Lecture No 04
Simplification of Boolean Function
Simplification of Boolean functions is mainly used to reduce the gate count of a design. Less number of gates means less power consumption, sometimes the circuit works faster and also when number of gates is reduced, cost also comes down.
	

	· Algebraic Simplification.
· Simplify symbolically using theorems/postulates.
· Requires good skills
· Karnaugh Maps.
· Diagrammatic technique using 'Venn-like diagram'

Simplification Using Algebraic Functions
In this approach, one Boolean expression is minimized into an equivalent expression by applying Boolean identities.
Problem; 1
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]

Problem 2
[image:]
[image:]
[image:]
Problem 2
[image:]
[image:]
Problem 3
[image:]
[image:]
Problem 4
([image:]
[image:]
[image:]

SOP and POS representation for logic expression
In any logic expression there may be two types of terms called sum term and product terms.
Sum Term the term in which the variables are ORed i.e. A + . The sum term contains both complemented or uncomplemented variables.
Product Term the term in which the variables are ANDed i.e. A.. The product term contains both complemented or uncomplemented variables.
There are two standard forms
i) Sum-of-product form (SOP)
ii) Product-of-sum form (POS)
Sum-of-product (SOP) form
It is the logical sum of two or more logical product terms, is called a Sum-of-product expression. It is basically the OR operation of AND operated variables. for example, X = AB+BC+ A, Y=ABC+ A
Product-of-sum (POS) form
It is the logical product of two or more logical sum terms, is called a Sum-of-product expression. It is basically the AND operation of OR operated variables. for example, X = (A+B+BC) (A+, Y=(A+B+C) (A+
Standard or Canonical SOP and POS forms
Standard SOP forms
Consider the following expression X (A, B, C) = AB+BC+ A. The following function is the three variable function and contains three product terms AB, BC and A.In each term one of the variables is missing, the missing variable can be added by using Boolean rule (B+)=1.
Thus 			 X (A, B, C) = AB+BC+ A = AB.1+1.BC+ A.1
= AB(C+)+ (A+)BC+ A(C+)
= ABC+AB+ABC++ A+A
As each term contain all the variables, so called standard SOP or canonical SOP form and each term is called Minterm represented by m.
Standard POS forms
Consider the following expression X (A, B, C) = (A+B)(B+C)(A+. The following is the three variable function and contains three Sum terms A+B, B+C and A+.In each term one of the variables is missing, the missing variable can be added by using Boolean rule (B)=0.
Thus 				X (A, B, C) = (A+B) (B+C) (A+
X (A, B, C) = (A+B+0) (0+B+C) (A+
X (A, B, C) = (A+B+ C) (A+B+C) (A+
As each term contain all the variables, so called standard POS or canonical POS form and each term is called Maxterm represented by M.
Problems
Convert the following expression into their standard SOP and POS form.
i) X= A+BC+ABC
ii) X= (A+B) (B+)
iii) X = A+C
Minterm and Maxterm for three variables
	inputs
	Minterm
	Designation
	Maxterm
	Designation

	
	
	
	
	
	
	

	0
	0
	0
	
	m0
	
	M0

	0
	0
	1
	
	m1
	
	M1

	0
	1
	0
	
	m2
	
	M2

	0
	1
	1
	
	m3
	
	M3

	1
	0
	0
	
	m4
	
	M4

	1
	0
	1
	
	m5
	
	M5

	1
	1
	0
	
	m6
	
	M6

	1
	1
	1
	
	m7
	
	M7

Above table show that the complemented variables are designated by 0 and uncomplemented variables are designated by 1for Minterm.
Thus = m000 =m0 and = m101 = m5
But for maxterm the complemented variables are designated by 1 and uncomplemented variables are designated by 0.
 = M000 = M0 and = M110 = M6
[image:]
[image: Maxterms:
1. f(A,B,C) = (A+B+C).(A+B’+C).(A+B’+C’)+(A’+B’+C’)
= M0 + M2 + M3 + M7
= ΠM(0,2,3,7)
2. f(A,B,C)= (A+B+C’).(A+B...]
[bookmark: _Hlk55151934]

