
Chapter 2

Charged particle motion

Plasmas are complicated because motions of electrons and ions are deter-
mined by the electric and magnetic fields but also change the fields by the
currents they carry. As we already mentioned (see Equ. (1.4) the fundamen-
tal equation of motion of an individual particle takes the form

F =
dp

dt
= q(E + v ×B) (2.1)

In this section we shall ignore the back-reaction of the particles and assume
that fields are prescribed, e.g. we forget for a moment that the particles
are itself parts of the plasma and hence responsible for the generation and
modification of the fields. Even so, calculating the motion of a charged
particle can be quite hard. We will first of all consider the motion of charged
particles in spatially and temporally uniform electromagnetic fields, followed
by spatially varying field. At the end of this chapter we will study briefly
time varying fields.

2.1 Motion in uniform fields

2.1.1 E=const, B=0

In this easiest case the Lorentz force is reduced to:

dp

dt
= qE (2.2)
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We will set the the x-coordinate in the direction of the electric field. This
simple case has some traps tough: if we would simply assume:

dpx
dt

= me
dvx
dt

= qEx (2.3)

we would get after the integration:

vx =
e

me

Ext (2.4)

with would lead to vx → ∞ for t → ∞, which is of course forbidden by the
special theory of relativity. To solve this problem correctly we have to include
the change of the mass according to me = m0γ with γ = 1/

√
1− (v/c0)2.

So we have to solve this equation:

d

dt

vx√
1− (vx/c0)2

=
q

m0

Ex (2.5)

which is still straight forward to integrate. After some rearrangements we
get the correct velocity as:

vx =
e

m0

Ext
1√

1 +

(
eExt

m0c0

)2
(2.6)

Figure (2.1) shows the importance of the correct mass description of an elec-
tron in a field of 100kV/m. Of course for t� m0c0/eEx the velocity can be
approximated by Equ. (2.4).

Discussion task 5: According to special relativity the kinetic energy of
a particle is Ekin = m0(γ − 1)c2, but almost always the kinetic energy is
calculated as: Ekin = mv2/2. How is this contradiction solved?
Assignment task 6: Prove that Eq. (2.6) can be approximated by Eq.
(2.4) for t� m0c0/eEx

2.1.2 E=0, B=const

The next case is a constant B-field which we define as a field in z-direction.
The equation of motion is here reduced to

dp

dt
= qv ×B (2.7)
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Figure 2.1: Velocity for a electron in a constant E-field of 100kV/m. Blue
without relativistic mass correction. Black: correct description

or for the the components of the momentum:

ṗx = qvyBz

ṗy = −qvxBz

ṗx = 0
(2.8)

where the dot represents the time derivative. First of all we see that there
is no acceleration in the direction of the B-field. For the further analysis of
this problem we assume v � c0. After performing a second time derivative
for e.g. the x components we can substitute the y components and we get
for vx:

v̈x =
q

me

v̇yBz = −
(
qBz

me

)2

vx (2.9)

which is the well know equation for an harmonic oscillator with the charac-
teristic frequency Ω = |q|Bz/me and the general solution:

vx = v0 cos(Ωt) + v1 sin(Ωt) (2.10)
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with the two constants v0 and v1 terminated by our choice of the initial
velocity for t = 0 as v(t = 0) = v0ex + 0ey + 0ez, leading to

vx = v0 cos(Ωt) (2.11)

for the x component of the velocity. Inserting this in Equ. (2.8) leads to

v̇y = − q

|q|
Ωv0 cos(Ωt) (2.12)

which gives

vy = − q

|q|
v0 sin(Ωt) (2.13)

where we used again our choice of the initial velocity. Equ. (2.11) and (2.13)
describe the velocity of a charged particle in a constant magnetic field. An
initially present velocity vz is not modified by a magnetic field parallel to
this velocity component. So in general we can write:

v = v⊥0 cos(Ωt)ex −
q

|q|
v⊥0 sin(Ωt)ey + vzez (2.14)

