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Preface

The 10th edition of Microeconomic Theory: Basic Principles and Extensions represents both
a continuation of a highly successful treatment of microeconomics at a relatively advanced
level and a major change from the past. This change, of course, is that Chris Snyder has
joined me as a co-author. His insights have improved all sections of the book, especially with
respect to its coverage of game theory, industrial organization, and models of imperfect
information. Hence in many ways this is a new book, although on matters of style and
pedagogy it retains much of what has made it successful for more than 35 years. This basic
approach is to focus on building intuition about economic models while providing students
with the mathematical tools needed to go further in their studies. The text also seeks to
facilitate that linkage by providing many numerical examples, advanced problems, and
extended discussions of empirical implementation—all of which are intended to show
students how microeconomic theory is used today. New developments have made the field
more exciting than ever, and I hope this edition manages to capture that excitement.

NEW TO THE TENTH EDITION

The primary change to this edition has been the inclusion of three entirely new chapters
written by Chris Snyder:

an extended and more advanced treatment of basic game theory concepts (Chapter 8);
a thoroughly reworked and expanded chapter on models used in industrial organi-
zation theory (Chapter 15); and

e a completely new chapter on asymmetric information that focuses on the principal—
agent problem and modern contract theory (Chapter 18).

The importance of these additions to the overall quality of the text cannot be overstated.
Because the topics covered in these new chapters constitute some of the most important
growth areas in microeconomics, the book is now well positioned for many years into the
future.

Several other chapters of the book have undergone major revisions for this edition.

e A significant amount of material has been added to the chapter on mathematical
background (Chapter 2); new topics include:

o an expanded coverage of integration,
o basic models of dynamic optimization, and
o a brief introduction to mathematical statistics.

e The material on uncertainty and risk aversion has been thoroughly revised and
updated (Chapter 7).

e Much of the theory of the firm, especially of the firm’s demands for inputs, has been
expanded (Chapters 9-11).

Xix
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e The chapter on general equilibrium modeling (Chapter 13) has been thoroughly
reworked with the goal of providing students with more details about how compu-
table general equilibrium models actually work.

e The chapter on capital and time (Chapter 17) has been significantly expanded to
include more on optimal savings behavior and on resource allocation over time.

Numerous minor changes have also been made in the coverage and organization of the
book to ensure that it continues to provide clear and up-to-date coverage of all of the topics
examined.

Two modifications have been made to the text to enhance its linkage to more general
economic literature. First, the problems have been categorized into two types: basic
problems and analytical problems. Whereas the basic problems are intended to reinforce
concepts from the text, the analytical problems are intended to allow the student to go
further by showing them how to obtain results on their own. The number of such problems
has been significantly expanded in this edition. Many of the analytical problems provide
references so that students who wish to pursue the topic can read more.

A second modification of the text has been to expand and rewrite many of the end-of-
chapter Extensions. The common goal of these revised Extensions is to provide students
better linkage between the theoretical material in the text and that material’s use in actual
empirical applications. Therefore, many of the Extensions introduce the functional forms
customarily used as well as some of the econometric issues faced by researchers when using
available data. The Extensions are thus intended to show students the importance of joining
microeconomic theory and econometric practice.

SUPPLEMENTS TO THE TEXT

The thoroughly revised ancillaries for this edition include the following.

e The Solutions Manual and Test Bank (by the text authors). The Solutions Manual
contains comments and solutions to all problems and is available to all adopting
instructors in both print and electronic versions. The Solutions Manual and Test
Bank may be downloaded only by qualified instructors at the textbook support Web
site (www.thomsonedu.com /economics,/nicholson).

e PowerPoint Lecture Presentation Slides (by Linda Ghent, Eastern Illinois University).
PowerPoint slides for each chapter of the text provide a thorough set of outlines
for classroom use or for students as a study aid. Instructors and students may down-
load these slides from the book’s Web site (www.thomsonedu.com/economics/
nicholson).

ONLINE RESOURCES

Thomson South-Western provides students and instructors with a set of valuable online
resources that are an effective complement to this text. Each new copy of the book comes
with a registration card that provides access to Economic Applications and InfoTrac College
Edition.

Economic Applications

The purchase of this new textbook includes complimentary access to South-Western’s
Economic Applications (EconApps) Web site. The EconApps Web site includes a suite of


www.thomsonedu.com/economics/nicholson
www.thomsonedu.com/economics/nicholson
www.thomsonedu.com/economics/nicholson

regularly updated Web features for economics students and instructors: EconDebate
Online, EconNews Online, EconData Online, and EconLinks Online. These resources can
help students deepen their understanding of economic concepts by analyzing current news
stories, policy debates, and economic data. EconApps can also help instructors develop
assignments, case studies, and examples based on real-world issues.

EconDebates Online provides current coverage of economics policy debates; it includes a
primer on the issues, links to background information, and commentaries.

EconNews Online summarizes recent economics news stories and offers questions for
further discussion.

EconData Online presents current and historical economic data with accompanying com-
mentary, analysis, and exercises.

EconLinks Online offers a navigation partner for exploring economics on the Web via a list
of key topic links.

Students buying a used book can purchase access to the EconApps site at http: //econapps
.swlearning.com.

InfoTrac College Edition

The purchase of this new textbook also comes with four months of access to InfoTrac. This
powerful and searchable online database provides access to full text articles from more than
a thousand different publications ranging from the popular press to scholarly journals.
Instructors can search topics and select readings for students, and students can search articles
and readings for homework assignments and projects. The publications cover a variety of
topics and include articles that range from current events to theoretical developments.
InfoTrac College Edition offers instructors and students the ability to integrate scholarship
and applications of economics into the learning process.

ACKNOWLEDGMENTS

In preparation for undertaking this revision, we received very helpful reviews from:

Tibor Besedes, Louisiana State University
Elaine P. Catilina, American University

Yi Deng, Southern Methodist University

Silke Forbes, University of California—San Diego
Joseph P. Hughes, Rutgers University

Qihong Liu, University of Oklahoma

Ragan Petrie, Georgia State University

We have usually tried to follow their good advice, but of course none of these individuals
bears any responsibility for the final outcome.

This edition of the book is the first that was written with my co-author, Chris Snyder of
Dartmouth College. I have been very pleased with the working relationship we have developed
and with Chris’s friendship. I hope many more editions will follow. I am also indebted to the
team at Thomson South-Western and especially to Susan Smart for once again bringing her
organizing and cajoling skills to this edition. During her temporary absence from the project, we
were completely lost.
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Preface

Copyediting this manuscript was, I know, a real chore. Those at Newgen-Austin did a
great job of penetrating our messy manuscripts to obtain something that actually makes
sense. The design of the text by Michelle Kunkler succeeded in achieving two seemingly
irreconcilable goals—making the text both compact and easy to read. Cliff Kallemeyn did a fine
job of keeping the production on track; I especially appreciated the way he coordinated the
copyediting and page production processes.

As always, my Ambherst College colleagues and students deserve some of the credit for this
new edition. Frank Westhoff has been my most faithful user of this text over many years. This
time (with his permission, I think) I actually lifted some of his work on general equilibrium to
significantly improve that portion of the text.

To the list of former students—Mark Bruni, Eric Budish, Adrian Dillon, David Macoy,
Tatyana Mamut, Katie Merrill, Jordan Milev, Doug Norton, and Jeftf Rodman—whose efforts
are still evident I can now add the name of Anoop Menon, who helped me solve problemswhen I
ran out of patience with the algebra.

As always, special thanks again go to my wife Susan; after seeing twenty editions of my
microeconomics texts come and go, she must surely hope that even this good thing must
eventually come to an end. My children (Kate, David, Tory, and Paul) all seem to be living happy
and productive lives despite a severe lack of microeconomic education. As the next generation
(Beth, Sarah, David, Sophia, and Abby) grows older, perhaps they will seek enlightenment—at
least to the extent of wondering what the books dedicated to them are all about.

Walter Nicholson
Ambherst, Massachusetts
June 2007

It was a privilege to collaborate with Walter on this tenth edition. I used this textbook in the
first course I ever taught, as a graduate instructor at MIT, and I have enjoyed using it in my
microeconomics courses in the thirteen years since. I have always appreciated the text’s
ambitious coverage of the concepts and methods used by professional economists as well
as its accessibility to students, which is enhanced by numerous elegant examples together
with Walter’s lucid prose. It was a challenge to maintain this high standard with my con-
tribution—although this was made easier by Walter’s suggestions, patience, and example,
for which I am grateful.

I encourage teachers and students to e-mail me with any comments on the text
(Christopher.M.Snyder@dartmouth.edu).

I would like to add my wholehearted thanks to those whom Walter acknowledged for
contributing to the book. I also thank Gretchen Otto and her colleagues at Newgen—Austin
as well as Matt Darnell for carefully copyediting my portion of the revision. I thank
Dartmouth College for providing the resources and environment that greatly facilitated
writing the book. I thank my colleagues in the economics department for helpful discussions
and understanding.

Committing to such an extensive project is in some sense a family decision. I am
indebted to my wife, Maura, for accommodating the many late nights that were required
and for listening to my monotonous progress reports. I thank my daughters, Clare, Tess,
and Meg, for their good behavior, which expedited the writing process.

Christopher Snyder
Hanover, New Hampshire
June 2007



CHAPTER 1 Economic Models
CHAPTER 2 Mathematics for Microeconomics

This part contains only two chapters. Chapter 1 examines the general philosophy of how economists build
models of economic behavior. Chapter 2 then reviews some of the mathematical tools used in the construction
of these models. The mathematical tools from Chapter 2 will be used throughout the remainder of this book.



This page intentionally left blank



CHAPTER

Economic Models

The main goal of this book is to introduce you to the most important models that economists use to explain
the behavior of consumers, firms, and markets. These models are central to the study of all areas of economics.
Therefore, it is essential to understand both the need for such models and the basic framework used to
develop them. The goal of this chapter is to begin this process by outlining some of the conceptual issues that
determine the ways in which economists study practically every question that interests them.

THEORETICAL MODELS

A modern economy is a complicated entity. Thousands of firms engage in producing millions
of different goods. Many millions of people work in all sorts of occupations and make decisions
about which of these goods to buy. Let’s use peanuts as an example. Peanuts must be harvested
at the right time and shipped to processors who turn them into peanut butter, peanut oil,
peanut brittle, and numerous other peanut delicacies. These processors, in turn, must make
certain that their products arrive at thousands of retail outlets in the proper quantities to meet
demand.

Because it would be impossible to describe the features of even these peanut markets in
complete detail, economists have chosen to abstract from the complexities of the real world
and develop rather simple models that capture the “essentials.” Just as a road map is helpful
even though it does not record every house or every store, economic models of, say, the market
for peanuts are also useful even though they do not record every minute feature of the peanut
economy. In this book we will study the most widely used economic models. We will see that,
even though these models often make heroic abstractions from the complexities of the real
world, they nonetheless capture essential features that are common to all economic activities.

The use of models is widespread in the physical and social sciences. In physics, the notion of
a “perfect” vacuum or an “ideal” gas is an abstraction that permits scientists to study real-world
phenomena in simplified settings. In chemistry, the idea of an atom or a molecule is actually a
simplified model of the structure of matter. Architects use mock-up models to plan buildings.
Television repairers refer to wiring diagrams to locate problems. Economists” models perform
similar functions. They provide simplified portraits of the way individuals make decisions, the
way firms behave, and the way in which these two groups interact to establish markets.

VERIFICATION OF ECONOMIC MODELS

Of course, not all models prove to be “good.” For example, the earth-centered model of
planetary motion devised by Ptolemy was eventually discarded because it proved incapable of
accurately explaining how the planets move around the sun. An important purpose of scientific
investigation is to sort out the “bad” models from the “good.” Two general methods have



Part 1 Introduction

been used for verifying economic models: (1) a direct approach, which seeks to establish the
validity of the basic assumptions on which a modelis based; and (2) an indirect approach, which
attempts to confirm validity by showing that a simplified model correctly predicts real-world
events. To illustrate the basic differences between the two approaches, let’s briefly examine a
model that we will use extensively in later chapters of this book—the model of a firm that seeks
to maximize profits.

The profit-maximization model

The model of a firm seeking to maximize profits is obviously a simplification of reality. It
ignores the personal motivations of the firm’s managers and does not consider conflicts among
them. It assumes that profits are the only relevant goal of the firm; other possible goals, such as
obtaining power or prestige, are treated as unimportant. The model also assumes that the firm
has sufficient information about its costs and the nature of the market to which it sells to
discover its profit-maximizing options. Most real-world firms, of course, do not have this
information readily available. Yet, such shortcomings in the model are not necessarily serious.
No model can exactly describe reality. The real question is whether this simple model has any
claim to being a good one.

Testing assumptions

One test of the model of a profit-maximizing firm investigates its basic assumption: Do firms
really seek maximum profits? Some economists have examined this question by sending ques-
tionnaires to executives, asking them to specify the goals they pursue. The results of such
studies have been varied. Businesspeople often mention goals other than profits or claim they
only do “the best they can” to increase profits given their limited information. On the other
hand, most respondents also mention a strong “interest” in profits and express the view that
profit maximization is an appropriate goal. Testing the profit-maximizing model by testing its
assumptions has therefore provided inconclusive results.

Testing predictions

Some economists, most notably Milton Friedman, deny that a model can be tested by inquiring
into the “reality” of its assumptions." They argue that all theoretical models are based on
“unrealistic” assumptions; the very nature of theorizing demands that we make certain ab-
stractions. These economists conclude that the only way to determine the validity of a model is
to see whether it is capable of predicting and explaining real-world events. The ultimate test of
an economic model comes when it is confronted with data from the economy itself.

Friedman provides an important illustration of that principle. He asks what kind of a theory
one should use to explain the shots expert pool players will make. He argues that the laws of
velocity, momentum, and angles from theoretical physics would be a suitable model. Pool
players shoot shots as if they follow these laws. But most players asked whether they precisely
understand the physical principles behind the game of pool will undoubtedly answer that they
do not. Nonetheless, Friedman argues, the physical laws provide very accurate predictions and
therefore should be accepted as appropriate theoretical models of how experts play pool.

A test of the profit-maximization model, then, would be provided by predicting the
behavior of real-world firms by assuming that these firms behave as 7f they were maximizing
profits. (See Example 1.1 later in this chapter.) If these predictions are reasonably in accord
with reality, we may accept the profit-maximization hypothesis. However, we would reject

See M. Friedman, Essays in Positive Economics (Chicago: University of Chicago Press, 1953), chap. 1. For an alternative view
stressing the importance of using “realistic” assumptions, see H. A. Simon, “Rational Decision Making in Business
Organizations,” American Economic Review 69, no. 4 (September 1979): 493-513.
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the model if real-world data secem inconsistent with it. Hence, the ultimate test of either
theory is its ability to predict real-world events.

Importance of empirical analysis

The primary concern of this book is the construction of theoretical models. But the goal of
such models is always to learn something about the real world. Although the inclusion of a
lengthy set of applied examples would needlessly expand an already bulky book,” the Ex-
tensions included at the end of many chapters are intended to provide a transition between
the theory presented here and the ways in which that theory is actually applied in empirical
studies.

GENERAL FEATURES OF ECONOMIC MODELS

The number of economic models in current use is, of course, very large. Specific assumptions
used and the degree of detail provided vary greatly depending on the problem being addressed.
The models employed to explain the overall level of economic activity in the United States, for
example, must be considerably more aggregated and complex than those that seek to interpret
the pricing of Arizona strawberries. Despite this variety, however, practically all economic
models incorporate three common elements: (1) the ceteris paribus (other things the same)
assumption; (2) the supposition that economic decision makers seek to optimize something;
and (3) a careful distinction between “positive” and “normative” questions. Because we will
encounter these elements throughout this book, it may be helpful at the outset to briefly
describe the philosophy behind each of them.

The ceteris paribus assumption

As in most sciences, models used in economics attempt to portray relatively simple rela-
tionships. A model of the market for wheat, for example, might seek to explain wheat prices
with a small number of quantifiable variables, such as wages of farmworkers, rainfall, and
consumer incomes. This parsimony in model specification permits the study of wheat pricing in
a simplified setting in which it is possible to understand how the specific forces operate.
Although any researcher will recognize that many “outside” forces (presence of wheat diseases,
changes in the prices of fertilizers or of tractors, or shifts in consumer attitudes about eating
bread) affect the price of wheat, these other forces are held constant in the construction of the
model. It is important to recognize that economists are 7ot assuming that other factors do not
affect wheat prices; rather, such other variables are assumed to be unchanged during the period
of study. In this way, the effect of only a few forces can be studied in a simplified setting. Such
ceteris paribus (other things equal) assumptions are used in all economic modeling.

Use of the ceteris paribus assumption does pose some difficulties for the verification of
economic models from real-world data. In other sciences, such problems may not be so severe
because of the ability to conduct controlled experiments. For example, a physicist who wishes
to test a model of the force of gravity probably would not do so by dropping objects from the
Empire State Building. Experiments conducted in that way would be subject to too many
extraneous forces (wind currents, particles in the air, variations in temperature, and so forth) to
permit a precise test of the theory. Rather, the physicist would conduct experiments in a
laboratory, using a partial vacuum in which most other forces could be controlled or elim-
inated. In this way, the theory could be verified in a simple setting, without considering all the
other forces that affect falling bodies in the real world.

2For an intermediate-level text containing an extensive set of real-world applications, sece W. Nicholson and C. Snyder,
Intermediate Microeconomics and Its Application, 10th ed. (Mason, OH: Thomson/Southwestern, 2007).
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With a few notable exceptions, economists have not been able to conduct controlled
experiments to test their models. Instead, economists have been forced to rely on various
statistical methods to control for other forces when testing their theories. Although these
statistical methods are as valid in principle as the controlled experiment methods used by other
scientists, in practice they raise a number of thorny issues. For that reason, the limitations and
precise meaning of the ceteris paribus assumption in economics are subject to greater con-
troversy than in the laboratory sciences.

Optimization assumptions

Many economic models start from the assumption that the economic actors being studied are
rationally pursuing some goal. We briefly discussed such an assumption when investigating the
notion of firms maximizing profits. Example 1.1 shows how that model can be used to make
testable predictions. Other examples we will encounter in this book include consumers maxi-
mizing their own well-being (utility), firms minimizing costs, and government regulators
attempting to maximize public welfare. Although, as we will show, all of these assumptions are
unrealistic, all have won widespread acceptance as good starting places for developing economic
models. There seem to be two reasons for this acceptance. First, the optimization assumptions
are very useful for generating precise, solvable models, primarily because such models can draw
on a variety of mathematical techniques suitable for optimization problems. Many of these
techniques, together with the logic behind them, are reviewed in Chapter 2. A second reason for
the popularity of optimization models concerns their apparent empirical validity. As some of our
Extensions show, such models seem to be fairly good at explaining reality. In all, then, opti-
mization models have come to occupy a prominent position in modern economic theory.

EXAMPLE 1.1 Profit Maximization

The profit-maximization hypothesis provides a good illustration of how optimization as-
sumptions can be used to generate empirically testable propositions about economic
behavior. Suppose that a firm can sell all the output that it wishes at a price of p per unit and
that the total costs of production, C, depend on the amount produced, 4. Then, profits are
given by

profits = w = pg — C(q). (1.1)

Maximization of profits consists of finding that value of 4 which maximizes the profit ex-
pression in Equation 1.1. This is a simple problem in calculus. Differentiation of Equation 1.1
and setting that derivative equal to 0 give the following first-order condition for a maximum:

@:p—C'(q):O or p=C'(gq). (1.2)
Ay
In words, the profit-maximizing output level (4*) is found by selecting that output level for
which price is equal to marginal cost, C'(g). This result should be familiar to you from your
introductory economics course. Notice that in this derivation the price for the firm’s output is
treated as a constant because the firm is a price taker.
Equation 1.2 is only the first-order condition for a maximum. Taking account of the
second-order condition can help us to derive a testable implication of this model. The second-
order condition for a maximum is that at 4* it must be the case that

A%

yrae —-C"(q) <0 or C"(g%)>0. (1.3)
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That is, marginal cost must be increasing at g* for this to be a true point of maximum profits.

Our model can now be used to “predict” how a firm will react to a change in price. To do so,
we differentiate Equation 1.2 with respect to price (), assuming that the firm continues to
choose a profit-maximizing level of 4:

d[p_ C/(q*) = O] o "ok dq* _
Rearranging terms a bit gives
ag* 1
——=——-7>0. (1.5)
ap  C'(q%)

Here the final inequality again reflects the fact that marginal cost must be increasing if 4 is to be
a true maximum. This then is one of the testable propositions of the profit-maximization
hypothesis—if other things do not change, a price-taking firm should respond to an increase in
price by increasing output. On the other hand, if firms respond to increases in price by reducing
output, there must be something wrong with our model.

Although this is a very simple model, it reflects the way we will proceed throughout
much of this book. Specifically, the fact that the primary implication of the model is derived
by calculus, and consists of showing what sign a derivative should have, is the kind of result
we will see many times.

QUERY: In general terms, how would the implications of this model be changed if the price
a firm obtains for its output were a function of how much it sold? That is, how would the
model work if the price-taking assumption were abandoned?

Positive-normative distinction

A final feature of most economic models is the attempt to differentiate carefully between
“positive” and “normative” questions. So far we have been concerned primarily with positive
economiic theories. Such theories take the real world as an object to be studied, attempting to
explain those economic phenomena that are observed. Positive economics seeks to determine
how resources are i fact allocated in an economy. A somewhat different use of economic
theory is normative analysis, taking a definite stance about what should be done. Under the
heading of normative analysis, economists have a great deal to say about how resources should
be allocated. For example, an economist engaged in positive analysis might investigate how
prices are determined in the U.S. health-care economy. The economist also might want to
measure the costs and benefits of devoting even more resources to health care. But when he or
she specifically advocates that more resources should be allocated to health care, the analysis
becomes normative.

Some economists believe that the only proper economic analysis is positive analysis.
Drawing an analogy with the physical sciences, they argue that “scientific” economics should
concern itself only with the description (and possibly prediction) of real-world economic
events. To take moral positions and to plead for special interests are considered to be outside
the competence of an economist acting as such. Other economists, however, believe strict
application of the positive-normative distinction to economic matters is inappropriate. They
believe that the study of economics necessarily involves the researchers’” own views about ethics,
morality, and fairness. According to these economists, searching for scientific “objectivity” in
such circumstances is hopeless. Despite some ambiguity, this book adopts a mainly positivist
tone, leaving normative concerns for you to decide for yourself.
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DEVELOPMENT OF THE ECONOMIC THEORY OF VALUE

Because economic activity has been a central feature of all societies, it is surprising that these
activities were not studied in any detail until recently. For the most part, economic phenomena
were treated as a basic aspect of human behavior that was not sufficiently interesting to deserve
specific attention. Itis, of course, true that individuals have always studied economic activities
with a view toward making some kind of personal gain. Roman traders were not above making
profits on their transactions. But investigations into the basic nature of these activities did not
begin in any depth until the eighteenth century.? Because this book is about economic theory
as it stands today, rather than the history of economic thought, our discussion of the evolution
of economic theory will be brief. Only one area of economic study will be examined in its
historical setting: the theory of value.

Early economic thoughts on value

The theory of value, not surprisingly, concerns the determinants of the “value” of a commodity.
This subject s at the center of modern microeconomic theory and is closely intertwined with the
fundamental economic problem of allocating scarce resources to alternative uses. The logical
place to start is with a definition of the word “value.” Unfortunately, the meaning of this term has
not been consistent throughout the development of the subject. Today we regard value as being
synonymous with the price of a commodity.* Earlier philosopher-economists, however, made a
distinction between the market price of a commodity and its value. The term “value” was then
thought of as being, in some sense, synonymous with “importance,” “essentiality,” or (at times)
“godliness.” Because “price” and “value” were separate concepts, they could differ, and most
carly economic discussions centered on these divergences. For example, St. Thomas Aquinas
believed value to be divinely determined. Since prices were set by humans, it was possible for the
price of a commodity to differ from its value. A person accused of charging a price in excess of a
good’s value was guilty of charging an “unjust” price. For example, St. Thomas believed the
“just” rate of interest to be zero. Any lender who demanded a payment for the use of money was
charging an unjust price and could be—and sometimes was—prosecuted by church officials.

The founding of modern economics

During the latter part of the eighteenth century, philosophers began to take a more scientific
approach to economic questions. The 1776 publication of The Wealth of Nations by Adam
Smith (1723-1790) is generally considered the beginning of modern economics. In his vast,
all-encompassing work, Smith laid the foundation for thinking about market forces in an
ordered and systematic way. Still, Smith and his immediate successors, such as David Ricardo
(1772-1823), continued to distinguish between value and price. To Smith, for example, the
value of a commodity meant its “value in use,” whereas the price represented its “value in
exchange.” The distinction between these two concepts was illustrated by the famous water-
diamond paradox. Water, which obviously has great value in use, has little value in exchange
(it has a low price); diamonds are of little practical use but have a great value in exchange. The
paradox with which early economists struggled derives from the observation that some very
useful items have low prices whereas certain nonessential items have high prices.

3For a detailed treatment of early economic thought, see the classic work by J. A. Schumpeter, History of Economic Analysis
(New York: Oxford University Press, 1954), pt. II, chaps. 1-3.

*This is not completely true when “externalities” are involved and a distinction must be made between private and social
value (see Chapter 19).
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Labor theory of exchange value

Neither Smith nor Ricardo ever satisfactorily resolved the water-diamond paradox. The con-
cept of value in use was left for philosophers to debate, while economists turned their attention
to explaining the determinants of value in exchange (that is, to explaining relative prices). One
obvious possible explanation is that exchange values of goods are determined by what it costs to
produce them. Costs of production are primarily influenced by labor costs—at least this was so
in the time of Smith and Ricardo—and therefore it was a short step to embrace a labor theory of
value. For example, to paraphrase an example from Smith, if catching a deer takes twice the
number of labor hours as catching a beaver, then one deer should exchange for two beavers. In
other words, the price of a deer should be twice that of a beaver. Similarly, diamonds are
relatively costly because their production requires substantial labor input.

To students with even a passing knowledge of what we now call the law of supply and
demand, Smith’s and Ricardo’s explanation must seem incomplete. Didn’t they recognize the
effects of demand on price? The answer to this question is both yes and no. They did observe
periods of rapidly rising and falling relative prices and attributed such changes to demand shifts.
However, they regarded these changes as abnormalities that produced only a temporary
divergence of market price from labor value. Because they had not really developed a theory of
value in use, they were unwilling to assign demand any more than a transient role in deter-
mining relative prices. Rather, long-run exchange values were assumed to be determined solely
by labor costs of production.

The marginalist revolution

Between 1850 and 1880, economists became increasingly aware that to construct an adequate
alternative to the labor theory of value, they had to come to devise a theory of value in use.
During the 1870s, several economists discovered that it is not the total usefulness of a
commodity that helps to determine its exchange value, but rather the usefulness of the last unit
consumed. For example, water is certainly very useful—it is necessary for all life. But, because
water is relatively plentiful, consuming one more pint (ceteris paribus) has a relatively low value
to people. These “marginalists” redefined the concept of value in use from an idea of overall
usefulness to one of marginal, or incremental, usefulness—the usefulness of an additional unit
of a commodity. The concept of the demand for an incremental unit of output was now
contrasted to Smith’s and Ricardo’s analysis of production costs to derive a comprehensive
picture of price determination.’

Marshallian supply-demand synthesis

The clearest statement of these marginal principles was presented by the English economist
Alfred Marshall (1842-1924) in his Principles of Economics, published in 1890. Marshall
showed that demand and supply simultaneously operate to determine price. As Marshall noted,
just as you cannot tell which blade of a scissors does the cutting, so too you cannot say that
cither demand or supply alone determines price. That analysis is illustrated by the famous
Marshallian cross shown in Figure 1.1. In the diagram the quantity of a good purchased per
period is shown on the horizontal axis and its price appears on the vertical axis. The curve DD
represents the quantity of the good demanded per period at each possible price. The curve is
negatively sloped to reflect the marginalist principle that as quantity increases, people are

SRicardo had earlier provided an important first step in marginal analysis in his discussion of rent. Ricardo theorized that as the
production of corn increased, land of inferior quality would be used and this would cause the price of corn to rise. In his
argument Ricardo implicitly recognized that it is the marginal cost—the cost of producing an additional unit—that is relevant
to pricing. Notice that Ricardo implicitly held other inputs constant when discussing diminishing land productivity; that is, he
employed one version of the ceteris paribus assumption.
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FIGURE 1.1 The Marshallian Supply-Demand Cross

Marshall theorized that demand and supply interact to determine the equilibrium price (p*) and the
quantity (g*) that will be traded in the market. He concluded that it is not possible to say that either
demand or supply alone determines price or therefore that either costs or usefulness to buyers alone
determines exchange value.

Price

*

Quantity per period

willing to pay less for the last unit purchased. Itis the value of this last unit that sets the price for
all units purchased. The curve $§shows how (marginal) production costs rise as more output is
produced. This reflects the increasing cost of producing one more unit as total output expands.
In other words, the upward slope of the 8§ curve reflects increasing marginal costs, just as the
downward slope of the DD curve reflects decreasing marginal value. The two curves intersect at
p*, g*. This is an equilibrium point—both buyers and sellers are content with the quantity
being traded and the price at which it is traded. If one of the curves should shift, the equilibrium
point would shift to a new location. Thus price and quantity are simultaneously determined by
the joint operation of supply and demand.

Paradox resolved

Marshall’s model resolves the water-diamond paradox. Prices reflect both the marginal eval-
uation that demanders place on goods and the marginal costs of producing the goods. Viewed
in this way, there is no paradox. Water is low in price because it has both a low marginal value
and a low marginal cost of production. On the other hand, diamonds are high in price because
they have both a high marginal value (because people are willing to pay quite a bit for one
more) and a high marginal cost of production. This basic model of supply and demand lies
behind much of the analysis presented in this book.

General equilibrium models

Although the Marshallian model is an extremely useful and versatile tool, it is a partial
equilibrinm model, looking at only one market at a time. For some questions, this narrowing of
perspective gives valuable insights and analytical simplicity. For other, broader questions, such
a narrow viewpoint may prevent the discovery of important relationships among markets. To
answer more general questions we must have a model of the whole economy that suitably
mirrors the connections among various markets and economic agents. The French economist
Leon Walras (1831-1910), building on a long Continental tradition in such analysis, created
the basis for modern investigations into those broad questions. His method of representing the
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economy by a large number of simultaneous equations forms the basis for understanding the
interrelationships implicit in general equilibrinm analysis. Walras recognized that one cannot
talk about a single market in isolation; what is needed is a model that permits the effects of a
change in one market to be followed through other markets.

EXAMPLE 1.2 Supply-Demand Equilibrium

Although graphical presentations are adequate for some purposes, economists often use
algebraic representations of their models to both clarify their arguments and make them more
precise. As an elementary example, suppose we wished to study the market for peanuts and, on
the basis of statistical analysis of historical data, concluded that the quantity of peanuts
demanded each week (4, measured in bushels) depended on the price of peanuts (p, measured
in dollars per bushel) according to the equation

quantity demanded = g, = 1,000 — 100p. (1.6)

Because this equation for ¢p contains only the single independent variable p, we are implicitly
holding constant all other factors that might affect the demand for peanuts. Equation 1.6
indicates that, if other things do not change, at a price of $5 per bushel people will demand 500
bushels of peanuts, whereas at a price of $4 per bushel they will demand 600 bushels. The
negative coefficient for pin Equation 1.6 reflects the marginalist principle that alower price will
cause people to buy more peanuts.

To complete this simple model of pricing, suppose that the quantity of peanuts supplied
also depends on price:

quantity supplied = g¢ = —125 + 125p. (1.7)

Here the positive coefficient of price also reflects the marginal principle that a higher price will call
forth increased supply—primarily because (as we saw in Example 1.1) it permits firms to incur
higher marginal costs of production without incurring losses on the additional units produced.

Equilibrium price determination. Equation 1.6 and 1.7 therefore reflect our model of price
determination in the market for peanuts. An equilibrium price can be found by setting quantity
demanded equal to quantity supplied:

Ip = 4s (1.8)

or
1,000 — 100p = —125 + 125p (1.9)

or
225p = 1,125, (1.10)

o)
p=5. (1.11)

At a price of $5 per bushel, this market is in equilibrium: at this price people want to
purchase 500 bushels, and that is exactly what peanut producers are willing to supply. This
equilibrium is pictured graphically as the intersection of D and § in Figure 1.2.

A more general model. In order to illustrate how this supply-demand model might be used,
let’s adopt a more general notation. Suppose now that the demand and supply functions are
given by

(continued)
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EXAMPLE 1.2 CONTINUED

FIGURE 1.2 Changing Supply-Demand Equilibria

The initial supply-demand equilibrium is illustrated by the intersection of Dand S (p* = 5, 4% = 500).
When demand shifts to g = 1,450 — 100p (denoted as D”), the equilibrium shifts to p* = 7, 4* = 750.

Price
$)

14.5

10

0 500 750 1000 1450 Quantity per
period (bushels)

gp=a+bp and gg=c+dp (1.12)

where 2 and ¢ are constants that can be used to shift the demand and supply curves,

respectively, and & (<0) and 4 (>0) represent demanders’ and suppliers’ reactions to price.
Equilibrium in this market requires

Ip =19s OrT

(1.13)
a+bp=c+dp.
So, equilibrium price is given by®
x_A-C 1.14
reuTy (1.14)

SEquation 1.14 is sometimes called the “reduced form” for the supply-demand structural model of Equations 1.12 and
1.13. It shows that the equilibrium value for the endogenous variable p ultimately depends only on the exogenous factors
in the model (# and ¢) and on the behavioral parameters & and 4. A similar equation can be calculated for equilibrium
quantity.
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Notice that, in our prior example, # = 1,000, & = —100, ¢ = —125, and 4 = 125, so
~ 1,000 +125 1,125
- 1254100 225 5 (1.15)

X

With this more general formulation, however, we can pose questions about how the equi-
librium price might change if either the demand or supply curve shifted. For example,
differentiation of Equation 1.14 shows that

ftp :d1b>0’

d” ’1 (1.16)
p —

7ty A

That is, an increase in demand (an increase in 2) increases equilibrium price whereas an in-
crease in supply (an increase in ¢) reduces price. This is exactly what a graphical analysis of
supply and demand curves would show. For example, Figure 1.2 shows that when the con-
stant term, 4, in the demand equation increases to 1450, equilibrium price increases to
=7 [= (1,450 + 125)/225].

QUERY: How might you use Equation 1.16 to “predict” how each unit increase in the
constant # affects p*? Does this equation correctly predict the increase in p* when the constant
a increases from 1,000 to 1,450

For example, suppose that the demand for peanuts were to increase. This would cause the
price of peanuts to increase. Marshallian analysis would seek to understand the size of thisincrease
by looking at conditions of supply and demand in the peanut market. General equilibrium
analysis would look not only at that market butalso at repercussions in other markets. A rise in the
price of peanuts would increase costs for peanut butter makers, which would, in turn, affect the
supply curve for peanut butter. Similarly, the rising price of peanuts might mean higher land
prices for peanut farmers, which would aftect the demand curves for all products that they buy.
The demand curves for automobiles, furniture, and trips to Europe would all shift out, and that
might create additional incomes for the providers of those products. Consequently, the effects of
the initial increase in demand for peanuts eventually would spread throughout the economy.
General equilibrium analysis attempts to develop models that permit us to examine such effects in
a simplified setting. Several models of this type are described in Chapter 13.

Production possibility frontier

Here we briefly introduce some general equilibrium ideas by using another graph you should
remember from introductory economics—the production possibility frontier. This graph shows
the various amounts of two goods that an economy can produce using its available resources
during some period (say, one week). Because the production possibility frontier shows two
goods, rather than the single good in Marshall’s model, it is used as a basic building block for
general equilibrium models.