Example 7:
Express the following function in a sum of minterms and product of maxterms.

a) Sum of minterms:
· Multiply, we get:

	m6 	 m7 	 m3 	 m5

In terms of truth table
	Inputs
	Minterm
	Z

	
	
	
	
	

	0
	0
	0
	m 0
	0

	0
	0
	1
	m1
	0

	0
	1
	0
	m2
	0

	0
	1
	1
	m3
	1

	1
	0
	0
	m4
	0

	1
	0
	1
	m5
	1

	1
	1
	0
	m6
	1

	1
	1
	1
	m7
	1

					Sum of minterms

b) Sum of maxterms

· Using distributive law:
	

· In the

· We get:

In we need , in we need we need
· We can write

· Substitute all of these term in ,we get:

 = П(0,1,2,4)

	inputs
	
	Maxterm

	
	
	
	
	

	0
	0
	0
	0
	M0

	0
	0
	1
	0
	M1

	0
	1
	0
	0
	M2

	0
	1
	1
	1
	M3

	1
	0
	0
	0
	M4

	1
	0
	1
	1
	M5

	1
	1
	0
	1
	M6

	1
	1
	1
	1
	M7

Problem
[image:]
Problem
[image:]
Karnaugh map(k-map)
K-map is a graphical method of simplifying the Boolean expression. K-map consist of cells or boxes. Each box contain the information about SOP or POS.
2 Variable K-Map
The number of cells in 2 variable K-map is four, since the number of variables is two. The following figure shows 2 variable K-Map.

[image: 2 Variable K-Map]
· There is only one possibility of grouping 4 adjacent min terms.
· The possible combinations of grouping 2 adjacent min terms are {(m0, m1), (m2, m3), (m0, m2) and (m1, m3)}.
Example 1:
Consider the following map. The function plotted is: Z = f(A,B) = A[image:] + AB

[image:]
Using algebraic simplification,
Z = A[image:] + AB
Z = A([image:] + B)
Z = A
Example 2:
Consider the expression Z = f(A,B) = [image:][image:] + A [image:] + [image:]B plotted on the Karnaugh map:

[image:]

Relation between truth table and K-map entries
Transfer the contents of the truth table to the Karnaugh map above.
[image:]
Example:
For the Truth table below, transfer the outputs to the Karnaugh, then write the Boolean expression for the result.

[image:]
The Karnaugh map uses the following rules for the simplification of expressions by grouping together adjacent cells containing ones
· Groups may not include any cell containing a zero
[image:]
· Groups may be horizontal or vertical, but not diagonal.
[image:]
· Groups must contain 1, 2, 4, 8, or in general 2n cells.
That is if n = 1, a group will contain two 1's since 21 = 2.
If n = 2, a group will contain four 1's since 22 = 4.
[image:]

3- Variable K-Map
The number of cells in 3 variable K-map is eight, since the number of variables is three. The following figure shows 3 variable K-Map.
[image:]
[image: 3 Variable K-Map]
· Each group should be as large as possible.
[image:]
· Each cell containing a one must be in at least one group.
[image:]
· Groups may overlap.
[image:]
· Groups may wrap around the table. The leftmost cell in a row may be grouped with the rightmost cell and the top cell in a column may be grouped with the bottom cell.
[image:]
· There should be as few groups as possible, as long as this does not contradict any of the previous rules.
[image:]
Summary:
1. No zeros allowed.
2. No diagonals.
3. Only power of 2 number of cells in each group.
4. Groups should be as large as possible.
5. Every one must be in at least one group.
6. Overlapping allowed.
7. Wrap around allowed.
8. Fewest number of groups possible.

