by Physical and
Chemical Agents

Microbial population death is exponential, and the effectiveness of
an agentis not fixed but influenced by many environmental factors.

Solid objects can be sterilized by physical agents such as heat and
radiation; liquids and gases are sterilized by heat, radiation, and
filtration.

Most chemical agents do not readily destroy bacterial endospores
and therefore cannot sterilize objects; they are used as disinfec-
tants, sanitizers, and antiseptics. Objects can be sterilized by gases
like ethylene oxide and vaporized hydrogen peroxide that destroy
endospores.

Chemotherapeutic agents are chemicals used to kill or inhibit the
growth of microorganisms within host tissues.

growth. In this chapter we address the subject of the control

and destruction of microorganisms, a topic of immense
practical importance. Although most microorganisms are beneficial
and necessary for human well-being, microbial activities may have
undesirable consequences, such as food spoilage and disease.
Therefore it is essential to be able to kill a wide variety of micro-
organisms or inhibit their growth to minimize their destructive ef-
fects. The goal is twofold: (1) to destroy pathogens and prevent their
transmission, and (2) to reduce or eliminate microorganisms re-
sponsible for the contamination of water, food, and other substances.
From the beginning of recorded history, people have prac-
ticed disinfection and sterilization, even though the existence of
microorganisms was unknown. The Egyptians used fire to steril-
ize infectious material and disinfectants to embalm bodies, and
the Greeks burned sulfur to fumigate buildings. Mosaic law com-
manded the Hebrews to burn any clothing suspected of being
contaminated with leprosy. Today the ability to destroy micro-

C hapters 5 and 6 are concerned with microbial nutrition and

ontrol of Microorganisms

Bacteria are trapped on the surface of a membrane filter used to remove
microorganisms from fluids.

organisms is no less important: it makes possible the aseptic tech-
niques used in microbiological research, the preservation of food,
and the treatment and prevention of disease. The techniques de-
scribed in this chapter are also essential to personal safety in both
the laboratory and hospital (Techniques & Applications 7.1).

This chapter focuses on the control of microorganisms by
physical and chemical agents, including chemotherapeutic agents,
which are discussed in more detail in chapter 35. However, mi-
crobes can be controlled by many mechanisms that will not be
considered in this chapter. For instance, the manipulation of envi-
ronmental parameters is used extensively in the food industry to
preserve foods. Increased solutes, such as salt and sugar, preserve
meats, jams, and jellies. Microbial fermentations of milk and veg-
etables decrease the pH of these foods, creating new foods such as
yogurt, cheese, and pickles—all of which have a longer shelf life
than the milk and vegetables from which they are made. Heat and
the generation of anoxic conditions are important in the preserva-
tion of canned foods, and ionizing radiation is used to extend the
shelf life of seafood, fruits, and vegetables. The use of these con-
trol measures is described in more detail in chapter 40.

7.1 DEFINITIONS OF FREQUENTLY USED TERMS

Terminology is especially important when the control of mi-
croorganisms is discussed because words like disinfectant and
antiseptic often are used loosely. The situation is even more con-
fusing because a particular treatment can either inhibit growth or
kill depending on the conditions. The types of control agents and
their uses are outlined in figure 7.1.

We all labour against our own cure, for death is the cure of all diseases.

—Sir Thomas Browne
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Safety in the Microbiology Laboratory

Personnel safety should be of major concern in all microbiology
laboratories. It has been estimated that thousands of infections have
been acquired in the laboratory, and many persons have died be-
cause of such infections. The two most common laboratory-
acquired bacterial diseases are typhoid fever and brucellosis. Most
deaths have come from typhoid fever (20 deaths) and Rocky Moun-
tain spotted fever (13 deaths). Infections by fungi (histoplasmosis)
and viruses (Venezuelan equine encephalitis and hepatitis B virus
from monkeys) are also not uncommon. Hepatitis is the most fre-
quently reported laboratory-acquired viral infection, especially in
people working in clinical laboratories and with blood. In a survey
of 426 U.S. hospital workers, 40% of those in clinical chemistry and
21% in microbiology had antibodies to the hepatitis B virus, indi-
cating their previous exposure (though only about 19% of these had
disease symptoms).

Efforts have been made to determine the causes of these infec-
tions in order to enhance the development of better preventive mea-
sures. Although often it is not possible to determine the direct cause
of infection, some major potential hazards are clear. One of the most

frequent causes of disease is the inhalation of an infectious aerosol.
An aerosol is a gaseous suspension of liquid or solid particles that
may be generated by accidents and laboratory operations such as
spills, centrifuge accidents, removal of closures from shaken culture
tubes, and plunging of contaminated loops into a flame. Accidents
with hypodermic syringes and needles, such as self-inoculation and
spraying solutions from the needle, also are common. Hypodermics
should be employed only when necessary and then with care. Pipette
accidents involving the mouth are another major source of infection;
pipettes should be filled with the use of pipette aids and operated in
such a way as to avoid creating aerosols.

