Applications of Propositional Logic

ABID SULTAN

Bi-conditional statement

- ▶ p if and only if $q (p \leftrightarrow q)$
- ▶ $p \leftrightarrow q$ has the same truth value as $(p \rightarrow q) \land (q \rightarrow p)$
- ► Example:
 - P="You can take the flight"
 - Q="You buy a ticket." Then $p \leftrightarrow q$ is the statement
 - "You can take the flight if and only if you buy a ticket."

The Truth Table for the Bi-conditional $p \leftrightarrow q$.								
$p q \qquad \qquad p \leftrightarrow q$								
Т	Т							
Т	F	F						
F	Т	F						
F	F							

Truth Tables of Compound Propositions

Example: Construct the truth table of the compound proposition

 $(p \lor \neg q) \longrightarrow (p \land q).$

The Truth Table of $(p \lor \neg q) \rightarrow (p \land q)$.

p	q	$\neg q$	$p \lor \neg q$	$p \land q$	$(p \lor \neg q) \rightarrow (p \land q)$
Т	Т	F	Т	Т	Т
Т	F	Т	Т	F	F
F	Т	F	F	F	Т
F	F	Т	Т	F	F F

Precedence of Logical Operators

Precedence of Logical Operators.					
Operator	Precedence				
	1				
Λ	2				
V	3				
\rightarrow	4				
\leftrightarrow	5				

Translating English Sentences

- Example: How can this English sentence be translated into a logical expression?
 - "You cannot ride the roller coaster if you are under 4 feet tall unless you are older than 16 years old."
- Solution: Let q, r, and s represent "You can ride the roller coaster," "You are under 4 feet tall," and "You are older than 16 years old." The sentence can be translated into: $(r \land \neg s) \rightarrow \neg q$.

Translating English Sentences

EXAMPLE

"You can access the Internet from campus only if you are a computer science major or you are not a freshman."

► Solution

In particular, we let a, c, and f represent "You can access the Internet from campus," "You are a computer science major," and "You are a freshman," respectively

 $a \rightarrow (C \lor \neg f).$

Logic and Bit Operations

Bit operation – replace true by 1 and false by 0 in logical operations.

Table for the Bit Operators OR, AND, and XOR.								
x	У	<i>x</i> v <i>y</i>	$x \wedge y$	х у				
0	0	0	0	0				
0	1	1	0	1				
1	0	1	0	1				
1	1	1	1	O⊕				

Example: Find the bitwise OR, bitwise AND, and bitwise XOR of the bit string 01 1011 0110 and 11 0001 1101.

Solution:

01 1011 0110

11 0001 1101

11 1011 1111 bitwise *OR* 01 0001 0100 bitwise *AND* 10 1010 1011 bitwise *XOR*

► 1938 by Claude Shannon

Propositional Equivalences

Tautology
 Contradiction
 contingency

Examples of a Tautology and a Contradiction.							
p	$\neg p \qquad p \lor \neg p \qquad p \land \neg p$						
Т	F	F					
F	Т	Т	F				

Propositional Equivalences

- The notation $p \equiv q$ denotes that p and q are logically equivalent.
- Compound propositions that have the same truth values in all possible cases are called logically equivalent.
- Example: Show that $\neg p \lor q$ and $p \rightarrow q$ are logically equivalent.

Truth Tables for $\neg p \lor q$ and $p \rightarrow q$.								
p	q	$\neg p$	$\neg p \lor q$	p ightarrow q				
Т	Т	F	Т	Т				
Т	F	F	F	F				
F	Т	Т	Т	Т				
F	F	Т	Т	Т				

Propositional Equivalences

TABLE 5 A Demonstration That $p \lor (q \land r)$ and $(p \lor q) \land (p \lor r)$ Are Logically Equivalent.									
р	p q r $q \wedge r$ $p \lor (q \wedge r)$ $p \lor q$ $p \lor r$ $(p \lor q) \land (p \lor r)$								
Т	Т	Т	Т	Т	Т	Т	Т		
Т	Т	F	F	Т	Т	Т	Т		
Т	F	Т	F	Т	Т	Т	Т		
Т	F	F	F	Т	Т	Т	Т		
F	Т	Т	Т	Т	Т	Т	Т		
F	Т	F	F	F	Т	F	F		
F	F	Т	F	F	F	Т	F		
F	F	F	F	F	F	F	F		

De Morgan laws

TABLE 2 De Morgan's Laws.

$$\neg (p \land q) \equiv \neg p \lor \neg q$$
$$\neg (p \lor q) \equiv \neg p \land \neg q$$

TAE	TABLE 3 Truth Tables for $\neg(p \lor q)$ and $\neg p \land \neg q$.							
р	$p q p \lor q \neg(p \lor q) \neg p \neg q \neg p \land \neg q$							
Т	Т	Т	F	F	F	F		
Т	F	Т	F	F	Т	F		
F	Т	Т	F	Т	F	F		
F	F	F	Т	Т	Т	Т		