Example
[image:]
[image:]
Example
[image:]
Example
POS FORM

1. K-map of 3 variables-
F(A,B,C)=π(0,3,6,7)
[image: kmap-pos-q1]

4 Variable K-Map
The number of cells in 4 variable K-map is sixteen, since the number of variables is four. The following figure shows 4 variable K-Map.
[image:]
Example
[image:]
[image:]
Example
[image:]
[image:]
Solution
[image:]
Example
[image:]

1. K-map for 4 variables
F(P,Q,R,S)=∑(0,2,5,7,8,10,13,15)
 Example
[image: de2]

Example
[image:]F(A,B,C,D)=π(3,5,7,8,10,11,12,13)

[image:]
[image:]
[image:]
Problem
[image:]
Solution
[image:]

Don’t Care (X) Conditions in K-Maps
One of the very significant and useful concepts in simplifying the output expression using K-Map is the concept of “Don’t Cares”. The “Don’t Care” conditions allow us to replace the empty cell of a K-Map to form a grouping of the variables which is larger than that of forming groups without don’t cares. While forming groups of cells, we can consider a “Don’t Care” cell as 1 or 0 or we can also ignore that cell. Therefore, “Don’t Care” condition can help us to form a larger group of cells.
A Don’t Care cell can be represented by a cross(X) in K-Maps representing a invalid combination. For example, in Excess-3 code system, the states 0000, 0001, 0010, 1101, 1110 and 1111 are invalid or unspecified. These states are called don’t cares.
Example-1:
Minimize the following function in SOP minimal form using K-Maps:

f = m (1, 5, 6, 11, 12, 13, 14) + d(4)
[image:]

Therefore, SOP minimal is,

f = BC' + BD' + A'C'D + AB'CD

Example-2:
Minimize the following function in POS minimal form using K-Maps:

F (A, B, C, D) = m (0, 1, 2, 3, 4, 5) + d (10, 11, 12, 13, 14, 15)
Explanation:
Writing the given expression in POS form:

F (A, B, C, D) = M (6, 7, 8, 9) + d (12, 13, 14, 15)
The POS K-map for the given expression is:
[image:]

Therefore, POS minimal is,
F = (A'+ C) (B' + C')

Example-3:
Minimize the following function in SOP minimal form using K-Maps:
F(A, B, C, D) = m(1, 2, 6, 7, 8, 13, 14, 15) + d(0, 3, 5, 12)
Explanation:
The SOP K-map for the given expression is:

[image:]
Therefore,

f = AC’D’ + A’D + A’C + AB

Significance of “Don’t Care” Conditions:

Don’t Care conditions has the following significance in designing of the digital circuits:

1. Simplification of the output:
These conditions denotes inputs that are invalid for a given digital circuit. Thus, they can used to further simplify the boolean output expression of a digital circuit.

2. Reduction in number of gates required:
Simplification of the expression reduces the number of gates to be used for implementing the given expression. Therefore, don’t cares make the digital circuit design more economical.

3. Reduced Power Consumption:
While grouping the terms long with don’t cares reduces switching of the states. This decreases the memory space that is required to represent a given digital circuit which in turn results in less power consumption.

4. Represent Invalid States in Code Converters:
These are used in code converters. For example- In design of 4-bit BCD-to-XS-3 code converter, the input combinations 1010, 1011, 1100, 1101, 1110, and 1111 are don’t cares.

[image:]
[image:]
[image:]

image4.png
Solution:

@

(b)

=ABC+AB+ABC
=ABC+ABC+A B
=AB(C+C)+AB

=AB+A B as

SR+). (B+B)T by the dual of
distribution, rules 15

image5.png
(¢) LHS.=AB+ A C+BC
=AB+A C+BC
=AB+A C+1BC as 1=A+A
=AB+A C+(A+ A)BC
=AB+A C+ABC+ A BC, by distributive law
=AB+ABC + A C + A BC, by commutative law

=AB(1+C)+ A C(1+B), AS1+X=

=AB+A C
LHS. -RHS.

image6.png
@

LHS. =(A+B)(A +C)Y(B+C)

=AA +AC+BA +BC)(B+C)
=0+AC+BA +BC)(B+C)

~AC+BA +BC)(B+C)

=[AC+B(A +C)](B+C)

=ABC +ACC+BB (A +C)+BC(A +C)
=ABC+AC+B(A +C)+BC(A +C)
=ACB+1)+B(A+C)(1+0)
~AC+B(A +C)

=AA +AC+B(A+C) as AA =0

=A(A+C)+B(A +C) orbyrule19.

image7.png
Using Boolean algebra techniques, simplify this expression:
AB +AB + C) + BB +C)

image8.png
Solution
The following is not necessarily the only approach.