To get the trajectory of the particle we integrate Equ. (2.14) resulting in

r = r0 +
v⊥0

Ω
sin(Ωt)ex +

q

|q|
v⊥0

Ω
cos(Ωt)ey + vztez (2.15)

This is a circular trajectory with radius ρ = v⊥0/Ω., which is referred to as
Gyroradius, and Ω is known as the Gyrofrequency. Equ. (2.15) shows that
the sign of the charge defines the direction of the rotation. Ions rotate an-
ticlockwise and electrons clockwise about the magnetic field (see figure 2.2).
Note that a particle gyrating as described here produces a magnetic field
counteracting the external field resulting in a reduction of the total field.
This is the property of a magnetic material which is Diagmagnetic.

Discussion task 6: Calculate the energy gain of a charged particle in
a constant magnetic field

2.1.3 E=const, B=const

When both electric and magnetic fields are present the motion of a charged
particle it the superposition of the acceleration in the E direction and a
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Figure 2.2: Gyro centre (x0, y0 and orbit)

circular motion perpendicular to the B direction. It is important for the
further analysis to split the the electric field into a component parallel to
the magnetic field E‖ and a component perpendicular to the magnetic field
E⊥. As we saw in the last section the velocity component of a particle in
the direction of the magnetic field is not affected by it. So there is just E‖
to change the velocity, as we described in the first case. For the remaining
perpendicular field we will solve this problem with a common trick, by finding
a coordinate system in which E⊥ = 0. We restrict ourselves again to the
non-relativistic case where the E field is transformed to a moving coordinate
system as E′ = E + vd × B. The goal is now to find this velocity vd. We
multiply this equation with ×B to get

0 = E⊥ ×B + (vd ×B)×B = E⊥ ×B + (vd ·B)B−B2vd (2.16)

We can solve this equation only if we set vd perpendicular to B. With
that assumption we get:

vd =
E⊥ ×B

B2
. (2.17)

This drift, which is termed the E-cross-B drift in plasma physics, is iden-
tical for all plasma species. Inside this frame E⊥ = 0, so this frame can
properly be regarded as the rest frame of the plasma. This also so called
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guiding centre is an important concept in analyzing complicated particle mo-
tions. Here the advantage of this description is obvious: since the electric
field is zero the particle gyrates around the magnetic field at frequency Ω
exactly in the same way as described above for the E=0; B=const case.

Figure 2.3: E×B drift orbit

Hence the full solution for the particle trajectory is:

v = v‖ + vd + vGyration (2.18)

This separation gives us a clue to simplify the description for some cases.
Sometimes when analyzing charged particle motion in non-uniform electro-
magnetic fields, we can somehow neglect the rapid, and relatively uninterest-
ing, gyromotion, and focus, instead, on the far slower motion of the guiding
centre. Clearly, what we need to do in order to achieve this goal is to some-
how average the equation of motion over gyrophase, so as to obtain a reduced
equation of motion for the guiding centre. This method was introduced by
Hans Alfén and in known as guiding centre approximation

2.1.4 Drift due to Gravity or other Forces

Suppose particle is subject to some other force, such as gravity. Write it F
so that

dp

dt
= F + qv ×B = q

(
1

q
F + v ×B

)
(2.19)

This is just like the previous case except with F/q replacing E. The drift
is therefore

vd =
1

q

F×B

B2
. (2.20)
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In this case, if force on electrons and ions is same, they drift in opposite
directions. This general formula can be used to get the drift velocity in some
other cases of interest.

2.2 Motion in nonuniform fields

In the case of nonuniform, inhomogeneous and/or time dependent electro-
magnetic field the equation of motion becomes nonlinear and can be solved
in general only by numeric integration. However in some cases we can use the
guiding centre approximation to find reasonable solutions. As mentioned be-
fore we can use this approximation if the spacial inhomogeneity is so small or
the time dependence of the fields is so slow, that during one gyro period the
fields can be approximately treated as constant. This is in most laboratory
plasmas possible, but only seldom in interstellar plasmas.

