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useful in selecting an appropriate culture medium because its nu-
trient requirements reflect its natural surroundings. Frequently a
medium is used to select and grow specific microorganisms or to
help identify a particular species. In such cases the function of the
medium also will determine its composition.

Culture media can be classified on the basis of several pa-
rameters: the chemical constituents from which they are made,
their physical nature, and their function (table 5.4). The types of
media defined by these parameters are described here.

Chemical and Physical Types of Culture Media
A medium in which all chemical components are known is a de-
fined or synthetic medium. It can be in a liquid form (broth) or
solidified by an agent such as agar, as described in the following
sections. Defined media are often used to culture photolithotrophic
autotrophs such as cyanobacteria and photosynthetic protists.
They can be grown on relatively simple media containing CO2 as
a carbon source (often added as sodium carbonate or bicarbonate),
nitrate or ammonia as a nitrogen source, sulfate, phosphate, and a
variety of minerals (table 5.5). Many chemoorganotrophic het-
erotrophs also can be grown in defined media with glucose as a
carbon source and an ammonium salt as a nitrogen source. Not all
defined media are as simple as the examples in table 5.5 but may
be constructed from dozens of components. Defined media are
used widely in research, as it is often desirable to know what the
experimental microorganism is metabolizing.

Media that contain some ingredients of unknown chemical
composition are complex media. Such media are very useful, as
a single complex medium may be sufficiently rich to completely
meet the nutritional requirements of many different microorgan-
isms. In addition, complex media often are needed because the
nutritional requirements of a particular microorganism are un-
known, and thus a defined medium cannot be constructed. This is
the situation with many fastidious bacteria that have complex nu-
tritional or cultural requirements; they may even require a
medium containing blood or serum.

Complex media contain undefined components like peptones,
meat extract, and yeast extract. Peptones are protein hydrolysates
prepared by partial proteolytic digestion of meat, casein, soya
meal, gelatin, and other protein sources. They serve as sources of
carbon, energy, and nitrogen. Beef extract and yeast extract are
aqueous extracts of lean beef and brewer’s yeast, respectively.
Beef extract contains amino acids, peptides, nucleotides, organic

acids, vitamins, and minerals. Yeast extract is an excellent source
of B vitamins as well as nitrogen and carbon compounds. Three
commonly used complex media are (1) nutrient broth, (2) tryptic
soy broth, and (3) MacConkey agar (table 5.6).

Although both liquid and solidified media are routinely used
in microbiology labs, solidified media are particularly important.
Solidified media can be used to isolate different microbes from
each other in order to establish pure cultures. As discussed in
chapter 1, this is a critical step in demonstrating the relationship
between a microbe and a disease using Koch’s postulates. Both
defined and complex media can be solidified with the addition of 1.0
to 2.0% agar; most commonly 1.5% is used. Agar is a sulfated poly-
mer composed mainly of D-galactose, 3,6-anhydro-L-galactose,
and D-glucuronic acid (Historical Highlights 5.1). It usually is
extracted from red algae. Agar is well suited as a solidifying agent
for several reasons. One is that it melts at about 90°C but once
melted does not harden until it reaches about 45°C. Thus after be-
ing melted in boiling water, it can be cooled to a temperature that
is tolerated by human hands as well as microbes. Furthermore,
microbes growing on agar medium can be incubated at a wide
range of temperatures. Finally, agar is an excellent hardening
agent because most microorganisms cannot degrade it.

Other solidifying agents are sometimes employed. For exam-
ple, silica gel is used to grow autotrophic bacteria on solid media

Table 5.4 Types of Media

Physical Chemical
Nature Composition Functional Type

Liquid Defined (synthetic) Supportive (general purpose)

Semisolid Complex Enriched

Solid Selective

Differential

Table 5.5 Examples of Defined Media

BG–11 Medium for Cyanobacteria Amount (g/liter)