Figure 1.3 shows the production possibility frontier for two goods, food and clothing.
The graph illustrates the supply of these goods by showing the combinations that can be
produced with this economy’s resources. For example, 10 pounds of food and 3 units of
clothing could be produced, or 4 pounds of food and 12 units of clothing. Many other
combinations of food and clothing could also be produced. The production possibility
frontier shows all of them. Combinations of food and clothing outside the frontier cannot
be produced because not enough resources are available. The production possibility frontier
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FIGURE 1.3 Production Possibility Frontier

The production possibility frontier shows the different combinations of two goods that can be
produced from a certain amount of scarce resources. It also shows the opportunity cost of producing
more of one good as the amount of the other good that cannot then be produced. The opportunity
cost at two different levels of clothing production can be seen by comparing points A and B.
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reminds us of the basic economic fact that resources are scarce—there are not enough
resources available to produce all we might want of every good.

This scarcity means that we must choose how much of each good to produce. Figure 1.3
makes clear that each choice has its costs. For example, if this economy produces 10 pounds of
food and 3 units of clothing at point A, producing 1 more unit of clothing would “cost” § pound
of food—increasing the output of clothing by 1 unit means the production of food would have
to decrease by 3 pound. So, the opportunity cost of 1 unit of clothing at point A is 1 pound of food.
On the other hand, if the economy initially produces 4 pounds of food and 12 units of clothing
at point B, it would cost 2 pounds of food to produce 1 more unit of clothing. The opportunity
cost of 1 more unit of clothing at point B has increased to 2 pounds of food. Because more units
of clothing are produced at point B than at point A, both Ricardo’s and Marshall’s ideas
of increasing incremental costs suggest that the opportunity cost of an additional unit of
clothing will be higher at point B than at point A. This effect is shown by Figure 1.3.

The production possibility frontier provides two general equilibrium insights that are not
clear in Marshall’s supply and demand model of a single market. First, the graph shows that
producing more of one good means producing less of another good because resources are scarce.
Economists often (perhaps too often!) use the expression “there is no such thing as a free lunch”
to explain that every economic action has opportunity costs. Second, the production possibility
frontier shows that opportunity costs depend on how much of each good is produced. The
frontier is like a supply curve for two goods: it shows the opportunity cost of producing more of
one good as the decrease in the amount of the second good. The production possibility frontier is
therefore a particularly useful tool for studying several markets at the same time.
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EXAMPLE 1.3 The Production Possibility Frontier and Economic Inefficiency
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General equilibrium models are good tools for evaluating the efficiency of various economic
arrangements. As we will see in Chapter 13, such models have been used to assess a wide variety
of policies such as trade agreements, tax structures, and environmental regulation. In this
simple example, we explore the idea of efficiency in its most elementary form.

Suppose that an economy produces two goods, x and y, using labor as the only input.The
production function for good x is x = /%° (where /, is the quantity of labor used in x
production) and the production function for good y is y = 212‘5. Total labor available is
constrained by I, + /, < 200. Construction of the production possibility frontier in this
economy is extremely simple:

L +1,= x*+0.25y*> < 200 (1.17)

if the economy is to be producing as much as possible (which, after all, is why it’s called a
“frontier”). Equation 1.17 shows that the frontier here has the shape of a quarter ellipse—its
concavity derives from the diminishing returns exhibited by each production function.

Opportunity cost. Assuming this economy is on the frontier, the opportunity cost of good y
in terms of good & can be derived by solving for y as

32 =800 — 45> or y=V800— 4x2 =[800 — 4x?|°® (1.18)
and then differentiating this expression:
-4
A _ 0.5[800 — 4x%] 5 (—8x) = . (1.19)
dx y
Suppose, for example, labor is equally allocated between the two goods. Then x = 10,y = 20,
and dy/dx = —4(10)/20 = —2. With this allocation of labor, each unit increase in x output
would require a reduction in y of 2 units. This can be verified by considering a slightly different

allocation, /, = 101 and /, = 99. Now production is x = 10.05 and y = 19.9. Moving to this
alternative allocation would have

Ay  (199-20) 01

-2

Ax  (10.05-10) 0.05

b

which is precisely what was derived from the calculus approach.

Concavity. Equation 1.19 clearly illustrates the concavity of the production possibility frontier.
The slope of the frontier becomes steeper (more negative ) as x output increases and y output falls.
For example, if labor is allocated so that /, = 144 and /, = 56, then outputs are x = 12 and
vy~ 15andsody/dx = —4(12)/15 = —3.2. With expanded x production, the opportunity cost
of one more unit of x increases from 2 to 3.2 units of y.

Inefficiency. If an cconomy operates inside its production possibility frontier, it is operating
inefficiently. Moving outward to the frontier could increase the output of both goods. In this
book we will explore many reasons for such inefficiency. These usually derive from a failure of
some market to perform correctly. For the purposes of this illustration, let’s assume that the labor
market in this economy does not work well and that 20 workers are permanently unemployed.
Now the production possibility frontier becomes

x% + 0.25y% = 180, (1.20)

(continued)
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EXAMPLE 1.3 CONTINUED

and the output combinations we described previously are no longer feasible. For example, if
x = 10 then y outputisnow y = 17.9. The loss of about 2.1 units of y is a measure of the cost of
the labor market inefficiency. Alternatively, if the labor supply of 180 were allocated evenly
between the production of the two goods then we would have x ~ 9.5 and y ~ 19, and the
inefficiency would show up in both goods’ production—more of both goods could be pro-
duced if the labor market inefficiency were resolved.

QUERY: How would the inefficiency cost of labor market imperfections be measured solely
in terms of x production in this model? How would it be measured solely in terms of y
production? What would you need to know in order to assign a single number to the
efficiency cost of the imperfection when labor is equally allocated to the two goods?

Welfare economics

Inaddition to their use in examining positive questions about how the economy operates, the tools
used in general equilibrium analysis have also been applied to the study of normative questions
about the welfare properties of various economic arrangements. Although such questions were a
major focus of the great eighteenth- and nineteenth-century economists (Smith, Ricardo, Marx,
Marshall, and so forth), perhaps the most significant advances in their study were made by the
British economist Francis Y. Edgeworth (1848-1926) and the Italian economist Vilfredo Pareto
(1848-1923) in the early years of the twentieth century. These economists helped to provide a
precise definition for the concept of “economic efficiency” and to demonstrate the conditions
under which markets will be able to achieve that goal. By clarifying the relationship between the
allocation pricing of resources, they provided some support for the idea, first enunciated by Adam
Smith, that properly functioning markets provide an “invisible hand” that helps allocate resources
efficiently. Later sections of this book focus on some of these welfare issues.

MODERN DEVELOPMENTS

Research activity in economics expanded rapidly in the years following World War I1. A major
purpose of this book is to summarize much of this research. By illustrating how economists
have tried to develop models to explain increasingly complex aspects of economic behavior,
this book seeks to help you recognize some of the remaining unanswered questions.

The mathematical foundations of economic models

A major postwar development in microeconomic theory was the clarification and formalization
of the basic assumptions that are made about individuals and firms. The first landmark in this
development was the 1947 publication of Paul Samuelson’s Foundations of Economic Analysis,
in which the author (the first American Nobel Prize winner in economics) laid out a number of
models of optimizing behavior.” Samuelson demonstrated the importance of basing behav-
ioral models on well-specified mathematical postulates so that various optimization techniques
from mathematics could be applied. The power of his approach made it inescapably clear that
mathematics had become an integral part of modern economics. In Chapter 2 of this book we
review some of the mathematical concepts most often used in microeconomics.

"Paul A. Samuelson, Foundations of Economic Analysis (Cambridge, MA: Harvard University Press, 1947).



Chapter 1  Economic Models

New tools for studying markets

A second feature that has been incorporated into this book is the presentation of a number of
new tools for explaining market equilibria. These include techniques for describing pricing in
single markets, such as increasingly sophisticated models of monopolistic pricing or models of
the strategic relationships among firms that use game theory. They also include general
equilibrium tools for simultaneously exploring relationships among many markets. As we shall
see, all of these new techniques help to provide a more complete and realistic picture of how
markets operate.

The economics of uncertainty and information

A final major theoretical advance during the postwar period was the incorporation of uncertainty
and imperfect information into economic models. Some of the basic assumptions used to study
behavior in uncertain situations were originally developed in the 1940s in connection with the
theory of games. Later developments showed how these ideas could be used to explain why
individuals tend to be adverse to risk and how they might gather information in order to reduce
the uncertainties they face. In this book, problems of uncertainty and information enter the
analysis on many occasions.

Computers and empirical analysis

One final aspect of the postwar development of microeconomics should be mentioned—the
increasing use of computers to analyze economic data and build economic models. As computers
have become able to handle larger amounts of information and carry out complex mathematical
manipulations, economists’ ability to test their theories has dramatically improved. Whereas
previous generations had to be content with rudimentary tabular or graphical analyses of real-
world data, today’s economists have available a wide variety of sophisticated techniques together
with extensive microeconomic data with which to test their models. To examine these tech-
niques and some of their limitations would be beyond the scope and purpose of this book. But,
Extensions at the end of most chapters are intended to help you start reading about some of these
applications.

SUMMARY

17

This chapter provided background on how economists ap-
proach the study of the allocation of resources. Much of the
material discussed here should be familiar to you from intro-
ductory economics. In many respects, the study of economics
represents acquiring increasingly sophisticated tools for ad-
dressing the same basic problems. The purpose of this book
(and, indeed, of most upper-level books on economics) is to
provide you with more of these tools. As a starting place, this
chapter reminded you of the following points:

Economics is the study of how scarce resources are al-
located among alternative uses. Economists seek to
develop simple models to help understand that process.
Many of these models have a mathematical basis be-
cause the use of mathematics offers a precise shorthand for
stating the models and exploring their consequences.

The most commonly used economic model is the
supply-demand model first thoroughly developed by

Alfred Marshall in the latter part of the nineteenth
century. This model shows how observed prices can be
taken to represent an equilibrium balancing of the
production costs incurred by firms and the willingness
of demanders to pay for those costs.

Marshall’s model of equilibrium is only “partial”—that
is, it looks only at one market at a time. To look at many
markets together requires an expanded set of general
equilibrium tools.

Testing the validity of an economic model is perhaps the
most difficult task economists face. Occasionally, a
model’s validity can be appraised by asking whether
it is based on “reasonable” assumptions. More often,
however, models are judged by how well they can explain
economic events in the real world.
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SUGGESTIONS FOR FURTHER READING

On Methodology

Blaug, Mark, and John Pencavel. The Methodology of Econom-
ics: Or How Economists Explain, 2nd ed. Cambridge: Cam-
bridge University Press, 1992.

A revised and expanded version of a classic study on economic meth-

odology. Ties the discussion to more general issues in the philosophy of

science.
Boland, Lawrence E. “A Critique of Friedman’s Critics.”
Journal of Economic Literature (June 1979): 503-22.

Good summary of criticisms of positive approaches to economics

and of the role of empirical verification of assumptions.
Friedman, Milton. “The Methodology of Positive Econom-
ics.” In Essays in Positive Economics, pp. 3—43. Chicago:
University of Chicago Press, 1953.

Basic statement of Friedman'’s positivist views.

Harrod, Roy F. “Scope and Method in Economics.” Economic
Journal48 (1938): 383-412.

Classic statement of appropriate role for economic modeling.
Hausman, David M., and Michael S. McPherson. Economic
Analysis, Moral Philosophy, and Public Policy, 2nd ed.
Cambridge: Cambridge University Press, 2006.

The authors stress their belief that consideration of issues in moral

philosophy can improve economic analysis.

McCloskey, Donald N. If You’re So Smart: The Narrative of
Economic Expertise. Chicago: University of Chicago Press,
1990.

Discussion of McCloskey's view that economic persuasion depends on

rhetoric as much as on science. For an interchange on this topic, see

also the articles in the Journal of Economic Literature, June 1995.
Sen, Amartya. On Ethics and Economics. Oxford: Blackwell
Reprints, 1989.

The author seeks to bridge the gap between economics and ethical

studies. This is a reprint of a classic study on this topic.

Primary Sources on the History of Economics

Edgeworth, F. Y. Mathematical Psychics. London: Kegan Paul,
1881.
Initial investigations of welfare economics, including rudimentary notions
of economic efficiency and the contract curve.
Marshall, A. Principles of Economics, 8th ed. London: Mac-
millan & Co., 1920.
Complete summary of neoclassical view. A long-running, popular
text. Detailed mathematical appendix.

Marx, K. Capital. New York: Modern Library, 1906.
Full development of labor theory of value. Discussion of “transforma-
tion problem” provides a (perhaps faulty) start for general equilibrium
analysis. Presents fundamental criticisms of institution of private
property.
Ricardo, D. Principles of Political Economy and Taxation.
London: J. M. Dent & Sons, 1911.
Very analytical, tightly written work. Pioneer in developing careful
analysis of policy questions, especially trade-related issues. Discusses
first basic notions of marginalism.
Smith, A. The Wealth of Nations. New York: Modern Library,
1937.
First great economics classic. Very long and detailed, but Smith had
the first word on practically every economic matter. This edition has
helpful marginal notes.
Walras, L. Elements of Pure Economics. Translated by W. Jafté.
Homewood, IL: Richard D. Irwin, 1954.

Beginnings of general equilibrium theory. Rather difficult reading.

Secondary Sources on the History
of Economics

Backhouse, Roger E. The Ordinary Business of Life: The History
of Economics from the Ancient World to the 21st Century.
Princeton, NJ: Princeton University Press, 2002.

An iconoclastic history. Quite good on the earliest economic ideas, but

some blind spots on recent uses of mathematics and econometrics.
Blaug, Mark. Ecomomic Theory in Retrospect, 5th ed.
Cambridge: Cambridge University Press, 1997.

Very complete summary stressing analytical issues. Excellent "Readers

Guides” to the classics in each chapter.
Heilbroner, Robert L. The Worldly Philosophers, 7th ed. New
York: Simon & Schuster, 1999.

Fascinating, easy-to-read biographies of leading economists. Chap-

ters on Utopian Socialists and Thorstein Veblen highly recommended.
Keynes, John M. Essays in Biography. New York: W. W.
Norton, 1963.

Essays on many famous persons (Lloyd George, Winston Churchill, Leon

Trotsky) and on several economists (Malthus, Marshall, Edgeworth, F. P.

Ramsey, and Jevons). Shows the true gift of Keynes as a writer.
Schumpeter, J. A. History of Economic Analysis. New York:
Oxford University Press, 1954.

Encyclopedic treatment. Covers all the famous and many not-so-famous

economists. Also briefly summarizes concurrent developments in other

branches of the social sciences.
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Mathematics for Microeconomics

Microeconomic models are constructed using a wide variety of mathematical techniques. In this chapter we
provide a brief summary of some of the most important techniques that you will encounter in this book. A major
portion of the chapter concerns mathematical procedures for finding the optimal value of some function.
Because we will frequently adopt the assumption that an economic actor seeks to maximize or minimize some
function, we will encounter these procedures (most of which are based on differential calculus) many times.
After our detailed discussion of the calculus of optimization, we turn to four topics that are covered more
briefly. First, we look at a few special types of functions that arise in economic problems. Knowledge of
properties of these functions can often be very helpful in solving economic problems. Next, we provide a
brief summary of integral calculus. Although integration is used in this book far less frequently than is
differentiation, we will nevertheless encounter several situations where we will want to employ integrals to
measure areas that are important to economic theory or to add up outcomes that occur over time or across
many individuals. One particular use of integration is to examine problems in which the objective is to
maximize a stream of outcomes over time. Our third added topic focuses on techniques to be used for such
problems in dynamic optimization. Finally, Chapter 2 concludes with a brief summary of mathematical
statistics, which will be particularly useful in our study of economic behavior in uncertain situations.

MAXIMIZATION OF A FUNCTION OF ONE VARIABLE

Let’s start our study of optimization with a simple example. Suppose that a manager of a firm
desires to maximize' the profits received from selling a particular good. Suppose also that the
profits () received depend only on the quantity () of the good sold. Mathematically,

= f(qg). (2.1)

Figure 2.1 shows a possible relationship between 7 and 4. Clearly, to achieve maximum
profits, the manager should produce output 4%, which yields profits w*. If a graph such as
that of Figure 2.1 were available, this would seem to be a simple matter to be accomplished
with a ruler.

Suppose, however, as is more likely, the manager does not have such an accurate picture
of the market. He or she may then try varying 4 to see where a maximum profit is obtained.
For example, by starting at g,, profits from sales would be 1. Next, the manager may try
output ¢,, observing that profits have increased to m,. The commonsense idea that profits
have increased in response to an increase in 4 can be stated formally as

T, — T

>0 or Am >0, (2.2)
b~ N Aq

"Here we will generally explore maximization problems. A virtually identical approach would be taken to study minimiza-
tion problems because maximization of f(x) is equivalent to minimizing —f(x).

19
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FIGURE 2.1 Hypothetical Relationship between Quantity Produced and Profits

If a manager wishes to produce the level of output that maximizes profits, then 4* should be
produced. Notice that at 4%, dw/dg = 0.

am

Ll w=f(q)

m "
i i
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q, q, q* g, Quantity

where the A notation is used to mean “the change in” 7 or 4. As long as Aw/Ag is positive,
profits are increasing and the manager will continue to increase output. For increases in
output to the right of 4, however, Am/Agq will be negative, and the manager will realize that
a mistake has been made.

Derivatives

As you probably know, the limit of At /Agq for very small changes in 4 is called the derivative
of the function, 7 = f(gq), and is denoted by dw/dq or df /dgq or f'(g). More formally, the
derivative of a function m = f(g) at the point g, is defined as

dn_df . flp+h) —fln)
dq_dq_ilg(} ) . (2.3)

Notice that the value of this ratio obviously depends on the point g, that is chosen.

Value of the derivative at a point

A notational convention should be mentioned: Sometimes one wishes to note explicitly the
point at which the derivative is to be evaluated. For example, the evaluation of the derivative
at the point g = ¢, could be denoted by

dw

Fm (2.4)

q:qll
At other times, one is interested in the value of dm/dg for all possible values of 4 and no

explicit mention of a particular point of evaluation is made.
In the example of Figure 2.1,

dm
dq

>0,
=N

whereas
an
Ay
What is the value of dw/dq at 4*? It would seem to be 0, because the value is positive for
values of g less than 4* and negative for values of g4 greater than 4*. The derivative is the

slope of the curve in question; this slope is positive to the left of 4* and negative to the right
of g*. At the point g%, the slope of £(g) is 0.

< 0.
=13
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First-order condition for a maximum

This result is quite general. For a function of one variable to attain its maximum value at some
point, the derivative at that point (if it exists) must be 0. Hence, if a manager could estimate
the function £(g) from some sort of real-world data, it would theoretically be possible to find
the point where A4f /dq = 0. At this optimal point (say, %),

af
- =0. (2.5)
aq =g

Second-order conditions

An unsuspecting manager could be tricked, however, by a naive application of this first-
derivative rule alone. For example, suppose that the profit function looks like that shown in
either Figure 2.2a or 2.2b. If the profit function is that shown in Figure 2.2a, the manager, by
producing where dm/dg = 0, will choose point 4. This point in fact yields minimum,
not maximum, profits for the manager. Similarly, if the profit function is that shown in
Figure 2.2, the manager will choose point g, which, although it yields a profit greater than
that for any output lower than 4, is certainly inferior to any output greater than g;. These
situations illustrate the mathematical fact that dw/dg =0 is a necessary condition for a
maximum, but not a sufficient condition. To ensure that the chosen point is indeed a
maximum point, a second condition must be imposed.

Intuitively, this additional condition is clear: The profit available by producing either a bit
more or a bit less than 4™ must be smaller than that available from g*. If this is not true,
the manager can do better than 4. Mathematically, this means that dm/dg must be greater

FIGURE 2.2 Two Profit Functions That Give Misleading Results If the First Derivative
Rule Is Applied Uncritically

21

In (a), the application of the first derivative rule would result in point 47 being chosen. This point is
in fact a point of minimum profits. Similarly, in (b), output level 4; would be recommended by the
first derivative rule, but this point is inferior to all outputs greater than g;. This demonstrates
graphically that finding a point at which the derivative is equal to 0 is a necessary, but not a sufficient,
condition for a function to attain its maximum value.

q; Quantity q,
(@ (b)

Quantity
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than 0 for g < 4% and must be less than 0 for g > g*. Therefore, at 4%, dmw/dg must be
decreasing. Another way of saying this is that the derivative of 4m/dg must be negative at g*.

Second derivatives
The derivative of a derivative is called a second derivative and is denoted by

A?m azf
r72 or pra or f(q).

The additional condition for 4™ to represent a (local) maximum is therefore
2w
dg?

where the notation is again a reminder that this second derivative is to be evaluated at g*.

Hence, although Equation 2.5 (dw/dgq = 0) is a necessary condition for a maximum, that
equation must be combined with Equation 2.6 (d?w/dg? < 0) to ensure that the point is a
local maximum for the function. Equations 2.5 and 2.6 together are therefore sufficient
conditions for such a maximum. Of course, it is possible that by a series of trials the manager
may be able to decide on g* by relying on market information rather than on mathematical
reasoning (remember Friedman’s pool-player analogy). In this book we shall be less interest-
ed in how the point is discovered than in its properties and how the point changes when

conditions change. A mathematical development will be very helpful in answering these
questions.

" <0, (2.6)

*

=7

=1

Rules for finding derivatives
Here are a few familiar rules for taking derivatives. We will use these at many places in this book.

1. If bis a constant, then

db
T 0.
2. If bis a constant, then
alof (%)) _
=b
2 ()
3. If bis a constant, then
dx”
=y b—1
dx v
4 dlnx _1
dx x
where In signifies the logarithm to the base ¢ (= 2.71828).
5. da” = a” In a for any constant &

dx

A particular case of this rule is de*/dx = ¢*.
Now suppose that £(x) and g(x) are two functions of x and that f’(x) and 4'(x) exist. Then:

6. ALf(%) +g(x)]

LI () + 5 ()
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g. Alf(x)/g(x)] _f(x)g(x) - f(x)g' (%)
ax [o(x)]?
provided that g(x) # 0.
Finally, if y = f(x) and x = g(z) and if both f’(x) and 4'(2) exist, then
o, W _dy dx_df dy
dz  dx dz  dx dz’
This result is called the chain rule. It provides a convenient way to study how one variable

(z) affects another variable (y) solely through its influence on some intermediate variable
(x). Some examples are

10. ﬂle””: de™ .d(ux)
dx  d(ax) dx

b

=€ -a=ae

11, Alln(ax)] _dlln(ax)] dax) 1 1
12, Aln@)] _ dlin(<?)] de?) 1, 2
dx d(x?) de «? v

FUNCTIONS OF SEVERAL VARIABLES

Economic problems seldom involve functions of only a single variable. Most goals of interest to
economic agents depend on several variables, and trade-ofts must be made among these variables.
For example, the ##ility an individual receives from activities as a consumer depends on the
amount of each good consumed. For a firm’s production function, the amount produced depends
on the quantity of labor, capital, and land devoted to production. In these circumstances, this
dependence of one variable (y) on a series of other variables (x;, %;, ..., %,) is denoted by

y:f(xlaxb--"xn)' (2-7)

Partial derivatives

We are interested in the point at which y reaches a maximum and in the trade-offs that must
be made to reach that point. It is again convenient to picture the agent as changing the
variables at his or her disposal (the x’s) in order to locate a maximum. Unfortunately, for a
function of several variables, the idea of #he derivative is not well-defined. Just as the steepness
of ascent when climbing a mountain depends on which direction you go, so does the slope
(or derivative) of the function depend on the direction in which it is taken. Usually, the only
directional slopes of interest are those that are obtained by increasing one of the x’s while
holding all the other variables constant (the analogy for mountain climbing might be to
measure slopes only in a north-south or east-west direction). These directional slopes are
called partial devivatives. The partial derivative of y with respect to (that is, in the direction
of) x; is denoted by

— Oor

dy of
0%y 0%y

or f. or f.
It is understood that in calculating this derivative all of the other x’s are held constant. Again

it should be emphasized that the numerical value of this slope depends on the value of x,

and on the (preassigned) values of x,, ..., x,,.

23
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EXAMPLE 2.1 Profit Maximization

Suppose that the relationship between profits () and quantity produced (g) is given by

w(q) = 1,000 — 54>. (2.8)

A graph of this function would resemble the parabola shown in Figure 2.1. The value of 4
that maximizes profits can be found by difterentiation:
dm

—=1,000-109=0 2.9
dq b q > ( )

SO

7* =100. (2.10)

At 4 = 100, Equation 2.8 shows that profits are 50,000—the largest value possible. If] for
example, the firm opted to produce g = 50, profits would be 37,500. At 4 = 200, profits are
precisely 0.

That 4 = 100 is a “global” maximum can be shown by noting that the second derivative
of the profit function is —10 (see Equation 2.9). Hence, the rate of increase in profits is always
decreasing—up to g = 100 this rate of increase is still positive, but beyond that point it
becomes negative. In this example, 4 = 100 is the only local maximum value for the function
. With more complex functions, however, there may be several such maxima.

QUERY: Suppose that a firm’s output (g) is determined by the amount of labor (/) it hires
according to the function g = 2+v/1. Suppose also that the firm can hire all of the labor it wants
at $10 per unit and sells its output at $50 per unit. Profits are therefore a function of / given
by (/) = 100v// — 10/. How much labor should this firm hire in order to maximize profits,
and what will those profits be?

A somewhat more formal definition of the partial derivative is

of i SO Ey B — fly By B

2.11
0% |5, 5, b0 /] ’ (2.11)

where the notation is intended to indicate that x,, ..., &, are all held constant at the preassigned
values X,,..., X, so the effect of changing x; only can be studied. Partial derivatives with

respect to the other variables (x,, ...,x,) would be calculated in a similar way.

Calculating partial derivatives

It is easy to calculate partial derivatives. The calculation proceeds as for the usual derivative by
treating X, ..., x,, as constants (which indeed they are in the definition of a partial derivative).
Consider the following examples.

1. Ify=f(x,%) = ax? + bx,x, + cx3, then

of
E:fl:Zaxl+hx2

and

of
o = f, = bx) + 2cx,.
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Notice that df/dx, is in general a function of both x; and x, and therefore its value
will depend on the particular values assigned to these variables. It also depends on the
parameters a, &, and ¢, which do not change as »; and x, change.

2. Ify = f(xy,%) = e™*0%  then

i :f = ﬂgml+hx2
0%y !

and

ﬁ :f2 _ beaxl+bx2'
0%,

3. Ity=f(%,%) =alnx + blnx,, then

d a
a_f:fl:_
Xy Xy
and
d b
%:fz:;-
2 2

Notice here that the treatment of x, as a constant in the derivation of df/dx; causes the term
b In x, to disappear upon differentiation because it does not change when &, changes. In this
case, unlike our previous examples, the size of the effect of x; on y is independent of the value
of x,. In other cases, the effect of x; on y will depend on the level of x;,.

Partial derivatives and the ceteris paribus assumption

In Chapter 1, we described the way in which economists use the ceteris paribus assumption in
their models to hold constant a variety of outside influences so the particular relationship
being studied can be explored in a simplified setting. Partial derivatives are a precise mathe-
matical way of representing this approach; that is, they show how changes in one variable
affect some outcome when other influences are held constant—exactly what economists need
for their models. For example, Marshall’s demand curve shows the relationship between price
(p) and quantity (g) demanded when other factors are held constant. Using partial deriva-
tives, we could represent the slope of this curve by d¢4/dp to indicate the ceteris paribus
assumptions that are in effect. The fundamental law of demand—that price and quantity
move in opposite directions when other factors do not change—is therefore reflected by the
mathematical statement “dg/dp < 0.” Again, the use of a partial derivative serves as a re-
minder of the ceteris paribus assumptions that surround the law of demand.

Partial derivatives and units of measurement

In mathematics relatively little attention is paid to how variables are measured. In fact, most
often no explicit mention is made of the issue. But the variables used in economics usually
refer to real-world magnitudes and therefore we must be concerned with how they are
measured. Perhaps the most important consequence of choosing units of measurement is
that the partial derivatives often used to summarize economic behavior will reflect these units.
For example, if g4 represents the quantity of gasoline demanded by all U.S. consumers during
a given year (measured in billions of gallons) and p represents the price in dollars per gallon,
then dg/dp will measure the change in demand (in billions of gallons per year) for a dollar per
gallon change in price. The numerical size of this derivative depends on how g and p are
measured. A decision to measure consumption in millions of gallons per year would multiply



26 Part 1 Introduction

the size of the derivative by 1,000, whereas a decision to measure price in cents per gallon
would reduce it by a factor of 100.

The dependence of the numerical size of partial derivatives on the chosen units of mea-
surement poses problems for economists. Although many economic theories make predic-
tions about the sign (direction) of partial derivatives, any predictions about the numerical
magnitude of such derivatives would be contingent on how authors chose to measure their
variables. Making comparisons among studies could prove practically impossible, especially
given the wide variety of measuring systems in use around the world. For this reason, econ-
omists have chosen to adopt a different, unit-free way to measure quantitative impacts.

Elasticity—A general definition

Economists use elasticities to summarize virtually all of the quantitative impacts that are of
interest to them. Because such measures focus on the proportional effect of a change in one
variable on another, they are unit-free—the units “cancel out” when the elasticity is calculated.
Suppose, for example, that yis a function of x and, possibly, other variables. Then the elasticity
of y with respect to x (denoted as ¢, ) is defined as

Ay

(=) Ay &y x (2.12)
PEAx Ax oy dx oy
x

Notice that, no matter how the variables y and x are measured, the units of measurement
cancel out because they appear in both a numerator and a denominator. Notice also that,
because y and x are positive in most economic situations, the elasticity ¢, , and the partial
derivative dy/dx will have the same sign. Hence, theoretical predictions about the direction
of certain derivatives will also apply to their related elasticities.

Specific applications of the elasticity concept will be encountered throughout this book.
These include ones with which you should be familiar, such as the market price elasticity of
demand or supply. But many new concepts that can be expressed most clearly in elasticity
terms will also be introduced.

EXAMPLE 2.2 Elasticity and Functional Form

The definition in Equation 2.12 makes clear that elasticity should be evaluated at a specific
point on a function. In general the value of this parameter would be expected to vary across
different ranges of the function. This observation is most clearly shown in the case where yis a
linear function of x of the form

¥y = a + bx + other terms.

In this case,

Iy x X X

=2 .2 y. "= — = 2.13
e T on Ty y a+bx+ -’ 2.13)

which makes clear that ¢, , is not constant. Hence, for linear functions it is especially impor-
tant to note the point at which elasticity is to be computed.
If the functional relationship between ¥ and « is of the exponential form

y = ax®

then the elasticity is a constant, independent of where it is measured:

Iy x X
e x:_y._:ab h_l._b:
» ax y ax
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A logarithmic transformation of this equation also provides a very convenient alternative
definition of elasticity. Because

Iny=Ina+&1n «x,
we have
dlny
Ay

Hence, elasticities can be calculated through “logarithmic differentiation.” As we shall see,
this is frequently the easiest way to proceed in making such calculations.

(2.14)

QUERY: Are there any functional forms in addition to the exponential that have a constant
clasticity, at least over some range?

Second-order partial derivatives

The partial derivative of a partial derivative is directly analogous to the second derivative of a
function of one variable and is called a second-order partial devivative. This may be written as

(af/9x;)

or more simply as

= (2.15)

For the examples above:

92

L axlz-?)fxl :fuz 20
Su=10
a=10
S = 2.

_ 2 0%, +bx

2. fii=ate™t
_ ax, +bx.

fa= abe™1 %%
_ ax, +bx.

1= abe™1 %%

f22 = Hrematix

3. -
fa=
f12: 0
f21: 0

4
f22: -
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Young’s theorem

These examples illustrate the mathematical result that, under quite general conditions, the
order in which partial differentiation is conducted to evaluate second-order partial derivatives
does not matter. That is,

ﬁ'j - f]"i (2.16)

for any pair of variables x;, x;. This result is sometimes called “Young’s theorem.” For an
intuitive explanation of the theorem, we can return to our mountain-climbing analogy. In
this example, the theorem states that the gain in elevation a hiker experiences depends on
the directions and distances traveled, but not on the order in which these occur. That is, the
gain in altitude is independent of the actual path taken as long as the hiker proceeds from
one set of map coordinates to another. He or she may, for example, go one mile north, then
one mile east or proceed in the opposite order by first going one mile east, then one mile
north. In either case, the gain in elevation is the same since in both cases the hiker is moving
from one specific place to another. In later chapters we will make good use of this result
because it provides a very convenient way of showing some of the predictions that economic
models make about behavior.?

Uses of second-order partials

Second-order partial derivatives will play an important role in many of the economic theories
that are developed throughout this book. Probably the most important examples relate to the
“own” second-order partial, f;;. This function shows how the marginal influence of x; on y
(i.e.,dy/dx;) changes as the value of x; increases. A negative value for f;; is the mathematical
way of indicating the economic idea of diminishing marginal effectiveness. Similarly, the
cross-partial f;; indicates how the marginal effectiveness of x; changes as x; increases. The sign
of this effect could be either positive or negative. Young’s theorem indicates that, in general,
such cross-effects are symmetric. More generally, the second-order partial derivatives of a
function provide information about the curvature of the function. Later in this chapter we
will see how such information plays an important role in determining whether various
second-order conditions for a maximum are satisfied.

MAXIMIZATION OF FUNCTIONS OF SEVERAL VARIABLES

Using partial derivatives, we can now discuss how to find the maximum value for a function of
several variables. To understand the mathematics used in solving this problem, an analogy to
the one-variable case is helpful. In this one-variable case, we can picture an agent varying x by
a small amount, dx, and observing the change in y, dy. This change is given by

dy = f'(x)dx. (2.17)

The identity in Equation 2.17 records the fact that the change in y is equal to the change in
x times the slope of the function. This formula is equivalent to the point-siope formula used
for linear equations in basic algebra. As before, the necessary condition for a maximum is
that dy = 0 for small changes in x around the optimal point. Otherwise, y could be increased
by suitable changes in x. But because dx does not necessarily equal 0 in Equation 2.17,
dy = 0 must imply that at the desired point, /(x) = 0. This is another way of obtaining the
first-order condition for a maximum that we already derived.

2Young’s theorem implies that the matrix of the second-order partial derivatives of a function is symmetric. This symmetry
offers a number of economic insights. For a brief introduction to the matrix concepts used in economics, see the Extensions
to this chapter.
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Using this analogy, let’s look at the decisions made by an economic agent who must
choose the levels of several variables. Suppose that this agent wishes to find a set of x’s that
will maximize the value of y = £(x;, %, ..., x,). The agent might consider changing only one
of the «’s, say x;, while holding all the others constant. The change in y (that is, dy) that
would result from this change in x; is given by
of

xl dx, = fidx,.

This says that the change in y is equal to the change in x; times the slope measured in the x,
direction. Using the mountain analogy again, the gain in altitude a climber heading north
would achieve is given by the distance northward traveled times the slope of the mountain
measured in a northward direction.

