Fig. 4-11]. From this, omitting for brevity the
integrand P dx + Q dy, we have

[« ] =0 =n]=] mw =]
ADB  BEA ADB BEA AEB C C

i.e., the integral is independent of the path.
Necessity. If the integral is independent of the path, then for all paths C; and C; in R, we have

NN

C Cy ADB AEB ADBEA

From this, it follows that the line integral around any closed path in R is zero and hence, by Problem 4.8, that
aP/dy = 0Q/dx.
The results can be extended to multiply-connected regions.

Complex Form of Green’s Theorem
4.10. Suppose B(z, z) is continuous and has continuous partial derivatives in a region R and on its

boundary C, where z = x+ iy and 7z = x — iy. Prove that Green’s theorem can be written in
complex form as

oB

fi; B(z,2)dz = 2i ” — dxdy
0z

C R
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Solution

Let B(z, 7) = P(x, y) + iQ(x, y). Then, using Green’s theorem, we have

S{SB(Z, Z)dZ:fi;(P+iQ)(dx+idy) :%de—Qdy—i—i%de—i—de
c c c o

3 3Q P [ (2P dQ
_—JJ<§+@>dxdy+lﬂ(a—g>dﬂiy
R
. P 00 (OP 00
”ﬂ[(@‘@)*’(@*aﬂd"”
R

from Problem 3.34, page 101. The result can also be written in terms of curl B [see page 85].

Cauchy’s Theorem and the Cauchy-Goursat Theorem

4.11. Prove Cauchy’s theorem §C f(z) dz = 0if f(2) is analytic with derivative f'(z) which is continuous at
all points inside and on a simple closed curve C.
Solution

Since f(z) = u + iv is analytic and has a continuous derivative
ou . 0v v du

it follows that the partial derivatives

ou v
== )
x  dy
av ou
== )
ax ay

are continuous inside and on C. Thus, Green’s theorem can be applied and we have

j;f(z)dz=§(u+iv)(dx+idy) :f“)udx—vdy+if£vdx+udy
C C C C

w9 u 3
:” o dxdy—}-i” =) axdy=0
ox  dy ox dy
R R

using the Cauchy—Riemann equations (1) and (2).

By using the fact that Green’s theorem is applicable to multiply-connected regions, we can extend the result
to multiply-connected regions under the given conditions on f(z).

The Cauchy—Goursat theorem [see Problems 4.13—4.16] removes the restriction that f'(z) be continuous.

Another Method.
The result can be obtained from the complex form of Green’s theorem [Problem 4.10] by noting that if
B(z, z7) = f(2) is independent of z, then dB/dz = 0 and so f[;c f(@dz=0.
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4.12. Prove (a) §.dz =0, (b) §.zdz =0, (¢c) § (z — z0) dz = 0 where C is any simple closed curve and zg
is a constant.

Solution

These follow at once from Cauchy’s theorem since the functions 1, z, and z — zo are analytic inside C and have
continuous derivatives.
The results can also be established directly from the definition of an integral (see Problem 4.90).

4.13. Prove the Cauchy—Goursat theorem for the case of a triangle.

Fig. 4-12 Fig. 4-13

Solution

Consider any triangle in the z plane such as ABC, denoted briefly by A, in Fig. 4-12. Join the midpoints D, E,
and F of sides AB, AC, and BC, respectively, to form four triangles (A;, Ay, Apy, and Apy).
If f(2) is analytic inside and on triangle ABC, we have, omitting the integrand on the right,

§ rad= [+ [+ |

ABCA DAE  EBF  FCD
SN IR IR R IR
DAE ED EBF  FE FCD DF DE EF FD

SRR
DAED EBFE FCDF  DEFD
= j@f(z)dz—l— %f(z)dz—l— ﬂ;f(z)dz—l- ij(z)dz
A| A][ A][] A]V

where, in the second line, we have made use of the fact that

e e

ED DE FE EF DF
Then
fi;f(z)dz < %f(z)dz + fi;f(z)dz + fi;f(z)dz + fi;f(z)dz e))
A Ar Ay Amn Ary

Let A, be the triangle corresponding to that term on the right of (1) having largest value (if there are two or
more such terms, then A; is any of the associated triangles). Then

ﬂ;f(z)dz <4 f{;f(z)dz 2)

A Ay
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4.14.

By joining midpoints of the sides of triangle A, we obtain similarly a triangle A, such that

%f(z)dz <4 ﬂ@f(z)dz 3)
A A

so that
fi; f@dz| < 4 % fdz )
A Ay

After n steps, we obtain a triangle A, such that

%f(z) dz| <4" %f(z) dz 5)

A A,

Now A, Ay, Ay, As, ... is a sequence of triangles, each of which is contained in the preceding (i.e., a sequence
of nested triangles), and there exists a point zo which lies in every triangle of the sequence.

