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CHAP T E R 1

Complex Numbers

1.1 The Real Number System

The number system as we know it today is a result of gradual development as indicated in the following list.

(1) Natural numbers 1, 2, 3, 4, . . . , also called positive integers, were first used in counting. If a and
b are natural numbers, the sum aþ b and product a � b, (a)(b) or ab are also natural numbers. For
this reason, the set of natural numbers is said to be closed under the operations of addition and
multiplication or to satisfy the closure property with respect to these operations.

(2) Negative integers and zero, denoted by �1, �2, �3, . . . and 0, respectively, permit solutions
of equations such as xþ b ¼ a where a and b are any natural numbers. This leads to the operation
of subtraction, or inverse of addition, and we write x ¼ a� b.

The set of positive and negative integers and zero is called the set of integers and is closed
under the operations of addition, multiplication, and subtraction.

(3) Rational numbers or fractions such as 3
4
, �8

3
, . . . permit solutions of equations such as bx ¼ a

for all integers a and b where b=0. This leads to the operation of division or inverse of multipli-
cation, and we write x ¼ a=b or a 4 b (called the quotient of a and b) where a is the numerator
and b is the denominator.

The set of integers is a part or subset of the rational numbers, since integers correspond to
rational numbers a/b where b ¼ 1.

The set of rational numbers is closed under the operations of addition, subtraction, multipli-
cation, and division, so long as division by zero is excluded.

(4) Irrational numbers such as
ffiffiffi
2

p
and p are numbers that cannot be expressed as a/bwhere a and b

are integers and b=0.

The set of rational and irrational numbers is called the set of real numbers. It is assumed that the student
is already familiar with the various operations on real numbers.

1.2 Graphical Representation of Real Numbers

Real numbers can be represented by points on a line called the real axis, as indicated in Fig. 1-1. The point
corresponding to zero is called the origin.

–4 –3 –2 –1 0 1 2 3 4

–2√3 or  –1.5– 3
2

 3
4 √2 π

Fig. 1-1
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Conversely, to each point on the line there is one and only one real number. If a point A corresponding to
a real number a lies to the right of a point B corresponding to a real number b, we say that a is greater than b
or b is less than a and write a . b or b , a, respectively.

The set of all values of x such that a , x , b is called an open interval on the real axis while a � x � b,
which also includes the endpoints a and b, is called a closed interval. The symbol x, which can stand for any
real number, is called a real variable.

The absolute value of a real number a, denoted by jaj, is equal to a if a . 0, to �a if a , 0 and to 0 if
a ¼ 0. The distance between two points a and b on the real axis is ja� bj.

1.3 The Complex Number System

There is no real number x that satisfies the polynomial equation x2 þ 1 ¼ 0. To permit solutions of this and
similar equations, the set of complex numbers is introduced.

We can consider a complex number as having the form aþ bi where a and b are real numbers and i,
which is called the imaginary unit, has the property that i2 ¼ �1. If z ¼ aþ bi, then a is called the real
part of z and b is called the imaginary part of z and are denoted by Refzg and Imfzg, respectively. The
symbol z, which can stand for any complex number, is called a complex variable.

Two complex numbers aþ bi and cþ di are equal if and only if a ¼ c and b ¼ d. We can consider real
numbers as a subset of the set of complex numbers with b ¼ 0. Accordingly the complex numbers 0þ 0i
and�3þ 0i represent the real numbers 0 and�3, respectively. If a ¼ 0, the complex number 0þ bi or bi is
called a pure imaginary number.

The complex conjugate, or briefly conjugate, of a complex number aþ bi is a� bi. The complex
conjugate of a complex number z is often indicated by �z or z�.

1.4 Fundamental Operations with Complex Numbers

In performing operations with complex numbers, we can proceed as in the algebra of real numbers,
replacing i2 by �1 when it occurs.

(1) Addition

(aþ bi)þ (cþ di) ¼ aþ biþ cþ di ¼ (aþ c)þ (bþ d)i

(2) Subtraction

(aþ bi)� (cþ di) ¼ aþ bi� c� di ¼ (a� c)þ (b� d)i

(3) Multiplication

(aþ bi)(cþ di) ¼ acþ adiþ bciþ bdi2 ¼ (ac� bd)þ (ad þ bc)i

(4) Division
If c=0 and d=0, then

aþ bi

cþ di
¼ aþ bi

cþ di
� c� di

c� di
¼ ac� adiþ bci� bdi2

c2 � d2i2

¼ acþ bd þ (bc� ad)i

c2 þ d2
¼ acþ bd

c2 þ d2
þ bc� ad

c2 þ d2
i
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1.5 Absolute Value

The absolute value or modulus of a complex number aþ bi is defined as jaþ bij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
.

EXAMPLE 1.1: j�4þ 2ij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(�4)2 þ (2)2

p
¼

ffiffiffiffiffi
20

p
¼ 2

ffiffiffi
5

p
:

If z1, z2, z3, . . . , zm are complex numbers, the following properties hold.

(1) jz1z2j ¼ jz1jjz2j or jz1z2 � � � zmj ¼ jz1jjz2j � � � jzmj

(2)
z1

z2

����
���� ¼ z1

z2

����
���� if z2 = 0

(3) jz1 þ z2j � jz1j þ jz2j or jz1 þ z2 þ � � � þ zmj � jz1j þ jz2j þ � � � þ jzmj
(4) jz1 + z2j � jz1j � jz2j

1.6 Axiomatic Foundation of the Complex Number System

From a strictly logical point of view, it is desirable to define a complex number as an ordered pair (a, b) of
real numbers a and b subject to certain operational definitions, which turn out to be equivalent to those
above. These definitions are as follows, where all letters represent real numbers.

A. Equality (a, b) ¼ (c, d) if and only if a ¼ c, b ¼ d
B. Sum (a, b)þ (c, d) ¼ (aþ c, bþ d)
C. Product (a, b) � (c, d) ¼ (ac� bd, ad þ bc)

m(a, b) ¼ (ma, mb)

From these we can show [Problem 1.14] that (a, b) ¼ a(1, 0)þ b(0, 1) and we associate this with aþ bi
where i is the symbol for (0, 1) and has the property that i2 ¼ (0, 1)(0, 1) ¼ (�1, 0) [which can be
considered equivalent to the real number �1] and (1, 0) can be considered equivalent to the real
number 1. The ordered pair (0, 0) corresponds to the real number 0.

From the above, we can prove the following.

THEOREM 1.1: Suppose z1, z2, z3 belong to the set S of complex numbers. Then

(1) z1 þ z2 and z1z2 belong to S Closure law
(2) z1 þ z2 ¼ z2 þ z1 Commutative law of addition
(3) z1 þ (z2 þ z3) ¼ (z1 þ z2)þ z3 Associative law of addition
(4) z1z2 ¼ z2z1 Commutative law of multiplication
(5) z1(z2z3) ¼ (z1z2)z3 Associative law of multiplication
(6) z1(z2 þ z3) ¼ z1z2 þ z1z3 Distributive law
(7) z1 þ 0 ¼ 0þ z1 ¼ z1, 1 � z1 ¼ z1 � 1 ¼ z1, 0 is called the identity with respect to addition, 1 is

called the identity with respect to multiplication.
(8) For any complex number z1 there is a unique number z in S such that zþ z1 ¼ 0;

[z is called the inverse of z1 with respect to addition and is denoted by �z1].
(9) For any z1=0 there is a unique number z in S such that z1z ¼ zz1 ¼ 1;

[z is called the inverse of z1 with respect to multiplication and is denoted by z�1
1 or 1=z1].

In general, any set such as S, whose members satisfy the above, is called a field.

1.7 Graphical Representation of Complex Numbers

Suppose real scales are chosen on two mutually perpendicular axes X0OX and Y 0OY [called the x and y axes,
respectively] as in Fig. 1-2. We can locate any point in the plane determined by these lines by the ordered
pair of real numbers (x, y) called rectangular coordinates of the point. Examples of the location of such
points are indicated by P, Q, R, S, and T in Fig. 1-2.
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Since a complex number xþ iy can be considered as an ordered pair of real numbers, we can represent
such numbers by points in an xy plane called the complex plane or Argand diagram. The complex number
represented by P, for example, could then be read as either (3, 4) or 3þ 4i. To each complex number there
corresponds one and only one point in the plane, and conversely to each point in the plane there corresponds
one and only one complex number. Because of this we often refer to the complex number z as the point z.
Sometimes, we refer to the x and y axes as the real and imaginary axes, respectively, and to the complex
plane as the z plane. The distance between two points, z1 ¼ x1 þ iy1 and z2 ¼ x2 þ iy2, in the complex plane is
given by jz1�z2j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x1�x2)

2 þ (y1�y2)
2

p
.

4

3

2

1

1 2 3 4
X

O

Y ′

X ′

–1
–1–2–3

R(–2.5, –1.5)
S(2, –2)

T(2.5, 0)

P(3, 4)

Q(–3, 3)

Y

–4

–2

–3

X

P(x, y)

O x

q

r
y

Y ′

X ′

Y

Fig. 1-2 Fig. 1-3

1.8 Polar Form of Complex Numbers

Let P be a point in the complex plane corresponding to the complex number (x, y) or xþ iy. Then we see
from Fig. 1-3 that

x ¼ r cos u, y ¼ r sin u

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
¼ jxþ iyj is called the modulus or absolute value of z ¼ xþ iy [denoted by mod z or

jzj]; and u, called the amplitude or argument of z ¼ xþ iy [denoted by arg z], is the angle that lineOPmakes
with the positive x axis.

It follows that

z ¼ xþ iy ¼ r(cos uþ i sin u) (1:1)

which is called the polar form of the complex number, and r and u are called polar coordinates. It is some-
times convenient to write the abbreviation cis u for cos uþ i sin u.

For any complex number z=0 there corresponds only one value of u in 0 �u ,2p. However, any other
interval of length 2p, for example �p ,u �p, can be used. Any particular choice, decided upon in
advance, is called the principal range, and the value of u is called its principal value.

1.9 De Moivre’s Theorem

Let z1 ¼ x1 þ iy1 ¼ r1(cos u1 þ i sin u1) and z2 ¼ x2 þ iy2 ¼ r2(cos u2 þ i sin u2), then we can show that
[see Problem 1.19]

z1z2 ¼ r1r2fcos(u1 þ u2)þ i sin(u1 þ u2)g (1:2)

z1

z2
¼ r1

r2
fcos(u1 � u2)þ i sin(u1 � u2)g (1:3)
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A generalization of (1.2) leads to

z1z2 � � � zn ¼ r1r2 � � � rnfcos(u1 þ u2 þ � � � þ un)þ i sin(u1 þ u2 þ � � � þ un)g (1:4)

and if z1 ¼ z2 ¼ � � � ¼ zn ¼ z this becomes

zn ¼ fr(cos uþ i sin u)gn ¼ rn(cos nuþ i sin nu) (1:5)

which is often called De Moivre’s theorem.

1.10 Roots of Complex Numbers

A number w is called an nth root of a complex number z if wn ¼ z, and we write w ¼ z1=n. From
De Moivre’s theorem we can show that if n is a positive integer,

z1=n ¼ fr(cos uþ i sin u)g1=n

¼ r1=n cos
uþ 2kp

n

� �
þ i sin

uþ 2kp

n

� �� �
k ¼ 0, 1, 2, . . . , n� 1

(1:6)

from which it follows that there are n different values for z1=n, i.e., n different nth roots of z, provided z=0.

1.11 Euler’s Formula

By assuming that the infinite series expansion ex ¼ 1þ xþ (x2=2!)þ (x3=3!)þ � � � of elementary calculus
holds when x ¼ iu, we can arrive at the result

eiu ¼ cos uþ i sin u (1:7)

which is called Euler’s formula. It is more convenient, however, simply to take (1.7) as a definition of eiu.
In general, we define

ez ¼ exþiy ¼ exeiy ¼ ex(cos yþ i sin y) (1:8)

In the special case where y ¼ 0 this reduces to ex.
Note that in terms of (1.7) De Moivre’s theorem reduces to (eiu)n ¼ einu.

1.12 Polynomial Equations

Often in practice we require solutions of polynomial equations having the form

a0z
n þ a1z

n�1 þ a2z
n�2 þ � � � þ an�1zþ an ¼ 0 (1:9)

where a0=0, a1, . . . , an are given complex numbers and n is a positive integer called the degree of
the equation. Such solutions are also called zeros of the polynomial on the left of (1.9) or roots of the
equation.
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A very important theorem called the fundamental theorem of algebra [to be proved in Chapter 5] states
that every polynomial equation of the form (1.9) has at least one root in the complex plane. From this we can
show that it has in fact n complex roots, some or all of which may be identical.

If z1, z2, . . . , zn are the n roots, then (1.9) can be written

a0(z� z1)(z� z2) � � � (z� zn) ¼ 0 (1:10)

which is called the factored form of the polynomial equation.

1.13 The nth Roots of Unity

The solutions of the equation zn ¼ 1 where n is a positive integer are called the nth roots of unity and are
given by

z ¼ cos
2kp

n
þ i sin

2kp

n
¼ e2kpi=n k ¼ 0, 1, 2, . . . , n� 1 (1:11)

If we let v ¼ cos 2p=nþ i sin 2p=n ¼ e2pi=n, the n roots are 1, v, v2, . . . , vn�1. Geometrically, they rep-
resent the n vertices of a regular polygon of n sides inscribed in a circle of radius one with center at the
origin. This circle has the equation jzj ¼ 1 and is often called the unit circle.

1.14 Vector Interpretation of Complex Numbers

A complex number z ¼ xþ iy can be considered as a vector OP whose initial point is the origin O and
whose terminal point P is the point (x, y) as in Fig. 1-4. We sometimes call OP ¼ xþ iy the position
vector of P. Two vectors having the same length or magnitude and direction but different initial points,
such as OP and AB in Fig. 1-4, are considered equal. Hence we write OP ¼ AB ¼ xþ iy.

x

B

A
P(x, y)

O

y

x

A
B

C

O

z2

z2

z1 + z2 z1z1

y

Fig. 1-4 Fig. 1-5

Addition of complex numbers corresponds to the parallelogram law for addition of vectors [see
Fig. 1-5]. Thus to add the complex numbers z1 and z2, we complete the parallelogram OABC whose
sides OA and OC correspond to z1 and z2. The diagonal OB of this parallelogram corresponds to z1 þ z2.
See Problem 1.5.

1.15 Stereographic Projection

Let P [Fig. 1-6] be the the complex plane and consider a sphere S tangent to P at z ¼ 0. The diameter NS is
perpendicular to P and we call points N and S the north and south poles of S. Corresponding to any point A
on P we can construct line NA intersecting S at point A0. Thus to each point of the complex plane P
there corresponds one and only one point of the sphere S, and we can represent any complex number by
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a point on the sphere. For completeness we say that the point N itself corresponds to the “point at infinity” of
the plane. The set of all points of the complex plane including the point at infinity is called the entire
complex plane, the entire z plane, or the extended complex plane.

N

S

A

A'

y

x

Fig. 1-6

The above method for mapping the plane on to the sphere is called stereographic projection. The sphere
is sometimes called the Riemann sphere. When the diameter of the Riemann sphere is chosen to be unity,
the equator corresponds to the unit circle of the complex plane.

1.16 Dot and Cross Product

Let z1 ¼ x1 þ iy1 and z2 ¼ x2 þ iy2 be two complex numbers [vectors]. The dot product [also called the
scalar product] of z1 and z2 is defined as the real number

z1 � z2 ¼ x1x2 þ y1y2 ¼ jz1jjz2j cos u (1:12)

where u is the angle between z1 and z2 which lies between 0 and p.
The cross product of z1 and z2 is defined as the vector z1 � z2 ¼ (0, 0, x1y2 � y1x2) perpendicular to the

complex plane having magnitude

jz1 � z2j ¼ x1y2 � y1x2 ¼ jz1jjz2j sin u (1:13)

THEOREM 1.2: Let z1 and z2 be non-zero. Then:

(1) A necessary and sufficient condition that z1 and z2 be perpendicular is that z1 � z2 ¼ 0.
(2) A necessary and sufficient condition that z1 and z2 be parallel is that jz1 � z2j ¼ 0.
(3) The magnitude of the projection of z1 on z2 is jz1 � z2j=jz2j.
(4) The area of a parallelogram having sides z1 and z2 is jz1 � z2j.

1.17 Complex Conjugate Coordinates

A point in the complex plane can be located by rectangular coordinates (x, y) or polar coordinates (r, u).
Many other possibilities exist. One such possibility uses the fact that x ¼ 1

2
(zþ �z), y ¼ (1=2i)(z� �z)

where z ¼ xþ iy. The coordinates (z, �z) that locate a point are called complex conjugate coordinates or
briefly conjugate coordinates of the point [see Problems 1.43 and 1.44].

1.18 Point Sets

Any collection of points in the complex plane is called a (two-dimensional) point set, and each point is
called a member or element of the set. The following fundamental definitions are given here for reference.

(1) Neighborhoods. A delta, or d, neighborhood of a point z0 is the set of all points z such that
jz� z0j , d where d is any given positive number. A deleted d neighborhood of z0 is a neigh-
borhood of z0 in which the point z0 is omitted, i.e., 0 , jz� z0j , d.
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(2) Limit Points. A point z0 is called a limit point, cluster point, or point of accumulation of a point
set S if every deleted d neighborhood of z0 contains points of S.

Since d can be any positive number, it follows that S must have infinitely many points. Note
that z0 may or may not belong to the set S.

(3) Closed Sets.A set S is said to be closed if every limit point of S belongs to S, i.e., if S contains all
its limit points. For example, the set of all points z such that jzj � 1 is a closed set.

(4) Bounded Sets. A set S is called bounded if we can find a constantM such that jzj , M for every
point z in S. An unbounded set is one which is not bounded. A set which is both bounded and
closed is called compact.

(5) Interior, Exterior and Boundary Points. A point z0 is called an interior point of a set S
if we can find a d neighborhood of z0 all of whose points belong to S. If every d neighborhood
of z0 contains points belonging to S and also points not belonging to S, then z0 is called a
boundary point. If a point is not an interior or boundary point of a set S, it is an exterior
point of S.

(6) Open Sets. An open set is a set which consists only of interior points. For example, the set of
points z such that jzj , 1 is an open set.

(7) Connected Sets. An open set S is said to be connected if any two points of the set can be
joined by a path consisting of straight line segments (i.e., a polygonal path) all points of
which are in S.

(8) Open Regions or Domains. An open connected set is called an open region or domain.
(9) Closure of a Set. If to a set Swe add all the limit points of S, the new set is called the closure of S

and is a closed set.
(10) Closed Regions. The closure of an open region or domain is called a closed region.
(11) Regions. If to an open region or domain we add some, all or none of its limit points, we obtain a

set called a region. If all the limit points are added, the region is closed; if none are added, the
region is open. In this book whenever we use the word region without qualifying it, we shall
mean open region or domain.

(12) Union and Intersection of Sets. A set consisting of all points belonging to set S1 or set S2 or to
both sets S1 and S2 is called the union of S1 and S2 and is denoted by S1 < S2.

A set consisting of all points belonging to both sets S1 and S2 is called the intersection of S1
and S2 and is denoted by S1 > S2.

(13) Complement of a Set. A set consisting of all points which do not belong to S is called the comp-
lement of S and is denoted by ~S or Sc.

(14) Null Sets and Subsets. It is convenient to consider a set consisting of no points at all. This set is
called the null set and is denoted by1. If two sets S1 and S2 have no points in common (in which
case they are called disjoint or mutually exclusive sets), we can indicate this by writing
S1 > S2 ¼ 1.

Any set formed by choosing some, all or none of the points of a set S is called a subset
of S. If we exclude the case where all points of S are chosen, the set is called a proper
subset of S.

(15) Countability of a Set. Suppose a set is finite or its elements can be placed into a one to one
correspondence with the natural numbers 1, 2, 3, . . . . Then the set is called countable or denu-
merable; otherwise it is non-countable or non-denumerable.

The following are two important theorems on point sets.

(1) Weierstrass–Bolzano Theorem. Every bounded infinite set has at least one limit point.
(2) Heine–Borel Theorem. Let S be a compact set each point of which is contained in one or more

of the open sets A1, A2, . . . [which are then said to cover S]. Then there exists a finite number of
the sets A1, A2, . . . which will cover S.
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SOLVED PROBLEMS

Fundamental Operations with Complex Numbers

1.1. Perform each of the indicated operations.

Solution

(a) (3þ 2i)þ (�7� i) ¼ 3� 7þ 2i� i ¼ �4þ i

(b) (�7� i)þ (3þ 2i) ¼ �7þ 3� iþ 2i ¼ �4þ i

The results (a) and (b) illustrate the commutative law of addition.

(c) (8� 6i)� (2i� 7) ¼ 8� 6i� 2iþ 7 ¼ 15� 8i

(d) (5þ 3i)þ f(�1þ 2i)þ (7� 5i)g ¼ (5þ 3i)þ f�1þ 2iþ 7� 5ig ¼ (5þ 3i)þ (6� 3i) ¼ 11

(e) f(5þ 3i)þ (�1þ 2i)g þ (7� 5i) ¼ f5þ 3i� 1þ 2ig þ (7� 5i) ¼ (4þ 5i)þ (7� 5i) ¼ 11

The results (d) and (e) illustrate the associative law of addition.

(f) (2� 3i)(4þ 2i) ¼ 2(4þ 2i)� 3i(4þ 2i) ¼ 8þ 4i� 12i� 6i2 ¼ 8þ 4i� 12iþ 6 ¼ 14� 8i

(g) (4þ 2i)(2� 3i) ¼ 4(2� 3i)þ 2i(2� 3i) ¼ 8� 12iþ 4i� 6i2 ¼ 8� 12iþ 4iþ 6 ¼ 14� 8i

The results (f) and (g) illustrate the commutative law of multiplication.

(h) (2� i)f(�3þ 2i)(5� 4i)g ¼ (2� i)f�15þ 12iþ 10i� 8i2g

¼ (2� i)(�7þ 22i) ¼ �14þ 44iþ 7i� 22i2 ¼ 8þ 51i

(i) f(2� i)(�3þ 2i)g(5� 4i) ¼ f�6þ 4iþ 3i� 2i2g(5� 4i)

¼ (�4þ 7i)(5� 4i) ¼ �20þ 16iþ 35i� 28i2 ¼ 8þ 51i

The results (h) and (i) illustrate the associative law of multiplication.

