
Chapter 3

Plasma fluid theory

3.1 Introduction

So far, we only considered single particles moving in electromagnetic fields
without modifying them. Here we start to deal with the change to the fields
due to the motion of the particles, which gives rise to the great variety of
plasma phenomena described in the next sections and modules of this course.
As you saw in Chapter 1, real plasmas contain a huge number of particles
within the Debye sphere, and it is impossible to describe analytically each
particle as it moves through the plasma. We would have to:

• determine the position and velocity of N particles

• calculate the charge and current distribution

• calculate E and B from this distribution

• solve the equation of motion for N = 1010 − 1020cm−3 particles

• repeat the first step

This task is possible though, but can only be done numerically with massive
parallel so called particle-in-cell (PIC) codes. Here we will derive a different
approach by treating the plasma as a fluid. In plasma fluid theory, a plasma
is characterized by a few local parameters–such as the particle density, the
kinetic temperature, and the flow velocity–the time evolution of which are de-
termined by means of fluid equations. These equations are analogous to, but
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generally more complicated than, the equations of hydrodynamics because
here the fluid is charged.

Before we start, let’s recapitulate the convective or total derivative (see Eq.
(2.43)). When a function varies in space and time, the total time derivative
is calculated as:
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∂F(x, t)

∂t
+
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(3.1)

In three dimensions this is generalized to

dF

dt
=
∂F

∂t
+ (u · ∇)F (3.2)

Note that the first term on the RHS represents the change of F on a fixed
point in space. The second term represents the fact that a moving observer
can see a time variation of F even when F doesn’t change in time, as long as
the observer moves with u through regions with different values of F

In the following sections we will give an introduction to how to describe
a plasma as a fluid. To do this we need to know how the characteristic
quantities of the plasma are evolving in space and time. This can be done
via conservation equations:

• for the particle density via equation of continuity

• for the mean velocity via momentum conservation

• for the Energy via the equation of state

We will focus here on a more or less direct or ’physical’ description of
these equations. The fluid equations can be derived mathematically by taking
moments of the Boltzmann Equation. One gets the particle (0th moment),
momentum (1st moment) and energy (2nd moment) conservation by∫

fd3v→ 0thmoment (3.3)∫
fd3vv→ 1stmoment (3.4)∫

fd3vvv→ 2ndmoment (3.5)

(3.6)

This will be discussed in more detail in Module 913
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3.2 Equation of continuity

The equation of continuity reflects the conservation of matter. Assume we
have an arbitrary volume V with some particles N in it. It is clear that
the number of particles in V can only change if particles are generated or
annihilated, or if there is a net flux of particles though the surface S bounding
that volume. For the time being we assume that inside the volume there is no
generation (e.g. ionization) or annihilation (e.g. recombination) of particles.
Let n be the particle density and nu the particle flux density through the
surface S. So we get

∂N

∂t
=

∫
V

∂n

∂t
dV = −

∫
∂V

nudS (3.7)

Using Gauss’s theorem ∫
V

∇ ·AdV =

∫
∂V

AdS (3.8)

we can rewrite the above equations as∫
V

∂n

∂t
+∇ · (nu)dV = 0 (3.9)

This equation must be fulfilled for any volume, so

∂n

∂t
+∇ · (nu) = 0 (3.10)

This is the equation of continuity for one particle species. It is our first
equation to describe a plasma as a fluid. For each species in the plasma
there is such an equation. Note that any sources or sinks of particles are to
be added on the RHS.

3.3 Momentum conservation

To derive the equation for the mean velocity we start once again with the
Lorentz force (1.4) for a single particle:

F =
dp

dt
= q(E + v ×B) (3.11)
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Note that here we have to solve this equation at positions where the actual
particle is. The important transition from the single particle description to
the fluid description lies in the fact that for a fluid we want an equation for
fixed positions in space. Further we deal with a number of particles. So we
multiply the above equation by the density n and use the total derivative to
get

mn

(
∂u

∂t
+ (u · ∇)u

)
= nq(E + u×B) (3.12)

As always in the equation of motion (which is, as you can see nothing else
that the momentum conservation equation) on the RHS we have the sum
of all forces. Here we have to include some very important effects reflecting
collective forces on the mean velocity. The most important ones are forces
due to collisions and to pressure gradients.