NaNO3 1.5

K2HPO4 · 3H2O 0.04

MgSO4 · 7H2O 0.075

CaCl2 · 2H2O 0.036

Citric acid 0.006

Ferric ammonium citrate 0.006

EDTA (Na2Mg salt) 0.001

Na2CO3 0.02

Trace metal solutiona 1.0 ml/liter

Final pH 7.4

Medium for Escherichia coli Amount (g/liter)

Glucose 1.0

Na2HPO4 16.4

KH2PO4 1.5

(NH4)2SO4 2.0

MgSO4 · 7H2O 200.0 mg

CaCl2 10.0 mg

FeSO4 · 7H2O 0.5 mg

Final pH 6.8–7.0

Sources: Data from Rippka, et al. Journal of General Microbiology, 111:1–61, 1979; and S. S.
Cohen, and R. Arbogast, Journal of Experimental Medicine, 91:619, 1950.
aThe trace metal solution contains H3BO3, MnCl2 · 4H2O, ZnSO4 · 7H2O, Na2Mo4 · 2H2O, 
CuSO4 · 5H2O, and Co(NO3)2 · 6H2O.  
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112 Chapter 5 Microbial Nutrition

The earliest culture media were liquid, which made the isolation of
bacteria to prepare pure cultures extremely difficult. In practice, a
mixture of bacteria was diluted successively until only one organ-
ism, as an average, was present in a culture vessel. If everything
went well, the individual bacterium thus isolated would reproduce
to give a pure culture. This approach was tedious, gave variable re-
sults, and was plagued by contamination problems. Progress in iso-
lating pathogenic bacteria understandably was slow.

The development of techniques for growing microorganisms on
solid media and efficiently obtaining pure cultures was due to the
efforts of the German bacteriologist Robert Koch and his associ-
ates. In 1881 Koch published an article describing the use of boiled
potatoes, sliced with a flame-sterilized knife, in culturing bacteria.
The surface of a sterile slice of potato was inoculated with bacteria
from a needle tip, and then the bacteria were streaked out over the
surface so that a few individual cells would be separated from the
remainder. The slices were incubated beneath bell jars to prevent
airborne contamination, and the isolated cells developed into pure
colonies. Unfortunately many bacteria would not grow well on po-
tato slices.

At about the same time, Frederick Loeffler, an associate of
Koch, developed a meat extract peptone medium for cultivating

pathogenic bacteria. Koch decided to try solidifying this medium.
Koch was an amateur photographer—he was the first to take pho-
tomicrographs of bacteria—and was experienced in preparing his
own photographic plates from silver salts and gelatin. Precisely the
same approach was employed for preparing solid media. He spread
a mixture of Loeffler’s medium and gelatin over a glass plate, al-
lowed it to harden, and inoculated the surface in the same way he
had inoculated his sliced potatoes. The new solid medium worked
well, but it could not be incubated at 37°C (the best temperature for
most human bacterial pathogens) because the gelatin would melt.
Furthermore, some bacteria digested the gelatin.

About a year later, in 1882, agar was first used as a solidifying
agent. It had been discovered by a Japanese innkeeper, Minora
Tarazaemon. The story goes that he threw out extra seaweed soup
and discovered the next day that it had jelled during the cold winter
night. Agar had been used by the East Indies Dutch to make jellies
and jams. Fannie Eilshemius Hesse (see figure 1.7), the New Jersey-
born wife of Walther Hesse, one of Koch’s assistants, had learned
of agar from a Dutch acquaintance and suggested its use when she
heard of the difficulties with gelatin. Agar-solidified medium was
an instant success and continues to be essential in all areas of 
microbiology.

5.1 The Discovery of Agar as a Solidifying Agent and the Isolation of Pure Cultures

in the absence of organic substances and to determine carbon
sources for heterotrophic bacteria by supplementing the medium
with various organic compounds.

Functional Types of Media
Media such as tryptic soy broth and tryptic soy agar are called
general purpose media or supportive media because they sustain
the growth of many microorganisms. Blood and other special nu-
trients may be added to general purpose media to encourage the
growth of fastidious microbes. These specially fortified media
(e.g., blood agar) are called enriched media (figure 5.9).