People must exercise care and common sense when working with
microorganisms. Operations that might generate infectious aerosols
should be carried out in a biological safety cabinet. Bench tops and
incubators should be disinfected regularly. Autoclaves must be main-
tained and operated properly to ensure adequate sterilization. Labo-
ratory personnel should wash their hands thoroughly before and after
finishing work.

Microbial Control Methods

Physical agents

Sterilization

Incineration

Sterilization J Sterilization Boiling water,

Mechanical
removal methods

Chemical agents

Filtration

Liquids

(Inanimate) Sterilization

hot water,

| Chemotherapy ||

| [ Disinfection | [Eaglbaaay

pressure f pasteurization
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Figure 7.1 Microbial Control Methods.

Disinfection: The destruction or removal of vegetative
pathogens but not bacterial endospores. Usually used
only on inanimate objects.

Sterilization: The complete removal or destruction of
all viable microorganisms. Used on inanimate objects.

Antisepsis: Chemicals applied to body surfaces to
destroy or inhibit vegetative pathogens.

Chemotherapy: Chemicals used internally to kill or
inhibit growth of microorganisms within host tissues.



The ability to control microbial populations on inanimate ob-
jects, like eating utensils and surgical instruments, is of consid-
erable practical importance. Sometimes it is necessary to
eliminate all microorganisms from an object, whereas only par-
tial destruction of the microbial population may be required in
other situations. Sterilization [Latin sterilis, unable to produce
offspring or barren] is the process by which all living cells,
spores, and acellular entities (e.g., viruses, viroids, and prions)
are either destroyed or removed from an object or habitat. A ster-
ile object is totally free of viable microorganisms, spores, and
other infectious agents. When sterilization is achieved by a
chemical agent, the chemical is called a sterilant. In contrast, dis-
infection is the killing, inhibition, or removal of microorganisms
that may cause disease. The primary goal is to destroy potential
pathogens, but disinfection also substantially reduces the total
microbial population. Disinfectants are agents, usually chemi-
cal, used to carry out disinfection and are normally used only on
inanimate objects. A disinfectant does not necessarily sterilize an
object because viable spores and a few microorganisms may re-
main. Sanitization is closely related to disinfection. In sanitiza-
tion, the microbial population is reduced to levels that are
considered safe by public health standards. The inanimate object
is usually cleaned as well as partially disinfected. For example,
sanitizers are used to clean eating utensils in restaurants. Prions
(section 18.10); Viroids and virusoids (section 18.9)

It also is frequently necessary to control microorganisms on or
in living tissue with chemical agents. Antisepsis [Greek anti,
against, and sepsis, putrefaction] is the prevention of infection or
sepsis and is accomplished with antiseptics. These are chemical
agents applied to tissue to prevent infection by killing or inhibiting
pathogen growth; they also reduce the total microbial population.
Because they must not destroy too much host tissue, antiseptics are
generally not as toxic as disinfectants. Chemotherapy is the use of
chemical agents to kill or inhibit the growth of microorganisms
within host tissue.

A suffix can be employed to denote the type of antimicrobial
agent. Substances that kill organisms often have the suffix -cide
[Latin cida, to kill]; a germicide kills pathogens (and many non-
pathogens) but not necessarily endospores. A disinfectant or an-
tiseptic can be particularly effective against a specific group, in
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which case it may be called a bactericide, fungicide, algicide, or
viricide. Other chemicals do not kill, but they do prevent growth.
If these agents are removed, growth will resume. Their names
end in -static [Greek statikos, causing to stand or stopping]—for
example, bacteriostatic and fungistatic.

Although these agents have been described in terms of their
effects on pathogens, it should be noted that they also kill or in-
hibit the growth of nonpathogens as well. Their ability to reduce
the total microbial population, not just to affect pathogen levels,
is quite important in many situations.

1. Define the following terms: sterilization, sterilant, disinfection, disinfec-
tant, sanitization, antisepsis, antiseptic, chemotherapy, germicide, bacte-
ricide, bacteriostatic.