( j) (�1þ 2i)f(7� 5i)þ (�3þ 4i)g ¼ (�1þ 2i)(4� i) ¼ �4þ iþ 8i� 2i2 ¼ �2þ 9i

Another Method.

(�1þ 2i)f(7� 5i)þ (�3þ 4i)g ¼ (�1þ 2i)(7� 5i)þ (�1þ 2i)(�3þ 4i)

¼ f�7þ 5iþ 14i� 10i2g þ f3� 4i� 6iþ 8i2g
¼ (3þ 19i)þ (�5� 10i) ¼ �2þ 9i

The above illustrates the distributive law.

(k)
3� 2i

�1þ i
¼ 3� 2i

�1þ i
� �1� i

�1� i
¼ �3� 3iþ 2iþ 2i2

1� i2
¼ �5� i

2
¼ � 5

2
� 1

2
i

Another Method. By definition, (3� 2i)=(�1þ i) is that number aþ bi, where a and b are real, such that

(�1þ i)(aþ bi) ¼ �a� bþ (a� b)i ¼ 3� 2i. Then �a� b ¼ 3, a� b ¼ �2 and solving simultaneously,

a ¼ �5=2, b ¼ �1=2 or aþ bi ¼ �5=2� i=2.

(l) 5þ 5i

3� 4i
þ 20

4þ 3i
¼ 5þ 5i

3� 4i
� 3þ 4i

3þ 4i
þ 20

4þ 3i
� 4� 3i

4� 3i

¼ 15þ 20iþ 15iþ 20i2

9� 16i2
þ 80� 60i

16� 9i2
¼ �5þ 35i

25
þ 80� 60i

25
¼ 3� i

(m) 3i30 � i19

2i� 1
¼ 3(i2)15 � (i2)9i

2i� 1
¼ 3(�1)15 � (�1)9i

�1þ 2i

¼ �3þ i

�1þ 2i
� �1� 2i

�1� 2i
¼ 3þ 6i� i� 2i2

1� 4i2
¼ 5þ 5i

5
¼ 1þ i
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1.2. Suppose z1 ¼ 2þ i, z2 ¼ 3� 2i and z3 ¼ � 1

2
þ

ffiffiffi
3

p

2
i. Evaluate each of the following.

Solution
(a) j3z1 � 4z2j ¼ j3(2þ i)� 4(3� 2i)j ¼ j6þ 3i� 12þ 8ij

¼ j�6þ 11ij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(�6)2 þ (11)2

q
¼

ffiffiffiffiffiffiffiffi
157

p

(b) z31 � 3z21 þ 4z1 � 8 ¼ (2þ i)3 � 3(2þ i)2 þ 4(2þ i)� 8

¼ f(2)3 þ 3(2)2(i)þ 3(2)(i)2 þ i3g � 3(4þ 4iþ i2)þ 8þ 4i� 8

¼ 8þ 12i� 6� i� 12� 12iþ 3þ 8þ 4i� 8 ¼ �7þ 3i

(c) (�z3)
4 ¼ � 1

2
þ

ffiffiffi
3

p

2
i

 !4

¼ � 1

2
�

ffiffiffi
3

p

2
i

� �4

¼ � 1

2
�

ffiffiffi
3

p

2
i

� �2
" #2

¼ 1

4
þ

ffiffiffi
3

p

2
iþ 3

4
i2

� 	2
¼ � 1

2
þ

ffiffiffi
3

p

2
i

� �2

¼ 1

4
�

ffiffiffi
3

p

2
iþ 3

4
i2 ¼ � 1

2
�

ffiffiffi
3

p

2
i

(d)
2z2 þ z1 � 5� i

2z1 � z2 þ 3� i

����
����2 ¼ 2(3� 2i)þ (2þ i)� 5� i

2(2þ i)� (3� 2i)þ 3� i

����
����2

¼ 3� 4i

4þ 3i

����
����2¼ j3� 4ij2

j4þ 3ij2
¼ (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(3)2 þ (�4)2

p
)2

(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(4)2 þ (3)2

p
)2

¼ 1

1.3. Find real numbers x and y such that 3xþ 2iy� ixþ 5y ¼ 7þ 5i.

Solution

The given equation can be written as 3xþ 5yþ i(2y� x) ¼ 7þ 5i. Then equating real and imaginary parts,

3xþ 5y ¼ 7, 2y� x ¼ 5. Solving simultaneously, x ¼ �1, y ¼ 2.

1.4. Prove: (a) z1 þ z2 ¼ �z1 þ �z2, (b) jz1z2j ¼ jz1jjz2j.

Solution

Let z1 ¼ x1 þ iy1, z2 ¼ x2 þ iy2. Then

(a) z1 þ z2 ¼ x1 þ iy1 þ x2 þ iy2 ¼ x1 þ x2 þ i(y1 þ y2)

¼ x1 þ x2 � i(y1 þ y2) ¼ x1 � iy1 þ x2 � iy2 ¼ x1 þ iy1 þ x2 þ iy2 ¼ �z1 þ �z2

(b) jz1z2j ¼ j(x1 þ iy1)(x2 þ iy2)j ¼ jx1x2 � y1y2 þ i(x1y2 þ y1x2)j

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x1x2 � y1y2)

2 þ (x1y2 þ y1x2)
2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x21 þ y21)(x

2
2 þ y22)

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ y21

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22 þ y22

q
¼ jz1jjz2j

Another Method.

jz1z2j2 ¼ (z1z2)(z1z2) ¼ z1z2�z1�z2 ¼ (z1�z1)(z2�z2) ¼ jz1j2jz2j2 or jz1z2j ¼ jz1jjz2j

where we have used the fact that the conjugate of a product of two complex numbers is equal to the product of

their conjugates (see Problem 1.55).

Graphical Representation of Complex Numbers. Vectors

1.5. Perform the indicated operations both analytically and graphically:

(a) (3þ 4i)þ (5þ 2i), (b) (6� 2i)� (2� 5i), (c) (� 3þ 5i)þ (4þ 2i)þ (5� 3i)þ (�4� 6i).
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Solution

(a) Analytically: (3þ 4i)þ (5þ 2i) ¼ 3þ 5þ 4iþ 2i ¼ 8þ 6i

Graphically. Represent the two complex numbers by points P1 and P2, respectively, as in Fig. 1-7.

Complete the parallelogram with OP1 and OP2 as adjacent sides. Point P represents the sum, 8þ 6i,

of the two given complex numbers. Note the similarity with the parallelogram law for addition of

vectors OP1 and OP2 to obtain vector OP. For this reason it is often convenient to consider a complex

number aþ bi as a vector having components a and b in the directions of the positive x and y axes,

respectively.

5 + 2i

3
+

4i 8 + 6i

P

P2

x

y

O

P1

P

P2

P1

4 + 3i

–2
+

5i

6 – 2i

x

y

O

Fig. 1-7 Fig. 1-8

(b) Analytically. (6� 2i)� (2� 5i) ¼ 6� 2� 2iþ 5i ¼ 4þ 3i

Graphically. (6� 2i)� (2� 5i) ¼ 6� 2iþ (�2þ 5i). We now add 6� 2i and (�2þ 5i) as in part (a).

The result is indicated by OP in Fig. 1-8.

(c) Analytically.

(�3þ 5i)þ (4þ 2i)þ (5� 3i)þ (�4� 6i) ¼ (�3þ 4þ 5� 4)þ (5iþ 2i� 3i� 6i) ¼ 2� 2i

Graphically. Represent the numbers to be added by z1, z2, z3, z4, respectively. These are shown graphi-

cally in Fig. 1-9. To find the required sum proceed as shown in Fig. 1-10. At the terminal point of vector z1
construct vector z2. At the terminal point of z2 construct vector z3, and at the terminal point of z3 construct

vector z4. The required sum, sometimes called the resultant, is obtained by constructing the vector OP

from the initial point of z1 to the terminal point of z4, i.e., OP ¼ z1 þ z2 þ z3 þ z4 ¼ 2� 2i.

O

z1

z2

z3

x

z4

y

O

z1

z2 z3

z4

P

x

y

Fig. 1-9 Fig. 1-10
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1.6. Suppose z1 and z2 are two given complex numbers (vectors) as in Fig. 1-11. Construct graphically

(a) 3z1 � 2z2, (b) 1
2
z2 þ 5

3
z1

Solution

(a) In Fig. 1-12, OA ¼ 3z1 is a vector having length 3 times vecter z1 and the same direction.

OB ¼ �2z2 is a vector having length 2 times vector z2 and the opposite direction.

Then vector OC ¼ OAþ OB ¼ 3z1 � 2z2.

x

z2

z1

y C

A

3z
1 –

2z
2

3z 1

B

O
x

–2z2

y

Fig. 1-11 Fig. 1-12

O
x

P

Q

R

y

z1
 5
3

z2
 1
2

Fig. 1-13

(b) The required vector (complex number) is represented by OP in Fig. 1-13.

1.7. Prove (a) jz1 þ z2j � jz1j þ jz2j, (b) jz1 þ z2 þ z3j � jz1j þ jz2j þ jz3j, (c) jz1 � z2j � jz1j � jz2j
and give a graphical interpretation.

Solution

(a) Analytically. Let z1 ¼ x1 þ iy1, z2 ¼ x2 þ iy2. Then we must show thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x1 þ x2)

2 þ (y1 þ y2)
2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ y21

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22 þ y22

q
Squaring both sides, this will be true if

(x1 þ x2)
2 þ (y1 þ y2)

2 � x21 þ y21 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x21 þ y21)(x

2
2 þ y22)

q
þ x22 þ y22

i.e., if x1x2 þ y1y2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x21 þ y21)(x

2
2 þ y22)

q
or if (squaring both sides again)

x21x
2
2 þ 2x1x2y1y2 þ y21y

2
2 � x21x

2
2 þ x21y

2
2 þ y21x

2
2 þ y21y

2
2

or 2x1x2y1y2 � x21y
2
2 þ y21x

2
2

But this is equivalent to (x1y2 � x2y1)
2 � 0, which is true. Reversing the steps, which are reversible,

proves the result.
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Graphically. The result follows graphically from the fact that jz1j, jz2j, jz1 þ z2j represent the lengths of
the sides of a triangle (see Fig. 1-14) and that the sum of the lengths of two sides of a triangle is greater

than or equal to the length of the third side.

O
x

y

⎪z1⎪

⎪z2⎪

⎪z1 + z2⎪

O

P
x

y

⎪z 1⎪

⎪z2⎪
⎪ z

3⎪

⎪z1 + z2 + z3⎪

Fig. 1-14 Fig. 1-15

(b) Analytically. By part (a),

jz1 þ z2 þ z3j ¼ jz1 þ (z2 þ z3)j � jz1j þ jz2 þ z3j � jz1j þ jz2j þ jz3j

Graphically. The result is a consequence of the geometric fact that, in a plane, a straight line is the shortest

distance between two points O and P (see Fig. 1-15).

(c) Analytically. By part (a), jz1j ¼ jz1 � z2 þ z2j � jz1 � z2j þ jz2j. Then jz1 � z2j � jz1j � jz2j. An equival-
ent result obtained on replacing z2 by �z2 is jz1 þ z2j � jz1j � jz2j.
Graphically. The result is equivalent to the statement that a side of a triangle has length greater than or

equal to the difference in lengths of the other two sides.

1.8. Let the position vectors of points A(x1, y1) and B(x2, y2) be represented by z1 and z2, respectively.
(a) Represent the vector AB as a complex number. (b) Find the distance between points A and B.

Solution

(a) From Fig. 1-16, OAþ AB ¼ OB or

AB ¼ OB� OA ¼ z2 � z1 ¼ (x2 þ iy2)� (x1 þ iy1) ¼ (x2 � x1)þ i(y2 � y1)

(b) The distance between points A and B is given by

jABj ¼ j(x2 � x1)þ i(y2 � y1)j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x2 � x1)

2 þ (y2 � y1)
2

q

O
x

y

A(x1, y1)

B(x2, y2)
z1

z2

O
x

y

z1

z2

P

A B

C

Fig. 1-16 Fig. 1-17

1.9. Let z1 ¼ x1 þ iy1 and z2 ¼ x2 þ iy2 represent two non-collinear or non-parallel vectors. If a and b
are real numbers (scalars) such that az1 þ bz2 ¼ 0, prove that a ¼ 0 and b ¼ 0.
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Solution

The given condition az1 þ bz2 ¼ 0 is equivalent to

a(x1 þ iy1)þ b(x2 þ iy2) ¼ 0 or ax1 þ bx2 þ i(ay1 þ by2) ¼ 0:

Then ax1 þ bx2 ¼ 0 and ay1 þ by2 ¼ 0. These equations have the simultaneous solution a ¼ 0, b ¼ 0 if

y1=x1=y2=x2, i.e., if the vectors are non-collinear or non-parallel vectors.

1.10. Prove that the diagonals of a parallelogram bisect each other.

Solution

Let OABC [Fig. 1-17] be the given parallelogram with diagonals intersecting at P.

Since z1 þ AC ¼ z2, AC ¼ z2 � z1. Then AP ¼ m(z2 � z1) where 0 � m � 1.

Since OB ¼ z1 þ z2, OP ¼ n(z1 þ z2) where 0 � n � 1.

But OAþ AP ¼ OP, i.e., z1 þ m(z2 � z1) ¼ n(z1 þ z2) or (1� m� n)z1 þ (m� n)z2 ¼ 0. Hence, by

Problem 1.9, 1� m� n ¼ 0, m� n ¼ 0 or m ¼ 1
2
, n ¼ 1

2
and so P is the midpoint of both diagonals.

1.11. Find an equation for the straight line that passes through two given points A(x1, y1) and B(x2, y2).

Solution

Let z1 ¼ x1 þ iy1 and z2 ¼ x2 þ iy2 be the position vectors of A and B, respectively. Let z ¼ xþ iy be the

position vector of any point P on the line joining A and B.

From Fig. 1-18,

OAþ AP ¼ OP or z1 þ AP ¼ z, i:e:, AP ¼ z� z1

OAþ AB ¼ OB or z1 þ AB ¼ z2, i:e:, AB ¼ z2 � z1

Since AP and AB are collinear, AP ¼ tAB or z� z1 ¼ t(z2 � z1) where t is real, and the required equation is

z ¼ z1 þ t(z2 � z1) or z ¼ (1� t)z1 þ tz2

Using z1 ¼ x1 þ iy1, z2 ¼ x2 þ iy2 and z ¼ xþ iy, this can be written

x� x1 ¼ t(x2 � x1), y� y1 ¼ t(y2 � y1) or
x� x1

x2 � x1
¼ y� y1

y2 � y1

The first two are called parametric equations of the line and t is the parameter; the second is called the equation

of the line in standard form.

Another Method. Since AP and PB are collinear, we have for real numbers m and n:

mAP ¼ nPB or m(z� z1) ¼ n(z2 � z)

Solving,

z ¼ mz1 þ nz2

mþ n
or x ¼ mx1 þ nx2

mþ n
, y ¼ my1 þ ny2

mþ n

which is called the symmetric form.
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O
x

y

z1

z2

z

P

A

B

x

y

C

A

D

B

Fig. 1-18 Fig. 1-19

1.12. Let A(1, �2), B(�3, 4), C(2, 2) be the three vertices of triangle ABC. Find the length of the median
from C to the side AB.

Solution

The position vectors of A, B, and C are given by z1 ¼ 1� 2i, z2 ¼ �3þ 4i and z3 ¼ 2þ 2i, respectively.

Then, from Fig. 1-19,

AC ¼ z3 � z1 ¼ 2þ 2i� (1� 2i) ¼ 1þ 4i

BC ¼ z3 � z2 ¼ 2þ 2i� (�3þ 4i) ¼ 5� 2i

AB ¼ z2 � z1 ¼ �3þ 4i� (1� 2i) ¼ �4þ 6i

AD ¼ 1
2
AB ¼ 1

2
(� 4þ 6i) ¼ �2þ 3i since D is the midpoint of AB:

AC þ CD ¼ AD or CD ¼ AD� AC ¼ �2þ 3i� (1þ 4i) ¼ �3� i:

Then the length of median CD is jCDj ¼ j�3� ij ¼
ffiffiffiffiffi
10

p
.

1.13. Find an equation for (a) a circle of radius 4 with center at (�2, 1), (b) an ellipse with major axis of
length 10 and foci at (�3, 0) and (3, 0).

Solution

(a) The center can be represented by the complex number�2þ i. If z is any point on the circle [Fig. 1-20], the

distance from z to �2þ i is

jz� (�2þ i)j ¼ 4

Then jzþ 2� ij ¼ 4 is the required equation. In rectangular form, this is given by

j(xþ 2)þ i(y� 1)j ¼ 4, i:e:, (xþ 2)2 þ (y� 1)2 ¼ 16

x

y

z
4

(–2, 1) x

y

z

(–3, 0) (3, 0)

Fig. 1-20 Fig. 1-21
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(b) The sum of the distances from any point z on the ellipse [Fig. 1-21] to the foci must equal 10. Hence, the

required equation is

jzþ 3j þ jz� 3j ¼ 10

In rectangular form, this reduces to x2=25þ y2=16 ¼ 1 (see Problem 1.74).

Axiomatic Foundations of Complex Numbers

1.14. Use the definition of a complex number as an ordered pair of real numbers and the definitions on
page 3 to prove that (a, b) ¼ a(1, 0)þ b(0, 1) where (0, 1)(0, 1) ¼ (�1, 0).

Solution

From the definitions of sum and product on page 3, we have

(a, b) ¼ (a, 0)þ (0, b) ¼ a(1, 0)þ b(0, 1)

where

(0, 1)(0, 1) ¼ (0 � 0� 1 � 1, 0 � 1þ 1 � 0) ¼ (�1, 0)

By identifying (1, 0) with 1 and (0, 1) with i, we see that (a, b) ¼ aþ bi.

1.15. Suppose z1 ¼ (a1, b1), z2 ¼ (a2, b2), and z3 ¼ (a3, b3). Prove the distributive law:

z1(z2 þ z3) ¼ z1z2 þ z1z3:

Solution

We have

z1(z2 þ z3) ¼ (a1, b1)f(a2, b2)þ (a3, b3)g ¼ (a1, b1)(a2 þ a3, b2 þ b3)

¼ fa1(a2 þ a3)� b1(b2 þ b3), a1(b2 þ b3)þ b1(a2 þ a3)g
¼ (a1a2 � b1b2 þ a1a3 � b1b3, a1b2 þ b1a2 þ a1b3 þ b1a3)

¼ (a1a2 � b1b2, a1b2 þ b1a2)þ (a1a3 � b1b3, a1b3 þ b1a3)

¼ (a1, b1)(a2, b2)þ (a1, b1)(a3, b3) ¼ z1z2 þ z1z3

Polar Form of Complex Numbers

1.16. Express each of the following complex numbers in polar form.

(a) 2þ 2
ffiffiffi
3

p
i, (b) 25þ 5i, (c) 2

ffiffiffi
6

p
�

ffiffiffi
2

p
i, (d) 23i

Solution

(a) 2þ 2
ffiffiffi
3

p
i [See Fig. 1-22.]

Modulus or absolute value, r ¼ j2þ 2
ffiffiffi
3

p
ij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 12

p
¼ 4.

Amplitude or argument, u ¼ sin�1 2
ffiffiffi
3

p
=4 ¼ sin�1

ffiffiffi
3

p
=2 ¼ 608 ¼ p=3 (radians).

Then

2þ 2
ffiffiffi
3

p
i ¼ r(cos uþ i sin u) ¼ 4(cos 608þ i sin 608) ¼ 4(cosp=3þ i sinp=3)

The result can also be written as 4 cis p=3 or, using Euler’s formula, as 4epi=3.
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2

60°
x

y

4

2 + 2√3i

2√3

–5

5
45°

135°
x

y

5√2

Fig. 1-22 Fig. 1-23

(b) �5þ 5i [See Fig. 1-23.]

r ¼ j�5þ 5ij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25þ 25

p
¼ 5

ffiffiffi
2

p

u ¼ 1808� 458 ¼ 1358 ¼ 3p=4 (radians)

Then

�5þ 5i ¼ 5
ffiffiffi
2

p
(cos 1358þ i sin 1358) ¼ 5

ffiffiffi
2

p
cis 3p=4 ¼ 5

ffiffiffi
2

p
e3pi=4

(c) �
ffiffiffi
6

p
�

ffiffiffi
2

p
i [See Fig. 1-24.]

r ¼ j�
ffiffiffi
6

p
�

ffiffiffi
2

p
ij ¼

ffiffiffiffiffiffiffiffiffiffiffi
6þ 2

p
¼ 2

ffiffiffi
2

p

u ¼ 1808þ 308 ¼ 2108 ¼ 7p=6 (radians)

Then

�
ffiffiffi
6

p
�

ffiffiffi
2

p
i ¼ 2

ffiffiffi
2

p
(cos 2108þ i sin 2108) ¼ 2

ffiffiffi
2

p
cis 7p=6 ¼ 2

ffiffiffi
2

p
e7pi=e

210°

30°
–√2

–√6

2√2

x

y

–3

27
0°

x

y

Fig. 1-24 Fig. 1-25

(d) �3i [See Fig. 1-25.]

r ¼ j�3ij ¼ j0� 3ij ¼
ffiffiffiffiffiffiffiffiffiffiffi
0þ 9

p
¼ 3

u ¼ 2708 ¼ 3p=2 (radians)

Then

�3i ¼ 3(cos 3p=2þ i sin 3p=2) ¼ 3 cis 3p=2 ¼ 3e3pi=2

1.17. Graph each of the following: (a) 6(cos 2408þ i sin 2408), (b) 4e3pi=5, (c) 2e�pi=4.

Solution

(a) 6(cos 2408þ i sin 2408) ¼ 6 cis 2408 ¼ 6 cis 4p=3 ¼ 6e4pi=3 can be represented graphically by OP in

Fig. 1-26.
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If we start with vector OA, whose magnitude is 6 and whose direction is that of the positive x axis, we can

obtain OP by rotating OA counterclockwise through an angle of 2408. In general, reiu is equivalent to a vector

obtained by rotating a vector of magnitude r and direction that of the positive x axis, counterclockwise through

an angle u.

6

24
0°

x
AO

P

y

6

108°

x

4

O

P

y

x
O

P

A
2

2

45°

y

Fig. 1-26 Fig. 1-27 Fig. 1-28

(b) 4e3pi=5 ¼ 4(cos 3p=5þ i sin 3p=5) ¼ 4(cos 1088þ i sin 1088)
is represented by OP in Fig. 1-27.

