
Chapter 2

Charged particle motion

Plasmas are complicated because motions of electrons and ions are deter-
mined by the electric and magnetic fields but also change the fields by the
currents they carry. As we already mentioned (see Equ. (1.4) the fundamen-
tal equation of motion of an individual particle takes the form

F =
dp

dt
= q(E + v ×B) (2.1)

In this section we shall ignore the back-reaction of the particles and assume
that fields are prescribed, e.g. we forget for a moment that the particles
are itself parts of the plasma and hence responsible for the generation and
modification of the fields. Even so, calculating the motion of a charged
particle can be quite hard. We will first of all consider the motion of charged
particles in spatially and temporally uniform electromagnetic fields, followed
by spatially varying field. At the end of this chapter we will study briefly
time varying fields.

2.1 Motion in uniform fields

2.1.1 E=const, B=0

In this easiest case the Lorentz force is reduced to:

dp

dt
= qE (2.2)
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We will set the the x-coordinate in the direction of the electric field. This
simple case has some traps tough: if we would simply assume:

dpx
dt

= me
dvx
dt

= qEx (2.3)

we would get after the integration:

vx =
e

me

Ext (2.4)

with would lead to vx → ∞ for t → ∞, which is of course forbidden by the
special theory of relativity. To solve this problem correctly we have to include
the change of the mass according to me = m0γ with γ = 1/

√
1− (v/c0)2.

So we have to solve this equation:

d

dt

vx√
1− (vx/c0)2

=
q

m0

Ex (2.5)

which is still straight forward to integrate. After some rearrangements we
get the correct velocity as:

vx =
e

m0

Ext
1√

1 +

(
eExt

m0c0

)2
(2.6)

Figure (2.1) shows the importance of the correct mass description of an elec-
tron in a field of 100kV/m. Of course for t� m0c0/eEx the velocity can be
approximated by Equ. (2.4).

Discussion task 5: According to special relativity the kinetic energy of
a particle is Ekin = m0(γ − 1)c2, but almost always the kinetic energy is
calculated as: Ekin = mv2/2. How is this contradiction solved?
Assignment task 6: Prove that Eq. (2.6) can be approximated by Eq.
(2.4) for t� m0c0/eEx

2.1.2 E=0, B=const

The next case is a constant B-field which we define as a field in z-direction.
The equation of motion is here reduced to

dp

dt
= qv ×B (2.7)
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Figure 2.1: Velocity for a electron in a constant E-field of 100kV/m. Blue
without relativistic mass correction. Black: correct description

or for the the components of the momentum:

ṗx = qvyBz

ṗy = −qvxBz

ṗx = 0
(2.8)

where the dot represents the time derivative. First of all we see that there
is no acceleration in the direction of the B-field. For the further analysis of
this problem we assume v � c0. After performing a second time derivative
for e.g. the x components we can substitute the y components and we get
for vx:

v̈x =
q

me

v̇yBz = −
(
qBz

me

)2

vx (2.9)

which is the well know equation for an harmonic oscillator with the charac-
teristic frequency Ω = |q|Bz/me and the general solution:

vx = v0 cos(Ωt) + v1 sin(Ωt) (2.10)
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with the two constants v0 and v1 terminated by our choice of the initial
velocity for t = 0 as v(t = 0) = v0ex + 0ey + 0ez, leading to

vx = v0 cos(Ωt) (2.11)

for the x component of the velocity. Inserting this in Equ. (2.8) leads to

v̇y = − q

|q|
Ωv0 cos(Ωt) (2.12)

which gives

vy = − q

|q|
v0 sin(Ωt) (2.13)

where we used again our choice of the initial velocity. Equ. (2.11) and (2.13)
describe the velocity of a charged particle in a constant magnetic field. An
initially present velocity vz is not modified by a magnetic field parallel to
this velocity component. So in general we can write:

v = v⊥0 cos(Ωt)ex −
q

|q|
v⊥0 sin(Ωt)ey + vzez (2.14)

To get the trajectory of the particle we integrate Equ. (2.14) resulting in

r = r0 +
v⊥0

Ω
sin(Ωt)ex +

q

|q|
v⊥0

Ω
cos(Ωt)ey + vztez (2.15)

This is a circular trajectory with radius ρ = v⊥0/Ω., which is referred to as
Gyroradius, and Ω is known as the Gyrofrequency. Equ. (2.15) shows that
the sign of the charge defines the direction of the rotation. Ions rotate an-
ticlockwise and electrons clockwise about the magnetic field (see figure 2.2).
Note that a particle gyrating as described here produces a magnetic field
counteracting the external field resulting in a reduction of the total field.
This is the property of a magnetic material which is Diagmagnetic.

