2.55.
2.61.
2.64.
2.68.

2.72.

2.73.
2.74.
2.75.

2.79.
2.80.

2.81.

2.82.

2.94.
2.95.
2.104.
2.107.

2.123.
2.125.
2.128.
2.141.
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(a) 62771'/3’ (b) e4m'/3’ 1’ 62771'/3
(a) 2kmi/3, (b) (1/8)mi + (1/2)kri, where k = +1, +2, ...
(a) 7, (b) 26

(@) u=e ¥ cos3x, v = e ¥ sin3x. (b) u = cosxcoshy, v = —sinxsinhy. (¢) u = sin 2xcosh 2y,
v = cos 2xsinh 2y. (d) u = e*{(x* — y?) cos 2y — 2xysin2y}, v = e*{2xy cos 2y + (x> — y?) sin 2y}.

(a) u = sinh2xcos2y, v = cosh2xsin2y

(b) u =xcoshxcosy — ysinhxsiny, v = ycoshxcosy + xsinhxsiny
(@) 2iv/3, (0) 0, () i

(b) 4ri/3

(a) 2102 + (7 + 2km)i, 2102 + mi. (b) In3 + (/2 + 2km)i, In3 + mi/2. (¢) In2 + (117/6 + k)i,
In2+ 117i/6

(@) +In2 +/3) + /2 +2km (b) —iln(v/2Z+ 1) + /2 4 2km, —iln(v/2 — 1) 4 37/2 + 2kw
(@) In(+/2 + 1) + 7i/2 + 2kai, In(~/2 — 1) 4 37i/2 + ki

(b) 1n[(2k F a4kt 127 — 1 ] 4 7i/2 + 2mi,
ln|:,/(2k S — 1 — 2k 1)77} 4 3mi/2 + 2mi, k,m =0, 41, 42, ...

(a) e‘”/4+2k”{cos(% In 2) + isin(% In 2)}, (b) cos(2+/2kr) + i sin(2+/2k )

(a) e/2In2=Tm/4—2km cos(77r/4 +%ln 2), (b) 37/ 2+ 2%
(@) —12 + 6i, (b) V2(1 4 1)/2, (c) —4/3 — 4i, (d) 1/3, (e) —1/4

1/6 —iv/3/6

e(2k+l)”i/4, k = 0’ 1’ 2’ 3

(@ —1+i (b) 42, +2i (c) km k=0, +1, +2, ... (d) 0, (k—}—%)m k=0, +1, 42, ...
() +i, (k+3)mi, k=0, £1, +2, ...

(a) 3i, (b) 1, (¢) 0, (d) §i

(9 +3i)/10

Converges

(@) 0, (b) 2k + Dmi/2, k=0, +1, +2, ...



Complex Differentiation and
the Cauchy-Riemann Equations

3.1 Derivatives

If f(2) is single-valued in some region R of the z plane, the derivative of f(z) is defined as

provided that the limit exists independent of the manner in which Az — 0. In such a case, we say that f(z) is

differentiable at z. In the definition (3.1), we sometimes use & instead of Az. Although differentiability
implies continuity, the reverse is not true (see Problem 3.4).

3.2 Analytic Functions

If the derivative f(z) exists at all points z of a region R, then f(z) is said to be analytic in R and is referred to
as an analytic function in R or a function analytic in R. The terms regular and holomorphic are sometimes
used as synonyms for analytic.

A function f(z) is said to be analytic at a point z if there exists a neighborhood |z — zo| < & at all points
of which f'(z) exists.

3.3 Cauchy-Riemann Equations

A necessary condition that w = f(z) = u(x, y) + iv(x, y) be analytic in a region R is that, in ‘R, u and v
satisfy the Cauchy—Riemann equations
w_o e a2
ox  dy ay ax
If the partial derivatives in (3.2) are continuous in R, then the Cauchy—Riemann equations are sufficient
conditions that f(z) be analytic in R. See Problem 3.5.
The functions u(x, y) and v(x, y) are sometimes called conjugate functions. Given u having continuous
first partials on a simply connected region R (see Section 4.6), we can find v (within an arbitrary additive
constant) so that u + iv = f(z) is analytic (see Problems 3.7 and 3.8).
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3.4 Harmonic Functions

If the second partial derivatives of u and v with respect to x and y exist and are continuous in a region R,
then we find from (3.2) that (see Problem 3.6)

Pu  FPu Pv v

wtap=" sty G

It follows that under these conditions, the real and imaginary parts of an analytic function satisfy Laplace’s
equation denoted by

Fv P ) , PP
The operator V? is often called the Laplacian.
Functions such as u(x, y) and v(x, y) which satisfy Laplace’s equation in a region R are called harmonic
functions and are said to be harmonic in R.

3.5 Geometric Interpretation of the Derivative

Let zo [Fig. 3-1] be a point P in the z plane and let wy [Fig. 3-2] be its image P’ in the w plane under the
transformation w = f(z). Since we suppose that f(z) is single-valued, the point zop maps into only one
point wy.

z plane w plane
y v
0’
0 I
19 S~
,,\& [N
S Y
20+ Az Az v <9
2© 5
P =
P
% o = f(l@
X 0 u
Fig. 3-1 Fig. 3-2

If we give zp an increment Az, we obtain the point Q of Fig. 3-1. This point has image Q' in the w plane.
Thus, from Fig. 3-2, we see that P'Q’ represents the complex number Aw = f(zg + Az) — f(20). It follows
that the derivative at zy (if it exists) is given by

i J@ A9 —fo) _ PO
im = lim
Az—0 Az 0—pP PQ

3.5

that is, the limit of the ratio P'Q’ to PQ as point Q approaches point P. The above interpretation clearly holds
when zy is replaced by any point z.
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3.6 Differentials

Let Az = dz be an increment given to z. Then

Aw = f(z + Az) — f(2) (3.6)
is called the increment in w = f(2). If f(z) is continuous and has a continuous first derivative in a region, then
Aw = f'(2)Az + €Az = f'(2) dz + edz (3.7)

where € — 0 as Az — 0. The expression
dw = f(2)dz (3.8)

is called the differential of w or f(z), or the principal part of Aw. Note that Aw # dw in general. We call dz
the differential of z.
Because of the definitions (3.1) and (3.8), we often write

dw fet+A)—f@) _ . Aw

A AI;TO Az A0 Az

= 3.9

It is emphasized that dz and dw are not the limits of Az and Aw as Az — 0, since these limits are zero
whereas dz and dw are not necessarily zero. Instead, given dz, we determine dw from (3.8), i.e., dw is a
dependent variable determined from the independent variable dz for a given z.

It is useful to think of d/dz as being an operator that, when operating on w = f(z), leads to
dw/dz = f'(2).

3.7 Rules for Differentiation

Suppose f(z), g(z), and h(z) are analytic functions of z. Then the following differentiation rules (identical
with those of elementary calculus) are valid.

d d d
L @ +8@) = f@) +-50) =) +§@
z dz dz
d d d , ,
2. Z {f(@) —g@)} = sz(Z) - dfzg(z) =1 @) —-¢@
3. i{cf(z)} = cif(z) = ¢f’(z) where ¢ is any constant
dz dz

d d d
4. e {f@2)g(2)} = f(2) - 8(2) + 8(2) —-f(2) = f(2)¢'(2) + g(2)f (2)
Z dz dz

5. 4 {f(Z) } _ 8(@)d/da)f2) — f(2)(d/d2)s(2) _ 8(2)f'(2) —f(2)g'@) 2(2) £0
©odz g [g()] (g2
6. If w=f({) where { = g(z) then
dw_dw d{_/ %_, ,
& dr iz —f(é“)a,Z =/1{8()}g (@) (3.10)

Similarly, if w = f({) where { = g(n) and 1 = h(z), then

d daw d{ d
i:iil (3.11)
dz di{ dn dz
The results (3.10) and (3.11) are often called chain rules for differentiation of composite functions.
7. If w = f(2) has a single-valued inverse f !, then z = f~!(w), and dw/dz and dz/dw are related by
‘LW 1
dz  dz/dw

(3.12)



8.

Similar rules can be formulated for differentials. For example,
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If z =f(¢) and w = g(¢) where ¢ is a parameter, then

dw dw/dt g'(1)

dz ~ dz/dt — f'(1)

(3.13)

d{f(2) + g(2)} = df(z) + dg(z) =f'(z) dz+ §'(z) dz = {f'(z) + §'(2)} dz
d{f(2)g(2)} = f(2) dg(z) + g(2) df (2) = {f(2)g' (2) + g(2) f'(2)} dz

3.8 Derivatives of Elementary Functions

In the following, we assume that the functions are defined as in Chapter 2. In the cases where functions have
branches, i.e., are multi-valued, the branch of the function on the right is chosen so as to correspond to the
branch of the function on the left. Note that the results are identical with those of elementary calculus.

10.

11.

12.

13.

14.

15.

d

2@ =0

dz ©

Zzzn — nZn—]

d

d—zeZ =é

d Z Z
—a*=d'In

dza a‘lna

—sinz = cos

dz me ¢
d—zcosz = —sinz
—tanz = sec’

dz ¢ ¢

d cotz = —csc?

dz = ¢
d—Zsecz =secztanz
—cscz = —csczceot
& z zcotz
d lo d 1

el = lnz =~
dz et T g Ty
d log, e
—log, 7z =—*

dz & Z

d sin™! !

il 7=

dz 1 -2
d cos™! !
— z

dz 1—-272
d tan"!z = !

dz T2

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

4 oortz= !

dz 1y

d sec”! !