Step 1: Apply the distributive law to the second and third terms in the expression, as
follows:

AB+ AB + AC + BB + BC
Step2: Apply rule 7 (BB = B)to the fourth term.

AB + AB + AC + B + BC
Step3: Apply rule 5 (AB + AB = AB) to the first two terms.

AB+AC + B + BC
Stepd: Apply rule 10 (B + BC = B)to the last two terms.
AB+AC+EB
StepS: Apply rule 10 (AB + B = B) to the first and third terms.
B+AC

image9.png
O

@

=) T

-

1

o—1

-

) SV

®

image10.png
‘Simplify the following Boolean expression:
[AB(C + BD) + ABIC

image11.png
Solution

Step 1:

Step2:

Step 3:

Step 6:

Step 8:

Step 9:

Apply the distributive law to the terms within the brackets.
(ABC + ABBD + AB)C
Apply rule 8 (BB = 0) o the second term within the parentheses.
(ABC+A-0-D + ABC
Apply rule 3 (4 + 0 + D = 0)1to the second term within the parentheses.
(ABC + 0 + AB)C
Apply rule I (drop the 0) within the pareniheses.
(ABC + AB)C
Apply the distributive law.
ABcc + ABC
Apply rule 7 (CC = ©) to the first term.

ABC + ABC
Factor out BC.
Boa + 1)
Applyrule 6 (4 + & = 1),
Beo1

Apply rule 4 drop the 1).

image12.png
‘Simplify the following Boolean expression:
ABC + ABT + ABC + ABC + ABC

Solution
Step 1: Factor BC out of the first and last terms.

BC(A + A) + ABT + ABT + ABC

Step2: Apply rule 6 (3 + A = 1) to the term in parentheses, and factor A from the
second and last terms.

BC- 1+ AB(C + €) + ABC

Step3: Apply rule 4 (drop the 1) to the first term and rule 6 (C + C
in parentheses.

) to the term.

BC+ AB -1 + ABC
Step4: Apply rule 4 (drop the 1 tothe second term.
BC + AB + ABC

image13.png
Step 5: Factor B from the second and third terms.
BC+ Bia + A0)

Step6: Apply rule 11 (4 + A = A + T) o the term in parentheses
BC+BA+T)

Step7: Use the distributive and commutative laws to get the fllowing expression:
BC + AB + BT

image14.png
Simplify the following Boolean expression:

AB ¥ AC + ABC

Solution

Step 1:

Step 2:

Apply DeMorgan’s theorem to the firstterm.
(ABYAC) + ABC
Apply DeMorgan’s theorem to cach term in parentheses.
(@ +B)A +0) + ABC
Apply the distributive law to the two terms in parentheses.
A4 +AC + AB + BC + ABC

Apply rule 7 (A4 =) to the frst term, and apply rule 10
[AB + ABC = AB(1 + C) = AB] to the third and last terms.

A+AC+AB+BC

Apply rule 10 [A + AC = A(1 + C) = A] to the first and second terms.

Apply rule 10 (3 + 1B

image15.png
Using Boolean algebra techniques, simplify this expression:
AB +AB +C) + BB +)

Solution
‘The following is not necessarily the only approach.

Step1: Apply the distributive law to the second and third terms in the expression, as
follows:

AB + AB + AC + BB + BC
Step2: Apply rule 7 (BB = B) to the fourth term.
AB+ AB+ AC + B+ BC
Step3: Apply rule 5 (AB + AB = AB) to the first two terms.
AB+ AC + B + BC
Stepd: Apply rle 10 (B + BC = B) to the last two terms
AB+ACHB

StepS: Apply rule 10 (AB + B = B)to the first and third terms.