Total differential

Ifall the &’s are varied by a small amount, the total effect on y will be the sum of effects such as
that shown above. Therefore the total change in y is defined to be

O e+ L oo P

dy = o P n
0%y 0x, 9%,
= fidw, + frdxy + - + f,dx,. (2.18)

This expression is called the tozal differential of f and is directly analogous to the expression
for the single-variable case given in Equation 2.17. The equation is intuitively sensible: The
total change in y is the sum of changes brought about by varying each of the x’s.®

First-order condition for a maximum

A necessary condition for a maximum (or a minimum) of the function (&, %;, ..., %,,) is that
dy = 0 for any combination of small changes in the &’s. The only way this can happen is if; at
the point being considered,

fi=fH=-=f=0. (2.19)

A point where Equations 2.19 hold is called a critical point. Equations 2.19 are the
necessary conditions for a local maximum. To see this intuitively, note that if one of the
partials (say, f;) were greater (or less) than 0, then y could be increased by increasing (or
decreasing) x;. An economic agent then could find this maximal point by finding the spot
where y does not respond to very small movements in any of the x’s. This is an extremely
important result for economic analysis. It says that any activity (that is, the x’s) should be
pushed to the point where its “marginal” contribution to the objective (that is, y) is 0. To
stop short of that point would fail to maximize ».

3*The total differential in Equation 2.18 can be used to derive the chain rule as it applies to functions of several variables.
Suppose that y = f(x;,x,) and that x; = 4(2) and x, = h(z). Ifall of these functions are differentiable, then it is possible to
calculate the effects of a change in z on y. The total differential of y is

dy = fidx, + fodx,.

Dividing this equation by 4z gives
dy . dx dx, . dg dh
i~ Ny Ty =i gy

Hence, calculating the effect of z on y requires calculating how z affects both of the determinants of y (that is, x; and &, ). If
y depends on more than two variables, an analogous result holds. This result acts as a reminder to be rather careful to
include all possible effects when calculating derivatives of functions of several variables.
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EXAMPLE 2.3 Finding a Maximum

Suppose that y is a function of x; and «x, given by

y=—(x —1)* — (2, —2)>+10 (2.20)
or

y =7+ 2% — x5 + 4%, + 5.

For example, ¥y might represent an individual’s health (measured on a scale of 0 to 10),
and x; and &, might be daily dosages of two health-enhancing drugs. We wish to find values
for x; and x, that make y as large as possible. Taking the partial derivatives of y with respect
to x, and x, and applying the necessary conditions given by Equations 2.19 yields

% — 2x +2-=0,
; ! (2.21)
Y o, +4=0
0x,
or
xf =1,
x = 2.

The function is therefore at a critical point when x; = 1, x, = 2. At that point, y = 10 is the
best health status possible. A bit of experimentation provides convincing evidence that this is
the greatest value y can have. For example, if x; =%, =0, then y =5, or if ¥, = &, =1,
then y = 9. Values of »; and «, larger than 1 and 2, respectively, reduce y because the
negative quadratic terms in Equation 2.20 become large. Consequently, the point found by
applying the necessary conditions is in fact a local (and global) maximum.*

QUERY: Suppose y took on a fixed value (say, 5). What would the relationship implied
between x, and x, look like? How about for y = 7? Or y = 10? (These graphs are contour
lines of the function and will be examined in more detail in several later chapters. See also
Problem 2.1.)

Second-order conditions

Again, however, the conditions of Equations 2.19 are not sufficient to ensure a maximum.
This can be illustrated by returning to an already overworked analogy: All hilltops are
(more or less) flat, but not every flat place is a hilltop. A second-order condition similar to
Equation 2.6 is needed to ensure that the point found by applying Equations 2.19 is a local
maximum. Intuitively, for a local maximum, y should be decreasing for any small changes in
the «’s away from the critical point. As in the single-variable case, this necessarily involves
looking at the second-order partial derivatives of the function f. These second-order partials
must obey certain restrictions (analogous to the restriction that was derived in the single-
variable case) if the critical point found by applying Equations 2.19 is to be a local maximum.
Later in this chapter we will look at these restrictions.

*More formally, the point x, = 1, x, = 2 is a global maximum because the function described by Equation 2.20 is concave
(see our discussion later in this chapter).
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IMPLICIT FUNCTIONS

Although mathematical equations are often written with a “dependent” variable (y) as a func-
tion of one or more independent variables (x), this is not the only way to write such a rela-
tionship. As a trivial example, the equation

y=mx-+b (2.22)
can also be written as
y—mx—b=0 (2.23)
or, even more generally, as
flx,y,m,b) =0, (2.24)

where this functional notation indicates a relationship between x and y that also depends on
the slope () and intercept (&) parameters of the function, which do not change. Functions
written in these forms are sometimes called zmplicit functions because the relationships
between the variables and parameters are implicitly present in the equation rather than being
explicitly calculated as, say, ¥ as a function of x and the parameters » and &.

Often it is a simple matter to translate from implicit functions to explicit ones. For
example, the implicit function

x+2y—4=0 (2.25)
can easily be “solved” for x as
x——2y+4 (2.26)
or for y as
y= _7" 42 (2.27)

Derivatives from implicit functions

In many circumstances it is helpful to compute derivatives directly from implicit functions
without solving for one of the variables directly. For example, the implicit function f'(x,y) = 0
has a total differential of 0 = f.dx + f;dy, so

L L (2.28)

dx 5
Hence, the implicit derivative dy/dx can be found as the negative of the ratio of the partial
derivatives of the implicit function, providing f, # 0.

31

EXAMPLE 2.4 A Production Possibility Frontier—Again

In Example 1.3 we examined a production possibility frontier for two goods of the form
x? +0.25y* = 200 (2.29)
or, written implicitly,
F(x,9) = 2% + 0.259* — 200 = 0. (2.30)
Hence,

(continued)
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EXAMPLE 2.4 CONTINUED

fo =2x,
f, = 0.5y,

and, by Equation 2.28, the opportunity cost trade-oft between x and y is

Ay _fy 2% 4w (2.31)
dx  f, 0.5y y
which is precisely the result we obtained earlier, with considerably less work.

QUERY: Why does the trade-oft between x and y here depend only on the ratio of x to y
and not on the size of the labor force as reflected by the 200 constant?

Implicit function theorem

It may not always be possible to solve implicit functions of the form g(x,y) = 0 for unique
explicit functions of the form y = f(x). Mathematicians have analyzed the conditions under
which a given implicit function can be solved explicitly with one variable being a function of
other variables and various parameters. Although we will not investigate these conditions
here, they involve requirements on the various partial derivatives of the function that are
sufficient to ensure that there is indeed a unique relationship between the dependent and
independent variables.® In many economic applications, these derivative conditions are
precisely those required to ensure that the second-order conditions for a maximum (or a
minimum) hold. Hence, in these cases, we will assert that the émplicit function theorem holds
and that it is therefore possible to solve explicitly for trade-ofts among the variables involved.

THE ENVELOPE THEOREM

One major application of the implicit function theorem, which will be used many times in this
book, is called the envelope theorems it concerns how the optimal value for a particular function
changes when a parameter of the function changes. Because many of the economic problems we
will be studying concern the effects of changing a parameter (for example, the effects that
changing the market price of a commodity will have on an individual’s purchases), this is a type
of calculation we will frequently make. The envelope theorem often provides a nice shortcut.

A specific example

Perhaps the easiest way to understand the envelope theorem is through an example. Suppose
y is a function of a single variable (x) and a parameter (2) given by

y=—x>+ ax. (2.32)

For different values of the parameter a, this function represents a family of inverted parab-
olas. If # is assigned a specific value, Equation 2.32 is a function of x only, and the value of x that
maximizes y can be calculated. For example, if # = 1, then ™ = % and, for these values of x
and 2,y = 1 (its maximal value). Similarly, if » = 2, then »™ = 1 and y* = 1. Hence, an increase

5For a detailed discussion of the implicit function theorem in various contexts, see Carl P. Simon and Lawrence Blume,
Mathematics for Economists (New York: W. W. Norton, 1994), chap. 15.
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of 1 in the value of the parameter # has increased the maximum value of y by 2. In Table 2.1,
integral values of 2 between 0 and 6 are used to calculate the optimal values for x and the
associated values of the objective, y. Notice that as # increases, the maximal value for y also
increases. This is also illustrated in Figure 2.3, which shows that the relationship between 2 and
y* is quadratic. Now we wish to calculate explicitly how y* changes as the parameter # changes.

TABLE 2.1 Optimal Values of y and x for Alternative Values of a in y = —x? + ax

Value of a Value of x* Value of y*
0 0 0
1 > i
2 1 1
3 3 :
4 2 4
5 5 2
6 3 9

FIGURE 2.3 lllustration of the Envelope Theorem

The envelope theorem states that the slope of the relationship between y* (the maximum value of y)
and the parameter 2 can be found by calculating the slope of the auxiliary relationship found by
substituting the respective optimal values for x into the objective function and calculating dy/da.
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A direct, time-consuming approach

The envelope theorem states that there are two equivalent ways we can make this calculation.
First, we can calculate the slope of the function in Figure 2.3 directly. To do so, we must solve
Equation 2.32 for the optimal value of x for any value of a:

/)
d—i:—Zx—i—a:O;
hence,
* _ 2
x 3

Substituting this value of 4* in Equation 2.32 gives

Y= (%) + alx®)

2 a
) +a3)
o
i w
and this is precisely the relationship shown in Figure 2.3. From the previous equation, it is
easy to see that

IR

dy* 2a a
Z _Z_Z 2.33

doe 4 2 (2.33)
and, for example, at & = 2, dy* /da = 1. That is, near 2 = 2 the marginal impact of increasing
a is to increase y* by the same amount. Near 2 = 6, any small increase in 2 will increase y*

by three times this change. Table 2.1 illustrates this result.

The envelope shortcut

Arriving at this conclusion was a bit complicated. We had to find the optimal value of x for
each value of # and then substitute this value for 4™ into the equation for y. In more general
cases this may be quite burdensome since it requires repeatedly maximizing the objective
function. The envelope theorem, providing an alternative approach, states that for small
changes in a, dy* /da can be computed by holding x constant az its optimal value and simply
calculating dy/da from the objective function directly.

Proceeding in this way gives

9, (2.34)

and at ™ we have

=5 =_. (2.35)

This is precisely the result obtained earlier. The reason that the two approaches yield identical
results is illustrated in Figure 2.3. The tangents shown in the figure report values of y for a fixed
x™*. The tangents’ slopes are dy/da. Clearly, at y* this slope gives the value we seck.

This result is quite general, and we will use it at several places in this book to simplify
our analysis. To summarize, the envelope theorem states that the change in the optimal
value of a function with respect to a parameter of that function can be found by partially
differentiating the objective function while holding x constant at its optimal value. That is,
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dy* 9
Y2 fe=so).

where the notation provides a reminder that dy/d# must be computed at that value of x that
is optimal for the specific value of the parameter 2 being examined.

Many-variable case

An analogous envelope theorem holds for the case where ¥ is a function of several variables.
Suppose that y depends on a set of &’s (%, ..., x,,) and on a particular parameter of interest, say, #:

y=f(%,...,x,,a) (2.37)

Finding an optimal value for y would consist of solving 7 first-order equations of the form

ay .

a—.x;:o (1«:1,,”), (2-38)
and a solution to this process would yield optimal values for these x’s (x7,x3,...,x)) that
would implicitly depend on the parameter 2. Assuming the second-order conditions are
met, the implicit function theorem would apply in this case and ensure that we could solve
cach x¥ as a function of the parameter a:

A OR

x3 = x3(a), 239)
* *
n

X =x"(a).

Substituting these functions into our original objective (Equation 2.37) yields an expression
in which the optimal value of y (say, ¥*) depends on the parameter a both directly and
indirectly through the effect of 2 on the x™’s:

v = flxi(a), 23 (a), ..., x,(a), a].
Totally differentiating this expression with respect to # yields
o of dy | of dy | of d,

da ox, da | ox, da " ox, da

+ % (2.40)
da

But, because of the first-order conditions all of these terms except the last are equal to 0 if
the «’s are at their optimal values. Hence, again we have the envelope result:
dy* 9
o (2.41)
da  da

where this derivative is to be evaluated at the optimal values for the «’s.

EXAMPLE 2.5 The Envelope Theorem: Health Status Revisited

Earlier, in Example 2.3, we examined the maximum values for the health status function

y=—(x — 1> — (%, —2)>+ 10 (2.42)
and found that
*
1
= (2.43)
x5 =2,

(continued)



36 Part 1 Introduction

EXAMPLE 2.5 CONTINUED

and
y* =10.

Suppose now we use the arbitrary parameter # instead of the constant 10 in Equation 2.42.
Here 2 might represent a measure of the best possible health for a person, but this value
would obviously vary from person to person. Hence,

y=f(%,%,a) =—(% — 1)2 — (%) — 2)2 + a. (2.44)

In this case the optimal values for x; and x, do not depend on # (they are always x7 = 1,
x5 =2), so at those optimal values we have

and .
dy
pcamp— | 2.4
in (2.46)

People with “naturally better health” will have concomitantly higher values for y*, providing
they choose x; and x, optimally. But this is precisely what the envelope theorem indicates,
because

dy* _of

——=——=1 247

da  da ( )
from Equation 2.44. Increasing the parameter 2 simply increases the optimal value for y* by
an identical amount (again, assuming the dosages of x; and «, are correctly chosen).

QUERY: Suppose we focused instead on the optimal dosage for x; in Equation 2.42—that is,

suppose we used a general parameter, say &, instead of 1. Explain in words and using
mathematics why 9y /a% would necessarily be 0 in this case.

CONSTRAINED MAXIMIZATION

So far we have focused our attention on finding the maximum value of a function without
restricting the choices of the x’s available. In most economic problems, however, not all
values for the &’s are feasible. In many situations, for example, it is required that all the x’s be
positive. This would be true for the problem faced by the manager choosing output to
maximize profits; a negative output would have no meaning. In other instances the x’s may
be constrained by economic considerations. For example, in choosing the items to consume,
an individual is not able to choose any quantities desired. Rather, choices are constrained by
the amount of purchasing power available; that is, by this person’s budget constraint. Such
constraints may lower the maximum value for the function being maximized. Because we are
not able to choose freely among all the &’s, y may not be as large as it could be. The
constraints would be “nonbinding” if we could obtain the same level of ¥ with or without
imposing the constraint.

Lagrangian multiplier method

One method for solving constrained maximization problems is the Lagrangian multiplier
method, which involves a clever mathematical trick that also turns out to have a useful
economic interpretation. The rationale of this method is quite simple, although no rigorous
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presentation will be attempted here.® In a prior section, the necessary conditions for a local
maximum were discussed. We showed that at the optimal point all the partial derivatives of f
must be 0. There are therefore # equations (f; = 0 for = 1, ..., #) in » unknowns (the xs).
Generally, these equations can be solved for the optimal x’s. When the &’s are constrained,
however, there is at least one additional equation (the constraint) but no additional variables.
The set of equations therefore is overdetermined. The Lagrangian technique introduces an
additional variable (the Lagrangian multiplier), which not only helps to solve the problem at
hand (because there are now # + 1 equations in 7 + 1 unknowns), but also has an interpre-
tation that is useful in a variety of economic circumstances.

The formal problem
More specifically, suppose that we wish to find the values of x;, %, ..., x,, that maximize
y = f(%1,%,..%,), (2.48)

subject to a constraint that permits only certain values of the x’s to be used. A general way
of writing that constraint is

J(%,%,,...,%,) =0, (2.49)

where the function” g represents the relationship that must hold among all the &’s.

First-order conditions
The Lagrangian multiplier method starts with setting up the expression
£ =fla,%,....%5,) + \g(x,%,,...,%,), (2.50)

where X is an additional variable called the Lagrangian multiplier. Later we will interpret this
new variable. First, however, notice that when the constraint holds, & and f have the same
value [because g(x,%,,...,x,) = 0]. Consequently, if we restrict our attention only to
values of the «’s that satisfy the constraint, finding the constrained maximum value of f is
cquivalent to finding a critical value of &. Let us proceed then to do so, treating N also as a
variable (in addition to the x’s). From Equation 2.50, the conditions for a critical point are:

% =h+M =0,
% =h+Np =0,
(2.51)
% =f,+N\g, =0,
2 lsays ) = .

Equations 2.51 are then the conditions for a critical point for the function &. Notice that
there are # + 1 equations (one for each x and a final one for \) in # + 1 unknowns. The
cquations can generally be solved for x,,x,,...,x,, and N. Such a solution will have two

SFor a detailed presentation, see A. K. Dixit, Optimization in Economic Theory, 2nd ed. (Oxford: Oxford University Press,
1990), chap. 2.

7As we pointed out earlier, any function of x,,%,,...,4, can be written in this implicit way. For example, the constraint
X + %, = 10 could be written 10 — x; — &, = 0. In later chapters, we will usually follow this procedure in dealing with
constraints. Often the constraints we examine will be linear.
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properties: (1) the x’s will obey the constraint because the last equation in 2.51 imposes that
condition; and (2) among all those values of x’s that satisfy the constraint, those that also
solve Equations 2.51 will make & (and hence £) as large as possible (assuming second-order
conditions are met). The Lagrangian multiplier method therefore provides a way to find a
solution to the constrained maximization problem we posed at the outset.®

The solution to Equations 2.51 will usually differ from that in the unconstrained case (see
Equations 2.19). Rather than proceeding to the point where the marginal contribution of
cach x is 0, Equations 2.51 require us to stop short because of the constraint. Only if the
constraint were ineftective (in which case, as we show below, N would be 0) would the con-
strained and unconstrained equations (and their respective solutions) agree. These revised
marginal conditions have economic interpretations in many different situations.

Interpretation of the Lagrangian multiplier

So far we have used the Lagrangian multiplier (\) only as a mathematical “trick” to arrive at
the solution we wanted. In fact, that variable also has an important economic interpretation,
which will be central to our analysis at many points in this book. To develop this interpreta-
tion, rewrite the first # equations of 2.51 as

Lo _h (2.52)
5N oy ~In
In other words, at the maximum point, the ratio of f; to g; is the same for every ;. The
numerators in Equations 2.52 are the marginal contributions of each x to the function f.
They show the marginal benefit that one more unit of x; will have for the function that is
being maximized (that is, for f).

A complete interpretation of the denominators in Equations 2.52 is probably best left until
we encounter these ratios in actual economic applications. There we will see that these usually
have a “marginal cost” interpretation. That is, they reflect the added burden on the constraint
of using slightly more ;. As a simple illustration, suppose the constraint required that total
spending on x; and «x, be given by a fixed dollar amount, F. Hence, the constraint would
be p, %, + p,x, = F (where p; is the per unit cost of x; ). Using our present terminology, this
constraint would be written in implicit form as

(%, %) = F — pyx — px, = 0. (2.53)
In this situation, then,

and the derivative —g; does indeed reflect the per unit, marginal cost of using «;. Practically all
of the optimization problems we will encounter in later chapters have a similar interpretation
for the denominators in Equations 2.52.

Lagrangian multiplier as a benefit-cost ratio

Now we can give Equations 2.52 an intuitive interpretation. They indicate that, at the
optimal choices for the «’s, the ratio of the marginal benefit of increasing «; to the marginal
cost of increasing x; should be the same for every x. To see that this is an obvious condition

8Strictly speaking, these are the necessary conditions for an interior local maximum. In some economic problems, it is
necessary to amend these conditions (in fairly obvious ways) to take account of the possibility that some of the »’s may be
on the boundary of the region of permissible x’s. For example, if all of the x’s are required to be nonnegative, it may be that
the conditions of Equations 2.51 will not hold exactly, because these may require negative x’s. We look at this situation
later in this chapter.
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for a maximum, suppose that it were not true: Suppose that the “benefit-cost ratio” were
higher for x; than for «x,. In this case, slightly more x; should be used in order to achieve a
maximum. Consider using more x,; but giving up just enough x, to keep g (the constraint)
constant. Hence, the marginal cost of the additional x; used would equal the cost saved by
using less x,. But because the benefit-cost ratio (the amount of benefit per unit of cost) is
greater for x, than for x,, the additional benefits from using more x; would exceed the loss in
benefits from using less «,. The use of more x; and appropriately less x, would then increase y
because x; provides more “bang for your buck.” Only if the marginal benefit-marginal cost
ratios are equal for all the x’s will there be a local maximum, one in which no small changes in
the &’s can increase the objective. Concrete applications of this basic principle are developed
in many places in this book. The result is fundamental for the microeconomic theory of
optimizing behavior.

The Lagrangian multiplier (\) can also be interpreted in light of this discussion. \ is the
common benefit-cost ratio for all the x’s. That is,

_ marginal benefit of x;

)N (2.55)

marginal cost of x;

for every x;. If the constraint were relaxed slightly, it would not matter exactly which x is
changed (indeed, all the x’s could be altered), because, at the margin, each promises the
same ratio of benefits to costs. The Lagrangian multiplier then provides a measure of how
such an overall relaxation of the constraint would affect the value of y. In essence, \ assigns a
“shadow price” to the constraint. A high N indicates that y could be increased substantially
by relaxing the constraint, because each x has a high benefit-cost ratio. A low value of \, on
the other hand, indicates that there is not much to be gained by relaxing the constraint. If
the constraint is not binding at all, N will have a value of 0, thereby indicating that the
constraint is not restricting the value of y. In such a case, finding the maximum value of y
subject to the constraint would be identical to finding an unconstrained maximum. The
shadow price of the constraint is 0. This interpretation of N can also be shown using the
envelope theorem as described later in this chapter.’

Duality

This discussion shows that there is a clear relationship between the problem of maximizing a
function subject to constraints and the problem of assigning values to constraints. This reflects
what is called the mathematical principle of “duality”: Any constrained maximization problem
has an associated dual problem in constrained minimization that focuses attention on the
constraints in the original (primal) problem. For example, to jump a bit ahead of our story,
economists assume that individuals maximize their utility, subject to a budget constraint. This
is the consumer’s primal problem. The dual problem for the consumer is to minimize the
expenditure needed to achieve a given level of utility. Or, a firm’s primal problem may be to
minimize the total cost of inputs used to produce a given level of output, whereas the dual
problem is to maximize output for a given cost of inputs purchased. Many similar examples will
be developed in later chapters. Each illustrates that there are always two ways to look at any
constrained optimization problem. Sometimes taking a frontal attack by analyzing the primal
problem can lead to greater insights. In other instances, the “back door” approach of examining
the dual problem may be more instructive. Whichever route is taken, the results will generally,
though not always, be identical, so the choice made will mainly be a matter of convenience.

The discussion in the text concerns problems involving a single constraint. In general, one can handle  constraints
(m < n) by simply introducing m new variables (Lagrangian multipliers) and proceeding in an analogous way to that
discussed above.

39
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EXAMPLE 2.6 Constrained Maximization: Health Status Yet Again

Let’s return once more to our (perhaps tedious) health maximization problem. As before, the
individual’s goal is to maximize

y=—x} + 2% — &% +4x, + 5,

but now assume that choices of »; and «, are constrained by the fact that he or she can only
tolerate one drug dose per day. That is,

X +x=1 (2.56)
or
l-—x —x,=0.

Notice that the original optimal point (»; = 1,x, = 2) is no longer attainable because of the
constraint on possible dosages: other values must be found. To do so, we first set up the
Lagrangian expression:

P =—n3+2m — x5 +4x, +5 N1 — % —x,). (2.57)

Differentiation of & with respect to x;, &,, and X yields the following necessary condition for
a constrained maximum:

0L

= = 2% 4+2-\=0,

0%y

oL

- 2t 4-N=0, (2.58)
0%,

oL

X :lfxlfx2:0.

These equations must now be solved for the optimal values of x;, x,, and \. Using the first
and second equations gives

—2x, +2=\N=2x,+4
or
% =% — L (2.59)
Substitution of this value for », into the constraint yields the solution:

x2:1a

% = 0. (2.60)

In words, if this person can tolerate only one dose of drugs, he or she should opt for taking
only the second drug. By using either of the first two equations, it is easy to complete our
solution by showing that

A=2. (2.61)

This, then, is the solution to the constrained maximum problem. If x, = 0, x, = 1, then y
takes on the value 8. Constraining the values of x»; and x, to sum to 1 has reduced the
maximum value of health status, y, from 10 to 8.

QUERY: Suppose this individual could tolerate two doses per day. Would you expect ¥ to
increase? Would increases in tolerance beyond three doses per day have any effect on »?
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EXAMPLE 2.7 Optimal Fences and Constrained Maximization

Suppose a farmer had a certain length of fence, P, and wished to enclose the largest possible
rectangular area. What shape area should the farmer choose? This is clearly a problem in
constrained maximization. To solve it, let x be the length of one side of the rectangle and y
be the length of the other side. The problem then is to choose x and y so as to maximize the area
of the field (given by A = x - ), subject to the constraint that the perimeter is fixed at
P =2x+2y.

Setting up the Lagrangian expression gives

L=x-y+ NP —2x—2y), (2.62)
where \ is an unknown Lagrangian multiplier. The first-order conditions for a maximum are
0L
— =y-2A=0
w7 ’
o
— =x—-2\=0, (2.63)
dy
oL
— =P-2x—-2y=0.
N x—2y=0

The three equations in 2.63 must be solved simultaneously for x, y, and . The first two
cquations say that y/2 = x/2 = \, showing that x must be equal to y (the field should be
square). They also imply that x and y should be chosen so that the ratio of marginal benefits to
marginal cost is the same for both variables. The benefit (in terms of area) of one more unit of x
is given by y (area is increased by 1 - ¥), and the marginal cost (in terms of perimeter) is 2 (the
available perimeter is reduced by 2 for each unit that the length of side x is increased). The
maximum conditions state that this ratio should be equal for each of the variables.
Since we have shown that x = y, we can use the constraint to show that

XxX=y= P (2.64)

and, because y = 2\,

(2.65)

Interpretation of the Lagrangian Multiplier. Ifthe farmer were interested in knowing how
much more field could be fenced by adding an extra yard of fence, the Lagrangian multiplier
suggests that he or she could find out by dividing the present perimeter by 8. Some specific
numbers might make this clear. Suppose that the field currently has a perimeter of400 yards. If
the farmer has planned “optimally,” the field will be a square with 100 yards (= P/4) on asside.
The enclosed area will be 10,000 square yards. Suppose now that the perimeter (that is, the
available fence) were enlarged by one yard. Equation 2.65 would then “predict” that the total
area would be increased by approximately 50 (= P/8) square yards. That this is indeed the
case can be shown as follows: Because the perimeter is now 401 yards, each side of the square
will be 401 /4 yards. The total area of the field is therefore (401/4)?, which, according to the
author’s calculator, works out to be 10,050.06 square yards. Hence, the “prediction” of a 50-
square-yard increase that is provided by the Lagrangian multiplier proves to be remarkably
close. As in all constrained maximization problems, here the Lagrangian multiplier provides
useful information about the implicit value of the constraint.

(continued)
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EXAMPLE 2.7 CONTINUED

Duality. The dual of this constrained maximization problem is that for a given area of a
rectangular field, the farmer wishes to minimize the fence required to surround it. Mathe-
matically, the problem is to minimize

P =2x+2y, (2.66)
subject to the constraint
A=x-y. (2.67)
Setting up the Lagrangian expression
PP =2x+ 2y +\P(A—x-y) (2.68)

(where the D denotes the dual concept) yields the following first-order conditions for a
minimum:

D

%zz—xl).yzo,
D

%:Z—ADw:O, (2.69)
y

oFP

Solving these equations as before yields the result

x=y=VA (2.70)

Again, the field should be square if the length of fence is to be minimized. The value of the
Lagrangian multiplier in this problem is
\w=2_2_2 (2.71)
y x VA

As before, this Lagrangian multiplier indicates the relationship between the objective
(minimizing fence) and the constraint (needing to surround the field). If the field were 10,000
square yards, as we saw before, 400 yards of fence would be needed. Increasing the field by one
square yard would require about .02 more yards of fence (= 2/v/A = 2/100). The reader may
wish to fire up his or her calculator to show this is indeed the case—a fence 100.005 yards on
each side will exactly enclose 10,001 square yards. Here, as in most duality problems, the value
of the Lagrangian in the dual is the reciprocal of the value for the Lagrangian in the primal
problem. Both provide the same information, although in a somewhat different form.

QUERY: An implicit constraint here is that the farmer’s field be rectangular. If this constraint
were not imposed, what shape field would enclose maximal area? How would you prove that?

ENVELOPE THEOREM IN CONSTRAINED
MAXIMIZATION PROBLEMS

The envelope theorem, which we discussed previously in connection with unconstrained maxi-
mization problems, also has important applications in constrained maximization problems.
Here we will provide only a brief presentation of the theorem. In later chapters we will look at a
number of applications.
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Suppose we seek the maximum value of
y=Ff(®, . %,50), (2.72)
subject to the constraint
Iy, .. %,,0) =0, (2.73)

where we have made explicit the dependence of the functions f and g4 on some parameter 2.
As we have shown, one way to solve this problem is to set up the Lagrangian expression

L =f(%,....,%0,;58) + A\g(%y,...,%,;a) (2.74)

and solve the first-order conditions (see Equations 2.51) for the optimal, constrained values
2y, ...,x. Alternatively, it can be shown that
*

%:%(xf,...,x:;u). (2.75)
Thatis, the change in the maximal value of y that results when the parameter # changes (and all
of the x’s are recalculated to new optimal values) can be found by partially differentiating
the Lagrangian expression (Equation 2.74) and evaluating the resultant partial derivative
at the optimal point.'® Hence, the Lagrangian expression plays the same role in applying the
envelope theorem to constrained problems as does the objective function alone in un-
constrained problems. As a simple exercise, the reader may wish to show that this result holds
for the problem of fencing a rectangular field described in Example 2.7.!

INEQUALITY CONSTRAINTS

In some economic problems the constraints need not hold exactly. For example, an indivi-
dual’s budget constraint requires that he or she spend no more than a certain amount per
period, but it is at least possible to spend less than this amount. Inequality constraints also
arise in the values permitted for some variables in economic problems. Usually, for example,
economic variables must be nonnegative (though they can take on the value of zero). In this
section we will show how the Lagrangian technique can be adapted to such circumstances.
Although we will encounter only a few problems later in the text that require this mathemat-
ics, development here will illustrate a few general principles that are quite consistent with
economic intuition.

A two-variable example

In order to avoid much cumbersome notation, we will explore inequality constraints only for
the simple case involving two choice variables. The results derived are readily generalized.
Suppose that we seek to maximize y = f(x;, &,) subject to three inequality constraints:

"%For a more complete discussion of the envelope theorem in constrained maximization problems, see Eugene Silberberg
and Wing Suen, The Structure of Economics: A Mathematical Analysis, 3rd ed. (Boston: Irwin/McGraw-Hill, 2001),
pp. 159-61.

"Eor the primal problem, the perimeter P is the parameter of principal interest. By solving for the optimal values of x and y
and substituting into the expression for the area (A) of the field, it is easy to show that 4A/dP = P/8. Differentiation of
the Lagrangian expression (Equation 2.62) yields d£/dP =\ and, at the optimal values of x and y, dA/dP =
d£/dP = \ = P/8. The envelope theorem in this case then offers further proof that the Lagrangian multiplier can be used
to assign an implicit value to the constraint.
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1. g(xy,%,) > 0;
2. %, >0; and (2.76)
3. x,>0.
Hence, we are allowing for the possibility that the constraint we introduced before need not

hold exactly (a person need not spend all of his or her income) and for the fact that both of
the «’s must be nonnegative (as in most economic problems).

Slack variables

One way to solve this optimization problem is to introduce three new variables (&, &, and ¢)
that convert the inequality constraints in Equation 2.76 into equalities. To ensure that the
inequalities continue to hold, we will square these new variables, ensuring that the resulting
values are positive. Using this procedure, the inequality constraints become

1. g(x,%,) —a*> =0,

2. %, — ¥ =0; and (2.77)

3. %, —c*=0.
Any solution that obeys these three equality constraints will also obey the inequality

constraints. It will also turn out that the optimal values for 2, &, and ¢ will provide several
insights into the nature of the solutions to a problem of this type.

Solution by the method of Lagrange

By converting the original problem involving inequalities into one involving equalities, we are
now in a position to use Lagrangian methods to solve it. Because there are three constraints, we
must introduce three Lagrangian multipliers: A1, A5, and A3. The full Lagrangian expression is

L= f(2),%) + M [g(%,%,) — 0] + Ny (% — &%) + N3 (%) — c?). (2.78)

We wish to find the values of %, x,, @, b, ¢, N1, N3, and A3 that constitute a critical point for
this expression. This will necessitate eight first-order conditions:

0%
E:f'l"')\lﬂl"')\z:(h
0%
@:f'z"‘)\lﬂz"‘)\szm
0%

— =—-2aN\ =0,

da

0%

E == 2b)\2 — 0,

9P (2.79)
— =—2e\; =0,

Jdc

0%

o, g%y, %) — a? =0,
0%

—=x-0=0,

N,

0¥ 5

m = xZ T = 0,

In many ways these conditions resemble those we derived earlier for the case ofa single equality
constraint (see Equation 2.51). For example, the final three conditions merely repeat the three
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revised constraints. This ensures that any solution will obey these conditions. The first two
equations also resemble the optimal conditions developed earlier. If N, and A3 were 0, the
conditions would in fact be identical. But the presence of the additional Lagrangian multipliers
in the expressions shows that the customary optimality conditions may not hold exactly here.

Complementary slackness

The three equations involving the variables #, &, and ¢ provide the most important insights
into the nature of solutions to problems involving inequality constraints. For example, the
third line in Equation 2.79 implies that, in the optimal solution, either A; or 2 must be 0.*? In
the second case (# = 0), the constraint g(x;, x,) = 0 holds exactly and the calculated value of
\; indicates its relative importance to the objective function, f. On the other hand, if 2 # 0,
then | = 0 and this shows that the availability of some slackness in the constraint implies that
its value to the objective is 0. In the consumer context, this means that if a person does not
spend all his or her income, even more income would do nothing to raise his or her well-being.

Similar complementary slackness relationships also hold for the choice variables x; and x, .
For example, the fourth line in Equation 2.79 requires that the optimal solution have either &
or A, be 0. If A, = 0 then the optimal solution has x;, > 0, and this choice variable meets the
precise benefit-cost test that f; + \,g, = 0. Alternatively, solutions where # = 0 have x; = 0,
and also require that A, > 0. So, such solutions do not involve any use of x; because that
variable does not meet the benefit-cost test as shown by the first line of Equation 2.79, which
implies that f; + N\, g; < 0. An identical result holds for the choice variable x,.

These results, which are sometimes called Kuhbn-Tucker conditions after their discoverers,
show that the solutions to optimization problems involving inequality constraints will differ
from similar problems involving equality constraints in rather simple ways. Hence, we cannot
go far wrong by working primarily with constraints involving equalities and assuming that we
can rely on intuition to state what would happen if the problems actually involved inequal-
ities. That is the general approach we will take in this book."?

SECOND-ORDER CONDITIONS

So far our discussion of optimization has focused primarily on necessary (first-order) condi-
tions for finding a maximum. That is indeed the practice we will follow throughout much of
this book because, as we shall see, most economic problems involve functions for which the
second-order conditions for a maximum are also satisfied. In this section we give a brief
analysis of the connection between second-order conditions for a maximum and the related
curvature conditions that functions must have to ensure that these hold. The economic
explanations for these curvature conditions will be discussed throughout the text.

Functions of one variable

First consider the case in which the objective, y, is a function of only a single variable, «.
That is,

y=f(x). (2.80)

12We will not examine the degenerate case where both of these variables are 0.

3The situation can become much more complex when calculus cannot be relied upon to give a solution, perhaps because
some of the functions in a problem are not differentiable. For a discussion, see Avinask K. Dixit, Optimization in Economic
Theory, 2nd ed. (Oxford: Oxford University Press, 1990).
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A necessary condition for this function to attain its maximum value at some point is that
dy ,
L =f(x)=0 2.81
A f(%) (2.81)

at that point. To ensure that the point is indeed a maximum, we must have y decreasing for
movements away from it. We already know (by Equation 2.81) that for small changes in x,
the value of y does not change; what we need to check is whether y is increasing before that
“plateau” is reached and declining thereafter. We have already derived an expression for the
change in y(dy), which is given by the total differential

dy = f'(x)dx. (2.82)

What we now require is that dy be decreasing for small increases in the value of x. The
differential of Equation 2.82 is given by

d(dy) = d’y = W cdx = f" (x)dw - dx = f" (x)dn?. (2.83)
But
A’y <0
implies that
f"(x)de® < 0, (2.84)
and since Ax* must be positive (because anything squared is positive), we have
f'(x) <0 (2.85)

as the required second-order condition. In words, this condition requires that the function f
have a concave shape at the critical point (contrast Figures 2.1 and 2.2). Similar curvature
conditions will be encountered throughout this section.

