Predicates and Quanififiers

ABID SULTAN

Predicałes

- Predicate
> $x>3$
- EXAMPLE 1 Let $P(x)$ denote the statement " $x>3$." What are the truth values of $P(4)$ and $P(2)$?
- Solution: Hence, $P(4)$, which is the statement " $4>3$," is true. However, $P(2)$, which is the statement " $2>3$," is false.

Predicates

- EXAMPLE 2 Let A(x) denote the statement "Computer x is under attack by an intruder." Suppose that of the computers on campus, only CS2 and MATHI are currently under attack by intruders. What are truth values of $\mathrm{A}(\mathrm{CS} 1), \mathrm{A}(\mathrm{CS} 2)$, and $\mathrm{A}(\mathrm{MATH} 1)$?
- Solution:
- A(CS1) is false. Similarly, because CS2 and MATH1 are on the list of computers under attack, we know that A(CS2) and A(MATH1) are true.

Predicałes

- EXAMPLE 3 Let $Q(x, y)$ denote the statement " $x=y+3$." What are the truth values of the propositions $Q(1,2)$ and $Q(3,0)$?
- Solution: To obtain $Q(1,2)$, set $x=1$ and $y=2$ in the statement $Q(x, y)$. Hence, $Q(1,2)$ is the statement " $1=2+3$, " which is false. The statement $Q(3,0)$ is the proposition " $3=0+$ 3," which is true.

Quantifiers

- Quantification
- We will focus on two types of quantification here:

1. universal quantification,
2. existential quantification,

- predicate calculus.

Quantifiers

- Let $Q(x)$ be the statement " $x<2$." What is the truth value of the quantification $\forall x Q(x)$, where the domain consists of all real numbers?
- Solution: $Q(x)$ is not true for every real number x, because, for instance, $Q(3)$ is false. That is, $x=3$ is a counterexample for the statement $\forall x Q(x)$. Thus $\forall x Q(x)$ is false.

TABLE 1 Quantifiers.		
Statement	When True?	When False?
$\forall x P(x)$	$P(x)$ is true for every x.	There is an x for which $P(x)$ is false.
$\exists x P(x)$	There is an x for which $P(x)$ is true.	$P(x)$ is false for very x.

Quantifiers

- EXAMPLE 11 What is the truth value of $\forall x P(x)$, where $P(x)$ is the statement "x2<10" and the domain consists of the positive integers not exceeding 4?
- Solution:
it follows that $\forall x P(x)$ is false.

THE UNIQUENESSQUANTIFIER

- Denoted by \exists ! or $\exists 1$
- The notation \exists !xP (x) [or $\exists 1 \times P(x)$] states "There exists a unique x such that $P(x)$ is true.

TABLE 2 De Morgan's Laws for Quantifiers.				
Negation	Equivalent Statement	When Is Negation True?	When False?	
$\neg \exists x P(x)$	$\forall x \neg P(x)$	For every $x, P(x)$ is false.	There is an x for which $P(x)$ is true. $P(x)$ is true for every x. $\neg \forall x P(x)$	
$\exists x \neg P(x)$	There is an x for which $P(x)$ is false.			

Nested Quaniffiers

- EXAMPLE 1 Assume that the domain for the variables x and y consists of all real numbers. The statement $\forall x \forall y(x+y=y+x)$
- Solution
says that $x+y=y+x$ for all real numbers x and y. This is the commutative law for addition of real numbers. Likewise, the statement
- EXAMPLE2 $\forall x \exists y(x+y=0)$
- Solution
says that for every real number x there is a real number y such that $x+$ $y=0$. This states that every real number has an additive inverse.

Nested Quantifiers

- Translate into English the statement
$\downarrow \forall x \forall y((x>0) \wedge(y<0) \rightarrow(x y<0))$, where the domain for both variables consists of all real numbers.
- Solution: This statement says that for every real number x and for every real number y, if $x>0$ and $y<0$, then $x y<0$.