(c) 2e�pi=4 ¼ 2fcos(�p=4)þ i sin(�p=4)g ¼ 2fcos(�458)þ i sin(�458)g

This complex number can be represented by vector OP in Fig. 1-28. This vector can be obtained by start-

ing with vector OA, whose magnitude is 2 and whose direction is that of the positive x axis, and rotating

it counterclockwise through an angle of�458 (which is the same as rotating it clockwise through an angle

of 458).

1.18. A man travels 12 miles northeast, 20 miles 308 west of north, and then 18 miles 608 south of west.
Determine (a) analytically and (b) graphically how far and in what direction he is from his starting
point.

Solution

(a) Analytically. Let O be the starting point (see Fig. 1-29). Then

the successive displacements are represented by vectors OA,

AB, and BC. The result of all three displacements is represented

by the vector

OC ¼ OAþ ABþ BC

Now

OA ¼ 12(cos 458þ i sin 458) ¼ 12epi=4

AB ¼ 20fcos(908þ 308)þ i sin(908þ 308)g ¼ 20e2pi=3

BC ¼ 18fcos(1808þ 608)þ i sin(1808þ 608)g ¼ 18e4pi=3

Then

OC ¼ 12epi=4 þ 20e2pi=3 þ 18e4pi=3

¼ f12 cos 458þ 20 cos 1208þ 18 cos 2408g þ if12 sin 458þ 20 sin 1208þ 18 sin 2408g

¼ f(12)(
ffiffiffi
2

p
=2)þ (20)(�1=2)þ (18)(�1=2)g þ if(12)(

ffiffiffi
2

p
=2)þ (20)(

ffiffiffi
3

p
=2)þ (18)(�

ffiffiffi
3

p
=2)

¼ (6
ffiffiffi
2

p
� 19)þ (6

ffiffiffi
2

p
þ

ffiffiffi
3

p
)i

If r(cos uþ i sin u) ¼ 6
ffiffiffi
2

p
� 19þ (6

ffiffiffi
2

p
þ

ffiffiffi
3

p
)i, then r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(6

ffiffiffi
2

p
� 19)2 þ (6

ffiffiffi
2

p
þ

ffiffiffi
3

p
)2

p
¼ 14:7

approximately, and u ¼ cos�1(6
ffiffiffi
2

p
� 19)=r ¼ cos�1(� :717) ¼ 1358490 approximately.

Thus, the man is 14.7 miles from his starting point in a direction 1358490 � 908 ¼ 458490 west of north.
(b) Graphically. Using a convenient unit of length such as PQ in Fig. 1-29, which represents 2 miles, and a

protractor to measure angles, construct vectorsOA, AB, and BC. Then, by determining the number of units

in OC and the angle that OC makes with the y axis, we obtain the approximate results of (a).

C

O

B

A

x

20
18 30°

60°

45°
12

y

Fig. 1-29
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De Moivre’s Theorem

1.19. Suppose z1 ¼ r1(cos u1 þ i sin u1) and z2 ¼ r2(cos u2 þ i sin u2). Prove:

(a) z1z2 ¼ r1r2fcos(u1 þ u2)þ i sin(u1 þ u2)g, (b)
z1

z2
¼ r1

r2
fcos(u1 � u2)þ i sin(u1 � u2)g.

Solution

(a) z1z2 ¼ fr1(cos u1 þ i sin u1)gfr2(cos u2 þ i sin u2)g
¼ r1r2f(cos u1 cos u2 � sin u1 sin u2)þ i(sin u1 cos u2 þ cos u1 sin u2)g
¼ r1r2fcos(u1 þ u2)þ i sin(u1 þ u2)g

(b)
z1

z2
¼ r1(cos u1 þ i sin u1)

r2(cos u2 þ i sin u2)
� (cos u2 � i sin u2)

(cos u2 � i sin u2)

¼ r1

r2

(cos u1 cos u2 þ sin u1 sin u2)þ i(sin u1 cos u2 � cos u1 sin u2)

cos2 u2 þ sin2 u2

� �

¼ r1

r2
fcos(u1 � u2)þ i sin(u1 � u2)g

In terms of Euler’s formula, eiu ¼ cos uþ i sin u, the results state that if z1 ¼ r1e
iu1 and z2 ¼ r2e

iu2 , then

z1z2 ¼ r1r2e
i(u1þu2) and z1=z2 ¼ r1e

iu1=r2e
iu2 ¼ (r1=r2)e

i(u1�u2).

1.20. Prove De Moivre’s theorem: (cos uþ i sin u)n ¼ cos nuþ i sin nu where n is any positive integer.

Solution

We use the principle of mathematical induction.Assume that the result is true for the particular positive integer

k, i.e., assume (cos uþ i sin u)k ¼ cos kuþ i sin ku. Then, multiplying both sides by cos uþ i sin u, we find

(cos uþ i sin u)kþ1 ¼ (cos kuþ i sin ku)(cos uþ i sin u) ¼ cos(k þ 1)uþ i sin(k þ 1)u

by Problem 1.19. Thus, if the result is true for n ¼ k, then it is also true for n ¼ k þ 1. But, since the result is

clearly true for n ¼ 1, it must also be true for n ¼ 1þ 1 ¼ 2 and n ¼ 2þ 1 ¼ 3, etc., and so must be true for all

positive integers.

The result is equivalent to the statement (eiu)n ¼ eniu.

1.21. Prove the identities: (a) cos 5u ¼ 16 cos5 u� 20 cos3 uþ 5 cos u;
(b) (sin 5u)=(sin u) ¼ 16 cos4 u� 12 cos2 uþ 1, if u=0,+p, +2p, . . . .

Solution

We use the binomial formula

(aþ b)n ¼ an þ n

1

� �
an�1bþ n

2

� �
an�2b2 þ � � � þ n

r

� �
an�rbr þ � � � þ bn

where the coefficients

n

r

� �
¼ n!

r!(n� r)!

also denoted by C(n, r) or nCr , are called the binomial coefficients. The number n! or factorial n, is defined as

the product n(n� 1) � � � 3 � 2 � 1 and we define 0! ¼ 1.
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From Problem 1.20, with n ¼ 5, and the binomial formula,

cos 5uþ i sin 5u ¼ (cos uþ i sin u)5

¼ cos5 uþ
5

1

� �
(cos4 u)(i sin u)þ

5

2

� �
(cos3 u)(i sin u)2

þ
5

3

� �
(cos2 u)(i sin u)3 þ

5

4

� �
(cos u)(i sin u)4 þ (i sin u)5

¼ cos5 uþ 5i cos4 u sin u� 10 cos3 u sin2 u

� 10i cos2 u sin3 uþ 5 cos u sin4 uþ i sin5 u

¼ cos5 u� 10 cos3 u sin2 uþ 5 cos u sin4 u

þ i(5 cos4 u sin u� 10 cos2 u sin3 uþ sin5 u)

Hence

(a) cos 5u ¼ cos5 u� 10 cos3 u sin2 uþ 5 cos u sin4 u

¼ cos5 u� 10 cos3 u(1� cos2 u)þ 5 cos u(1� cos2 u)2

¼ 16 cos5 u� 20 cos3 uþ 5 cos u

(b) sin 5u ¼ 5 cos4 u sin u� 10 cos2 u sin3 uþ sin5 u

or

sin 5u

sin u
¼ 5 cos4 u� 10 cos2 u sin2 uþ sin4 u

¼ 5 cos4 u� 10 cos2 u(1� cos2 u)þ (1� cos2 u)2

¼ 16 cos4 u� 12 cos2 uþ 1

provided sin u=0, i.e., u=0, +p, +2p, . . . .

1.22. Show that (a) cos u ¼ eiu þ e�iu

2
, (b) sin u ¼ eiu � e�iu

2i
.

Solution

We have

eiu ¼ cos uþ i sin u (1)

e�iu ¼ cos u� i sin u (2)

(a) Adding (1) and (2),

eiu þ e�iu ¼ 2 cos u or cos u ¼ eiu þ e�iu

2

(b) Subtracting (2) from (1),

eiu � e�iu ¼ 2i sin u or sin u ¼ eiu � e�iu

2i
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1.23. Prove the identities (a) sin3 u ¼ 3
4
sin u� 1

4
sin 3u, (b) cos4 u ¼ 1

8
cos 4uþ 1

2
cos 2uþ 3

8
.

Solution

(a) sin3 u ¼ eiu � e�iu

2i

� �3

¼ (eiu � e�iu)3

8i3
¼ � 1

8i
f(eiu)3 � 3(eiu)2(e�iu)þ 3(eiu)(e�iu)2 � (e�iu)3g

¼ � 1

8i
(e3iu � 3eiu þ 3e�iu � e�3iu) ¼ 3

4

eiu � e�iu

2i

� �
� 1

4

e3iu � e�3iu

2i

� �

¼ 3

4
sin u� 1

4
sin 3u

(b) cos4 u ¼ eiu þ e�iu

2

� �4

¼ (eiu þ e�iu)4

16

¼ 1

16
f(eiu)4 þ 4(eiu)3(e�iu)þ 6(eiu)2(e�iu)2 þ 4(eiu)(e�iu)3 þ (e�iu)4g

¼ 1

16
(e4iu þ 4e2iu þ 6þ 4e�2iu þ e�4iu) ¼ 1

8

e4iu þ e�4iu

2

� �
þ 1

2

e2iu þ e�2iu

2

� �
þ 3

8

¼ 1

8
cos 4uþ 1

2
cos 2uþ 3

8

1.24. Given a complex number (vector) z, interpret geometrically zeia where a is real.

Solution

Let z ¼ reiu be represented graphically by vector OA in

Fig. 1-30. Then

zeia ¼ reiu � eia ¼ rei(uþa)

is the vector represented by OB.

Hence multiplication of a vector z by eia amounts to

rotating z counterclockwise through angle a. We can con-

sider eia as an operator that acts on z to produce this

rotation.

1.25. Prove: eiu ¼ ei(uþ2kp), k ¼ 0, +1, +2, . . . .

Solution

ei(uþ2kp) ¼ cos(uþ 2kp)þ i sin(uþ 2kp) ¼ cos uþ i sin u ¼ eiu

1.26. Evaluate each of the following.

(a) [3(cos 408þ i sin 408)][4(cos 808þ i sin 808)], (b)
(2 cis 158)7

(4 cis 458)3
, (c)

1þ
ffiffiffi
3

p
i

1�
ffiffiffi
3

p
i

� �10

Solution
(a) [3(cos 408þ i sin 408)][4(cos 808þ i sin 808)] ¼ 3 � 4[cos(408þ 808)þ i sin(408þ 808)]

¼ 12(cos 1208þ i sin 1208)

¼ 12 � 1

2
þ

ffiffiffi
3

p

2
i

� �
¼ �6þ 6

ffiffiffi
3

p
i

O

B

A

zeiα
z = reiθ

x

y

θ

α

Fig. 1-30
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(b)
(2 cis 158)7

(4 cis 458)3
¼ 128 cis 1058

64 cis 1358
¼ 2 cis(1058� 1358)

¼ 2[cos(�308)þ i sin(�308)] ¼ 2[cos 308� i sin 308] ¼
ffiffiffi
3

p
� i

(c)
1þ

ffiffiffi
3

p
i

1�
ffiffiffi
3

p
i

� �10

¼ 2 cis(608)
2 cis(�608)

� �10

¼ (cis 1208)10 ¼ cis 12008 ¼ cis 1208 ¼ � 1

2
þ

ffiffiffi
3

p

2
i

Another Method.

1þ
ffiffiffi
3

p
i

1�
ffiffiffi
3

p
i

� �10
¼ 2epi=3

2e�pi=3

� �10
¼ (e2pi=3)10 ¼ e20pi=3

¼ e6pie2pi=3 ¼ (1)[cos(2p=3)þ i sin(2p=3)] ¼ � 1

2
þ

ffiffiffi
3

p

2
i

1.27. Prove that (a) arg(z1z2) ¼ arg z1 þ arg z2, (b) arg(z1=z2) ¼ arg z1 � arg z2, stating appropriate con-
ditions of validity.

Solution

Let z1 ¼ r1(cos u1 þ i sin u1), z2 ¼ r2(cos u2 þ i sin u2). Then arg z1 ¼ u1, arg z2 ¼ u2.

(a) Since z1z2 ¼ r1r2fcos(u1 þ u2)þ i sin(u1 þ u2)g, arg(z1z2) ¼ u1 þ u2 ¼ arg z1 þ arg z2.

(b) Since z1=z2 ¼ (r1=r2)fcos(u1 � u2)þ i sin(u1 � u2)g, arg z1=z2ð Þ ¼ u1 � u2 ¼ arg z1 � arg z2.

Since there are many possible values for u1 ¼ arg z1 and u2 ¼ arg z2, we can only say that the two sides

in the above equalities are equal for some values of arg z1 and arg z2. They may not hold even if principal

values are used.

Roots of Complex Numbers

1.28. (a) Find all values of z for which z5 ¼ �32, and (b) locate these values in the complex plane.

Solution

(a) In polar form, �32 ¼ 32fcos(pþ 2kp)þ i sin(pþ 2kp)g, k ¼ 0, +1, +2, . . . .

Let z ¼ r(cos uþ i sin u). Then, by De Moivre’s theorem,

z5 ¼ r5(cos 5uþ i sin 5u) ¼ 32fcos(pþ 2kp)þ i sin(pþ 2kp)g

and so r5 ¼ 32, 5u ¼ pþ 2kp, from which r ¼ 2, u ¼ (pþ 2kp)=5. Hence

z ¼ 2 cos
pþ 2kp

5

� �
þ i sin

pþ 2kp

5

� �� �

If k ¼ 0, z ¼ z1 ¼ 2(cosp=5þ i sinp=5).
If k ¼ 1, z ¼ z2 ¼ 2(cos 3p=5þ i sin 3p=5).
If k ¼ 2, z ¼ z3 ¼ 2(cos 5p=5þ i sin 5p=5) ¼ �2.

If k ¼ 3, z ¼ z4 ¼ 2(cos 7p=5þ i sin 7p=5).
If k ¼ 4, z ¼ z5 ¼ 2(cos 9p=5þ i sin 9p=5).
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By considering k ¼ 5, 6, . . . as well as negative
values, �1, �2, . . . , repetitions of the above five

values of z are obtained. Hence, these are the only

solutions or roots of the given equation. These five

roots are called the fifth roots of�32 and are collec-

tively denoted by (�32)1=5. In general, a1=n rep-

resents the nth roots of a and there are n such roots.

(b) The values of z are indicated in Fig. 1-31. Note that

they are equally spaced along the circumference of

a circle with center at the origin and radius

2. Another way of saying this is that the roots are

represented by the vertices of a regular polygon.

1.29. Find each of the indicated roots and locate them graphically.

(a) (�1þ i)1=3, (b) (�2
ffiffiffi
3

p
� 2i)1=4

Solution

(a) (�1þ i)1=3

�1þ i ¼
ffiffiffi
2

p
fcos(3p=4þ 2kp)þ i sin(3p=4þ 2kp)g

(�1þ i)1=3 ¼ 21=6 cos
3p=4þ 2kp

3

� �
þ i sin

3p=4þ 2kp

3

� �� �

If k ¼ 0, z1 ¼ 21=6(cosp=4þ i sinp=4).
If k ¼ 1, z2 ¼ 21=6(cos 11p=12þ i sin 11p=12).
If k ¼ 2, z3 ¼ 21=6(cos 19p=12þ i sin 19p=12).

These are represented graphically in Fig. 1-32.

x

y

z2

z3

z1

π/4

19π/12

11π/12

y

x

z4

z3

z2

z119π/24

7π/24

43π/24

31π/24

Fig. 1-32 Fig. 1-33

(b) (�2
ffiffiffi
3

p
� 2i)1=4

�2
ffiffiffi
3

p
� 2i ¼ 4fcos(7p=6þ 2kp)þ i sin(7p=6þ 2kp)g

(�2
ffiffiffi
3

p
� 2i)1=4 ¼ 41=4 cos

7p=6þ 2kp

4

� �
þ i sin

7p=6þ 2kp

4

� �� �

If k ¼ 0, z1 ¼
ffiffiffi
2

p
(cos 7p=24þ i sin 7p=24).

If k ¼ 1, z2 ¼
ffiffiffi
2

p
(cos 19p=24þ i sin 19p=24).

If k ¼ 2, z3 ¼
ffiffiffi
2

p
(cos 31p=24þ i sin 31p=24).

If k ¼ 3, z4 ¼
ffiffiffi
2

p
(cos 43p=24þ i sin 43p=24).

These are represented graphically in Fig. 1-33.

x

y

z2

z3

z4

z5

z13π/5
π/5

9π/5

7π/5

π

Fig. 1-31
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1.30. Find the square roots of �15� 8i.

Solution

Method 1.

�15� 8i ¼ 17fcos(uþ 2kp)þ i sin(uþ 2kp)g

where cos u ¼ �15=17, sin u ¼ �8=17. Then the square roots of �15� 8i areffiffiffiffiffi
17

p
(cos u=2þ i sin u=2) (1)

and ffiffiffiffiffi
17

p
fcos(u=2þ p)þ i sin(u=2þ p)g ¼ �

ffiffiffiffiffi
17

p
(cos u=2þ i sin u=2) (2)

Now

cos u=2 ¼ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1þ cos u)=2

p
¼ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� 15=17)=2

p
¼ +1=

ffiffiffiffiffi
17

p

sin u=2 ¼ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� cos u)=2

p
¼ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1þ 15=17)=2

p
¼ +4=

ffiffiffiffiffi
17

p

Since u is an angle in the third quadrant, u=2 is an angle in the second quadrant. Hence,

cos u=2 ¼ �1=
ffiffiffiffiffi
17

p
, sin u=2 ¼ 4=

ffiffiffiffiffi
17

p
, and so from (1) and (2) the required square roots are

�1þ 4i and 1� 4i. As a check, note that (�1þ 4i)2 ¼ (1� 4i)2 ¼ �15� 8i.

Method 2.
Let pþ iq, where p and q are real, represent the required square roots. Then

(pþ iq)2 ¼ p2 � q2 þ 2pqi ¼ �15� 8i

or
p2 � q2 ¼ �15 (3)

pq ¼ �4 (4)

Substituting q ¼ �4=p from (4) into (3), it becomes p2 � 16=p2 ¼ �15 or p4 þ 15p2 � 16 ¼ 0,

i.e., ( p2 þ 16)(p2 � 1) ¼ 0 or p2 ¼ �16, p2 ¼ 1. Since p is real, p ¼ +1. From (4), if p ¼ 1, q ¼ �4;

if p ¼ �1, q ¼ 4. Thus the roots are �1þ 4i and 1� 4i.

Polynomial Equations

1.31. Solve the quadratic equation az2 þ bzþ c ¼ 0, a=0:

Solution

Transposing c and dividing by a=0,

z2 þ b

a
z ¼ � c

a

Adding b=2að Þ2 [completing the square],

z2 þ b

a
zþ b

2a

� �2

¼ � c

a
þ b

2a

� �2

: Then zþ b

2a

� �2

¼ b2 � 4ac

4a2

Taking square roots,

zþ b

2a
¼ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a
: Hence z ¼ �b+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a
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1.32. Solve the equation z2 þ (2i� 3)zþ 5� i ¼ 0.

Solution

From Problem 1.31, a ¼ 1, b ¼ 2i� 3, c ¼ 5� i and so the solutions are

z ¼ �b+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a
¼ �(2i� 3)+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2i� 3)2 � 4(1)(5� i)

p
2(1)

¼ 3� 2i+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�15� 8i

p

2

¼ 3� 2i+ (1� 4i)

2
¼ 2� 3i or 1þ i

using the fact that the square roots of�15� 8i are+(1� 4i) [see Problem 1.30]. These are found to satisfy the

given equation.

1.33. Suppose the real rational number p/q (where p and q have no common factor except+1, i.e., p/q is
in lowest terms) satisfies the polynomial equation a0z

n þ a1z
n�1 þ � � � þ an ¼ 0 where

a0, a1, . . . , an are integers. Show that p and q must be factors of an and a0, respectively.

Solution

Substituting z ¼ p=q in the given equation and multiplying by qn yields

a0p
n þ a1p

n�1qþ � � � þ an�1pq
n�1 þ anq

n ¼ 0 (1)

Dividing by p and transposing the last term,

a0p
n�1 þ a1p

n�2qþ � � � þ an�1q
n�1 ¼ � anq

n

p
(2)

Since the left side of (2) is an integer, so also is the right side. But since p has no factor in common with q, it

cannot divide qn and so must divide an.

Similarly, on dividing (1) by q and transposing the first term, we find that q must divide a0.

1.34. Solve 6z4 � 25z3 þ 32z2 þ 3z� 10 ¼ 0.

Solution

The integer factors of 6 and �10 are, respectively, +1, +2, +3, +6 and +1, +2, +5, +10. Hence, by

Problem 1.33, the possible rational solutions are +1, +1=2, +1=3, +1=6, +2, +2=3, +5, +5=2, +5=3,
+5=6, +10, +10=3.

By trial, we find that z ¼ �1=2 and z ¼ 2=3 are solutions, and so the polynomial

(2zþ 1)(3z� 2) ¼ 6z2 � z� 2 is a factor of 6z4 � 25z3 þ 32z2 þ 3z� 10

the other factor being z2 � 4zþ 5 as found by long division. Hence

6z4 � 25z3 þ 32z2 þ 3z� 10 ¼ (6z2 � z� 2)(z2 � 4zþ 5) ¼ 0

The solutions of z2 � 4zþ 5 ¼ 0 are [see Problem 1.31]

z ¼ 4+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16� 20

p

2
¼ 4+

ffiffiffiffiffiffiffi
�4

p

2
¼ 4+ 2i

2
¼ 2+ i

Then the solutions are �1=2, 2=3, 2þ i, 2� i.

1.35. Prove that the sum and product of all the roots of a0z
n þ a1z

n�1 þ � � � þ an ¼ 0 where a0 = 0, are
�a1=a0 and (�1)nan=a0, respectively.

Solution

If z1, z2, . . . , zn are the n roots, the equation can be written in factored form as

a0(z� z1)(z� z2) � � � (z� zn) ¼ 0
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Direct multiplication shows that

a0fzn � (z1 þ z2 þ � � � þ zn)z
n�1 þ � � � þ (�1)nz1z2 � � � zng ¼ 0

It follows that �a0(z1 þ z2 þ � � � þ zn) ¼ a1 and a0(�1)nz1z2 � � � zn ¼ an, from which

z1 þ z2 þ � � � þ zn ¼ �a1=a0, z1z2 � � � zn ¼ (�1)nan=a0

as required.