Discussion task 6: Calculate the energy gain of a charged particle in
a constant magnetic field

2.1.3 E=const, B=const

When both electric and magnetic fields are present the motion of a charged
particle it the superposition of the acceleration in the E direction and a
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Figure 2.2: Gyro centre (x0, y0 and orbit)

circular motion perpendicular to the B direction. It is important for the
further analysis to split the the electric field into a component parallel to
the magnetic field E‖ and a component perpendicular to the magnetic field
E⊥. As we saw in the last section the velocity component of a particle in
the direction of the magnetic field is not affected by it. So there is just E‖
to change the velocity, as we described in the first case. For the remaining
perpendicular field we will solve this problem with a common trick, by finding
a coordinate system in which E⊥ = 0. We restrict ourselves again to the
non-relativistic case where the E field is transformed to a moving coordinate
system as E′ = E + vd × B. The goal is now to find this velocity vd. We
multiply this equation with ×B to get

0 = E⊥ ×B + (vd ×B)×B = E⊥ ×B + (vd ·B)B−B2vd (2.16)

We can solve this equation only if we set vd perpendicular to B. With
that assumption we get:

vd =
E⊥ ×B

B2
. (2.17)

This drift, which is termed the E-cross-B drift in plasma physics, is iden-
tical for all plasma species. Inside this frame E⊥ = 0, so this frame can
properly be regarded as the rest frame of the plasma. This also so called
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guiding centre is an important concept in analyzing complicated particle mo-
tions. Here the advantage of this description is obvious: since the electric
field is zero the particle gyrates around the magnetic field at frequency Ω
exactly in the same way as described above for the E=0; B=const case.

Figure 2.3: E×B drift orbit

Hence the full solution for the particle trajectory is:

v = v‖ + vd + vGyration (2.18)

This separation gives us a clue to simplify the description for some cases.
Sometimes when analyzing charged particle motion in non-uniform electro-
magnetic fields, we can somehow neglect the rapid, and relatively uninterest-
ing, gyromotion, and focus, instead, on the far slower motion of the guiding
centre. Clearly, what we need to do in order to achieve this goal is to some-
how average the equation of motion over gyrophase, so as to obtain a reduced
equation of motion for the guiding centre. This method was introduced by
Hans Alfén and in known as guiding centre approximation

2.1.4 Drift due to Gravity or other Forces

Suppose particle is subject to some other force, such as gravity. Write it F
so that

dp

dt
= F + qv ×B = q

(
1

q
F + v ×B

)
(2.19)

This is just like the previous case except with F/q replacing E. The drift
is therefore

vd =
1

q

F×B

B2
. (2.20)
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In this case, if force on electrons and ions is same, they drift in opposite
directions. This general formula can be used to get the drift velocity in some
other cases of interest.

2.2 Motion in nonuniform fields

In the case of nonuniform, inhomogeneous and/or time dependent electro-
magnetic field the equation of motion becomes nonlinear and can be solved
in general only by numeric integration. However in some cases we can use the
guiding centre approximation to find reasonable solutions. As mentioned be-
fore we can use this approximation if the spacial inhomogeneity is so small or
the time dependence of the fields is so slow, that during one gyro period the
fields can be approximately treated as constant. This is in most laboratory
plasmas possible, but only seldom in interstellar plasmas.

2.2.1 E=0, B=Non-Uniform

Lets assume that the magnetic field varies only along one spacial coordinate.
Then we get orbits that look qualitatively similar to the E ⊥ B

Figure 2.4: ∇B-Drift

Curvature of orbit is greater where B is greater causing loop to be small on
that side. Result is a drift perpendicular to both B and ∇B Notice, though,
that electrons and ions go in opposite directions (unlike the E×B case). We
try to find a decomposition of the velocity as before into v = vd + vL where
vd is constant. We shall find that this can be done only approximately, by
assuming that the the velocity is small compared to c0 and the field gradient
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is small compared to the gyroradius ρ. i.e.,

ρ� B/|∇B| (2.21)

in which case we can express the field approximately as the first two terms
in a Taylor expression:

B ≈ B0 + (r · ∇)B (2.22)

Then substituting the decomposed velocity we get:

dp

dt
= m

dvL
dt

= qv ×B = q (vL ×B0 + vd ×B0 + (vL + vd)× (r · ∇)B)

(2.23)
or

0 = vd ×B0 + vL × (r · ∇)B + vd × (r · ∇)B (2.24)

Keep in mind that vd/vL � 1, like r|∇B|/B � 1 Therefore the last term
here is much smaller than the first two and can be dropped (e.g. the last
term is of second order, whereas the first two are of first order). The problem
here is that vL and rL are periodic. Similar to the velocity, we substitute for
r = r0 + rL so we get

0 = vd ×B0 + vL × (rL · ∇)B + vLd × (r0 · ∇)B (2.25)

We now average over a cyclotron period Ω. The last term is ∝ exp(iΩt) so
it averages to zero. So this it the remaining equation we have to solve:

0 = vd ×B0 + 〈vL × (rL · ∇)B〉 (2.26)

To perform the time average denote here with the brackets 〈...〉 we use

rL =
(
xL

yL

)
=

v⊥
Ω

(
sin(Ωt)

q
|q| cos(Ωt)

)
vL =

(
vxL

vyL

)
= v⊥

(
cos(Ωt)

− q
|q| sin(Ωt)

)
So [vL × (rL · ∇)B]x = vyy

dB

dy

[vL × (rL · ∇)B]y = −vxy
dB

dy

(2.27)
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(Taking ∇B to be in the y-direction). Then