“ 7=

dz Wz —1
d csc”! !
il =
dz w2 -1
d

d—zsinhz = coshz

d
pe cosh z = sinhz

d
— tanh z = sech’z

dz

d

— cothz = —csch?z

dz

d

—sech z = —sech ztanhz

dz

d

—csch z = —csch zcothz

dz

d 1

—sinh~ !z =

dz 1+ 722

d 1

—cosh™'z=

dz 2 —1

d 1

—tanh™ !z =

p anh™ ' z T

d 1

—coth 'z =

p co Z -

7sech71 7= _71

dz /1 =72
-1

—csch™lz=
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3.9 Higher Order Derivatives

If w = f(z) is analytic in a region, its derivative is given by f'(z), w', or dw/dz. If f'(2) is also analytic in the
region, its derivative is denoted by f”(z), w”, or (d/dz)(dw/dz) = d*w/dz*. Similarly, the nth derivative of
f(2), if it exists, is denoted by f"(z), w™, or d"w/d7" where n is called the order of the derivative. Thus
derivatives of first, second, third, ... orders are given by f'(z), f"(z), f”'(2), . ... Computations of these
higher order derivatives follow by repeated application of the above differentiation rules.

One of the most remarkable theorems valid for functions of a complex variable and not necessarily valid
for functions of a real variable is the following:

THEOREM 3.1.  Suppose f(z) is analytic in a region R. Then so also are f'(z), f”(z), . . . analytic in R, i.e.,
all higher derivatives exist in R.

This important theorem is proved in Chapter 5.

3.10 L'Hospital’s Rule

Let f(z) and g(z) be analytic in a region containing the point zp and suppose that f(z9) = g(zp) = 0 but
&'(z0) # 0. Then, L’Hospital’s rule states that
f@) _ f(z0)

1m =
—0g(z)  §(20)

In the case of f'(z9) = g'(z9) = 0, the rule may be extended. See Problems 3.21-3.24.

We sometimes say that the left side of (3.14) has the “indeterminate form” 0/0, although such terminol-
ogy is somewhat misleading since there is usually nothing indeterminate involved. Limits represented by
so-called indeterminate forms oo/00, 0 - 00, 00°, 0°, 1%, and 00 — oo can often be evaluated by appropriate
modifications of L’Hospital’s rule.

(3.14)

3.11 Singular Points

A point at which f(z) fails to be analytic is called a singular point or singularity of f(z). Various types of
singularities exist.

1. Isolated Singularities. The point z = zg is called an isolated singularity or isolated singular point
of f(z) if we can find 6 > 0 such that the circle |z — 79| = & encloses no singular point other than
70 (i.e., there exists a deleted 6 neighborhood of zy containing no singularity). If no such & can be
found, we call zy a non-isolated singularity.

If 79 is not a singular point and we can find 6 > 0 such that |z — zy| = & encloses no singular

point, then we call zy an ordinary point of f(z2).

2. Poles. If zp is an isolated singularity and we can find a positive integer n such that
lim,_,,, (z —20)"f(z) = A #0, then z = z¢ is called a pole of order n. If n =1, zg is called a
simple pole.

EXAMPLE 3.1

(@ f(@=1/(z—2)Y hasa pole of order 3 at z = 2.

®) f@=0Gz—2)/z—-1)*z+1)z—4)hasa pole of order 2 at z = 1, and simple poles at z = —1
andz = 4.

If g(z) = (z — 20)"f(2), where f(z9) # 0 and n is a positive integer, then z = z; is called a zero of
order n of g(z). If n = 1, zq is called a simple zero. In such a case, z is a pole of order n of the
function 1/g(z).

3. Branch Points of multiple-valued functions, already considered in Chapter 2, are non-isolated
singular points since a multiple-valued function is not continuous and, therefore, not analytic
in a deleted neighborhood of a branch point.
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EXAMPLE 3.2
(@) f(z) = (z—3)"? has a branch point at z = 3.
(b) f(z) = In(z?> + z — 2) has branch points where z> +7—2 =0, i.e., atz =1 and 7 = —2.

4. Removable Singularities. An isolated singular point z is called a removable singularity of f(z) if
lim,_,,, f(z) exists. By defining f(z9) = lim,_, ., f(2), it can then be shown that f(z) is not only con-
tinuous at 7z but is also analytic at zp.

EXAMPLE 3.3 The singular point z = 0is aremovable singularity of f(z) = sin z/z sincelim, ¢ (sinz/z) = 1.
5. Essential Singularities. An isolated singularity that is not a pole or removable singularity is

called an essential singularity.

EXAMPLE 3.4 f(z) = ¢'/@? has an essential singularity at z = 2.

If a function has an isolated singularity, then the singularity is either removable, a pole, or an
essential singularity. For this reason, a pole is sometimes called a non-essential singularity.
Equivalently, z = zo is an essential singularity if we cannot find any positive integer n such
that lim__, ;,(z — z0)"f(z) = A # 0.

6. Singularities at Infinity. The type of singularity of f(z) at z = oo [the point at infinity; see pages 7
and 47] is the same as that of f(1/w) at w = 0.

EXAMPLE 3.5 The function f(z) = z° has a pole of order 3 at z = oo, since f(1/w) = 1/w> has a pole of
order 3 atw = 0.

For methods of classifying singularities using infinite series, see Chapter 6.

3.12 Orthogonal Families

Let w = f(2) = u(x, y) + iv(x, y) be analytic and f'(z) # 0. Then the one-parameter families of curves
ux,y)=a, vx,y)=p (3.15)

where « and S are constants, are orthogonal, i.e., each member of one family [shown heavy in Fig. 3-3] is
perpendicular to each member of the other family [shown dashed in Fig. 3-3] at the point of intersection.
The corresponding image curves in the w plane consisting of lines parallel to the # and v axes also form
orthogonal families [see Fig. 3-4].

w plane
v

z plane
y

Fig. 3-3 Fig. 3-4

In view of this, one might conjecture that if the mapping function f(z) is analytic and f'(z) # 0, then the
angle between any two intersecting curves C; and C; in the z plane would equal (both in magnitude and
sense) the angle between corresponding intersecting image curves C; and C} in the w plane. This conjecture
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is in fact correct and leads to the subject of conformal mapping, which is of such great importance in both
theory and application that two chapters (8 and 9) will be devoted to it.

3.13 Curves

Suppose ¢(¢) and Y«(z) are real functions of the real variable # assumed continuous in #; < ¢t < f,. Then the
parametric equations

z=x+iy=¢O)+iPt) =z0), h <t=<n (3.16)

define a continuous curve or arc in the z plane joining points a = z(#;) and b = z(;) [see Fig. 3-5].

If 11 # 1, while z(¢)) = z(©2), i.e., a = b, the endpoints coincide and the curve is said to be closed. A closed
curve that does not intersect itself anywhere is called a simple closed curve. For example, the curve of
Fig. 3-6 is a simple closed curve while that of Fig. 3-7 is not.

If ¢(¢) and (¢) [and thus z(7)] have continuous derivatives in #; <t < f, the curve is often called a
smooth curve or arc. A curve, which is composed of a finite number of smooth arcs, is called a piecewise
or sectionally smooth curve or sometimes a contour. For example, the boundary of a square is a piecewise
smooth curve or contour.

y y y

v

Fig. 35 Fig. 3-6 Fig. 37

Unless otherwise specified, whenever we refer to a curve or simple closed curve, we shall assume it to be
piecewise smooth.

3.14 Applications to Geometry and Mechanics

We can consider z(f) as a position vector whose y
terminal point describes a curve C in a definite
sense or direction as t varies from t; to . If z(¢) P Az = 7(t+ A —2(D)
and z(r + Ar) represent position vectors of points
P and Q, respectively, then 0
2(8)

Az zZ(t+ Ar) —z(1)
vV t+Af

At At A+ A1) c

is a vector in the direction of Az [Fig. 3-8]. If
limp,_,0 Az/At = dz/dt exists, the limit is a vector
in the direction of the fangent to C at point P and Fig. 3-8
is given by

dz dx n dy
T
dt dt dt
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If 7 is time, dz/dr represents the velocity with which the terminal point describes the curve. Similarly,

d*z/dr* represents its acceleration along the curve.

3.15 Complex Differential Operators

Let us define the operators V (del) and V (del bar) by

3 8 0 —_ a2 .0
Ve—ti—=2—, V=——i—

ox 3y oz ox lay:

d

0z

(3.17)

where the equivalence in terms of the conjugate coordinates z and 7 (page 7) follows from Problem 3.32.

3.16 Gradient, Divergence, Curl, and Laplacian

The operator V enables us to define the following operations. In all cases, we consider F(x, y) as a real
continuously differentiable function of x and y (scalar), while A(x, y) = P(x, y) 4+ iQ(x, y) is a complex

continuously differentiable function of x and y (vector).
In terms of conjugate coordinates,

Flx,y) = F<¥%) —G(z7) and A(x,y) = B(z 2)

Gradient. We define the gradient of a real function F (scalar) by

oF OF oG
gradd F=VF=—+i—=2— (3.18)
ox ay oz

Geometrically, if VF # 0, then VF represents a vector normal to the curve F(x, y) = ¢ where c is
a constant (see Problem 3.33).
Similarly, the gradient of a complex function A = P + iQ (vector) is defined by

grad A = VA = 3—i—i3 (P+10)
ox  dy
9P 90 ,(BP 8Q) B 28B

y ) T

3.19
ay  ox ( )

——— i

Cox 9y

In particular, if B is an analytic function of z, then dB/dz = 0 and so the gradient is zero, i.e.,
oP/ox = 0Q/dy, oP/dy = —(3Q/dx), which shows that the Cauchy—Riemann equations are sat-
isfied in this case.

