Boolean Algebra
Boolean Algebra is used to analyze and simplify the digital (logic) circuits. It uses only the binary numbers i.e. 0 and 1. It is also called as Binary Algebra or logical Algebra. Boolean algebra was invented by George Boole in 1854.
Rule in Boolean Algebra
Following are the important rules used in Boolean algebra.
· Variable or literals used can have only two values. Binary 1 for HIGH and Binary 0 for LOW.
· Complement of a variable is represented by an overbar (-). Thus, complement of variable A is represented as , Thus if A = 0 then = 1 and A = 1 then = 0.
· Logical ORing of the variables is represented by a plus (+) sign between them. For example ORing of A, B, C is represented as A + B + C.
· Logical ANDing of the two or more variable is represented by writing a dot between them such as A.B.C. Sometime the dot may be omitted like A.B.C.
Boolean Laws
There are six types of Boolean Laws.
Commutative law
Any binary operation which satisfies the following expression is referred to as commutative operation w.r.t addition and multiplication.
[image: Commutative Law]
	A
	B
	A+B
	B+A

	0
	0
	0
	0

	0
	1
	1
	1

	1
	0
	1
	1

	1
	1
	1
	1

Commutative law states that changing the sequence of the variables does not have any effect on the output of a logic circuit.
[image:]
Associative law
This law states that the order in which the logic operations are performed is irrelevant as their effect is the same.
[image: Associative Law]

[image:]
[image:]

Distributive law
Distributive law states the following condition.
[image: Distributive Law]
A+BC=(A+B)(A+C)

[image:]
[image:]

AND laws
These laws use the AND operation, therefore, they are called as AND laws.
[image: AND Law]
OR laws

These laws use the OR operation, Therefore, they are called as OR laws.
[image: OR Law]
INVERSION law
This law uses the NOT operation. The inversion law states that double inversion of a variable results in the original variable itself.
[image: NOT Law]
[image:]
Absorption Law
A + AB = A
Proof; 	L.H.S = A + AB = A(1+B)
		But 1+B = 1
		Therefore, 	L.H.S = A.1 = A
Other Important law
A + B = A + B
Proof 		 L.H.S = A + B
As 		A= A + AB
So 		 L.H.S = = A + AB + B = A + B(1 + = A+B
[image:]
Example
[image:]

De-Morgan’s First Theorem
De-Morgan’s First theorem proves that when two (or more) input variables are AND’ed are complemented, they are equivalent to the OR of the complements of the individual variables. Thus, the equivalent of the NAND function will be a negative-OR function, proving that = + We can show this operation using the following table.
Table showing verification of the De Morgan's first theorem −
[image: De Morgan Theorem 1 Verification Table]
We can also show that = + using logic gates
De Morgan’s First Law Implementation using Logic Gates
[image: demorgans first law implementation]

De Morgan’s Second Theorem
De Morgan’s Second theorem proves that when two (or more) input variables are OR’ed complemented, they are equivalent to the AND of the complements of the individual variables. Thus the equivalent of the NOR function is a negative-AND function proving that = and again we can show operation this using the following truth table.
Table showing verification of the De Morgan's second theorem −
[image: De Morgan Theorem 2 Verification Table]

We can also show that A+B = A.B using the following logic gates example.
De Morgan’s Second Law Implementation using Logic Gates

[image: demorgans second law implementation]
Example
Develop the truth table for 3-input of De-Morgan laws.
[image:]
 Examples
[image:]

[image:]
Solution
[image:]

Duality Theorem
[image:]

Logic Gates
[image:]
The logic gates perform ON/OFF operation.
Three types of logic gates
i) Basic Gates (NOT gate, AND gate, OR gate)
ii) Universal Gates (NAND gate, NOR gate)
iii) Exclusive OR gate, Exclusive NOR gate.

NOT gate
The inverter (NOT gate) performs the operation called inversion or complementation. The inverter changes 0 to a1 and 1 to a 0 in terms of bit.
The truth table and symbol are
[image:] [image:]
This shows when input is LOW, the output is HIGH or when input is HIGH, the output is LOW.
The logic expression for inverter is X =
[image:]
AND Gate
The AND gate performs the logical multiplication, it is multiple input and single output component. The logical equation is X = A . B
The truth table and logical symbol for AND gate is
[image:][image:]
[image:]

Logical Operation
From the truth table we see that if both or any one input is at LOW logic, the output is at LOW logic. The output is at HIGH logic only if both or all inputs are at HIGH logic.
[image:]
Example
[image:]
OR gate
OR gate is a multiple input and single output component, it is used to perform logic addition. The logic equation is X = A + B
The truth table and logic symbol is
[image:][image:]
[image:]
From the truth table, the output is at LOW logic only when all inputs are at LOW logic. The output is HIGH logic when all inputs or any one of the input is HIGH.