Since zy lies inside or on the boundary of A, it follows that f(z) is analytic at zy. Then, by Problem 3.21,
page 95,

f@) =1(z0) +f'(z0)(z — z0) + Mz — 20) (6)

where, for any € > 0, we can find 6 such that |1 | < € whenever |z — 79| < 6.
Thus, by integration of both sides of (6) and using Problem 4.12,

%f(z) dz = E{D n(z —20)dz @)
A, A,

Now, if P is the perimeter of A, then the perimeter of A, is P, = P/2".If z is any point on A, then as seen
from Fig. 4-13, we must have |z — zo| < P/2" < 8. Hence, from (7) and Property e, page 112, we have

P P e
fl;f(z)dz = fﬁn(z—z())dz < € m =
A, A,
Then (5) becomes
P2
jﬁf(z) dz| <4". 647 = eP?
A

Since € can be made arbitrarily small, it follows that, as required,

%f(z)dz =0

A

Prove the Cauchy—Goursat theorem for any closed polygon.

Solution

Consider, for example, a closed polygon ABCDEFA such as indicated in Fig. 4-14. By constructing the
lines BF, CF, and DF, the polygon is subdivided into triangles. Then, by Cauchy’s theorem for triangles
[Problem 4.13] and the fact that the integrals along BF and FB, CF and FC, and DF and FD cancel, we
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find as required

f()dz = Jf(z)dz+ Jf(z)dz-l— J f(@dz+ J f(@dz=0

ABCDEFA ABFA BCFB CDFC DEFD

where we suppose that f(z) is analytic inside and on the polygon.
It should be noted that we have proved the result for simple polygons whose sides do not cross. A proof can
also be given for any polygon that intersects itself (see Problem 4.66).

Fig. 4-14 Fig. 4-15

4.15. Prove the Cauchy—Goursat theorem for any simple closed curve.

Solution

Let us assume that C is contained in a region R in which f(z) is analytic.

Choose n points of subdivision zj, z2, . . ., z, on curve C [Fig. 4-15] where, for convenience of notation, we
consider zyp = z,. Construct polygon P by joining these points.

Let us define the sum

Sy =Y f@Az
k=1

where Az, = zx — zx—1. Since

hmsn = %f(Z) dz

C

where the limit on the left means that n — oo in such a way that the largest of |Az;| — 0. It follows that, given
any € > 0, we can choose N so that for n > N

i;f(z)dz—Sn <§ )

C

Consider now the integral along polygon P. Since this is zero by Problem 4.14, we have

?i;f(z)dz:0: f@Qdz+ | f@Qdz+---+ Jf(z)dz
P 20 z1 Zn—1

— r@ sy +reordz -+ j (@) = flen) +f )} dz

— r@ -t + J Q) — @) de+ S,

20 Zn—1
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so that
21 Zn
5= [t — @z +-+ [ ) - rend:
20 Zn—1
Let us now choose N so large that on the lines joining zo and z;, z; and 2z, ...,2,—1 and z,,

€ € €

— < — — <—, ..., n) — <

[fz1) —f@)] oL [f(z2) —f(@) | oL [f(zn) — f(2) oL

where L is the length of C. Then, from (2) and (3), we have

21 2

1S,] < [{f(zl) —f@de| + J{f(zz) —f@Yde| + -+ J [z —F)} dz
or 20 21 Zn—1
IS0l = 5 llan =20l + lo2 = a1l 4+ 2 = 2t} = 5
From
f()dz = %f(z)dz - S+ S,

we have, using (1) and (4), ¢ ¢

fi;f(z)dz < jﬁﬂz)dz — S| 18] < §+§ =

C C

Thus, since € is arbitrary, it follows that §. f(z) dz = 0 as required.

4.16. Prove the Cauchy—Goursat theorem for multiply-connected regions.

Solution

(@)

3

“

We shall present a proof for the multiply-connected region R bounded by the simple closed curves C; and C,
as indicated in Fig. 4-16. Extensions to other multiply-connected regions are easily made (see Problem 4.67).

Fig. 4-16

Construct cross-cut AH. Then the region bounded by ABDEFGAHJIHA is simply-connected so that by

Problem 4.15,

f@dz=0
ABDEFGAHJIHA

Hence

f(@dz + Jf(z)dz+ J f(@dz + Jf(z)dzzo

ABDEFGA AH HIJIH HA
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Since [, f(z)dz = — |, f(2) dz, this becomes

f()dz + Jf(z)dz:O

ABDEFGA HJIH

This, however, amounts to saying that

%f(z)dz =0

C

where C is the complete boundary of R (consisting of ABDEFGA and HJIH) traversed in the sense that an
observer walking on the boundary always has the region R on his/her left.