〈vyy〉 = −〈cos Ωt sin Ωt〉v
2
⊥

Ω
= 0

〈vxy〉 = 〈cos2 Ωt〉 v
2
⊥q

Ω|q|
=

v2
⊥q

2Ω|q|

(2.28)

So

〈vL × (rL · ∇)B〉 = − v2
⊥q

2Ω|q|
∇B (2.29)

Substitute in the remaining equation we had to solve:

0 = vd ×B0 −
v2
⊥q

2Ω|q|
∇B (2.30)

and solve as before to get

vd =

(
− v2⊥

2Ω|q|∇B
)
×B

B2
=

v2
⊥q

2Ω|q|
B×∇B

B2
(2.31)

or equivalently

vd =
1

q

mv2
⊥

2B

B×∇B

B2
(2.32)

This is called the ”Grad B drift”.

2.2.2 E=0, B ‖ ∇B; The Mirror Effect of Parallel Field
Gradients

In the situation outlined in Figure 2.5 we have a magnetic field which in-
creases in the direction of the field lines. Again we are only interested in the
average movements of the particles and not on the detailed gyration. There
is a net force on average along B which is.

〈F‖〉 = −|qv ×B| sinα = −|q|v⊥B sinα
with sinα = −Br/B

(2.33)

To calculate Br as function of Bz we use Maxwell’s Equation ∇ · B = 0.
We assume here rotation symmetry along the z-axis as well as that the field
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Figure 2.5: Basis of parallel mirror force

gradient points mainly in z direction. With this assumption we can write the
Nabla operator in cylindric coordinates as

∇ ·B =
1

r
∂r(rBr) + ∂zBz = 0 (2.34)

Hence

rBr = −
∫
r∂zBzdr (2.35)

Supposing the gyroradius ρ is small enough that ∂zBz ≈ const. we can solve
the integral as

rBr = −
∫ ρ

0

r∂zBzdr ≈ −∂zBz

∫ ρ

0

rdr = −∂zBz
1

2
ρ2 (2.36)

So the radial component of the magnetic field is then

Br = −∂zBz
1

2
ρ (2.37)

which gives for net force:

〈F‖〉 = −1

2
|q|v⊥ρ∂zBz = −mv

2
⊥

2B
∂zBz (2.38)

where we used the definition of the gyroradius as ρ = v⊥m/|q|B. As a
charged particle enters a region with increasing field it experiences despite
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the sign of the charge a net parallel retarding force. It’s worth to mention an
other aspect here. Since any gyrating charge represents a loop current which
generates a magnetic field, we can define a magnetic moment µ associated
with this current as

µ = AI = πρ2 |q|v⊥
2πρ

=
|q|v⊥ρ

2
=
mv2
⊥

2B
=
W⊥
B

(2.39)

Where W⊥ represents the kinetic energy of the parallel motion. In conclusion
the force of a field gradient on a charged particle gyrating in this field can
be seen as the force on a magnet dipole of moment µ

F‖ = −µ∇‖B (2.40)

The force always points along B but towards lower fields (against the gradient
of B).

Figure 2.6: Magnetic Trap

With the use of two gradients as depicted in fig. 2.6 one can build a
magnetic trap for charged particles. This is of particular interest for storing
antimatter since in this magnet trap the particles are not in contact with the
walls of the trap which would lead to annihilation of the antimatter.

Assignment task 7:

• Verify that a charge rotating with a radius ρ generate the current I
described in Equ. (2.39)
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• Calculate how the magnetic flux Φ through the gyro orbit is related to
the magnet moment µ

2.2.3 Invariance of the magnetic moment

At this point we will introduce an important fact which will help us to analyze
the particle motion in more complicated cases. There are three invariance
of motion for a particle in electro-magnetic fields, which we will introduce in
the course of the next sections. Let us here demonstrate that the magnetic
moment µ = mv2

⊥/2B is one of the invariant, e.g. it is a constant of the
motion, at least to lowest order. We start with the force on the rotating
particle in an inhomogeneous magnetic field (equ. (2.40))

F‖ = m
dv‖
dt

= −µ∇‖B (2.41)

We assume that B point in z-direction. After multiplying this equation with
v‖ = dz/dt we get

m

2

dv2
‖

dt
= −µ∂zB

dz

dt
(2.42)

The left side of this equation is just the kinetic energy of the parallel motion
W‖. Note that in general the total differential of B is

dB

dt
= ∂tB + vz∂zB. (2.43)

Here in our case B is constant in time, so

∂zB
dz

dt
=
dB

dt
(2.44)

Here you can see that in the case of a time independent but spatial changing
field, a moving observer (here the particle) registers a time-dependent field.
We can now rewrite Equ. (2.42) as

dW‖
dt

= −W⊥
B

dB

dt
(2.45)
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As we already saw in previous sections that a charged particle cannot gain
energy from a magnetic field. So

W‖ +W⊥ = const (2.46)

dW‖
dt

+
dW⊥
dt

= 0 (2.47)

dW⊥
dt

=
W⊥
B

dB

dt
(2.48)