1.36. Suppose pþ qi is a root of a0z
n þ a1z

n�1 þ � � � þ an ¼ 0 where a0=0, a1, . . . , an, p and q are real.
Prove that p� qi is also a root.

Solution

Let pþ qi ¼ reiu in polar form. Since this satisfies the equation,

a0r
neinu þ a1r

n�1ei(n�1)u þ � � � þ an�1re
iu þ an ¼ 0

Taking the conjugate of both sides

a0r
ne�inu þ a1r

n�1e�i(n�1)u þ � � � þ an�1re
�iu þ an ¼ 0

we see that re�iu ¼ p� qi is also a root. The result does not hold if a0, . . . , an are not all real (see Problem 1.32).

The theorem is often expressed in the statement: The zeros of a polynomial with real coefficients occur in

conjugate pairs.

The nth Roots of Unity

1.37. Find all the 5th roots of unity.

Solution

z5 ¼ 1 ¼ cos 2kpþ i sin 2kp ¼ e2kpi

where k ¼ 0, +1, +2, . . . : Then

z ¼ cos
2kp

5
þ i sin

2kp

5
¼ e2kpi=5

where it is sufficient to use k ¼ 0, 1, 2, 3, 4 since all other values of k lead to repetition.

Thus the roots are 1, e2pi=5, e4pi=5, e6pi=5, e8pi=5. If we call e2pi=5 ¼ v, these can be denoted by

1, v, v2, v3, v4.

1.38. Suppose n ¼ 2, 3, 4, . . .. Prove that

(a) cos
2p

n
þ cos

4p

n
þ cos

6p

n
þ � � � þ cos

2(n� 1)p

n
¼ �1

(b) sin
2p

n
þ sin

4p

n
þ sin

6p

n
þ � � � þ sin

2(n� 1)p

n
¼ 0

Solution

Consider the equation zn � 1 ¼ 0 whose solutions are the nth roots of unity,

1, e2pi=n, e4pi=n, e6pi=n, . . . , e2(n�1)pi=n
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By Problem 1.35, the sum of these roots is zero. Then

1þ e2pi=n þ e4pi=n þ e6pi=n þ � � � þ e2(n�1)pi=n ¼ 0

i.e.,

1þ cos
2p

n
þ cos

4p

n
þ � � � þ cos

2(n� 1)p

n

� �
þ i sin

2p

n
þ sin

4p

n
þ � � � þ sin

2(n� 1)p

n

� �
¼ 0

from which the required results follow.

Dot and Cross Product

1.39. Suppose z1 ¼ 3� 4i and z2 ¼ �4þ 3i. Find: (a) z1 � z2, (b) jz1 � z2j.

Solution

(a) z1 � z2 ¼ Refz1z2g ¼ Ref(3þ 4i)(�4þ 3i)g ¼ Ref�24� 7ig ¼ �24

Another Method. z1 � z2 ¼ (3)(�4)þ (�4)(3) ¼ �24

(b) jz1 � z2j ¼ jImfz1z2gj ¼ jImf(3þ 4i)(�4þ 3i)gj ¼ jImf�24� 7igj ¼ j�7j ¼ 7

Another Method. jz1 � z2j ¼ j(3)(3)� (�4)(�4)j ¼ j�7j ¼ 7

1.40. Find the acute angle between the vectors in Problem 1.39.

Solution

From Problem 1.39(a), we have

cos u ¼ z1 � z2
jz1jjz2j

¼ �24

j3� 4ijj�4þ 3ij ¼
�24

25
¼ �:96

Then the acute angle is cos�1 :96 ¼ 168160 approximately.

1.41. Prove that the area of a parallelogram having sides z1 and z2 is jz1 � z2j.

Solution
Area of parallelogram [Fig:1-34] ¼ (base)(height)

¼ (jz2j)(jz1j sin u) ¼ jz1jjz2j sin u ¼ jz1 � z2j

h =⎪z1⎪ sinq

θ

z1

z2

x

y

z1
z2

C(x3, y3)

A(x1, y1)
B(x2, y2)

O

Fig. 1-34 Fig. 1-35
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1.42. Find the area of a triangle with vertices at A(x1, y1), B(x2, y2), and C(x3, y3).

Solution

The vectors from C to A and B [Fig. 1-35] are, respectively, given by

z1 ¼ (x1 � x3)þ i(y1 � y3) and z2 ¼ (x2 � x3)þ i(y2 � y3)

Since the area of a triangle with sides z1 and z2 is half the area of the corresponding parallelogram, we have by

Problem 1.41:

Area of triangle ¼ 1
2
jz1 � z2j ¼ 1

2
jImf[(x1 � x3)� i(y1 � y3)][(x2 � x3)þ i(y2 � y3)]gj

¼ 1
2
j(x1 � x3)(y2 � y3)� (y1 � y3)(x2 � x3)j

¼ 1
2
jx1y2 � y1x2 þ x2y3 � y2x3 þ x3y1 � y3x1j

¼ 1
2
j
x1 y1 1

x2 y2 1

x3 y3 1

�������
�������j

in determinant form.

Complex Conjugate Coordinates

1.43. Express each equation in terms of conjugate coordinates: (a) 2xþ y ¼ 5, (b) x2 þ y2 ¼ 36.

Solution

(a) Since z ¼ xþ iy, �z ¼ x� iy, x ¼ (zþ �z)=2, y ¼ (z� �z)=2i. Then, 2xþ y ¼ 5 becomes

2
zþ �z

2

� �
þ z� �z

2i

� �
¼ 5 or (2iþ 1)zþ (2i� 1)�z ¼ 10i

The equation represents a straight line in the z plane.

(b) Method 1. The equation is (xþ iy)(x� iy) ¼ 36 or z�z ¼ 36.

Method 2. Substitute x ¼ (zþ �z)=2, y ¼ (z� �z)=2i in x2 þ y2 ¼ 36 to obtain z�z ¼ 36.

The equation represents a circle in the z plane of radius 6 with center at the origin.

1.44. Prove that the equation of any circle or line in the z plane can be written as az�zþ bzþ �b�zþ g ¼ 0
where a and g are real constants while b may be a complex constant.

Solution

The general equation of a circle in the xy plane can be written

A(x2 þ y2)þ Bxþ Cyþ D ¼ 0

which in conjugate coordinates becomes

Az�zþ B
zþ �z

2

� �
þ C

z� �z

2i

� �
þ D ¼ 0 or Az�zþ B

2
þ C

2i

� �
zþ B

2
� C

2i

� �
�zþ D ¼ 0

Calling A ¼ a, (B=2)þ (C=2i) ¼ b and D ¼ g, the required result follows.

In the special case A ¼ a ¼ 0, the circle degenerates into a line.
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Point Sets

1.45. Given the point set S:fi, 1
2
i, 1

3
i, 1

4
i, . . .g or briefly fi=ng. (a) Is S bounded? (b) What are its limit

points, if any? (c) Is S closed? (d) What are its interior and boundary points? (e) Is S open? (f) Is
S connected? (g) Is S an open region or domain? (h) What is the closure of S? (i) What is the comp-
lement of S? (j) Is S countable? (k) Is S compact? (l) Is the closure of S compact?

Solution

(a) S is bounded since for every point z in S, jzj , 2 (for example), i.e., all points of S lie inside a circle of

radius 2 with center at the origin.

(b) Since every deleted neighborhood of z ¼ 0 contains points of S, a limit point is z ¼ 0. It is the only limit

point.

Note that since S is bounded and infinite, the Weierstrass–Bolzano theorem predicts at least one limit

point.

(c) S is not closed since the limit point z ¼ 0 does not belong to S.

(d) Every d neighborhood of any point i/n (i.e., every circle of radius dwith center at i/n) contains points that

belong to S and points that do not belong to S. Thus every point of S, as well as the point z ¼ 0, is a bound-

ary point. S has no interior points.

(e) S does not consist of any interior points. Hence, it cannot be open. Thus, S is neither open nor closed.

(f) If we join any two points of S by a polygonal path, there are points on this path that do not belong to S.

Thus S is not connected.

(g) Since S is not an open connected set, it is not an open region or domain.

(h) The closure of S consists of the set S together with the limit point zero, i.e., f0, i, 1
2
i, 1

3
i, . . .g.

(i) The complement of S is the set of all points not belonging to S, i.e., all points z = i, i=2, i=3, . . . :

(j) There is a one to one correspondence between the elements of S and the natural numbers 1, 2, 3, . . . as

indicated below:

i 1
2
i 1

3
i 1

4
i . . .

l l l l
1 2 3 4 . . .

Hence, S is countable.

(k) S is bounded but not closed. Hence, it is not compact.

(l) The closure of S is bounded and closed and so is compact.

1.46. Given the point sets A ¼ f3, �i, 4, 2þ i, 5g, B ¼ f�i, 0, �1, 2þ ig, C ¼ f�
ffiffiffi
2

p
i, 1

2
, 3g. Find

(a) A< B, (b) A> B, (c) A> C, (d) A> (B< C), (e) (A> B)< (A> C), (f ) A> (B> C).

Solution

(a) A< B consists of points belonging either to A or B or both and is given by f3, �i, 4, 2þ i, 5, 0,�1g.
(b) A> B consists of points belonging to both A and B and is given by f�i, 2þ ig.
(c) A> C ¼ f3g, consisting of only the member 3.

(d) B< C ¼ f�i, 0,�1, 2þ i, �
ffiffiffi
2

p
i, 1

2
, 3g.

Hence A> (B< C) ¼ f3, �i, 2þ ig, consisting of points belonging to both A and B< C.

(e) A> B ¼ f�i, 2þ ig, A> C ¼ f3g from parts (b) and (c). Hence (A> B)< (A> C) ¼ f�i, 2þ i, 3g.
From this and the result of (d), we see that A> (B< C) ¼ (A> B)< (A> C), which illustrates the

fact that A, B, C satisfy the distributive law. We can show that sets exhibit many of the properties

valid in the algebra of numbers. This is of great importance in theory and application.

(f) B> C ¼ 1, the null set, since there are no points common to both B and C. Hence, A> (B> C) ¼ 1
also.
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Miscellaneous Problems

1.47. A number is called an algebraic number if it is a solution of a polynomial equation

a0z
n þ a1z

n�1 þ � � � þ an�1zþ an ¼ 0 where a0, a1, . . . , an are integers:

Prove that (a)
ffiffiffi
3

p
þ

ffiffiffi
2

p
and (b)

ffiffiffi
43

p
� 2i are algebraic numbers.

Solution

(a) Let z ¼
ffiffiffi
3

p
þ

ffiffiffi
2

p
or z�

ffiffiffi
2

p
¼

ffiffiffi
3

p
. Squaring, z2 � 2

ffiffiffi
2

p
zþ 2 ¼ 3 or z2 � 1 ¼ 2

ffiffiffi
2

p
z. Squaring again,

z4 � 2z2 þ 1 ¼ 8z2 or z4 � 10z2 þ 1 ¼ 0, a polynomial equation with integer coefficients having
ffiffiffi
3

p
þffiffiffi

2
p

as a root. Hence,
ffiffiffi
3

p
þ

ffiffiffi
2

p
is an algebraic number.

(b) Let z ¼
ffiffiffi
43

p
� 2i or zþ 2i ¼

ffiffiffi
43

p
. Cubing, z3 þ 3z2(2i)þ 3z(2i)2 þ (2i)3 ¼ 4 or z3 � 12z� 4 ¼

i(8� 6z2). Squaring, z6 þ 12z4 � 8z3 þ 48z2 þ 96zþ 80 ¼ 0, a polynomial equation with integer

coefficients having
ffiffiffi
43

p
� 2i as a root. Hence,

ffiffiffi
43

p
� 2i is an algebraic number.

Numbers that are not algebraic, i.e., do not satisfy any polynomial equation with integer coefficients, are

called transcendental numbers. It has been proved that the numbers p and e are transcendental. However, it

is still not yet known whether numbers such as ep or eþ p, for example, are transcendental or not.

1.48. Represent graphically the set of values of z for
which (a)

z� 3

zþ 3

����
���� ¼ 2, (b)

z� 3

zþ 3

����
���� , 2.

Solution

(a) The given equation is equivalent to jz� 3j ¼
2jzþ 3j or, if

z ¼ xþ iy, jxþ iy� 3j ¼ 2jxþ iyþ 3j, i.e.,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x� 3)2 þ y2

q
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xþ 3)2 þ y2

q

Squaring and simplifying, this becomes

x2 þ y2 þ 10xþ 9 ¼ 0

or
(xþ 5)2 þ y2 ¼ 16

i.e., jzþ 5j ¼ 4, a circle of radius 4 with center at (�5, 0) as shown in Fig. 1-36.

Geometrically, any point P on this circle is such that the distance from P to point B(3, 0) is twice the

distance from P to point A(�3, 0).

Another Method.

z� 3

zþ 3

����
���� ¼ 2 is equivalent to

z� 3

zþ 3

� �
�z� 3

�zþ 3

� �
¼ 4 or z�zþ 5�zþ 5zþ 9 ¼ 0

i.e., (zþ 5)(�zþ 5) ¼ 16 or jzþ 5j ¼ 4.

(b) The given inequality is equivalent to jz� 3j , 2jzþ 3j or
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x� 3)2 þ y2

p
, 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xþ 3)2 þ y2

p
. Squaring

and simplifying, this becomes x2 þ y2 þ 10xþ 9 . 0 or (xþ 5)2 þ y2 . 16, i.e., jzþ 5j . 4.

The required set thus consists of all points external to the circle of Fig. 1-36.

P

A B
x

y

(3, 0)(–3, 0)

(–5, 0)

4

Fig. 1-36
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1.49. Given the sets A and B represented by jz� 1j , 2 and jz� 2ij , 1:5, respectively. Represent
geometrically (a) A> B, (b) A< B.

Solution

The required sets of points are shown shaded in Figs. 1-37 and 1-38, respectively.

B

A
x

y

2i

1
x

y

A

1

B

2i

Fig. 1-37 Fig. 1-38

1.50. Solve z2(1� z2) ¼ 16.

Solution

Method 1. The equation can be written z4 � z2 þ 16 ¼ 0, i.e., z4 þ 8z2 þ 16� 9z2 ¼ 0, (z2 þ 4)2 � 9z2 ¼ 0 or

(z2 þ 4þ 3z)(z2 þ 4� 3z) ¼ 0. Then, the required solutions are the solutions of z2 þ 3zþ 4 ¼ 0 and

z2 � 3zþ 4 ¼ 0, or

� 3

2
+

ffiffiffi
7

p

2
i and

3

2
+

ffiffiffi
7

p

2
i

.

Method 2. Letting w ¼ z2, the equation can be written w2 � wþ 16 ¼ 0 and w ¼ 1
2
+ 3

2

ffiffiffi
7

p
i. To obtain sol-

utions of z2 ¼ 1
2
+ 3

2

ffiffiffi
7

p
i, the methods of Problem 1.30 can be used.

1.51. Let z1, z2, z3 represent vertices of an equilateral triangle. Prove that

z21 þ z22 þ z23 ¼ z1z2 þ z2z3 þ z3z1

Solution

From Fig. 1-39, we see that

z2 � z1 ¼ epi=3(z3 � z1)

z1 � z3 ¼ epi=3(z2 � z3)

Then, by division,

z2 � z1

z1 � z3
¼ z3 � z1

z2 � z3

or

z21 þ z22 þ z23 ¼ z1z2 þ z2z3 þ z3z1

x

y

z1

z3

z2

π/3
π/3

π/3

Fig. 1-39
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1.52. Prove that for m ¼ 2, 3, . . .

sin
p

m
sin

2p

m
sin

3p

m
� � � sin (m� 1)p

m
¼ m

2m�1

Solution

The roots of zm ¼ 1 are z ¼ 1, e2pi=m, e4pi=m, . . . , e2(m�1)pi=m. Then, we can write

zm � 1 ¼ (z� 1)(z� e2pi=m)(z� e4pi=m) � � � (z� e2(m�1)pi=m)

Dividing both sides by z� 1 and then letting z ¼ 1 [realizing that (zm � 1)=(z� 1) ¼ 1þ zþ z2 þ � � � þ zm�1],

we find

m ¼ (1� e2pi=m)(1� e4pi=m) � � � (1� e2(m�1)pi=m) (1)

Taking the complex conjugate of both sides of (1) yields

m ¼ (1� e�2pi=m)(1� e�4pi=m) � � � (1� e�2(m�1)pi=m) (2)

Multiplying (1) by (2) using (1� e2kpi=m)(1� e�2kpi=m) ¼ 2� 2 cos(2kp=m), we have

m2 ¼ 2m�1 1� cos
2p

m

� �
1� cos

4p

m

� �
� � � 1� cos

2(m� 1)p

m

� �
(3)

Since 1� cos(2kp=m) ¼ 2 sin2(kp=m), (3) becomes

m2 ¼ 22m�2 sin2
p

m
sin2

2p

m
� � � sin2 (m� 1)p

m
(4)

Then, taking the positive square root of both sides yields the required result.

SUPPLEMENTARY PROBLEMS

Fundamental Operations with Complex Numbers

1.53. Perform each of the indicated operations:

(a) (4� 3i)þ (2i� 8), (d) (i� 2)f2(1þ i)� 3(i� 1)g, (g)
(2þ i)(3� 2i)(1þ 2i)

(1� i)2

(b) 3(�1þ 4i)� 2(7� i), (e)
2� 3i

4� i
, (h) (2i� 1)2

4

1� i
þ 2� i

1þ i

� �

(c) (3þ 2i)(2� i), (f ) (4þ i)(3þ 2i)(1� i) (i)
i4 þ i9 þ i16

2� i5 þ i10 � i15

1.54. Suppose z1 ¼ 1� i, z2 ¼ �2þ 4i, z3 ¼
ffiffiffi
3

p
� 2i. Evaluate each of the following:

(a) z21 þ 2z1 � 3 (d) jz1�z2 þ z2�z1j (g) (z2 þ z3)(z1 � z3)

(b) j2z2 � 3z1j2 (e)
z1 þ z2 þ 1

z1 � z2 þ i

����
���� (h) jz21 þ �z22j2 þ j�z23 � z22j2

(c) (z3 � �z3)
5 (f )

1

2

z3

�z3
þ �z3

z3

� �
(i) Ref2z31 þ 3z22 � 5z23g

32 CHAPTER 1 Complex Numbers



1.55. Prove that (a) (z1z2) ¼ �z1�z2, (b) (z1z2z3) ¼ �z1�z2�z3. Generalize these results.

1.56. Prove that (a) (z1=z2) ¼ �z1=�z2, (b) jz1=z2j ¼ jz1j=jz2j if z2 = 0.

1.57. Find real numbers x and y such that 2x� 3iyþ 4ix� 2y� 5� 10i ¼ (xþ yþ 2)� (y� xþ 3)i.

1.58. Prove that (a) Refzg ¼ (zþ �z)=2, (b) Imfzg ¼ (z� �z)=2i.

1.59. Suppose the product of two complex numbers is zero. Prove that at least one of the numbers must be zero.

1.60. Let w ¼ 3iz� z2 and z ¼ xþ iy. Find jwj2 in terms of x and y.

Graphical Representation of Complex Numbers. Vectors.

1.61. Perform the indicated operations both analytically and graphically.

(a) (2þ 3i)þ (4� 5i) (d) 3(1þ i)þ 2(4� 3i)� (2þ 5i)

(b) (7þ i)� (4� 2i) (e) 1
2
(4� 3i)þ 3

2
(5þ 2i)

(c) 3(1þ 2i)� 2(2� 3i)

1.62. Let z1, z2, and z3 be the vectors indicated in Fig. 1-40. Construct

graphically:

(a) 2z1 þ z3

(b) (z1 þ z2)þ z3

(c) z1 þ (z2 þ z3)

(d) 3z1 � 2z2 þ 5z3

(e) 1
3
z2 � 3

4
z1 þ 2

3
z3

1.63. Let z1 ¼ 4� 3i and z2 ¼ �1þ 2i. Obtain graphically and analytically

(a) jz1 þ z2j, (b) jz1 � z2j, (c) �z1 � �z2, (d) j2�z1 � 3�z2 � 2j.

1.64. The position vectors of points A, B, and C of triangle ABC are given by z1 ¼ 1þ 2i, z2 ¼ 4� 2i, and

z3 ¼ 1� 6i, respectively. Prove that ABC is an isosceles triangle and find the lengths of the sides.

1.65. Let z1, z2, z3, z4 be the position vectors of the vertices for quadrilateral ABCD. Prove that ABCD is a

parallelogram if and only if z1 � z2 � z3 þ z4 ¼ 0.

1.66. Suppose the diagonals of a quadrilateral bisect each other. Prove that the quadrilateral is a parallelogram.

1.67. Prove that the medians of a triangle meet in a point.

1.68. Let ABCD be a quadrilateral and E, F, G, H the midpoints of the sides. Prove that EFGH is a parallelogram.

1.69. In parallelogram ABCD, point E bisects side AD. Prove that the point where BE meets AC trisects AC.

1.70. The position vectors of points A and B are 2þ i and 3� 2i, respectively. (a) Find an equation for line AB. (b)

Find an equation for the line perpendicular to AB at its midpoint.

1.71. Describe and graph the locus represented by each of the following: (a) jz� ij ¼ 2,

(b) jzþ 2ij þ jz� 2ij ¼ 6, (c) jz� 3j � jzþ 3j ¼ 4, (d) z(�zþ 2) ¼ 3, (e) Imfz2g ¼ 4.

1.72. Find an equation for (a) a circle of radius 2 with center at (�3, 4), (b) an ellipse with foci at (0, 2) and (0, �2)
whose major axis has length 10.

z1
z2

z3

x

y

Fig. 1-40
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1.73. Describe graphically the region represented by each of the following:

(a) 1 , jzþ ij � 2, (b) Refz2g . 1, (c) jzþ 3ij . 4, (d) jzþ 2� 3ij þ jz� 2þ 3ij , 10.

1.74. Show that the ellipse jzþ 3j þ jz� 3j ¼ 10 can be expressed in rectangular form as x2=25þ y2=16 ¼ 1 [see

Problem 1.13(b)].

Axiomatic Foundations of Complex Numbers

1.75. Use the definition of a complex number as an ordered pair of real numbers to prove that if the product of two

complex numbers is zero, then at least one of the numbers must be zero.