Consequences of Cauchy’s Theorem

4.17. Suppose f(z) is analytic in a simply-connected region R. Prove that j: f(z) dz is independent of the
path in R joining any two points a and b in R [as in Fig. 4-17].

Solution

By Cauchy’s theorem,

f(2)dz=0
ADBEA
or
J f(@dz+ J f(2)dz=0
ADB BEA
Hence
J fl)dz = — J f(@dz = J f(2)dz

Thus ADB BEA AEB

b

Jf(z) dz = Jf(z)dz = }f(z) dz

Cy C, a

which yields the required result.

Fig. 4-17 Fig. 4-18
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4.18.

4.19.

4.20.

Let f(z) be analytic in a simply-connected region R and let @ and z be points in R. Prove that
(a) F(z) = [ f(u)du is analytic in R and (b) F'(z) = f(2).

Solution

We have

+Az z
F Az) — F 1
FerP9=TE0 _po) = AI [ s~ [ du} 1@
Z Z

a

&)

z+Az

:Aiz j (F) — () du

2~

By Cauchy’s theorem, the last integral is independent of the path joining z and z + Az so long as the path is in
‘R. In particular, we can choose as a path the straight line segment joining z and z + Az (see Fig. 4-18) provided
we choose |Az| small enough so that this path lies in R.

Now, by the continuity of f(z), we have for all points u on this straight line path | f(u) — f(z)| < € whenever
|u — z| < 8, which will certainly be true if |Az| < &.

Furthermore, we have

z+Az

J {fw) —f@}du

z

< €|Az] 2)

so that from (1)

z+Az

J [f(u) — ()] du

‘F(z—l—Az)—F(z) <e

1
Az _f(Z)’ :m

for |Az| < 8. This, however, amounts to saying that

jim FEHADZF@ _ o)
Az

Az—0

i.e., F(z) is analytic and F'(z) = f(2).

A function F(z) such that F’'(z) = f(z) is called an indefinite integral of f(z) and is denoted by
| f(z) dz. Show that (a) [sinzdz = —cosz + ¢, (b) [ dz/z = Inz + ¢ where c is an arbitrary constant.
Solution

(a) Since d/dz(—cosz + ¢) = sinz, we have jsinzdz = —cosz+c.
(b) Since d/dz(Inz + c) = 1/z, we have fdz/z =Inz+c.

Let f(z) be analytic in a region R bounded by two simple closed curves C; and C, [shaded in
Fig. 4-19] and also on C; and C,. Prove that ffc] fl)dz = §C7 f(z) dz, where C; and C, are both tra-
versed in the positive sense relative to their interiors [counterclockwise in Fig. 4-19].

Solution

Construct cross-cut DE. Then, since f(z) is analytic in the region R, we have by Cauchy’s theorem

f@dz=0

or DEFGEDHJKLD

Jf(z)dz—f- [f(z)dz+Jf(z)dz+ [ f(@)dz=0

DE EFGE ED DHJKLD
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Hence since [, f(2)dz = — [, f(2) dz,

f@dz=— Jf(z)dZZ Jf(z)dz or *f(z)dz=§f(z)dz

DHJKLD EFGE EGFE C, C

J

Fig. 4-19 Fig. 4-20

4.21. Evaluate fﬁc dz/z — a where C is any simple closed curve C and z = a is (a) outside C, (b) inside C.
Solution

(a) If a is outside C, then f(z) = 1/(z — a) is analytic everywhere inside and on C. Hence, by Cauchy’s
theorem, §.dx/z —a =0.
(b) Suppose a is inside C and let I be a circle of radius € with center at z = a so that I is inside C (this can be
done since z = a is an interior point).
By Problem 4.20,

dz =El; dz o

Z—a Z—a
r

O ——

Now on T, |z—al=€or z—a=ee? ie, z=a+ €% 0 < § <2a. Thus, since dz = iee'?df, the
right side of (1) becomes

2 . i9d6 2

J e &7_; J do = 2mi
Eet@

6=0

which is the required value.

4.22. Evaluate i;(— n=2,3,4,... where z = a is inside the simple closed curve C.

z—a)"’
c
Solution

As in Problem 4.21,

{) dz _i; dz
c—a)  Jrz-a"

2 ﬂd 2
iee'’do i ;
_ o T (1—n)i6
- J elpind — gn—1 Je do
0 0
i e(l—ﬂ)i9 o 1 [ 2(1—n)mi 1] 0
= —_— = e —_ =
e~ (1 —n)i|, 1—n)e"!

where n # 1.
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4.23. Let C be the curve y = x* — 3x*> 4+ 4x — 1 joining points (1, 1) and (2, 3). Find the value of
Jo(122% — 4iz) d.