7.2  THE PATTERN OF MICROBIAL DEATH

A microbial population is not killed instantly when exposed to a
lethal agent. Population death, like population growth, is gener-
ally exponential or logarithmic—that is, the population will be
reduced by the same fraction at constant intervals (table 7.1). If
the logarithm of the population number remaining is plotted
against the time of exposure of the microorganism to the agent, a
straight-line plot will result (figure 7.2). When the population has
been greatly reduced, the rate of killing may slow due to the sur-
vival of a more resistant strain of the microorganism.

To study the effectiveness of a lethal agent, one must be able
to decide when microorganisms are dead, a task by no means as
easy as with macroorganisms. It is hardly possible to take a bac-
terium’s pulse. A bacterium is often defined as dead if it does not
grow and reproduce when inoculated into culture medium that
would normally support its growth. In like manner, an inactive
virus cannot infect a suitable host. This definition has flaws, how-
ever. It has been demonstrated that when bacteria are exposed to
certain conditions, they can remain alive but are temporarily un-
able to reproduce. When in this state, they are referred to as viable
but nonculturable (VBNC) (see figure 6.8). In conventional tests
to demonstrate killing by an antimicrobial agent, VBNC bacteria
would be thought to be dead. This is a serious problem because

A Theoretical Microbial Heat-Killing Experiment

Microbial Number

Microorganisms Killed

Microorganisms

Minute at Start of Minute® in 1 Minute (90% of total)® at End of 1 Minute Log,, of Survivors
1 108 9 x 10° 10° 5
2 10° 9 x 10* 10 4
3 10* 9 X 10° 10° 3
4 10® 9 X 10? 10? 2
5 10? 9 x 10* 10 1
6 10* 9 1 0
7 1 0.9 0.1 =il

2Assume that the initial sample contains 10° vegetative microorganisms per ml and that 90% of the organisms are killed during each minute of exposure. The temperature is 121°C.
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Log;o number of survivors

Minutes of exposure

Figure 7.2 The Pattern of Microbial Death. An exponential

plot of the survivors versus the minutes of exposure to heating at
121°C.In this example the D, ,, value is 1 minute.The data are from
table 7.1.

after a period of recovery, the bacteria may regain their ability

to reproduce and cause infection.  The growth curve: Senescence and

death (section 6.2)

1. Describe the pattern of microbial death and how one decides whether
microorganisms are actually dead.

7.3  CONDITIONS INFLUENCING THE
EFFECTIVENESS OF ANTIMICROBIAL AGENTS

Destruction of microorganisms and inhibition of microbial
growth are not simple matters because the efficiency of an an-
timicrobial agent (an agent that kills microorganisms or inhibits
their growth) is affected by at least six factors.

1. Population size. Because an equal fraction of a microbial pop-
ulation is killed during each interval, a larger population re-
quires a longer time to die than a smaller one. This can be seen
in the theoretical heat-killing experiment shown in table 7.1
and figure 7.2. The same principle applies to chemical antimi-
crobial agents.

. Population composition. The effectiveness of an agent varies
greatly with the nature of the organisms being treated because
microorganisms differ markedly in susceptibility. Bacterial
endospores are much more resistant to most antimicrobial
agents than are vegetative forms, and younger cells are usu-
ally more readily destroyed than mature organisms. Some
species are able to withstand adverse conditions better than
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others. For instance, Mycobacterium tuberculosis, which
causes tuberculosis, is much more resistant to antimicrobial
agents than most other bacteria.

. Concentration or intensity of an antimicrobial agent. Often,

but not always, the more concentrated a chemical agent or in-
tense a physical agent, the more rapidly microorganisms are
destroyed. However, agent effectiveness usually is not di-
rectly related to concentration or intensity. Over a short range
a small increase in concentration leads to an exponential rise
in effectiveness; beyond a certain point, increases may not
raise the killing rate much at all. Sometimes an agent is more
effective at lower concentrations. For example, 70% ethanol
is more effective than 95% ethanol because its activity is en-
hanced by the presence of water.

. Duration of exposure. The longer a population is exposed to a

microbicidal agent, the more organisms are killed (figure 7.2).
To achieve sterilization, an exposure duration sufficient to re-
duce the probability of survival to 10~° or less should be used.

. Temperature. An increase in the temperature at which a

chemical acts often enhances its activity. Frequently a lower
concentration of disinfectant or sterilizing agent can be used
at a higher temperature.