B+AC

image16.png
i implity the given expression Y= AB+ ABD + ABCD + BC.
— -
AB+ ABD + ABCD + BC = B(A + AD)+ C(B + BAD)
BA+D)+C\B+AD) [
=AB+BD+BC+ ACD.
AB+ BD+BO(4+ A)+ ACD.
AB+BD + ABC+ABC+ ACD
AB1+C)+ BD+ ABC+ ACD.
=AB+BD+ACD.

image17.png
Minterms:

1. f(A,B,C) =A'B'C’ + ABC’ + A'BC + ABC
=my+m,+my+m,
=1Im(0,2,3,7)

2. f(A,B,C)=A'B’'C+ A'BC + AB’C + ABC
=m;+my+mg+m,
=1Im(1,3,5,7)

image18.jpeg
Maxterms:

1. f(A,B,C) = (A+B+C).(A+B’+C).(A+B’+C’)+(A’+B'+C’)
=My+M,+ M, +M,
=1M(0,2,3,7)

2. f(A,B,C)= (A+B+C’).(A+B’+C’).(A+B’+C’).(A’'+B’+C’)
=M, + M+ Mg+ M,
=M (1,3,5,7)

3. f(A,B,C)= (A+B+C).(A+B’+C).(A+B'+C’).(A'+B’+C)
=My +M, + M, + M,
=M (0,2,3,6)

image19.png
For the Boolean function F given in the truth table, find the lollowing:

(a) List the minterms of the function.

(b) List the minterms of F'.

(c) Express F in sum of minterms in algebraic form.

(d) Simplify the function to an expression with a minimum number of literals

x vy z | F
0 0 o 0
0o 0 1 0
o 1 0 1
0o 1 1
10 0 0
1 0 1 0
110 1
1 1 1 1

image20.png
~ Express the following functions in sum of minterms and product of maxterms:
(a) F(A,B,C,D)=B'D+ A'D + BD

(b) Fx,y,2) = (xy + 2)(xz + y)

Express the complement of the following functions in sum of minterms:

(a) F(A, B, C,D) = 2(0, 2,6, 11, 13, 14)

(b) Flx,y,2) =T11(0,3,6,7)

Convert the following to the other canonical form:

(@) F(x,y,2) = 2(1,3,7)

(b) F(A,B,C,D)=11(0,1,2,3,4,6,12)

image21.jpeg
3z 00 01 11 10

Mg | My mz| my

image22.gif

image23.gif

image24.gif

image25.gif

image26.jpeg
b=

image27.jpeg
Output

=|=|o|o|»

slel=lelw

7 Output =A + B’ /

Wrong Output = AB + B

image28.gif
RIGHT /

WRONG X

image29.gif
RIGHT /

WRONG X

image30.gif
T e Crauwpof 3

—X

[Grapof2 o o

o . |V flo|ofofo
RIGHT / WRONG X
0 1 B o n a0

Group of 5
—Group of 4

X

image31.png
c c
» N
© o0 |3 | i
o o isc
n 1 | asé | asc
10 10 [aic [aic

image32.jpeg
Yz

00 01 11 10

Mg | myfms| my

my| ms|m;| mg

image33.gif
RIGHT WRONG X
(Wote that no Boolean laws broken,
but not sufficiently minimal)

image34.gif
Graup

1 present in at least one group.