EXAMPLE 2.8 Profit Maximization Again

In Example 2.1 we considered the problem of finding the maximum of the function

m = 1,000 — 54°. (2.86)
The first-order condition for a maximum requires
dm
—=1,000-104=0 2.87
i b q (2.87)
or
q" =100. (2.88)
The second derivative of the function is given by
A>m
— =-10<0 2.89
7% <0, ( )

and hence the point 4% = 100 obeys the sufficient conditions for a local maximum.

QUERY: Here the second derivative is negative not only at the optimal point; it is always
negative. What does that imply about the optimal point? How should the fact that the second
derivative is a constant be interpreted?
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Functions of two variables
As a second case, we consider ¥ as a function of two independent variables:
v =f(x,%,). (2.90)

A necessary condition for such a function to attain its maximum value is that its partial
derivatives, in both the x; and the x, directions, be 0. That is,

dy

L —Ff =0

02y =t (2.91)
5 .
0x,y

A point that satisfies these conditions will be a “flat” spot on the function (a point where
dy = 0) and therefore will be a candidate for a maximum. To ensure that the point is a local
maximum, y must diminish for movements in any direction away from the critical point: In
pictorial terms there is only one way to leave a true mountaintop, and that is to go down.

An intuitive argument

Before describing the mathematical properties required of such a point, an intuitive approach
may be helpful. If we consider only movements in the x; direction, the required condition is
clear: The slope in the x; direction (that is, the partial derivative f; ) must be diminishing at the
critical point. This is a direct application of our discussion of the single-variable case. It shows
that, for a maximum, the second partial derivative in the x, direction must be negative. An
identical argument holds for movements only in the x, direction. Hence, both own second
partial derivatives ( fj,and f5,) must be negative for a local maximum. In our mountain
analogy, if attention is confined only to north-south or east-west movements, the slope of
the mountain must be diminishing as we cross its summit—the slope must change from
positive to negative.

The particular complexity that arises in the two-variable case involves movements
through the optimal point that are not solely in the x; or «x, directions (say, movements
from northeast to southwest). In such cases, the second-order partial derivatives do not
provide complete information about how the slope is changing near the critical point.
Conditions must also be placed on the cross-partial derivative ( f;, = f5,) to ensure that dy
is decreasing for movements through the critical point in any direction. As we shall see, those
conditions amount to requiring that the own second-order partial derivatives be sufficiently
negative so as to counterbalance any possible “perverse” cross-partial derivatives that may
exist. Intuitively, if the mountain falls away steeply enough in the north-south and east-west
directions, relatively minor failures to do so in other directions can be compensated for.

A formal analysis

We now proceed to make these points more formally. What we wish to discover are the
conditions that must be placed on the second partial derivatives of the function f to ensure
that 42y is negative for movements in any direction through the critical point. Recall first that
the total differential of the function is given by

dy = fidx, + fodx,. (2.92)
The differential of that function is given by
A%y = (fry %y + fia0y) ey + (foy ey + fpdlcy )iy (2.93)

or

A%y = fi,dx} + fipdny dy + fy) dxy dx, + £y dxs. (2.94)
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Because, by Young’s theorem, f}, = f;,, we can arrange terms to get
A%y = f,,4%3 + 2f,, dxcy dc, + fo, 3. (2.95)

For Equation 2.95 to be unambiguously negative for any change in the x’s (that is, for any
choices of dx; and dx, ), it is obviously necessary that f1; and f;, be negative. If, for example,
dx, = 0, then

A%y = fi,dx? (2.96)
and 4%y < 0 implies
S <0. (2.97)

An identical argument can be made for f;, by setting dx, = 0. If neither dx; nor dx, is 0, we
then must consider the cross partial, f],, in deciding whether or not 4%y is unambiguously
negative. Relatively simple algebra can be used to show that the required condition is'*

firfe —ffz > 0. (2.98)

Concave functions

Intuitively, what Equation 2.98 requires is that the own second partial derivatives
(f1and f5,) be sufficiently negative so that their product (which is positive) will outweigh
any possible perverse effects from the cross-partial derivatives (f;, = f3;). Functions that
obey such a condition are called concave functions. In three dimensions, such functions
resemble inverted teacups (for an illustration, see Example 2.10). This image makes it clear
that a flat spot on such a function is indeed a true maximum because the function always
slopes downward from such a spot. More generally, concave functions have the property that
they always lie below any plane that is tangent to them—the plane defined by the maximum
value of the function is simply a special case of this property.

EXAMPLE 2.9 Second-Order Conditions: Health Status for the Last Time

In Example 2.3 we considered the health status function
y=f(%,%) = —&7 + 2% — x5 + 4%, + 5. (2.99)

The first-order conditions for a maximum are
i=2x%+2=0,

2.100
fH=-2%+4=0 (2.100
or
*
=1
L7 (2.101)
xy =2

The proof proceeds by adding and subtracting the term (f;, alxz)2 /f11 to Equation 2.95 and factoring. But this approach
is only applicable to this special case. A more easily generalized approach that uses matrix algebra recognizes that Equation
2.95 is a “Quadratic Form” in dx; and dx,, and that Equations 2.97 and 2.98 amount to requiring that the Hessian matrix

[ %]

be “negative definite.” In particular, Equation 2.98 requires that the determinant of this Hessian be positive. For a
discussion, see the Extensions to this chapter.
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The second-order partial derivatives for Equation 2.99 are

fll = -2,
frn= -2, (2.102)
f,= 0.

These derivatives clearly obey Equations 2.97 and 2.98, so both necessary and sufficient
conditions for a local maximum are satisfied.!®

QUERY: Describe the concave shape of the health status function and indicate why it has
only a single global maximum value.

Constrained maximization

As another illustration of second-order conditions, consider the problem of choosing x, and
X, to maximize

y=f(%,%,), (2.103)

subject to the linear constraint
c—byx, —byx, =0 (2.104)

(where ¢, &, b, are constant parameters in the problem). This problem is of a type that will
be frequently encountered in this book and is a special case of the constrained maximum
problems that we examined earlier. There we showed that the first-order conditions for a
maximum may be derived by setting up the Lagrangian expression

L= f(x,%) +Nc— byx, — byx,). (2.105)
Partial differentiation with respect to x;, &,, and \ yields the familiar results:
h— Ay =0,
£, —\b, =0, (2.106)

c—byx) — byx, = 0.

These equations can in general be solved for the optimal values of x;, x,, and X. To ensure
that the point derived in that way is a local maximum, we must again examine movements
away from the critical points by using the “second” total differential:

A%y = fi,dx3 + 2f,,dx, dxc, + fo,dx3. (2.107)

In this case, however, not all possible small changes in the «’s are permissible. Only those
values of x; and x, that continue to satisty the constraint can be considered valid alternatives
to the critical point. To examine such changes, we must calculate the total differential of the
constraint:

—bydx; — bydx, =0 (2.108)
or
b
dx, = ——dx,. (2.109)
b,

*Notice that Equations 2.102 obey the sufficient conditions not only at the critical point but also for all possible choices of
x; and x,. That is, the function is concave. In more complex examples this need not be the case: The second-order
conditions need be satisfied only at the critical point for a local maximum to occur.
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This equation shows the relative changes in x; and x, that are allowable in considering
movements from the critical point. To proceed further on this problem, we need to use the
first-order conditions. The first two of these imply

S = b ) (2.110)
h b
and combining this result with Equation 2.109 yields
dxzz—ﬁﬁlxl. (2.111)
Rp)

We now substitute this expression for dx, in Equation 2.107 to demonstrate the conditions
that must hold for 42y to be negative:

A2y = fidx3 + 2f;,dn ( gdxl> + f < gdxl>2
A

ax? + f; Siga (2.112)
f2 1 22 f% 1

Combining terms and putting each over a common denominator gives

= fu”lx% - 2f12

dx?
Py = (finfs — 2ha iy +fzzf%)—f21~ (2.113)
2
Consequently, for 4%y < 0, it must be the case that
faf3 =2 il +Fafi <0. (2.114)

Quasi-concave functions

Although Equation 2.114 appears to be little more than an inordinately complex mass of
mathematical symbols, in fact the condition is an important one. It characterizes a set of
functions termed guasi-concave functions. These functions have the property that the set of all
points for which such a function takes on a value greater than any specific constant is a convex
set (that is, any two points in the set can be joined by a line contained completely within the
set). Many economic models are characterized by such functions and, as we will see in
considerable detail in Chapter 3, in these cases the condition for quasi-concavity has a
relatively simple economic interpretation. Problems 2.9 and 2.10 examine two specific
quasi-concave functions that we will frequently encounter in this book. Example 2.10
shows the relationship between concave and quasi-concave functions.

EXAMPLE 2.10 Concave and Quasi-Concave Functions

The differences between concave and quasi-concave functions can be illustrated with the
function'®

y = flay, %) = (%, -%,)", (2.115)

where the &’s take on only positive values, and the parameter % can take on a variety of
positive values.

16This function is a special case of the Cobb-Douglas function. See also Problem 2.10 and the Extensions to this chapter
for more details on this function.
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No matter what value % takes, this function is quasi-concave. One way to show this is
to look at the “level curves” of the function by setting y equal to a specific value, say ¢. In
this case

y=c=(x0%,)" or xx, =c/F=1(. (2.116)

But this is just the equation of a standard rectangular hyperbola. Clearly the set of points for
which y takes on values larger than ¢ is convex because it is bounded by this hyperbola.

A more mathematical way to show quasi-concavity would apply Equation 2.114 to this
function. Although the algebra of doing this is a bit messy, it may be worth the struggle. The
various components of Equation 2.114 are:

fi =l 1o,

fo = kxjast,
fi1 =kl — 1)at2x%, (2.117)
fr2 = (ke — 1)xfa52,
fir = a1k,

So,
fi1f3 = 20 fifs + fuf T = B2 (k = 1)t 203872 — 2itadh 2032
+ B3 (k — 1)x3k2x3k2
= 2/3x3k2x3k2(_1), (2.118)

which is clearly negative, as is required for quasi-concavity.

Whether or not the function f is concave depends on the value of k. If £ < 0.5 the
function is indeed concave. An intuitive way to see this is to consider only points where
X, = x,. For these points,

y = (x1)* = a2k, (2.119)

which, for £ < 0.5, is concave. Alternatively, for £ > 0.5, this function is convex.
A more definitive proof makes use of the partial derivatives from Equation 2.117. In this
case the condition for concavity can be expressed as

O A R
— w222 [J2 ( — 1)27134]
= x3F 13k 12 (—2k + 1)), (2.120)
and this expression is positive (as is required for concavity) for
(=2k+1)>0 or k<O0.5.

On the other hand, the function is convex for 2 > 0.5.

A graphic illustration. Figure 2.4 provides three-dimensional illustrations of three specific
examples of this function: for £ = 0.2, £ = 0.5, and 2 = 1. Notice that in all three cases the
level curves of the function have hyperbolic, convex shapes. That is, for any fixed value of y
the functions are quite similar. This shows the quasi-concavity of the function. The primary
differences among the functions are illustrated by the way in which the value of y increases as

(continued)
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EXAMPLE 2.10 CONTINUED

FIGURE 2.4

both «’s increase together. In Figure 2.4a (when k = 0.2), the increase in y slows as the &’s
increase. This gives the function a rounded, teacuplike shape that indicates its concavity. For
k = 0.5, y appears to increase linearly with increases in both of the x’s. This is the borderline
between concavity and convexity. Finally, when 2= 1 (as in Figure 2.4c), simultaneous
increases in the values of both of the x’s increase y very rapidly. The spine of the function
looks convex to reflect such increasing returns.

Concave and Quasi-Concave Functions

In all three cases these functions are quasi-concave. For a fixed y, their level curves are convex. But
only for £ = 0.2 is the function strictly concave. The case £ = 1.0 clearly shows nonconcavity because
the function is not below its tangent plane.

@k=0.2 (b)k = 0.5

© k=10
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A careful look at Figure 2.4a suggests that any function that is concave will also be quasi-
concave. You are asked to prove that this is indeed the case in Problem 2.8. This example
shows that the converse of this statement is not true—quasi-concave functions need not
necessarily be concave. Most functions we will encounter in this book will also illustrate this
fact; most will be quasi-concave but not necessarily concave.

QUERY: Explain why the functions illustrated both in Figure 2.4a and 2.4c would have maxi-

mum values if the x’s were subject to a linear constraint, but only the graph in Figure 2.4a
would have an unconstrained maximum.

HOMOGENEOUS FUNCTIONS

Many of the functions that arise naturally out of economic theory have additional mathemat-
ical properties. One particularly important set of properties relates to how the functions
behave when all (or most) of their arguments are increased proportionally. Such situations
arise when we ask questions such as what would happen if all prices increased by 10 percent or
how would a firm’s output change if it doubled all of the inputs that it uses. Thinking about
these questions leads naturally to the concept of homogeneous functions. Specifically, a

function (%, %,, ..., %,) is said to be homogeneous of degree k if

fltwy, 5y, ... 1x,) = t* f2),%,...,%,). (2.121)

The most important examples of homogeneous functions are those for which 2 =1 or
k= 0. In words, when a function is homogeneous of degree one, a doubling of all of its
arguments doubles the value of the function itself. For functions that are homogeneous of
degree 0, a doubling of all of its arguments leaves the value of the function unchanged.
Functions may also be homogeneous for changes in only certain subsets of their arguments—
that is, a doubling of some of the x’s may double the value of the function if the other
arguments of the function are held constant. Usually, however, homogeneity applies to
changes in all of the arguments in a function.

Homogeneity and derivatives

If a function is homogeneous of degree % and can be differentiated, the partial derivatives of
the function will be homogeneous of degree % — 1. A proof of this follows directly from the
definition of homogeneity. For example, differentiating Equation 2.121 with respect to its
first argument gives

of (ty,...,8%,) o af (%,...,x,)
0%, 9%,

or

filtwy, .. tx) =" 1f(xp, .03, (2.122)

which shows that f] meets the definition for homogeneity of degree £ — 1. Because marginal
ideas are so prevalent in microeconomic theory, this property shows that some important
properties of marginal effects can be inferred from the properties of the underlying function
itself.
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Euler’s theorem

Another useful feature of homogeneous functions can be shown by differentiating the
definition for homogeneity with respect to the proportionality factor, ¢. In this case, we
differentiate the right side of Equation 2.121 first:

RtRLE (2, o) = 20 fy (B0, o t,) + o &, f, (B, 8.
If we let ¢+ = 1, this equation becomes
kf (%y,...,%,) = 2. f1(%,...,%,) + - +x, f,(%,...,%,). (2.123)

This equation is termed Euler’s theorem (after the mathematician who also discovered the
constant ¢) for homogeneous functions. It shows that, for a homogeneous function, there is a
definite relationship between the values of the function and the values of its partial derivatives.
Several important economic relationships among functions are based on this observation.

Homothetic functions

A homothetic function is one that is formed by taking a monotonic transformation of a
homogeneous function.!” Monotonic transformations, by definition, preserve the order of
the relationship between the arguments of a function and the value of that function. If certain
sets of x’s yield larger values for £, they will also yield larger values for a monotonic transfor-
mation of f. Because monotonic transformations may take many forms, however, they would
not be expected to preserve an exact mathematical relationship such as that embodied in
homogeneous functions. Consider, for example, the function f(x,y) = x-y. Clearly this
function is homogeneous of degree 2—a doubling of its two arguments will multiply the value
of the function by 4. But the monotonic transformation, F, that simply adds 1 to f [that is,
F(f)=f+1=uxy+ 1] is not homogeneous at all. Hence, except in special cases, homo-
thetic functions do not possess the homogeneity properties of their underlying functions.
Homothetic functions do, however, preserve one nice feature of homogeneous functions.
This property is that the implicit trade-offs among the variables in a function depend only on
the ratios of those variables, not on their absolute values. Here we show this for the simple
two-variable, implicit function f(x, y) = 0. It will be easier to demonstrate more general cases
when we get to the economics of the matter later in this book.

Equation 2.28 showed that the implicit trade-off between x and y for a two-variable
function is given by

Bk
. f

If we assume [ is homogeneous of degree &, its partial derivatives will be homogeneous of
degree £ — 1 and the implicit trade-oft between x and ¥ is

ﬂ — tk_lfx(tx’ ty) —— fx(tx, ty) (2.124)

dv tHlf (e ry)  f(twty)
Now let # = 1/y and Equation 2.124 becomes

dv— f(x/y,1)°

which shows that the trade-off depends only on the ratio of x to y. Now if we apply
any monotonic transformation, F (with F' > 0), to the original homogeneous function f,
we have

7Because a limiting case of a monotonic transformation is to leave the function unchanged, all homogeneous functions are
also homothetic.
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Ay Ff/nl) A/ 21261

dx  Ff(x/y,1)  f(x/y1)°
and this shows both that the trade-off is unaffected by the monotonic transformation and
that it remains a function only of the ratio of » to y. In Chapter 3 (and elsewhere) this
property will make it very convenient to discuss some theoretical results with simple two-
dimensional graphs, for which we need not consider the overall levels of key variables, but
only their ratios.
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EXAMPLE 2.11 Cardinal and Ordinal Properties

In applied economics it is sometimes important to know the exact numerical relationship
among variables. For example, in the study of production, one might wish to know
precisely how much extra output would be produced by hiring another worker. This is a
question about the “cardinal” (i.e., numerical) properties of the production function. In
other cases, one may only care about the order in which various points are ranked. In the
theory of utility, for example, we assume that people can rank bundles of goods and will
choose the bundle with the highest ranking, but that there are no unique numerical values
assigned to these rankings. Mathematically, ordinal properties of functions are preserved by
any monotonic transformation because, by definition, a monotonic transformation pre-
serves order. Usually, however, cardinal properties are not preserved by arbitrary mono-
tonic transformations.

These distinctions are illustrated by the functions we examined in Example 2.10. There
we studied monotonic transformations of the function

f(x1,%) = (%,%,)
by considering various values of the parameter 2. We showed that quasi-concavity (an
ordinal property) was preserved for all values of 2. Hence, when approaching problems that
focus on maximizing or minimizing such a function subject to linear constraints we need not
worry about precisely which transformation is used. On the other hand, the function in
Equation 2.127 is concave (a cardinal property) only for a narrow range of values of k. Many
monotonic transformations destroy the concavity of f.
The function in Equation 2.127 also can be used to illustrate the difference between
homogeneous and homothetic functions. A proportional increase in the two arguments of f
would yield

k (2.127)

flexy, tx,) = t2x, %, = t2f(x,, 5,). (2.128)

Hence, the degree of homogeneity for this function depends on k—that is, the degree of
homogeneity is not preserved independently of which monotonic transformation is used.
Alternatively, the function in Equation 2.127 is homothetic because

e—1,k
lezi_ﬁi ks )

— —_ 71 72 (2.129)
d, 5 ket ak~1 x

That is, the trade-off between &, and x; depends only on the ratio of these two variables and
is unaffected by the value of .. Hence, homotheticity is an ordinal property. As we shall see,
this property is quite convenient when developing graphical arguments about economic
propositions.

QUERY: How would the discussion in this example be changed if we considered monotonic
transformations of the form f(x,,%,, k) = x,x, + k for various values of /%?
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INTEGRATION

Integration is another of the tools of calculus that finds a number of applications in microeco-
nomic theory. The technique is used both to calculate areas that measure various economic
outcomes and, more generally, to provide a way of summing up outcomes that occur over
time or across individuals. Our treatment of the topic here necessarily must be brief] so readers
desiring a more complete background should consult the references at the end of this chapter.

Anti-derivatives

Formally, integration is the inverse of differentiation. When you are asked to calculate the
integral of a function, f(x), you are being asked to find a function that has f(x) as its derivative.
If we call this “anti-derivative” F(x), this function is supposed to have the property that
AF (x)
dx

If such a function exists then we denote it as

= F'(x) = f(%). (2.130)

F(x) :ff(x) dx. (2.131)

The precise reason for this rather odd-looking notation will be described in detail later. First,
let’s look at a few examples. If f(x) = & then

2
F(x)= | f(x)dx = fxdxz%—F C, (2.132)

where C is an arbitrary “constant of integration” that disappears upon differentiation. The
correctness of this result can be easily verified:
_ d(x?*/2+C)

Calculating anti-derivatives

Calculation of anti-derivatives can be extremely simple, or difficult, or agonizing, or impossi-
ble, depending on the particular f(x) specified. Here we will look at three simple methods for
making such calculations, but, as you might expect, these will not always work.

1. Creative guesswork. Probably the most common way of finding integrals (anti-
derivatives) is to work backwards by asking “what function will yield £(x) as its derivative?”
Here are a few obvious examples:

3

F(x) :fxzalxz %—&-C,

xn+1
F(x) = |x" dx = C
(%) fx n+1+ ’
5 ax®  bx?
F(x) = | (ax —i—bx—l—c)dx:T—l— T+cx+C,
F(x) :fexdx:e"JrC, (2.134)
ﬂx
F = x =
(%) fa dx lna+c’

Flx) = f(%) dx — In(|#]) + C,

F(x) = f(lnx) dx =xIlnx —x+ C.
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You should use differentiation to check that all of these obey the property that F'(x) = f(x).
Notice that in every case the integral includes a constant of integration because anti-deriva-
tives are unique only up to an additive constant which would become zero upon differentia-
tion. For many purposes, the results in Equation 2.134 (or trivial generalizations of them)
will be sufficient for our purposes in this book. Nevertheless, here are two more methods that
may work when intuition fails.

2. Change of variable. A clever redefinition of variables may sometimes make a function
much easier to integrate. For example, it is not at all obvious what the integral of 2x/(1 + x?)
is. But, if we let y = 1 + &2, then dy = 2xdx and

2x B B ;
f1+x2 oo = f dy = In(ly]) = In([1 + «7). (2.135)

The key to this procedure is in breaking the original function into a term in y and a term in
dy. It takes a lot of practice to see patterns for which this will work.

3. Integration by parts. A similar method for finding integrals makes use of the difteren-
tial expression duv = udy + vdu for any two functions # and ». Integration of this differential

yields
fduv: uv:fudv+fvdu or fudv:m;—fvdu. (2.136)

Here the strategy is to define functions # and » in a way that the unknown integral on the
left can be calculated by the difference between the two known expressions on the right. For
example, it is by no means obvious what the integral of x¢* is. But we can define # = x (so
An = dx) and dv = ¢“dx (so v = ¢¥). Hence we now have

fxexplx:fudv: uv—fvdu:xex—fexdx: (x—1)e*+ C. (2.137)

Again, only practice can suggest useful patterns in the ways in which # and » can be defined.

Definite integrals

The integrals we have been discussing so far are “indefinite” integrals—they provide only a
general function that is the anti-derivative of another function. A somewhat difterent, though
related, approach uses integration to sum up the area under a graph of a function over some
defined interval. Figure 2.5 illustrates this process. We wish to know the area under the
function f(x) from x = a to x = &. One way to do this would be to partition the interval into
narrow slivers of x(Ax) and sum up the areas of the rectangles shown in the figure. That is:

area under f(x Z f(x; (2.138)

where the notation is intended to indicate that the height of each rectangle is approximated
by the value of f(x) for a value of x in the interval. Taking this process to the limit by
shrinking the size of the Ax intervals yields an exact measure of the area we want and is
denoted by:

area under f(x f flx (2.139)

This then explains the origin of the oddly shaped integral sign—it is a stylized S, indicating
“sum.” As we shall see, integrating is a very general way of summing the values of a continuous
function over some interval.
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FIGURE 2.5 Definite Integrals Show the Areas under the Graph of a Function

Definite integrals measure the area under a curve by summing rectangular areas as shown in the
graph. The dimension of each rectangle is f'(x)dx.

f(x)

Fundamental theorem of calculus

Evaluating the integral in Equation 2.139 is very simple if we know the anti-derivative of
f(x), say, F(x). In this case we have

x=b
area under f(x) = f f(x)dx = F(b) — F(a). (2.140)

That is, all we need do is calculate the anti-derivative of f(x) and subtract the value of this
function at the lower limit of integration from its value at the upper limit of integration. This
result is sometimes termed the “fundamental theorem of calculus” because it directly ties
together the two principal tools of calculus, derivatives and integrals. In Example 2.12, we
show that this result is much more general than simply a way to measure areas. It can be
used to illustrate one of the primary conceptual principles of economics—the distinction
between “stocks” and “flows.”

EXAMPLE 2.12 Stocks and Flows

The definite integral provides a useful way for summing up any function that is providing a
continuous flow over time. For example, suppose that net population increase (births minus
deaths) for a country can be approximated by the function f(¢) = 1,000£°%%*. Hence, the net
population change is growing at the rate of 2 percent per year—it is 1,000 new people in
year 0, 1,020 new people in the first year, 1,041 in the second year, and so forth. Suppose we
wish to know how much in total the population will increase within 50 years. This might be a
tedious calculation without calculus, but using the fundamental theorem of calculus provides
an easy answer:
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t=50 t=50 50
increase in population = f f()dt = f 1,0006%%%" 4t = F(t)
t=0 t=0 0
1,000£0927 3% 1,000
= =2 == — 50,000 =85,914 (2.141)
0.02 0 0.02

[where the notation |’ indicates that the expression is to be evaluated as F(4) — F(a)].
Hence, the conclusion is that the population will grow by nearly 86,000 people over the
next 50 years. Notice how the fundamental theorem of calculus ties together a “flow”
concept, net population increase (which is measured as an amount per year), with a “stock”
concept, total population (which is measured at a specific date and does not have a time
dimension). Note also that the 86,000 calculation refers only to the total increase between
year zero and year fifty. In order to know the actual total population at any date we would
have to add the number of people in the population at year zero. That would be similar to
choosing a constant of integration in this specific problem.

Now consider an application with more economic content. Suppose that total costs for a
particular firm are given by C(g) = 0.14> 4+ 500 (where g represents output during some
period). Here the term 0.14? represents variable costs (costs that vary with output) whereas
the 500 figure represents fixed costs. Marginal costs for this production process can be found
through differentiation—MC = dC(q)/dq = 0.2g—hence, marginal costs are increasing
with ¢ and fixed costs drop out upon differentiation. What are the total costs associated
with producing, say, 4 = 1002 One way to answer this question is to use the total cost
function directly: C(100) = 0.1(100)* 4+ 500 = 1,500. An alternative way would be to
integrate marginal cost over the range 0 to 100 to get total variable cost:

7=100 100
variable cost = f 029dq=014* =1,000-0=1,000, (2.142)
0
q=0

to which we would have to add fixed costs of 500 (the constant of integration in this
problem) to get total costs. Of course, this method of arriving at total cost is much more
cumbersome than just using the equation for total cost directly. But the derivation does
show that total variable cost between any two output levels can be found through integration
as the area below the marginal cost curve—a conclusion that we will find useful in some
graphical applications.

QUERY: How would you calculate the total variable cost associated with expanding output
from 100 to 110? Explain why fixed costs do not enter into this calculation.

Differentiating a definite integral

Occasionally we will wish to differentiate a definite integral—usually in the context of seeking
to maximize the value of this integral. Although performing such differentiations can some-
times be rather complex, there are a few rules that should make the process easier.

1. Diffeventiation with vespect to the varviable of integration. This is a trick question,
but instructive nonetheless. A definite integral has a constant value; hence its derivative is
zero. That is:

af, f(x) dx
dx

The summing process required for integration has already been accomplished once we write
down a definite integral. It does not matter whether the variable of integration is & or ¢ or

=0. (2.143)
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anything else. The value of this integrated sum will not change when the variable x changes,
no matter what x is (but see rule 3 below).

2. Diffeventiation with vespect to the upper bound of integration. Changing the upper
bound of integration will obviously change the value of a definite integral. In this case, we
must make a distinction between the variable determining the upper bound of integration
(say, &) and the variable of integration (say, ¢). The result then is a simple application of the
fundamental theorem of calculus. For example:

A5 f (1) _ d[F(x) — F(a)]

dx A = f(x) — 0 = f(x), (2.144)

where F(x) is the antiderivative of f(x). By referring back to Figure 2.5 we can see why this
conclusion makes sense—we are asking how the value of the definite integral changes if x
increases slightly. Obviously, the answer is that the value of the integral increases by the
height of f(x) (notice that this value will ultimately depend on the specified value of x).

If the upper bound of integration is a function of x, this result can be generalized using
the chain rule:

AffVf(#)dt _d[F(g(x) — F(a)] _ d[F(g(x))] _f

d(x) B dx N dx B

where, again, the specific value for this derivative would depend on the value of x assumed.

Finally, notice that differentiation with respect to a lower bound of integration just
changes the sign of this expression:

Al () dt  d[F(b) - F(g(x)]  dF(g())

i = I = — T = —f7'(x). (2.146)

3. Diffeventiation with vespect to another velevant variable. In some cases we may wish
to integrate an expression that is a function of several variables. In general, this can involve
multiple integrals and differentiation can become quite complicated. But there is one simple
case that should be mentioned. Suppose that we have a function of two variables, f(x, ¥), and
that we wish to integrate this function with respect to the variable x. The specific value for this
integral will obviously depend on the value of y and we might even ask how that value
changes when y changes. In this case, it is possible to “differentiate through the integral sign”
to obtain a result. That is:

dg(x) .,
=), (2.145)

af. f x y ff (x,9) d. (2.147)

This expression shows that we can first partially differentiate £(x, y) with respect to y before
proceeding to compute the value of the definite integral. Of course, the resulting value may
still depend on the specific value that is assigned to ¥, but often it will yield more economic
insights than the original problem does. Some further examples of using definite integrals
are found in Problem 2.8.

DYNAMIC OPTIMIZATION

Some optimization problems that arise in microeconomics involve multiple periods.'® We are
interested in finding the optimal time path for a variable or set of variables that succeeds in
optimizing some goal. For example, an individual may wish to choose a path of lifetime

" Throughout this section we treat dynamic optimization problems as occurring over time. In other contexts, the same
techniques can be used to solve optimization problems that occur across a continuum of firms or individuals when the
optimal choices for one agent affect what is optimal for others.



Chapter 2 Mathematics for Microeconomics

consumptions that maximizes his or her utility. Or a firm may seek a path for input and
output choices that maximizes the present value of all future profits. The particular feature of
such problems that makes them difficult is that decisions made in one period affect outcomes
in later periods. Hence, one must explicitly take account of this interrelationship in choosing
optimal paths. If decisions in one period did not affect later periods, the problem would not
have a “dynamic” structure—one could just proceed to optimize decisions in each period
without regard for what comes next. Here, however, we wish to explicitly allow for dynamic
considerations.

The optimal control problem

Mathematicians and economists have developed many techniques for solving problems in
dynamic optimization. The references at the end of this chapter provide broad introductions
to these methods. Here, however, we will be concerned with only one such method that has
many similarities to the optimization techniques discussed earlier in this chapter—the optimal
control problem. The framework of the problem is relatively simple. A decision maker wishes
to find the optimal time path for some variable x(¢) over a specified time interval [z, #].
Changes in x are governed by a differential equation:

dx(t)
dt

where the variable ¢(#) is used to “control” the change in x(#). In each period of time, the
decision maker derives value from x and ¢ according to the function f[x(2), c(¢), ¢] and his
or her goal to optimize [ 2) flx(2),c(2),¢] dt. Often this problem will also be subject to
“endpoint” constraints on the variable x. These might be written as x(#,) = x, and
x(t) = x;.

Notice how this problem is “dynamic.” Any decision about how much to change «x this
period will affect not only the future value of x, it will also affect future values of the outcome
function f. The problem then is how to keep x(#) on its optimal path.

Economic intuition can help to solve this problem. Suppose that we just focused on the
function f" and chose x and ¢ to maximize it at each instant of time. There are two difficulties
with this “myopic” approach. First, we are not really free to “choose” x at any time. Rather,
the value of x will be determined by its initial value x,, and by its history of changes as given by
Equation 2.148. A second problem with this myopic approach is that it disregards the
dynamic nature of the problem by not asking how this period’s decisions affect the future.
We need some way to reflect the dynamics of this problem in a single period’s decisions.
Assigning the correct value (price) to x at each instant of time will do just that. Because
this implicit price will have many similarities to the Lagrangian multipliers studied earlier in
this chapter, we will call it A(#). The value of x is treated as a function of time because the
importance of x can obviously change over time.

=glx(t),c(t), ¢, (2.148)

The maximum principle

Now let’s look at the decision maker’s problem at a single point in time. He or she must be
concerned with both the current value of the objective function f[x(#), ¢(2), ¢] and with the
implied change in the value of x(#) . Because the current value of x(#) is given by A(#)x(2), the
instantaneous rate of change of this value is given by:

A[\(2)x(2)] dx(t)
dt dt

AN(2)

(1) 8

(2.149)

+ x(2)
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. . 1 ..
and so at any time 7 a comprehensive measure of the value of concern'® to the decision
maker is

H = f[x(2), c(t), t] + N£)glx(2), c(2), t] + x(¢) d);it)'

This comprehensive value represents both the current benefits being received and the
instantancous change in the value of x. Now we can ask what conditions must hold for x(#)
and ¢() to optimize this expression.? That is:

(2.150)

H
il Lt =0 or f=-Ng;

dec

oH aN(2) IN(2) (2:151)
xS TNt =0 o ot =

These are then the two optimality conditions for this dynamic problem. They are usually
referred to as the “maximum principle.” This solution to the optimal control problem was
first proposed by the Russian mathematician L. S. Pontryagin and his colleagues in the early
1960s.

Although the logic of the maximum principle can best be illustrated by the economic
applications we will encounter later in this book, a brief summary of the intuition behind
them may be helpful. The first condition asks about the optimal choice of ¢. It suggests that,
at the margin, the gain from ¢ in terms of the function f must be balanced by the losses from ¢
in terms of the value of its ability to change x. That is, present gains must be weighed against
future costs.

The second condition relates to the characteristics that an optimal time path of x(z)
should have. It implies that, at the margin, any net gains from more current x (either in terms
of f or in terms of the accompanying value of changes in x) must be balanced by changes in
the implied value of x itself. That is, the net current gain from more x must be weighed
against the declining future value of x.

EXAMPLE 2.13 Allocating a Fixed Supply

As an extremely simple illustration of the maximum principle, assume that someone has
inherited 1,000 bottles of wine from a rich uncle. He or she intends to drink these bottles
over the next 20 years. How should this be done to maximize the utility from doing so?

Suppose that this person’s utility function for wine is given by #[c(#)] = In ¢(#). Hence the
utility from wine drinking exhibits diminishing marginal utility (#' > 0, 2" < 0). This per-
son’s goal is to maximize

20 20
f ulc(2)] dt = fln c(z) ds. (2.152)
0 0

Let x(z) represent the number of bottles of wine remaining at time #. This series is con-
strained by x(0) = 1,000 and x(20) = 0. The differential equation determining the evolu-
tion of x(z) takes the simple form:*!

"We denote this current value expression by H to suggest its similarity to the Hamiltonian expression used in formal
dynamic optimization theory. Usually the Hamiltonian does not have the final term in Equation 2.150, however.