Selective media favor the growth of particular microorgan-
isms (table 5.7). Bile salts or dyes like basic fuchsin and crystal
violet favor the growth of gram-negative bacteria by inhibiting the
growth of gram-positive bacteria; the dyes have no effect on gram-
negative organisms. Endo agar, eosin methylene blue agar, and
MacConkey agar (tables 5.6 and 5.7) are three media widely used
for the detection of E. coli and related bacteria in water supplies
and elsewhere. These media contain dyes that suppress gram-
positive bacterial growth. MacConkey agar also contains bile
salts. Bacteria also may be selected by incubation with nutrients
that they specifically can use. A medium containing only cellulose
as a carbon and energy source is quite effective in the isolation of
cellulose-digesting bacteria. The possibilities for selection are
endless, and there are dozens of special selective media in use.

Table 5.6 Some Common Complex Media

Nutrient Broth Amount (g/liter)

Peptone (gelatin hydrolysate) 5

Beef extract 3

Tryptic Soy Broth

Tryptone (pancreatic digest of casein) 17

Peptone (soybean digest) 3

Glucose 2.5

Sodium chloride 5

Dipotassium phosphate 2.5

MacConkey Agar

Pancreatic digest of gelatin 17.0

Pancreatic digest of casein 1.5

Peptic digest of animal tissue 1.5

Lactose 10.0

Bile salts 1.5

Sodium chloride 5.0

Neutral red 0.03

Crystal violet 0.001

Agar 13.5
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Isolation of Pure Cultures 113

Figure 5.9 Enriched Media. (a) Blood agar culture of
bacteria from the human throat. (b) Chocolate agar, an enriched
medium used to grow fastidious organisms such as Neisseria
gonorrhoeae. The brown color is the result of heating red blood
cells and lysing them before adding them to the medium. It is
called chocolate agar because of its chocolate brown color.

Differential media are media that distinguish among differ-
ent groups of microbes and even permit tentative identification of
microorganisms based on their biological characteristics. Blood
agar is both a differential medium and an enriched one. It distin-
guishes between hemolytic and non-hemolytic bacteria. He-
molytic bacteria (e.g., many streptococci and staphylococci
isolated from throats) produce clear zones around their colonies
because of red blood cell destruction (figure 5.9a). MacConkey

(a)

(b)

agar is both differential and selective. Since it contains lactose and
neutral red dye, lactose-fermenting colonies appear pink to red in
color and are easily distinguished from colonies of nonfermenters.

1. Describe the following kinds of media and their uses: defined media,

complex media, supportive media, enriched media, selective media, and

differential media. Give an example of each kind.

2. What are peptones, yeast extract, beef extract, and agar? Why are they

used in media?

5.8 ISOLATION OF PURE CULTURES

In natural habitats microorganisms usually grow in complex,
mixed populations with many species. This presents a problem
for microbiologists because a single type of microorganism can-
not be studied adequately in a mixed culture. One needs a pure
culture, a population of cells arising from a single cell, to char-
acterize an individual species. Pure cultures are so important that
the development of pure culture techniques by the German bacte-
riologist Robert Koch transformed microbiology. Within about 20
years after the development of pure culture techniques most
pathogens responsible for the major human bacterial diseases had
been isolated (see figure 1.2). There are several ways to prepare
pure cultures; a few of the more common approaches are re-
viewed here.

The Spread Plate and Streak Plate
If a mixture of cells is spread out on an agar surface at a relatively
low density, every cell grows into a completely separate colony, a
macroscopically visible growth or cluster of microorganisms on a
solid medium. Because each colony arises from a single cell, each
colony represents a pure culture. The spread plate is an easy, di-
rect way of achieving this result. A small volume of dilute micro-
bial mixture containing around 30 to 300 cells is transferred to the
center of an agar plate and spread evenly over the surface with a
sterile bent-glass rod (figure 5.10). The dispersed cells develop
into isolated colonies. Because the number of colonies should
equal the number of viable organisms in the sample, spread plates
can be used to count the microbial population.

