Energy Balance

Heat

Work

Heat

- Conduction
- Convection
- Radiation

work

Types

1. Shaft work

Energy produced due to the movement of internal system parts

2. Flow work

system

Energy provided externally to run a

Types of Energy

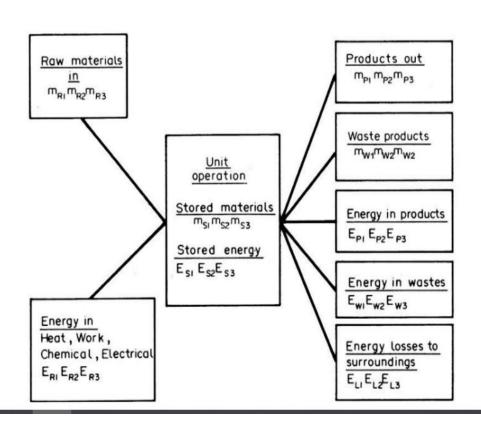
1. Kinetic Energy

Energy due to the motion of particles

2. Potential energy

Energy due to the position of particles

3. Internal energy of the system


Sum of the molecular, atomic, subatomic energies of the system

1st law of Thermodynamic

 Energy can neither be created nor be destroyed but can be changed from one form to another form

Mass and Energy Balance Box Diagram

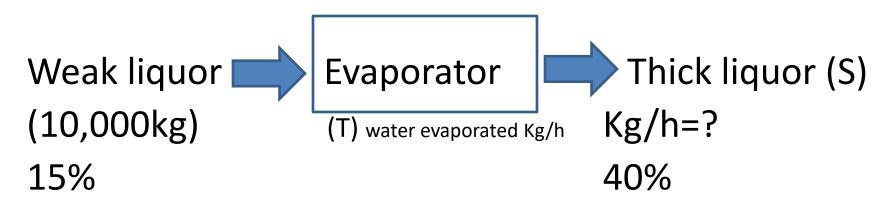
Mass Balance

Mass In = Mass Out + Mass Stored

Raw Materials = Products + Wastes + Stored Materials.

$$\Sigma m_R \hspace{1cm} = \hspace{1cm} \Sigma \hspace{1cm} m_P + \Sigma m_W + \Sigma m_S$$

(where Σ (sigma) denotes the sum of all terms).


 $\sum m_R = m_{R1} + m_{R2} + m_{R3} =$ Total Raw Materials.

 $\sum m_P = m_{P1} + m_{P2} + m_{P3} = Total Products.$

 $\Sigma m_{\rm w} = m_{\rm W1} + m_{\rm W2} + m_{\rm W3} =$ Total Waste Products.

 $\Sigma m_s = m_{S1} + m_{S2} + m_{S3} = Total Stored Products.$

 A single effect evaporator is fed with 10,000kg per hour of weak liquor containing 15% sugar by weight and is concentrated to thick liquor 40% sugar by weight. Calculate kg/h of water evaporated and kg/h of thick liquor obtained.

Let the flow rate of thick liquor= S Let the flow rate of water evaporated= T

Overall material balance equation

By carrying out sugar balance

$$0.4 S = 0.15 \times 10,000$$

 $S = 1500/0.4$
 $S = 3750 \text{ Kg/h}$

Substituting value of S in equation (1)