Divergence. By using the definition of dot product of two complex numbers (page 7) extended to
the case of operators, we define the divergence of a complex function (vector) by

divA =V-A =Re{VA} = Re{(3 — ii)(P-l- iQ)}
ox  dy

—=2R
+ e pE

P 0Q 9B
=5t { } (3.20)

Similarly, we can define the divergence of a real function. It should be noted that the divergence
of a complex or real function (vector or scalar) is always a real function (scalar).
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3. Curl. By using the definition of cross product of two complex numbers (page 7), we define the
curl of a complex function as the vector

VxA=10,0, @—aj
ox oy

orthogonal to the x-y plane having magnitude

lcurl A| = |V x A| = [Im{VA}| = ‘Im{ (3 - i3>(P + iQ)H

0x ay
_|9Q 9P _ |y l?8 (3.21)
ox oy 0z

4. Laplacian. The Laplacian operator is defined as the dot or scalar product of V with itself, i.e.,

— a a\[/o .9
V.V=V?=RefVV}=Re{(——i—|[—+i—
ox ay/\dox  dy

82 82 82
- 41— _—4___ 3.22
ox2 + oy? 0202 (3-22)

Note that if A is analytic, V?A = 0 so that V2P = 0 and V?Q = 0, i.e., P and Q are harmonic.

Some ldentities Involving Gradient, Divergence, and Curl

Suppose A, A, and A are differentiable functions. Then the following identities hold

1. grad(A; + A;) = grad A; + grad A,

2. div(A; +Ay) =div A +div A,

3. curl(A; +A,) =curl A; 4 curl A,

4. gradA1A) = (Ap)(grad Ay) + (grad A))(A2)

5. Jcurl grad A| =0 if A is real or, more generally, if Im{A} is harmonic.

6. divgradA =0 if A isimaginary or, more generally, if Re{A} is harmonic.

SOLVED PROBLEMS

Derivatives

3.1. Using the definition, find the derivative of w = f(z) = z° — 2z at the point where
(@) z=120, (b) z=—1.

Solution

(a) By definition, the derivative at 7 = zg is

fzo+A) —flz0)
mo— =

flzo)=li im (20 + A2)* — 2(z0 + A2) — {23 — 220}
Az—

AZ Alzl~>0 AZ

i 73882 + 35080 + (A2)° — 22 — 282 — 5 + 230
- Az—0 AZ

- Aljmo 3% + 3208z + (A7) —2 =37 —2

In general, f'(z) = 37> — 2 for all z.
(b) From (a), or directly, we find that if zp = —1, then f'(—1) = 3(— n?—2=1.
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3.2. Show that (d/dz)z does not exist anywhere, i.e., f(z) = 7 is non-analytic anywhere.
Solution

By definition,

d L fz+ A7) —f(2)
sz(z) o Alzlgo

Az
if this limit exists independent of the manner in which Az = Ax + iAy approaches zero.
Then
Az —7% iy + Ax + iAy — ]
Lo gim SHALTE g, THN Ry Z A
dz Az—0 Az Ax—0 Ax + iAy
Ay—0
. o x—iy+Ax—iAy — (x —iy) . Ax—iAy
= lim - = lim ;
Ax—0 Ax + iAy Ax—0Ax + iAy
Ay—0 Ay—0
If Ay = 0, the required limit is
Ax
lim —=1
o Ax
If Ax = 0, the required limit is
—idy
Ay—0 iAy -

Then, since the limit depends on the manner in which Az — 0, the derivative does not exist, i.e., f(z) = Z is
non-analytic anywhere.

3.3. Givenw =f(2) = (1 +2)/(1 — 2), find (a) dw/dz and (b) determine where f(z) is non-analytic.
Solution
(a) Method 1. Using the definition

1+@E@+A2) 1+:z
dw . fe+A)—f) . 1-(z+Ay) 1-—¢
dz Alzlgo Az - Alzl,glo Az
lim 2 2
= 1 =
a—0(1—z—A)(1—2) (1—2)°

independent of the manner in which Az — 0, provided z # 1.

Method 2. Using differentiation rules. By the quotient rule [see Problem 3.10(c)], we have if z # 1,

d d
d (1+z> Um0+ 0=y -+ 2
B (1 —2)? (1—2)? S (1-27

dz\1 -z

(b) The function f(z) is analytic for all finite values of z except z = 1 where the derivative does not exist and
the function is non-analytic. The point z = 1 is a singular point of f(z).

34. (a) If f(z) is analytic at z, prove that it must be continuous at z;.

(b) Give an example to show that the converse of (a) is not necessarily true.
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Solution
(a) Since

f@o+h =) |

fzo+h) —f(z0) = p

where h = Az # 0, we have

Jf@o+h —fzo)
0 h

. - o
lim f(z0 +h) — f(z0) = lim limh = f'(z0)- 0 =0

because f'(zo) exists by hypothesis. Thus
lim f(zo + ) —f(z) =0 or  lim f(zo +h) = f(z0)

showing that f(z) is continuous at z.

(b) The function f(z) = 7 is continuous at zp. However, by Problem 3.2, f(z) is not analytic anywhere. This
shows that a function, which is continuous, need not have a derivative, i.e., need not be analytic.

Cauchy-Riemann Equations

3.5. Prove that a (a) necessary and (b) sufficient condition that w = f(z) = u(x, y) + iv(x, y) be analytic in
aregion R is that the Cauchy —Riemann equations du/dx = dv/dy, du/dy = —(dv/dx) are satisfied in
‘R where it is supposed that these partial derivatives are continuous in R.

Solution
(a) Necessity. In order for f(z) to be analytic, the limit

lim fz+Az) —f(2) — )
Az

Az—0

. A{ulx + Ax, y + Ay) + iv(x + Ax, y + Ay)} — {ux, y) + iv(x, y)}

= lim - (1
Ax—0 Ax +iAy

Ay—0

must exist independent of the manner in which Az (or Ax and Ay) approaches zero. We consider two poss-
ible approaches.

Case 1. Ay = 0, Ax — 0. In this case, (1) becomes

fim G AN Y) —uxy) bt Av y) —vCo )] ou L3
Ax—0 Ax ! Ax a ox ! ox

provided the partial derivatives exist.

Case 2. Ax =0, Ay — 0. In this case, (1) becomes

. ulx, y+ Ay) —u(x, y)  olx, y+ Ay) — v(x, y) 10u v ou  ov
lim : + =+ —=—i—+=
Ay—0 iAy Ay idy Oy dy  dy

Now f{(z) cannot possibly be analytic unless these two limits are identical. Thus, a necessary condition
that f(z) be analytic is

8u+,81)_ ou  dv Bu_av 8v_ ou

T Tty aTy a
(b)  Sufficiency. Since du/0x and du/dy are supposed to be continuous, we have
Au = u(x + Ax, y + Ay) — u(x, y)
= {u(x + Ax, y + Ay) — u(x, y + Ap)} + {u(x, y + Ay) — ulx, y)}

ou ou ou ou
- + Ax+ | —+ Ay = —Ax+ —Ay + € Ax + 1A
<3x 61) <8y Tll) Y ox * ay YT € ey
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where €, — 0 and n; — 0 as Ax — 0 and Ay — 0.
Similarly, since dv/dx and dv/dy are supposed to be continuous, we have

av av ov av

Av=—+e&|Ax+|—+m |Ay = —Ax+ —Ay + eAx + n,Ay
ox ay ox ay

where €, — 0 and m, — 0 as Ax — 0 and Ay — 0. Then

Aw = Au+iAv = %—H@ Ax + %—Fi@ Ay + eAx + nAy ?2)
ox  ox ay ay

where € = € +ie; — 0and n =1, +in, — 0 as Ax - 0 and Ay — 0.
By the Cauchy—Riemann equations, (2) can be written
av

Aw = %+i@ Ax + ——+i% Ay + eAx + nAy
ox ox ox ox

= %—H@ (Ax + iAy) + €Ax + nAy
ox ox

Then, on dividing by Az = Ax 4 iAy and taking the limit as Az — 0, we see that

A
d%zf/(z): lim w_au Lo

d AzaO?Z_a l&

so that the derivative exists and is unique, i.e., f(z) is analytic in R.

3.6. Given f(z) = u + iv is analytic in a region R. Prove that u and v are harmonic in R if they have
continuous second partial derivatives in R.

Solution

If f(z) is analytic in R, then the Cauchy—Riemann equations

ou v
—== )
ax  ay
and
av ou
—=— @
ox ay

are satisfied in R. Assuming « and v have continuous second partial derivatives, we can differentiate both sides

of (1) with respect to x and (2) with respect to y to obtain

2 2
M — v 3)
oxz  Oxdy
and
v 8%u
= “
dyox ay
from which
8%u 8%u Pu  Fu

- T ety

i.e., u is harmonic.
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Similarly, by differentiating both sides of (1) with respect to y and (2) with respect to x, we find

Pv 8%

wtgp =Y

and v is harmonic.

It will be shown later (Chapter 5) that if f(z) is analytic in R, all its derivatives exist and are continuous in

‘R. Hence, the above assumptions will not be necessary.
3.7. (a) Prove that u = e7*(xsiny — ycosy) is harmonic.
(b) Find v such that f(z) = u + iv is analytic.

Solution

d
@) 8714 = (e7*)(siny) + (—e ")(xsiny — ycosy) = e “siny — xe *siny + ye *cosy
X
*u _
o
ou

= e "(xcosy+ysiny —cosy) =xe “cosy+ye Fsiny —e Fcosy
y

Pu 9 . . . . o .
— =—(xe Fcosy+ye 'siny —e " cosy) = —xe siny + 2e¢ " siny 4 ye cosy
ayr Oy

Adding (1) and (2) yields (Bzu/axz) + (Bzu/ayz) = 0 and u is harmonic.