2ONotice that the variable x is not really a choice variable here—its value is determined by history. Differentiation with
respect to x can be regarded as implicitly asking the question: “If x(#) were optimal, what characteristics would it have?”
2IThe simple form of this differential equation (where dx/dt depends only on the value of the control variable, ¢) means

that this problem is identical to one explored using the “calculus of variations” approach to dynamic optimization. In such
a case, one can substitute dx/dt into the function £ and the first-order conditions for a maximum can be compressed into
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dx(t)
dt

That is, each instant’s consumption just reduces the stock of remaining bottles. The current
value Hamiltonian expression for this problem is

= —¢(2). (2.153)

H =In¢(2) + N—c(2)) +x(t)%, (2.154)
and the first-order conditions for a maximum are

oH 1

o ¢ M0

oH A\ (2.155)
_— = — = 0

ox dt

The second of these conditions requires that N (the implicit value of wine) be constant over
time. This makes intuitive sense: because consuming a bottle of wine always reduces
the available stock by one bottle, any solution where the value of wine differed over time
would provide an incentive to change behavior by drinking more wine when it is cheap and
less when it is expensive. Combining this second condition for a maximum with the first
condition implies that ¢(z) itself must be constant over time. If ¢(¢) = &, the number of
bottles remaining at any time will be x(z) = 1,000 — kz. If £ = 50, the system will obey the
end point constraints x(0) = 1000 and x(20) = 0. Of course, in this problem you could
probably guess that the optimum plan would be to drink the wine at the rate of 50 bottles
per year for 20 years because diminishing marginal utility suggests one does not want to
drink excessively in any period. The maximum principle confirms this intuition.

More complicated utility. Now let’s take a more complicated utility function that may yield
more interesting results. Suppose that the utility of consuming wine at any date, #, is given by

B 1 A

Assume also that the consumer discounts future consumption at the rate 3. Hence this
person’s goal is to maximize

20 20
f ulc(t)] dt = J‘eﬁfw dt (2.157)
0 0 K
subject to the following constraints:
Y ),
%(0) = 1,000, (2.158)
x(20) = 0.
Setting up the current value Hamiltonian expression yields
He oot EON o) P (2.159)
o dt
and the maximum principle requires that
(continued)

the single equation f, = dfy, ;. /dt, which is termed the “Euler equation.” In Chapter 17 we will encounter many Euler
equations.
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EXAMPLE 2.13 CONTINUED

H
aa—c = e ()] ' —A=0 and
o, (2.160)
x a7

Hence, we can again conclude that the implicit value of the wine stock (N) should be
constant over time (call this constant %) and that

e ()] =k or c(z)= kYOO, (2.161)

So, optimal wine consumption should fall over time in order to compensate for the fact that
future consumption is being discounted in the consumer’s mind. If, for example, we let
8 =0.1 and vy = —1 (“reasonable” values, as we will show in later chapters), then

c(t) = k05,7005 (2.162)
Now we must do a bit more work in choosing % to satisty the endpoint constraints. We want

20

= 20
fc(t) A — fk—o.se—uos:r At — —20k05,-0.05¢ ) (2.163)
’ = 0—2012_0‘5(8_1 —1) =12.64%%5 = 1,000.
Finally, then, we have the optimal consumption plan as
c(t) =~ 79¢709%, (2.164)

This consumption plan requires that wine consumption start out fairly high and decline at a
continuous rate of 5 percent per year. Because consumption is continuously declining, we
must use integration to calculate wine consumption in any particular year (x) as follows:

X X x
consumption in year x ~ f c(t)dt = f 79¢7 005 gy — 1,580,005

o1 (2.165)
x—1 x—1

_ 1’580(370.05(3071) _ 870.05x).

If x =1, consumption is about 77 bottles in this first year. Consumption then declines
smoothly, ending with about 30 bottles being consumed in the 20th year.

QUERY: Our first illustration was just an example of the second in which 8 = vy = 0. Explain
how alternative values of these parameters will affect the path of optimal wine consumption.
Explain your results intuitively (for more on optimal consumption over time, see Chapter 17).

MATHEMATICAL STATISTICS

In recent years microeconomic theory has increasingly focused on issues raised by uncertainty
and imperfect information. To understand much of this literature, it is important to have a
good background in mathematical statistics. The purpose of this section is, therefore, to
summarize a few of the statistical principles that we will encounter at various places in this
book.



Chapter 2 Mathematics for Microeconomics

Random variables and probability density functions

A random variable describes (in numerical form) the outcomes from an experiment that is
subject to chance. For example, we might flip a coin and observe whether it lands heads or
tails. If we call this random variable x, we can denote the possible outcomes (“realizations”)
of the variable as:

|1 if coin is heads,
¥=10 if coin is tails.

Notice that, prior to the flip of the coin, x can be either 1 or 0. Only after the uncertainty is
resolved (that is, after the coin is flipped) do we know what the value of x is.*?

Discrete and continuous random variables

The outcomes from a random experiment may be either a finite number of possibilities or a
continuum of possibilities. For example, recording the number that comes up on a single die
is a random variable with six outcomes. With two dice, we could either record the sum of
the faces (in which case there are 12 outcomes, some of which are more likely than others) or
we could record a two-digit number, one for the value of each die (in which case there would
be 36 equally likely outcomes). These are examples of discrete random variables.

Alternatively, a continuous random variable may take on any value in a given range of real
numbers. For example, we could view the outdoor temperature tomorrow as a continuous
variable (assuming temperatures can be measured very finely) ranging from, say, —50°C to
+50°C. Of course, some of these temperatures would be very unlikely to occur, but in principle
the precisely measured temperature could be anywhere between these two bounds. Similarly,
we could view tomorrow’s percentage change in the value ofa particular stock index as taking
on all values between —100% and, say, +1,000%. Again, of course, percentage changes around
0% would be considerably more likely to occur than would be the extreme values.

Probability density functions

For any random variable, its probability density function (PDF) shows the probability that
cach specific outcome will occur. For a discrete random variable, defining such a function
poses no particular difficulties. In the coin flip case, for example, the PDF [denoted by £(x)]
would be given by

flx=1)=05,
flx=0)=0.5. (2.166)
For the roll of a single die, the PDF would be:

flx=1)=1/6,

flx=2)=1/e,

flx=3)=1/6, 1o
flx=4)=1/6, :
flx=5)=1/6,

f(x=6)=1/6.

22Sometimes random variables are denoted by & to make a distinction between variables whose outcome is subject
to random chance and (nonrandom) algebraic variables. This notational device can be useful for keeping track of what is
random and what is not in a particular problem and we will use it in some cases. When there is no ambiguity, however, we
will not employ this special notation.
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Notice that in both of these cases the probabilities specified by the PDF sum to 1.0. This is
because, by definition, one of the outcomes of the random experiment must occur. More
generally, if we denote all of the outcomes for a discrete random variable by «; for i = 1, ..., n,
then we must have:

> flx) =1 (2.168)
=1

For a continuous random variable we must be careful in defining the PDF concept.
Because such a random variable takes on a continuum of values, if we were to assign any non-
zero value as the probability for a specific outcome (i.e., a temperature of +25.53470°C), we
could quickly have sums of probabilities that are infinitely large. Hence, for a continuous
random variable we define the PDF f(x) as a function with the property that the probability
that « falls in a particular small interval dx is given by the area of f(x)dx. Using this
convention, the property that the probabilities from a random experiment must sum to 1.0
is stated as follows:

+oc
f f(x) dx = 1.0. (2.169)

A few important PDFs

Most any function will do as a probability density function provided that f(x) > 0 and the
function sums (or integrates) to 1.0. The trick, of course, is to find functions that mirror
random experiments that occur in the real world. Here we look at four such functions that we
will find useful in various places in this book. Graphs for all four of these functions are shown
in Figure 2.6.

1. Binomial distribution. This is the most basic discrete distribution. Usually x is
assumed to take on only two values, 1 and 0. The PDF for the binomial is given by:

fle=1)=p,
flx=0)=1-p, (2.170)
where 0<p<1.

The coin flip example is obviously a special case of the binomial where p = 0.5.

2. Uniform distribution. This is the simplest continuous PDEF. It assumes that the
possible values of the variable x occur in a defined interval and that each value is equally likely.

That is:

1
= — <x <0
f(x) " fora <x < b (2.171)
flx)=10 forx <aorx>b.
Notice that here the probabilities integrate to 1.0:
' [ 1 Ly b
x a —a
dx = | —— dx = = - = =1.0. 2.172
ff(x)x J‘hfa o b—a|, b—a b—-a b-a ( )

3. Exponential distribution. This is a continuous distribution for which the probabilities
decline at a smooth exponential rate as x increases. Formally:

N ™ if x>0,
flx) = { 0 ifx <0 (2.173)
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FIGURE 2.6 Four Common Probability Density Functions
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Random variables that have these PDFs are widely used. Each graph indicates the expected value of

the PDF shown.
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where \ is a positive constant. Again, it is easy to show that this function integrates to 1.0:

—+o0

J;f(x) dx = l‘)\e"‘x dx = —e

el
—\x
0

=0-(-1)=1.0.

(2.174)

4. Normal distribution. The Normal (or Gaussian) distribution is the most important in
mathematical statistics. It’s importance stems largely from the central limit theorem, which
states that the distribution of any sum of independent random variables will increasingly
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approximate the Normal distribution as the number of such variables increase. Because
sample averages can be regarded as sums of independent random variables, this theorem
says that any sample average will have a Normal distribution no matter what the distribution
of the population from which the sample is selected. Hence, it may often be appropriate to
assume a random variable has a Normal distribution if it can be thought of as some sort of
average.

The mathematical form for the Normal PDF is

flx) = L 2 (2.175)

and this is defined for all real values of x. Although the function may look complicated, a few
of its properties can be easily described. First, the function is symmetric around zero
(because of the &2 term). Second, the function is asymptotic to zero as x becomes very large
or very small. Third, the function reaches its maximal value at x = 0. This value is
1/v/27 ~ 0.4. Finally, the graph of this function has a general “bell shape”—a shape used
throughout the study of statistics. Integration of this function is relatively tricky (though
easy in polar coordinates). The presence of the constant 1/v/27 is needed if the function is
to integrate to 1.0.

Expected value

The expected value of a random variable is the numerical value that the random variable might
be expected to have, on average.?® It is the “center of gravity” of the probability density
function. For a discrete random variable that takes on the values x;, %, ..., x,,, the expected
value is defined as

n

E(x) =) x;f(x,). (2.176)
-1
That is, each outcome is weighted by the probability that it will occur and the result is
summed over all possible outcomes. For a continuous random variable, Equation 2.176 is
readily generalized as
—+o0

E(x) = f xf (%) dx. (2.177)
Again, in this integration, each value of x is weighted by the probability that this value will
occur.
The concept of expected value can be generalized to include the expected value of any
function of a random variable [say, g(x)]. In the continuous case, for example, we would write

—+o0

Elg) = [ ) () . (2.178)

—®

23The expected value of a random variable is sometimes referred to as the mean of that variable. In the study of sampling
this can sometimes lead to confusion between the expected value of a random variable and the separate concept of the
sample arithmetic average.
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As a special case, consider a linear function y = ax + 4. Then
+00

E(y) = E(ax+ b) = f(nx + b)f (x) dx

—

= afxf(x) dx + hJ.f(x) dx = aE(x)+b. (2.179)

Sometimes expected values are phrased in terms of the cumulative distribution function
(CDF) F(x), defined as

F(x) = f £(2) dt. (2.180)

That is, F(x) represents the probability that the random variable ¢ is less than or equal to .
With this notation, the expected value of g(x) is defined as

400

E[g(x)] = fg(x) AdF (x). (2.181)

—

Because of the fundamental theorem of calculus, Equation 2.181 and Equation 2.178 mean
exactly the same thing.
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EXAMPLE 2.14 Expected Values of a Few Random Variables

The expected values of each of the random variables with the simple PDFs introduced earlier
are easy to calculate. All of these expected values are indicated on the graphs of the functions’
PDFs in Figure 2.6.

1. Binomial. In this case:

Ex)=1-f(x=1)+0-f(x=0)=1-p+0-(1-p)=p.  (2.182)

For the coin flip case (where p = 0.5), this says that E(x) = p = 0.5—the expected value of
this random variable is, as you might have guessed, one half.
2. Uniform. For this continuous random variable,

b

x2

b
x
E(x):fb—adeZ(b—a)

Again, as you might have guessed, the expected value of the uniform distribution is precisely
halfway between 2 and &.
3. Exponentinl. For this case of declining probabilities:

b> a2 b+a
“36—a) 26-a 2 (2.183)

a

1 » 1
E(x) = | e Mduw = —xe ™ ——¢ ™| == 2.184
(%) fx e % xe AR ( )
0
where the integration follows from the integration by parts example shown earlier in this
chapter (Equation 2.137). Notice here that the faster the probabilities decline, the lower is
the expected value of x. For example, if A = 0.5 then E(x) = 2, whereas if A = 0.05 then
E(x) = 20.

(continued)
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EXAMPLE 2.14 CONTINUED

4. Normal. Because the Normal PDF is symmetric around zero, it seems clear that
E(x) = 0. A formal proof uses a change of variable integration by letting # = x? /2 (du = xdx):

+o0 +oo
1 2 1 2
7x/2d _ f % Jy — [ p%%/2 =——[0-0/=0 (2.185)
Xxe X e (4 n (4 . .
f\/Z’ﬂ' \/2177 \/2'rr[ ] —oo \/211'[ ]

Of course, the expected value of a normally distributed random variable (or of any random
variable) may be altered by a linear transformation, as shown in Equation 2.179.

1 + 1

QUERY: A linear transformation changes a random variable’s expected value in a very
predictable way—if y = ax + &, then E(y) = aE(x) + b. Hence, for this transformation
[say, b(x)] we have E[h(x)] = h[E(x)]. Suppose instead that x were transformed by a concave
function, say g(x) with 4/ > 0 and 4” < 0. How would E[g(x)] compare to g[E(x)]?

Note: This is an illustration of Jensen’s inequality, a concept we will pursue in detail in
Chapter 7. See also Problem 2.13.

Variance and standard deviation

The expected value of a random variable is a measure of central tendency. On the other hand,
the variance of a random variable [denoted by o2 or Var(x)] is a measure of dispersion.
Specifically, the variance is defined as the “expected squared deviation” of a random variable
from its expected value. Formally:

400

Var(x) = 02 = E[(x — E(x))?] = f (x — E(x))*f(x) dx. (2.186)

2 =
Somewhat imprecisely, the variance measures the “typical” squared deviation from the
central value of a random variable. In making the calculation, deviations from the expected
value are squared so that positive and negative deviations from the expected value will both
contribute to this measure of dispersion. After the calculation is made, the squaring process
can be reversed to yield a measure of dispersion that is in the original units in which the
random variable was measured. This square root of the variance is called the “standard
deviation” and is denoted as o, (= 1/02). The wording of the term effectively conveys its
meaning: o, is indeed the typical (“standard”) deviation of a random variable from its
expected value.

When a random variable is subject to a linear transformation, its variance and standard
deviation will be changed in a fairly obvious way. If y = ax + &, then

§ = f[ux + b — E(ax + b)]*f(x) dw = f *x — E(x)*f(x) dx = a*ol. (2.187)

Hence, addition of a constant to a random variable does not change its variance, whereas
multiplication by a constant multiplies the variance by the square of the constant. It is clear
therefore that multiplying a variable by a constant multiplies its standard deviation by that
constant: o, = a0,,.
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EXAMPLE 2.15 Variances and Standard Deviations for Simple Random Variables

Knowing the variances and standard deviations of the four simple random variables we have
been looking at can sometimes be quite useful in economic applications.

1. Binomial. The variance of the binomial can be calculated by applying the definition in
its discrete analog;:

oﬁ%iu»—mmﬂﬂ%wa—w?p+m—pfu—w

= A=-p)-p*+7") =00 -p) (2.188)
Hence, o, = 1/p(1 — p). One implication of this result is that a binomial variable has the
largest variance and standard deviation when p = 0.5, in which case 2 = 0.25 and o, = 0.5.
Because of the relatively flat parabolic shape of p(1 — p), modest deviations of pfrom 0.5 do not
change this variance substantially.
2. Uniform. Calculating the variance of the uniform distribution yields a mildly interest-

ing result:
b
Uz—f x—ﬂ+b g dx = x—a+b 3- 1
x 2 b—na 2 3(b—a)

(6 a)® m—wj (6 — )

b

a

1
3(b—a)

8 8

=13 (2.189)

This is one of the few places where the number 12 has any use in mathematics other than in
measuring quantities of oranges or doughnuts.

3. Exponentinl. Integrating the variance formula for the exponential is relatively laborious.
Fortunately, the result is quite simple; for the exponential, it turns out that o2 = 1/\* and
o, = 1/\. Hence, the mean and standard deviation are the same for the exponential distribu-
tion—it is a “one-parameter distribution.”

4. Normal. In this case also, the integration can be burdensome. But again the result is
simple: for the Normal distribution, 02 = o, = 1. Areas below the Normal curve can be
readily calculated and tables of these are available in any statistics text. Two useful facts about
the Normal PDF are:

+1 +2
ff(x) dx ~ 0.68 and ff(x) dx ~ 0.95. (2.190)
-1 -2

That is, the probability is about two thirds that a Normal variable will be within 1 standard
deviation of the expected value and “most of the time” (i.e., with probability 0.95) it will be
within £2 standard deviations.

Standardizing the Normal. If the random variable x has a standard Normal PDF, it will
have an expected value of 0 and a standard deviation of 1. However, a simple linear
transformation can be used to give this random variable any desired expected value () and
standard deviation (o). Consider the transformation y = ox + .. Now

E(y) =cE(x)+p=pn and Var(y) = 05 = o2 Var(x) = o%.  (2.191)

Reversing this process can be used to “standardize” any Normally distributed random variable
(y) with an arbitrary expected value () and standard deviation (o) (this is sometimes denoted

(continued)
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EXAMPLE 2.15 CONTINUED

as y ~ N(p, o)) by using z= (y— p)/o. For example, SAT scores (y) are distributed
Normally with an expected value of 500 points and a standard deviation of 100 points (that
is, y ~ N(500,100)). Hence, z = (y — 500)/100 has a standard Normal distribution with
expected value 0 and standard deviation 1. Equation 2.190 shows that approximately
68 percent of all scores lie between 400 and 600 points and 95 percent of all scores lie between
300 and 700 points.

QUERY: Suppose that the random variable x is distributed uniformly along the interval
[0, 12]. What are the mean and standard deviation of x? What fraction of the x distribution
is within +1 standard deviation of the mean? What fraction of the distribution is within +2
standard deviations of the expected value? Explain why this differs from the fractions com-
puted for the Normal distribution.

Covariance

Some economic problems involve two or more random variables. For example, an investor
may consider allocating his or her wealth among several assets the returns on which are taken
to be random. Although the concepts of expected value, variance, and so forth carry over
more or less directly when looking at a single random variable in such cases, it is also necessary
to consider the relationship between the variables to get a complete picture. The concept of
covariance is used to quantify this relationship. Before providing a definition, however, we
will need to develop some background.

Consider a case with two continuous random variables, x and y. The probability density
function for these two variables, denoted by f(x, %), has the property that the probability
associated with a set of outcomes in a small area (with dimensions dxdy) is given by
f(x,y)dxdy. To be a proper PDF, it must be the case that:

+oo oo

f(x,y) > 0 and f ff(x,y)tixdyzl. (2.192)

The single-variable measures we have already introduced can be developed in this two-
variable context by “integrating out” the other variable. That is,
+0oo 400

E(x) = f fxf(x,y) dydx and
:’0 :’; (2.193)
Var(e) = [ [ v~ BPf(v,) dy .

In this way, the parameters describing the random variable x are measured over all possible
outcomes for y after taking into account the likelihood of those various outcomes.

In this context, the covariance between x and y seeks to measure the direction of
association between the variables. Specifically the covariance between x and y [denoted as
Cov(x,y)] is defined as

40 4o

Cov(x,y) = f f [x — E(x)] [y — E(y)]f(x,y) dx dy. (2.194)

—0  —o0
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The covariance between two random variables may be positive, negative, or zero. If values of x
that are greater than E(x) tend to occur relatively frequently with values of y that are greater
than E(y) (and similarly, if low values of x tend to occur together with low values of y ), then
the covariance will be positive. In this case, values of x and y tend to move in the same
direction. Alternatively, if high values of x tend to be associated with low values for y (and vice
versa), the covariance will be negative.

Two random variables are defined to be independent if the probability of any particular
value of, say,  is not affected by the particular value of y that might occur (and vice versa).?*
In mathematical terms, this means that the PDF must have the property that f(x,y) =
J(x)h(y)—that is, the joint probability density function can be expressed as the product of
two single-variable PDFs. If x and y are independent, their covariance will be zero:

oo oo

Coviwy) = [ [l By~ Blat)bly) deay
= f[x — E(x)]g(x) dx - f[y —E(y)]h(y)dy=0-0=0. (2.195)

The converse of this statement is not necessarily true, however. A zero covariance does not
necessarily imply statistical independence.

Finally, the covariance concept is crucial for understanding the variance of sums or
differences of random variables. Although the expected value of a sum of two random
variables is (as one might guess) the sum of their expected values:

o oo

Bty = [ [+ nfiws) deay

—00 —00

o0 o0

= [ty [y dody = B + B, @190

—oo —o0

the relationship for the variance of such a sum is more complicated. Using the definitions we
have developed yields

40 400

Vare+) = [ [ty B P f (o) oty

40 400

[ [t B 45— BP9 ety

400 4o

= [ [ e BP + B+ 20— By~ B (v, ) ey

= Var(x) 4 Var(y) + 2 Cov(x,y). (2.197)

Hence, if w and y are independent then Var(x + y) = Var(x) 4+ Var(y). The variance of the sum
will be greater than the sum of the variances if the two random variables have a positive
covariance and will be less than the sum of the variances if they have a negative covariance.
Problems 2.13 and 2.14 provide further details on statistical issues that arise in microeconomic
theory.

24A formal definition relies on the concept of conditional probability. The conditional probability of an event B given that
A has occurred (written P(B|A) is defined as P(B|A) = P(Aand B)/P(A); B and A are defined to be independent if
P(B|A) = P(B). In this case, P(Aand B) = P(A)- P(B).
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SUMMARY

Despite the formidable appearance of some parts of this
chapter, this is not a book on mathematics. Rather, the
intention here was to gather together a variety of tools that
will be used to develop economic models throughout the
remainder of the text. Material in this chapter will then be
useful as a handy reference.

One way to summarize the mathematical tools intro-

duced in this chapter is by stressing again the economic
lessons that these tools illustrate:

Using mathematics provides a convenient, shorthand
way for economists to develop their models. Implica-
tions of various economic assumptions can be studied
in a simplified setting through the use of such mathe-
matical tools.

The mathematical concept of the derivatives of a func-
tion is widely used in economic models because econo-
mists are often interested in how marginal changes in
one variable affect another variable. Partial derivatives
are especially useful for this purpose because they are
defined to represent such marginal changes when all
other factors are held constant.

The mathematics of optimization is an important tool for
the development of models that assume that economic
agents rationally pursue some goal. In the unconstrained
case, the first-order conditions state that any activity that
contributes to the agent’s goal should be expanded up to
the point at which the marginal contribution of further
expansion is zero. In mathematical terms, the first-order
condition for an optimum requires that all partial deriva-
tives be zero.

Most economic optimization problems involve constraints
on the choices agents can make. In this case the first-order
conditions for a maximum suggest that each activity be
operated at a level at which the ratio of the marginal
benefit—of the activity to its marginal cost is the same for
all activities actually used. This common marginal benefit—
marginal cost ratio is also equal to the Lagrangian multi-
plier, which is often introduced to help solve constrained
optimization problems. The Lagrangian multiplier can
also be interpreted as the implicit value (or shadow price)
of the constraint.

The implicit function theorem is a useful mathematical
device for illustrating the dependence of the choices that
result from an optimization problem on the parameters

of that problem (for example, market prices). The enve-
lope theorem is useful for examining how these optimal
choices change when the problem’s parameters (prices)
change.

Some optimization problems may involve constraints that
are inequalities rather than equalities. Solutions to these
problems often illustrate “complementary slackness.”
That is, either the constraints hold with equality and
their related Lagrangian multipliers are nonzero, or the
constraints are strict inequalities and their related Lagrang-
fan multipliers are zero. Again this illustrates how the
Lagrangian multiplier implies something about the “im-
portance” of constraints.

The first-order conditions shown in this chapter are only
the necessary conditions for a local maximum or mini-
mum. One must also check second-order conditions that
require that certain curvature conditions be met.

Certain types of functions occur in many economic prob-
lems. Quasi-concave functions (those functions for
which the level curves form convex sets) obey the second-
order conditions of constrained maximum or minimum
problems when the constraints are linear. Homothetic
functions have the useful property that implicit trade-offs
among the variables of the function depend only on the
ratios of these variables.

Integral calculus is often used in economics both as a way
of describing areas below graphs and as a way of sum-
ming results over time. Techniques that involve various
ways of differentiating integrals play an important role in
the theory of optimizing behavior.

Many economic problems are dynamic in that decisions
at one date affect decisions and outcomes at later dates.
The mathematics for solving such dynamic optimization
problems is often a straightforward generalization of
Lagrangian methods.

Concepts from mathematical statistics are often used in
studying the economics of uncertainty and information.
The most fundamental concept is the notion of a ran-
dom variable and its associated probability density func-
tion. Parameters of this distribution, such as its expected
value or its variance, also play important roles in many
economic models.



Chapter 2 Mathematics for Microeconomics

PROBLEMS

2.1

Suppose U(x,y) = 4x? + 3y
a. Calculate dU /dx, 0 U /3y.
b. Evaluate these partial derivatives at x = 1, y = 2.
c. Write the total differential for U.

d. Calculate dy/dx for AU = 0—that is, what is the implied trade-off between x and y holding U
constant?

e. Show U =16whenx =1,y =2.

f. In what ratio must x and y change to hold U constant at 16 for movements away from x = 1,
y =2

g. More generally, what is the shape of the U = 16 contour line for this function? What is the
slope of that line?

2.2
Suppose a firm’s total revenues depend on the amount produced (g) according to the function
R=70q-¢*
Total costs also depend on g:

C = ¢* +30q + 100.

a. What level of output should the firm produce in order to maximize profits (R — C)? What will
profits be?

b. Show that the second-order conditions for a maximum are satisfied at the output level found in
part (a).

c. Does the solution calculated here obey the “marginal revenue equals marginal cost” rule?
Explain.

2.3

Suppose that f(«x,y) = xy. Find the maximum value for £ if x and y are constrained to sum to 1. Solve
this problem in two ways: by substitution and by using the Lagrangian multiplier method.

2.4

The dual problem to the one described in Problem 2.3 is
minimize x4y
subject to xy = 0.25.

Solve this problem using the Lagrangian technique. Then compare the value you get for the Lagrangian
multiplier to the value you got in Problem 2.3. Explain the relationship between the two solutions.

2.5

The height of a ball that is thrown straight up with a certain force is a function of the time () from which
it is released given by £(¢) = —0.542> + 40¢ (where 4 is a constant determined by gravity).
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2.6

. How does the value of ¢ at which the height of the ball is at a maximum depend on the

parameter g4?

. Use your answer to part (a) to describe how maximum height changes as the parameter g

changes.

Use the envelope theorem to answer part (b) directly.

. On the Earth g = 32, but this value varies somewhat around the globe. If two locations had

gravitational constants that differed by 0.1, what would be the difference in the maximum
height of a ball tossed in the two places?

A simple way to model the construction of an oil tanker is to start with a large rectangular sheet of steel
that is x feet wide and 3x feet long. Now cut a smaller square that is # feet on a side out of each corner of
the larger sheet and fold up and weld the sides of the steel sheet to make a traylike structure with no top.

a.

2.7

Show that the volume of oil that can be held by this tray is given by

V = t(x — 2t)(3x — 2t) = 31x? — 82x + 443

. How should 7 be chosen so as to maximize V for any given value of x?

Is there a value of x that maximizes the volume of oil that can be carried?

. Suppose that a shipbuilder is constrained to use only 1,000,000 square feet of steel sheet to

construct an oil tanker. This constraint can be represented by the equation 3x? —4¢? =
1,000,000 (because the builder can return the cut-out squares for credit). How does the
solution to this constrained maximum problem compare to the solutions described in parts

(b) and (c)?

Consider the following constrained maximization problem:

where

maximize y=x, +5Inx,
subject to £ —x; —x, =0,

k is a constant that can be assigned any specific value.

Show that if £ = 10, this problem can be solved as one involving only equality constraints.

. Show that solving this problem for % = 4 requires that », = —1.

If the «’s in this problem must be nonnegative, what is the optimal solution when % = 4?

. What is the solution for this problem when % = 202 What do you conclude by comparing this

solution to the solution for part (a)?

Note: This problem involves what is called a “quasi-linear function.” Such functions provide important
examples of some types of behavior in consumer theory—as we shall see.

2.8

Suppose that a firm has a marginal cost function given by MC(g) = g4 + 1.

a.

b.

What is this firm’s total cost function? Explain why total costs are known only up to a constant of
integration, which represents fixed costs.

As you may know from an earlier economics course, if a firm takes price (p) as given in its
decisions then it will produce that output for which p = MC(yg). If the firm follows this profit-
maximizing rule, how much will it produce when p = 15? Assuming that the firm is just
breaking even at this price, what are fixed costs?
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How much will profits for this firm increase if price increases to 202

d. Show that, if we continue to assume profit maximization, then this firm’s profits can be

expressed solely as a function of the price it receives for its output.

Show that the increase in profits from p = 15 to p = 20 can be calculated in two ways: (i)
directly from the equation derived in part (d); and (ii) by integrating the inverse marginal cost
function [MC~!(p) = p — 1] from p = 15 to p = 20. Explain this result intuitively using the
envelope theorem.

Analytical Problems

2.9 Concave and quasi-concave functions

Show that if f(x,x,) is a concave function then it is also a quasi-concave function. Do this by
comparing Equation 2.114 (defining quasi-concavity) to Equation 2.98 (defining concavity). Can
you give an intuitive reason for this result? Is the converse of the statement true? Are quasi-concave
functions necessarily concave? If not, give a counterexample.

2.10 The Cobb-Douglas function

One of the most important functions we will encounter in this book is the Cobb-Douglas function:

Y= (xl)a(xz)s,

where o and B are positive constants that are each less than 1.

a.

Show that this function is quasi-concave using a “brute force” method by applying Equa-
tion 2.114.

. Show that the Cobb-Douglas function is quasi-concave by showing that any contour line of the

form y = ¢ (where ¢ is any positive constant) is convex and therefore that the set of points for
which y > ¢ is a convex set.

Show that if a + 8 > 1 then the Cobb-Douglas function is not concave (thereby illustrating
again that not all quasi-concave functions are concave).

Note: The Cobb-Douglas function is discussed further in the Extensions to this chapter.

2.11 The power function

Another function we will encounter often in this book is the “power function”:
p

I
y_xa

where 0 < 8 <1 (at times we will also examine this function for cases where 8 can be negative, too, in
which case we will use the form y = x°/3 to ensure that the derivatives have the proper sign).

a. Show that this function is concave (and therefore also, by the result of Problem 2.9, quasi-concave).

Notice that the 8 = 1 is a special case and that the function is “strictly” concave only for 8 < 1.

b. Show that the multivariate form of the power function

5 5
y=Ff(x,%) = ()" + (%)
is also concave (and quasi-concave). Explain why, in this case, the fact that f{, = f;; = 0 makes
the determination of concavity especially simple.

One way to incorporate “scale” effects into the function described in part (b) is to use the
monotonic transformation

— Y — d 31y
I(x,5,) =97 = [(%)° + (%)°],
where 7y is a positive constant. Does this transformation preserve the concavity of the function?

Is g quasi-concave?

77
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2.12 Taylor approximations

Taylor’s theorem shows that any function can be approximated in the vicinity of any convenient point
by a series of terms involving the function and its derivatives. Here we look at some applications of the
theorem for functions of one and two variables.

a.

Any continuous and differentiable function of a single variable, f(x), can be approximated near
the point 2 by the formula

Flx) = f(a)+f(a)(x — a) + 0.5f"(a)(x — a)® + terms in £ £, ....

Using only the first three of these terms results in a guadratic Taylor approximation. Use this
approximation together with the definition of concavity given in Equation 2.85 to show that
any concave function must lie on or below the tangent to the function at point a.

. The quadratic Taylor approximation for any function of two variables, f(x,y), near the point

(a, b) is given by
flx,y) = f(a,0) + fi(a,b)(x — a) + f,(a,b)(y — )
+0.5(f1(a,0)(x — ) + 2£,,(a,b)(x — a)(y — b) + foo(y — b)°].

Use this approximation to show that any concave function (as defined by Equation 2.98) must
lie on or below its tangent plane at (4, &).

2.13 More on expected value

Because the expected value concept plays an important role in many economic theories, it may be useful
to summarize a few more properties of this statistical measure. Throughout this problem, x is assumed
to be a continuous random variable with probability density function f(x).

a.

(Jensen’s inequality) Suppose that g(x) is a concave function. Show that E[ g(x)] < g[E(x)].
Hint: Construct the tangent to g(x) at the point E(x). This tangent will have the form
¢+ dx > g(x) for all values of x and ¢ + dE(x) = g[E(x)] where ¢ and 4 are constants.

. Use the procedure from part (a) to show that if g(x) is a convex function then E[g(x)] >

J[E(x)].

. Suppose x takes on only nonnegative values—that is, 0 < x < . Use integration by parts to

show that
B) = 11 - Fw) s,
0

where F(x) is the cumulative distribution function for x [that is, F(x) = [§ £(¢) dz].

. (Markov’s inequality) Show that if x takes on only positive values then the following inequality

holds:
Px>1) < @

Hint: E(x) = [§ xf (x) dx = [§ xf (%) dx + [T xf () du.

. Consider the probability density function f(x) = 2473 for x > 1.

(1) Show that this is a proper PDF.

(2) Calculate F(x) for this PDF.

(3) Use the results of part (¢) to calculate E(x) for this PDF.
(4) Show that Markov’s inequality holds for this function.

The concept of conditional expected value is useful in some economic problems. We denote the
expected value of x conditional on the occurrence of some event, A, as E(x|A). To compute this
value we need to know the PDF for & given that A has occurred [denoted by /(x| A)]. With this
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notation, E(x|A) = [*7 xf (x| A) dx. Perhaps the easiest way to understand these relationships

is with an example. Let

2

x
f(x):;

for

(1) Show that this is a proper PDF.

(2) Calculate E(x).

(3) Calculate the probability that —1 < x < 0.
(4)

(5) Calculate E(x|A).

(6)

6) Explain your results intuitively.

2.14 More on variances and covariances

-1 <x<2.

Consider the event 0 < x < 2, and call this event A. What is f(x|A)?

This problem presents a few useful mathematical facts about variances and covariances.

a. Show that Var(x) = E(x?) — [E(x)].

b. Show that the result in part (a) can be generalized as Cov(x,y) = E(xy) — E(x)E(y). Note: If

Cov(x,y) = 0, then E(xy) = E(x)E(y).

c. Show that Var(ax + by) = a* Var(x) + &% Var(y) & 2ab Cov(x, y).

d. Assume that two independent random variables, x and y, are characterized by E(x) = E(y)

and Var(x) = Var(y) . Show that E(0.5x+ 0.5y) =

E(x). Then use part (¢) to show that

Var(0.5x + 0.5y) = 0.5 Var(x). Describe why this fact provides the rationale for diversification

of assets.
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Second-Order Conditions and Matrix Algebra

The second-order conditions described in Chapter 2
can be written in very compact ways by using matrix
algebra. In this extension, we look briefly at that nota-
tion. We return to this notation at a few other places in
the extensions and problems for later chapters.