On the other hand when we just look at the time derivative of W⊥ we have

dW⊥
dt

=
d

dt

(
W⊥
B
B

)
=
W⊥
B

dB

dt
+B

d

dt

(
W⊥
B

)
(2.49)

Comparing this with Equ. (2.48) we find that

B
d

dt

(
W⊥
B

)
= B

d

dt
µ = 0 (2.50)

thus
µ = const (2.51)

The magnetic moment µ is a constant as long as the guiding centre approxi-
mation is valid. Or in other words µ is a constant of the motion to the lowest
order. This invariance follows directly for the energy conservation law. More
general, it can be shown that mv2

⊥/2B is the lowest order approximation to
a quantity which is a constant of the motion to all orders in the perturbation
expansion. Such a quantity is called an adiabatic invariant.

Assignment task 8: Research magnetic mirror and traps and explain their
principle in terms of energy conservation. Further explain mirror trapping
and the loss cone.

2.2.4 Magnetized plasmas

In the last sections we derived the typical behavior of a single charged particle
gyrating in a magnetic field. To conclude this section we give here some esti-
mates how particles inside a plasma gyrate when a magnetic field is present.
When the plasma is in equilibrium we can use the mean velocity to describe
the gyration according to the last section as

ρ ≡ vt
Ω
, (2.52)
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where Ω = eB/m. As usual, there is a distinct gyroradius for each species.
When species temperatures are comparable, the electron gyroradius is dis-
tinctly smaller than the ion gyroradius:

ρe ∼
(
me

mi

)1/2

ρi. (2.53)

A plasma system, or process, is said to be magnetized if its characteristic
length-scale L is large compared to the gyroradius. In the opposite limit,
ρ � L, charged particles have essentially straight-line trajectories. Thus,
the ability of the magnetic field to significantly affect particle trajectories is
measured by the magnetization parameter

δ ≡ ρ

L
. (2.54)

There are some cases of interest in which the electrons are magnetized,
but the ions are not. However, a “magnetized” plasma conventionally refers
to one in which both species are magnetized. This state is generally achieved
when

δi ≡
ρi
L
� 1. (2.55)

In conclusion, all descriptions of plasma behaviour are based, ultimately,
on the motions of the constituent particles. For the case of an unmagnetized
plasma, the motions are fairly trivial, since the constituent particles move
essentially in straight lines between collisions. The motions are also trivial
in a magnetized plasma where the collision frequency ν greatly exceeds the
gyrofrequency Ω: in this case, the particles are scattered after executing
only a small fraction of a gyro-orbit, and, therefore, still move essentially in
straight lines between collisions. The situation of primary interest in this
section is that of a collisionless (i.e., ν � Ω), magnetized plasma, where the
gyroradius ρ is much smaller than the typical variation length-scale L of the
E and B fields, and the gyroperiod Ω−1 is much less than the typical time-
scale τ on which these fields change. In such a plasma, we expect the motion
of the constituent particles to consist of a rapid gyration perpendicular to
magnetic field-lines, combined with free-streaming parallel to the field-lines.
We are particularly interested in calculating how this motion is affected by the
spatial and temporal gradients in the E and B fields. In general, the motion
of charged particles in spatially and temporally non-uniform electromagnetic
fields is extremely complicated: however, we hope to considerably simplify
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this motion by exploiting the assumed smallness of the parameters ρ/L and
(Ω τ)

2.2.5 Example of a magnetic mirror: The Van Allen
radiation belts

Plasma confinement via magnetic mirroring occurs in nature as well as in un-
successful fusion devices. For instance, the Van Allen radiation belts, which
surround the Earth, consist of energetic particles trapped in the Earth’s
dipole-like magnetic field. These belts were discovered by James A. Van
Allen and co-workers using data taken from Geiger counters which flew on
the early U.S. satellites, Explorer 1 (which was, in fact, the first U.S. satel-
lite), Explorer 4, and Pioneer 3. Van Allen was actually trying to measure
the flux of cosmic rays (high energy particles whose origin is outside the Solar
System) in outer space, to see if it was similar to that measured on Earth.
However, the flux of energetic particles detected by his instruments so greatly
exceeded the expected value that it prompted one of his co-workers to ex-
claim, “My God, space is radioactive!” It was quickly realized that this flux
was due to energetic particles trapped in the Earth’s magnetic field, rather
than to cosmic rays.

There are, in fact, two radiation belts surrounding the Earth. The inner
belt, which extends from about 1-3 Earth radii in the equatorial plane is
mostly populated by protons with energies exceeding 10 MeV. The origin
of these protons is thought to be the decay of neutrons which are emitted
from the Earth’s atmosphere as it is bombarded by cosmic rays. The inner
belt is fairly quiescent. Particles eventually escape due to collisions with
neutral atoms in the upper atmosphere above the Earth’s poles. However,
such collisions are sufficiently uncommon that the lifetime of particles in the
belt range from a few hours to 10 years. Clearly, with such long trapping
times only a small input rate of energetic particles is required to produce a
region of intense radiation.