Pure colonies also can be obtained from streak plates. The
microbial mixture is transferred to the edge of an agar plate with
an inoculating loop or swab and then streaked out over the surface
in one of several patterns (figure 5.11). After the first sector is
streaked, the inoculating loop is sterilized and an inoculum for the
second sector is obtained from the first sector. A similar process
is followed for streaking the third sector, except that the inoculum
is from the second sector. Thus this is essentially a dilution
process. Eventually, very few cells will be on the loop, and single
cells will drop from it as it is rubbed along the agar surface. These
develop into separate colonies. In both spread-plate and streak-
plate techniques, successful isolation depends on spatial separa-
tion of single cells.
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114 Chapter 5 Microbial Nutrition

Figure 5.10 Spread-Plate Technique. (a) The preparation of
a spread plate. (1) Pipette a small sample onto the center of an
agar medium plate. (2) Dip a glass spreader into a beaker of
ethanol. (3) Briefly flame the ethanol-soaked spreader and allow it
to cool. (4) Spread the sample evenly over the agar surface with
the sterilized spreader. Incubate. (b) Typical result of spread-plate
technique.

Table 5.7 Mechanisms of Action of Selective and Differential Media

Medium Functional Type Mechanism of Action

Blood agar Enriched and differential Blood agar supports the growth of many fastidious bacteria. These can be
differentiated based on their ability to produce hemolysins—proteins that 
lyse red blood cells. Hemolysis appears as a clear zone around the colony 
(�-hemolysis) or as a greenish halo around the colony (�-hemolysis) (e.g.,
Streptococcus pyogenes, a �-hemolytic streptococcus).

Eosin methylene blue Selective and differential Two dyes, eosin Y and methylene blue, inhibit the growth of gram-positive 
(EMB) agar bacteria. They also react with acidic products released by certain gram-negative

bacteria when they use lactose or sucrose as carbon and energy sources.
Colonies of gram-negative bacteria that produce large amounts of acidic
products have a green, metallic sheen (e.g., fecal bacteria such as E. coli).

MacConkey (MAC) agar Selective and differential The selective components in MAC are bile salts and crystal violet, which inhibit
the growth of gram-positive bacteria. The presence of lactose and neutral red, a
pH indicator, allows the differentiation of gram-negative bacteria based on the
products released when they use lactose as a carbon and energy source. The
colonies of those that release acidic products are red (e.g., E. coli).

Mannitol salt agar Selective and differential A concentration of 7.5% NaCl selects for the growth of staphylococci. Pathogenic
staphylococci can be differentiated based on the release of acidic products
when they use mannitol as a carbon and energy source. The acidic products
cause a pH indicator (phenol red) to turn yellow (e.g., Staphylococcus aureus).

(b)

(a)
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1 2 3 4 5

Note: This method only works if the spreading 
tool (usually an inoculating loop) is resterilized 
after each of steps 1– 4.

Figure 5.11 Streak-Plate Technique. A typical streaking pattern is shown (a) as well as an example of a streak plate (b).

The Pour Plate
Extensively used with procaryotes and fungi, a pour plate also can
yield isolated colonies. The original sample is diluted several times to
reduce the microbial population sufficiently to obtain separate
colonies when plating (figure 5.12). Then small volumes of several
diluted samples are mixed with liquid agar that has been cooled to
about 45°C, and the mixtures are poured immediately into sterile cul-
ture dishes. Most bacteria and fungi are not killed by a brief exposure

to the warm agar. After the agar has hardened, each cell is fixed in
place and forms an individual colony. Like the spread plate, the pour
plate can be used to determine the number of cells in a population.
Plates containing between 30 and 300 colonies are counted. The to-
tal number of colonies equals the number of viable microorganisms
in the sample that are capable of growing in the medium used.
Colonies growing on the surface also can be used to inoculate fresh
medium and prepare pure cultures (Techniques &Applications 5.2).

Original
sample

9 ml H2O
(10–1 dilution)

9 ml H2O
(10–2 dilution)

9 ml H2O
(10–3 dilution)

9 ml H2O
(10–4 dilution)

1.0 ml1.0 ml1.0 ml1.0 ml

1.0 ml 1.0 ml
Mix with warm
agar and pour.

