## **Gene therapy**

#### What is gene therapy

Gene therapy can be described as the intracellular delivery of genetic material to generate a therapeutic effect by correcting an existing abnormality or providing cells with a new function.

#### The process of Gene therapy

Viral vector takes a gene to the cell and places in the nucleus



#### Strategy for transfer of a gene to a patient



Germline vs Somatic gene therapy

Inherited or acquired disease

**Cure(permanent) or treatment(temporary)** 

**Risk/side effects(long term and short term)** 

Ethically acceptable or not

#### **Potential of Gene Based therapeutics**

Recent advances in the molecular and cellular biology of gene transfer have made it likely that gene therapy will soon start to play an increasing role in clinical practice.

It will not be restricted to the management of monogenic disorders, but will have applications across many other fields of medicine, particularly the treatment of cancer and infectious disease.

**Prof. Sir David Weatherall FRs** 

Somatic gene therapy

Ex vivo delivery

In situ delivery

In vivo delivery

Ex vivo-cells removed, genetically modified, transplanted back into patient.

In situ- at the site of tissue damage

In vivo- direct transfer of genetic material into patient

Viral systems for gene delivery

**Retroviral vectors** 

**Adenoviral vectors** 

**Adeno-associated viral vectors** 

Herpes simplex viral vectors

And several others

Ideal vector characteristics

Insert size: one or more genes

Targeted: limited to a specific cell type

No immune response

Stable: Not mutated

Production: easy to produce high concentrations(titer)

**Regulatable: produce enough protein to cause an effect** 

Non-Viral gene delivery systems

Lipid-mediated delivery system e.g. cationic liposomes

Cationic polymer based systems

Naked DNA e.g. wit nanoparticles using a gene gun

**Peptide based vectors** 

Hybrid systems

#### **Non-Viral DNA carriers**

Cationic liposomes: positively charged lipids interact with negatively charged DNA( lipid-DNA). Transverse cell membrane

Advantages:

a. Stable complex

- **b.** Can carry large size DNA
- c. Can target to specific cells
- d. Does not induce immunological reactions.

Disadvantages

- a. Low transfection efficiency
- b. Transient expression.
- c. Inhibition by serum
- d. Some cell toxicity

#### **Non-Viral vectors**

- 1. Liposomes
- 2. Cationic polymers
- 3. Naked DNA
- 4. Peptide mediated
- 5. Hybrid system

May overcome limitations with viruses including small capacity for therapeutic DNA. Difficulty in cell type targeting and safety concerns.

Summary of commonly used vectors

**Candidate diseases for application of gene therapy** 

Monogenic disorders

Multifactorial disorders

Cancers

Infectious disease

Monogenic disorders for GT

SCID due to ADA

Cystic fibrosis(CFTR, cystic fibrosis transmembrane conductance regulator)

Beta-globin disorders (thalassemia, sickle cell anemia)'

Hemophilia

Familial hypercholesterolemia

Gauchers disease

#### **Genetic Defects that are Candidates for Gene Therapy**

| Disease                                          | Defect                                                      | Incidence                         | Target Cells                                       |
|--------------------------------------------------|-------------------------------------------------------------|-----------------------------------|----------------------------------------------------|
| Severe combined<br>immunodeficiency (SCID)       | Adenosine deaminase (ADA)<br>in 25% of SCID patients        | Rare                              | Bone-marrow cells or<br>T lymphocytes              |
| Hemophilia $<^{A}_{B}$                           | Factor VII deficiency                                       | 1:10,000 males                    | Liver, muscle, fibroblasts<br>or bone marrow cells |
|                                                  | Factor IX deficiency                                        | 1:30,000 males                    |                                                    |
| Familial<br>hypercholesterolemia                 | Deficiency of low-density<br>lipoprotein (LDL) raeceptor    | 1:1 million                       | Liver                                              |
| Cystic fibrosis                                  | Faulty transport of salt in lung epithelium                 | 1:3000 Caucasians                 | Airways in the lungs                               |
| Hemoglobinopathies<br>thalassemias               | (Structural) defects in the $\alpha$ or $\beta$ globin gene | 1:600 in certain<br>ethnic groups |                                                    |
| Gaucher's disease                                | Defect in the enzyme<br>glucocerebrosidase                  | 1:450 in<br>Ashkenazi Jews        | Bone marrow cells,<br>macrophages                  |
| α1 antitrypsin deficiency<br>inherited emphysema | Lack of $\alpha_1$ antitrypsin                              | 1:3500                            | Lung or liver cells                                |
| Duchenne<br>muscular distrophy                   | Lack of dystrophin                                          | 1:3000 males                      | Muscle cells                                       |

#### 1990s 1<sup>st</sup> Successful gene therapy protocol (William Anderson, Michael Blasie, and Ken Culver)

Treatment of ADA cause server immune deficiency. Recessive disease that results in the buildup of waste products that kill T cells.

### **Gene Therapy Successes**



Ashanti de Silva successfully treated for ADA deficiency - 1990

# Ryes Evans successfully treated for SCID - 2001





Gene therapy- An apparent success

Restenosis– reblockage of coronary arteries after they have been opened by coronary bypass surgery or angioplasty

13 patients with restenosis were injected in the heart with DNA encoding vascular endothelial growth factor, which promotes angiogenesis.

All 13 patients has improved heart function

Main problems in GT

Virus only infects a small number of cells.

The immune attacks the virus

Lose expression over time

Can have life threatening immune reaction

Gene therapy problems

Two boys treated for SCID developed leukemia due to disruption of a gene that regulates cell divison

Jesse Gelsinger died of complications due to an immunse system response while participating in a clinical trial.

Gene therapy– A Failure

Inability to produce ornithine transcarbamylase(OTC) is often lethal, but moderate deficiencies may be controlled by strict control of diet.

Jesse Gelsinger, a young volunteer in a gene therapy trial who has a moderate OTC deficiency , died on 17 Sept 1999.

He had bee injected in the liver with high concentrations of adenovirus that expressed OTC.

He apparently died of massive immune response to the adenovirus vector.

**Gene therapy– Advantages** 

1. It has the ability to replace defective cells.

2. It promises a great untapped potential.

3. It can help eradicate diseases.

**Gene therapy– Disadvantages** 

- 1. It can damage the gene pool.
- 2. It would modify human capabilities.
- 3. It has the potential to give rise other disorders.