The outer belt, which extends from about 3-9 Earth radii in the equatorial
plane, consists mostly of electrons with energies below 10 MeV. The origin
of these electrons is via injection from the outer magnetosphere. Unlike the
inner belt, the outer belt is very dynamic, changing on time-scales of a few
hours in response to perturbations emanating from the outer magnetosphere.

In regions not too far distant (i.e., less than 10 Earth radii) from the
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Earth, the geomagnetic field can be approximated as a dipole field,

B =
µ0

4π

ME

r3
(−2 cos θ,− sin θ, 0), (2.56)

where we have adopted conventional spherical polar coordinates (r, θ, ϕ)
aligned with the Earth’s dipole moment, whose magnitude is ME = 8.05 ×
1022 A m2. It is usually convenient to work in terms of the latitude, ϑ =
π/2 − θ, rather than the polar angle, θ. An individual magnetic field-line
satisfies the equation

r = req cos2 ϑ, (2.57)

where req is the radial distance to the field-line in the equatorial plane (
ϑ = 0◦). It is conventional to label field-lines using the L-shell parameter,
L = req/RE. Here, RE = 6.37 × 106 m is the Earth’s radius. Thus, the
variation of the magnetic field-strength along a field-line characterized by a
given L-value is

B =
BE

L3

(1 + 3 sin2 ϑ)1/2

cos6 ϑ
, (2.58)

where BE = µ0ME/(4π R
3
E ) = 3.11 × 10−5 T is the equatorial magnetic

field-strength on the Earth’s surface.
Consider, for the sake of simplicity, charged particles located on the equa-

torial plane ( ϑ = 0◦) whose velocities are predominately directed perpen-
dicular to the magnetic field. The proton and electron gyrofrequencies are
written

Ωp =
eB

mp

= 2.98L−3 kHz, (2.59)

and

|Ωe| =
eB

me

= 5.46L−3 MHz, (2.60)

respectively. The proton and electron gyroradii, expressed as fractions of
the Earth’s radius, take the form

ρp
RE

=

√
2 Emp

eB RE

=
√
E(MeV)

(
L

11.1

)3

, (2.61)

and
ρe
RE

=

√
2 Eme

eB RE

=
√
E(MeV)

(
L

38.9

)3

, (2.62)
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respectively. It is clear that MeV energy charged particles in the inner mag-
netosphere (i.e, L � 10) gyrate at frequencies which are much greater than
the typical rate of change of the magnetic field (which changes on time-scales
which are, at most, a few minutes). Likewise, the gyroradii of such particles
are much smaller than the typical variation length-scale of the magneto-
spheric magnetic field. Under these circumstances, we expect the magnetic
moment to be a conserved quantity: i.e., we expect the magnetic moment to
be a good adiabatic invariant. It immediately follows that any MeV energy
protons and electrons in the inner magnetosphere which have a sufficiently
large magnetic moment are trapped on the dipolar field-lines of the Earth’s
magnetic field, bouncing back and forth between mirror points located just
above the Earth’s poles–see Fig. 2.7.

Figure 2.7: A typical trajectory of a charged particle trapped in the Earth’s
magnetic field

It is helpful to define the pitch-angle field

α = tan−1(v⊥/v‖), (2.63)

of a charged particle in the magnetosphere. If the magnetic moment is a
conserved quantity then a particle of fixed energy drifting along a field-line
satisfies

sin2 α

sin2 αeq

=
B

Beq

, (2.64)

where αeq is the equatorial pitch-angle (i.e., the pitch-angle on the equatorial
plane) and Beq = BE/L

3 is the magnetic field-strength on the equatorial
plane. It is clear from Equ. (2.58) that the pitch-angle increases (i.e., the
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parallel component of the particle velocity decreases) as the particle drifts
off the equatorial plane towards the Earth’s poles.

The mirror points correspond to α = 90◦ (i.e., v‖ = 0). It follows from
Equs. (2.58) and (2.64) that

sin2 αeq =
Beq

Bm

=
cos6 ϑm

(1 + 3 sin2 ϑm)1/2
, (2.65)

where Bm is the magnetic field-strength at the mirror points, and ϑm is the
latitude of the mirror points. Clearly, the latitude of a particle’s mirror point
depends only on its equatorial pitch-angle, and is independent of the L-value
of the field-line on which it is trapped.