Figure 5.12 The Pour-Plate Technique. The original sample is diluted several times to thin out the population sufficiently. The most
diluted samples are then mixed with warm agar and poured into petri dishes. Isolated cells grow into colonies and can be used to establish
pure cultures. The surface colonies are circular; subsurface colonies are lenticular (lens shaped).

(a) Steps in a Streak Plate (b)
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116 Chapter 5 Microbial Nutrition

5.2 The Enrichment and Isolation of Pure Cultures

A major practical problem is the preparation of pure cultures when
microorganisms are present in very low numbers in a sample. Plat-
ing methods can be combined with the use of selective or differen-
tial media to enrich and isolate rare microorganisms. A good
example is the isolation of bacteria that degrade the herbicide 2,4-
dichlorophenoxyacetic acid (2,4-D). Bacteria able to metabolize
2,4-D can be obtained with a liquid medium containing 2,4-D as its
sole carbon source and the required nitrogen, phosphorus, sulfur,
and mineral components. When this medium is inoculated with soil,

only bacteria able to use 2,4-D will grow. After incubation, a sample
of the original culture is transferred to a fresh flask of selective
medium for further enrichment of 2,4-D metabolizing bacteria. A
mixed population of 2,4-D degrading bacteria will arise after several
such transfers. Pure cultures can be obtained by plating this mixture
on agar containing 2,4-D as the sole carbon source. Only bacteria
able to grow on 2,4-D form visible colonies and can be subcultured.
This same general approach is used to isolate and purify a variety of
bacteria by selecting for specific physiological characteristics.

Spindle

Umbonate

RhizoidIrregularFilamentous

PulvinateConvexRaised

CurledFilamentousEroseLobateUndulateEntire

Flat

CircularPunctiform

Form

Margin

Elevation

Figure 5.13 Bacterial Colony Morphology. (a) Variations in bacterial colony morphology seen with the naked eye. The general form
of the colony and the shape of the edge or margin can be determined by looking down at the top of the colony. The nature of colony
elevation is apparent when viewed from the side as the plate is held at eye level. (b) Examples of commonly observed colony morphologies.
(c) Colony morphology can vary dramatically with the medium on which the bacteria are growing. These beautiful snowflakelike colonies
were formed by Bacillus subtilis growing on nutrient-poor agar. The bacteria apparently behave cooperatively when confronted with poor
growth conditions, and often the result is an intricate structure that resembles the fractal patterns seen in nonliving systems.

(a)

(b) (c)
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The preceding techniques require the use of special culture
dishes named petri dishes or plates after their inventor Julius
Richard Petri, a member of Robert Koch’s laboratory; Petri de-
veloped these dishes around 1887 and they immediately replaced
agar-coated glass plates. They consist of two round halves, the
top half overlapping the bottom. Petri dishes are very easy to use,
may be stacked on each other to save space, and are one of the
most common items in microbiology laboratories.

Microbial Growth on Agar Surfaces
Colony development on agar surfaces aids microbiologists in
identifying microorganisms because individual species often
form colonies of characteristic size and appearance (figure 5.13).
When a mixed population has been plated properly, it sometimes
is possible to identify the desired colony based on its overall ap-
pearance and use it to obtain a pure culture. The structure of bac-
terial colonies also has been examined with the scanning electron
microscope. The microscopic structure of colonies is often as
variable as their visible appearance.

In nature, microorganisms often grow on surfaces in
biofilms—slime-encased aggregations of microbes. However,
sometimes they form discrete colonies. Therefore an understand-
ing of colony growth is important, and the growth of colonies on
agar has been frequently studied. Generally the most rapid cell
growth occurs at the colony edge. Growth is much slower in the
center, and cell autolysis takes place in the older central portions
of some colonies. These differences in growth are due to gradi-

ents of oxygen, nutrients, and toxic products within the colony. At
the colony edge, oxygen and nutrients are plentiful. The colony
center is much thicker than the edge. Consequently oxygen and
nutrients do not diffuse readily into the center, toxic metabolic
products cannot be quickly eliminated, and growth in the colony
center is slowed or stopped. Because of these environmental vari-
ations within a colony, cells on the periphery can be growing at
maximum rates while cells in the center are dying. Microbial

growth in natural environments: Biofilms (section 6.6)