1.76. Prove the commutative laws with respect to (a) addition, (b) multiplication.

1.77. Prove the associative laws with respect to (a) addition, (b) multiplication.

1.78. (a) Find real numbers x and y such that (c, d) � (x, y) ¼ (a, b) where (c, d)=(0, 0).

(b) How is (x, y) related to the result for division of complex numbers given on page 2?

1.79. Prove that

(cos u1, sin u1)(cos u2, sin u2) � � � (cos un, sin un)
¼ (cos[u1 þ u2 þ � � � þ un], sin[u1 þ u2 þ � � � þ un])

1.80. (a) How would you define (a, b)1=n where n is a positive integer?

(b) Determine (a, b)1=2 in terms of a and b.

Polar Form of Complex Numbers

1.81. Express each of the following complex numbers in polar form:

(a) 2� 2i, (b) �1þ
ffiffiffi
3

p
i, (c) 2

ffiffiffi
2

p
þ 2

ffiffiffi
2

p
i, (d) �i, (e) �4, (f ) �2

ffiffiffi
3

p
� 2i, (g)

ffiffiffi
2

p
i, (h)

ffiffiffi
3

p
=2� 3i=2.

1.82. Show that 2þ i ¼
ffiffiffi
5

p
ei tan

�1 (1=2).

1.83. Express in polar form: (a) �3� 4i, (b) 1� 2i.

1.84. Graph each of the following and express in rectangular form:

(a) 6(cos 1358þ i sin 1358), (b) 12 cis 908, (c) 4 cis 3158, (d) 2e5pi=4, (e) 5e7pi=6, (f ) 3e�2pi=3.

1.85. An airplane travels 150 miles southeast, 100 miles due west, 225 miles 308 north of east, and then 200 miles

northeast. Determine (a) analytically and (b) graphically how far and in what direction it is from its starting

point.

1.86. Three forces as shown in Fig. 1-41 act in a plane on an object

placed atO. Determine (a) graphically and (b) analytically what

force is needed to prevent the object from moving. [This force

is sometimes called the equilibrant.]

1.87. Prove that on the circle z ¼ Reiu, jeizj ¼ e�R sin u.

1.88. (a) Prove that r1e
iu1 þ r2e

iu2 ¼ r3e
iu3 where

r3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 þ r22 þ 2r1r2 cos(u1 � u2)

q
and

u3 ¼ tan�1 r1 sin u1 þ r2 sin u2
r1 cos u1 þ r2 cos u2

� �

(b) Generalize the result in (a).

60°

45°

30°

100 lb 75
 lb

50 lb

O
x

y

Fig. 1-41
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De Moivre’s Theorem

1.89. Evaluate each of the following: (a) (5 cis 208)(3 cis 408) (b) (2 cis 508)6

(c)
(8 cis 408)3

(2 cis 608)4
(d)

(3epi=6)(2e�5pi=4)(6e5pi=3)

(4e2pi=3)2
(e)

ffiffiffi
3

p
� iffiffiffi

3
p

þ i

� �4
1þ i

1� i

� �5

1.90. Prove that (a) sin 3u ¼ 3 sin u� 4 sin3 u, (b) cos 3u ¼ 4 cos3 u� 3 cos u.

1.91. Prove that the solutions of z4 � 3z2 þ 1 ¼ 0 are given by

z ¼ 2 cos 368, 2 cos 728, 2 cos 2168, 2 cos 2528.

1.92. Show that (a) cos 368 ¼ (
ffiffiffi
5

p
þ 1)=4, (b) cos 728 ¼ (

ffiffiffi
5

p
� 1)=4. [Hint: Use Problem 1.91.]

1.93. Prove that (a) sin 4u=sin u ¼ 8 cos3 u� 4 cos u ¼ 2 cos 3uþ 2 cos u

(b) cos 4u ¼ 8 sin4 u� 8 sin2 uþ 1

1.94. Prove De Moivre’s theorem for (a) negative integers, (b) rational numbers.

Roots of Complex Numbers

1.95. Find each of the indicated roots and locate them graphically.

(a) (2
ffiffiffi
3

p
� 2i)1=2, (b) (�4þ 4i)1=5, (c) (2þ 2

ffiffiffi
3

p
i)1=3, (d) (�16i)1=4, (e) (64)1=6, (f) (i)2=3.

1.96. Find all the indicated roots and locate them in the complex plane. (a) Cube roots of 8,

(b) square roots of 4
ffiffiffi
2

p
þ 4

ffiffiffi
2

p
i, (c) fifth roots of �16þ 16

ffiffiffi
3

p
i, (d) sixth roots of �27i.

1.97. Solve the equations (a) z4 þ 81 ¼ 0, (b) z6 þ 1 ¼
ffiffiffi
3

p
i.

1.98. Find the square roots of (a) 5� 12i, (b) 8þ 4
ffiffiffi
5

p
i.

1.99. Find the cube roots of �11� 2i.

Polynomial Equations

1.100. Solve the following equations, obtaining all roots:

(a) 5z2 þ 2zþ 10 ¼ 0, (b) z2 þ (i� 2)zþ (3� i) ¼ 0.

1.101. Solve z5 � 2z4 � z3 þ 6z� 4 ¼ 0.

1.102. (a) Find all the roots of z4 þ z2 þ 1 ¼ 0 and (b) locate them in the complex plane.

1.103. Prove that the sum of the roots of a0z
n þ a1z

n�1 þ a2z
n�2 þ � � � þ an ¼ 0 where a0=0 taken r at a time is

(�1)rar=a0 where 0 , r , n.

1.104. Find two numbers whose sum is 4 and whose product is 8.

The nth Roots of Unity

1.105. Find all the (a) fourth roots, (b) seventh roots of unity, and exhibit them graphically.

1.106. (a) Prove that 1þ cos 728þ cos 1448þ cos 2168þ cos 2888 ¼ 0.

(b) Give a graphical interpretation of the result in (a).

1.107. Prove that cos 368þ cos 728þ cos 1088þ cos 1448 ¼ 0 and interpret graphically.
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1.108. Prove that the sum of the products of all the nth roots of unity taken 2, 3, 4, . . . , (n� 1) at a time is zero.

1.109. Find all roots of (1þ z)5 ¼ (1� z)5.

The Dot and Cross Product

1.110. Given z1 ¼ 2þ 5i and z2 ¼ 3� i. Find

(a) z1 � z2, (b) jz1 � z2j, (c) z2 � z1, (d) jz2 � z1j, (e) jz1 � z2j, (f ) jz2 � z1j.

1.111. Prove that z1 � z2 ¼ z2 � z1:

1.112. Suppose z1 ¼ r1e
iu1 and z2 ¼ r2e

iu2 . Prove that

(a) z1 � z2 ¼ r1r2 cos(u2 � u1), (b) jz1 � z2j ¼ r1r2 sin(u2 � u1).

1.113. Prove that z1 � (z2 þ z3) ¼ z1 � z2 þ z1 � z3.

1.114. Find the area of a triangle having vertices at �4� i, 1þ 2i, 4� 3i.

1.115. Find the area of a quadrilateral having vertices at (2, �1), (4, 3), (�1, 2); and (�3, �2).

Conjugate Coordinates

1.116. Describe each of the following loci expressed in terms of conjugate coordinates z, �z.

(a) z�z ¼ 16, (b) z�z� 2z� 2�zþ 8 ¼ 0, (c) zþ �z ¼ 4, (d) �z ¼ zþ 6i.

1.117. Write each of the following equations in terms of conjugate coordinates.

(a) (x� 3)2 þ y2 ¼ 9, (b) 2x� 3y ¼ 5, (c) 4x2 þ 16y2 ¼ 25.

Point Sets

1.118. Let S be the set of all points aþ bi, where a and b are

rational numbers, which lie inside the square shown shaded in

Fig. 1-42. (a) Is S bounded? (b) What are the limit points of S, if

any? (c) Is S closed? (d) What are its interior and boundary points?

(e) Is S open? (f) Is S connected? (g) Is S an open region or

domain? (h) What is the closure of S? (i) What is the complement

of S? (j) Is S countable? (k) Is S compact? (l) Is the closure of S

compact?

1.119. Answer Problem 1.118 if S is the set of all points inside the square.

1.120. Answer Problem 1.118 if S is the set of all points inside or on the square.

1.121. Given the point sets A ¼ f1, i, �ig, B ¼ f2, 1, �ig, C ¼ fi, �i, 1þ ig, D ¼ f0, �i, 1g. Find:
(a) A< (B< C), (b) (A> C)< (B> D), (c) (A< C)> (B< D).

1.122. Suppose A, B, C, and D are any point sets. Prove that (a) A< B ¼ B< A, (b) A> B ¼ B> A,

(c) A< (B< C) ¼ (A< B)< C, (d) A> (B> C) ¼ (A> B)> C,

(e) A> (B< C) ¼ (A> B)< (A> C).

1.123. Suppose A, B, and C are the point sets defined by jzþ ij , 3, jzj , 5, jzþ 1j , 4. Represent graphically each

of the following:

(a) A> B> C, (b) A< B< C, (c) A> B< C, (d) C> (A< B), (e) (A< B)> (B< C),

(f ) (A> B)< (B> C)< (C> A), (g) (A> ~B)< (B> ~C)< (C > ~A).

1.124. Prove that the complement of a set S is open or closed according as S is closed or open.

1.125. Suppose S1, S2, . . . , Sn are open sets. Prove that S1 < S2 < � � �< Sn is open.

1.126. Suppose a limit point of a set does not belong to the set. Prove that it must be a boundary point of the set.

1 + i

O
x

y

i

1

Fig. 1-42
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Miscellaneous Problems

1.127. Let ABCD be a parallelogram. Prove that (AC)2 þ (BD)2 ¼ (AB)2 þ (BC)2 þ (CD)2 þ (DA)2.

1.128. Explain the fallacy: �1 ¼
ffiffiffiffiffiffiffi
�1

p ffiffiffiffiffiffiffi
�1

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(�1)(�1)

p
¼

ffiffiffi
1

p
¼ 1. Hence 1 ¼ �1.

1.129. (a) Show that the equation z4 þ a1z
3 þ a2z

2 þ a3zþ a4 ¼ 0 where a1, a2, a3, a4 are real constants different

from zero, has a pure imaginary root if a23 þ a21a4 ¼ a1a2a3.

(b) Is the converse of (a) true?

1.130. (a) Prove that cosn f ¼ 1

2n�1
cos nfþ n cos(n� 2)fþ n(n� 1)

2!
cos(n� 4)fþ � � � þ Rn

� �
where

Rn ¼

n!

[(n� 1)=2]![(nþ 1)=2]!
cosf if n is odd

n!

2[(n=2)!]2
if n is even

8>><
>>:

(b) Derive a similar result for sinn f.

1.131. Let z ¼ 6epi=3. Evaluate jeizj.

1.132. Show that for any real numbers p and m, e2mi cot
�1 p piþ 1

pi� 1

� �m

¼ 1.

1.133. Let P(z) be any polynomial in z with real coefficients. Prove that P(z) ¼ P(�z).

1.134. Suppose z1, z2, and z3 are collinear. Prove that there exist real constants a, b, g, not all zero, such that az1 þ
bz2 þ gz3 ¼ 0 where aþ bþ g ¼ 0.

1.135. Given the complex number z, represent geometrically (a) �z, (b) �z, (c) 1/z, (d) z2.

1.136. Consider any two complex numbers z1 and z2 not equal to zero. Show how to represent graphically using only

ruler and compass (a) z1z2, (b) z1=z2, (c) z
2
1 þ z22, (d) z

1=2
1 , (e) z

3=4
2 .

1.137. Prove that an equation for a line passing through the points z1 and z2 is given by

argf(z� z1)=(z2 � z1)g ¼ 0

1.138. Suppose z ¼ xþ iy. Prove that jxj þ jyj �
ffiffiffi
2

p
jxþ iyj.

1.139. Is the converse to Problem 1.51 true? Justify your answer.

1.140. Find an equation for the circle passing through the points 1� i, 2i, 1þ i.

1.141. Show that the locus of z such that jz� ajjzþ aj ¼ a2, a . 0 is a lemniscate as shown in Fig. 1-43.

x

y

a√2
x

y

P4

Fig. 1-43 Fig. 1-44
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1.142. Let pn ¼ a2n þ b2n, n ¼ 1, 2, 3, . . . where an and bn are positive integers. Prove that for every positive integer

M, we can always find positive integers A and B such that p1p2 � � � pM ¼ A2 þ B2. [Example: If 5 ¼ 22 þ 12 and

25 ¼ 32 þ 42, then 5 � 25 ¼ 22 þ 112.]

1.143. Prove that: (a) cos uþ cos(uþ a)þ � � � þ cos(uþ na) ¼ sin 1
2
(nþ 1)a

sin 1
2
a

cos(uþ 1
2
na)

(b) sin uþ sin(uþ a)þ � � � þ sin(uþ na) ¼ sin 1
2
(nþ 1)a

sin 1
2
a

sin(uþ 1
2
na)

1.144. Prove that (a) Refzg . 0 and (b) jz� 1j , jzþ 1j are equivalent statements.

1.145. A wheel of radius 4 feet [Fig. 1-44] is rotating counterclockwise about an axis through its center at 30 revolu-

tions per minute. (a) Show that the position and velocity of any point P on the wheel are given, respectively, by

4eipt and 4pieipt, where t is the time in seconds measured from the instant when Pwas on the positive x axis. (b)

Find the position and velocity when t ¼ 2=3 and t ¼ 15=4.

1.146. Prove that for any integer m . 1,

(zþ a)2m � (z� a)2m ¼ 4maz
Ym�1

k¼1

fz2 þ a2 cot2(kp=2m)g

where
Qm�1

k¼1 denotes the product of all the factors indicated from k ¼ 1 to m� 1.

1.147. Suppose points P1 and P2, represented by z1 and z2 respectively, are such that jz1 þ z2j ¼ jz1 � z2j.
Prove that (a) z1=z2 is a pure imaginary number, (b) /P1OP2 ¼ 908.

1.148. Prove that for any integer m . 1,

cot
p

2m
cot

2p

2m
cot

3p

2m
� � � cot (m� 1)p

2m
¼ 1

1.149. Prove and generalize: (a) csc2(p=7)þ csc2(2p=7)þ csc2(4p=7) ¼ 2

(b) tan2(p=16)þ tan2(3p=16)þ tan2(5p=16)þ tan2(7p=16) ¼ 28

1.150. Let masses m1, m2, m3 be located at points z1, z2, z3, respectively. Prove that the center of mass is given by

ẑ ¼ m1z1 þ m2z2 þ m3z3

m1 þ m2 þ m3

Generalize to n masses.

1.151. Find the point on the line joining points z1 and z2 which divides it in the ratio p : q.

1.152. Show that an equation for a circle passing through three points z1, z2, z3 is given by

z� z1

z� z2

� �
= z3 � z1

z3 � z2

� �
¼ �z� �z1

�z� �z2

� �
= �z3 � �z1

�z3 � �z2

� �

1.153. Prove that the medians of a triangle with vertices at z1, z2, z3 intersect at the point
1
3
(z1 þ z2 þ z3).

1.154. Prove that the rational numbers between 0 and 1 are countable.

[Hint. Arrange the numbers as 0, 1
2
, 1

3
, 2

3
, 1

4
, 3

4
, 1

5
, 2

5
, 3

5
, . . . .]

1.155. Prove that all the real rational numbers are countable.

1.156. Prove that the irrational numbers between 0 and 1 are not countable.

1.157. Represent graphically the set of values of z for which (a) jzj . jz� 1j, (b) jzþ 2j . 1þ jz� 2j.
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1.158. Show that (a)
ffiffiffi
23

p
þ

ffiffiffi
3

p
and (b) 2�

ffiffiffi
2

p
i are algebraic numbers. [See Problem 1.47.]

1.159. Prove that
ffiffiffi
2

p
þ

ffiffiffi
3

p
is an irrational number.

1.160. Let ABCD � � �PQ represent a regular polygon of n sides inscribed in a circle of unit radius. Prove that the

product of the lengths of the diagonals AC, AD, . . . , AP is 1
4
n csc2(p=n).

1.161. Suppose sin u=0. Prove that (a)
sin nu

sin u
¼ 2n�1

Yn�1

k¼1

fcos u� cos(kp=n)g

(b)
sin(2nþ 1)u

sin u
¼ (2nþ 1)

Yn
k¼1

1� sin2 u

sin2 kp=(2nþ 1)

� �
.

1.162. Prove cos 2nu ¼ (�1)n
Yn
k¼1

1� cos2 u

cos2(2k � 1)p=4n

� �
.

1.163. Suppose the product of two complex numbers z1 and z2 is real and different from zero. Prove that there exists a

real number p such that z1 ¼ p�z2.

1.164. Let z be any point on the circle jz� 1j ¼ 1. Prove that arg(z� 1) ¼ 2 arg z ¼ 2
3
arg(z2 � z) and give a geometri-

cal interpretation.

1.165. Prove that under suitable restrictions (a) zmzn ¼ zmþn, (b) (zm)n ¼ zmn.

1.166. Prove (a) Refz1z2g ¼ Refz1gRefz2g � Imfz1gImfz2g

(b) Imfz1z2g ¼ Refz1gImfz2g þ Imfz1gRefz2g.

1.167. Find the area of the polygon with vertices at 2þ 3i, 3þ i, �2�4i, �4� i, �1þ 2i.

1.168. Let a1, a2, . . . , an and b1, b2, . . . , bn be any complex numbers. Prove Schwarz’s inequality,

Xn
k¼1

akbk

�����
�����
2

�
Xn
k¼1

jakj2
 ! Xn

k¼1

jbkj2
 !

ANSWERS TO SUPPLEMENTARY PROBLEMS

1.53. (a) �4� i, (b) �17þ 14i, (c) 8þ i, (d) �9þ 7i, (e) 11=17� (10=17)i, (f) 21þ i,

(g) �15=2þ 5i, (h) �11=2� (23=2)i, (i) 2þ i

1.54. (a) �1� 4i, (b) 170, (c) 1024i, (d) 12, (e) 3/5, (f) �1=7, (g) �7þ 3
ffiffiffi
3

p
þ

ffiffiffi
3

p
i,

(h) 765þ 128
ffiffiffi
3

p
, (i) �35

1.57. x ¼ 1, y ¼ �2

1.60. x4 þ y4 þ 2x2y2 � 6x2y� 6y3 þ 9x2 þ 9y2

1.61. (a) 6� 2i, (b) 3þ 3i, (c) �1þ 12i, (d) 9� 8i, (e) 19=2þ (3=2)i

1.63. (a)
ffiffiffiffiffi
10

p
, (b) 5

ffiffiffi
2

p
, (c) 5þ 5i, (d) 15

1.64. 5, 5, 8

1.70. (a) z� (2þ i) ¼ t(1� 3i) or x ¼ 2þ t, y ¼ 1� 3t or 3xþ y ¼ 7

(b) z� (5=2� i=2) ¼ t(3þ i) or x ¼ 3t þ 5=2, y ¼ t � 1=2 or 3� 3y ¼ 4

1.71. (a) circle, (b) ellipse, (c) hyperbola, (d) z ¼ 1 and x ¼ �3, (e) hyperbola

1.72. (a) jzþ 3� 4ij ¼ 2 or (xþ 3)2 þ (y� 4)2 ¼ 4, (b) jzþ 2ij þ jz� 2ij ¼ 10

1.73. (a) 1 , jzþ ij � 2, (b) Refz2g . 1, (c) jzþ 3ij . 4, (d) jzþ 2� 3ij þ jz� 2þ 3ij , 10

1.81. (a) 2
ffiffiffi
2

p
cis 3158 or 2

ffiffiffi
2

p
e7pi=4, (b) 2 cis 1208 or 2e2pi=3, (c) 4 cis 458 or 4epi=4, (d) cis 2708 or e3pi=2, (e)

4 cis 1808 or 4epi, (f) 4 cis 2108 or 4e7pi=6, (g)
ffiffiffi
2

p
cis 908 or

ffiffiffi
2

p
epi=2, (h)

ffiffiffi
3

p
cis 3008 or

ffiffiffi
3

p
e5pi=3
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1.83. (a) 5 exp[i(pþ tan�1(4=3), (b)
ffiffiffi
5

p
exp[�i tan�1 2]

1.84. (a) �3
ffiffiffi
2

p
þ 3

ffiffiffi
2

p
i, (b) 12i, (c) 2

ffiffiffi
2

p
� 2

ffiffiffi
2

p
i, (d) �

ffiffiffi
2

p
�

ffiffiffi
2

p
i, (e) �5

ffiffiffi
3

p
=2� (5=2)i,

(f) �3
ffiffiffi
3

p
=2� (3=2)i

1.85. 375 miles, 238 north of east (approx.)