Matrix algebra background

The extensions presented here assume some general
familiarity with matrix algebra. A succinct reminder of
these principles might include:

1. An »n X k matrix, A, is a rectangular array of
terms of the form

4y 2y Ny
a a a

21 42 2%
ﬂnl ﬂn2 ”nk

Here ¢ =1, n; 7 = 1, k. Matrices can be added,
subtracted, or multiplied providing their dimen-
sions are conformable.

2. If w=k, then A is a square matrix. A square
matrix is symmetric if #;; = a;. The identity ma-
trix, 1, is an # + » square matrix where aj; = 1
ifi=jand a; =0if 2 # .

3. The determinant of a square matrix (denoted
by |A]) is a scalar (i.e., a single term) found by

suitably multiplying together all of the terms in
the matrix. If Ais 2 x 2,

|A| = o118, — 85105,

1 3
5 2
Al =2-15=—13.

4. The inverse of an » X n square matrix, A, is
another 7 x » matrix, A=, such that

Example: If A = [ } then

A-Al=1.

n

Not every square matrix has an inverse. A
necessary and sufficient condition for the
existence of A~! is that |A| # 0.

5. The leading principal minors of an n x n square
matrix A are the series of determinants of the
first p rows and columns of A, where p = 1, ». If

A is 2 x 2, then the first leading principal minor
is #;, and the second is 2, a,, — a,,a,,.

6. An 7 X n square matrix, A, is positive definite if
all of its leading principal minors are positive.
The matrix is negative definite if its principal
minors alternate in sign starting with a minus."

7. A particularly useful symmetric matrix is the
Hessian matrix formed by all of the second-
order partial derivatives of a function. If f is a
continuous and twice differentiable function of
n variables, then its Hessian is given by

fu S Sin
g | S
fnl fn2 fnn

Using these notational ideas, we can now exam-
ine again some of the second-order conditions
derived in Chapter 2.

E2.1 Concave and convex functions

A concave function is one that is always below (or on)
any tangent to it. Alternatively, a comvex function is
always above (or on) any tangent. The concavity or
convexity of any function is determined by its second
derivative(s). For a function of a single variable, £(x),
the requirement is straightforward. Using the Taylor
approximation at any point ()

/ ! dxz
£ (% + dx) = f(x9) + f' (%) e + f (%)T

+ higher-order terms.
Assuming that the higher-order terms are 0, we have
f(% + dx) < f(x) + f' (%) dec
if (%) < 0 and
f(xp + dx) > f (%) + f' (%) dec

if /" (x,) > 0. Because the expressions on the right of
these inequalities are in fact the equation of the
tangent to the function at x, it is clear that the

'If some of the determinants in this definition are 0 then the matrix is
said to be positive semidefinite or negative semidefinite.
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function is (locally) concave if f”(x)) <0 and
(locally) convex if ”(x,) > 0.

Extending this intuitive idea to many dimensions is
cumbersome in terms of functional notation, but rela-
tively simple when matrix algebra is used. Concavity
requires that the Hessian matrix be negative definite
whereas convexity requires that this matrix be positive
definite. As in the single variable case, these conditions
amount to requiring that the function move consis-
tently away from any tangent to it no matter what
direction is taken.

If £ (2, %,) is a function of two variables, the Hes-
sian is given by

f S

This is negative definite if
S <0 and fi1f; —fnfia >0,

which is precisely the condition described in Equa-
tion 2.98. Generalizations to functions of three or
more variables follow the same matrix pattern.

_ | 2

Example 1
For the health status function in Chapter 2 (Equa-
tion 2.20), the Hessian is given by

-2 0
me|o %)
and the first and second leading principal minors are
H =-2<0 and
H,=(-2)(-2)-0=4>0.

Hence, the function is concave.

Example 2

The Cobb-Douglas function x”y* where a,4 € (0,1)
is used to illustrate utility functions and production
functions in many places in this text. The first- and
second-order derivatives of the function are

fo=ax""ly",

f;, — bxuybfl’
fo=a(a— 1)x" 290,
Sy =0(b— 1)x%yb—2,

2A proof using the multivariable version of Taylor’s approximation is
provided in Simon and Blume (1994), chap. 21.

Hence, the Hessian for this function is

b a—1,06—1

abx
b(b—1)x"y"2

a(a—1)x"2y
uhxa—lyh—l

The first leading principal minor of this Hessian is
H, =a(a-1x"2" <0
and so the function will be concave, providing

H,= a(a—1)(6)(b—1)x22y20-2 _ 22 x20-220-2
=ab(1—a—b)x**2y*2 > 0.

This condition clearly holds if #+ & < 1. That is, in
production function terminology, the function must
exhibit diminishing returns to scale to be concave.
Geometrically, the function must turn downward as
both inputs are increased together.

E2.2 Maximization

As we saw in Chapter 2, the first-order conditions for
an unconstrained maximum of a function of many
variables requires finding a point at which the partial
derivatives are zero. If the function is concave it will be
below its tangent plane at this point and therefore the
point will be a true maximum.® Because the health
status function is concave, for example, the first-
order conditions for a maximum are also sufficient.

E2.3 Constrained maxima

When the x’s in a maximization or minimization prob-
lem are subject to constraints, these constraints have to
be taken into account in stating second-order condi-
tions. Again, matrix algebra provides a compact (if not
very intuitive) way of denoting these conditions. The
notation involves adding rows and columns of the
Hessian matrix for the unconstrained problem and
then checking the properties of this augmented matrix.
Specifically, we wish to maximize

fl2g, ...

subject to the constraint*

%,

g%y, ...,%,) =0.

3This will be a “local” maximum if the function is concave only in a
region, or “global” if the function is concave everywhere.

*Here we look only at the case of a single constraint. Generalization to
many constraints is conceptually straightforward but notationally com-
plex. For a concise statement see Sydsaeter, Strom, and Berck (2000),

p-93.



We saw in Chapter 2 that the first-order conditions
for a maximum are of the form

fitN\g; =0,

where A is the Lagrangian multiplier for this problem.
Second-order conditions for a maximum are based on
the augmented (“bordered”) Hessian®

0 5 & In
N M fhe fin
gn fnl fnZ fnn

For a maximum, (—1)H}, must be negative definite—
that is, the leading principal minors of Hy, must follow
the pattern — + — + — and so forth, starting with the
second such minor.°

The second-order conditions for minimum require
that (—1)Hj, be positive definite—thatis, all of the lead-
ing principal minors of Hy, (except the first) should be
negative.

Example
The Lagrangian for the constrained health status prob-
lem (Example 2.6) is

P=—x?+2x — x5 +4x, -5+ N1 —x —x,),

and the bordered Hessian for this problem is

0 -1 -1
H=|-1 -2 0
-1 0 -2
The second leading principal minor here is
0 -1
H,, = 1 2 =-1,
and the third is
0 -1 -1
H;=|-1 -2 0
-1 0 -2

—0+0+0—(—2)—0—(-2) =4,

so the leading principal minors of the Hy, have the

required pattern and the point
x =1, x =0,

is a constrained maximum.

®Notice that, if g;; = 0 for all 7 and j, then Hy, can be regarded as the
simple Hessian associated with the Lagrangian expression given in
Equation 2.50, which is a function of the # + 1 variables \, %, ..., x,.

SNotice that the first leading principal minor of Hy, is 0.
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Example
In the optimal fence problem (Example 2.7), the bor-
dered Hessian is

o -2 -2
H =|-2 0 1
-2 1 0
and
Hb2 == _4,
H; =8,

so again the leading principal minors have the sign
pattern required for a maximum.

E2.4 Quasi-concavity

If the constraint g is linear, then the second-order
conditions explored in Extension 2.3 can be related
solely to the shape of the function to be optimized, f.
In this case the constraint can be written as

g%y, ..0%,) =c— by, — by, — - —b,x, =0,
and the first-order conditions for a maximum are
=Ny, i=1,...,n

Using the conditions, it is clear that the bordered
Hessian Hy, and the matrix

0 A KL -
T T A
Lo S Fon
fn fnl fn2 fnn

have the same leading principal minors except for a
(positive) constant of proportionality.” The condi-
tions for a maximum of /" subject to a linear constraint
will be satisfied provided H' follows the same sign
conventions as Hy—that is, (—1)H’ must be negative
definite. A function f for which H' does follow this
pattern is called guasi-concave. As we shall see, f
has the property that the set of points & for which
f(x) > ¢ (where ¢ is any constant) is convex. For such
a function, the necessary conditions for a maximum
are also sufficient.

Example
For the fences problem, £(x,y) = xy and H' is given

by

7This can be shown by noting that multiplying a row (or a column) of a
matrix by a constant multiplies the determinant by that constant.
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H =

] R O
— O
S =R

So
H,=-%*<0,
H; =2xy >0,
and the function is quasi-concave.®
Example

More generally, if f is a function of only two variables,
then quasi-concavity requires that

8Since f(x,y) = &y is a form of a Cobb-Douglas function that is not
concave, this shows that not every quasi-concave function is concave.
Notice that a monotonic function of f (such as £1/3) would be concave,
however.

L=—(f)?<0 and
3=—fufs—fafi+2A6A.>0,

which is precisely the condition stated in Equa-
tion 2.114. Hence, we have a fairly simple way of
determining quasi-concavity.
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CHAPTER 3 Preferences and Utility

CHAPTER 4 Utility Maximization and Choice
CHAPTER 5 Income and Substitution Effects
CHAPTER 6 Demand Relationships among Goods
CHAPTER 7 Uncertainty and Information
CHAPTER 8 Strategy and Game Theory

In Part 2 we will investigate the economic theory of choice. One goal of this examination is to develop the
notion of demand in a formal way so that it can be used in later sections of the text when we turn to the
study of markets. A more general goal of this part is to illustrate the theory economists use to explain how
individuals make choices in a wide variety of contexts.

Part 2 begins with a description of the way economists model individual preferences, which are usually
referred to by the formal term utility. Chapter 3 shows how economists are able to conceptualize utility in
a mathematical way. This permits the development of “indifference curves,” which show the various ex-
changes that individuals are willing to make voluntarily.

The utility concept is used in Chapter 4 to illustrate the theory of choice. The fundamental hypothesis of
the chapter is that people faced with limited incomes will make economic choices in such a way as to
achieve as much utility as possible. Chapter 4 uses mathematical and intuitive analyses to indicate the
insights that this hypothesis provides about economic behavior.

Chapters 5 and 6 use the model of utility maximization to investigate how individuals will respond to
changes in their circumstances. Chapter 5 is primarily concerned with responses to changes in the price of a
commodity, an analysis that leads directly to the demand curve notion. Chapter 6 applies this type of
analysis to developing an understanding of demand relationships among different goods.

The final two chapters in this part look at individual behavior in uncertain situations. In Chapter 7 we
describe why people generally dislike risks and are willing to pay something to avoid taking them. Chapter 8
then looks at uncertainties that arise when two or more people find themselves in a “game” in which they
must make strategic choices. The equilibrium notions we develop in studying such games are widely used
throughout economics.
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CHAPTER

Preferences and Utility

In this chapter we look at the way in which economists characterize individuals’ preferences. We begin with a
fairly abstract discussion of the “preference relation,” but quickly turn to the economists’ primary tool for
studying individual choices—the utility function. We look at some general characteristics of that function
and a few simple examples of specific utility functions we will encounter throughout this book.

AXIOMS OF RATIONAL CHOICE

One way to begin an analysis of individuals’ choices is to state a basic set of postulates, or
axioms, that characterize “rational” behavior. These begin with the concept of “preference”:
An individual who reports that “A is preferred to B” is taken to mean that all things con-
sidered, he or she feels better off under situation A than under situation B. The preference
relation is assumed to have three basic properties as follows.

1. (Completeness If A and B are any two situations, the individual can always specify exactly
one of the following three possibilities:

1. “Ais preferred to B,”
2. “Bis preferred to A,” or
3. “Aand B are equally attractive.”

11. (Tramsitivity, If an individual reports that “A is preferred to B” and “B is preferred to C,”
then he or she must also report that “A is preferred to C.”

This assumption states that the individual’s choices are internally consistent. Such an
assumption can be subjected to empirical study. Generally, such studies conclude that a
person’s choices are indeed transitive, but this conclusion must be modified in cases where
the individual may not fully understand the consequences of the choices he or she is
making. Because, for the most part, we will assume choices are fully informed (but see the
discussion of uncertainty in Chapter 7 and elsewhere), the transitivity property seems to be
an appropriate assumption to make about preferences.

I11. Continuity. If an individual reports “A is preferred to B,” then situations suitably “close
to” A must also be preferred to B.

This rather technical assumption is required if we wish to analyze individuals’ responses
to relatively small changes in income and prices. The purpose of the assumption is
to rule out certain kinds of discontinuous, knife-edge preferences that pose problems
for a mathematical development of the theory of choice. Assuming continuity does
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Part 2 Choice and Demand

not seem to risk missing types of economic behavior that are important in the real
world.

UTILITY

Given the assumptions of completeness, transitivity, and continuity, it is possible to show
formally that people are able to rank all possible situations from the least desirable to the
most." Following the terminology introduced by the nineteenth-century political theorist
Jeremy Bentham, economists call this ranking ##ility.2 We also will follow Bentham by saying
that more desirable situations offer more utility than do less desirable ones. That is,/ifa person
prefers situation A to situation B, we would say that the utility assigned to option A, denoted
by U(A), exceeds the utility assigned to B, U(B).

Nonuniqueness of utility measures

We might even attach numbers to these utility rankings; however, these numbers will not be
unique. Any set of numbers we arbitrarily assign that accurately reflects the original prefer-
ence ordering will imply the same set of choices. It makes no difference whether we say that
U(A) =5 and U(B) =4, or that U(A) = 1,000,000 and U(B) = 0.5. In both cases the
numbers imply that A is preferred to B. In technical terms, our notion of utility is defined
only up to an order-preserving (“monotonic”) transformation.® Any set of numbers that
accurately reflects a person’s preference ordering will do. Consequently, it makes no sense to
ask “how much more is A preferred than B?” since that question has no unique answer.
Surveys that ask people to rank their “happiness” on a scale of 1 to 10 could just as well use a
scale of 7 to 1,000,000. We can only hope that a person who reports he or she is a “6” on the
scale one day and a “7” on the next day is indeed happier on the second day. Utility rankings
are therefore like the ordinal rankings of restaurants or movies using one, two, three, or four
stars. They simply record the relative desirability of commodity bundles.

This lack of uniqueness in the assignment of utility numbers also implies that it is not
possible to compare utilities of different people. If one person reports that a steak dinner
provides a utility of “5” and another reports that the same dinner offers a utility of “100,” we
cannot say which individual values the dinner more because they could be using very diftferent
scales. Similarly, we have no way of measuring whether a move from situation A to situation
B provides more utility to one person or another. Nonetheless, as we will see, economists can
say quite a bit about utility rankings by examining what people voluntarily choose to do.

The ceteris paribus assumption

Because utility refers to overall satisfaction, such a measure clearly is affected by a variety of
factors. A person’s utility is affected not only by his or her consumption of physical commod-
ities, but also by psychological attitudes, peer group pressures, personal experiences, and the

IThese properties and their connection to representation of preferences by a utility function are discussed in detail in
Andreu Mas-Colell, Michael D. Whinston, and Jerry R. Green, Microeconomic Theory (New York: Oxford University Press,
1995).

%J. Bentham, Introduction to the Principles of Morals and Legislation (London: Hafner, 1848).

3We can denote this idea mathematically by saying that any numerical utility ranking (U) can be transformed into another
set of numbers by the function F providing that F(U) is order preserving. This can be ensured if F/(U) > 0. For example,
the transformation F(U) = U? is order preserving as is the transformation F(U) = In U. At some places in the text and
problems we will find it convenient to make such transformations in order to make a particular utility ranking easier to
analyze.
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general cultural environment. Although economists do have a general interest in examining
such influences, a narrowing of focus is usually necessary. Consequently, a common practice
is to devote attention exclusively to choices among quantifiable options (for example, the
relative quantities of food and shelter bought, the number of hours worked per week; or the
votes among specific taxing formulas) while holding constant the other things that affect
behavior. This ceteris paribus (other things being equal) assumption is invoked in all eco-
nomic analyses of utility-maximizing choices so as to make the analysis of choices manageable
within a simplified setting.

Utility from consumption of goods

As an important example of the ceteris paribus assumption, consider an individual’s problem
of choosing, at a single point in time, among # consumption goods x;, %,, ..., x,. We shall

assume that the individual’s ranking of these goods can be represented by a utility function of
the form

utility = U(xy, %,, ..., %,; other things), (3.1)

where the &’s refer to the quantities of the goods that might be chosen and the “other
things” notation is used as a reminder that many aspects of individual welfare are being held
constant in the analysis.

Quite often it is easier to write Equation 3.1 as

utility = U(xy, %,, ..., %,,) (3.2)
or, if only two goods are being considered, as
utility = U(x, y), (3.2)

where it is clear that everything is being held constant (that is, outside the frame of analysis)
except the goods actually referred to in the utility function. It would be tedious to remind
you at each step what is being held constant in the analysis, but it should be remembered
that some form of the ceteris paribus assumption will always be in effect.

Arguments of utility functions

The utility function notation is used to indicate how an individual ranks the particular arguments
of the function being considered. In the most common case, the utility function (Equation 3.2)
will be used to represent how an individual ranks certain bundles of goods that might be
purchased at one point in time. On occasion we will use other arguments in the utility function,
and it is best to clear up certain conventions at the outset. For example, it may be useful to talk
about the utility an individual receives from real wealth ( W). Therefore, we shall use the notation

utility = U(W). (3.3)

Unless the individual is a rather peculiar, Scrooge-type person, wealth in its own right gives no
direct utility. Rather, it is only when wealth is spent on consumption goods that any utility
results. For this reason, Equation 3.3 will be taken to mean that the utility from wealth is in fact
derived by spending that wealth in such a way as to yield as much utility as possible.

Two other arguments of utility functions will be used in later chapters. In Chapter 16 we
will be concerned with the individual’s labor-leisure choice and will therefore have to con-
sider the presence of leisure in the utility function. A function of the form

utility = Ul(c, b) (3.4)

will be used. Here, ¢ represents consumption and /4 represents hours of nonwork time (that
is, leisure) during a particular time period.
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DEFINITION

In Chapter 17 we will be interested in the individual’s consumption decisions in different
time periods. In that chapter we will use a utility function of the form

utility = Uy, ¢,), (3.5)

where ¢, is consumption in this period and ¢, is consumption in the next period. By
changing the arguments of the utility function, therefore, we will be able to focus on specific
aspects of an individual’s choices in a variety of simplified settings.

In summary then, we start our examination of individual behavior with the following
definition.

Utility. Individuals’ preferences are assumed to be represented by a utility function of the form

U(xy,%,,...,%,), (3.6)

where x,4,,...,x, are the quantities of each of # goods that might be consumed in a
period. This function is unique only up to an order-preserving transformation.

Economic goods

In this representation the variables are taken to be “goods”; that is, whatever economic quan-
tities they represent, we assume that more of any particular x; during some period is preferred
to less. We assume this is true of every good, be it a simple consumption item such as a hot
dog or a complex aggregate such as wealth or leisure. We have pictured this convention for a
two-good utility function in Figure 3.1. There, all consumption bundles in the shaded area are

FIGURE 3.1 More of a Good Is Preferred to Less

The shaded area represents those combinations of x and y that are unambiguously preferred to the
combination x*, y*. Ceteris paribus, individuals prefer more of any good rather than less. Combina-
tions identified by “?” involve ambiguous changes in welfare because they contain more of one good
and less of the other.

Quantity
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preferred to the bundle ™, y* because any bundle in the shaded area provides more of at least
one of the goods. By our definition of “goods,” then, bundles of goods in the shaded area are
ranked higher than &™, y*. Similarly, bundles in the area marked “worse” are clearly inferior to
x™®, y*, since they contain less of at least one of the goods and no more of the other. Bundles in
the two areas indicated by question marks are difficult to compare to x™, y* because they
contain more of one of the goods and less of the other. Movements into these areas involve
trade-offs between the two goods.

TRADES AND SUBSTITUTION

Most economic activity involves voluntary trading between individuals. When someone buys,
say, a loaf of bread, he or she is voluntarily giving up one thing (money) for something else
(bread) that is of greater value to that individual. To examine this kind of voluntary transaction,
we need to develop a formal apparatus for illustrating trades in the utility function context.

Indifference curves and the marginal rate of substitution

To discuss such voluntary trades, we develop the idea of an indifference curve. In Figure 3.2,
the curve U, represents all the alternative combinations of x and y for which an individual is
equally well off (remember again that all other arguments of the utility function are being

FIGURE 3.2 A Single Indifference Curve
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The curve U, represents those combinations of x and y from which the individual derives the same
utility. The slope of this curve represents the rate at which the individual is willing to trade x for y
while remaining equally well off. This slope (or, more properly, the negative of the slope) is termed
the marginal vate of substitution. In the figure, the indifference curve is drawn on the assumption of a
diminishing marginal rate of substitution.
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DEFINITION

DEFINITION

held constant). This person is equally happy consuming, for example, either the combination
of goods «x,,y, or the combination x,,y,. This curve representing all the consumption
bundles that the individual ranks equally is called an indifference curve.

Indifference curve. An indifference curve (or, in many dimensions, an indifference surface)
shows a set of consumption bundles about which the individual is indifferent. That is, the
bundles all provide the same level of utility.

The slope of the indifference curve in Figure 3.2 is negative, showing that if the individual is
forced to give up some 9, he or she must be compensated by an additional amount of x to
remain indifferent between the two bundles of goods. The curve is also drawn so that the
slope increases as x increases (that is, the slope starts at negative infinity and increases toward
zero). This is a graphical representation of the assumption that people become progressively
less willing to trade away y to get more x. In mathematical terms, the absolute value of this
slope diminishes as x increases. Hence, we have the following definition.

Marginal rate of substitution. The negative of the slope of an indifference curve (U)) at
some point is termed the marginal rate of substitution (MRS) at that point. That is,
ay

MRS = — , (3.7)
dx |u=vu,

where the notation indicates that the slope is to be calculated along the U, indifference curve.

The slope of U, and the MRS therefore tell us something about the trades this person will
voluntarily make. At a point such as x,, 7|, the person has quite a lot of y and is willing to trade
away a significant amount to get one more x. The indifference curve at &, y; is therefore rather
steep. This is a situation where the person has, say, many hamburgers (y) and little to drink
with them (). This person would gladly give up a few burgers (say, 5) to quench his or her
thirst with one more drink.

At x;, v, on the other hand, the indifference curve is flatter. Here, this person has quite a
few drinks and is willing to give up relatively few burgers (say, 1) to get another soft drink.
Consequently, the MRS diminishes between x;, ¥, and x,, y,. The changing slope of U,
shows how the particular consumption bundle available influences the trades this person will
freely make.

Indifference curve map

In Figure 3.2 only one indifference curve was drawn. The x, y quadrant, however, is densely
packed with such curves, each corresponding to a different level of utility. Because every bundle
of goods can be ranked and yields some level of utility, each point in Figure 3.2 must have an
indifference curve passing through it. Indifference curves are similar to contour lines on a map
in that they represent lines of equal “altitude” of utility. In Figure 3.3 several indifference curves
are shown to indicate that there are infinitely many in the plane. The level of utility represented
by these curves increases as we move in a northeast direction; the utility of curve Uj is less than
that of U,, which is less than that of Uj. This is because of the assumption made in Figure 3.1:
More of a good is preferred to less. As was discussed earlier, there is no unique way to assign
numbers to these utility levels. The curves only show that the combinations of goods on Uj are
preferred to those on U,, which are preferred to those on Uj.
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FIGURE 3.3 There Are Infinitely Many Indifference Curves in the x-y Plane
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There is an indifference curve passing through each point in the x—y plane. Each of these curves
records combinations of » and y from which the individual receives a certain level of satisfaction.
Movements in a northeast direction represent movements to higher levels of satisfaction.

Quantity
ofy

Increasing utility

Quantity of x

Indifference curves and transitivity

As an exercise in examining the relationship between consistent preferences and the representa-
tion of preferences by utility functions, consider the following question: Can any two of an
individual’s indifference curves intersect? Two such intersecting curves are shown in Figure 3.4.
We wish to know if they violate our basic axioms of rationality. Using our map analogy, there
would seem to be something wrong at point E, where “altitude” is equal to two different
numbers, U; and U, . But no point can be both 100 and 200 feet above sea level.

To proceed formally, let us analyze the bundles of goods represented by points A, B, C,
and D. By the assumption of nonsatiation (i.e., more of a good always increases utility), “A is
preferred to B” and “C is preferred to D.” But this person is equally satisfied with B and C (they
lie on the same indifference curve), so the axiom of transitivity implies that A must be preferred to
D. But that cannot be true, because A and D are on the same indifference curve and are by
definition regarded as equally desirable. This contradiction shows that indifference curves cannot
intersect. Therefore we should always draw indifference curve maps as they appear in Figure 3.3.

Convexity of indifference curves

An alternative way of stating the principle of a diminishing marginal rate of substitution uses the
mathematical notion of a convex set. A set of points is said to be convexifany two points within
the set can be joined by a straight line that is contained completely within the set. The as-
sumption of a diminishing MR Sis equivalent to the assumption that all combinations of x and y
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FIGURE 3.4

Intersecting Indifference Curves Imply Inconsistent Preferences

Combinations 4 and D lie on the same indifference curve and therefore are equally desirable. But the
axiom of transitivity can be used to show that A is preferred to D. Hence, intersecting indifference
curves are not consistent with rational preferences.

Quantity
ofy

Quantity of x

that are preferred or indifferent to a particular combination x*, y* form a convex set.* This is
illustrated in Figure 3.5a, where all combinations preferred or indifferent to &™, y* are in the
shaded area. Any two of these combinations—say, x, , ¥, and x,, y,—can be joined by a straight
line also contained in the shaded area. In Figure 3.5b this is not true. A line joining x;, ¥
and x,, ¥, passes outside the shaded area. Therefore, the indifference curve through x™, y*
in Figure 3.5b does not obey the assumption of a diminishing MRS, because the set of
points preferred or indifferent to ™, y* is not convex.

Convexity and balance in consumption

By using the notion of convexity, we can show that individuals prefer some balance in their
consumption. Suppose that an individual is indifferent between the combinations x; , ¥, and «;,
,. If the indifference curve is strictly convex, then the combination (%, + x,)/2, (v, +,)/2
will be preferred to either of the initial combinations.® Intuitively, “well-balanced” bundles of
commodities are preferred to bundles that are heavily weighted toward one commodity. This is
illustrated in Figure 3.6. Because the indifference curve is assumed to be convex, all points on
the straight line joining (%, ;) and (x,,%,) are preferred to these initial points. This therefore
will be true of the point (x, + x,)/2, (y; + »,)/2, which lies at the midpoint of such a line.

*This definition is equivalent to assuming that the utility function is quasi-concave. Such functions were discussed
in Chapter 2, and we shall return to examine them in the next section. Sometimes the term strict quasi-concavity is used to
rule out the possibility of indifference curves having linear segments. We generally will assume strict quasi-concavity, but in
a few places we will illustrate the complications posed by linear portions of indifference curves.

5In the case in which the indifference curve has a linear segment, the individual will be indifferent among all three
combinations.



FIGURE 3.5 The Notion of Convexity as an Alternative Definition of a Diminishing MRS

In (a) the indifference curve is convex (any line joining two points above Uj is also above U} ). In (b)
this is not the case, and the curve shown here does not everywhere have a diminishing MRS.
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FIGURE 3.6 Balanced Bundles of Goods Are Preferred to Extreme Bundles

If indifference curves are convex (if they obey the assumption of a diminishing MRS), then the line
joining any two points that are indifferent will contain points preferred to either of the initial
combinations. Intuitively, balanced bundles are preferred to unbalanced ones.
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Indeed, any proportional combination of the two indifferent bundles of goods will be preferred
to the initial bundles, because it will represent a more balanced combination. Thus, strict
convexity is equivalent to the assumption of a diminishing MRS. Both assumptions rule out the
possibility of an indifference curve being straight over any portion of'its length.

EXAMPLE 3.1 Utility and the MRS

Suppose a person’s ranking of hamburgers (y) and soft drinks (x) could be represented by the
utility function

utility = \/x . (3.8)

An indifference curve for this function is found by identifying that set of combinations of x
and y for which utility has the same value. Suppose we arbitrarily set utility equal to 10. Then
the equation for this indifference curve is

utility = 10 = \/x - . (3.9)
Because squaring this function is order preserving, the indifference curve is also repre-
sented by
100 =x-y, (3.10)

which is easier to graph. In Figure 3.7 we show this indifference curve; it is a familiar
rectangular hyperbola. One way to calculate the MRS is to solve Equation 3.10 for ¥,

y =100/x, (3.11)

FIGURE 3.7 Indifference Curve for Utility = \/x-y

This indifference curve illustrates the function 10 = U = ,/x - y. At point A (5, 20), the MRS is 4,
implying that this person is willing to trade 4y for an additional x. At point B (20, 5), however, the
MRS is 0.25, implying a greatly reduced willingness to trade.
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and then use the definition (Equation 3.7):
MRS = —dy/dx (along U,) = 100/x>. (3.12)

Clearly this MRS declines as x increases. At a point such as A on the indifference curve with a
lot of hamburgers (say, x = 5, y = 20), the slope is steep so the MRS is high:

MRS at (5,20) = 100/x> = 100/25 = 4. (3.13)

Here the person is willing to give up 4 hamburgers to get 1 more soft drink. On the other
hand, at B where there are relatively few hamburgers (here x = 20, y = 5), the slope is flat
and the MRS is low:

MRSat (20,5) = 100/x> = 100/400 = 0.25. (3.14)

Now he or she will only give up one quarter of a hamburger for another soft drink. Notice
also how convexity of the indifference curve U, is illustrated by this numerical example.
Point C is midway between points A and B; at C this person has 12.5 hamburgers and 12.5
soft drinks. Here utility is given by

utility = /%y = \/(12.5)> = 12.5, (3.15)
which clearly exceeds the utility along U, (which was assumed to be 10).
QUERY: From our derivation here, it appears that the MRS depends only on the quantity

of x consumed. Why is this misleading? How does the quantity of (y implicitly enter into
Equations 3.13 and 3.14?

A MATHEMATICAL DERIVATION

A mathematical derivation provides additional insights about the shape of indifference curves
and the nature of preferences. In this section we provide such a derivation for the case of a
utility function involving only two goods. This will allow us to compare the mathematics to
the two-dimensional indifference curve map. The case of many goods will be taken up at the
end of the chapter, but it will turn out that this more complicated case really adds very little.

The MRS and marginal utility

If the utility a person receives from two goods is represented by U(x,y), we can write the
total differential of this function as

Y a2y, (3.16)

aU = —
0x dy

Along any particular indifference curve AU = 0, a simple manipulation of Equation 3.16 yields

MRS:—Q _dU/ox

= . 3.17
Ax | U=constant oU / J y ( )

In words, the MRS of x for y is equal to the ratio of the marginal utility of x (thatis, d U /dx) to
the marginal utility of ¥ (d U/dy). This result makes intuitive sense. Suppose that a person’s
utility were actually measurable in, say, units called “utils.” Assume also that this person
consumes only two goods, food (x) and clothing (y), and that each extra unit of food provides
6 utils whereas each extra unit of clothing provides 2 utils. Then Equation 3.17 would mean that
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dy 6 utils

MRS = dx |U=constant 2 utils
so this person is willing to trade away 3 units of clothing to get 1 more unit of food. This
trade would result in no net change in utility because the gains and losses would be precisely
offsetting. Notice that the units in which utility is measured (what we have, for lack of a
better word, called “utils”) cancel out in making this calculation. Although marginal utility
is obviously affected by the units in which utility is measured, the MRS is independent of
that choice.®

The convexity of indifference curves

In Chapter 1 we described how the assumption of diminishing marginal utility was used by
Marshall to solve the water-diamond paradox. Marshall theorized that it is the marginal
valuation that an individual places on a good that determines its value: It is the amount that
an individual is willing to pay for one more pint of water that determines the price of water.
Because it might be thought that this marginal value declines as the quantity of water that is
consumed increases, Marshall showed why water has a low exchange value. Intuitively, it
seems that the assumption of a decreasing marginal utility of a good is related to the assump-
tion of a decreasing MRS; both concepts seem to refer to the same commonsense idea of an
individual becoming relatively satiated with a good as more of it is consumed. Unfortunately,
the two concepts are quite different. (See Problem 3.3.) Technically, the assumption of a
diminishing MRS is equivalent to requiring that the utility function be quasi-concave. This
requirement is related in a rather complex way to the assumption that each good encounters
diminishing marginal utility (that is, that £, is negative for each good).” But that is to be
expected because the concept of diminishing marginal utility is not independent of how

SMore formally, let F(U) be any arbitrary order-preserving transformation of U (that is, F'(U) > 0). Then, for the
transformed utility function,

_ 9F/ox _ F(U)aU/ow
" 9F/ay ~ F(U)aU/dy

_oU/ox

T aU/ay’
which is the MRS for the original function U. That the F (U) terms cancel out shows that the MRS is independent of how
utility is measured.

MRS

"We have shown that if utility is given by U = f(x, ), then
MRs— s S
hoh
The assumption of a diminishing MRS means that ZMRS/dx < 0, but

AMRS _ f,(fir +fia - dy/d%) — fi (fn + fop - dy/ %)
d f3 '
Using the fact that f] /f, = —dy/dx, we have

MRS _ flfn —ha(ALGN — Alfan — Fa(A/h)]
dx 3

Combining terms and recognizing that fi, = £, yields

AMRS _ f,fi1 = 260 + (£ fD/s
e f3

or, multiplying numerator and denominator by f;,

AMRS _ Fifu — 2R 6 fa +Fihs
dx 3 ’
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utility itself is measured, whereas the convexity of indifference curves is indeed independent
of such measurement.

EXAMPLE 3.2 Showing Convexity of Indifference Curves

Calculation of the MRS for specific utility functions is frequently a good shortcut for showing
convexity of indifference curves. In particular, the process can be much simpler than applying
the definition of quasi-concavity, though it is more difficult to generalize to more than two
goods. Here we look at how Equation 3.17 can be used for three different utility functions
(for more practice, see Problem 3.1).

L Ulxy) = /5.

This example just repeats the case illustrated in Example 3.1. One shortcut to
applying Equation 3.17 that can simplify the algebra is to take the logarithm of this
utility function. Because taking logs is order preserving, this will not alter the MRS to
be calculated. So, let

U*(x,y) = In[U(x,y)] = 0.5Inx + 0.5Iny. (3.18)
Applying Equation 3.17 yields
aU"/ox 05/x y

MRS = = == 3.19
aU" gy 05/y x (3.19)

which seems to be a much simpler approach than we used previously.® Clearly this
MRS is diminishing as x increases and y decreases. The indifference curves are
therefore convex.

2. Ux,y)=x+x+y.

In this case there is no advantage to transforming this utility function. Applying
Equation 3.17 yields
oUjox  1+y

MRS = = .
oU/dy 1+«

(3.20)

Again, this ratio clearly decreases as x increases and y decreases, so the indifference
curves for this function are convex.

3. Ux,y) = /a2 + 92
For this example it is easier to use the transformation
U*(x,y) = [U(x,9)]* = &* + 52 (3.21)
Because this is the equation for a quarter-circle, we should begin to suspect that there

(continued)

If we assume that f; > 0 (that marginal utility is positive), then the MRS will diminish as long as

fifin = 2R Hha + f1ha <0

Notice that diminishing marginal utility (f}; < 0 and f;, < 0) will not ensure this inequality. One must also be concerned
with the f, term. That is, one must know how decreases in y affect the marginal utility of ». In general it is not possible to
predict the sign of that term.

The condition required for a diminishing MRS is precisely that discussed in Chapter 2 to ensure that the function f is
strictly quasi-concave. The condition shows that the necessary conditions for a maximum of f'subject to a linear constraint
are also sufficient. We will use this result in Chapter 4 and elsewhere.