Charged particles with large equatorial pitch-angles have small parallel
velocities, and mirror points located at relatively low latitudes. Conversely,
charged particles with small equatorial pitch-angles have large parallel veloc-
ities, and mirror points located at high latitudes. Of course, if the pitch-angle
becomes too small then the mirror points enter the Earth’s atmosphere, and
the particles are lost via collisions with neutral particles. Neglecting the
thickness of the atmosphere with respect to the radius of the Earth, we can
say that all particles whose mirror points lie inside the Earth are lost via
collisions. It follows from Equ. (2.65) that the equatorial loss cone is of
approximate width

sin2 αl =
cos6 ϑE

(1 + 3 sin2 ϑE)1/2
, (2.66)

where ϑE is the latitude of the point where the magnetic field-line under
investigation intersects the Earth. Note that all particles with |αeq| < αl and
|π − αeq| < αl lie in the loss cone. It is easily demonstrated from Eq. (2.57)
that

cos2 ϑE = L−1. (2.67)

It follows that
sin2 αl = (4L6 − 3L5)−1/2. (2.68)

Thus, the width of the loss cone is independent of the charge, the mass, or the
energy of the particles drifting along a given field-line, and is a function only
of the field-line radius on the equatorial plane. The loss cone is surprisingly
small. For instance, at the radius of a geostationary orbit (6.6RE), the
loss cone is less than 3◦ degrees wide. The smallness of the loss cone is a
consequence of the very strong variation of the magnetic field-strength along
field-lines in a dipole field–see Equ. (2.58).
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A dipole field is clearly a far more effective configuration for confining a
collisionless plasma via magnetic mirroring than the more traditional linear
configuration shown in Fig. 2.6. In fact, M.I.T has recently constructed a
dipole mirror machine. The dipole field is generated by a superconducting
current loop levitating in a vacuum chamber.

The bounce period, τb, is the time it takes a particle to move from the
equatorial plane to one mirror point, then to the other, and then return to
the equatorial plane. It follows that

τb = 4

∫ ϑm

0

dϑ

v‖

ds

dϑ
, (2.69)

where ds is an element of arc length along the field-line under investiga-
tion, and v‖ = v [1 − B/Bm]1/2. The above integral cannot be performed
analytically. However, it can be solved numerically, and is conveniently ap-
proximated as

τb '
LRE

(E/m)1/2
(3.7− 1.6 sinαeq). (2.70)

Thus, for protons

(τb)p ' 2.41
L√
E(MeV)

(1− 0.43 sinαeq) secs, (2.71)

whilst for electrons

(τb)e ' 5.62× 10−2 L√
E(MeV)

(1− 0.43 sinαeq) secs. (2.72)

It follows that MeV electrons typically have bounce periods which are less
than a second, whereas the bounce periods for MeV protons usually lie in the
range 1 to 10 seconds. The bounce period only depends weakly on equatorial
pitch-angle, since particles with small pitch angles have relatively large par-
allel velocities but a comparatively long way to travel to their mirror points,
and vice versa. Naturally, the bounce period is longer for longer field-lines
(i.e., for larger L).

2.2.6 The second adiabatic invariant

We have seen that there is an adiabatic invariant associated with the peri-
odic gyration of a charged particle around magnetic field-lines. Thus, it is
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reasonable to suppose that there is a second adiabatic invariant associated
with the periodic bouncing motion of a particle trapped between two mirror
points on a magnetic field-line. This is indeed the case.

Recall that an adiabatic invariant is the lowest order approximation to a
Poincaré invariant:

J =

∮
C

p · dq. (2.73)

In this case, let the curve C correspond to the trajectory of a guiding
centre as a charged particle trapped in the Earth’s magnetic field executes
a bounce orbit. Of course, this trajectory does not quite close, because
of the slow azimuthal drift of particles around the Earth. However, it is
easily demonstrated that the azimuthal displacement of the end point of the
trajectory, with respect to the beginning point, is of order the gyroradius.
Thus, in the limit in which the ratio of the gyroradius, ρ, to the variation
length-scale of the magnetic field, L, tends to zero, the trajectory of the
guiding centre can be regarded as being approximately closed, and the actual
particle trajectory conforms very closely to that of the guiding centre. Thus,
the adiabatic invariant associated with the bounce motion can be written

J ' J =

∮
p‖ ds, (2.74)

where the path of integration is along a field-line: from the equator to the
upper mirror point, back along the field-line to the lower mirror point, and
then back to the equator. Furthermore, ds is an element of arc-length along
the field-line, and p‖ ≡ p · b. Using p = mv + eA, the above expression
yields

J = m

∮
v‖ ds+ e

∮
A‖ ds = m

∮
v‖ ds+ eΦ. (2.75)

Here, Φ is the total magnetic flux enclosed by the curve–which, in this
case, is obviously zero. Thus, the so-called second adiabatic invariant or
longitudinal adiabatic invariant takes the form

J = m

∮
v‖ ds. (2.76)

In other words, the second invariant is proportional to the loop integral
of the parallel (to the magnetic field) velocity taken over a bounce orbit.
Actually, the above “proof” is not particularly rigorous: the rigorous proof
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that J is an adiabatic invariant was first given by Northrop and Teller. It
should be noted, of course, that J is only a constant of the motion for par-
ticles trapped in the inner magnetosphere provided that the magnetospheric
magnetic field varies on time-scales much longer than the bounce time, τb.
Since the bounce time for MeV energy protons and electrons is, at most, a
few seconds, this is not a particularly onerous constraint.