Ew (e7*siny —xe siny + ye " cosy) = —2¢ *siny + xe *siny — ye *cosy
X

(b) From the Cauchy—Riemann equations,

o ou . x —x
—=_—=e¢ 'siny—Xxe " siny+ye " CcoSy
dy ox

ov ou x . o
—=——=e¢ 'cosy—xe cosy—ye ‘sin
o oy Yy y=y y

Integrate (3) with respect to y, keeping x constant. Then

v=—e *cosy+xe “cosy+ e *(ysiny+ cosy) + F(x)
=ye *siny 4+ xe " cosy+ F(x)

where F(x) is an arbitrary real function of x.
Substitute (5) into (4) and obtain

—ye *siny —xe Fcosy+ e “cosy+ F'(x) = —ye “siny — xe *cosy — ye “siny
or F'(x) = 0 and F(x) = ¢, a constant. Then, from (5),
v=e*(ysiny+xcosy)+c

For another method, see Problem 3.40.

3.8. Find f(z) in Problem 3.7.

Solution
Method 1
We have f@) =fx+iy) = ulx, y) +iv(x, y).

M

(@)

3

“

(&)
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Putting y = 0 f(x) = u(x, 0) 4 iv(x, 0).
Replacing x by z, f(@) = u(z, 0) +iv(z, 0).

Then, from Problem 3.7, u(z, 0) =0, v(z, 0) = ze™* and so f(z) = u(z, 0) + iv(z, 0) = ize™%, apart from an
arbitrary additive constant.

Method 2

Apart from an arbitrary additive constant, we have from the results of Problem 3.7,
f@@ =u+iv=e(xsiny —ycosy) +ie *(ysiny + xcosy)

o (e —e™ e e N ey + eV
() (e () ()

= i(x 4 iy)e T = ize™*

Method 3

We have x = (z+7)/2, y = (z — 7)/2i. Then, substituting into u(x, y) + iv(x, y), we find after much tedious
labor that 7 disappears and we are left with the result ize <.

In general, method 1 is preferable over methods 2 and 3 when both u and v are known. If only u (or v) is
known, another procedure is given in Problem 3.101.

Differentials
3.9. Givenw =f(z) =22 —2z%. Find: (a) Aw, (b)dw, (c)Aw — dw.

Solution

@ Aw=f(z+A2)—f(2)={@+A) —2+A)*} — { —22%}
=22 43202+ 32(A2)* + (Az)® — 227 — 4zAz — 2(Az)* — 2 +27°
= (32 — 42)Az 4 (3z — 2)(A2)® + (A7)’

(b) dw = principal part of Aw = (37> — 4z)Az = (32> — 4z) dz, since, by definition, Az = dz.
Note that f'(z) = 3z — 4z and dw = (322 — 4z) dz, i.e., dw/dz = 3z% — 4z.

(c) From (a) and (b), Aw — dw = (3z — 2)(Az)* + (Az)® = €Az where € = (3z — 2)Az + (Az)%.
Note that € — 0 as Az — 0, i.e., (Aw — dw)/Az — 0 as Az — 0. It follows that Aw — dw is an infinitesi-
mal of higher order than Az.

Differentiation Rules. Derivatives of Elementary Functions

3.10. Prove the following assuming that f(z) and g(z) are analytic in a region K.
d d d
(a) Z {f(2)+ g} = p f@)+ d—zg(Z)

d d d
(b) = {(f(2)g(@)} =f(2)5-2() + g(@) = f(2)
'z dz dz

() = if g(z)#0

eI

d d
d {f(z)} 8@ () = [ -8()
e

8(2)
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Solution
@ d (D) + @) = lim flz+ A2 + gz + Az) — {f(2) + g(2)}
dz Az—0 AZ
flz+ A7) —f(z) + lim g(z+ Az) — g(2)

= lim
Az—0 AZ Az—0 AZ

d d
=7 f@+ d—zg(z)

d A Az) —
0 @) = fim LEF A2 ZTERE
_ i JE T AD{E+A2) — g} + g@Uf (2 + A7) — f(2)}
Az—0 AZ
= 11m f(Z+A )iw} + 11 g( ){W}

=f(@ zzg(z) +8@) z f ()

Note that we have used the fact that lima,_,o f(z + Az) = f(z) which follows since f(z) is analytic and

thus continuous (see Problem 3.4).

Another Method
Let U=f(z),V=gk. Then AU=f(z+A2)—f(2)

f(z+A2) = U+ AU, g(z+ Az) =V + AV. Thus

and AV =g(z+ A7) —g2), ie.,

UAV + VAU + AUAV

d (U+AUV +AV) — UV
0V = fim) Az et Az
AV AU AU dv dUu
= 1. — —_— 7A JR—
AZITO(U Az +VAZ Az V) Ud +de

where it is noted that AV — 0 as Az — 0, since V is supposed analytic and thus continuous.

A similar procedure can be used to prove (a).

(c) We use the second method in (b). Then

i U\ _ limi U+AU_H — lim VAU — UAV

dz\V)  a—0Az |VHAV V| a0Az(V+AVYV
— lim 1 AiU_ ﬂ _ V(dU/dz) — U(dV /dz)
TAaso(VHEAVV | Az Az V2

The first method of (b) can also be used.
3.11. Prove that (a) (d/dz)e* = €%, (b) (d/dz)e™ = ae®™ where a is any constant.

Solution
(a) By definition, w = €* = "t = ¢*(cosy +isiny) = u +iv or u = e*cosy, v = e*siny.
Since du/dx = ¢* cosy = dv/dy and dv/dx = €* siny = —(du/dy), the Cauchy—Riemann equations are
satisfied. Then, by Problem 3.5, the required derivative exists and is equal to

ou .ov 7 . C
— =—i—+—=¢"cosy+ie'siny =¢

w T Ty
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(b) Let w = e where { = az. Then, by part (a) and Problem 3.39,

d , d, d,dl ., .
dze _dze _d{e dz_e a = ae
We can also proceed as in part (a).
d . d . d ’
3.12. Prove that: (a) —sinz =cosz, (b)—cosz= —sinz, (c)—tanz = sec”z.
dz dz dz

Solution
(a) We have w = sinz = sin(x 4 iy) = sinx coshy + i cos x sinhy. Then
u = sinxcoshy, v =cosxsinhy

Now du/dx = cosxcoshy = dv/dy and dv/dx = —sinxsinhy = —(du/dy) so that the Cauchy—Riemann
equations are satisfied. Hence, by Problem 3.5, the required derivative is equal to

ou . dv ou  dv .. . .
—+i—=—i—+—=cosxcoshy —isinxsinhy = cos(x + iy) = cos z
ox  ox dy  ay
Another Method
iz _ ,—iz
Since sinz = 27,6, we have, using Problem 3.11(b),
i
d d (e —e 1d ; 1d _; 1. 1 _;
L hing — & e A AN e A
ot dz( 2i ) 2idz’ " 2idt T2¢ Ta¢ Tt
d d (e 4 e " 1d .. 1d _;
b)) — 2= Y__Z iz, 27 iz
(b) g cosz dz( 2 ) 24:° Y2z’
= i.e"Z - iefiz = —L —e” = —sin
=2 T2° % 2 e

The first method of part (a) can also be used.
(c) By the quotient rule of Problem 3.10(c), we have

d . . d
dt d [sinz cosz-sinz — sinz--cosz
—tlanz = — =
dz dz \cosz cos? z
_ (cosz)(cosz) — (sinz)(—sinz) cos?z+sin’z R
= 2 = 2 =2, sz
cos? z cos?z cos? z
d 12 1 .. 1/2 ; . .
3.13. Prove that d—z =2 realizing that z'/~ is a multiple-valued function.
z Z

Solution

A function must be single-valued in order to have a derivative. Thus, since z!/? is multiple-valued (in this case
two-valued), we must restrict ourselves to one branch of this function at a time.

Case 1
Let us first consider that branch of w = z!/2 for which w = 1 where z = 1. In this case, w? = z so that

dz dw 1 d i |1
%—ZW and so = or d—zz =57
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3.14.

3.15.

3.16.

Case 2
Next, we consider that branch of w = z!/2 for which w = —1 where z = 1. In this case too, we have w? = z
so that

dz dw 1 d | 1

= =2 d —==— =2 =

aw M G T Y Toan

Inboth cases, we have (d/dz)z'/* = 1/(2z!/?). Note that the derivative does not exist at the branch point z = 0.
In general, a function does not have a derivative, i.e., is not analytic, at a branch point. Thus branch points are
singular points.

d 1
Prove that —Inz = —.
dz z

Solution
Let w =1Inz. Then z = ¢" and dz/dw = " = z. Hence

d dw 1 1

dz nzzjz:dz/dw:z

Note that the result is valid regardless of the particular branch of In z. Also observe that the derivative does
not exist at the branch point z = 0, illustrating further the remark at the end of Problem 3.13.

d _f®@
Prove that d—zln fl@) = Q"

Solution
Let w = In { where { = f(2). Then

dw_dw df 1 d{_ [
dz —dl dz ¢ di f@2)

1
1—z2

d 1 d
Prove that: —sinlz=————, (b)—tanh 'z =
rove that: (a) & sin” " z = (b) & anh™ " z

5

Solution

(a) If we consider the principal branch of sin™! z, we have by Problem 2.22 and by Problem 3.15
d . d |1 1d
dz ) T4z 71 (I 1_ 2) :77< l_ 2) (‘ 1_ 2)
dzsm z dz{i n(iz + z i Z+ Z 1z + z
L. 1 2y-1/2 .
=3 l—l—i(l—z) (—22) (zz—i— 1—z2>

(o) e

The result is also true if we consider other branches.