1.89. (a) 15=2þ (15
ffiffiffi
3

p
=2)i, (b) 32� 32

ffiffiffi
3

p
i, (c) �16� 16

ffiffiffi
3

p
i, (d) 3

ffiffiffi
3

p
=2� (3

ffiffiffi
3

p
=2)i,

(e) �
ffiffiffi
3

p
=2� (1=2)i

1.95. (a) 2 cis 1658, 2 cis 3458; (b)
ffiffiffi
2

p
cis 278,

ffiffiffi
2

p
cis 998,

ffiffiffi
2

p
cis 1718,

ffiffiffi
2

p
cis 2438,

ffiffiffi
2

p
cis 3158;

(c)
ffiffiffi
43

p
cis 208,

ffiffiffi
43

p
cis 1408,

ffiffiffi
43

p
cis 2608; (d) 2 cis 67:58, 2 cis 157:58, 2 cis 247:58, 2 cis 337:58; (e)

2 cis 08, 2 cis 608, 2 cis 1208, 2 cis 1808, 2 cis 2408, 2 cis 3008; (f ) cis 608, cis 1808, cis 3008

1.96. (a) 2 cis 08, 2 cis 1208, 2 cis 2408; (b)
ffiffiffi
8

p
cis 22:58,

ffiffiffi
8

p
cis 202:58; (c) 2 cis 488, 2 cis 1208,

2 cis 1928, 2 cis 2648, 2 cis 3368; (d)
ffiffiffi
3

p
cis 458,

ffiffiffi
3

p
cis 1058,

ffiffiffi
3

p
cis 1658,

ffiffiffi
3

p
cis 2258,ffiffiffi

3
p

cis 2858,
ffiffiffi
3

p
cis 3458

1.97. (a) 3 cis 458, 3 cis 1358, 3 cis 2258, 3 cis 3158

(b)
ffiffiffi
26

p
cis 408,

ffiffiffi
26

p
cis 1008,

ffiffiffi
26

p
cis 1608,

ffiffiffi
26

p
cis 2208,

ffiffiffi
26

p
cis 2808,

ffiffiffi
26

p
cis 3408

1.98. (a) 3� 2i, �3þ 2i, (b)
ffiffiffiffiffi
10

p
þ

ffiffiffi
2

p
i, �

ffiffiffiffiffi
10

p
�

ffiffiffi
2

p
i

1.99. 1þ 2i, 1
2
�

ffiffiffi
3

p
þ (1þ 1

2

ffiffiffi
3

p
)i, � 1

2
�

ffiffiffi
3

p
þ 1

2

ffiffiffi
3

p
� 1


 �
i

1.100. (a) (�1+ 7i)=5, (b) 1þ i, 1� 2i

1.101. 1, 1, 2, �1+ i

1.102. 1
2
(1+ i

ffiffiffi
3

p
), 1

2
(�1+ i

ffiffiffi
3

p
)

1.104. 2þ 2i, 2� 2i

1.105. (a) e2pik=4 ¼ e2pik=2, k ¼ 0, 1, 2, 3, (b) e2pik=7, k ¼ 0, 1, . . . , 6

1.109. ui(v� 1)=(vþ 1), (v2 � 1)=(v2 þ 1), (v3 � 1)=(v3 þ 1), (v4 � 1)=(v4 þ 1), where v ¼ e2pi=5

1.110. (a) 1, (b) 178, (c) 1, (d) 17, (e) 1, (f) 1

1.114. 17

1.115. 18

1.116. (a) x2 þ y2 ¼ 16, (b) x2 þ y2 � 4xþ 8 ¼ 0, (c) x ¼ 2, (d) y ¼ �3

1.117. (a) (z� 3)(�z� 3) ¼ 9, (b) (2i� 3)zþ (2iþ 3)�z ¼ 10i, (c) 3(z2 þ �z2)� 10z�zþ 25 ¼ 0

1.118. (a) Yes. (b) Every point inside or on the boundary of the square is a limit point. (c) No. (d) All points of the

square are boundary points; there are no interior points. (e) No. (f ) No. (g) No. (h) The closure of S is the set of

all points inside and on the boundary of the square. (i) The complement of S is the set of all points that are not

equal to aþ bi when a and b [where 0 , a , 1, 0 , b , 1] are rational. ( j ) Yes. (k) No. (l) Yes.

1.119. (a) Yes. (b) Every point inside or on the square is a limit point. (c) No. (d) Every point inside is an interior point,

while every point on the boundary is a boundary point. (e) Yes. (f ) Yes. (g) Yes. (h) The closure of S is the set

of all points inside and on the boundary of the square. (i) The complement of S is the set of all points exterior to

the square or on its boundary. ( j ) No. (k) No. (l) Yes.

1.120. (a) Yes. (b) Every point of S is a limit point. (c) Yes. (d) Every point inside the square is an interior point, while

every point on the boundary is a boundary point. (e) No. (f) Yes. (g) No. (h) S itself. (i) All points exterior to the

square. ( j) No. (k) Yes. (l) Yes.

1.121. (a) f2, 1, �i, i, 1þ ig, (b) f1, i,�ig, (c) f1, �ig
1.131. e�3

ffiffi
3

p

1.139. Yes

1.140. jzþ 1j ¼
ffiffiffi
5

p
or (xþ 1)2 þ y2 ¼ 5

1.151. (qz1 þ pz2)=(qþ p)

1.167. 47/2
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CHAP T E R 2

Functions, Limits, and
Continuity

2.1 Variables and Functions

A symbol, such as z, which can stand for any one of a set of complex numbers is called a complex variable.
Suppose, to each value that a complex variable z can assume, there corresponds one or more values of a

complex variable w. We then say that w is a function of z and write w ¼ f (z) or w ¼ G(z), etc. The variable z
is sometimes called an independent variable, while w is called a dependent variable. The value of a function
at z ¼ a is often written f(a). Thus, if f (z) ¼ z2, then f (2i) ¼ (2i)2 ¼ �4.

2.2 Single and Multiple-Valued Functions

If only one value of w corresponds to each value of z, we say that w is a single-valued function of z or that
f(z) is single-valued. If more than one value of w corresponds to each value of z, we say that w is a multiple-
valued or many-valued function of z.

A multiple-valued function can be considered as a collection of single-valued functions, each member of
which is called a branch of the function. It is customary to consider one particular member as a principal
branch of the multiple-valued function and the value of the function corresponding to this branch as the
principal value.

EXAMPLE 2.1

(a) If w ¼ z2, then to each value of z there is only one value of w. Hence, w ¼ f (z) ¼ z2 is a single-valued

function of z.

(b) If w2 ¼ z, then to each value of z there are two values of w. Hence, w2 ¼ z defines a multiple-valued (in this

case two-valued) function of z.

Whenever we speak of function, we shall, unless otherwise stated, assume single-valued function.

2.3 Inverse Functions

If w ¼ f (z), then we can also consider z as a function, possibly multiple-valued, of w, written
z ¼ g(w) ¼ f�1(w). The function f�1 is often called the inverse function corresponding to f. Thus,
w ¼ f (z) and w ¼ f�1(z) are inverse functions of each other.
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2.4 Transformations

If w ¼ uþ iv (where u and v are real) is a single-valued function of z ¼ xþ iy (where x and y are real), we
can write uþ iv ¼ f (xþ iy). By equating real and imaginary parts, this is seen to be equivalent to

u ¼ u(x, y), v ¼ v(x, y) (2:1)

Thus given a point (x, y) in the z plane, such as P in Fig. 2-1, there corresponds a point (u, v) in the w plane,
say P0 in Fig. 2-2. The set of equations (2.1) [or the equivalent, w ¼ f (z)] is called a transformation. We
say that point P is mapped or transformed into point P0 by means of the transformation and call P0 the
image of P.

EXAMPLE 2.2 If w ¼ z2, then uþ iv ¼ (xþ iy)2 ¼ x2 � y2 þ 2ixy and the transformation is u ¼ x2 � y2,

v ¼ 2xy. The image of a point (1, 2) in the z plane is the point (�3, 4) in the w plane.

z plane

P

Q

x

y

w planeP′

Q′

u

u

Fig. 2-1 Fig. 2-2

In general, under a transformation, a set of points such as those on curve PQ of Fig. 2-1 is mapped into a
corresponding set of points, called the image, such as those on curve P0Q0 in Fig. 2-2. The particular charac-
teristics of the image depend of course on the type of function f(z), which is sometimes called a mapping
function. If f(z) is multiple-valued, a point (or curve) in the z plane is mapped in general into more than one
point (or curve) in the w plane.

2.5 Curvilinear Coordinates

Given the transformation w ¼ f (z) or, equivalently, u ¼ u(x, y), v ¼ v(x, y), we call (x, y) the rectangular
coordinates corresponding to a point P in the z plane and (u, v) the curvilinear coordinates of P.

u(
x,

y)
 =

 c
2

u(x, y) = c1

x

y
z plane

P

u = c2

u
=

c 1

u

u
w plane

P

Fig. 2-3 Fig. 2-4
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The curves u(x, y) ¼ c1, v(x, y) ¼ c2, where c1 and c2 are constants, are called coordinate curves [see
Fig. 2-3] and each pair of these curves intersects in a point. These curves map into mutually orthogonal
lines in the w plane [see Fig. 2-4].

2.6 The Elementary Functions

1. Polynomial Functions are defined by

w ¼ a0z
n þ a1z

n�1 þ � � � þ an�1zþ an ¼ P(z) (2:2)

where a0=0, a1, . . . , an are complex constants and n is a positive integer called the degree of
the polynomial P(z).

The transformation w ¼ azþ b is called a linear transformation.
2. Rational Algebraic Functions are defined by

w ¼ P(z)

Q(z)
(2:3)

where P(z) and Q(z) are polynomials. We sometimes call (2.3) a rational transformation. The
special case w ¼ (azþ b)=(czþ d) where ad � bc=0 is often called a bilinear or fractional
linear transformation.

3. Exponential Functions are defined by

w ¼ ez ¼ exþiy ¼ ex(cos yþ i sin y) (2:4)

where e is the natural base of logarithms. If a is real and positive, we define

az ¼ ez ln a (2:5)

where ln a is the natural logarithm of a. This reduces to (4) if a ¼ e.
Complex exponential functions have properties similar to those of real exponential functions.

For example, ez1 � ez2 ¼ ez1þz2 , ez1=ez2 ¼ ez1�z2 .
4. Trigonometric Functions. We define the trigonometric or circular functions sin z, cos z, etc., in

terms of exponential functions as follows:

sin z ¼ eiz � e�iz

2i
, cos z ¼ eiz þ e�iz

2

sec z ¼ 1

cos z
¼ 2

eiz þ e�iz
, csc z ¼ 1

sin z
¼ 2i

eiz � e�iz

tan z ¼ sin z

cos z
¼ eiz � e�iz

i(eiz þ e�iz)
, cot z ¼ cos z

sin z
¼ i(eiz þ e�iz)

eiz � e�iz

Many of the properties familiar in the case of real trigonometric functions also hold for the
complex trigonometric functions. For example, we have:

sin2 zþ cos2 z ¼ 1, 1þ tan2 z ¼ sec2 z, 1þ cot2 z ¼ csc2 z

sin(�z) ¼ �sin z, cos(�z) ¼ cos z, tan(�z) ¼ �tan z

sin(z1+z2) ¼ sin z1 cos z2+cos z1 sin z2

cos(z1+z2) ¼ cos z1 cos z2+sin z1 sin z2

tan(z1+z2) ¼
tan z1+tan z2

1+tan z1 tan z2
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5. Hyperbolic Functions are defined as follows:

sinh z ¼ ez � e�z

2
, cosh z ¼ ez þ e�z

2

sech z ¼ 1

cosh z
¼ 2

ez þ e�z
, csch z ¼ 1

sinh z
¼ 2

ez � e�z

tanh z ¼ sinh z

cosh z
¼ ez � e�z

ez þ e�z
, coth z ¼ cosh z

sinh z
¼ ez þ e�z

ez � e�z

The following properties hold:

cosh2 z� sinh2 z ¼ 1, 1� tanh2 z ¼ sech2 z, coth2 z� 1 ¼ csch2 z

sinh(�z) ¼ �sinh z, cosh(�z) ¼ cosh z, tanh(�z) ¼ �tanh z

sinh(z1+z2) ¼ sinh z1 cosh z2+cosh z1 sinh z2

cosh(z1+z2) ¼ cosh z1 cosh z2+sinh z1 sinh z2

tanh(z1+z2) ¼
tanh z1+ tanh z2

1+ tanh z1 tanh z2

The following relations exist between the trigonometric or circular functions and the hyperbolic
functions:

sin iz ¼ i sinh z, cos iz ¼ cosh z, tan iz ¼ i tanh z

sinh iz ¼ i sin z, cosh iz ¼ cos z, tanh iz ¼ i tan z

6. Logarithmic Functions. If z ¼ ew, then we write w ¼ ln z, called the natural logarithm of z. Thus
the natural logarithmic function is the inverse of the exponential function and can be defined by

w ¼ ln z ¼ ln r þ i(uþ 2kp); k ¼ 0, +1, +2, . . .

where z ¼ reiu ¼ rei(uþ2kp). Note that ln z is a multiple-valued (in this case, infinitely-many-
valued) function. The principal-value or principal branch of ln z is sometimes defined as
ln r þ iu where 0 � u , 2p. However, any other interval of length 2p can be used, e.g.,
�p , u � p, etc.

The logarithmic function can be defined for real bases other than e. Thus, if z ¼ aw, then
w ¼ loga z where a . 0 and a=0, 1. In this case, z ¼ ew ln a and so, w ¼ (ln z)=(ln a).

7. Inverse Trigonometric Functions. If z ¼ sinw, then w ¼ sin�1 z is called the inverse sine of z
or arc sine of z. Similarly, we define other inverse trigonometric or circular functions cos�1 z,
tan�1 z, etc. These functions, which are multiple-valued, can be expressed in terms of natural
logarithms as follows. In all cases, we omit an additive constant 2kpi, k ¼ 0, +1, +2, . . . , in
the logarithm:

sin�1 z ¼ 1

i
ln izþ

ffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p� 
, csc�1 z ¼ 1

i
ln

iþ
ffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p

z

 !

cos�1 z ¼ 1

i
ln zþ

ffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p� 
, sec�1 z ¼ 1

i
ln

1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p

z

 !

tan�1 z ¼ 1

2i
ln

1þ iz

1� iz

� �
, cot�1 z ¼ 1

2i
ln

zþ i

z� i

� �
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8. Inverse Hyperbolic Functions. If z ¼ sinhw, then w ¼ sinh�1 z is called the inverse hyperbolic
sine of z. Similarly, we define other inverse hyperbolic functions cosh�1 z, tanh�1 z, etc. These
functions, which are multiple-valued, can be expressed in terms of natural logarithms as
follows. In all cases, we omit an additive constant 2kpi, k ¼ 0, +1, +2, . . . , in the logarithm:

sinh�1 z ¼ ln zþ
ffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ 1

p� 
, csch�1z ¼ ln

1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ 1

p

z

 !

cosh�1 z ¼ ln zþ
ffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p� 
, sech�1z ¼ ln

1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p

z

 !

tanh�1 z ¼ 1

2
ln

1þ z

1� z

� �
, coth�1z ¼ 1

2
ln

zþ 1

z� 1

� �

9. The Function za, where a may be complex, is defined as ea ln z. Similarly, if f (z) and g(z) are two
given functions of z, we can define f (z)g(z) ¼ eg(z) ln f (x). In general, such functions are multiple-
valued.

10. Algebraic and Transcendental Functions. If w is a solution of the polynomial equation

P0(z)w
n þ P1(z)w

n�1 þ � � � þ Pn�1(z)wþ Pn(z) ¼ 0 (2:6)

where P0=0, P1(z), . . . , Pn(z) are polynomials in z and h is a positive integer, then w ¼ f (z) is
called an algebraic function of z.

EXAMPLE 2.3 w ¼ z1=2 is a solution of the equation w2 � z ¼ 0 and so is an algebraic function of z.

Any function that cannot be expressed as a solution of (6) is called a transcendental function. The
logarithmic, trigonometric, and hyperbolic functions and their corresponding inverses are examples of
transcendental functions.

The functions considered in 1–9 above, together with functions derived from them by a finite number of
operations involving addition, subtraction, multiplication, division and roots are called elementary
functions.

2.7 Branch Points and Branch Lines

Suppose that we are given the function w ¼ z1=2. Suppose
further that we allow z to make a complete circuit (counter-
clockwise) around the origin starting from point A [Fig. 2-5].
We have z ¼ reiu, w ¼ ffiffi

r
p

eiu=2 so that at A, u ¼ u1 and
w ¼ ffiffi

r
p

eiu1=2. After a complete circuit back to A,
u ¼ u1 þ 2p and w ¼

ffiffi
r

p
ei(u1þ2p)=2 ¼ �

ffiffi
r

p
eiu1=2. Thus, we

have not achieved the same value of w with which we
started. However, by making a second complete circuit
back to A, i.e., u ¼ u1 þ 4p, w ¼

ffiffi
r

p
ei(u1þ4p)=2 ¼

ffiffi
r

p
eiu1=2

and we then do obtain the same value of w with which we
started.

We can describe the above by stating that if 0 � u , 2p, we are on one branch of the multiple-valued
function z1=2, while if 2p � u , 4p, we are on the other branch of the function.

It is clear that each branch of the function is single-valued. In order to keep the function single-valued,
we set up an artificial barrier such as OB where B is at infinity [although any other line from O can be used],

A

O
q = q1

B

z plane

Fig. 2-5
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which we agree not to cross. This barrier [drawn heavy in the figure] is called a branch line or branch cut,
and point O is called a branch point. It should be noted that a circuit around any point other than z ¼ 0 does
not lead to different values; thus, z ¼ 0 is the only finite branch point.

2.8 Riemann Surfaces

There is another way to achieve the purpose of the branch line described above. To see this, we imagine that
the z plane consists of two sheets superimposed on each other. We now cut the sheets along OB and imagine
that the lower edge of the bottom sheet is joined to the upper edge of the top sheet. Then, starting in the
bottom sheet and making one complete circuit about O, we arrive in the top sheet. We must now
imagine the other cut edges joined together so that, by continuing the circuit, we go from the top sheet
back to the bottom sheet.

The collection of two sheets is called a Riemann surface corresponding to the function z1=2. Each sheet
corresponds to a branch of the function and on each sheet the function is single-valued.

The concept of Riemann surfaces has the advantage that the various values of multiple-valued functions
are obtained in a continuous fashion.

The ideas are easily extended. For example, for the function z1=3 the Riemann surface has 3 sheets; for
ln z, the Riemann surface has infinitely many sheets.

2.9 Limits

Let f(z) be defined and single-valued in a neighborhood of z ¼ z0 with the possible exception of z ¼ z0 itself
(i.e., in a deleted d neighborhood of z0). We say that the number l is the limit of f (z) as z approaches z0
and write limz!z0 f (z) ¼ l if for any positive number e (however small), we can find some positive
number d (usually depending on e) such that j f (z)� lj , e whenever 0 , jz� z0j , d.

In such a case, we also say that f(z) approaches l as z approaches z0 and write f (z) ! l as z ! z0. The
limit must be independent of the manner in which z approaches z0.

Geometrically, if z0 is a point in the complex plane, then limz!z0 f (z) ¼ l if the difference in absolute
value between f(z) and l can be made as small as we wish by choosing points z sufficiently close to z0
(excluding z ¼ z0 itself).

EXAMPLE 2.4 Let

f (z) ¼ z2 z= i

0 z ¼ i

�

Then, as z gets closer to i (i.e., z approaches i), f (z) gets closer to i2 ¼ �1. We thus suspect that

limz!i f (z) ¼�1. To prove this, we must see whether the above definition of limit is satisfied. For this proof, see

Problem 2.23.

Note that limz!i f (z)= f (i), i.e., the limit of f (z) as z ! i is not the same as the value of f(z) at z ¼ i, since

f (i) ¼ 0 by definition. The limit would, in fact, be �1 even if f (z) were not defined at z ¼ i.

When the limit of a function exists, it is unique, i.e., it is the only one (see Problem 2.26). If f (z) is
multiple-valued, the limit as z ! z0 may depend on the particular branch.

2.10 Theorems on Limits

THEOREM 2.1. Suppose limz!z0 f (z) ¼ A and limz!z0 g(z) ¼ B. Then

1. limz!z0f f (z)þ g(z)g ¼ limz!z0 f (z)þ limz!z0 g(z) ¼ Aþ B
2. limz!z0f f (z)� g(z)g ¼ limz!z0 f (z)� limz!z0 g(z) ¼ A� B
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3. limz!z0f f (z)g(z)g ¼ limz!z0 f (z)
� �

limz!z0 g(z)
� �

¼ AB

4. lim
z!z0

f (z)

g(z)
¼ limz!z0 f (z)

limz!z0 g(z)
¼ A

B
if B=0

2.11 Infinity

By means of the transformation w ¼ 1=z, the point z ¼ 0 (i.e., the origin) is mapped into w ¼ 1, called the
point at infinity in the w plane. Similarly, we denote by z ¼ 1, the point at infinity in the z plane. To con-
sider the behavior of f(z) at z ¼ 1, it suffices to let z ¼ 1=w and examine the behavior of f(1/w) at w ¼ 0.

We say that limz!1 f (z) ¼ l or f(z) approaches l as z approaches infinity, if for any e . 0, we can find
M . 0 such that j f (z)� lj , e whenever jzj . M.

We say that limz!z0 f (z) ¼ 1 or f(z) approaches infinity as z approaches z0, if for any N . 0, we can find
d . 0 such that j f (z)j . N whenever 0 , jz� z0j , d.

2.12 Continuity

Let f(z) be defined and single-valued in a neighborhood of z ¼ z0 as well as at z ¼ z0 (i.e., in a d
neighborhood of z0). The function f(z) is said to be continuous at z ¼ z0 if limz!z0 f (z) ¼ f (z0). Note

that this implies three conditions that must be met in order that f (z) be continuous at z ¼ z0:

1. limz!z0 f (z) ¼ l must exist
2. f (z0) must exist, i.e., f(z) is defined at z0
3. l ¼ f (z0)

Equivalently, if f(z) is continuous at z0, we can write this in the suggestive form

lim
z!z0

f (z) ¼ f lim
z!z0

z
� 

:

EXAMPLE 2.5
(a) Suppose

f (z) ¼ z2 z= i

0 z ¼ i

�

Then, limz!i f (z) ¼ �1. But f (i) ¼ 0. Hence, limz!i f (z) = f (i) and the function is not continuous at z ¼ i.

(b) Suppose f (z) ¼ z2 for all z. Then limz!i f (z) ¼ f (i) ¼ �1 and f(z) is continuous at z ¼ i.

Points in the z plane where f(z) fails to be continuous are called discontinuities of f (z), and f (z) is said
to be discontinuous at these points. If limz!z0 f (z) exists but is not equal to f (z0), we call z0 a removable

discontinuity since by redefining f (z0) to be the same as limz!z0 f (z), the function becomes continuous.

Alternative to the above definition of continuity, we can define f (z) as continuous at z ¼ z0 if for any
e . 0, we can find d . 0 such that j f (z)� f (z0)j , e whenever jz� z0j , d. Note that this is simply the
definition of limit with l ¼ f (z0) and removal of the restriction that z=z0.

To examine the continuity of f(z) at z ¼ 1, we let z ¼ 1=w and examine the continuity of f(1/w) at
w ¼ 0.

Continuity in a Region

A function f(z) is said to be continuous in a region if it is continuous at all points of the region.
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2.13 Theorems on Continuity

THEOREM 2.2. Given f(z) and g(z) are continuous at z ¼ z0. Then so are the functions f (z)þ g(z),
f (z)� g(z), f (z)g(z) and f (z)=g(z), the last if g(z0)=0. Similar results hold for
continuity in a region.

THEOREM 2.3. Among the functions continuous in every finite region are (a) all polynomials, (b) ez,
(c) sin z and cos z.

THEOREM 2.4. Suppose w ¼ f (z) is continuous at z ¼ z0 and z ¼ g(z ) is continuous at z ¼ z0.
If z0 ¼ g(z0), then the function w ¼ f [g(z)], called a function of a function or
composite function, is continuous at z ¼ z0. This is sometimes briefly stated as:
A continuous function of a continuous function is continuous.