Figure 2.8: The distortion of the Earth’s magnetic field by the solar wind

The invariance of J is of great importance for charged particle dynamics
in the Earth’s inner magnetosphere. It turns out that the Earth’s magnetic
field is distorted from pure axisymmetry by the action of the solar wind, as
illustrated in Fig. 2.8. Because of this asymmetry, there is no particular
reason to believe that a particle will return to its earlier trajectory as it
makes a full rotation around the Earth. In other words, the particle may
well end up on a different field-line when it returns to the same azimuthal
angle. However, at a given azimuthal angle, each field-line has a different
length between mirror points, and a different variation of the field-strength
B between the mirror points, for a particle with given energy E and magnetic
moment µ. Thus, each field-line represents a different value of J for that
particle. So, if J is conserved, as well as E and µ, then the particle must
return to the same field-line after precessing around the Earth. In other
words, the conservation of J prevents charged particles from spiraling radially
in or out of the Van Allen belts as they rotate around the Earth. This helps
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to explain the persistence of these belts.

2.2.7 The third adiabatic invariant

It is clear, by now, that there is an adiabatic invariant associated with every
periodic motion of a charged particle in an electromagnetic field. Now, we
have just demonstrated that, as a consequence of J-conservation, the drift or-
bit of a charged particle precessing around the Earth is approximately closed,
despite the fact that the Earth’s magnetic field is non-axisymmetric. Thus,
there must be a third adiabatic invariant associated with the precession of
particles around the Earth. Just as we can define a guiding centre associated
with a particle’s gyromotion around field-lines, we can also define a bounce
centre associated with a particle’s bouncing motion between mirror points.
The bounce centre lies on the equatorial plane, and orbits the Earth once
every drift period, τd. We can write the third adiabatic invariant as

K '
∮
pφ ds, (2.77)

where the path of integration is the trajectory of the bounce centre around
the Earth. Note that the drift trajectory effectively collapses onto the trajec-
tory of the bounce centre in the limit in which ρ/L→ 0–all of the particle’s
gyromotion and bounce motion averages to zero. Now pφ = mvφ + eAφ is
dominated by its second term, since the drift velocity vφ is very small. Thus,

K ' e

∮
Aφ ds = eΦ, (2.78)

where Φ is the total magnetic flux enclosed by the drift trajectory (i.e., the
flux enclosed by the orbit of the bounce centre around the Earth). The above
“proof” is, again, not particularly rigorous–the invariance of Φ is demon-
strated rigorously by Northrup. Note, of course, that Φ is only a constant of
the motion for particles trapped in the inner magnetosphere provided that
the magnetospheric magnetic field varies on time-scales much longer than the
drift period, τd. Since the drift period for MeV energy protons and electrons
is of order an hour, this is only likely to be the case when the magneto-
sphere is relatively quiescent (i.e., when there are no geomagnetic storms in
progress).

The invariance of Φ has interesting consequences for charged particle
dynamics in the Earth’s inner magnetosphere. Suppose, for instance, that
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the strength of the solar wind were to increase slowly (i.e., on time-scales
significantly longer than the drift period), thereby, compressing the Earth’s
magnetic field. The invariance of Φ would cause the charged particles which
constitute the Van Allen belts to move radially inwards, towards the Earth, in
order to conserve the magnetic flux enclosed by their drift orbits. Likewise,
a slow decrease in the strength of the solar wind would cause an outward
radial motion of the Van Allen belts.

2.3 Motion in time dependent fields

In this section we will briefly discuss time dependent fields. You saw already
in the previous sections, cases with non constant fields have to be solved in
general via numeric integration of the equation of motion. It is not surprising
that the same goes for time depending fields, especially when we consider ar-
bitrary functions in time. Nevertheless in most of the practical situations the
electron-magnetic fields are periodic and can be described via the complex
notation E = E0 exp(−iωt). This will be important in the following sections,
especially when we will describe waves in plasmas. We start in this section
with E(t) followed by B(t). After that we will give an overview over particles
in periodic electro-magnetic fields.

Exercise: Refresh your knowledge about the complex notation of periodic
fields

2.3.1 Motion in time varying E-field

Recall the E-cross-B drift

vd =
E×B

B2
(2.79)

when E varies so does vd. Thus the guiding centre experiences an acceleration
according to

v̇d =
d

dt

E×B

B2
(2.80)

This acceleration leads to the force which is felt in the frame of the guiding
centre as

Fa = −m d

dt

E×B

B2
(2.81)
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We saw in one of the previous sections how an additional force (similar to
the gravitation) produces an additional drift:

va =
1

q

Fa ×B

B2
= − m

qB2

d

dt

(
E×B

B2

)
×B

= − m

qB2

d

dt

(
(E ·B)B−B2E

B2

)
=

m

qB2
Ė⊥ =

1

ΩB
Ė⊥

(2.82)

This it called the polarization drift. The total drift in this case is

vd =
E×B

B2
+

1

ΩB
Ė⊥ (2.83)

Consider a periodic E-field with frequency ω, then Ė⊥ ∝ ωE⊥. Again our
calculation here is only valid for ω � Ω

2.3.2 Motion in time varying B-field

In this section we consider a time varying B-field which leads to the inductive
generation of an E-field via

∇× E = −∂tB (2.84)

or

∮
E · dl = −

∫
S

Ḃ · dl = −Φ̇ (2.85)