Solution

Method 1. By Problem 4.17, the integral is independent of the path joining (1, 1) and (2, 3). Hence, any path can
be chosen. In particular, let us choose the straight line paths from (1, 1) to (2, 1) and then from (2, 1) to (2, 3).
Case 1. Along the path from (1, 1) to (2, 1), y=1,dy =0 so that z =x + iy = x + i, dz = dx. Then, the

integral equals

2
=20+ 30i

2
J {12(x +i)* = 4ix + i)} dx = {4(x +i)® — 2i(x + i)’}
1

x=1

Case 2. Along the path from (2, 1) to (2, 3), x =2, dx = 0 so that z =x + iy = 2 + iy,dz = idy. Then, the
integral equals

3
=—176 + 8i

3
J {122 + iy)* — 4i2 + iy)}idy = {42 + iy)* — 2i(2 + iy)*}
1

y=I1

Then, adding the required value = (20 + 30i) + (—176 + 8i) = —156 + 38i.
Method 2. The given integral equals

2430 243i
J (122% — 4iz) dz = (425 — 2i7%) = —156 +38i
1+i
1+i

It is clear that Method 2 is easier.
Integrals of Special Functions

4.24. Determine (a) fsin 3zcos 3z dz, (b) fcot(Zz +5)dz.

Solution
(a) Method 1. Let sin3z = u. Then, du = 3 cos 3z dz or cos 3z dz = du/3. Then
@ 1

. 1u?
sin3zcos3z dz = u3 =3 udi=—-——4c¢

1 1
:gu2+c:gsin23z+c
Method 2.

1 1
J sin3zcos 3z dz = gj sin 3z d(sin3z) = A sin?3z+ ¢
Method 3. Let cos 3z = u. Then, du = —3sin3zdz or sin3zdz = —du/3. Then

1 1 1
Jsin3zcos3z dz = —gjudu = —guz +c = —gcos2 324+ ¢

Note that the results of Methods 1 and 3 differ by a constant.

(b) Method 1.

cos(2z + 5)

Jcot(Zx +5)dz = J SN2z +5)
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Let u = sin(2z 4+ 5). Then du = 2 cos(2z + 5) dz and cos(2z 4+ 5) dz = du/2. Thus

cos(2z+5)dz 1 (du 1 1.
S B =-1 2z+5
J S22 1 5) ZJ 2nu+c 2nsm(z~|— )+c

Method 2.

1
=—Insin(2z+5) + ¢

cos(2z+5) . 1 (d{sin(2z + 5)}
[ sin(2z + 5) 2

(27 +Sydg = |2 2
JCO(” )dz Jsin(2z+5) ‘T3

4.25. (a) Prove that [ F(z)G'(z)dz = F(2)G(z) — [ F'(2)G(z) dz.
(b) Find [ze*dz and fOI ze% dz.
(c) Find [2?sindzdz and [;” 2? sin4z dz.
(d) Evaluate [.(z+ 2)e” dz along the parabola C defined by 7%y = x* from (0, 0) to (r, 1).

Solution
(a) We have

d{F(2)G(2)} = F(2)G'(2) dz + F'(2)G(2) dz
Integrating both sides yields

Jd{F(Z)G(Z)} = F(2)G(z) = JF(z)G/(z) dz + JF/(z)G(z) dz

Then

JF(z)G/(z) dz = FQG(E) — JF/(z)G(z) d:

The method is often called integration by parts.
(b) Let F(z) =z, G'(z) = ¢*. Then F'(z) = | and G(z) = 4¢*, omitting the constant of integration. Thus, by

part (a),
Jzezz dz = JF (2)G'(2) dz = F(2)G(z) — JF "(2)G(2) dz
_ 121 _ .12z _l 2z_121
—(Z)(ze ) Jl 26’ dz—zze 46 +c
Hence

1
1, 1, 1 1,
= — —— —=— 1
J2¢ Tav s AR

1
1 1
JO Zezde — <§Z€2Z _1621 +C>
(c) Integrating by parts choosing F(z) = 7>, G'(z) =sindz, we have

Jzz sindzdz = (%) <— %cos 4z> — J (2z)<— %COS 4z> dz

1 1
= _ZZZ cos4z+§chos4zdz

Integrating this last integral by parts, this time choosing F(z) = z and G'(z) = cos 4z, we find

1 1 1 1
chos4zdz = (z)(zsin4z) - J(l)(zsin4z) dz = Zzsin4z+ﬁcos4z
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Hence
2 sindzd ——l 2 cos4 —+—1 sin4 —|—icos4 +c
Z-sindzdz = 4z‘z8z 132 4
and
2T
% sindzd ——ﬂ2+i—i——
¢ smRd= N
0

The double integration by parts can be indicated in a suggestive manner by writing

1 1 1
2 1 —_— 2 —_—— — —_—— 1 JE—
Jz sin4zdz = (2 )( cos 4z) (22)( 16 sin 4z> +(2) (6 cos 4z) +c

1, 1 . 1
= _ZZ cosdz + gzs1n4z+3—zcos4z

where the first parentheses in each term (after the first) is obtained by differentiating z> successively, the
second parentheses is obtained by integrating sin 4z successively, and the terms alternate in sign.