(b) We have, on considering the principal branch,

1 14z 1 1
tanh™' z==In[ — ) = =1In(1 ——1In(1 —
anh™" z 2“(1—1) 2n( +2) 2n( 2)
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Then

d 1d 1d 1/ 1 1/ 1 1
—tanh™! z = ~—In(1 ———In(l—2) == = =
e A 2<1+Z>+2<1—z> [

Note that in both parts (a) and (b), the derivatives do not exist at the branch points z = +1.

3.17. Using rules of differentiation, find the derivatives of each of the following:
(a) cos’(2z + 3i), (b) ztan"!(Inz), (c) {tanh™'(iz+2)}"", (d) (z — 3i)**™2

Solution

(@) Letm=2z+4+3i,{=cosn,w= §2 from which w = cos?(2z + 3i). Then, using the chain rule, we have

dw dw d{ dn e _ o _ o . .
Gl A (2¢)(=sin m)(2) = (2 cos N)(—sin N)(2) = —4 cos(2z + 3i) sin(2z + 3i)

Another Method
d 2 | d .
—{cos(2z + 3i)}* = 2{cos(2z + 3i)}{—cos(2z + 3i)
dz dz

= 2{cos(2z + 3i)}{—sin(2z + Si)}{d%(Zz + 3i)}

= —4cos(2z + 3i) sin(2z + 3i)

(b) d%{(z)[tan*‘ (In2)]} = zd% [tan™!(In 2)] + [tan~"(In 2)] diz(Z)

1 d 1
=y——st—d tan'(Inz) = ——— + tan~'(l
Z{l+(lnz)2}dz(nz)+an o) = e T (2
d =1 -1 —1/- -2 d —1,:
() d—z{tanh (iz+2)}7" = —1{tanh™ " (iz + 2)} d—z{tanh (iz+2)}
= —{tanh ™! (iz + 2)} 2 _ i(iz +2)
B 1—(iz+2)?] dz
_ —iftanh™'(iz 4+ 2)}
T 1= (iz+2)?
d w4742 d (4z+2) In(z—3i) (4z+2) In(z—3i) d .
—{(@ =32} = — [P = (HADIET — (47 4 2) In(z — 3i)}
) dz dz dz

: d d
= MDD Y (47 4 2) —[In(z — 3)] + In(z — 3i) — (42 + 2)
dz dz
= DD {L 2 din— 3i)}
z—3i
= (z = 3" 4z 4+ 2) + 4z — 3)* " In(z — 3i)

3.18. Suppose w? — 3z>w +41Inz = 0. Find dw/dz.

Solution

Differentiating with respect to z, considering w as an implicit function of z, we have

d 5 d 5 d ,dw > dw 4
dz(w ) a’z(Z W)+ dz(nz) or 2w dz ¢ dz ZW—i_z

d 6zw —4
Then, solving for dw/dz, we obtain d—vzv = 33‘;7_35
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3.19. Given w = sin”!(+ — 3) and z = cos(In 7). Find dw/dz.

Solution

dw _dw/dt 1)1 =1 =37

t
dz — dz/dr — —sinIn0(1/)  gin(inHy/1 — (= 372

3.20. In Problem 3.18, find d?w/dz>.

dw _d (dw\ _d (6w —4/z

dz2 ~ dz\dz)  dz\3w? — 3z
_ (3w? —32)(6z dw/dz + 6w + 4/2%) — (62w — 4/2)(6w dw/dz — 67)
N (Bw? — 3z2)?

Solution

The required result follows on substituting the value of dw/dz from Problem 3.18 and simplifying.

L'Hospital’s Rule

3.21. Suppose f(z) is analytic in a region R including the point zy. Prove that
@) = f(20) +f'(20)(z = 20) + M(z — 20)

where n — 0 as z — 2.

Solution
Let M _f/(ZO) = 1M S0 that
Z—20

f(@) = f(zo) + 1 (z0)(z — 20) = M(z — 20)

Then, since f(z) is analytic at z, we have as required

lim = i {f(Z)—f(ZO)
im n = lim{——————
Z—20

=20 =20

—f/(Zo)} =f"(z0) —f'(z0) =0

3.22. Suppose f(z) and g(z) are analytic at zg, and f(z0) = g(z0) = 0 but g'(z9) # 0. Prove that

lim 1@ _ /o)
im-—=
= 8(2)  §'(20)

Solution

By Problem 3.21 we have, using the fact that f(z9) = g(z0) = 0,
F@ = f(z0) + ')z — 20) + Mz — 20) = f'(20)(z — 20) + M (z — 20)
8(2) = g(z20) + §'(20)(z — 20) + M(z — 20) = &'(20)(z — 20) + M (z — 20)

where lim__, ; n; = lim,_,,,n, = 0. Then, as required,
. f@ o Af@) +miz—20)  f'(z0)

lim — = lim =
=0g@)  =u{g )+ miz—2) &)
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Another Method
lim 1@ _ lim f(@) —f(z0) /82— g(z0)
—20g(z) —w  z2—2 Z—20
_ (hm f@ —f(Zo)>/<hm 8@ — g(Zo)> _J @)
720 Z—20 =0 Z—20 g'(Zo)
10
oz +1 . 1 —cosz . 1 —cosz
3.23. Evaluate (a) glg} m, (b) lgr(l) T’ (©) }%W
Solution

(@) Let f(z) =79+ 1 and g(z) = z° + 1. Then f(i) = g(i) = 0. Also, f(z) and g(z) are analytic at z = i.
Hence, by L’Hospital’s rule,
M4l 102 5, s

lim———— =1lim—— = m-=z ==
—i 720+ 1 =i 67° —i3 3

(b) Letf(z) =1 —coszand g(z) = z>. Then f(0) = g(0) = 0. Also, f(z) and g(z) are analytic at z = 0. Hence,
by L’Hospital’s rule,
. 1—cosz . sing
lim ——— = lim——
=0  Z2 =0 27
Since fi(z) = sinz and g;(z) = 2z are analytic and equal to zero when z = 0, we can apply L’Hospital’s
rule again to obtain the required limit,

(c) Method 1. By repeated application of L’Hospital’s rule, we have

i 1 —cosz i sinz . cosz 1
im— = lim = lim - =
0 sinz? =>02zcoszz2  z—02cosz? —4z2sinz? 2

. . _sinz L .
Method 2. Since lln(l)— = 1, we have by one application of L’Hospital’s rule,
=0 Z
. l—cosz . sinz . (sinz 1
lim — = lim =lim{—
z—0 sinz? ~02zc08z2 =0\ Z 2 cos 72

si 1 N 1

—tim () tim(—— ) =)= ) ==

=0\ z ) z>0\2cosz> 2 2
2

Method 3. Since lin(l)% =1 or, equivalently, lirré
=0 Z 7—

=1, we can write

sin z2

. 1 —cosz . 1 —cosz 2 . l—cosz 1
lim — = lim 5 — | = lim 5 =—
=0 sing =0 z sin z =0  Z 2

using part (b).

3.24. Evaluate lim,_,( (cosz)"/ 2,

Solution

Let w = (cosz)/<". Then Inw = (Incosz)/z> where we consider the principal branch of the logarithm. By
L’Hospital’s rule,

. . Incosz . (—sinz)/cosz
limlnw = lim =lim——
z—0 z—0 Z2 z—0 21

. (sinz 1 _ n_ 1
- gﬂ)(?) <_20052) B (1)(_5) )
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But since the logarithm is a continuous function, we have

1
limlnw = ln(limw) =—=
z—0 z—0 2
or lim,_,ow = e~!/2, which is the required value.
Note that since lim,_,o cosz = 1 and lim,_,¢ 1/z> = oo, the required limit has the “indeterminate form” 1%,

Singular Points

3.25. For each of the following functions, locate and name the singularities in the finite z plane and deter-

mine whether they are isolated singularities or not.

In(z — 2) sin \/z
(@ fl)= 7, (b) f@=sec(l/z), (©) fQD="F""F""F7z @D f@=
+4)? (22 42z +2)* N4
Solution
z b4
(@ fl@)= . 5 = . -
! 22+ 4)2 {Z 420z =20 (z+20)*(z—2i)
Since
lim (¢~ 207() = lim - = £ £0
i —2i = lim
< ¢ 2i(z + 20 8i
z = 2i is a pole of order 2. Similarly, z = —2i is a pole of order 2.
Since we can find 8 such that no singularity other than z = 2i lies inside the circle |z — 2i| = & (e.g.,
choose 6 = 1), it follows that z =2i is an isolated singularity. Similarly, z = —2i is an isolated
singularity.

(b) Since sec(1/z) = 1/cos(1/z), the singularities occur where cos(l1/z) =0, i.e., 1/z=Q2n+ 1)7/2 or
z=2/(2n+ 1)m, where n =0, +1, +£2, +3,.... Also, since f(z) is not defined at z = 0, it follows
that z = 0O is also a singularity.

Now, by L’Hospital’s rule,

C =2/Qn+ 7

lim
—>2/Qn+ ) cos(1/z)

. 1

lim — 5
z=2/@n+Dyr —sin(1/z){—1/7%}

_{2/@n+Dm? A=1)

. 2
Hz}%ﬁinw{z Qn+ D }f @ =

=— = #0
sinn 4+ D@/2  2n+ 1)* 72
Thus the singularities z =2/(2n+ 1)/, y
n=0, +1, £2,... are poles of order one,
i.e., simple poles. Note that these poles are
located on the real axis at z= +2/m, s | 25x

+2/3ar, £2/5m,... and that there are infi- ——e ————— ¢ ¢ e ¢ ¢
nitely many in a finite interval which includes —n —3 23m vr
0 (see Fig. 3-9).

Since we can surround each of these by a
circle of radius 8, which contains no other
singularity, it follows that they are isolated Fig. 3-9
singularities. It should be noted that the 6
required is smaller the closer the singularity is to the origin.