2.2.1 E=0, B=Non-Uniform

Lets assume that the magnetic field varies only along one spacial coordinate.
Then we get orbits that look qualitatively similar to the E ⊥ B

Figure 2.4: ∇B-Drift

Curvature of orbit is greater where B is greater causing loop to be small on
that side. Result is a drift perpendicular to both B and ∇B Notice, though,
that electrons and ions go in opposite directions (unlike the E×B case). We
try to find a decomposition of the velocity as before into v = vd + vL where
vd is constant. We shall find that this can be done only approximately, by
assuming that the the velocity is small compared to c0 and the field gradient



2.2 Motion in nonuniform fields 33

is small compared to the gyroradius ρ. i.e.,

ρ� B/|∇B| (2.21)

in which case we can express the field approximately as the first two terms
in a Taylor expression:

B ≈ B0 + (r · ∇)B (2.22)

Then substituting the decomposed velocity we get:

dp

dt
= m

dvL
dt

= qv ×B = q (vL ×B0 + vd ×B0 + (vL + vd)× (r · ∇)B)

(2.23)
or

0 = vd ×B0 + vL × (r · ∇)B + vd × (r · ∇)B (2.24)

Keep in mind that vd/vL � 1, like r|∇B|/B � 1 Therefore the last term
here is much smaller than the first two and can be dropped (e.g. the last
term is of second order, whereas the first two are of first order). The problem
here is that vL and rL are periodic. Similar to the velocity, we substitute for
r = r0 + rL so we get

0 = vd ×B0 + vL × (rL · ∇)B + vLd × (r0 · ∇)B (2.25)

We now average over a cyclotron period Ω. The last term is ∝ exp(iΩt) so
it averages to zero. So this it the remaining equation we have to solve:

0 = vd ×B0 + 〈vL × (rL · ∇)B〉 (2.26)

To perform the time average denote here with the brackets 〈...〉 we use

rL =
(
xL

yL

)
=

v⊥
Ω

(
sin(Ωt)

q
|q| cos(Ωt)

)
vL =

(
vxL

vyL

)
= v⊥

(
cos(Ωt)

− q
|q| sin(Ωt)

)
So [vL × (rL · ∇)B]x = vyy

dB

dy

[vL × (rL · ∇)B]y = −vxy
dB

dy

(2.27)
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(Taking ∇B to be in the y-direction). Then

〈vyy〉 = −〈cos Ωt sin Ωt〉v
2
⊥

Ω
= 0

〈vxy〉 = 〈cos2 Ωt〉 v
2
⊥q

Ω|q|
=

v2
⊥q

2Ω|q|

(2.28)

So

〈vL × (rL · ∇)B〉 = − v2
⊥q

2Ω|q|
∇B (2.29)

Substitute in the remaining equation we had to solve:

0 = vd ×B0 −
v2
⊥q

2Ω|q|
∇B (2.30)

and solve as before to get

vd =

(
− v2⊥

2Ω|q|∇B
)
×B

B2
=

v2
⊥q

2Ω|q|
B×∇B

B2
(2.31)

or equivalently

vd =
1

q

mv2
⊥

2B

B×∇B

B2
(2.32)

This is called the ”Grad B drift”.

2.2.2 E=0, B ‖ ∇B; The Mirror Effect of Parallel Field
Gradients

In the situation outlined in Figure 2.5 we have a magnetic field which in-
creases in the direction of the field lines. Again we are only interested in the
average movements of the particles and not on the detailed gyration. There
is a net force on average along B which is.

〈F‖〉 = −|qv ×B| sinα = −|q|v⊥B sinα
with sinα = −Br/B

(2.33)

To calculate Br as function of Bz we use Maxwell’s Equation ∇ · B = 0.
We assume here rotation symmetry along the z-axis as well as that the field