THEOREM 2.5. Suppose f(z) is continuous in a closed and bounded region. Then it is bounded in the
region; i.e., there exists a constant M such that j f (z)j , M for all points z of the region.

THEOREM 2.6. If f(z) is continuous in a region, then the real and imaginary parts of f(z) are also
continuous in the region.

2.14 Uniform Continuity

Let f (z) be continuous in a region. Then, by definition at each point z0 of the region and for any e . 0, we can
find d . 0 (which will in general depend on both e and the particular point z0) such that j f (z)� f (z0)j , e
whenever jz� z0j , d. If we can find d depending on e but not on the particular point z0, we say that f (z) is
uniformly continuous in the region.

Alternatively, f (z) is uniformly continuous in a region if for any e . 0 we can find d . 0 such that
j f (z1)� f (z2)j , e whenever jz1 � z2j , d where z1 and z2 are any two points of the region.

THEOREM 2.7. Let f (z) be continuous in a closed and bounded region. Then it is uniformly continuous
there.

2.15 Sequences

A function of a positive integral variable, designated by f(n) or un, where n ¼ 1, 2, 3, . . . , is called a
sequence. Thus, a sequence is a set of numbers u1, u2, u3, . . . in a definite order of arrangement and
formed according to a definite rule. Each number in the sequence is called a term and un is called the
nth term. The sequence u1, u2, u3, . . . is also designated briefly by fung. The sequence is called finite or
infinite according as there are a finite number of terms or not. Unless otherwise specified, we shall only
consider infinite sequences.

EXAMPLE 2.6
(a) The set of numbers i, i2, i3, . . . , i100 is a finite sequence; the nth term is given by

un ¼ in, n ¼ 1, 2, . . . , 100
(b) The set of numbers 1þ i, (1þ i)2=2!, (1þ i)2=3!, . . . is an infinite sequence; the nth term is given by

un ¼ (1þ i)n=n!, n ¼ 1, 2, 3, . . . .
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2.16 Limit of a Sequence

A number l is called the limit of an infinite sequence u1, u2, u3, . . . if for any positive number e we can find
a positive number N depending on e such that jun � lj , e for all n . N. In such case, we write
limn!1 un ¼ l. If the limit of a sequence exists, the sequence is called convergent; otherwise it is called
divergent. A sequence can converge to only one limit, i.e., if a limit exists it is unique.

A more intuitive but unrigorous way of expressing this concept of limit is to say that a sequence
u1, u2, u3, . . . has a limit l if the successive terms get “closer and closer” to l. This is often used to
provide a “guess” as to the value of the limit, after which the definition is applied to see if the guess is
really correct.

2.17 Theorems on Limits of Sequences

THEOREM 2.8. Suppose limn!1 an ¼ A and limn!1 bn ¼ B. Then

1. limn!1 (an þ bn) ¼ limn!1 an þ limn!1 bn ¼ Aþ B
2. limn!1 (an � bn) ¼ limn!1 an � limn!1 bn ¼ A� B
3. limn!1 (anbn) ¼ limn!1 anð Þ limn!1 bnð Þ ¼ AB

4. lim
n!1

an

bn
¼ limn!1 an

limn!1 bn
¼ A

B
if B=0

Further discussion of sequences is given in Chapter 6.

2.18 Infinite Series

Let u1, u2, u3, . . . be a given sequence.
Form a new sequence S1, S2, S3, . . . defined by

S1 ¼ u1, S2 ¼ u1 þ u2, S3 ¼ u1 þ u2 þ u3, . . . , Sn ¼ u1 þ u2 þ � � � þ un

where Sn, called the nth partial sum, is the sum of the first n terms of the sequence fung:
The sequence S1, S2, S3, . . . is symbolized by

u1 þ u2 þ u3 þ � � � ¼
X1
n¼1

un

which is called an infinite series. If limn!1 Sn ¼ S exists, the series is called convergent and S is its sum;
otherwise the series is called divergent. A necessary condition that a series converges is limn!1 un ¼ 0;
however, this is not sufficient (see Problems 2.40 and 2.150).

Further discussion of infinite series is given in Chapter 6.

SOLVED PROBLEMS

Functions and Transformations

2.1. Let w ¼ f (z) ¼ z2. Find the values of w that correspond to (a) z ¼ �2þ i and (b) z ¼ 1� 3i, and
show how the correspondence can be represented graphically.
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Solution

(a) w ¼ f (�2þ i) ¼ (�2þ i)2 ¼ 4� 4iþ i2 ¼ 3� 4i

(b) w ¼ f (1� 3i) ¼ (1� 3i)2 ¼ 1� 6iþ 9i2 ¼ �8� 6i

x

1 – 3i

z plane

Q

–2 + i
P

y

Q′

u

3 – 4i

w plane

P′

–8 – 6i

u

Fig. 2-6 Fig. 2-7

The point z ¼ �2þ i, represented by point P in the z plane of Fig. 2-6, has the image point w ¼ 3� 4i

represented by P0 in the w plane of Fig. 2-7. We say that P is mapped into P0 by means of the mapping function

or transformation w ¼ z2. Similarly, z ¼ 1� 3i [point Q of Fig. 2-6] is mapped into w ¼ �8� 6i [point Q0 of
Fig. 2-7]. To each point in the z plane, there corresponds one and only one point (image) in the w plane, so that

w is a single-valued function of z.

2.2. Show that the line joining the points P and Q in the z plane of Problem 2.1 [Fig. 2-6] is mapped by
w ¼ z2 into curve joining points P0Q0 [Fig. 2-7] and determine the equation of this curve.

Solution

Points P and Q have coordinates (�2, 1) and (1, �3). Then, the parametric equations of the line joining these

points are given by

x� (�2)

1� (�2)
¼ y� 1

�3� 1
¼ t or x ¼ 3t � 2, y ¼ 1� 4t

The equation of the line PQ can be represented by z ¼ 3t � 2þ i(1� 4t). The curve in the w plane into which

this line is mapped has the equation

w ¼ z2 ¼ f3t � 2þ i(1� 4t)g2 ¼ (3t � 2)2 � (1� 4t)2 þ 2(3t � 2)(1� 4t)i

¼ 3� 4t � 7t2 þ (�4þ 22t � 24t2)i

Then, since w ¼ uþ iv, the parametric equations of the image curve are given by

u ¼ 3� 4t � 7t2, v ¼ �4þ 22t � 24t2

By assigning various values to the parameter t, this curve may be graphed.

2.3. A point P moves in a counterclockwise direction around a circle in the z plane having center at the
origin and radius 1. If the mapping function is w ¼ z3, show that when Pmakes one complete revo-
lution, the image P0 of P in the w plane makes three complete revolutions in a counterclockwise
direction on a circle having center at the origin and radius 1.
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Solution

Let z ¼ reiu. Then, on the circle jzj ¼ 1 [Fig. 2-8], r ¼ 1 and z ¼ eiu. Hence, w ¼ z3 ¼ (eiu)3 ¼ e3iu. Letting

(r, f) denote polar coordinates in the w plane, we have w ¼ reif ¼ e3iu so that r ¼ 1, f ¼ 3u.

y

x
O

z plane

P1

r

u

f = 3q u
O'

w plane

P'

1

Fig. 2-8 Fig. 2-9

Since r ¼ 1, it follows that the image point P0 moves on a circle in the w plane of radius 1 and center at the

origin [Fig. 2-9]. Also, when P moves counterclockwise through an angle u, P0 moves counterclockwise

through an angle 3u. Thus, when P makes one complete revolution, P0 makes three complete revolutions.

In terms of vectors, it means that vector O0P0 is rotating three times as fast as vector OP.

2.4. Suppose c1 and c2 are any real constants. Determine the set of all points in the z plane that map into
the lines (a) u ¼ c1, (b) v ¼ c2 in the w plane by means of the mapping function w ¼ z2. Illustrate by
considering the cases c1 ¼ 2, 4, �2, �4 and c2 ¼ 2, 4, �2, �4.

Solution

We have w ¼ uþ iv ¼ z2 ¼ (xþ iy)2 ¼ x2 � y2 þ 2ixy so that u ¼ x2 � y2, v ¼ 2xy. Then lines u ¼ c1 and

v ¼ c2 in the w plane correspond, respectively, to hyperbolas x2 � y2 ¼ c1 and 2xy ¼ c2 in the z plane as

indicated in Figs. 2-10 and 2-11.

z plane

2xy = –4
2xy = –2

2xy = 2
2xy = 4

x2 – y2 = 4

x2 – y2 = –4

x
2 – y

2  =
 –4

x
2 – y

2  =
 –2

x
2 – y

2  =
 2

x
2 – y

2  =
 4

x2 – y2 = –2

x2 – y2 = 2

2xy = –4
2xy = –2

x
2xy = 2
2xy = 4

y

R

PT

U Z

Y

XW

V

S
Q

u = 4

u = 2

u = –2

u = –4

u
=

 –
4

u
=

 –
2

u
=

 2

u
=

 4

w plane

Q'R'

S'

u

u

T' or X' U' or Y'

V' or Z'P' or W'

Fig. 2-10 Fig. 2-11

2.5. Referring to Problem 2.4, determine: (a) the image of the region in the first quadrant bounded
by x2 � y2 ¼ �2, xy ¼ 1, x2 � y2 ¼ �4; and xy ¼ 2; (b) the image of the region in the z plane
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bounded by all the branches of x2 � y2 ¼ 2, xy ¼ 1, x2 � y2 ¼ �2, and xy ¼ �1; (c) the
curvilinear coordinates of that point in the xy plane whose rectangular coordinates are (2, �1).

Solution

(a) The region in the z plane is indicated by the shaded portion PQRS of Fig. 2-10. This region maps into the

required image region P0Q0R0S0 shown shaded in Fig. 2-11. It should be noted that curve PQRSP is tra-

versed in a counterclockwise direction and the image curve P0Q0R0S0P0 is also traversed in a counter-

clockwise direction.

(b) The region in the z plane is indicated by the shaded portion PTUVWXYZ of Fig. 2-10. This region maps

into the required image region P0T 0U0V 0 shown shaded in Fig. 2-11.

It is of interest to note that when the boundary of the region PTUVWXYZ is traversed only once, the

boundary of the image region P0T 0U0V 0 is traversed twice. This is due to the fact that the eight points P

andW, T and X,U and Y, V and Z of the z plane map into the four points P0 orW 0, T 0 or X0, U0 or Y 0, V 0 or
Z 0, respectively.

However, when the boundary of region PQRS is traversed only once, the boundary of the image region

is also traversed only once. The difference is due to the fact that in traversing the curve PTUVWXYZP,we

are encircling the origin z ¼ 0, whereas when we are traversing the curve PQRSP, we are not encircling

the origin.

(c) u ¼ x2 � y2 ¼ (2)2 � (�1)2 ¼ 3, v ¼ 2xy ¼ 2(2)(�1) ¼ �4. Then the curvilinear coordinates are

u ¼ 3, v ¼ �4.

Multiple-Valued Functions

2.6. Let w5 ¼ z and suppose that corresponding to the particular value z ¼ z1, we have w ¼ w1. (a) If we
start at the point z1 in the z plane [see Fig. 2-12] and make one complete circuit counterclockwise
around the origin, show that the value of w on returning to z1 is w1e

2pi=5. (b) What are the values of
w on returning to z1, after 2, 3, . . . complete circuits around the origin? (c) Discuss parts (a) and (b)
if the paths do not enclose the origin.

z plane
y

C

x

z1
r1

q1

w plane
u

u

w1

w1 e2pi/5

w1 e4pi/5

w1 e8pi/5

w1 e6pi/5

Fig. 2-12 Fig. 2-13

Solution

(a) We have z ¼ reiu, so that w ¼ z1=5 ¼ r1=5eiu=5. If r ¼ r1 and u ¼ u1, then w1 ¼ r
1=5
1 eiu1=5.

As u increases from u1 to u1 þ 2p, which is what happens when one complete circuit counterclockwise

around the origin is made, we find

w ¼ r
1=5
1 ei(u1þ2p)=5 ¼ r

1=5
1 eiu1=5e2pi=5 ¼ w1e

2pi=5

(b) After two complete circuits around the origin, we find

w ¼ r
1=5
1 ei(u1þ4p)=5 ¼ r

1=5
1 eiu1=5e4pi=5 ¼ w1e

4pi=5
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Similarly, after three and four complete circuits around the origin, we find

w ¼ w1e
6pi=5 and w ¼ w1e

8pi=5

After five complete circuits, the value of w is w1e
10pi=5 ¼ w1, so that the original value of w is obtained

after five revolutions about the origin. Thereafter, the cycle is repeated [see Fig. 2-13].

Another Method. Since w5 ¼ z, we have arg z ¼ 5 arg w from which

Change in arg w ¼ 1
5
(Change in arg z)

Then, if arg z increases by 2p, 4p, 6p, 8p, 10p, . . . , arg w increases by 2p=5, 4p=5, 6p=5,
8p=5, 2p, . . . leading to the same results obtained in (a) and (b).

(c) If the path does not enclose the origin, then the increase in arg z is zero and so the increase in arg w is also

zero. In this case, the value of w is w1, regardless of the number of circuits made.

2.7. (a) In the preceding problem, explain why we can consider w as a collection of five single-valued
functions of z.

(b) Explain geometrically the relationship between these single-valued functions.
(c) Show geometrically how we can restrict ourselves to a particular single-valued function.

Solution

(a) Since w5 ¼ z ¼ reiu ¼ rei(uþ2kp) where k is an integer, we have

w ¼ r1=5ei(uþ2kp)=5 ¼ r1=5fcos(uþ 2kp)=5þ i sin(uþ 2kp)=5g

and so w is a five-valued function of z, the five values being given by k ¼ 0, 1, 2, 3, 4.

Equivalently, we can consider w as a collection of five single-valued functions, called branches of the

multiple-valued function, by properly restricting u. Thus, for example, we can write

w ¼ r1=5(cos u=5þ i sin u=5)

where we take the five possible intervals for u given by 0 � u , 2p, 2p � u , 4p, . . . , 8p � u , 10p, all
other such intervals producing repetitions of these.

The first interval, 0 � u , 2p, is sometimes called the principal range of u and corresponds to the

principal branch of the multiple-valued function.

Other intervals for u of length 2p can also be taken; for example, �p � u , p, p � u , 3p, etc., the first
of these being taken as the principal range.

(b) We start with the (principal) branch

w ¼ r1=5 cos u=5þ i sin u=5ð Þ

where 0 � u , 2p:
After one complete circuit about the origin in the z plane, u increases by 2p to give another branch of

the function. After another complete circuit about the origin, still another branch of the function is

obtained until all five branches have been found, after which we return to the original (principal) branch.

Because different values of f(z) are obtained by successively encircling z ¼ 0, we call z ¼ 0 a branch

point.

(c) We can restrict ourselves to a particular single-valued function, usually the principal branch, by

insuring that not more than one complete circuit about the branch point is made, i.e., by suitably

restricting u.
In the case of the principal range 0 � u , 2p, this is accomplished by constructing a cut, indicated by

OA in Fig. 2-14, called a branch out or branch line, on the positive real axis, the purpose being that we do

not allow ourselves to cross this cut (if we do cross the cut, another branch of the function is obtained).

If another interval for u is chosen, the branch line or cut is taken to be some other line in the z plane

emanating from the branch point.
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For some purposes, as we shall see later, it is useful to consider the curve of Fig. 2-15 of which

Fig. 2-14 is a limiting case.

z plane

y

x
AO

z plane

A
GF

B
C

D

E

H

J

x

y

I

Fig. 2-14 Fig. 2-15

The Elementary Functions

2.8. Prove that (a) ez1 � ez2 ¼ ez1þz2 , (b) jezj ¼ ex, (c) ezþ2kpi ¼ ez, k ¼ 0, +1, +2, . . . .

Solution

(a) By definition ez ¼ ex(cos yþ i sin y) where z ¼ xþ iy. Then, if z1 ¼ x1 þ iy1 and z2 ¼ x2 þ iy2,

ez1 � ez2 ¼ ex1 (cos y1 þ i sin y1) � ex2 (cos y2 þ i sin y2)

¼ ex1 � ex2 (cos y1 þ i sin y1)(cos y2 þ i sin y2)

¼ ex1þx2fcos(y1 þ y2)þ i sin(y1 þ y2)g ¼ ez1þz2

(b) jezj ¼ jex(cos yþ i sin y)j ¼ jexjj cos yþ i sin yj ¼ ex � 1 ¼ ex

(c) By part (a),

ezþ2kpi ¼ eze2kpi ¼ ez(cos 2kpþ i sin 2kp) ¼ ez

This shows that the function ez has period 2kpi. In particular, it has period 2pi.

2.9. Prove:

(a) sin2 zþ cos2 z ¼ 1 (c) sin(z1 þ z2) ¼ sin z1 cos z2 þ cos z1 sin z2

(b) eiz ¼ cos zþ i sin z, e�iz ¼ cos z� i sin z (d) cos(z1 þ z2) ¼ cos z1 cos z2 � sin z1 sin z2

Solution

By definition, sin z ¼ eiz � e�iz

2i
, cos z ¼ eiz þ e�iz

2
. Then

(a) sin2 zþ cos2 z ¼ eiz � e�iz

2i

� �2

þ eiz þ e�iz

2

� �2

¼ � e2iz � 2þ e�2iz

4

� �
þ e2iz þ 2þ e�2iz

4

� �
¼ 1

(b) eiz � e�iz ¼ 2i sin z (1)

eiz þ e�iz ¼ 2 cos z (2)
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Adding (1) and (2):

2eiz ¼ 2 cos zþ 2i sin z and eiz ¼ cos zþ i sin z

Subtracting (1) from (2):

2e�iz ¼ 2 cos z� 2i sin z and e�iz ¼ cos z� i sin z

(c) sin(z1 þ z2) ¼
ei(z1þz2) � e�i(z1þz2)

2i
¼ eiz1 � eiz2 � e�iz1 � e�iz2

2i

¼ (cos z1 þ i sin z1)(cos z2 þ i sin z2)� (cos z1 � i sin z1)(cos z2 � i sin z2)

2i

¼ sin z1 cos z2 þ cos z1 sin z2

(d) cos(z1 þ z2) ¼
ei(z1þz2) þ e�i(z1þz2)

2
¼ eiz1 � eiz2 þ e�iz1 � e�iz2

2

¼ (cos z1 þ i sin z1)(cos z2 þ i sin z2)þ (cos z1 � i sin z1)(cos z2 � i sin z2)

2

¼ cos z1 cos z2 � sin z1 sin z2

2.10. Prove that the zeros of (a) sin z and (b) cos z are all real and find them.

Solution

(a) If sin z ¼ eiz � e�iz

2i
¼ 0, then eiz ¼ e�iz or e2iz ¼ 1 ¼ e2kpi, k ¼ 0, +1, +2, . . . .

Hence, 2iz ¼ 2kpi and z ¼ kp, i:e:, z ¼ 0, +p, +2p, +3p, . . . are the zeros.

(b) If cos z ¼ eiz þ e�iz

2
¼ 0, then eiz ¼ �e�iz or e2iz ¼ �1 ¼ e(2kþ1)pi, k ¼ 0, +1, +2, . . . .

Hence, 2iz ¼ (2k þ 1)pi and z ¼ (k þ 1
2
)p, i.e., z ¼ +p=2, +3p=2, +5p=2, . . . are the zeros.

2.11. Prove that (a) sin(�z) ¼ �sin z, (b) cos(�z) ¼ cos z, (c) tan(�z) ¼ �tan z.

Solution

(a) sin(�z) ¼ ei(�z) � e�i(�z)

2i
¼ e�iz � eiz

2i
¼ � eiz � e�iz

2i

� �
¼ �sin z

(b) cos(�z) ¼ ei(�z) þ e�i(�z)

2
¼ e�iz þ eiz

2
¼ eiz þ e�iz

2
¼ cos z

(c) tan(�z) ¼ sin(�z)

cos(�z)
¼ �sin z

cos z
¼ �tan z, using (a) and (b).

Functions of z having the property that f (�z) ¼ �f (z) are called odd functions, while those for which

f (�z) ¼ f (z) are called even functions. Thus sin z and tan z are odd functions, while cos z is an even

function.

2.12. Prove: (a) 1� tanh2 z ¼ sech2 z
(b) sin iz ¼ i sinh z
(c) cos iz ¼ cosh z
(d) sin(xþ iy) ¼ sin x cosh yþ i cos x sinh y

Solution

(a) By definition, cosh z ¼ ez þ e�z

2
, sinh z ¼ ez � e�z

2
. Then

cosh2 z� sinh2 z ¼ ez þ e�z

2

� �2

� ez � e�z

2

� �2

¼ e2z þ 2þ e�2z

4
� e2z � 2þ e�2z

4
¼ 1
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Dividing by cosh2 z,
cosh2 z� sinh2 z

cosh2 z
¼ 1

cosh2 z
or 1� tanh2 z ¼ sech2 z

(b) sin iz ¼ ei(iz) � e�i(iz)

2i
¼ e�z � ez

2i
¼ i

ez � e�z

2

� �
¼ i sinh z

(c) cos iz ¼ ei(iz) þ e�i(iz)

2
¼ e�z þ ez

2
¼ ez þ e�z

2
¼ cosh z

(d) From Problem 2.9(c) and parts (b) and (c), we have

sin(xþ iy) ¼ sin x cos iyþ cos x sin iy ¼ sin x cosh yþ i cos x sinh y

2.13. (a) Suppose z ¼ ew where z ¼ r(cos uþ i sin u) and w ¼ uþ iv. Show that u ¼ ln r and
v ¼ uþ 2kp, k ¼ 0, +1, +2, . . . so that w ¼ ln z ¼ ln r þ i(uþ 2kp). (b) Determine the values
of ln(1� i). What is the principal value?

Solution

(a) Since z ¼ r(cos uþ i sin u) ¼ ew ¼ euþiv ¼ eu(cos vþ i sin v), we have on equating real and imaginary

parts,

eu cos v ¼ r cos u (1)

eu sin v ¼ r sin u (2)

Squaring (1) and (2) and adding, we find e2u ¼ r2 or eu ¼ r and u ¼ ln r. Then, from (1) and (2),

r cos v ¼ r cos u, r sin v ¼ r sin u from which v ¼ uþ 2kp. Hence, w ¼ uþ iv ¼ ln r þ i(uþ 2kp).
If z ¼ ew, we say that w ¼ ln z. We thus see that ln z ¼ ln r þ i(uþ 2kp). An equivalent way of saying

the same thing is to write ln z ¼ ln r þ iu where u can assume infinitely many values which differ by 2p.
Note that formally ln z ¼ ln(reiu) ¼ ln r þ iu using laws of real logarithms familiar from elementary

mathematics.