. Local environment. The population to be controlled is not

isolated but surrounded by environmental factors that may
either offer protection or aid in its destruction. For example,
because heat kills more readily at an acidic pH, acidic foods
and beverages such as fruits and tomatoes are easier to pas-
teurize than foods with higher pHs like milk. A second im-
portant environmental factor is organic matter, which can
protect microorganisms against heating and chemical disin-
fectants. Biofilms are a good example. The organic matter in
a biofilm protects the biofilm’s microorganisms, and the
biofilm and its microbes often are hard to remove. Further-
more, it has been clearly documented that bacteria in
biofilms are altered physiologically, and this makes them
less susceptible to many antimicrobial agents. Because of
the impact of organic matter, it may be necessary to clean ob-
jects, especially syringes and medical or dental equipment,
before they are disinfected or sterilized. The same care must
be taken when pathogens are destroyed during the prepara-
tion of drinking water. When a city’s water supply has a high
content of organic material, steps are taken to decrease the
organic matter or to add more chlorine.
natural environments: Biofilms (section 6.6)

Microbial growth in

1.

Briefly explain how the effectiveness of antimicrobial agents varies with
population size, population composition, concentration or intensity of the
agent, treatment duration, temperature, and local environmental conditions.
How does being in a biofilm affect an organism’s susceptibility to antimicro-
bial agents?

Suppose hospital custodians have been assigned the task of cleaning all
showerheads in patient rooms in order to prevent the spread of infec-
tious disease. What two factors would have the greatest impact on the
effectiveness of the disinfectant the custodians use? Explain what that
impact would be.




7.4 THE Use oF PHYSICAL METHODS
IN CONTROL

Heat and other physical agents are normally used to control mi-
crobial growth and sterilize objects, as can be seen from the con-
tinual operation of the autoclave in every microbiology
laboratory. The four most frequently employed physical agents
are heat, low temperatures, filtration, and radiation.

Heat

Fire and boiling water have been used for sterilization and disin-
fection since the time of the Greeks, and heating is still one of the
most popular ways to destroy microorganisms. Either moist or
dry heat may be applied.

Moist heat readily kills viruses, bacteria, and fungi (table 7.2).
Moist heat is thought to kill by degrading nucleic acids and by de-
naturing enzymes and other essential proteins. It may also disrupt
cell membranes. Exposure to boiling water for 10 minutes is suf-
ficient to destroy vegetative cells and eucaryotic spores. Unfortu-
nately the temperature of boiling water (100°C or 212°F at sea
level) is not high enough to destroy bacterial endospores, which
may survive hours of boiling. Therefore boiling can be used for
disinfection of drinking water and objects not harmed by water,
but boiling does not sterilize.

In order to destroy bacterial endospores, moist heat steriliza-
tion must be carried out at temperatures above 100°C, and this re-
quires the use of saturated steam under pressure. Steam sterilization
is carried out with an autoclave (figure 7.3), a device somewhat
like a fancy pressure cooker. The development of the autoclave by
Chamberland in 1884 tremendously stimulated the growth of mi-
crobiology. Water is boiled to produce steam, which is released
through the jacket and into the autoclave’s chamber (figure 7.3b).
The air initially present in the chamber is forced out until the cham-
ber is filled with saturated steam and the outlets are closed. Hot, sat-
urated steam continues to enter until the chamber reaches the
desired temperature and pressure, usually 121°C and 15 pounds of
pressure. At this temperature saturated steam destroys all vegeta-
tive cells and endospores in a small volume of liquid within 10 to
12 minutes. Treatment is continued for at least 15 minutes to pro-
vide a margin of safety. Of course, larger containers of liquid such
as flasks and carboys require much longer treatment times.

Approximate Conditions for Moist
Heat Killing

Organism  Vegetative Cells Spores
Yeasts 5 minutes at 50-60°C 5 minutes at 70-80°C
Molds 30 minutes at 62°C 30 minutes at 80°C
Bacteria® 10 minutes at 60-70°C 2 to over 800 minutes
at 100°C
0.5-12 minutes at 121°C
Viruses 30 minutes at 60°C

“Conditions for mesophilic bacteria.
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Autoclaving must be carried out properly or the processed
materials will not be sterile. If all air has not been flushed out of
the chamber, it will not reach 121°C even though it may reach a
pressure of 15 pounds. The chamber should not be packed too
tightly because the steam needs to circulate freely and contact
everything in the autoclave. Bacterial endospores will be killed
only if they are kept at 121°C for 10 to 12 minutes. When a large
volume of liquid must be sterilized, an extended sterilization
time is needed because it takes longer for the center of the liquid
to reach 121°C; 5 liters of liquid may require about 70 minutes.
In view of these potential difficulties, a biological indicator is of-
ten autoclaved along with other material. This indicator com-
monly consists of a culture tube containing a sterile ampule of
medium and a paper strip covered with spores of Geobacillus
stearothermophilus. After autoclaving, the ampule is aseptically
broken and the culture incubated for several days. If the test bac-
terium does not grow in the medium, the sterilization run has
been successful. Sometimes either special tape that spells out the
word sterile or a paper indicator strip that changes color upon
sufficient heating is autoclaved with a load of material. If the
word appears on the tape or if the color changes after autoclav-
ing, the material is supposed to be sterile. These approaches are
convenient and save time but are not as reliable as the use of bac-
terial endospores.