(d) The points (0, 0) and (7, 1) correspond to z = 0 and z = 7+ i. Since (z + 2)e” is analytic, we see by
Problem 4.17 that the integral is independent of the path and is equal to

T+

l 0

14 )
[ (z+2)edz = {(z +2) <e—) - (1)(—eiz)}
0

i)

s 2
:(77+i+2)< , )—i—e’(”’)—f—l
l l

=2¢'—14i@+m ! +2¢7h
dz

1 1 —ai
4.26. Show that JH = —tan~! ad +c = .ln(z m.) + cs.
> +4a a a 2ai Z+ ai

Solution

Let z = atanu. Then

dz asec® u du 1 d ltan’l z "
= i u—=— —_— C
2 +a? a?(tanu+1) a a' !

Also,

1 _ 1 _ 1 1 1
24+a® (z—ai)z+ai) 2ai\z—ai z+ai

J‘ dz IJ dz IJ dz
24a* 2ai)z—ai 2ai)z+ai

L iz — ai) — 2 In(z +ai) + 2 = - 1n (224 4
=—In(z — ai) — —In ai) +c; = =—1In c
2ai ¢ 2ai < 27 2ai z+ ai 2

and so
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Miscellaneous Problems
4.27. Prove Morera’s theorem [page 115] under the assumption that f(z) has a continuous derivative in R.

Solution

If f(z) has a continuous derivative in R, then we can apply Green’s theorem to obtain

E{)f(z)dz:(ﬁudx—udy—i—i%vdx—l—udy

C C C
o Ju du v
| E - axay+i || (Z-Z) axa
”( o ay) ! y*’ﬂ(@x ay) g
R R

Then, if SGC f(z)dz = 0 around every closed path C in R, we must have

(J)udx—vdy:O, %vdx—i—udy:O
c c
around every closed path C in R. Hence, from Problem 4.8, the Cauchy—Riemann equations
u_io oo
ax dy’ x dy
are satisfied and thus (since these partial derivatives are continuous) it follows [Problem 3.5] that

u+iv = f(z) is analytic.

4.28. A force field is given by F' = 3z + 5. Find the work done in moving an object in this force field along
the parabola z = 1> + it from z = 0 to z = 4 + 2i.

Solution
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using the result of Problem 4.2.
4.29. Find: (a) Je‘”‘ sinbx dx, (b) Je“" cos bx dx.

Solution

Omitting the constant of integration, we have
e(a+ib)x

a—+ib

Je(a+ih)x dx =

which can be written

ax b i sin b ax b i sin b —ib
Je“x(cos bx + isinbx)dx = ¢ (Cosaj-tbl sinbx) _ e*(cos bx ;Tzz x)(a — ib)
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4.30.

4.31.

Then equating real and imaginary parts,

[ e*(acos bx 4 bsin bx)
e cosbx dx =
a* + b?
o e“(asinbx — b cos bx)
e sinbx dx =
a* + b?

Give an example of a continuous, closed, non-intersecting curve that lies in a bounded region R but
which has an infinite length.

Solution

Consider equilateral triangle ABC [Fig. 4-21] with sides of unit length. By trisecting each side, construct equi-
lateral triangles DEF, GHJ, and KLM. Then omitting sides DF, GJ, and KM, we obtain the closed
non-intersecting curve ADEFBGHJCKLMA of Fig. 4-22.

A
/\ > <
A c v

Fig. 4-21 Fig. 4-22 Fig. 4-23

The process can now be continued by trisecting sides DE, EF, FB, BG, GH, etc., and constructing equilat-
eral triangles as before. By repeating the process indefinitely [see Fig. 4-23], we obtain a continuous closed
non-intersecting curve that is the boundary of a region with finite area equal to

1 1\*v3 1\*v3 1\*V3
ZJ§+(3)<§> T+(9)(§> T+(27)(ﬁ> R

V3 (L0 V31 33
_7< 3 §+"'>_71—1/3_T

4 3

or 1.5 times the area of triangle ABC, and which has infinite length (see Problem 4.91).