8Tn Example 3.1 we looked at the U = 10 indifference curve. So, for that curve, y = 100/x and the MRS in Equation 3.19
would be MRS = 100/4? as calculated before.
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EXAMPLE 3.2 CONTINUED

might be some problems with the indifference curves for this utility function. These
suspicions are confirmed by again applying the definition of the MRS to yield

AU fax 2% x
aU* Jay 2y 9
For this function, it is clear that, as x increases and y decreases, the MRS increases!

Hence the indifference curves are concave, not convex, and this is clearly not a quasi-
concave function.

MRS = (3.22)

QUERY: Does a doubling of x and y change the MRS in each of these three examples? That
is, does the MRS depend only on the ratio of x to ¥, not on the absolute scale of purchases?
(See also Example 3.3.)

UTILITY FUNCTIONS FOR SPECIFIC PREFERENCES

Individuals’ rankings of commodity bundles and the utility functions implied by these rankings
are unobservable. All we can learn about people’s preferences must come from the behavior we
observe when they respond to changes in income, prices, and other factors. It is nevertheless
useful to examine a few of the forms particular utility functions might take, because such an
examination may offer insights into observed behavior and (more to the point) understanding
the properties of such functions can be of some help in solving problems. Here we will examine
four specific examples of utility functions for two goods. Indifference curve maps for these
functions are illustrated in the four panels of Figure 3.8. As should be visually apparent, these
cover quite a few possible shapes. Even greater variety is possible once we move to functions for
three or more goods, and some of these possibilities are mentioned in later chapters.

Cobb-Douglas utility

Figure 3.8a shows the familiar shape of an indifference curve. One commonly used utility
function that generates such curves has the form

utility = U(x,y) = x*y°, (3.23)

where a and B are positive constants.

In Examples 3.1 and 3.2, we studied a particular case of this function for which
a = B = 0.5. The more general case presented in Equation 3.23 is termed a Cobb-Douglas
utility function, after two researchers who used such a function for their detailed study of
production relationships in the U.S. economy (see Chapter 7). In general, the relative sizes of
a and B indicate the relative importance of the two goods to this individual. Since utility is
unique only up to a monotonic transformation, it is often convenient to normalize these
parameters so that o + 8 = 1.

Perfect substitutes

The linear indifference curves in Figure 3.8b are generated by a utility function of the form

utility = U(x, y) = ax + By, (3.24)
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FIGURE 3.8 Examples of Utility Functions
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The four indifference curve maps illustrate alternative degrees of substitutability of x for y. The
Cobb-Douglas and CES functions (drawn here for relatively low substitutability) fall between the
extremes of perfect substitution (panel b) and no substitution (panel c).
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where, again, a and B are positive constants. That the indifference curves for this function
are straight lines should be readily apparent: Any particular level curve can be calculated
by setting U(x,y) equal to a constant that, given the linear form of the function, clearly
specifies a straight line. The linear nature of these indifference curves gave rise to the term
perfect substitutes to describe the implied relationship between x and y. Because the MRS
is constant (and equal to a/B) along the entire indifference curve, our previous notions of
a diminishing MRS do not apply in this case. A person with these preferences would
be willing to give up the same amount of y to get one more x no matter how much x was
being consumed. Such a situation might describe the relationship between different brands
of what is essentially the same product. For example, many people (including the author) do
not care where they buy gasoline. A gallon of gas is a gallon of gas in spite of the best efforts
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of the Exxon and Shell advertising departments to convince me otherwise. Given this fact, I
am always willing to give up 10 gallons of Exxon in exchange for 10 gallons of Shell because
it does not matter to me which I use or where I got my last tankful. Indeed, as we will see in
the next chapter, one implication of such a relationship is that I will buy all my gas from the
least expensive seller. Because I do not experience a diminishing MRS of Exxon for Shell, I
have no reason to seek a balance among the gasoline types I use.

Perfect complements

A situation directly opposite to the case of perfect substitutes is illustrated by the L-shaped
indifference curves in Figure 3.8c. These preferences would apply to goods that “go to-
gether”—coffee and cream, peanut butter and jelly, and cream cheese and lox are familiar
examples. The indifference curves shown in Figure 3.8c imply that these pairs of goods will be
used in the fixed proportional relationship represented by the vertices of the curves. A person
who prefers 1 ounce of cream with 8 ounces of coffee will want 2 ounces of cream with
16 ounces of coftee. Extra coffee without cream is of no value to this person, just as extra cream
would be of no value without coffee. Only by choosing the goods together can utility be
increased.

These concepts can be formalized by examining the mathematical form of the utility
function that generates these L-shaped indifference curves:

utility = U(x, y) = min(ax, By). (3.25)

Here o and @ are positive parameters, and the operator “min” means that utility is given
by the smaller of the two terms in the parentheses. In the coffee-cream example, if we let
ounces of coffee be represented by x and ounces of cream by y, utility would be given by

utility = U(x,y) = min(x, 8y). (3.26)

Now 8 ounces of coffee and 1 ounce of cream provide 8 units of utility. But 16 ounces of
coffee and 1 ounce of cream still provide only 8 units of utility because min(16, 8) = 8. The
extra coffee without cream is of no value, as shown by the horizontal section of the
indifference curves for movement away from a vertex; utility does not increase when only x
increases (with y constant). Only if coffee and cream are both doubled (to 16 and 2,
respectively) will utility increase to 16.

More generally, neither of the two goods will be in excess only if

ax = By. (3.27)

Hence
y/x =a/B, (3.28)

which shows the fixed proportional relationship between the two goods that must occur if
choices are to be at the vertices of the indifference curves.

CES utility
The three specific utility functions illustrated so far are special cases of the more general
constant elasticity of substitution function (CES), which takes the form
Xy
utility = U(x,y) = 5 + 50 (3.29)
where 8 < 1,8 # 0, and

utility = U(x,y) = Inx + Iny (3.30)
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when 8 = 0. It is obvious that the case of perfect substitutes corresponds to the limiting
case, 8 = 1, in Equation 3.29 and that the Cobb-Douglas’ case corresponds to 8 = 0 in
Equation 3.30. Less obvious is that the case of fixed proportions corresponds to 8 = — in
Equation 3.29, but that result can also be shown using a limits argument.

The use of the term “elasticity of substitution” for this function derives from the notion
that the possibilities illustrated in Figure 3.8 correspond to various values for the substitution
parameter, o, which for this function is given by o = 1/(1 — ). For perfect substitutes, then,
o = », and the fixed proportions case has o = 0.'° Because the CES function allows us to
explore all of these cases, and many cases in between, it will prove quite useful for illustrating
the degree of substitutability present in various economic relationships.

The specific shape of the CES function illustrated in Figure 3.8a is for the case 8 = —1.
That is,

1 1
utility = —x ' —y 1= —-— — =, (3.31)

For this situation, o = 1/(1 —8) = 1/2 and, as the graph shows, these sharply curved in-
difference curves apparently fall between the Cobb-Douglas and fixed proportion cases. The
negative signs in this utility function may seem strange, but the marginal utilities of both x
and v are positive and diminishing, as would be expected. This explains why & must appear in
the denominators in Equation 3.29. In the particular case of Equation 3.31, utility increases
from —o (when x = y = 0) toward 0 as x and y increase. This is an odd utility scale, perhaps,
but perfectly acceptable.
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EXAMPLE 3.3 Homothetic Preferences

All of the utility functions described in Figure 3.8 are homothetic (see Chapter 2). That is, the
marginal rate of substitution for these functions depends only on the 7a¢i0 of the amounts of
the two goods, not on the total quantities of the goods. This fact is obvious for the case of
the perfect substitutes (when the MRS is the same at every point) and the case of perfect
complements (where the MRS is infinite for y/x > a/B, undefined when y/x = a/B,
and zero when y/x < a/B). For the general Cobb-Douglas function, the MRS can be
found as
aUJox  ax* 1y o y
MRS = GUjoy Brypl B & (3.32)

which clearly depends only on the ratio y/x. Showing that the CES function is also homo-
thetic is left as an exercise (see Problem 3.12).

The importance of homothetic functions is that one indifference curve is much like
another. Slopes of the curves depend only on the ratio y/x, not on how far the curve is
from the origin. Indifference curves for higher utility are simple copies of those for lower
utility. Hence, we can study the behavior of an individual who has homothetic preferences by
looking only at one indifference curve or at a few nearby curves without fearing that our
results would change dramatically at very different levels of utility.

(continued)

“The CES function could easily be generalized to allow for differing weights to be attached to the two goods. Since the
main use of the function is to examine substitution questions, we usually will not make that generalization. In some of the
applications of the CES function, we will also omit the denominators of the function because these constitute only a scale
factor when 8 is positive. For negative values of 8, however, the denominator is needed to ensure that marginal utility is
positive.

""The elasticity of substitution concept is discussed in more detail in connection with production functions in Chapter 9.
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EXAMPLE 3.3 CONTINUED

QUERY: How might you define homothetic functions geometrically? What would the locus
of all points with a particular MRS look like on an individual’s indifference curve map?

EXAMPLE 3.4 Nonhomothetic Preferences

Although all of the indifference curve maps in Figure 3.8 exhibit homothetic preferences, this
need not always be true. Consider the quasi-linear utility function

utility = U(x,y) = x+ Iny. (3.33)
For this function, good y exhibits diminishing marginal utility, but good x does not. The
MRS can be computed as
_AU/dx 1
~oUjoy 1)y

. (3.34)

The MRS diminishes as the chosen quantity of y decreases, but it is independent of the
quantity of x consumed. Because x has a constant marginal utility, a person’s willingness to
give up y to get one more unit of ¥ depends only on how much y he or she has. Contrary to
the homothetic case, then, a doubling of both x and y doubles the MRS rather than leaving
it unchanged.

QUERY: What does the indifference curve map for the utility function in Equation 3.33 look

like? Why might this approximate a situation where y is a specific good and x represents
everything else?

THE MANY-GOOD CASE

All of the concepts we have studied so far for the case of two goods can be generalized to
situations where utility is a function of arbitrarily many goods. In this section, we will briefly
explore those generalizations. Although this examination will not add much to what we have
already shown, considering peoples’ preferences for many goods can be quite important in
applied economics, as we will see in later chapters.

The MRS with many goods

Suppose utility is a function of n goods given by

utility = U(xy, %5, ...,%,,). (3.35)
The total differential of this expression is
oU aU oU
AU = — dxy + — d. e+ —dx 3.36
o 0 + o% %+t e (3.36)

and, as before, we can find the MRS between any two goods by setting AU = 0. In this
derivation, we also hold constant quantities of all of the goods other than those two. Hence
we have
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U oU

AU =0 =—dx;, + —dx;; (3.37)

ax; ax; 7

after some algebraic manipulation, we get
dx;  9U/ox;

MRS(x; for x) = ——L=——"""% 3.38
(x; for x;) de; ~ 90 Jox, (3.38)

which is precisely what we got in Equation 3.17. Whether this concept is as useful as it is in
two dimensions is open to question, however. With only two goods, asking how a person
would trade one for the other is an interesting question—a transaction we might actually
observe. With many goods, however, it seems unlikely that a person would simply trade one
good for another while holding all other goods constant. Rather, it seems more likely that an
event (such as a price increase) that caused a person to want to reduce, say, the quantity of
cornflakes («x;) consumed would also cause him or her to change the quantities consumed of
many other goods such as milk, sugar, Cheerios, spoons, and so forth. As we shall see in
Chapter 6, this entire reallocation process can best be studied by looking at the entire utility
function as represented in Equation 3.35. Still, the notion of making trade-ofts between
only two goods will prove useful as a way of conceptualizing the utility maximization process
that we will take up next.

Multigood indifference surfaces

Generalizing the concept of indifference curves to multiple dimensions poses no major mathe-
matical difficulties. We simply define an indifference surface as being the set of points in »
dimensions that satisfy the equation

U(xy,%,,...,%,) =k,

(3.39)

where % is any preassigned constant. If the utility function is quasi-concave, the set of points
for which U > % will be convex; that is, all of the points on a line joining any two points on
the U = k indifference surface will also have U > k. It is this property that we will find most
useful in later applications. Unfortunately, however, the mathematical conditions that ensure
quasi-concavity in many dimensions are not especially intuitive (see the Extensions to
Chapter 2), and visualizing many dimensions is virtually impossible. Hence, when intuition
is required, we will usually revert to two-good examples.

SUMMARY

In this chapter we have described the way in which econo-
mists formalize individuals’ preferences about the goods they
choose. We drew several conclusions about such preferences
that will play a central role in our analysis of the theory of
choice in the following chapters:

If individuals obey certain basic behavioral postulates in
their preferences among goods, they will be able to rank all
commodity bundles, and that ranking can be represented
by a utility function. In making choices, individuals will
behave as if they were maximizing this function.

Utility functions for two goods can be illustrated by an
indifference curve map. Each indifference curve contour

on this map shows all the commodity bundles that yield a
given level of utility.

The negative of the slope of an indifference curve is
defined to be the marginal rate of substitution (MRS).
This shows the rate at which an individual would will-
ingly give up an amount of one good (¥) if he or she were
compensated by receiving one more unit of another
good (x).

The assumption that the MRS decreases as x is substi-
tuted for y in consumption is consistent with the notion
that individuals prefer some balance in their consump-
tion choices. If the MRS is always decreasing, individuals
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will have strictly convex indifference curves. That is, their
utility function will be strictly quasi-concave.

It is a simple matter mathematically to generalize from
two-good examples to many goods. And, as we shall see,

studying peoples’ choices among many goods can yield
many insights. But the mathematics of many goods is
not especially intuitive, so we will primarily rely on two-
good cases to build such intuition.

e A few simple functional forms can capture important
differences in individuals’ preferences for two (or more)
goods. Here we examined the Cobb-Douglas function,
the linear function (perfect substitutes), the fixed pro-
portions function (perfect complements), and the CES
function (which includes the other three as special cases).

PROBLEMS

3.1

Graph a typical indifference curve for the following utility functions and determine whether they have
convex indifference curves (that is, whether the MRS declines as x increases).

a. U(x,y) =3x+y.

b. U(x,y) = /%Y.

c. Ux,y)=vVx+y

d. U(x,y) =+/x2 —y?
Xy

.U = .

e Ul =2

3.2

In footnote 7 we showed that, in order for a utility function for two goods to have a strictly diminishing
MRS (that is, to be strictly quasi-concave), the following condition must hold:

F3fi — 2 i + fifia <O.

Use this condition to check the convexity of the indifference curves for each of the utility functions in
Problem 3.1. Describe any shortcuts you discover in this process.

3.3

Consider the following utility functions:
a. U(x,y) = xy.
b. U(x,y) = x2y*.
c. Ulx,y)=Inx+ Iny.

Show that each of these has a diminishing MRS but that they exhibit constant, increasing, and
decreasing marginal utility, respectively. What do you conclude?

3.4

As we saw in Figure 3.5, one way to show convexity of indifference curves is to show that, for any two
points (%, ) and (x,, %) on an indifference curve that promises U = k, the utility associated with the

X+ Nty
2 > 2

curves for the following three functions. Be sure to graph your results.

point ) is at least as great as k. Use this approach to discuss the convexity of the indifference

a. U(x,y) = min(x,y).
b. U(x,y) = max(x,y).
c. Ux,y)=x+y.
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The Phillie Phanatic always eats his ballpark franks in a special way; he uses a foot-long hot dog together
with precisely half'a bun, 1 ounce of mustard, and 2 ounces of pickle relish. His utility is a function only
of these four items and any extra amount of a single item without the other constituents is worthless.

a.

b.

3.6

What form does PP’s utility function for these four goods have?

How might we simplify matters by considering PP’s utility to be a function of only one good?
What is that good?

Suppose foot-long hot dogs cost $1.00 each, buns cost $0.50 each, mustard costs $0.05 per
ounce, and pickle relish costs $0.15 per ounce. How much does the good defined in part (b) cost?

. If the price of foot-long hot dogs increases by 50 percent (to $1.50 each), what is the

percentage increase in the price of the good?

. How would a 50 percent increase in the price of a bun affect the price of the good? Why is your

answer different from part (d)?

If the government wanted to raise $1.00 by taxing the goods that PP buys, how should it spread
this tax over the four goods so as to minimize the utility cost to PP?

Many advertising slogans seem to be asserting something about people’s preferences. How would you
capture the following slogans with a mathematical utility function?

a.
b.
c.

d.

3.7

3.8

Promise margarine is just as good as butter.

Things go better with Coke.

You can’t eat just one Pringle’s potato chip.

Krispy Kreme glazed doughnuts are just better than Dunkin’.

Miller Brewing advises us to drink (beer) “responsibly.” [What would “irresponsible” drinking be? ]

. A consumer is willing to trade 3 units of x for 1 unit of y when she has 6 units of x and 5 units of

. She is also willing to trade in 6 units of x for 2 units of y when she has 12 units of x and 3 units
of'y. She is indifferent between bundle (6, 5) and bundle (12, 3). What is the utility function for
goods x and y? Hint: What is the shape of the indifference curve?

. A consumer is willing to trade 4 units of «x for 1 unit of y when she is consuming bundle (8, 1).

She is also willing to trade in 1 unit of x for 2 units of y when she is consuming bundle (4, 4). She
is indifferent between these two bundles. Assuming that the utility function is Cobb-Douglas of
the form U(x,y) = x%y®, where a and B are positive constants, what is the utility function for
this consumer?

Was there a redundancy of information in part (b)? If yes, how much is the minimum amount of
information required in that question to derive the utility function?

Find utility functions given each of the following indifference curves [defined by U (-) = C]:

a. 3z

Cl/&
= xo/oyBfR

b. y=0.5,/x%> —4(x> — C) — 0.5x.

C.

Vyt—4x(x?y—C)
z= -
2x

2x

107
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Analytical Problems
3.9 Initial endowments
Suppose that a person has initial amounts of the two goods that provide utility to him or her. These
initial amounts are given by X and ¥.
a. Graph these initial amounts on this person’s indifference curve map.
b. Ifthis person can trade x for y (or vice versa) with other people, what kinds of trades would he or

she voluntarily make? What kinds would not be made? How do these trades relate to this
person’s MRS at the point (X, y)?

c. Suppose this person is relatively happy with the initial amounts in his or her possession and will
only consider trades that increase utility by at least amount 2. How would you illustrate this on
the indifference curve map?

3.10 Cobb-Douglas utility
Example 3.3 shows that the MRS for the Cobb-Douglas function

Ulx,y) = 25
is given by
ary
MRS =% (2).
B \x
a. Does this result depend on whether o 4+ 3 = 1? Does this sum have any relevance to the theory
of choice?

b. For commodity bundles for which ¥ = &, how does the MRS depend on the values of « and B?
Develop an intuitive explanation of why, ifa > B, MRS > 1. Illustrate your argument with a graph.

c. Suppose an individual obtains utility only from amounts of x and y that exceed minimal sub-
sistence levels given by x,, %,. In this case,
U(x,y) = (% — %) (y — J’O)B~

Is this function homothetic? (For a further discussion, see the Extensions to Chapter 4.)

3.11 Independent marginal utilities

Two goods have independent marginal utilities if
?U  PU
dydx  0xdy

Show that if we assume diminishing marginal utility for each good, then any utility function with
independent marginal utilities will have a diminishing MRS. Provide an example to show that the
converse of this statement is not true.

3.12 CES utility

a. Show that the CES function
5 5
x y
5 tP3
is homothetic. How does the MRS depend on the ratio y/x?

b. Show that your results from part (a) agree with our discussion of the cases 8 =1 (perfect
substitutes) and 8 = 0 (Cobb-Douglas).

c. Show that the MRS is strictly diminishing for all values of 8 < 1.

d. Show that if » = y, the MRS for this function depends only on the relative sizes of « and B.



Chapter 3 Preferences and Utility 109

e. Calculate the MRS for this function when y/x = 0.9 and y/x = 1.1 for the two cases 8 = 0.5
and 8 = —1. What do you conclude about the extent to which the MRS changes in the vicinity

of x = y?» How would you interpret this geometrically?

3.13 The quasi-linear function

Consider the function U(x,y) = &+ Iny. This is a function that is used relatively frequently in eco-

nomic modeling as it has some useful properties.

a. Find the MRS of the function. Now, interpret the result.

b. Confirm that the function is quasi-concave.

c. Find the equation for an indifference curve for this function.

d. Compare the marginal utility of x# and y. How do you interpret these functions? How might
consumers choose between x and y as they try to increase their utility by, for example, consum-
ing more when their income increases? (We will look at this “income effect” in detail in the

Chapter 5 problems.)

¢. Considering how the utility changes as the quantities of the two goods increase, describe some

situations where this function might be useful.

3.14 Utility functions and preferences

Imagine two goods that, when consumed individually, give increasing utility with increasing amounts
consumed (they are individually monotonic) but that, when consumed together, detract from the utility
that the other one gives. (One could think of milk and orange juice, which are fine individually but

which, when consumed together, yield considerable disutility.)

a. Propose a functional form for the utility function for the two goods just described.

b. Find the MRS between the two goods with your functional form.

¢. Which (if any) of the general assumptions that we make regarding preferences and utility

functions does your functional form violate?
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EXTENSIONS

Special Preferences

The utility function concept is a quite general one that
can be adapted to a large number of special circum-
stances. Discovery of ingenious functional forms that
reflect the essential aspects of some problem can pro-
vide a number of insights that would not be readily
apparent with a more literary approach. Here we look
at four aspects of preferences that economists have
tried to model: (1) threshold effects; (2) quality; (3)
habits and addiction; and (4) second-party preferences.
In Chapters 7 and 17, we illustrate a number of addi-
tional ways of capturing aspects of preferences.

E3.1 Threshold effects

The model of utility that we developed in this chapter
implies an individual will always prefer commodity bun-
dle A to bundle B, provided U(A) > U(B). There may
be events that will cause people to shift quickly from
consuming bundle A to consuming B. In many cases,
however, such a lightning-quick response seems unlikely.
People may in fact be “set in their ways” and may require
a rather large change in circumstances to change what
they do. For example, individuals may not have especially
strong opinions about what precise brand of toothpaste
they choose and may stick with what they know despite a
proliferation of new (and perhaps better) brands. Simi-
larly, people may stick with an old favorite TV show even
though it has declined in quality. One way to capture
such behavior is to assume individuals make decisions as if
they faced thresholds of preference. In such a situation,
commodity bundle A might be chosen over Bonly when

U(A) > U(B) + ¢, (i)

where ¢ is the threshold that must be overcome. With this
specification, then, indifference curves may be rather
thick and even fuzzy, rather than the distinct contour
lines shown in this chapter. Threshold models of this type
are used extensively in marketing. The theory behind
such models is presented in detail in Aleskerov and
Monjardet (2002). There, the authors consider a num-
ber of ways of specifying the threshold so that it might
depend on the characteristics of the bundles being con-
sidered or on other contextual variables.

Alternative fuels

Vedenov, Duffield, and Wetzstein (2006) use the
threshold idea to examine the conditions under which
individuals will shift from gasoline to other fuels

(primarily ethanol) for powering their cars. The authors
point out that the main disadvantage of using gasoline
in recent years has been the excessive price volatility of
the product relative to other fuels. They conclude that
switching to ethanol blends is efficient (especially dur-
ing periods of increased gasoline price volatility), pro-
vided that the blends do not decrease fuel efficiency.

E3.2 Quality

Because many consumption items differ widely in qual-
ity, economists have an interest in incorporating such
differences into models of choice. One approach is
simply to regard items of different quality as totally
separate goods that are relatively close substitutes.
But this approach can be unwieldy because of the
large number of goods involved. An alternative ap-
proach focuses on quality as a direct item of choice.
Utility might in this case be reflected by

utility = U(q, Q), (i)
where g is the quantity consumed and Q is the quality of
that consumption. Although this approach permits some
examination of quality-quantity trade-offs, it encounters
difficulty when the quantity consumed of a commodity
(e.g., wine) consists of a variety of qualities. Quality might
then be defined as an average (see Theil,' 1952), but that
approach may not be appropriate when the quality of new
goods is changing rapidly (as in the case of personal
computers, for example). A more general approach
(originally suggested by Lancaster, 1971) focuses on a
well-defined set of attributes of goods and assumes that
those attributes provide utility. If a good 4 provides two
such attributes, #, and ,, then utility might be written as

utility = Ulq, a,(9), #,(q)], (iii))

and utility improvements might arise either because
this individual chooses a larger quantity of the good
or because a given quantity yields a higher level of
valuable attributes.

Personal computers
This is the practice followed by economists who study
demand in such rapidly changing industries as personal

ITheil also suggests measuring quality by looking at correlations be-
tween changes in consumption and the income elasticities of various
goods.



computers. In this case it would clearly be incorrect to
focus only on the quantity of personal computers pur-
chased each year, since new machines are much better
than old ones (and, presumably, provide more utility).
For example, Berndt, Griliches, and Rappaport (1995)
find that personal computer quality has been rising about
30 percent per year over a relatively long period of time,
primarily because of improved attributes such as faster
processors or better hard drives. A person who spends,
say, $2,000 for a personal computer today buys much
more utility than did a similar consumer 5 years ago.

E3.3 Habits and addiction

Because consumption occurs over time, there is the
possibility that decisions made in one period will affect
utility in later periods. Habits are formed when individ-
uals discover they enjoy using a commodity in one
period and this increases their consumption in subse-
quent periods. An extreme case is addiction (be it to
drugs, cigarettes, or Marx Brothers movies), where past
consumption significantly increases the utility of pres-
ent consumption. One way to portray these ideas math-
ematically is to assume that utility in period ¢ depends
on consumption in period ¢ and the total of all prior

consumption of the habit-forming good (say, X):
utility = U, (x,,5,,5,), (iv)

where

8

=) x_;.
i=1

~

In empirical applications, however, data on all past
levels of consumption usually do not exist. It is there-
fore common to model habits using only data on
current consumption (x,) and on consumption in the
previous period (x, — 1). A common way to proceed is
to assume that utility is given by

utility = U,(x},y,), (v)

where x7 is some simple function of x, and x, ,, such
as & =x, —x, ; or xf =x,/x, ;. Such functions
imply that, ceteris paribus, the higher is x, |, the
more x, will be chosen in the current period.

Modeling habits

These approaches to modeling habits have been ap-
plied to a wide variety of topics. Stigler and Becker
(1977) use such models to explain why people develop
a “taste” for going to operas or playing golf. Becker,
Grossman, and Murphy (1994) adapt the models to
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studying cigarette smoking and other addictive behav-
ior. They show that reductions in smoking early in life
can have very large effects on eventual cigarette con-
sumption because of the dynamics in individuals’ util-
ity functions. Whether addictive behavior is “rational”
has been extensively studied by economists. For exam-
ple, Gruber and Koszegi (2001) show that smoking
can be approached as a rational, though time-incon-
sistent,” choice.

E3.4 Second-party preferences

Individuals clearly care about the well-being of other
individuals. Phenomena such as making charitable con-
tributions or making bequests to children cannot be
understood without recognizing the interdependence
that exists among people. Second-party preferences
can be incorporated into the utility function of person
1, say, by

utility = U;(x;, ;, U)), (vi)

where U, is the utility of someone else.

If 0U;/0U; > 0 then this person will engage in
altruistic behavior, whereas if U;/dU; < 0 then he
or she will demonstrate the malevolent behavior asso-
ciated with envy. The usual case of dU;/0U; =0 is
then simply a middle ground between these alternative
preference types. Gary Becker has been a pioneer in
the study of these possibilities and has written on a
variety of topics, including the general theory of social
interactions (1976) and the importance of altruism in
the theory of the family (1981).

Evolutionary biology and genetics

Biologists have suggested a particular form for the
utility function in Equation iv, drawn from the theory
of genetics. In this case

utility = U;(x;, 5;) + Z Uy,
J

(vii)

where 7, measures closeness of the genetic relation-
ship between person 7 and person j. For parents and
children, for example, = 0.5, whereas for cousins
7; = 0.125. Bergstrom (1996) describes a few of the
conclusions about evolutionary behavior that biolo-
gists have drawn from this particular functional form.

ZFor more on time inconsistency, see Chapter 17.
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CHAPTER

Utility Maximization and Choice

In this chapter we examine the basic model of choice that economists use to explain individuals’ behavior.
That model assumes that individuals who are constrained by limited incomes will behave as if they are using
their purchasing power in such a way as to achieve the highest utility possible. That is, individuals are as-
sumed to behave as if they maximize utility subject to a budget constraint. Although the specific applications
of this model are quite varied, as we will show, all of them are based on the same fundamental mathematical
model, and all arrive at the same general conclusion: To maximize utility, individuals will choose bundles of
commodities for which the rate of trade-off between any two goods (the MRS) is equal to the ratio of the
goods’ market prices. Market prices convey information about opportunity costs to individuals, and this in-
formation plays an important role in affecting the choices actually made.

Utility maximization and lightning calculations

Before starting a formal study of the theory of choice, it may be appropriate to dispose of two
complaints noneconomists often make about the approach we will take. First is the charge
that no real person can make the kinds of “lightning calculations” required for utility
maximization. According to this complaint, when moving down a supermarket aisle, people
just grab what is available with no real pattern or purpose to their actions. Economists are not
persuaded by this complaint. They doubt that people behave randomly (everyone, after all, is
bound by some sort of budget constraint), and they view the lightning calculation charge as
misplaced. Recall, again, Friedman’s pool player from Chapter 1. The pool player also cannot
make the lightning calculations required to plan a shot according to the laws of physics, but
those laws still predict the player’s behavior. So too, as we shall see, the utility-maximization
model predicts many aspects of behavior even though no one carries around a computer with
his or her utility function programmed into it. To be precise, economists assume that people
behave as if they made such calculations, so the complaint that the calculations cannot
possibly be made is largely irrelevant.

Altruism and selfishness

A second complaint against our model of choice is that it appears to be extremely selfish; no
one, according to this complaint, has such solely self-centered goals. Although economists
are probably more ready to accept self-interest as a motivating force than are other, more
Utopian thinkers (Adam Smith observed, “We are not ready to suspect any person of being
deficient in selfishness™"), this charge is also misplaced. Nothing in the utility-maximization
model prevents individuals from deriving satisfaction from philanthropy or generally “doing
good.” These activities also can be assumed to provide utility. Indeed, economists have used
the utility-maximization model extensively to study such issues as donating time and money

!Adam Smith, The Theory of Moral Sentiments (1759; reprint, New Rochelle, NY: Arlington House, 1969), p. 446.
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OPTIMIZATION
PRINCIPLE

to charity, leaving bequests to children, or even giving blood. One need not take a position
on whether such activities are selfish or selfless since economists doubt people would under-
take them if they were against their own best interests, broadly conceived.

AN INITIAL SURVEY

The general results of our examination of utility maximization can be stated succinctly as
follows.

Utility maximization To maximize utility, given a fixed amount of income to spend, an
individual will buy those quantities of goods that exhaust his or her total income and for
which the psychic rate of trade-oft between any two goods (the MRS) is equal to the rate at
which the goods can be traded one for the other in the marketplace.

That spending all one’s income is required for utility maximization is obvious. Because extra
goods provide extra utility (there is no satiation) and because there is no other use for income,
to leave any unspent would be to fail to maximize utility. Throwing money away is not a
utility-maximizing activity.

The condition specifying equality of trade-oft rates requires a bit more explanation.
Because the rate at which one good can be traded for another in the market is given by the
ratio of their prices, this result can be restated to say that the individual will equate the MRS
(of x for y) to the ratio of the price of «x to the price of y (p,/p,). This equating of a personal
trade-off rate to a market-determined trade-off rate is a result common to all individual
utility-maximization problems (and to many other types of maximization problems). It will
occur again and again throughout this text.

A numerical illustration

To see the intuitive reasoning behind this result, assume that it were not true that an in-
dividual had equated the MRS to the ratio of the prices of goods. Specifically, suppose that
the individual’s MRSis equal to 1 and that he or she is willing to trade 1 unit of x for 1 unit of
y and remain equally well off. Assume also that the price of x is $2 per unit and of y is $1 per
unit. It is easy to show that this person can be made better off. Suppose this person reduces x
consumption by 1 unit and trades it in the market for 2 units of y. Only 1 extra unit of y was
needed to keep this person as happy as before the trade—the second unit of y is a net addition
to well-being. Therefore, the individual’s spending could not have been allocated optimally
in the first place. A similar method of reasoning can be used whenever the MRS and the price
ratio p,/p, differ. The condition for maximum utility must be the equality of these two
magnitudes.

THE TWO-GOOD CASE: A GRAPHICAL ANALYSIS

This discussion seems eminently reasonable, but it can hardly be called a proof. Rather, we
must now show the result in a rigorous manner and, at the same time, illustrate several other
important attributes of the maximization process. First we take a graphic analysis; then we
take a more mathematical approach.

Budget constraint

Assume that the individual has I dollars to allocate between good x and good y. If p, is the
price of good x and p, is the price of good y, then the individual is constrained by
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FIGURE 4.1 The Individual's Budget Constraint for Two Goods
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Those combinations of x and y that the individual can afford are shown in the shaded triangle. If, as
we usually assume, the individual prefers more rather than less of every good, the outer boundary of
this triangle is the relevant constraint where all of the available funds are spent either on x or on y.
The slope of this straight-line boundary is given by —p, /p, .

Quantity
of y

I'=pyx +pyy

Quantity of x

px+py <1 (4.1)

That is, no more than I can be spent on the two goods in question. This budget constraint is
shown graphically in Figure 4.1. This person can afford to choose only combinations of x
and y in the shaded triangle of the figure. If all of I is spent on good x, it will buy I/p,. units
of x. Similarly, if all is spent on y, it will buy I/, units of y. The slope of the constraint is
casily seen to be —p, /p,. This slope shows how y can be traded for x in the market. If p, = 2
and p, = 1, then 2 units of y will trade for 1 unit of .

First-order conditions for a maximum

This budget constraint can be imposed on this person’s indifference curve map to show the
utility-maximization process. Figure 4.2 illustrates this procedure. The individual would be
irrational to choose a point such as A; he or she can get to a higher utility level just by
spending more of his or her income. The assumption of nonsatiation implies that a person
should spend all of his or her income in order to receive maximum utility. Similarly, by
reallocating expenditures, the individual can do better than point B. Point D is out of the
question because income is not large enough to purchase D. It is clear that the position of
maximum utility is at point C, where the combination x™, y* is chosen. This is the only point
on indifference curve U, that can be bought with I dollars; no higher utility level can be



116

Part 2 Choice and Demand

FIGURE 4.2 A Graphical Demonstration of Utility Maximization

Point C represents the highest utility level that can be reached by the individual, given the budget
constraint. The combination x*, y* is therefore the rational way for the individual to allocate
purchasing power. Only for this combination of goods will two conditions hold: All available funds
will be spent, and the individual’s psychic rate of trade-off (MRS) will be equal to the rate at which
the goods can be traded in the market (p,/p,).

Quantity
ofy
UsUz Uy

0 x* Quantity of x

bought. C is a point of tangency between the budget constraint and the indifference curve.
Therefore, at C we have

_px

slope of budget constraint = —* = slope of indifference curve

y

ay
= = 4.2
A% | U= constant ( )

or
a
P _ 2 = MRS (of x for y). (4.3)
py Ax | U= constant

Our intuitive result is proved: for a utility maximum, all income should be spent and the
MRS should equal the ratio of the prices of the goods. It is obvious from the diagram that if
this condition is not fulfilled, the individual could be made better off by reallocating
expenditures.