Since we cannot find any positive integer n such that lim,_,o (z — 0)"f(z) = A # 0, it follows that z = O is
an essential singularity. Also, since every circle of radius 6 with center at z = 0 contains singular points other
than z = 0, no matter how small we take 8, we see that z = 0 is a non-isolated singularity.
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(c) The point z =2 is a branch point and is a non-isolated singularity. Also, since 7> + 2z + 2 = 0 where
z=—1 4 i, it follows that 2> + 2z +2 = (z+ 1 + i)z + 1 — i) and that z = —1 =+ i are poles of order 4
which are isolated singularities.

(d) At first sight, it appears as if z =0 is a branch point. To test this, let z = re’® = re’®?2™ where
0<6<2m

% we have

Ifz=ré

sin(y/re'%?)

f@) = N

If z = re' ™2™ we have

sin(y/re'%?e™) _ sin(—/7e'%?) _ sin(y/re'%?)

f@= Jretlem T [reif2 T [rei®2

Thus, there is actually only one branch to the function, and so z = 0 cannot be a branch point.
Since lim,_,¢ sin v/z/+/z = 1, it follows in fact that z = 0 is a removable singularity.

B+ +2

3.26. (a) Locate and name all the singularities of f(z7) = —— .
® s 1@ (z— 1@z +2)7?

(b) Determine where f(z) is analytic.

Solution

(a) The singularities in the finite z plane are located at z =1 and z = —2/3; z = 1 is a pole of order 3 and
z = —2/3 is a pole of order 2.
To determine whether there is a singularity at z = oo (the point at infinity), let z = 1/w. Then

AP +a/wit+2  T+w 4208

A/w—=1°G/w+2?2 w1 —w)’3+2w)?

Thus, since w = 0 is a pole of order 3 for the function f(1/w), it follows that z = o is a pole of order 3
for the function f(z).

Then the given function has three singularities: a pole of order 3 at z =1, a pole of order 2 at
z=—2/3, and a pole of order 3 at 7z = .

Ja/w) =

(b) From (a) it follows that f(z) is analytic everywhere in the finite z plane except at the points z = 1 and —2/3.

Orthogonal Families

3.27. Letu(x, y) = a and v(x, y) = B, where u and v are the real and imaginary parts of an analytic func-
tion f(z) and « and B are any constants, represent two families of curves. Prove that if f'(z) # 0, then
the families are orthogonal (i.e., each member of one family is perpendicular to each member of the
other family at their point of intersection).

Solution

Consider any two members of the respective families, say u(x, y) = a; and v(x, y) = B; where a; and B, are
particular constants [Fig. 3-10].
Differentiating u(x, y) = «; with respect to x yields

ou Odudy

— = =

ox  dydx
Then the slope of u(x, y) = a; is

dy  ou /ou

dx  ox Biy
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Similarly, the slope of v(x, y) = B, is

dy v jov
dx  ax/ By
Now
ou Odv Ov . ou ou v v ou
"@=—+i—=——i— #0 ither —=— #0 =——#0
F@ 8x+18x ay 18y7é = er8x E)y7é Orax E)y7é

From these equations and inequalities, it follows that either the product of the slopes is —1 (when none of the
partials is zero) or one slope is 0 and the other infinity, i.e., one tangent line is horizontal and the other is vertical,

when
8u_av_0 Bu_ Bu_
o dy ax Ay
Thus, the curves are orthogonal if f/(z) # 0.
y
y
B c
/‘/z
D ot A
X
19) a
X \\/’/
E
Fig. 3-10 Fig. 3-11

3.28. Find the orthogonal trajectories of the family of curves in the xy plane which are defined by
e *(xsiny — ycosy) = a where « is a real constant.

Solution

By Problems 3.7 and 3.27, it follows that e *(y siny 4+ xcosy) = 3, where f3 is a real constant, is the required
equation of the orthogonal trajectories.

Applications to Geometry and Mechanics

3.29. An ellipse C has the equation z = a cos wt + bi sin wt where a, b, w are positive constants, a > b,
and ¢ is a real variable. (a) Graph the ellipse and show that as ¢ increases from ¢ = 0 the ellipse
is traversed in a counterclockwise direction. (b) Find a unit tangent vector to C at any point.

Solution

(a) Astincreases from Oto 7/2w, 7/2wtom/w, w/wto37/2w, and37/2wto2m7/w, pointzonC
moves from A to B, Bto D, D to E, and E to A, respectively (i.e., it moves in a counterclockwise direction
as shown in Fig. 3-11).
(b) A tangent vector to C at any point 7 is
dz

o = —aw sin wt + bwi cos wt

Then a unit tangent vector to C at any point ¢ is

dz/dt —aw sin wt + bwi cos wt —asin wt + bi cos wt

ldz/dt] | —aw sinwt +bwicoswt| /42 sin? wt + b2 cos? wt
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3.30. In Problem 3.29, suppose that z is the position vector of a particle moving on C and that ¢ is the time.
(a) Determine the velocity and speed of the particle at any time.
(b) Determine the acceleration both in magnitude and direction at any time.
(c) Prove that d°z/dt* = —w’z and give a physical interpretation.
(d) Determine where the velocity and acceleration have the greatest and least magnitudes.

Solution

(a) Velocity = dz/dt = —awsin wt 4+ bwi cos wt.

Speed = magnitude of velocity = |dz/dt| = wva? sin® wr + b2 cos? wt

(b) Acceleration = d’z/dt*> = —aw? cos wt — bw’i sin wt.

Magnitude of acceleration = |d*z/df*| = 0V a? cos? wt + b sin® wt

(c) From (b) we see that
dzz/a't2 = —aw’ cos ot — bw’isin wf = —w*(acos wi + bisin wf) = —w’z

Physically, this states that the acceleration at any time is always directed toward point O and has magni-
tude proportional to the instantaneous distance from O. As the particle moves, its projection on the x and y
axes describes what is sometimes called simple harmonic motion of period 27/ w. The acceleration is
sometimes known as the centripetal acceleration.

(d) From (a) and (b), we have

Magnitude of velocity = wy/a? sin® wt 4+ b2(1 — sin® wf) = w\/ (a% — b?) sin® wt + b2

Magnitude of acceleration = w”y/a? cos? wt + b2(1 — cos? wt) = w’+/(a? — b?) cos? wt + b>

Then, the velocity has the greatest magnitude [given by wa] where sin wt = +1, i.e., at points B and E
[Fig. 3-11], and the least magnitude [given by wb] where sin wt = 0, i.e., at points A and D.
Similarly, the acceleration has the greatest magnitude [given by w?a] where cos wt = =+1, i.e., at
points A and D, and the least magnitude [given by w’b] where cos wt = 0, i.e., at points B and E.
Theoretically, the planets of our solar system move in elliptical paths with the Sun at one focus. In
practice, there is some deviation from an exact elliptical path.

Gradient, Divergence, Curl, and Laplacian

3.31. Prove the equivalence of the operators:

ad ad d ad 0 ]
I — b)) —=il——= h — 1y, 7 =X — Iy.
(a) 3x_3z+ z ( )By l(az 3Z> where z=x+1y,z=x—1y

Solution

If F is any continuously differentiable function, then

(a) 87F_87F§ a—F%—g—i—a—lpshowin the e uivalencej—g—i—3
o dzax | zax oz & gfhe ox oz 0%

oF 0F 0z OF oz
) o=t

+ aF(')+8F( i) ,<8F 8F> showing the equivalence 9 ,(8 8)
=— =D+ =) =il = W uiv —=il——=).
oy ocoy oy o & gfheed

9z oz dy dz 0z
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5 8 8 . _ 9 9 9
3.32. Show that @) V=— +i0 =22 pyv=2_;0 00
owthat (@) V.= + iy =2 OV =071 T 2%,

Solution

From the equivalences established in Problem 3.31, we have

5 8 9 SR 5

VE '7 —_ —_— 2——— :2—

@ iy Em (32 az) P
9

o
D 00,0 p(8 ) 50
ox dy 9z 0z iz oz 0z

3.33. Suppose F(x, y) = ¢ [where ¢ is a constant and F is continuously differentiable] is a curve in the xy
plane. Show that grad F = VF = (dF /dx) + i(dF'/dy), is a vector normal to the curve.

(b) V=

Solution

We have dF = (dF /dx)dx + (0F /dy)dy = 0. In terms of dot product [see page X], this can be written

oF  oF
—+i— |- (dx+idy) =
dx ay

But dx + idy is a vector tangent to C. Hence VF = (0F /dx) + i(0F /dy) must be perpendicular to C.

oP oB
3.34. Show that — — —Q +i 90 + — ) = 2—= where B(z, z) = P(x, y) +iQ(x, y).
dx  dy ax By 0z

Solution

From Problem 3.32, VB = 2(dB/dz). Hence

(2,0 P00 (0 P\ 0B
VB_<8 +i )(P—}—Q) . 3y+<3x+8y)_282

3.35. Let C be the curve in the xy plane defined by 3x?y — 2y* = 5x*y?> — 6x2. Find a unit vector normal
to C at (1, —1).

Solution

Let F(x, y) = 3x%y — 2y® — 5x*)? 4 6x? = 0. By Problem 3.33, a vector normal to C at (1, —1) is

oF oF
VF = SoTis-= = (6xy — 20x°y? + 12x) + i(3x* — 6y* — 10x*y) = —14 + 7i
X y
—144+7i -2+ 2—1i
Then a unit vector normal to C at (1, —1) is + l. = + l. Another such unit vector is l.
| —14 + 7i] V3 V35

3.36. Suppose A(x, y) = 2xy — ix?y>. Find (a) grad A, (b) div A, (c) |curl A|, (d) Laplacian of A.
Solution
(a) grad A= VA = 3 + i3 (2xy - ix2y3) = 3 (2xy - ix2y3) + i3 (2xy - ix2y3)
ox  dy ox ay

=2y — 2ixy’ + i(2x - 3ix2y3) =2y 4 3x%y* + i(2x - 2xy3)
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a d
= () - — )| = | —207 - 24
ox ay

- PA A P &
(d) Laplacian A = V?A = Re{VVA} = — + — = — 2xy — ix’y’) + — 2xy — ix’y*)
o2 9yr 2 9y?