It is obvious from the colonies pictured in figure 5.13 that
bacteria growing on solid surfaces such as agar can form quite
complex and intricate colony shapes. These patterns vary with
nutrient availability and the hardness of the agar surface. It is not
yet clear how characteristic colony patterns develop. Nutrient dif-
fusion and availability, bacterial chemotaxis, and the presence of
liquid on the surface all appear to play a role in pattern formation.
Cell-cell communication is important as well. Much work will be
required to understand the formation of bacterial colonies and
biofilms.

1. What are pure cultures, and why are they important? How are spread
plates, streak plates, and pour plates prepared?

2. In what way does microbial growth vary within a colony? What factors might
cause these variations in growth?

3. How might an enrichment culture be used to isolate bacteria capable of
degrading pesticides and other hazardous wastes?

Summary

Microorganisms require nutrients, materials that are used in biosynthesis and to
make energy available.

5.1 The Common Nutrient Requirements

a. Macronutrients or macroelements (C, O, H, N, S, P, K, Ca, Mg, and Fe) are
needed in relatively large quantities.

b. Micronutrients or trace elements (e.g., Mn, Zn, Co, Mo, Ni, and Cu) are used
in very small amounts.

5.2 Requirements for Carbon, Hydrogen, Oxygen, and Electrons

a. All organisms require a source of carbon, hydrogen, oxygen, and electrons.

b. Heterotrophs use organic molecules as their source of carbon. These mole-
cules often supply hydrogen, oxygen, and electrons as well. Some het-
erotrophs also derive energy from their organic carbon source.

c. Autotrophs use CO2 as their primary or sole carbon source; they must obtain
hydrogen and electrons from other sources.

5.3 Nutritional Types of Microorganisms

a. Microorganisms can be classified based on their energy and electron sources
(table 5.1). Phototrophs use light energy, and chemotrophs obtain energy from
the oxidation of chemical compounds.

b. Electrons are extracted from reduced inorganic substances by lithotrophs and
from organic compounds by organotrophs (table 5.2).

5.4 Requirements for Nitrogen, Phosphorus, and Sulfur

a. Nitrogen, phosphorus, and sulfur may be obtained from the same organic mol-
ecules that supply carbon, from the direct incorporation of ammonia and phos-
phate, and by the reduction and assimilation of oxidized inorganic molecules.

5.5 Growth Factors

a. Many microorganisms need growth factors.

b. The three major classes of growth factors are amino acids, purines and pyrim-
idines, and vitamins. Vitamins are small organic molecules that usually are
components of enzyme cofactors.

c. Knowing whether a microbe requires a particular growth factor has practical ap-
plications: those needing a growth factor can be used in bioassays that detect
and quantify the growth factor; those that do not need a particular growth fac-
tor can sometimes be used to produce the growth factor in industrial settings.

5.6 Uptake of Nutrients by the Cell

a. Although some nutrients can enter cells by passive diffusion, a membrane car-
rier protein is usually required.

b. In facilitated diffusion the transport protein simply carries a molecule across
the membrane in the direction of decreasing concentration, and no metabolic
energy is required (figure 5.4).

c. Active transport systems use metabolic energy and membrane carrier proteins
to concentrate substances actively by transporting them against a gradient.ATP
is used as an energy source by ABC transporters (figure 5.5). Gradients of pro-
tons and sodium ions also drive solute uptake across membranes (figure 5.6).

d. Bacteria also transport organic molecules while modifying them, a process
known as group translocation. For example, many sugars are transported and
phosphorylated simultaneously (figure 5.7).

e. Iron is accumulated by the secretion of siderophores, small molecules able
to complex with ferric iron (figure 5.8). When the iron-siderophore com-
plex reaches the cell surface, it is taken inside and the iron is reduced to the
ferrous form.
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