Hence the work done on a particle during one revolution is

δw = −
∮
|q|E · dl = |q|

∫
S

Ḃ · dl = −|q|Φ̇ = |q|Ḃπρ2 =
2πḂ

Ω
µ (2.86)

Hence
d

dt

(
1

2
mv2
⊥

)
=

Ω

2π
δ

(
1

2
mv2
⊥

)
= µḂ (2.87)

but on the other hand the change of the kinetic energy in terms of the
magnetic moment and the magnetic field is

d

dt

(
1

2
mv2
⊥

)
=

d

dt
(µB) = µḂ +Bµ̇ (2.88)
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Figure 2.9: Particle orbits round B so as to perform a line integral of the
electric field

so again also in the case of a time varying B-field that

dµ

dt
= 0 (2.89)

Notice that since the magnetic flux Φ = 2πmµ/q2, this is just another way
of saying that the flux through the gyro orbit is conserved.

Discussion task 7: What happens if the frequency ω of an oscillating
B-field is much larger that the Gyrofrequency Ω?

2.3.3 Motion in oscillating fields

We have seen that charged particles can be confined by a static magnetic
field. A somewhat more surprising fact is that charged particles can also be
confined by a rapidly oscillating, inhomogeneous electromagnetic wave-field.
In order to demonstrate this, we again make use of our averaging technique.
To lowest order, a particle executes simple harmonic motion in response to
an oscillating wave-field. However, to higher order, any weak inhomogeneity
in the field causes the restoring force at one turning point to exceed that at
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the other. On average, this yields a net force which acts on the centre of
oscillation of the particle.

Consider a spatially inhomogeneous electromagnetic wave-field oscillating
at frequency ω:

E(r, t) = E0(r) cosωt. (2.90)

The equation of motion of a charged particle placed in this field is written

m
dv

dt
= e [E0(r) cosωt+ v ×B0(r) sinωt] , (2.91)

where
B0 = −ω−1∇× E0, (2.92)

according to Faraday’s law.
In order for our averaging technique to be applicable, the electric field E0

experienced by the particle must remain approximately constant during an
oscillation. Thus,

(v · ∇) E� ωE. (2.93)

When this inequality is satisfied, Eq. (2.92) implies that the magnetic force
experienced by the particle is smaller than the electric force by one order in
the expansion parameter. In fact, Eq. (2.93) is equivalent to the requirement,
Ω� ω, that the particle be unmagnetized.

We now apply the averaging technique. We make the substitution t→ τ
in the oscillatory terms, and seek a change of variables,

r = R + ξ(R,U t, τ), (2.94)

v = U + u(R,U t, τ), (2.95)

such that ξ and u are periodic functions of τ with vanishing mean. Averaging
dr/dt = v again yields dR/dt = U to all orders. To lowest order, the
momentum evolution equation reduces to

∂u

∂τ
=

e

m
E0(R) cosωτ. (2.96)

The solution, taking into account the constraints 〈u〉 = 〈ξ〉 = 0, is

u =
e

mω
E0 sinωτ, (2.97)

ξ = − e

mω2
E0 cosωτ. (2.98)
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Here, 〈· · · 〉 ≡ (2π)−2
∮

(· · · ) d(ωτ) represents an oscillation average.
Clearly, there is no motion of the centre of oscillation to lowest order. To

first order, the oscillation average of Eq. (2.91) yields

dU

dt
=

e

m
〈(ξ · ∇)E + u×B〉 , (2.99)

which reduces to

dU

dt
= − e2

m2 ω2

[
(E0 · ∇)E0 〈cos2 ωτ〉+ E0 × (∇× E0) 〈sin2 ωτ〉

]
. (2.100)

The oscillation averages of the trigonometric functions are both equal to 1/2.
Furthermore, we have ∇(|E0|2/2) ≡ (E0 · ∇)E0 + E0 × (∇×E0). Thus, the
equation of motion for the centre of oscillation reduces to

m
dU

dt
= −e∇Φpond, (2.101)

where

Φpond =
1

4

e

mω2
|E0|2. (2.102)

It is clear that the oscillation centre experiences a force, called the pondero-
motive force, which is proportional to the gradient in the amplitude of the
wave-field. The ponderomotive force is independent of the sign of the charge,
so both electrons and ions can be confined in the same potential well.

The total energy of the oscillation centre,

Eoc =
m

2
U2 + eΦpond, (2.103)

is conserved by the equation of motion (2.100). Note that the ponderomotive
potential energy is equal to the average kinetic energy of the oscillatory
motion:

eΦpond =
m

2
〈u2〉. (2.104)

Thus, the force on the centre of oscillation originates in a transfer of energy
from the oscillatory motion to the average motion.

Most of the important applications of the ponderomotive force occur in
laser plasma physics. For instance, a laser beam can propagate in a plasma
provided that its frequency exceeds the plasma frequency. If the beam is
sufficiently intense then plasma particles are repulsed from the centre of the
beam by the ponderomotive force. The resulting variation in the plasma
density gives rise to a cylindrical well in the index of refraction which acts
as a wave-guide for the laser beam.