Many substances, such as milk, are treated with controlled heat-
ing at temperatures well below boiling, a process known as pas-
teurization in honor of its developer Louis Pasteur. In the 1860s the
French wine industry was plagued by the problem of wine spoilage,
which made wine storage and shipping difficult. Pasteur examined
spoiled wine under the microscope and detected microorganisms
that looked like the bacteria responsible for lactic acid and acetic
acid fermentations. He then discovered that a brief heating at 55 to
60°C would destroy these microorganisms and preserve wine for
long periods. In 1886 the German chemists V. H. and F. Soxhlet
adapted the technique for preserving milk and reducing milk-
transmissible diseases. Milk pasteurization was introduced into the
United States in 1889. Milk, beer, and many other beverages are
now pasteurized. Pasteurization does not sterilize a beverage, but it
does kill any pathogens present and drastically slows spoilage by
reducing the level of nonpathogenic spoilage microorganisms.

Many objects are best sterilized in the absence of water by
dry heat sterilization. Some items are sterilized by incineration.
For instance, inoculating loops, which are used routinely in the
laboratory, can be sterilized in a small, bench-top incinerator
(figure 7.4). Other items are sterilized in an oven at 160 to 170°C
for 2 to 3 hours. Microbial death apparently results from the oxi-
dation of cell constituents and denaturation of proteins. Dry air
heat is less effective than moist heat. The spores of Clostridium
botulinum, the cause of botulism, are killed in 5 minutes at 121°C
by moist heat but only after 2 hours at 160°C with dry heat. How-
ever, dry heat has some definite advantages. It does not corrode
glassware and metal instruments as moist heat does, and it can be
used to sterilize powders, oils, and similar items. Most laborato-
ries sterilize glassware and pipettes with dry heat. Despite these
advantages, dry heat sterilization is slow and not suitable for heat-
sensitive materials like many plastic and rubber items.
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Figure 7.3 The Autoclave or Steam Sterilizer. (a) A modern, automatically controlled autoclave or sterilizer. (b) Longitudinal cross
section of a typical autoclave showing some of its parts and the pathway of steam. From John J. Perkins, Principles and Methods of Steriliza-
tion in Health Science, 2nd edition, 1969. Courtesy of Charles C.Thomas, Publisher, Springfield, lllinois.

Because heat is so useful in controlling microorganisms, it is
essential to have a precise measure of the heat-killing efficiency.
Initially effectiveness was expressed in terms of thermal death
point (TDP), the lowest temperature at which a microbial sus-
pension is killed in 10 minutes. Because TDP implies that a cer-
tain temperature is immediately lethal despite the conditions,
thermal death time (TDT) is now more commonly used. This is
the shortest time needed to kill all organisms in a microbial sus-
pension at a specific temperature and under defined conditions.
However, such destruction is logarithmic, and it is theoretically
not possible to completely destroy microorganisms in a sample,
even with extended heating. Therefore an even more precise fig-
ure, the decimal reduction time (D) or D value has gained wide

acceptance. The decimal reduction time is the time required to kill
90% of the microorganisms or spores in a sample at a specified
temperature. In a semilogarithmic plot of the population remain-
ing versus the time of heating, the D value is the time required for
the line to drop by one log cycle or tenfold (figure 7.2). The D
value is usually written with a subscript, indicating the tempera-
ture for which it applies. D values are used to estimate the rela-
tive resistance of a microorganism to different temperatures
through calculation of the z value. The z value is the increase in
temperature required to reduce D to 1/10 its value or to reduce it
by one log cycle when log D is plotted against temperature (fig-
ure 7.5). Another way to describe heating effectiveness is with
the F value. The F value is the time in minutes at a specific tem-



Figure 7.4 Dry Heat Incineration. Bench-top incinerators
are routinely used to sterilize inoculating loops used in microbiol-
ogy laboratories.
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Figure 7.5 Zz Value Calculation. The zvalue used in calcula-
tion of time-temperature relationships for survival of a test mi-

croorganism, based on D value responses at various temperatures.

The z value is the increase in temperature needed to reduce the
decimal reduction time (D) to 10% of the original value. For this

homogeneous sample of a test microorganism the z value is 10.5°.

The D values are plotted on a logarithmic scale.
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perature (usually 250°F or 121.1°C) needed to Kill a population
of cells or spores.