Let F(x, y) and G(x, y) be continuous and have continuous first and second partial derivatives in a
simply-connected region R bounded by a simple closed curve C. Prove that

G G *G G oF 0G  oF 0G
Fl—di——dy|=—|||F\—5+-— )+ | = +—7) | dxdy
dy ax a2 9y? ax ox  3dy dy
c R

Solution

oG oG
Let P = Fg, Q = —F — in Green’s theorem so

ox
%de—i—Qdy = ” <@—8—P>dxdy
ox  dy
R

C
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Then as required

3G 8G 3 aG] 8 [ .9G
FlZdx— = | (=1-F=\ ™2
ﬂg (3y o ox dy) JJ(ax{ 3x} 8y{ 8y})dxdy
R

- axZz  9y? ax ax Ay dy ray
R

SUPPLEMENTARY PROBLEMS

Line Integrals

4.32.

4.33.

4.34.

4.35.
4.36.

4.37.

4.38.

4.39.
4.40.

4.41.

4.42.

4.43.

4.44.

Evaluate () (3x +y)dx + (2y — x)dyalong (a)thecurvey = x>+ 1, (b) the straight line joining (0, 1) and

(2,5), (c)thestraightlines from (0, 1) to (0, 5) and then from (0,5) to (2,5), (d) the straight lines from (0, 1) to
(2, 1) and then from (2, 1) to (2, 5).

(a) Evaluate 3§C (x 4+ 2y) dx + (y — 2x) dy around the ellipse C defined by x =4 cos 6,y =3sin6, 0 < 6 <27
if C is described in a counterclockwise direction.
(b) What is the answer to (a) if C is described in a clockwise direction?

Evaluate jc (x> — iy?)dz along (a) the parabola y = 2x? from (1, 2) to (2, 8), (b) the straight lines from (1, 1)
to (1, 8) and then from (1, 8) to (2, 8), (c) the straight line from (1, 1) to (2, 8).

Evaluate j;c |z|% dz around the square with vertices at (0, 0), (1, 0), (1, 1), (0, 1).

Evaluate fc (2% + 3z) dz along (a) the circle |z| = 2 from (2, 0) to (0, 2) in a counterclockwise direction, (b) the
straight line from (2, 0) to (0, 2), (c) the straight lines from (2, 0) to (2, 2) and then from (2, 2) to (0, 2).

Suppose f(z) and g(z) are integrable. Prove that

b

(a) Jf(z) dz = — Jf(z) dz, (b) [{Zf(z) —3ig(z)}dz = ZJf(z) dz — 3iJg(z) dz.

a b C C c

Evaluate (]‘2_" (3xy + iy*) dz (a) along the straight line joining z =i and z =2 — i,

i

(b) along the curve x =2t — 2,y = 1 + ¢ — 1.
Evaluate 390 72 dz around the circles (a) |z] = 1, (b) |z — 1] = 1.

Evaluate §C (5% — 2% 4+ 2) dz around (a) the circle |z| = 1, (b) the square with vertices at (0, 0), (1, 0), (1, 1),
and (0, 1), (c) the curve consisting of the parabolas y = x? from (0, 0) to (1, 1) and y> = x from (1, 1) to (0, 0).

Evaluate fC (2% 4 1)? dz along the arc of the cycloid x = a( — sin ), y = a(1 — cos 6) from the point where
0 = 0 to the point where 6 = 2.

Evaluate [.z*dz + 7% dZ along the curve C defined by z* + 222 + 2> = (2 — 2i)z + (2 + 2i)Z from the point
z=1toz=2+42i.

Evaluate §.dz/z — 2 around
(a) the circle |z —2| =4, (b) the circle |z — 1| =5, (c) the square with vertices at 3 + 3i, —3 + 3i.

Evaluate §C (x2 4 iy?) ds around the circle |z| = 2 where s is the arc length.

Green’s Theorem in the Plane

4.45.

Verify Green’s theorem in the plane for ch (2 — 2xy) dx + (y* — x’y) dy where C is a square with vertices at
(0,0, (2, 0), (2, 2), and (0, 2).
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4.46.

447.

4.48.

4.49.

4.50.

4.51.

4.52.

Evaluate §C (5x + 6y — 3)dx 4+ (3x — 4y + 2) dy around a triangle in the xy plane with vertices at (0, 0), (4, 0),
and (4, 3).

Let C be any simple closed curve bounding a region having area A. Prove that

1
Aziffxdy—ydx
c

Use the result of Problem 4.47 to find the area bounded by the ellipse x = acos 6, y = bsin 6, 0 < 0 < 2.

Find the area bounded by the hypocycloid x*/3 + y*/3 =
a*?3 shown shaded in Fig. 4-24. [Hint. Parametric y
equations are x = acos’ 6, y= asin’ 0,0 <0<2m]

Verify Green’s theorem in the plane for §C xydx +
(y* —xy»)dy where C is the boundary of the region
enclosed by the circles x> + y?> = 4, x> +y? = 16. \ X

(a) Prove that §c (y* cosx — 2¢”) dx + (2y sinx — 2xe)
dy = 0 around any simple closed curve C.