B) 3
= $(2y —2ixy®) + @(2x —3ix?y?) = —2iy> — 6ix’y

Miscellaneous Problems

3.37. Prove that in polar form the Cauchy—Riemann equations can be written

u_1ov v 1du

o roo’ or  rod
Solution
We have x=rcosf, y=rsinforr=./x2+y2, O=tan"'(y/x). Then

3u_8u3r+8u80_3u X +8u —y —aucose lausine
drox B00x I\ /X242 0\x2+y2) " or raf

e ey N we( x N
dy ordy 909y or\ /X242 0\x2+y2) " or r a0

Similarly,

3v_808r+81)86_800080 1avsin0
o  drax 90ax  or raf
v odvdr dJvdf dv 1dv
—=——+——=—sinf+—-—cosf
dy drdy 06dy or raf

From the Cauchy-Riemann equation du/dx = dv/dy we have, using (1) and (4),

ou 10dv v 1ou\ .
(5—;%>0050—(5+;%>Sm9—0

From the Cauchy—Riemann equation du/dy = —(dv/dx) we have, using (2) and (3),

ou 1av\ . o 1ou
(5—;@>sm9+<5+;%>0036—0

ou 10ov or %_1@
ar rof ar  roe

ov 10du o 10u

o ' roo T T roe

()]

(@)

3

“

&)

(6)
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3.38. Prove that the real and imaginary parts of an analytic function of a complex variable when expressed

3.39.

in polar form satisfy the equation [Laplace’s equation in polar form]

827\If 190 1 P¥

o7 o TR
Solution
From Problem 3.37,

To eliminate v differentiate (1) partially with respect to r and (2) with respect to 6. Then

Po 000\ 0 o\ Fu o 3
aro0 or\ae)  oar\ or) o2 or
Po _ 0 (o) _0( low) __1%u @
a0ar  00\ar) ~ 90\ rae) ra?
But
Pv _ Pv
o0 90or

assuming the second partial derivatives are continuous. Hence, from (3) and (4),

P e 1P Pu 1k 1Py
a2 ar roft a2 ror rrog

Similarly, by elimination of u«, we find

Bzv+lav+ 1
2 ror r2ogt

so that the required result is proved.

Suppose w = f({) where { = g(z). Assuming f and g are analytic in a region R, prove that
dw _dw dg
dz d{ dz

Solution

Let z be given an increment Az # 0 so that z + Az is in R. Then, as a consequence, { and w take on increments
A and Aw, respectively, where

Aw =+ AL — (), Al=g(z+ A7) —g2) (D
Note that as Az — 0, we have Aw — 0 and A — 0.

If AL #0, let us write € = (Aw/Al) — (dw/d{) so that € — 0 as A — 0 and
dw

AW:d{

AL+ €Al @
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If A = Ofor values of Az, then (1) shows that Aw = O for these values of Az.

Complex Differentiation

For such cases, we define € = 0.

It follows that in both cases, A # 0 or A = 0, (2) holds. Then dividing (2) by Az # 0 and taking the limit

as Az — 0, we have

dw Aw dw Al
4z AJ,ToTz - Azl,in0<d7§A7z
_dw AL
b
_dw
=%

N Aw
Plidd
Az

Az—0 AZ
¢ di _ dw di

dz dz_?é.jz

Az—0

. . . Aw
lim — + lim €- lim —
Az—0 AZ

3.40. (a) Suppose u(x, y) = du/0x and u(x, y) = du/dy. Prove that f'(z) = ui(z, 0) — iup(z, 0).

341.

(b) Show how the result in (a) can be used to solve Problems 3.7 and 3.8.

Solution
ou . ou .
(a) From Problem 3.5, we have f'(z) = o 15 =ui(x, y) — iup(x, y).
X
Putting y = 0, this becomes f'(x) = u1(x, 0) — iuz(x, 0).

Then, replacing x by z, we have as required f'(z) = u;(z, 0) — iuy(z, 0).

(b) Since we are given u = e *(xsiny — ycosy), we have
ou —X o3 —X o} —X
ul(x,y)za—:e siny — xe *siny + ye " cosy
X
8” -2 -7 o1 —X
uz(x,y)za—:xe ‘cosy+ye ‘siny —e cosy
'y

so that from part (a),

f@ =ui(z, 0) —iup(z, 0) = 0 — i(ze " — ™) = —i(ze * — ™)

Integrating with respect to z we have, apart from a constant, f(z) = ize™*
imaginary parts, v = e *(ysiny 4 x cosy) apart from a constant.

. By separating this into real and

Suppose A is real or, more generally, suppose Im A is harmonic. Prove that |curl grad A| = 0.

Solution
If A = P+ Qi, we have

P 0

0 0
dA=—+i—|(P+iQ) =
gra ( ti 8y)( +iQ) ox  ay

Then o

9 A\ [oP 80 P
1 grad A I ——1 ———+i|l—+
|cur gra | m|:<a la ){3 ay l(ay

gl

PP Q[P PO (P ¥Q
= |Im| — — +i +—=) - -—=
oxz  Oxdy oxdy  ox? dyax  9y?
_|e, #2
Tl 9y?

Hence if Q =0, i.e., A is real, or if Q is harmonic, |curl grad A| = 0.

+i E)PJF
(2L
ay

Y
)

0

5]

*P
)* (W*
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L . .U PU 5,
3.42. Solve the partial differential equation —- + — = x~ — y“.
oxr  9y?

Solution
Let z =x+iy, Z=x—iy so that x = (z +2)/2,y = (z — 2)/2i. Then x* — y* = {(# + 7% and

82U+82U_V2U_482U
a2 Byr T azoz

Thus, the given partial differential equation becomes 4(3*U/dz 8Z) = %(22 +7) or

(N _1 22
8z(82>_8(z +79) (D

Integrating (1) with respect to z (treating z as constant),

w7z

a—z—ﬂ—i-?wLFl(E) (2)
where F(Z) is an arbitrary function of z. Integrating (2) with respect to z,
P72 i}
Uzﬂ-l-ﬂ-i-F(Z)-i-G(Z) 3)

where F(z) is the function obtained by integrating F(Z), and G(z) is an arbitrary function of z. Replacing z and z
by x + iy and x — iy, respectively, we obtain

1
U:ﬁ(x“—y4)+F(x—iy)+G(x+iy)

SUPPLEMENTARY PROBLEMS

Derivatives

3.43. Using the definition, find the derivative of each function at the indicated points.

@) f)=32+4iz—5+i;z2=2, (b)f) == —i, (©f(@=3z%z=1+i

2z —1i
.+

d ,_ .
3.44. Prove that d—(z 7) does not exist anywhere.

z

3.45. Determine whether |z|? has a derivative anywhere.

3.46. For each of the following functions determine the singular points, i.e., points at which the function is not
Z 3z-2
, (b)) 5————.
z+i ®) 22+2z+5

analytic. Determine the derivatives at all other points. (a)

Cauchy-Riemann Equations

3.47. Verity that the real and imaginary parts of the following functions satisfy the Cauchy—Riemann equations and
thus deduce the analyticity of each function:

@fR)=22+5iz+3—i, (b)fx)=ze% (c)f(z)=sin2z.

3.48. Show that the function x> + iy’ is not analytic anywhere. Reconcile this with the fact that the Cauchy—
Riemann equations are satisfied at x =0,y = 0.

3.49. Prove that if w = f(z) = u + iv is analytic in a region R, then dw/dz = dw/dx = —i(dw/dy).



3.50.

3.51.
3.52.

3.53.

3.54.

3.55.
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(a) Prove that the function u = 2x(1 — y) is harmonic. (b) Find a function v such that f(z) = u + iv is analytic
[i.e., find the conjugate function of u]. (c) Express f(z) in terms of z.

Answer Problem 3.50 for the function u = x> — y> — 2xy — 2x + 3y.
Verify that the Cauchy—Riemann equations are satisfied for the functions (a) ezz, (b) cos 2z, (c) sinh4z.

Determine which of the following functions u are harmonic. For each harmonic function, find the conjugate
harmonic function v and express u + iv as an analytic function of z.

(@) 3x%y +2x* —y* — 2%, (b) 2xy 4+ 3xy?> — 2y, (c) xecosy — yefsiny, (d) e 2 sin(x? — y?).

(a) Prove that ¢ = In[(x — 1)*> + (y — 2)?] is harmonic in every region which does not include the point (1, 2).
(b) Find a function ¢ such that ¢ + i is analytic. (c) Express ¢ + i as a function of z.

Suppose Im{f'(z)} = 6x(2y — 1) and f(0) = 3 — 2i, f(1) = 6 — 5i. Find f(1 + i).

Differentials

3.56.
3.57.

3.58.

3.59.

3.60.

3.61.

Let w = iz> —4z+3i. Find (a) Aw, (b)dw, (c) Aw — dw at the point z = 2i.
Suppose w = (2z 4+ 1)?, z = —i, Az = 1 + i. Find (a) Aw and (b) dw.

Suppose w = 3iz> +2z+ 1 —3i. Find (a) Aw, (b)dw, (c) Aw/Az, (d) dw/dz where z = i.

A in A in? (Az/2
(a) Suppose w = sinz. Show that v =Co0sz R 2sinz sin”(42/2) .
Az Az Az

in A d
(b) Assuming limAZﬁow = 1, prove that aw_ coS Z.
Az dz

(c) Show that dw = (cos z) dz.