The food processing industry makes extensive use of D and z
values. After a food has been canned, it must be heated to elimi-
nate the risk of botulism arising from Clostridium botulinum
spores. Heat treatment is carried out long enough to reduce a pop-
ulation of 10%? C. botulinum spores to 10° (one spore); thus there
is a very small chance of any can having a viable spore. The D
value for these spores at 121°C is 0.204 minute. Therefore it
would take 12D or 2.5 minutes to reduce 102 spores to one spore
by heating at 121°C. The z value for C. botulinum spores is
10°C—that is, it takes a 10°C change in temperature to alter the
D value tenfold. If the cans were to be processed at 111°C rather
than at 121°C, the D value would increase by tenfold to 2.04 min-
utes and the 12D value to 24.5 minutes. D values and z values for
some common food-borne pathogens are given in table 7.3. Three
D values are included for Staphylococcus aureus to illustrate the
variation of killing rate with environment and the protective effect
of organic material. ~ Controlling food spoilage (section 40.3)

Low Temperatures

Although our emphasis is on the destruction of microorganisms,
often the most convenient control technique is to inhibit their
growth and reproduction by the use of either freezing or refrig-
eration. This approach is particularly important in food microbi-
ology. Freezing items at —20°C or lower stops microbial growth
because of the low temperature and the absence of liquid water.
Some microorganisms will be killed by ice crystal disruption of
cell membranes, but freezing does not destroy all contaminating
microbes. In fact, freezing is a very good method for long-term
storage of microbial samples when carried out properly, and
many laboratories have a low-temperature freezer for culture
storage at —30 or —70°C. Because frozen food can contain
many microorganisms, it should be thawed in a refrigerator and
consumed promptly in order to avoid spoilage and pathogen
growth. The influence of environmental factors on growth: Temperature
(section 6.5)

Refrigeration greatly slows microbial growth and reproduc-
tion, but does not halt it completely. Fortunately most pathogens
are mesophilic and do not grow well at temperatures around 4°C.
Refrigerated items may be ruined by growth of psychrophilic and
psychrotrophic microorganisms, particularly if water is present.
Thus refrigeration is a good technique only for shorter-term stor-
age of food and other items.

1. Describe how an autoclave works. What conditions are required for steril-
ization by moist heat? What three things must one do when operating an
autoclave to help ensure success?

2. Inthe past, spoiled milk was responsible for a significant proportion of infant
deaths.Why is untreated milk easily spoiled? Why is boiling milk over pro-
longed periods not a desirable method for controlling spoilage and spread of
milk-borne pathogens?

3. Define thermal death point (TDP), thermal death time (TDT), decimal reduc-
tion time (D) or D value, z value, and the F value.
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m D Values and z Values for Some Food-Borne Pathogens

Organism Substrate D Value (°C) in Minutes zValue (°C)

Clostridium botulinum Phosphate buffer D,,; = 0.204 10

Clostridium perfringens Culture media Dgy = 3-5 6-8

(heat-resistant strain)

Salmonella spp. Chicken a la king Dgo = 0.39-0.40 49-5.1

Staphylococcus aureus Chicken a la king Dgy = 5.17-5.37 5.2-5.8
Turkey stuffing Dgo = 15.4 6.8
0.5% NaCl D¢, = 2.0-2.5 5.6

Values taken from F. L. Bryan, 1979, “Processes That Affect Survival and Growth of Microorganisms,” Time-Temperature Control of Foodborne Pathogens, Atlanta: Centers for Disease Control and Prevention,

Atlanta, GA.

4. How can the D value be used to estimate the time required for sterilization?
Suppose that you wanted to eliminate the risk of salmonellosis by heating
your food (Dg, = 0.4 minute, zvalue = 5.0). Calculate the 12D value at
60°C.How long would it take to achieve the same results by heating at 50,
55,and 65°C7

5. Intable 7.3, why is the D value so different for the three conditions in which
S. aureus might be found?

6. How can low temperatures be used to control microorganisms? Compare
the control goal for using heat with that for using low temperatures.

Filtration

Filtration is an excellent way to reduce the microbial population
in solutions of heat-sensitive material, and sometimes it can be
used to sterilize solutions. Rather than directly destroying con-
taminating microorganisms, the filter simply removes them.
There are two types of filters. Depth filters consist of fibrous or
granular materials that have been bonded into a thick layer filled
with twisting channels of small diameter. The solution containing
microorganisms is sucked through this layer under vacuum, and
microbial cells are removed by physical screening or entrapment
and also by adsorption to the surface of the filter material. Depth
filters are made of diatomaceous earth (Berkefield filters),
unglazed porcelain (Chamberlain filters), asbestos, or other simi-
lar materials.