(b) Evaluate the integral in (a) along the parabola y = x?
from (0, 0) to (1, 7).

Fig. 4-24

(a) Show that jglz)) (2xy® — 2y* — 6y) dx + (3x*y* — 4xy — 6x) dy is independent of the path joining points (2, 1)
and (3, 2). (b) Evaluate the integral in (a).

Complex Form of Green’s Theorem

4.53.

4.54.

4.55.

4.56.

4.57.

4.58.

4.59.

If C is a simple closed curve enclosing a region of area A, prove that A = 2% %Zdz.

c
Evaluate SQCZdz around (a) the circle [z —2| =3, (b) the square with vertices at z =0, 2, 2i, and 2 + 2i,
(c) the ellipse |z — 3| + |z + 3| = 10.

Evaluate §.(8Z + 3z) dz around the hypocycloid x*/? + y*? = a/3.
Let P(z, z) and Q(z, 7) be continuous and have continuous partial derivatives in a region R and on its boundary
C. Prove that
_ o . oP 9
%P(z, Bdz + 0z, D dE = 2,” LA PN
0z 0z
c R

1
Show that the area in Problem 4.53 can be written in the form A = 4—% zdz — zdz.
i
c
Show that the centroid of the region of Problem 4.53 is given in conjugate coordinates by (Z, 2) where

A T T Y
Z__4Ai+z dz, z—4Ai{>z dz
C C

Find the centroid of the region bounded above by |z| = a > 0 and below by Im z = 0.

Cauchy’s Theorem and the Cauchy-Goursat Theorem

4.60.

Verify Cauchy’s theorem for the functions (a) 3z> + iz —4, (b) 5Ssin2z, (c) 3 cosh(z + 2)
where C is the square with vertices at 1 + i, —1 + i.



4.61.

4.62.

4.63.

4.64.

4.65.

4.66.

4.67.

4.68.

4.69.

4.70.

4.71.
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Verify Cauchy’s theorem for the function z3 — iz — 5z + 2i if Cis
(a) the circle |z] = 1, (b) the circle |z — 1| =2, (c) the ellipse |z — 3i| + |z + 3i] = 20.

d
Let C be the circle |z — 2| = 5. (a) Determine whether 4;—13 = 0. (b) Does your answer to (a) contradict
Cauchy’s theorem? C

For any simple closed curve C, explain clearly the relationship between the observations

ff;(xz — v} +2y)dx+ (2x — 2xy)dy =0 and jg(zz —2iz7)dz=0
C C

By evaluating §. e? dz around the circle |z| = 1, show that
2@ 27.7
J €% cos(0 + sin 0) d6 = J €9 5in(0 + sin 6) d6 = 0
0 0

State and prove Cauchy’s theorem for multiply-connected regions.

Prove the Cauchy—Goursat theorem for a polygon, such as ABCDEFGA shown in Fig. 4-25, which may inter-
sect itself.

Prove the Cauchy—Goursat theorem for the multiply-connected region R shown shaded in Fig. 4-26.

E CQQRO

Fig. 4-25 Fig. 4-26

A

(a) Prove the Cauchy—Goursat theorem for a rectangle and (b) show how the result of (a) can be used to prove
the theorem for any simple closed curve C.

Let P and Q be continuous and have continuous first partial derivatives in a region R. Let C be any simple
closed curve in R and suppose that for any such curve

i; Pdx+Qdy=0
C
(a) Prove that there exists an analytic function f(z) such that Re{f(z) dz} = P dx + Q dy is an exact differential.

(b) Determine p and ¢ in terms of P and Q such that Im{f(z)dz} = pdx+ gdy and verify that
§C pdx+qdy =0.

(c) Discuss the connection between (a) and (b) and Cauchy’s theorem.
Tllustrate the results of Problem 4.69 if P = 2x +y — 2xy, Q = x — 2y — x> +y* by finding p, ¢, and f(2).

Let P and Q be continuous and have continuous partial derivatives in a region R. Suppose that for any
simple closed curve C in R, we have §. Pdx+ Qdy = 0.
(a) Prove that §c Qdx — Pdy = 0. (b) Discuss the relationship of (a) with Cauchy’s theorem.
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Consequences of Cauchy’s Theorem
4.72. Show directly that f;:ff (627 + 8iz) dz has the same value along the following paths C joining the points 3 + 4i

and 4 — 3i: (a) a straight line, (b) the straight lines from 3 + 4i to 4 + 4i and then from 4 + 4i to 4 — 3i,
(c) the circle |z| = 5. Determine this value.

4.73. Show that fc e~ dzis independent of the path C joining the points 1 — 7ri and 2 + 31 and determine its value.

4.74. Given G(z) = f;m. cos3{d{. (a)Prove that G(z) is independent of the path joining 77 — i and the arbitrary
point z.  (b) Determine G(mi). (c) Prove that G'(z) = cos 3z.