(a) Let w = Inz. Show that if Az/z = £, then Aw/Az = (1/2) In{(1 + H)'/%}.
(b) Assuming limg_o (1 + {)'/* = e prove that dw/dz = 1/z.
(¢) Show that d(Inz) = dz/z.

Giving restrictions on f(z) and g(z), prove that

(@) d{f(2)8(2)} = {f(2)¢'(2) + g(2)f "(2)}dz
(b) d{f(2)/2(2)} = {8 (2) — f@g @}dz/{g@))

Differentiation Rules. Derivatives of Elementary Functions

3.62.

3.63.

3.64.

Suppose f(z) and g(z) are analytic in a region R. Then prove that
(a) d/dz{2if (2) — (1 + )g(@)} = 2if'(2) — (1 + g (2), (b) d/dz{f ()}’ = 2 ()f (2),
(©) d/dz{f()} ™ = —{(f}°f (@.

Using differentiation rules, find the derivatives of each of the following functions:
(@) (1 +4)% —3z—2, (b) Qz+3)z—1), () Rz—1i)/(z+2i), () Qiz+1)? (e)iz— 1.

Find the derivatives of each of the following at the indicated points:

@ @+20)(i—2)/Qz—1,z=i, 0) {z+E@+ D, z=1+i
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d d
3.65. Prove that (a) —secz=secztanz, (b) —cotz = —csc’z.
dz dz

d Z d 2742
3.66. Provethat(a) —(ZZ+ DN/ =— ) —In(?+2z+2) =
rove that (a) dz(z +1) EEE ( )dz n(z" +2z+2) Z

———— indicating restrictions if any.
+2z+2

3.67. Find the derivatives of each of the following, indicating restrictions if any.

(a) 3sin’(z/2), (b)tan’(2 —3z+4i), (c)In(secz+tanz), (d)csc{(z2+ D'2}, (e) (22 — 1) cos(z + 2i).

d d 1
3.68. Prove that  (a) (1 + )P =301+, (b)d—z(z+2ﬁ>‘/3 =37 @+ 2V e+ D
d 1 d 1
3.69. Prove that (a) —(tan"!z) = , (b)) —(sec”!z) = ——.
\d ()dz( 2) 71 ()dz( 2) Y
d 1 d -1
3.70. Prove that (a) —sinh™!'z= . (b)—csch™lz=———
()dZ 1422 ()dZ W2 +1

3.71. Find the derivatives of each of the following:
(@) {sin"'(2z—1)}?, (c) cos™!(sinz —cosz), (e) coth™'(zcsc?2z)
(b) Infcot™" 2%}, @ tan~' (z 43072, (f) In(z -3+ V22 =32+ 20)
3.72. Suppose w = cos~'(z — 1), z = sinh(3¢ + 2i) and { = +/¢. Find dw/ad.
3.73. Letw =tsec(r — 3i) and z = sin"' (2t — 1). Find dw/dz.
3.74. Suppose w? — 2w +sin2z =0. Find (a) dw/dz, (b) d*w/dz*.
3.75. Given w = cos {, z = tan({ + mi). Find d’w/dz* at { = 0.
3.76. Find (a) d/dz(z"7), (b) d/dz{[sin(iz — 2)]*" @3},
3.77. Find the second derivatives of each of the following:

(@) 3sin’(2z—144i), (b)Intanz?, (c)sinh(z+ 1)%, (d) cos~!'(Inz), (e) sech™'v/T+z.

L'Hospital’s Rule

2 2o
244 ) z 7 —2iz—1
3.78. Evaluat li , (b) I —e™/3 , lim ———-
valuate  (a) lim Py — ( );2}/3 (z—e )<z3 n 1) (c) lim e
3.79. Evaluate (a) lim>—=, (b) lim (z— mm')( - )
z—0 4 z—>mmi sSin z

—1/.2 2
3.80. Find lim & +1°

— where the branch of the inverse tangent is chosen such that tan~! 0 = 0.
=i sin“(2 + 1)

sinz 1/
3.81. Evaluate lim(—‘) .

fand Z

Singular Points

3.82. For each of the following functions locate and name the singularities in the finite z plane.

2 -3z In(z + 3i) . 5 cosz
@y O 5 @i/, @VEHD ©

3.83. Show that f(z) = (z + 3i)°/(z*> — 2z + 5)* has double poles at z = 1 + 2i and a simple pole at infinity.

3.84. Show that ¢* has an essential singularity at infinity.



3.85.
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Locate and name all the singularities of each of the following functions.

@ @+3)/@E@ =1, (b)esc(l/z), (©) (& + D/

Orthogonal Families

3.86.

3.87.

3.88.

3.89.

Find the orthogonal trajectories of the following families of curves:
@xy—xy =a, (b)e*cosy+xy=a.
Find the orthogonal trajectories of the family of curves 7> cos 26 = a.

By separating f(z) = z + 1/z into real and imaginary parts, show that the families (+> + 1)cos # = ar and
(r> — 1)sin § = Br are orthogonal trajectories and verify this by another method.

Let n be any real constant. Prove that " = asecnf and " = [Bcscnf are orthogonal trajectories.

Applications to Geometry and Mechanics

3.90.

3.91.

3.92.

3.93.

A particle moves along a curve z = e '(2sint +icos ).
(a) Find a unit tangent vector to the curve at the point where t = 7/4.
(b) Determine the magnitudes of velocity and acceleration of the particle at r = 0 and /2.

A particle moves along the curve z = ae’. (a) Show that its speed is always constant and equal to wa.

(b) Show that the magnitude of its acceleration is always constant and equal to w’a.

(c) Show that the acceleration is always directed toward z = 0.

(d) Explain the relationship of this problem to the problem of a stone being twirled at the end of a string in a
horizontal plane.

The position at time ¢ of a particle moving in the z plane is given by z = 3t Find the magnitudes of
(a) the velocity, (b) the acceleration of the particle at t = 0 and t = 7.

A particle P moves along the line x + y = 2 in the z plane with a uniform speed of 34/2 ft/sec from the point
7z=—54+7itoz=10—8i. If w=2z> —3 and P’ is the image of P in the w plane, find the magnitudes of
(a) the velocity and (b) the acceleration of P’ after 3 seconds.

Gradient, Divergence, Curl, and Laplacian

3.94.

3.95.

3.96.

3.97.

3.98.

3.99.

3.100.

Let F = x>y —xy>. Find (a) VF, (b) V?F.
Let B=3z>4+4z. Find (a)grad B, (b)divB, (c)|curl B|, (d)Laplacian B.

Let C be the curve in the xy plane defined by x> — xy + y?> = 7. Find a unit vector normal to C at
(a) the point (—1, 2), (b) any point.

Find an equation for the line normal to the curve x?y = 2xy + 6 at the point (3, 2).
Show that V2| f(z) |> = 4| f'(z) |. Tllustrate by choosing f(z) = 22 + iz.
Prove V?{FG} = FV?G + GV*F +2VF - VG

Prove div grad A = 0 if A is imaginary or, more generally, if Re{A} is harmonic.

Miscellaneous Problems

3.101.

Let f(z) = u(x, y) + iv(x, y). Prove that:

(a) f(z) = 2u(z/2, — iz/2) + constant, (b) f(z) = 2iv(z/2, — iz/2) + constant.
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3.102.

3.103.

3.104.

3.105.

3.106.

3.107.

3.108.

3.109.

3.110.

3.111.

3.112.
3.113.

3.114.

3.115.

3.116.

3.117.

Use Problem 3.101 to find f(z) if (a) u(x, y) = x* — 6x%y* +y*,  (b) v(x, y) = sinhxcos y.

Suppose V is the instantaneous speed of a particle moving along any plane curve C. Prove that the normal com-
ponent of the acceleration at any point of C is given by V?/R where R is the radius of curvature at the point.

Find an analytic function f(z) such that Re{f'(z)} = 3x> — 4y — 3y? and f(1 + i) = 0.

Show that the family of curves
2 2

B G

a+r bPP+A
with —a> < A < —b? is orthogonal to the family with A > —b*> > —a?.
Prove that the equation F(x, y) = constant can be expressed as u(x, y) = constant where u is harmonic if and
only if the following is a function of F:

PF/x? + & F/ay*

(9F /3x)* + (OF /0y)*

[lustrate the result in Problem 3.106 by considering (y 4 2)/(x — 1) = constant.
Let f'(z) = 0 in a region R. Prove that f(z) must be a constant in R.

Suppose w = f(z) is analytic and expressed in polar coordinates (r, 6). Prove that

dw _ig W
A aid
dz or

Suppose u and v are conjugate harmonic functions. Prove that

Given u and v are harmonic in a region R. Prove that the following is analytic in R:
ou Ov 4 du n ov
- _ = il =4+ =
ay ox dx  dy

Prove that f(z) = |z|* is differentiable but not analytic at z = 0.

Given f(z) is analytic in a region R and f(z) f'(z) # 0 in R, prove that ¢ = In| f(z)| is harmonic in R.

Express the Cauchy—Riemann equations in terms of the curvilinear coordinates (& m) where
x=efcoshm, y=efsinhm.

Show that a solution of the differential equation
L—+4+R—+—==Eycos wt

where L, R, C, Ey and w are constants, is given by

Q _ Re Eoeimt
a iw[R + i(wL — 1/wC)]

The equation arises in the theory of alternating currents of electricity.

[Hint. Rewrite the right hand side as Eye’ and then assume a solution of the form Ae’” where A is to be
determined.]

Show that V2{f(2)}" = n?| f(2)|""2| f'(z)|?, stating restrictions on f(z).

*U  FU 8
Solve the partial differential equation el + W =2 g