Membrane filters have replaced depth filters for many pur-
poses. These circular filters are porous membranes, a little over 0.1
mm thick, made of cellulose acetate, cellulose nitrate, polycarbon-
ate, polyvinylidene fluoride, or other synthetic materials. Although
a wide variety of pore sizes are available, membranes with pores
about 0.2 um in diameter are used to remove most vegetative cells,
but not viruses, from solutions ranging in volume from 1 ml to
many liters. The membranes are held in special holders (figure 7.6)
and are often preceded by depth filters made of glass fibers to re-
move larger particles that might clog the membrane filter. The so-
lution is pulled or forced through the filter with a vacuum or with
pressure from a syringe, peristaltic pump, or nitrogen gas bottle,
and collected in previously sterilized containers. Membrane filters
remove microorganisms by screening them out much as a sieve

separates large sand particles from small ones (figure 7.7). These
filters are used to sterilize pharmaceuticals, ophthalmic solutions,
culture media, oils, antibiotics, and other heat-sensitive solutions.
Air also can be sterilized by filtration. Two common examples
are surgical masks and cotton plugs on culture vessels that let air in
but keep microorganisms out. Other important examples are lami-
nar flow biological safety cabinets, which employ high-efficiency
particulate air (HEPA) filters (a type of depth filter) to remove
99.97% of 0.3 wm particles. Laminar flow biological safety cabi-
nets or hoods force air through HEPA filters, then project a vertical
curtain of sterile air across the cabinet opening. This protects a
worker from microorganisms being handled within the cabinet and
prevents contamination of the room (figure 7.8). A person uses
these cabinets when working with dangerous agents such as My-
cobacterium tuberculosis and tumor viruses. They are also em-
ployed in research labs and industries, such as the pharmaceutical
industry, when a sterile working surface is needed for conducting
assays, preparing media, examining tissue cultures, and the like.

Radiation

In chapter 6, the types of radiation and the ways in which radia-
tion damages or destroys microorganisms were discussed. Mi-
crobiologists take advantage of the effects of ultraviolet and
ionizing radiation to sterilize or disinfect objects.

Ultraviolet (UV) radiation around 260 nm (see figure 6.25)
is quite lethal but does not penetrate glass, dirt films, water, and
other substances very effectively. Because of this disadvantage,
UV radiation is used as a sterilizing agent only in a few specific
situations. UV lamps are sometimes placed on the ceilings of
rooms or in biological safety cabinets to sterilize the air and any
exposed surfaces. Because UV radiation burns the skin and dam-
ages eyes, people working in such areas must be certain the UV
lamps are off when the areas are in use. Commercial UV units are
available for water treatment (figure 7.9). Pathogens and other
microorganisms are destroyed when a thin layer of water is passed
under the lamps.

lonizing radiation is an excellent sterilizing agent and pene-
trates deep into objects. It will destroy bacterial endospores and
vegetative cells, both procaryotic and eucaryotic; however, ion-
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Figure 7.6 Membrane Filter Sterilization. The liquid to be sterilized is pumped through a membrane filter and into a sterile con-

tainer. (a) A complete filtering setup. The nonsterile solution is in the Erlenmeyer flask, 7. A peristaltic pump, 2, forces the solution through
the membrane filter unit, 3. (b) Schematic representation of a membrane filtration setup that uses a vacuum pump to force liquid through
the filter. The inset shows a cross section of the filter and its pores, which are too small for microbes to pass through. (c) Cross section of a

membrane filtration unit. Several membranes are used to increase its capacity.

izing radiation is not always effective against viruses. Gamma ra-
diation from a cobalt 60 source is used in the cold sterilization of
antibiotics, hormones, sutures, and plastic disposable supplies
such as syringes. Gamma radiation has also been used to sterilize
and “pasteurize” meat and other food (figure 7.10). Irradiation
can eliminate the threat of such pathogens as Escherichia coli

0157:H7, Staphylococcus aureus, and Campylobacter jejuni.
Based on the results of numerous studies, both the Food and Drug
Administration and the World Health Organization have ap-
proved food irradiation and declared it safe. Currently irradiation
is being used to treat poultry, beef, pork, veal, lamb, fruits, veg-
etables, and spices.
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(a) B. megaterium

Figure 7.7 Membrane Filter Types.
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E. faecalis

(b) E. faecalis

(a) Bacillus megaterium on an Ultipor nylon membrane with a bacterial removal rating of 0.2 pum

(X2,000). (b) Enterococcus faecalis resting on a polycarbonate membrane filter with 0.4 pum pores (X5,900).