4.75. Given G(z) = Jl i sin & d{. (a) Prove that G(z) is an analytic function of z. (b) Prove that G'(z) = sinz%.

4.76. For the real line integral ch P dx + Qdy, state and prove a theorem corresponding to:
(a) Problem 4.17, (b) Problem 4.18, (c) Problem 4.20.

4.77. Prove Theorem 4.5, page 118 for the region of Fig. 4-26.

ﬂ; Z+27-5

dz=0
C+aH2+2+2%
C

(b) Use the result of (a) to deduce that if C; is the circle |z — 2| = 5, then

ﬂ; 2+27-5 . —0
@+HR2+22+2)

G

(c) Is the result in (b) true if C; is the circle |z + 1| = 2? Explain.

4.78. (a) If C is the circle |z] = R, show thatRlim

— 00

Integrals of Special Functions

4.79. Find each of the following integrals:

Z+1

—2z in 72 31 12- 1.1
(a) Je dz, (b) JZSH‘Z dz, () JZ3+3Z+2

dz, () Jsin4 2zcos2zdz, (e) Jf tanh(4z%) dz

4.80. Find each of the following integrals:

(a) Jz cos2zdz, (b) J e i dz, (©) Jz Inzdz, (d) J Z sinh zdz.

i T+
4.81. Evaluate each of the following: (a) J e dz, (b) J sinh 5z dz, (c) J zcos 2zdz.

i

4.82. Show that foﬂ/z sin? zdz = foﬂ/z cos? zdz = /4.

2

d 1 - 1
4.83. Show that Jiz — (=2 +¢; = ~coth™! z +co.
2—a®> 2a \z+a a a

4.84. Show that if we restrict ourselves to the same branch of the square root,

1 5
szzz +5dz=550 4+ 5)°/% — sz 5P +¢
4.85. Evaluate [/1+ +/z+ I dz, stating conditions under which your result is valid.

Miscellaneous Problems

4.86. Use the definition of an integral to prove that along any arbitrary path joining points a and b,
b

() szzb—a, (b) J.z dz:%(hz—az).

a a



4.87.

4.88.

4.89.

4.90.

4.91.

4.92.

4.93.

4.94.

4.95.

4.96.

4.97.

4.98.

4.99.

4.100.
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Prove the theorem concerning change of variable on page XX. [Hint. Express each side as two real line
integrals and use the Cauchy—Riemann equations.]

Let u(x, y) be harmonic and have continuous derivatives, of order two at least, in a region R.

(a) Show that the following integral is independent of the path in R joining (a, b) to (x, y):
(x.) 3 P
v(x, y) = J ——udx+—udy
ay ox
(a,b)

(b) Prove that u + iv is an analytic function of z =x + iy in R.
(c) Prove that v is harmonic in R.

Work Problem 4.88 for the special cases (a) u = 3x%y 4+ 2x% — y> — 2y?, (b) u = xe*cosy — ye*siny. [See
Problem 4.53(a) and (c), page XX.]

Using the definition of an integral, verify directly that when C is a simple closed curve and z is any constant.

(a) fi;dzzo, (b) f{)zdz:O, (c) i;(z—Zo)dZZO

C C c

Find the length of the closed curve of Problem 4.30 after n steps and verify that as n — oo, the length of the
curve becomes infinite.

Evaluate ‘[ﬁ along the line x + y = 1 in the direction of increasing x.
c

Show that [;° xe™ sinx dx = 1.
—24+2/3i

Evaluate J z!/? dz along a straight line path if we choose that branch of z!/2 such that z'/2 = 1 for z = 1.
—2-2/3i

Does Cauchy’s theorem hold for the function f(z) = z!/> where C is the circle |z| = 1? Explain.

Does Cauchy’s theorem hold for a curve, such as
EFGHFJE in Fig. 4-27, which intersects itself? Justify y E
your answers.

If n is the direction of the outward drawn normal to a
simple closed curve C, s is the arc length parameter and
U is any continuously differentiable function, prove that

W _Uds | oUdy

an_axds+8yds )
Fig. 4-27

Prove Green'’s first identity,

aUav  aU VvV av
” UV*V dxdy + JJ ———+———|dxdy= %U—ds

ox ax  dy dy on
R c

where R is the region bounded by the simple closed curve C, V? = (8*/x?) + (8%/dy?), while n and s are as in
Problem 4.97.

Use Problem 4.98 to prove Green’s second identity

JJ(UVZV —VVAU)dA = #(Uaiv _ v8£>ds

on on
R C

where dA is an element of area of R.

Write the result of Problem 4.31 in terms of the operator V.