Sroup 11

image35.gif
e——Graups overlapping

e

Groups not averlapping,

image36.gif
Leﬁmostéﬁ

1

\z@m—nost cell

Bottom cell

image37.gif
WRONG X

RIGHT

image38.png
Map the following standard SOP expression on a Kamnaugh map:
ABC + ABC + ABC + ABC

image39.png
ABC + ABC + ABC + ABC
001 010 110 111

AN 01
w - ABC
or| 1 ABC

n| s 1<f-asc

10 ABC

image40.png
Map the following SOP expression on a Karnaugh map: A + AB + ABC.

image41.png
2elements in one group

image42.png
WX oo o1

11 10

00| Mg | My

msz| my

01 [my| ms

my| Mg

11 |myp{my3)

Mys|Miq

10 | mg [mg

image43.png
Map the following standard SOP expression on a Karnaugh map:
ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD

image44.png
ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD

0011 0100 1101 1111 1100 0001
- e

VAT
® Il I %
ol 1

ool

s
al |

ABCD —— o
10 / \ 1<} sicd

7 g
ABCD ADCD

1010

image45.png
Map the following SOP expression on a Karnaugh map:
BC + AB + ABC + ABCD + ABCD + ABCD

image46.png
Group the Is in each of the Karnaugh maps in Figure - .

c c D D
AN 01 AN 01 AN 01 1110 m
0| 1 oof 1|1 oof 1| 1 00
o 1 o] 1 o ||| o
w| | 1 1 1 1
10 w| |1 10 [It 10

@) © @

image47.png
Wrap-around adjacency

Wrap-around adjacency

o ﬂ 1
N oID
D)

@

image48.png
Use a Karnaugh map to minimize the following SOP expression:

BCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD

image49.png
as k-map is assumed to be
connected so we can make
‘group this way

as we have to take maxm. elements
in a group so we've made 1 group
of 4 1's not 2 groups of 2 1's

image50.png
cD

AB o110
00 1 0 1
s 2
01 0 0 1
7 s
1 0 1 1
- 14
10| 1 0 0
T 4

image51.png
Simplify the Boolean function
Flw,x,y,2) =2(0,1,2,4,5,6,8,9, 12, 13, 14)

image52.png
xR0 0L L 10
oolf1] |1 1
o[][1
TR
of[1 |1

image53.png

image54.png
Simplify the following Boolean function in (a) sum of products and (b) product of
sums.

F(A,B,C,D)=2(0,1,2,5,8,9, 10)

image55.png
F=(A"+B)C"+D')B' + D)

cp c
ap_90__0L I 10
oo 11 flo]f s
|
ol of| 1 of{fo
+ ‘8
| o] o [ToT][o J
“
ol 1+ | 1 o]

image56.png

image57.png

image58.png
0w uw

00 ==
HEon

. 1

image1.png
Simplify the Boolean expressions:
@ XA (X+V)(X+2)
@) XVZ+XTVZ+XYZ ((?

Solution:

[}

® First simplify (X + Y) (X + Y)
X+Y)(X+ V) =XX+XY +YX+YY

=X+XY +YX+0, as XX=X

asYY =0
=XEX(Y +Y), Y +Y=l
X1 as X=X

+X

Now KXY) (X +2)
X(X+2)
XX +XZ, by distributive law

=0+XZ
=Xz

image59.png
Simplify the Boolean function

F(w, xy,2)=5(1, 3, 7, 11, 15) which has the don’t-

care conditions: d (w, x, y, z) = (0, 2, 5)

Yz
WX

00
01
11
10

00 01 11 10
X | 1 |[1]] x
o | x |1 o
oo |1 o
oo |1 o

WX’

F=W’X’ +YZ

image60.png
‘Simplify the Boolean function Ftogether with the don't-care conditions dfin (1) sum-of-products form and (2) product-of-
sums form.

Awxy2=5001237810
dwx % 2=5(5611,15)

image61.png

image2.png
XYZ+XYZ+XYZ
“XZ(Y+Y)+ XY Z

“XZ+XYZ, as Y+Y

=X(Z+YZ)
= X[(Z +Y). (Z+Z)}, (By Rule 15 dual of distributiv.
=X[Z+Y). 1]=X(Z+Y)

X(Y+2), by commutative law.

image3.png
Misimize the following expresson by use of Boolean

@ X-ABC+AB+ABC
) X=ABC+ABC+ABC+ABC
(© AB+A C+BC=AB+A C

@ (A+B)(A+C)(B+C)=(A+B)(A +C)