(@)

Figure 7.8 A Laminar Flow Biological Safety Cabinet.
(b) A schematic diagram showing the airflow pattern.

1. What are depth filters and membrane filters, and how are they used to
sterilize liquids? Describe the operation of a biological safety cabinet.

2. Give the advantages and disadvantages of ultraviolet light and ionizing
radiation as sterilizing agents. Provide a few examples of how each is
used for this purpose.

7.5 THE Use oF CHEMICAL AGENTS IN CONTROL

Physical agents are generally used to sterilize objects. Chemicals,
on the other hand, are more often employed in disinfection and
antisepsis. The proper use of chemical agents is essential to lab-
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High-velocity
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(a) A technician pipetting potentially hazardous material in a safety cabinet.

oratory and hospital safety (Techniques & Applications 7.2).
Chemicals also are employed to prevent microbial growth in
food, and certain chemicals are used to treat infectious disease.
Techniques & Applications 35.1: Standard microbiological practices

Many different chemicals are available for use as disinfec-
tants, and each has its own advantages and disadvantages. In se-
lecting an agent, it is important to keep in mind the characteristics
of a desirable disinfectant. Ideally the disinfectant must be effec-
tive against a wide variety of infectious agents (gram-positive and
gram-negative bacteria, acid-fast bacteria, bacterial endospores,
fungi, and viruses) at low concentrations and in the presence of
organic matter. Although the chemical must be toxic for infec-



tious agents, it should not be toxic to people or corrosive for com-
mon materials. In practice, this balance between effectiveness and
low toxicity for animals is hard to achieve. Some chemicals are
used despite their low effectiveness because they are relatively
nontoxic. The ideal disinfectant should be stable upon storage,
odorless or with a pleasant odor, soluble in water and lipids for
penetration into microorganisms, have a low surface tension so
that it can enter cracks in surfaces, and be relatively inexpensive.

One potentially serious problem is the overuse of antiseptics.
For instance, the antibacterial agent triclosan is found in products
such as deodorants, mouthwashes, soaps, cutting boards, and baby
toys. Unfortunately, the emergence of triclosan-resistant bacteria
has become a problem. For example, Pseudomonas aeruginosa ac-

Figure 7.9 Ultraviolet (UV) Treatment System for Disinfec-
tion of Water. Water flows through racks of UV lamps and is ex-
posed to 254 nm UV radiation. This system has a capacity of
several million gallons per day and can be used as an alternative to
chlorination.

Radiation room

Chamber with radiation shield

Radioactive J
source

Conveyor system with pallets
of sterilized materials
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tively pumps the antiseptic out of the cell. There is now evidence
that extensive use of triclosan also increases the frequency of bac-
terial resistance to antibiotics. Thus overuse of antiseptics can have
unintended harmful consequences.  Drug resistance (section 34.6)

The properties and uses of several groups of common disin-
fectants and antiseptics are surveyed next. Chemotherapeutic
agents are briefly introduced at the end of this section. Many of
the characteristics of disinfectants and antiseptics are summa-
rized intables 7.4 and 7.5. Structures of some common agents are
given in figure 7.11.

Phenolics

Phenol was the first widely used antiseptic and disinfectant. In
1867 Joseph Lister employed it to reduce the risk of infection dur-
ing surgery. Today phenol and phenolics (phenol derivatives)
such as cresols, xylenols, and orthophenylphenol are used as dis-
infectants in laboratories and hospitals. The commercial disin-
fectant Lysol is made of a mixture of phenolics. Phenolics act by
denaturing proteins and disrupting cell membranes. They have
some real advantages as disinfectants: phenolics are tuberculoci-
dal, effective in the presence of organic material, and remain ac-
tive on surfaces long after application. However, they have a
disagreeable odor and can cause skin irritation.

Hexachlorophene (figure 7.11) has been one of the most pop-
ular antiseptics because once applied it persists on the skin and
reduces skin bacteria for long periods. However, it can cause
brain damage and is now used in hospital nurseries only in re-
sponse to a staphylococcal outbreak.

Alcohols

Alcohols are among the most widely used disinfectants and anti-
septics. They are bactericidal and fungicidal but not sporicidal; some
lipid-containing viruses are also destroyed. The two most popular
alcohol germicides are ethanol and isopropanol, usually used in

Figure 7.10 Sterilization with lonizing Radia-
tion. (a) Anirradiation machine that uses radioactive
cobalt 60 as a gamma radiation source to sterilize fruits,
vegetables, meats, fish, and spices. (b) The universal sym-
bol for irradiation that must be affixed to all irradiated
materials.

(b)
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