(b) Since 1� i ¼
ffiffiffi
2

p
e7pi=4þ2kpi, we have ln(1� i) ¼ ln

ffiffiffi
2

p
þ 7pi

4
þ 2kpi

� �
¼ 1

2
ln 2þ 7pi

4
þ 2kpi.

The principal value is
1

2
ln 2þ 7pi

4
obtained by letting k ¼ 0.

2.14. Prove that f (z) ¼ ln z has a branch point at z ¼ 0.

Solution

We have ln z ¼ ln r þ iu. Suppose that we start at some point z1=0 in the complex plane for which

r ¼ r1, u ¼ u1 so that ln z1 ¼ ln r1 þ iu1 [see Fig. 2-16]. Then, after making one complete circuit about the

origin in the positive or counterclockwise direction, we find on returning to z1 that r ¼ r1, u ¼ u1 þ 2p so

that ln z1 ¼ ln r1 þ i(u1 þ 2p). Thus, we are on another branch of the function, and so z ¼ 0 is a branch point.

z plane

y

x

z1

r1

q1

Fig. 2-16
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Further complete circuits about the origin lead to other branches and (unlike the case of functions such as

z1=2 or z1=5), we never return to the same branch.

It follows that ln z is an infinitely many-valued function of z with infinitely many branches. That particular

branch of ln z which is real when z is real and positive is called the principal branch. To obtain this branch,

we require that u ¼ 0 when z . 0. To accomplish this, we can take ln z ¼ ln r þ iu where u is chosen so that

0 � u , 2p or �p � u , p, etc.
As a generalization, we note that ln(z� a) has a branch point at z ¼ a.

2.15. Consider the transformation w ¼ ln z. Show that (a) circles with center at the origin in the z plane
are mapped into lines parallel to the v axis in the w plane, (b) lines or rays emanating from the origin
in the z plane are mapped into lines parallel to the u axis in the w plane, (c) the z plane is mapped
into a strip of width 2p in the w plane. Illustrate the results graphically.

Solution

We have w ¼ uþ iv ¼ ln z ¼ ln r þ iu so that u ¼ ln r, v ¼ u.

Choose the principal branch as w ¼ ln r þ iu where 0 � u , 2p.

(a) Circles with center at the origin and radius a have the equation jzj ¼ r ¼ a. These are mapped into lines

in the w plane whose equations are u ¼ ln a. In Figs. 2-17 and 2-18, the circles and lines corresponding

to a ¼ 1=2, 1, 3=2, 2 are indicated.
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α = 1

α = 1/2

u

Fig. 2-17 Fig. 2-18

(b) Lines or rays emanating from the origin in the z plane (dashed in Fig. 2-17) have the equation u ¼ a.
These are mapped into lines in the w plane (dashed in Fig. 2-18) whose equations are v ¼ a. We have

shown the corresponding lines for a ¼ 0, p=6, p=3, and p=2.
(c) Corresponding to any given point P in the z plane defined by z=0 and having polar coordinates (r, u)

where 0 � u , 2p, r > 0 [as in Fig. 2-19], there is a point P0 in the strip of width 2p shown shaded

in Fig. 2-20. Thus, the z plane is mapped into this strip. The point z ¼ 0 is mapped into a point of this

strip sometimes called the point at infinity.

If u is such that 2p � u , 4p, the z plane is mapped into the strip 2p � v , 4p of Fig. 2-20.

Similarly, we obtain the other strips shown in Fig. 2-20.
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It follows that given any point z=0 in the z plane, there are infinitely many image points in the

w plane corresponding to it.

z plane
y

r
z

P

xq

w plane

P'

P'

P'

u

uu = 0

u = 4p

u = 2p
2p

2p

Fig. 2-19 Fig. 2-20

It should be noted that if we had taken u such that �p � u , p, p � u , 3p, etc., the strips of Fig. 2-20
would be shifted vertically a distance p.

2.16. Suppose we choose the principal branch of sin�1 z to be that one for which sin�1 0 ¼ 0. Prove that

sin�1 z ¼ 1

i
ln izþ

ffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p� 

Solution

If w ¼ sin�1 z, then z ¼ sinw ¼ eiw � e�iw

2i
from which

eiw � 2iz� e�iw ¼ 0 or e2iw � 2izeiw � 1 ¼ 0

Solving,

eiw ¼ 2iz+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 4z2

p

2
¼ iz+

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
¼ izþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
since +

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
is implied by

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
. Now, eiw ¼ ei(w�2kp), k ¼ 0, +1, +2, . . . so that

ei(w�2kp) ¼ izþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
or w ¼ 2kpþ 1

i
ln izþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p� 

The branch for which w ¼ 0 when z ¼ 0 is obtained by taking k ¼ 0 from which we find, as required,

w ¼ sin�1 z ¼ 1

i
ln izþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p� 

2.17. Suppose we choose the principal branch of tanh�1 z to be that one for which tanh�1 0 ¼ 0. Prove
that

tanh�1 z ¼ 1

2
ln

1þ z

1� z

� �

Solution

If w ¼ tanh�1 z, then z ¼ tanhw ¼ sinhw

coshw
¼ ew � e�w

ew þ e�w
from which

(1� z)ew ¼ (1þ z)e�w or e2w ¼ (1þ z)=(1� z)
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Since e2w ¼ e2(w�kpi), we have

e2(w�kpi) ¼ 1þ z

1� z
or w ¼ kpiþ 1

2
ln

1þ z

1� z

� �

The principal branch is the one for which k ¼ 0 and leads to the required result.

2.18. (a) Suppose z ¼ reiu. Prove that zi ¼ e�(uþ2kp)fcos(ln r)þ i sin(ln r)g where k ¼ 0, +1, +2, . . . :
(b) Suppose z is a point on the unit circle with center at the origin. Prove that zi represents infinitely

many real numbers and determine the principal value.
(c) Find the principal value of ii.

Solution

(a) By definition,

zi ¼ ei ln z ¼ eifln rþi(uþ2kp)g

¼ ei ln r�(uþ2kp) ¼ e�(uþ2kp)fcos(ln r)þ i sin(ln r)g

The principal branch of the many-valued function f (z) ¼ zi is obtained by taking k ¼ 0 and is given by

e�ufcos(ln r)þ i sin(ln r)g where we can choose u such that 0 � u , 2p.

(b) If z is any point on the unit circle with center at the origin, then jzj ¼ r ¼ 1. Hence, by part (a), since

ln r ¼ 0, we have zi ¼ e�(uþ2kp) which represents infinitely many real numbers. The principal value

is e�u where we choose u such that 0 � u , 2p.

(c) By definition, ii ¼ ei ln i ¼ eifi(p=2þ2kp)g ¼ e�(p=2þ2kp) since i ¼ ei(p=2þ2kp) and ln i ¼ i(p=2þ 2kp).
The principal value is given by e�p=2.

Another Method. By part (b), since z ¼ i lies on the unit circle with center at the origin and since

u ¼ p=2, the principal value is e�p=2.

Branch Points, Branch Lines, Riemann Surfaces

2.19. Let w ¼ f (z) ¼ (z2 þ 1)1=2. (a) Show that z ¼+i are branch points of f (z). (b) Show that a complete
circuit around both branch points produces no change in the branches of f(z).

Solution

(a) We have w ¼ (z2 þ 1)1=2 ¼ f(z� i)(zþ i)g1=2. Then, argw ¼ 1
2
arg(z� i)þ 1

2
arg(zþ i) so that

Change in argw ¼ 1
2
fChange in arg(z� i)g þ 1

2
fChange in arg(zþ i)g

Let C [Fig. 2-21] be a closed curve enclosing the point i but not the point �i. Then, as point z goes once

counterclockwise around C,

Change in arg(z� i) ¼ 2p, Change in arg(zþ i) ¼ 0

so that

Change in argw ¼ p

Hence, w does not return to its original value, i.e., a change in branches has occurred. Since a complete

circuit about z ¼ i alters the branches of the function, z ¼ i is a branch point. Similarly, if C is a closed

curve enclosing the point �i but not i, we can show that z ¼ �i is a branch point.

Another Method.
Let z� i ¼ r1e

iu1 , zþ i ¼ r2e
iu2 . Then

w ¼ fr1r2ei(u1þu2)g1=2 ¼ ffiffiffiffiffiffiffiffi
r1r2

p
eiu1=2eiu2=2

Suppose we start with a particular value of z corresponding to u1 ¼ a1 and u2 ¼ a2. Then

w ¼ ffiffiffiffiffiffiffiffi
r1r2

p
eia1=2eia2=2. As z goes once counterclockwise around i, u1 increases to a1 þ 2p while u2
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remains the same, i.e., u2 ¼ a2. Hence

w ¼ ffiffiffiffiffiffiffiffi
r1r2

p
ei(a1þ2p)=2eia2=2

¼ � ffiffiffiffiffiffiffiffi
r1r2

p
eia1=2eia2=2

showing that we do not obtain the original value of w, i.e., a change of branches has occurred, showing

that z ¼ i is a branch point.

z plane
y

Cz

x

–i

i

z plane
y

z
C

x

–i

i

Fig. 2-21 Fig. 2-22

(b) If C encloses both branch points z ¼ +i as in Fig. 2-22, then as point z goes counterclockwise around C,

Change in arg(z� i) ¼ 2p

Change in arg(zþ i) ¼ 2p

so that

Change in argw ¼ 2p

Hence a complete circuit around both branch points produces no change in the branches.

Another Method.

In this case, referring to the second method of part (a), u1 increases from a1 to a1 þ 2pwhile u2 increases

from a2 to a2 þ 2p. Thus

w ¼ ffiffiffiffiffiffiffiffi
r1r2

p
ei(a1þ2p)=2ei(a2þ2p)=2 ¼ ffiffiffiffiffiffiffiffi

r1r2
p

eia1=2eia2=2

and no change in branch is observed.

2.20. Determine branch lines for the function of Problem 2.19.

Solution

The branch lines can be taken as those indicated with a heavy line in either of Figs. 2-23 or 2-24. In both cases,

by not crossing these heavy lines, we ensure the single-valuedness of the function.

z plane
y

x

–i

i

z plane
y

x

–i

i

Fig. 2-23 Fig. 2-24
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2.21. Discuss the Riemann surface for the function of Problem 2.19.

Solution

We can have different Riemann surfaces corresponding to Figs. 2-23 or 2-24 of Problem 2.20. Referring to

Fig. 2-23, for example, we imagine that the z plane consists of two sheets superimposed on each other and

cut along the branch line. Opposite edges of the cut are then joined, forming the Riemann surface. On

making one complete circuit around z ¼ i, we start on one branch and wind up on the other. However, if

we make one circuit about both z ¼ i and z ¼ �i, we do not change branches at all. This agrees with the

results of Problem 2.19.

2.22 Discuss the Riemann surface for the function f (z) ¼ ln z [see Problem 2.14].

Solution

In this case, we imagine the z plane to consist of infinitely many sheets superimposed on each other and cut

along a branch line emanating from the origin z ¼ 0. We then connect each cut edge to the opposite cut edge of

an adjacent sheet. Then, every time we make a circuit about z ¼ 0, we are on another sheet corresponding

to a different branch of the function. The collection of sheets is the Riemann surface. In this case, unlike

Problems 2.6 and 2.7, successive circuits never bring us back to the original branch.

Limits

2.23. (a) Suppose f (z) ¼ z2. Prove that limz!z0 f (z) ¼ z20.

(b) Find limz!z0 f (z) if f (z) ¼
z2 z= z0
0 z ¼ z0

�
.

Solution

(a) We must show that, given any e . 0, we can find d (depending in general on e) such that jz2 � z20j , e
whenever 0 , jz� z0j , d.

If d � 1, then 0 , jz� z0j , d implies that

jz2 � z20j ¼ jz� z0jjzþ z0j , djz� z0 þ 2z0j , dfjz� z0j þ j2z0jg , d(1þ 2jz0j)

Take d as 1 or e=(1þ 2jz0j), whichever is smaller. Then, we have jz2 � z20j , e whenever jz� z0j , d,
and the required result is proved.

(b) There is no difference between this problem and that in part (a), since in both cases we exclude z ¼ z0
from consideration. Hence, limz!z0 f (z) ¼ z20. Note that the limit of f (z) as z ! z0 has nothing whatso-

ever to do with the value of f(z) at z0.

2.24. Interpret Problem 2.23 geometrically.

Solution

(a) The equation w ¼ f (z) ¼ z2 defines a transformation or mapping of points of the z plane into points of the

w plane. In particular, let us suppose that point z0 is mapped into w0 ¼ z20. [See Fig. 2-25 and 2-26.]

z plane
y

x

δ
z0

z

w plane
u

u

'
w0

w

Fig. 2-25 Fig. 2-26
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In Problem 2.23(a), we prove that given any e . 0 we can find d . 0 such that jw� w0j , e whenever

jz� z0j , d. Geometrically, this means that if we wish w to be inside a circle of radius e [see Fig. 2-26]

we must choose d (depending on e) so that z lies inside a circle of radius d [see Fig. 2-25]. According to

Problem 2.23(a), this is certainly accomplished if d is the smaller of 1 and e=(1þ 2jz0j).
(b) In Problem 2.23(a), w ¼ w0 ¼ z20 is the image of z ¼ z0. However, in Problem 2.23(b), w ¼ 0 is the image

of z ¼ z0. Except for this, the geometric interpretation is identical with that given in part (a).

2.25. Prove that lim
z!i

3z4 � 2z3 þ 8z2 � 2zþ 5

z� i
¼ 4þ 4i.

Solution

We must show that for any e . 0, we can find d . 0 such that

3z4 � 2z3 þ 8z2 � 2zþ 5

z� i
� (4þ 4i)

����
���� , e when 0 , jz� ij , d

Since z=i, we can write

3z4 � 2z3 þ 8z2 � 2zþ 5

z� i
¼ [3z3 � (2� 3i)z2 þ (5� 2i)zþ 5i][z� i]

z� i

¼ 3z3 � (2� 3i)z2 þ (5� 2i)zþ 5i

on cancelling the common factor z� i=0.

Then, we must show that for any e . 0, we can find d . 0 such that

j3z3 � (2� 3i)z2 þ (5� 2i)z� 4þ ij , e when 0 , jz� ij , d

If d � 1, then 0 , jz� ij , d implies

j3z3 � (2� 3i)z2 þ (5� 2i)z� 4þ ij ¼ jz� ijj3z2 þ (6i� 2)z� 1� 4ij

¼ jz� ijj3(z� iþ i)2 þ (6i� 2)(z� iþ i)� 1� 4ij

¼ jz� ijj3(z� i)2 þ (12i� 2)(z� i)� 10� 6ij

, df3jz� ij2 þ j12i� 2jjz� ij þ j�10� 6ijg
, d(3þ 13þ 12) ¼ 28d

Taking d as the smaller of 1 and e=28, the required result follows.

Theorems on Limits

2.26. Suppose limz!z0 f (z) exists. Prove that it must be unique.

Solution

We must show that if limz!z0 f (z) ¼ l1 and limz!z0 f (z) ¼ l2, then l1 ¼ l2.

By hypothesis, given any e . 0, we can find d . 0 such that

j f (z)� l1j , e=2 when 0 , jz� z0j , d

j f (z)� l2j , e=2 when 0 , jz� z0j , d

Then

jl1 � l2j ¼ jl1 � f (z)þ f (z)� l2j � jl1 � f (z)j þ j f (z)� l2j , e=2þ e=2 ¼ e

i.e., jl1 � l2j is less than any positive number e (however small) and so must be zero. Thus l1 ¼ l2.
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2.27. Suppose limz!z0 g(z) ¼ B=0. Prove that there exists d . 0 such that

jg(z)j . 1
2
jBj for 0 , jz� z0j , d

Solution

Since limz!z0 g(z) ¼ B, we can find d such that jg(z)� Bj , 1
2
jBj for 0 , jz� z0j , d.

Writing B ¼ B� g(z)þ g(z), we have

jBj � jB� g(z)j þ jg(z)j , 1
2
jBj þ jg(z)j

i.e.,

jBj , 1
2
jBj þ jg(z)j from which jg(z)j > 1

2
jBj

2.28. Given limz!z0 f (z) ¼ A and limz!z0 g(z) ¼ B, prove that

(a) limz!z0 [ f (z)þ g(z)] ¼ Aþ B, (c) limz!z0 1=g(z) ¼ 1=B if B=0,

(b) limz!z0 f (z)g(z) ¼ AB, (d) limz!z0 f (z)=g(z) ¼ A=B if B=0.

Solution

(a) We must show that for any e . 0, we can find d . 0 such that

j[ f (z)þ g(z)]� (Aþ B)j , e when 0 , jz� z0j , d

We have

j[ f (z)þ g(z)]� (Aþ B)j ¼ j[ f (z)� A]þ [g(z)� B]j � j f (z)� Aj þ jg(z)� Bj (1)

By hypothesis, given e . 0 we can find d1 . 0 and d2 . 0 such that

jf (z)� Aj , e=2 when 0 , jz� z0j , d1 (2)

jg(z)� Bj , e=2 when 0 , jz� z0j , d2 (3)

Then, from (1), (2), and (3),

j[ f (z)þ g(z)]� (Aþ B)j , e=2þ e=2 ¼ e when 0 , jz� z0j , d

where d is chosen as the smaller of d1 and d2.
(b) We have

j f (z)g(z)� ABj ¼ j f (z)fg(z)� Bg þ Bf f (z)� Agj � j f (z)jjg(z)� Bj þ jBjj f (z)� Aj
� j f (z)jjg(z)� Bj þ (jBj þ 1)j f (z)� Aj (4)

Since limz!z0 f (z) ¼ A, we can find d1 such that j f (z)� Aj , 1 for 0 , jz� z0j , d1. Hence, by
inequalities 4, page 3, Section 1.5.

jf (z)� Aj � j f (z)j � jAj, i:e:, 1 � j f (z)j � jAj or j f (z)j � jAj þ 1

i.e., j f (z)j , P where P is a positive constant.

Since limz!z0 g(z) ¼ B, given e . 0, we can find d2 . 0 such that jg(z)� Bj , e=2P for

0 , jz� z0j , d2.
Since limz!z0 f (z) ¼ A, given e . 0, we can find d3 . 0 such that j f (z)� Aj , e=2(jBj þ 1) for

0 , jz� z0j , d3.
Using these in (4), we have

j f (z)g(z)� ABj , P
e

2P
þ (jBj þ 1)

e

2(jBj þ 1)
¼ e

for 0 , jz� z0j , d where d is the smaller of d1, d2, d3, and the proof is complete.
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(c) We must show that, for any e . 0, we can find d . 0 such that

1

g(z)
� 1

B

����
���� ¼ jg(z)� Bj

jBjjg(z)j , e when 0 , jz� z0j , d (5)

By hypothesis, given any e . 0, we can find d1 . 0 such that

jg(z)� Bj , 1
2
jBj2e when 0 , jz� z0j , d1

By Problem 2.27, since limz!z0 g(z) ¼ B=0, we can find d2 . 0 such that

jg(z)j . 1
2
jBj when 0 , jz� z0j , d2

Then, if d is the smaller of d1 and d2, we can write

1

g(z)
� 1

B

����
���� ¼ jg(z)� Bj

jBjjg(z)j ,
1
2
jBj2e

jBj � 1
2
jBj

¼ e whenever 0 , jz� z0j , d

and the required result is proved.

(d) From parts (b) and (c),

lim
z!z0

f (z)

g(z)
¼ lim

z!z0
f (z) � 1

g(z)

� �
¼ lim

z!z0
f (z) � lim

z!z0

1

g(z)
¼ A � 1

B
¼ A

B

This can also be proved directly [see Problem 2.145].

Note. In the proof of (a), we have used the results j f (z)� Aj , e=2 and jg(z)� Bj , e=2, so that the final

result would come out to be j f (z)þ g(z)� (Aþ B)j , e. Of course, the proof would be just as valid if we had
used 2e [or any other positive multiple of e] in place of e. Similar remarks hold for the proofs of (b), (c),

and (d).

2.29. Evaluate each of the following using theorems on limits:

(a) limz!1þi (z
2 � 5zþ 10) (b) lim

z!�2i

(2zþ 3)(z� 1)

z2 � 2zþ 4
(c) lim

z!2epi=3

z3 þ 8

z4 þ 4z2 þ 16

Solution

(a) limz!1þi (z
2 � 5zþ 10) ¼ limz!1þi z

2 þ limz!1þi (�5z)þ limz!1þi 10

¼ limz!1þi zð Þ limz!1þi zð Þ þ limz!1þi �5ð Þ limz!1þi zð Þ þ limz!1þi 10

¼ (1þ i)(1þ i)� 5(1þ i)þ 10 ¼ 5� 3i

In practice, the intermediate steps are omitted.

(b) lim
z!�2i

(2zþ 3)(z� 1)

z2 � 2zþ 4
¼ limz!�2i (2zþ 3) limz!�2i (z� 1)

limz!�2i (z2 � 2zþ 4)
¼ (3� 4i)(�2i� 1)

4i
¼ � 1

2
þ 11

4
i

(c) In this case, the limits of the numerator and denominator are each zero and the theorems on limits fail

to apply. However, by obtaining the factors of the polynomials, we see that

lim
z!2epi=3

z3 þ 8

z4 þ 4z2 þ 16
¼ lim

z!2epi=3

(zþ 2)(z� 2epi=3)(z� 2e5pi=3)

(z� 2epi=3)(z� 2e2pi=3)(z� 2e4pi=3)(z� 2e5pi=3)

¼ lim
z!2epi=3

(zþ 2)

(z� 2e2pi=3)(z� 2e4pi=3)
¼ epi=3 þ 1

2(epi=3 � e2pi=3)(epi=3 � e4pi=3)

¼ 3

8
�

ffiffiffi
3

p

8
i

Another Method. Since z6 � 64 ¼ (z2 � 4)(z4 þ 4z2 þ 16), the problem is equivalent to finding

lim
z!2epi=3

(z2 � 4)(z3 þ 8)

z6 � 64
¼ lim

z!2epi=3

z2 � 4

z3 � 8
¼ e2pi=3 � 1

2(epi � 1)
¼ 3

8
�

ffiffiffi
3

p

8
i
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