First notice that like particle collisions do not change the total momentum
(which is averaged over all particles of that species). Collisions between
unlike particles do exchange momentum between the species. Therefore once
we realize that any quasi-neutral plasma consists of at least two different
species (electrons and ions) and hence two different interpenetrating fluids
we may need to account for another momentum loss (gain) term. The rate
of momentum density loss by species 1 colliding with species 2 is:

Fc = −ν12n1m1(u1 − u2) (3.13)

where ν12 is the collision frequency between species 1 and 2. For the force
due to pressure variations we give, without going into details at this point,
the result as

Fp = −∇ ·P (3.14)

note that in general P is the stress tensor. Here we will describe the simplest
case, where all off diagonal elements are 0 and we can rewrite Fp as

Fp = −∇p (3.15)

with p as the scalar pressure. So including the most important collective
forces the equation of motion for the plasma fluid is

mn

(
∂u

∂t
+ (u · ∇)u

)
= nq(E + u×B)− ν12n1m1(u1 − u2)−∇p (3.16)
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3.4 Equation of State

We need the equation of state to calculate the pressure. Basically p = nT is
determined by energy balance, which will tell how T varies. We could write
an energy equation in the same way as momentum. However, this would
then contain a term for heat flux, which would be unknown. You see already
the problem in describing the plasma as a fluid. In order to solve Eq. (3.10)
we need u. To get u we have to solve Eq. (3.16). But to solve this equation
we need an equation for the pressure, to solve this equation we need the heat
flux and so on. At one point we must stop and assume a quantity. The
reason for that is that we deal here with mean quantities which are only
approximations. As it was mentioned in the introduction to this chapter, the
fluid equations can be derived formally by taking moments of the Boltzmann
Equation. It turned out that for most problems it is sufficient to find an
equation of the pressure and stop the approximations after that point. We
do this by some sort of assumption about the heat flux. This will lead to an
Equation of State:

pn−γ = const (3.17)

The value of γ to be taken depends on the heat flux assumption and on the
isotropy (or otherwise) of the energy distribution. Examples

• Isothermal: T = const.: γ = 1.

• Adiabatic/Isotropic: 3 degrees of freedom γ = 5/3 .

• Adiabatic/1 degree of freedom: γ = 3.

• Adiabatic/2 degrees of freedom: γ = 2.

In general, n(l/2)δT = −p(δV/V ) (adiabatic l degrees)

l
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T
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V
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n
(3.18)

so
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p
=
δn

n
+
δT

T
=

(
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2

l

)
δn

n
(3.19)

i.e.
pn−(1+2/l) = const (3.20)
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In a normal gas, which ’holds together’ by collisions, energy is rapidly shared
between 3 space-degrees of freedom. Plasmas are often rather collisionless
so compression in 1 dimension often stays confined to 1-degree of freedom.
Sometimes heat transport is so rapid that the isothermal approach is valid.
It depends on the exact situation; so lets leave γ undefined for now.

3.5 Summary of the Fluid Equations

In principle a plasma can have any number of species, but let’s assume for
simplicity it consists only of ions and electrons. So the complete set of equa-
tions is:

∇×B = µ0j + µ0ε0
∂E

∂t
∇× E = −∂B

∂t

∇ ·B = 0 ∇ · E =
ρ

ε0

(3.21)

the coupling between the fields and the plasma comes via current and charge
densities j and ρ

ρ = e(−ne + Zni) (3.22)

j = e(−neue + Zniui) (3.23)

with Z as the ionisation state of the ions. nj and uj (j = i, e) are calculated
for each species via:

∂nj
∂t

+∇ · (njuj) = 0

mjnj

(
∂uj

∂t
+ (uj · ∇)uj

)
= njqj(E + uj ×B)− νjknjmj(uj − uk)−∇p

pjn
−γ
j = const

(3.24)

Discussion task 8: How many unknown variables and how many equations
are there in this set of equations for the fluid approximation of the plasma?
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So far we have been using fluid equations which apply to electrons and
ions separately. These are called ’Two Fluid’ equations because we always
have to keep track of both fluids separately. On simplification would occur
when we are only interested in time scales where the electrons are moving,
but the much heavier ions are a rest. That happens in the interaction of a
fast oscillating field such as a laser pulse with a plasma. To describe such
an interactions it is sometimes justified to follow only the evolution of the
electrons. But this must not mixed up with the ’Single Fluid’ description.
Sometimes it’s possible and useful to further simplify the fluid model by com-
bining the electron and ion equations together to obtain equations governing
the plasma viewed as a Single Fluid. This description will be given in Module
913.