NAND Gate
The NAND gate is a universal gate and it is the combination of AND gate and NOT gate. The logical equation is
The truth table and logical symbol is

[image:][image:]
[image:]
NOR Gate
The NOR gate is a universal gate and composed of OR and NOT gate. The logic equation is
The truth table and logic symbol is
[image:][image:]
[image:]
The Exclusive OR gate
The Exclusive OR is used for logical comparison. The output is HIGH logic if both inputs are different and output is LOW logic if both inputs are same. The logical equation is
 X= (A ⊕ B) = A + B

The truth table and logic symbol is
[image:][image:]
[image:]
[image:]
Exclusive NOR gate
The logical equation for Exclusive NOR gate is
X = = AB +
The truth table and logic symbol is
[image:][image:]
[image:]
[image:]
Implementation of Logic Functions Using Only NAND Gates

[image:]

NOT gate using NAND gate
As the logic equation for NOT gate is X =
So both inputs of NAND gate are joined
[image:]

AND gate using NAND
As the logic equation of AND gate is X = A . B
Take the double inversion of R.H.S
X =
[image:]

OR gate using NAND gate
As the logic equation for OR gate X = A + B
Take double inversion of R.H.S
X =
Apply De Morgan theorem, we have X =
[image:]
NOR Using NAND gate
As the logic equation for NOR gate is X =
Apply De Morgan Theorem X = .
Take double inversion X =
[image:]
Ex-OR gate using NAND gate
As the logic expression for Ex-OR gate is X = = A + B
Take the double inversion X = = . =
[image:]
Ex-NOR gate using NAND gate
[image:]
 Implementation of Logic Functions Using Only NOR Gates[image:]
image4.png
2 i T

c 285 c am |
L

o

image5.png
Proof:

AiB+Q

B+C

(+B+C

AvB

image6.jpeg
A(B+C)=AB+AC

image7.png
S I)

4c

image8.png
Verification

0

A[B|C[BC[A+BC[(A+B) [(A+0) [A*B)A+C)

image9.jpeg

image10.jpeg
(ijA+1=1
(VA+A=1

image11.jpeg

image12.png

image13.png
‘Siapiiy the folowing Boolean expession:

Solution
Step1: - Factor BC out of e st and last tems.

BT +) + 4B + ABC + Al

Apply e (1 + 4 = 1)t the tem in parcheses,andfoctor A from the
ccond ad st terms.

BC- 1+ ABC + O + ABC
Step3: Apply rule 4 dropthe 1) o the s term and e 6 (€ + € = 1)10the erm

o paratheses.

BC+ AB- 1+ ABT
Step: Apply rule 4 (drop the 1) 1 the scond tem..
BC + AB + ABC

Boolean Algebra and Logc Simplficaton

StepS: Factor 5 from the sccond and thiedterms.
BC+ Bt + A0)

4+ T)to the tem n pareatheses.

BC+Ba+ D

Step s Usethe distrbutiv and commatative i to get the following expression:
BC + AB + BT

Step6: Apply e 1 (4 + T

image14.png
‘Simplify the following Boolean expression:
AB ¥ AC + ABC

Solution

Apply DeMorgan’s theorem to the firstterm.

(AB)AC) + ABC

Step2: Apply DeMorgan’s theorem to each term in parentheses.
(@ +B)A +0) + ABC

Step3: Apply the distributive law to the two terms in parentheses.

A4 +AC + AB + BC + ABC

Stepd: Apply rule 7 (A7
[AB + ABC

) 10 the first term, and apply rule 10

A+AC+AB+BC

Apply rule 10 [A + A] to the first and second terms.

Step 6: Apply rule 10 (7 +

image15.jpeg

image16.gif
NAND

Negative-OR

image17.jpeg
@
I

image18.gif
NOR

>
]

:}7

Negative-AND

image19.png
Applying DeMorgan’s Theorems

‘The following procedure illustrates the application of DeMorgan’s theorems and Boolean
algebra to the specific expression

A+ BC+DE+F)

Step 1: Idenify the terms to which you can apply DeMorgan's theorems, and think of
each term as a single variable. Let A + BC = X and D(E + F) = Y.
Step 2: Since X+ ¥ = XT.
(A + BC) + (O(E + F)) = (A + BOW(E + F)
= A)to cancel the double bars over the left term (this is not part

Step 3:

G+ BOXDE +) = (4 + BOMDIE + F))
Step 4: Apply DeMorgan’s theorem to the second term.
DE+F) = (4 +BOD + E+)
~ A4) o cancel the double bars over the E + F partof the term.
(A+BOD+E+F)=(A+BOD+E+F)

image20.png
@ ATB+C
® @+BH+CD
© A+BCD T E+F

image21.png
Find the complement of A B+C D ,.

image22.png
(A+B).(C +D)

image23.png
We state the duality theorem without proof. Starting with a
Boolean relation, we can derive another Boolean relation by

1. Changing each OR (+) sign to an AND () sign

2. Changing cach AND (.) sign to an OR (+) sign.

3. Complementary each 0 and 1

For instance
A+0=A

‘The dual relation is A . 1 = A

Alsosince A (B +C) = AB + AC by distributive law. Its dual
relation is A+BC=(A+B)(A+C)

image24.png
A logic gate is defined as a electronics circuit with two or more
input signals and one output signal. The most basic logic Circuits are OR
gates, AND gates, and invertors or NOT gates. Strictly speaking, invertors
are not logic gates since they have only one input signal; however They
are best introduced at the same time as basic gates and will therefore be

dealt in this section.

image25.png
Input Output

Low 0 1GH (1)
HIGH () LOW ()

image26.png
) L e

e

ovoJ L 4|>‘H Low o)
O W

Input puise: Ouput pulse:

image27.png

image28.png
A —1

image29.png
Output

Inputs

coo -

c-o-

co -~

g
"
=
g
£
"

image30.png
1able 0

Inputs Output
B c X
0 0 0
0 1 0
1 0 0
1 1 0
0 0 0
0 1 0
1 0 0

image31.png
‘The total number of possible combinations of binary inputs to a gate is determined by
the following formula:

N=2 Equation 3-1

where N is the number of possible input combinations and is the number of input vari-
ables. To illustrate,

2 = 4 combinations

For two input variables:
For three input variables: N = 23 = § combinations

For four input variables: N = 2* = 16 combinations

image32.png
(@) Develop the truth table for a 3-input AND gate.
(b) Determine the total number of possible input combinations for a 4-input AND gate.

image33.png

image34.png
HIGH, 0 = LOW

image35.png
Truth table for a three in put OR gate.
Table -3
C

—|=|=|=|o|o|o|o|>
—|=lela|=|~|o|o|=

X
0
1

1

1

1

1

1

1

0
1
0
1
0
1
0
1

No. of combinations = 2 ", where n is number of variables.

image36.png

image37.png
Inputs

image38.png
For a 2-input NAND gate, output X is LOW only when inputs A and B are HIGH;
X is HIGH when cither A or B is LOW, or when both A and B are LOW.

image39.png

image40.png
Fo--ee

0

Inputs

<|oo-~

HIGH,0 = LOW.

image41.png
For a 2-input NOR gate, output X is LOW when cither input A or input B is
HIGH, or when both A and B are HIGH; X is HIGH only when both A and B are
LOW.

image42.png

image43.png
A

o

alo-o-

<|eo-~

image44.png
For an exclusive-OR gate, output X is HIGH when input A is LOW and input B is
HIGH, or when input A is HIGH and input B is LOW; X is LOW when A and B
are both HIGH or both LOW.

image45.png
AB Ex-OR Gate using
A Complete Set

J U

image46.png

image47.png
M|-oo-

Output

a|o-o~

Inputs

image48.png
For an exclusive-NOR gate, output X is LOW when input A is LOW and input B is
HIGH, or when A is HIGH and B is LOW; X is HIGH when A and B are both
HIGH or both LOW.

image49.png
BO

Y Y.

>

o0

AB Ex-NOR Gate using
A Complete Set

v

image50.png
NAND Gate Symbol

Ao—]
Q
50—

AND Gate

Ao AB AB

80—

A T OR Gate
U_Aés

) }

g

NOT Gate

}O (Inverter)

Buffer

g

)]

Da

Exclusive-OR

5o

A
g

WA
AR

Exclusive-NOR

image51.png
NOT Gate

A O—D_é (Inverter)

image52.png
AND Gate

A AB AB
B

image53.png
OR Gate

image54.png
NOR Gate

image55.png
Exclusive-OR

image56.png
Exclusive-NOR

image57.png
NOR Gate Symbol NOT Gate

N - N 7 (Inverer)
Q=AB
B

Buffer

OR Gate
A 8 as Aw
B

N Exclusive-OR
o1 i,
N X AND Gate N :>_ AB

- >
B

B
AB

N X NAND Gate
AB AB

1>—Q>°<3 Exclusive-NOR
8 _

— A8

A5

A :j >

8

AB

image1.jpeg

image2.png

image3.jpeg
(i) (A

C) (ii) (A+B)+ C=A+(B+C)