Second-order conditions for a maximum

The tangency rule is only a necessary condition for a maximum. To see that it is not a
sufficient condition, consider the indifference curve map shown in Figure 4.3. Here, a point
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FIGURE 4.3 Example of an Indifference Curve Map for Which the Tangency Condition
Does Not Ensure a Maximum
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If indifference curves do not obey the assumption of a diminishing MRS, not all points of tangency
(points for which MRS — p,/ p,) may truly be points of maximum utility. In this example, tangency
point C is inferior to many other points that can also be purchased with the available funds. In order
that the necessary conditions for a maximum (that is, the tangency conditions) also be sufficient, one
usually assumes that the MRS is diminishing; that is, the utility function is strictly quasi-concave.

Quantity
ofy

U Up U

I'=pyx +pyy

Quantity of x

of tangency (C) is inferior to a point of nontangency (B). Indeed, the true maximum is at
another point of tangency (A). The failure of the tangency condition to produce an unam-
biguous maximum can be attributed to the shape of the indifference curves in Figure 4.3. If
the indifference curves are shaped like those in Figure 4.2, no such problem can arise. But we
have already shown that “normally” shaped indifference curves result from the assumption of
a diminishing MRS. Therefore, if the MRS is assumed to be diminishing, the condition of
tangency is both a necessary and sufficient condition for a maximum.? Without this assump-
tion, one would have to be careful in applying the tangency rule.

Corner solutions

The utility-maximization problem illustrated in Figure 4.2 resulted in an “interior” maxi-
mum, in which positive amounts of both goods were consumed. In some situations individ-
uals’ preferences may be such that they can obtain maximum utility by choosing to consume

2In mathematical terms, because the assumption of a diminishing MRS is equivalent to assuming quasi-concavity, the
necessary conditions for a maximum subject to a linear constraint are also sufficient, as we showed in Chapter 2.
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FIGURE 4.4 Corner Solution for Utility Maximization

With the preferences represented by this set of indifference curves, utility maximization occurs at E,
where 0 amounts of good y are consumed. The first-order conditions for a maximum must be
modified somewhat to accommodate this possibility.

Quantity
ofy

Uy Uy, Us

x* Quantity of x

no amount of one of the goods. If someone does not like hamburgers very much, there is no
reason to allocate any income to their purchase. This possibility is reflected in Figure 4.4.
There, utility is maximized at E, where x = ™ and y = 0, so any point on the budget
constraint where positive amounts of y are consumed yields a lower utility than does point E.
Notice that at E the budget constraint is not precisely tangent to the indifference curve U, .
Instead, at the optimal point the budget constraint is flatter than U,, indicating that the rate
at which x can be traded for y in the market is lower than the individual’s psychic trade-off
rate (the MRS). At prevailing market prices the individual is more than willing to trade away y
to get extra x. Because it is impossible in this problem to consume negative amounts of v,
however, the physical limit for this process is the X-axis, along which purchases of ¥ are 0.
Hence, as this discussion makes clear, it is necessary to amend the first-order conditions for a
utility maximum a bit to allow for corner solutions of the type shown in Figure 4.4. Following
our discussion of the general #-good case, we will use the mathematics from Chapter 2 to
show how this can be accomplished.

THE n-GOOD CASE

The results derived graphically in the case of two goods carry over directly to the case of #
goods. Again it can be shown that for an interior utility maximum, the MRS between any two
goods must equal the ratio of the prices of these goods. To study this more general case,
however, it is best to use some mathematics.



Chapter 4 Utility Maximization and Choice

First-order conditions

With » goods, the individual’s objective is to maximize utility from these 7 goods:

utility = U(xy, %5, ..., %,), (4.4)
subject to the budget constraint®
I=po+pp%+ - +p,x, (4.5)
or
I—p% = pr% = = p,%, = 0. (4.6)

Following the techniques developed in Chapter 2 for maximizing a function subject to a
constraint, we set up the Lagrangian expression

E=Ux,%,..,%,) + NI = proy — %, — = = p,%,). (4.7)
Setting the partial derivatives of & (with respect to x;,,,...,x, and \) equal to 0 yields
n + 1 equations representing the necessary conditions for an interior maximum:
0¥ oU

= — — :0
dx, 0 =0
& oU
e om 1, =0,
X,  0x,
: (4.8)
o< oU
=2 N, =0,
dx,  Jx,
oL
N I—py%) —pr% — = p,%,=0.

These 7 + 1 equations can, in principle, be solved for the optimal x;, x;, ..., x, and for \ (see
Examples 4.1 and 4.2 to be convinced that such a solution is possible).

Equations 4.8 are necessary but not sufficient for a maximum. The second-order condi-
tions that ensure a maximum are relatively complex and must be stated in matrix terms (see
the Extensions to Chapter 2). However, the assumption of strict quasi-concavity (a dimin-
ishing MR Sin the two-good case) is sufficient to ensure that any point obeying Equations 4.8
is in fact a true maximum.

Implications of first-order conditions

The first-order conditions represented by Equations 4.8 can be rewritten in a variety of
interesting ways. For example, for any two goods, x; and x;, we have

aU/ax,.:&. 4.9)
aU/dx;  p;

In Chapter 3 we showed that the ratio of the marginal utilities of two goods is equal to the

marginal rate of substitution between them. Therefore, the conditions for an optimal allo-

cation of income become

MRS(x; for x;) = %. (4.10)

J
This is exactly the result derived graphically earlier in this chapter; to maximize utility, the
individual should equate the psychic rate of trade-off to the market trade-off rate.

3Again, the budget constraint has been written as an equality because, given the assumption of nonsatiation, it is clear that
the individual will spend all available income.
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Interpreting the Lagrangian multiplier

Another result can be derived by solving Equations 4.8 for \:

\_0U/ox _oUjox,  ~_9U/ox, (4.11)
h P Py
or
MU, MU, MU,
o P b

These equations state that, at the utility-maximizing point, each good purchased should
yield the same marginal utility per dollar spent on that good. Each good therefore should
have an identical (marginal) benefit-to-(marginal)-cost ratio. If this were not true, one good
would promise more “marginal enjoyment per dollar” than some other good, and funds
would not be optimally allocated.

Although the reader is again warned against talking very confidently about marginal
utility, what Equation 4.11 says is that an extra dollar should yield the same “additional
utility” no matter which good it is spent on. The common value for this extra utility is given
by the Lagrangian multiplier for the consumer’s budget constraint (that is, by \). Conse-
quently, N can be regarded as the marginal utility of an extra dollar of consumption expendi-
ture (the marginal utility of “income”).

One final way to rewrite the necessary conditions for a maximum is

= (4.12)

for every good : that is bought. To interpret this equation, consider a situation where a
person’s marginal utility of income (\) is constant over some range. Then variations in the
price he or she must pay for good 7 (p;) are directly proportional to the extra utility derived
from that good. At the margin, therefore, the price of a good reflects an individual’s
willingness to pay for one more unit. This is a result of considerable importance in applied
welfare economics because willingness to pay can be inferred from market reactions to
prices. In Chapter 5 we will see how this insight can be used to evaluate the welfare effects of
price changes and, in later chapters, we will use this idea to discuss a variety of questions
about the efficiency of resource allocation.

Corner solutions

The first-order conditions of Equations 4.8 hold exactly only for interior maxima for which
some positive amount of each good is purchased. As discussed in Chapter 2, when corner
solutions (such as those illustrated in Figure 4.4) arise, the conditions must be modified
slightly.* In this case, Equations 4.8 become

Zi:‘;g—xigo (1=1,...,n) (4.13)
and, if
2%23_5_)"'<0’ (4.14)
then
x: = 0. (4.15)

7

*Formally, these conditions are called the “Kuhn-Tucker” conditions for nonlinear programming.
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To interpret these conditions, we can rewrite Equation 4.14 as

oU / axi - M Uxi

bz T

Hence, the optimal conditions are as before, except that any good whose price (p;) exceeds
its marginal value to the consumer (MU, /\) will not be purchased (x; = 0). Thus, the
mathematical results conform to the commonsense idea that individuals will not purchase
goods that they believe are not worth the money. Although corner solutions do not provide
a major focus for our analysis in this book, the reader should keep in mind the possibilities
for such solutions arising and the economic interpretation that can be attached to the
optimal conditions in such cases.

. (4.16)
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EXAMPLE 4.1 Cobb-Douglas Demand Functions

As we showed in Chapter 3, the Cobb-Douglas utility function is given by
U(x,y) = «", (4.17)

where, for convenience,® we assume a 4+ B = 1. We can now solve for the utility-maximizing
values of x and y for any prices (p,, p,) and income (I). Setting up the Lagrangian expression

L=y + NI - px—p,y) (4.18)
yields the first-order conditions
oL _
Pl Ly —N\p, =0,
oL
= BBl = —
oy Bxy Ap, =0, (4.19)
oL
e I-px—py =0.
Taking the ratio of the first two terms shows that
O _ P (4.20)
Br P,
or
B l-«a
By = DX = B, (4.21)

where the final equation follows because o+ 3 = 1. Substitution of this first-order
condition in Equation 4.21 into the budget constraint gives

1«

l-«a 1
solving for x yields

X =—, (4.23)

(continued)

SNotice that the exponents in the Cobb-Douglas utility function can always be normalized to sum to 1 because U(®+8) s
a monotonic transformation.
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EXAMPLE 4.1 CONTINUED

and a similar set of manipulations would give
»=bL
2y

These results show that an individual whose utility function is given by Equation 4.17 will
always choose to allocate a proportion of his or her income to buying good x (i.e.,
p.x/1 = a) and B proportion to buying good y (p,y/1 = B). Although this feature of the
Cobb-Douglas function often makes it very easy to work out simple problems, it does
suggest that the function has limits in its ability to explain actual consumption behavior.
Because the share of income devoted to particular goods often changes significantly in
response to changing economic conditions, a more general functional form may provide
insights not provided by the Cobb-Douglas function. We illustrate a few possibilities in
Example 4.2, and the general topic of budget shares is taken up in more detail in the
Extensions to this chapter.

(4.24)

Numerical example. First, however, let’s look at a specific numerical example for the Cobb-
Douglas case. Suppose that x sells for $1 and y sells for $4 and that total income is $8.
Succinctly then, assume that p, =1, py=41= 8. Suppose also that a« = B = 0.5 so that
this individual splits his or her income equally between these two goods. Now the demand
Equations 4.23 and 4.24 imply

x*=al/p,=05I/p,=0.5(8)/1=4,

(4.25)
y*=BI/p,=05I/p,=05(8)/4 =1,
and, at these optimal choices,
utility = x%55%% = (4)°5(1)%% = 2. (4.26)

Notice also that we can compute the value for the Lagrangian multiplier associated with this
income allocation by using Equation 4.19:

N =ax* 9% /p = 0.5(4)°%(1)°%/1 = 0.25. (4.27)

This value implies that each small change in income will increase utility by about one-fourth
of that amount. Suppose, for example, that this person had 1 percent more income ($8.08).
In this case he or she would choose x =4.04 and y=1.01, and utility would be
4.04%5.1.01%% = 2.02. Hence, a $0.08 increase in income increases utility by 0.02, as
predicted by the fact that A = 0.25.

QUERY: Would a change in p, affect the quantity of x demanded in Equation 4.23? Explain
your answer mathematically. Also develop an intuitive explanation based on the notion that
the share of income devoted to good y is given by the parameter of the utility function, .

EXAMPLE 4.2 CES Demand

To illustrate cases in which budget shares are responsive to economic circumstances, let’s
look at three specific examples of the CES function.

Case 1: 3 = 0.5. In this case, utility is
U(x,y) = &%5 + y°5. (4.28)
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Setting up the Lagrangian expression
P =595 4 9% NI — px — 2,y) (4.29)
yields the following first-order conditions for a maximum:
0%/ox = 0.5x7%5 —\p =0,
0%/dy = 0.5y705 — Ap, =0, (4.30)
0L/oN =1 —p.x—py=0.

Division of the first two of these shows that
(0/2)*° = p./p, (4.31)

By substituting this into the budget constraint and doing some messy algebraic manipulation,
we can derive the demand functions associated with this utility function:

x" =1/p[1+ (p,/p,)), (4.32)

v =1/p,1+ (p,/p.)]- (4.33)

Price responsiveness. In these demand functions notice that the share of income spent on,
say, good x—thatis, p,x/I = 1/[1 + (p,/p,)]—is nota constant; it depends on the price ratio
./ p,- The higher is the relative price of x, the smaller will be the share of income spent on
that good. In other words, the demand for x is so responsive to its own price that a rise in the
price reduces total spending on x. That the demand for «x is very price responsive can also be
illustrated by comparing the implied exponent on p, in the demand function given by
Equation 4.32 (—2) to that from Equation 4.23 (—1). In Chapter 5 we will discuss this
observation more fully when we examine the elasticity concept in detail.

Case 2: 8 = —1. Alternatively, let’s look at a demand function with less substitutability® than
the Cobb-Douglas. If 8 = —1, the utility function is given by
Ulx,y) = "1 —y71, (4.34)

and it is easy to show that the first-order conditions for a maximum require

/%= (p./p,)"°. (4.35)

Again, substitution of this condition into the budget constraint, together with some messy
algebra, yields the demand functions

& =1/p,[1+ (p,/0,)"7),
v =1/p,1+ (2,/0,)"°]

That these demand functions are less price responsive can be seen in two ways. First, now the
share of income spent on good x—thatis, p,x/I = 1/[1 + (p,/ .)"*]—responds positively to
increasesin p,.. As the price of x rises, this individual cuts back only modestly on good x, so total
spending on that good rises. That the demand functions in Equations 4.36 are less price
responsive than the Cobb-Douglas is also illustrated by the relatively small exponents of each
good’s own price (—0.5).

(4.36)

(continued)

SOne way to measure substitutability is by the elasticity of substitution, which for the CES function is given by
o=1/(1 — 8). Here 3 = 0.5 implies 0 = 2,8 = 0 (the Cobb-Douglas) implics o = 1, and 8 = —1 implies o = 0.5. See
also the discussion of the CES function in connection with the theory of production in Chapter 9.
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EXAMPLE 4.2 CONTINUED

Case 3: 8 = —oo. This is the important case in which x and y must be consumed in fixed
proportions. Suppose, for example, that each unit of y must be consumed together with
exactly 4 units of x. The utility function that represents this situation is

U(x,y) = min(x,4y). (4.37)

In this situation, a utility-maximizing person will choose only combinations of the two
goods for which x& = 4y; that is, utility maximization implies that this person will choose to
be at a vertex of his or her L-shaped indifference curves. Substituting this condition into the
budget constraint yields

x
I=px+py=px +PyZ = (p, +0.25p,)x. (4.38)
Hence
» I
=— 4.39
P, +0.25p,° (4.39)
and similar substitutions yield
* I
yr=—" (4.40)
4p. +p,

In this case, the share of a person’s budget devoted to, say, good x rises rapidly as the price of x
increases because x and ¥ must be consumed in fixed proportions. For example, if we use the
values assumed in Example 4.1 (p, = 1, p, = 4,1 = 8), Equations 4.39 and 4.40 would predict
x* =4, y* = 1, and, as before, half of the individual’s income would be spent on each good. If
weinstead use p, = 2, p, = 4,and I = 8 then x* = 8/3,y* = 2/3,and this person spends two
thirds [p,x/1 = (2 - 8/3)/8 = 2/3] ofhis or herincome on good x. Trying a few other numbers
suggests that the share of income devoted to good x approaches 1 as the price of x increases.”

QUERY: Do changes in income affect expenditure shares in any of the CES functions

discussed here? How is the behavior of expenditure shares related to the homothetic nature
of this function?

INDIRECT UTILITY FUNCTION

Examples 4.1 and 4.2 illustrate the principle that it is often possible to manipulate the first-
order conditions for a constrained utility-maximization problem to solve for the optimal
values of %, x,, ..., x,. These optimal values in general will depend on the prices of all the
goods and on the individual’s income. That is,

xT = xl(pIaPZ)“-’pn)I))

x;:xZ(pl’pZ’“'apn’I)a (441)

x: = xn(Pl,p23 -~~’Pn> I)

In the next chapter we will analyze in more detail this set of demand functions, which show
the dependence of the quantity of each x; demanded on p,, p,,...,p, and I. Here we use

"These relationships for the CES function are pursued in more detail in Problem 4.9 and in Extension E4.3.
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the optimal values of the «’s from Equations 4.42 to substitute in the original utility function
to yield

maximum utility = U(x},5,...,x)) (4.42)

= V(pl’PZ)"wpn)I)~ (4-43)

In words: because of the individual’s desire to maximize utility given a budget constraint, the
optimal level of utility obtainable will depend indirectly on the prices of the goods being
bought and the individual’s income. This dependence is reflected by the indirect utility
function V. If either prices or income were to change, the level of utility that could be
attained would also be affected. Sometimes, in both consumer theory and many other
contexts, it is possible to use this indirect approach to study how changes in economic
circumstances affect various kinds of outcomes, such as utility or (later in this book) firms’
Costs.

THE LUMP SUM PRINCIPLE

Many economic insights stem from the recognition that utility ultimately depends on the
income of individuals and on the prices they face. One of the most important of these is the
so-called lump sum principle that illustrates the superiority of taxes on a person’s general
purchasing power to taxes on specific goods. A related insight is that general income
grants to low-income people will raise utility more than will a similar amount of money
spent subsidizing specific goods. The intuition behind this result derives directly from
the utility-maximization hypothesis; an income tax or subsidy leaves the individual free to
decide how to allocate whatever final income he or she has. On the other hand, taxes or
subsidies on specific goods both change a person’s purchasing power and distort his or her
choices because of the artificial prices incorporated in such schemes. Hence, general in-
come taxes and subsidies are to be preferred if efficiency is an important criterion in social
policy.

The lump sum principle as it applies to taxation is illustrated in Figure 4.5. Initially this
person has an income of I and is choosing to consume the combination ™, y* A tax on good x
would raise its price, and the utility-maximizing choice would shift to combination &, y,. Tax
collectionswould be # -, (where ¢ is the tax rate imposed on good x). Alternatively, an income
tax that shifted the budget constraint inward to I’ would also collect this same amount of
revenue.® But the utility provided by the income tax (U,) exceeds that provided by the tax on x
alone (U,). Hence, we have shown that the utility burden of the income tax is smaller. A similar
argument can be used to illustrate the superiority of income grants to subsidies on specific
goods.
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EXAMPLE 4.3 Indirect Utility and the Lump Sum Principle

In this example we use the notion of an indirect utility function to illustrate the lump sum
principle as it applies to taxation. First we have to derive indirect utility functions for two
illustrative cases.

(continued)

8Because I = (p, +2)x, + py, we have I' = I — tx) = p.x; + 2,9, which shows that the budget constraint with an
equal-size income tax also passes through the point x;, y,. ’
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EXAMPLE 4.3 CONTINUED

Case 1: Cobb-Douglas. In Example 4.1 we showed that, for the Cobb-Douglas utility
function with a = B = 0.5, optimal purchases are

o 1
2p.
T (4.44)

y* - — .
2p,

So the indirect utility function in this case is
I
* % #4105/, %10.5
V(pe ), 1) = U(x",97) = (27)7(5") Zw-

Notice that when p, =1, p, =4, and I =8 we have V' =8/(2-1-2) =2, which is the
utility that we calculated before for this situation.
Case 2: Fixed proportions. In the third case of Example 4.2 we found that

% I
Y T ap rp,
So, in this case indirect utility is given by
V(p,,p,,I) = min(x™,4y*) = x* = m
gyt 2 I (4.47)

T 4p, tp, p,+025p)

with p, =1, =4, and I = 8, indirect utility is given by V' = 4, which is what we calcu-
lated before.
The lump sum principle. Consider first using the Cobb-Douglas case to illustrate the lump
sum principle. Suppose that a tax of $1 were imposed on good x. Equation 4.45 shows that
indirect utility in this case would fall from 2 to 1.41 [= 8/(2 - 2°% . 2)]. Because this person
chooses ™ = 2 with the tax, total tax collections will be $2. An equal-revenue income tax would
therefore reduce net income to $6, and indirect utility would be 1.5 [= 6/(2 - 1 - 2)]. So the in-
come tax is a clear improvement over the case where x alone is taxed. The tax on good x reduces
utility for two reasons: it reduces a person’s purchasing power and it biases his or her choices away
from good x. With income taxation, only the first effect is felt and so the tax is more efficient.”
The fixed-proportions case supports this intuition. In that case, a $1 tax on good x would
reduce indirect utility from 4 to 8/3 [= 8/(2 + 1)]. In this case x* = 8/3 and tax collections
would be $8/3. An income tax that collected $8/3 would leave this consumer with $16/3 in
net income, and that income would yield an indirect utility of V'=8/3 [= (16/3)/(1 + 1)].
Hence after-tax utility is the same under both the excise and income taxes. The reason the
lump sum result does not hold in this case is that with fixed-proportions utility, the excise tax
does not distort choices because preferences are so rigid.

QUERY: Both of the indirect utility functions illustrated here show that a doubling of income
and all prices would leave indirect utility unchanged. Explain why you would expect this to be a
property of all indirect utility functions.

*This discussion assumes that there are no incentive effects of income taxation—probably not a very good assumption.



Chapter 4 Utility Maximization and Choice

FIGURE 4.5 The Lump Sum Principle of Taxation
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A tax on good x would shift the utility-maximizing choice from x*, y* to x;,%, . An income tax that
collected the same amount would shift the budget constraint to I'. Utility would be higher (U,)
with the income tax than with the tax on x alone (U,).

Quantity
ofy

Quantity of x

EXPENDITURE MINIMIZATION

In Chapter 2 we pointed out that many constrained maximum problems have associated
“dual” constrained minimum problems. For the case of utility maximization, the associated
dual minimization problem concerns allocating income in such a way as to achieve a given
utility level with the minimal expenditure. This problem is clearly analogous to the primary
utility-maximization problem, but the goals and constraints of the problems have been
reversed. Figure 4.6 illustrates this dual expenditure-minimization problem. There, the
individual must attain utility level U,; this is now the constraint in the problem. Three
possible expenditure amounts (E,, E,, and E;) are shown as three “budget constraint”
lines in the figure. Expenditure level E; is clearly too small to achieve U,, hence it cannot
solve the dual problem. With expenditures given by E;, the individual can reach U, (at either
of the two points B or C), but this is not the minimal expenditure level required. Rather, E,
clearly provides just enough total expenditures to reach U, (at point A), and this is in fact the
solution to the dual problem. By comparing Figures 4.2 and 4.6, it is obvious that both the
primary utility-maximization approach and the dual expenditure-minimization approach
yield the same solution (x™*, y*); they are simply alternative ways of viewing the same process.
Often the expenditure-minimization approach is more useful, however, because expenditures
are directly observable, whereas utility is not.
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FIGURE 4.6 The Dual Expenditure-Minimization Problem

DEFINITION

The dual of the utility-maximization problem is to attain a given utility level (U,) with minimal
expenditures. An expenditure level of E, does not permit U, to be reached, whereas E; provides
more spending power than is strictly necessary. With expenditure E,, this person can just reach U, by
consuming x™ and y*.

Quantity
ofy

x* Quantity of x

A mathematical statement

More formally, the individual’s dual expenditure-minimization problem is to choose x,,
Xy, ..., %, SO as to minimize

total expenditures = E = p, %, + p,%, + - + p,%,, (4.48)
subject to the constraint
utility = U = U(xy,%,,...,%,). (4.49)

The optimal amounts of x,, x,, ..., %, chosen in this problem will depend on the prices
of the various goods (p;,,,...,p,) and on the required utility level U,. If any of the
prices were to change or if the individual had a different utility “target,” then another
commodity bundle would be optimal. This dependence can be summarized by an ex-
penditure function.

Expenditure function. The individual’s expenditure function shows the minimal expendi-
tures necessary to achieve a given utility level for a particular set of prices. That is,

minimal expenditures = E(py,,,...,p,, U). (4.50)

This definition shows that the expenditure function and the indirect utility function are
inverse functions of one another (compare Equations 4.43 and 4.50). Both depend on
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market prices but involve different constraints (income or utility). In the next chapter we
will see how this relationship is quite useful in allowing us to examine the theory of
how individuals respond to price changes. First, however, let’s look at two expenditure
functions.

EXAMPLE 4.4 Two Expenditure Functions

There are two ways one might compute an expenditure function. The first, most straight-
forward method would be to state the expenditure-minimization problem directly and
apply the Lagrangian technique. Some of the problems at the end of this chapter ask you
to do precisely that. Here, however, we will adopt a more streamlined procedure by taking
advantage of the relationship between expenditure functions and indirect utility func-
tions. Because these two functions are inverses of each other, calculation of one greatly faci-
litates the calculation of the other. We have already calculated indirect utility functions
for two important cases in Example 4.3. Retrieving the related expenditure functions is
simple algebra.

Case 1: Cobb-Douglas utility. Equation 4.45 shows that the indirect utility function in the
two-good, Cobb-Douglas case is

I
V(p P >I) = . (4.51)
x> Ly 2p25 pgl)s
If we now interchange the role of utility (which we will now treat as a constant denoted by
U) and income (which we will now term “expenditures,” E, and treat as a function of the
parameters of this problem), then we have the expenditure function

E(p,.p,U) =2p05p)°U. (4.52)

X

Checking this against our former results, now we use a utility target of U = 2 with, again,
p.=1 and p,=4. With these parameters, Equation 4.52 predicts that the required
minimal expenditures are $8 (= 2 - 1%°.4%%.2) Not surprisingly, both the primal utility-
maximization problem and the dual expenditure-minimization problem are formally identical.

Case 2: Fixed proportions. For the fixed-proportions case, Equation 4.47 gave the indirect
utility function as

I

= 4.53
. +0.25p, (4.53)

V(p X 1’ > I )
If we again switch the role of utility and expenditures, we quickly derive the expenditure
function:

E(p,,p,,U) = (p, +0.25p,)U. (4.54)

A check of the hypothetical values used in Example 4.3 (p, = 1,p, = 4, U = 4) again shows
that it would cost $8 [= (1 + 0.25 - 4) - 4] to reach the utility target of 4.

Compensating for a price change. These expenditure functions allow us to investigate
how a person might be compensated for a price change. Specifically, suppose that the price of
good y were to rise from $4 to $5. This would clearly reduce a person’s utility, so we might
ask what amount of monetary compensation would mitigate the harm. Because the expendi-
ture function allows utility to be held constant, it provides a direct estimate of this amount.
Specifically, in the Cobb-Douglas case, expenditures would have to be increased from $8 to

(continued)
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EXAMPLE 4.4 CONTINUED

$8.94 (= 2-1-5%.2) in order to provide enough extra purchasing power to precisely
compensate for this price rise. With fixed proportions, expenditures would have to be
increased from $8 to $9 to compensate for the price increase. Hence, the compensations
are about the same in these simple cases.

There is one important difference between the two examples, however. In the fixed-
proportions case, the $1 of extra compensation simply permits this person to return to his
or her prior consumption bundle (x =4,y = 1). That is the only way to restore utility to
U = 4 for this rigid person. In the Cobb-Douglas case, however, this person will not use the
extra compensation to revert to his or her prior consumption bundle. Instead, utility
maximization will require that the $8.94 be allocated so that x = 4.47 and y = 0.894. This
will still provide a utility level of U = 2, but this person will economize on the now more
expensive good .

QUERY: How should a person be compensated for a price decline? What sort of compensa-
tion would be required if the price of good y fell from $4 to $3?

PROPERTIES OF EXPENDITURE FUNCTIONS

Because expenditure functions are widely used in applied economics, it is useful to under-
stand a few of the properties shared by all such functions. Here we look at three such
properties. All of these follow directly from the fact that expenditure functions are based
on individual utility maximization.

1. Homaqgeneity. For both of the functions illustrated in Example 4.4, a doubling of all
prices will precisely double the value of required expenditures. Technically, these
expenditure functions are “homogeneous of degree one” in all prices.'® This is a
quite general property of expenditure functions. Because the individual’s budget
constraint is linear in prices, any proportional increase in both prices and purchasing
power will permit the person to buy the same utility-maximizing commodity bundle
that was chosen before the price rise. In Chapter 5 we will see that, for this reason,
demand functions are homogenous of degree 0 in all prices and income.

2. Expenditurve functions ave nondecveasing in prices. This property can be succinctly
summarized by the mathematical statement
JoE .
@ >0 for every good i. (4.55)

7

This seems intuitively obvious. Because the expenditure function reports the mini-
mum expenditure necessary to reach a given utility level, an increase in any price
must increase this minimum. More formally, suppose p, takes on two values: pf and
2% with p? > p#, where all other prices are unchanged between states # and &. Also,
let x be the bundle of goods purchased in state 2 and y the bundle purchased in state
b. By the definition of the expenditure function, both of these bundles of goods must

19As described in Chapter 2, the function f(x,, %, ...,%,) is said to be homogencous of degree k if f(tx, tx,, ..., tx,) =
t*f (%), %, ...,%,). In this case, k= 1.
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yield the same target utility. Clearly bundle y costs more with state-& prices than it
would with state-a prices. But we know that bundle x is the lowest-cost way to
achieve the target utility level with state-a prices. Hence, expenditures on bundle y
must be greater than or equal to those on bundle x. Similarly, a decline in a price
must not increase expenditures.

3. Expenditure functions arve concave in prices. In Chapter 2 we discussed concave
functions as functions that always lie below tangents to them. Although the technical
mathematical conditions that describe such functions are complicated, it is relatively
simple to show how the concept applies to expenditure functions by considering the
variation in a single price. Figure 4.7 shows an individual’s expenditures as a function
of the single price, p,. At the initial price, p}, this person’s expenditures are given by
E(p¥,...). Now consider prices higher or lower than p}. If this person continued to
buy the same bundle of goods, expenditures would increase or decrease linearly as this
price changed. This would give rise to the pseudo expenditure function EP*"4° in the
figure. This line shows a level of expenditures that would allow this person to buy
the original bundle of goods despite the changing value of p, . If, as scems more likely,
this person adjusted his or her purchases as p;, changed, we know (because of
expenditure minimization) that actual expenditures would be less than these pseudo

FIGURE 4.7 Expenditure Functions Are Concave in Prices

At p* this person spends E(p%, ...). If he or she continues to buy the same set of goods as p; changes,
then expenditures would be given by EP*"“°. Because his or her consumption patterns will likely
change as p; changes, actual expenditures will be less than this.

Epy,- . )

Epseudo

E(pr,-. )

E(pi, .. ) P+
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amounts. Hence, the actual expenditure function, E, will lie everywhere below EP**d°
and the function will be concave.'’ The concavity of the expenditure function is a
useful property for a number of applications, especially those related to the construc-
tion of index numbers (see the Extensions to Chapter 5).

SUMMARY

In this chapter we explored the basic economic model of
utility maximization subject to a budget constraint. Although
we approached this problem in a variety of ways, all of these
approaches lead to the same basic result.

To reach a constrained maximum, an individual should
spend all available income and should choose a com-
modity bundle such that the MRS between any two
goods is equal to the ratio of those goods” market prices.
This basic tangency will result in the individual equating
the ratios of the marginal utility to market price for every
good that is actually consumed. Such a result is common
to most constrained optimization problems.

The tangency conditions are only the first-order condi-
tions for a unique constrained maximum, however. To
ensure that these conditions are also sufficient, the indi-
vidual’s indifference curve map must exhibit a diminish-
ing MRS. In formal terms, the utility function must be
strictly quasi-concave.

The tangency conditions must also be modified to allow
for corner solutions in which the optimal level of con-

PROBLEMS

4.1

sumption of some goods is zero. In this case, the ratio of
marginal utility to price for such a good will be below the
common marginal benefit-marginal cost ratio for goods
actually bought.

A consequence of the assumption of constrained utility
maximization is that the individual’s optimal choices will
depend implicitly on the parameters of his or her budget
constraint. That is, the choices observed will be implicit
functions of all prices and income. Utility will therefore
also be an indirect function of these parameters.

The dual to the constrained utility-maximization prob-
lem is to minimize the expenditure required to reach a
given utility target. Although this dual approach yields
the same optimal solution as the primal constrained max-
imum problem, it also yields additional insight into the
theory of choice. Specifically, this approach leads to ex-
penditure functions in which the spending required to
reach a given utility target depends on goods’ market
prices. Expenditure functions are therefore, in principle,
measurable.

Each day Paul, who is in third grade, eats lunch at school. He likes only Twinkies () and soda (s), and

these provide him a utility of

utility = U(t,5) = /s.
a. If Twinkies cost $0.10 each and soda costs $0.25 per cup, how should Paul spend the $1 his
mother gives him in order to maximize his utility?

b. If the school tries to discourage Twinkie consumption by raising the price to $0.40, by how
much will Paul’s mother have to increase his lunch allowance to provide him with the same level

of utility he received in part (a)?

4.2

a. A young connoisseur has $600 to spend to build a small wine cellar. She enjoys two vintages in
particular: a 2001 French Bordeaux (wy) at $40 per bottle and a less expensive 2005 California
varietal wine () priced at $8. If her utility is

"One result of concavity is that f; = 8> E/dp? < 0. This is precisely what Figure 4.7 shows.
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2/3_1/3
U(wg, we) = WF/ Wc/ >

then how much of each wine should she purchase?

. When she arrived at the wine store, our young oenologist discovered that the price of the

French Bordeaux had fallen to $20 a bottle because of a decline in the value of the franc. If the
price of the California wine remains stable at $8 per bottle, how much of each wine should our
friend purchase to maximize utility under these altered conditions?

. Explain why this wine fancier is better off in part (b) than in part (a). How would you put a

monetary value on this utility increase?

. On a given evening, J. P. enjoys the consumption of cigars (¢) and brandy (&) according to the

function
U(c,b) = 20c — ¢ + 184 — 34°.

How many cigars and glasses of brandy does he consume during an evening? (Cost is no object
to]. P.)

. Lately, however, J. P. has been advised by his doctors that he should limit the sum of glasses of

brandy and cigars consumed to 5. How many glasses of brandy and cigars will he consume
under these circumstances?

. Mr. Odde Ball enjoys commodities x and y according to the utility function

U(x,y) = \/x% + y2.

Maximize Mr. Ball’s utility if p, = $3, p, = $4, and he has $50 to spend. Hint: It may be casier
here to maximize U? rather than U. Why won’t this alter your results?

. Graph Mr. Ball’s indifference curve and its point of tangency with his budget constraint. What

does the graph say about Mr. Ball’s behavior? Have you found a true maximum?

Mr. A derives utility from martinis (#2) in proportion to the number he drinks:

U(m) = m.

Mr. A is very particular about his martinis, however: He only enjoys them made in the exact proportion
of two parts gin (g) to one part vermouth (7). Hence, we can rewrite Mr. A’s utility function as

4.6

Uim)=U(g,») = min(%,v).

. Graph Mr. A’s indifference curve in terms of g and » for various levels of utility. Show that,

regardless of the prices of the two ingredients, Mr. A will never alter the way he mixes martinis.

. Calculate the demand functions for g and ».
. Using the results from part (b), what is Mr. A’s indirect utility function?

. Calculate Mr. A’s expenditure function; for each level of utility, show spending as a function of

p, and p,. Hint: Because this problem involves a fixed-proportions utility function, you cannot
solve for utility-maximizing decisions by using calculus.

Suppose that a fast-food junkie derives utility from three goods—soft drinks (x), hamburgers (y), and
ice cream sundaes (z)—according to the Cobb-Douglas utility function
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U(x,y,3) = "59°%(1 + 5)*°.

Suppose also that the prices for these goods are given by p, = 0.25, p,=1,and p, =2 and that this
consumer’s income is given by I = 2.

a. Show that, for z = 0, maximization of utility results in the same optimal choices as in Example 4.1.
Show also that any choice that results in z > 0 (even for a fractional z) reduces utility from this
optimum.

b. How do you explain the fact that z = 0 is optimal here?

c. How high would this individual’s income have to be in order for any z to be purchased?

4.7

The lump sum principle illustrated in Figure 4.5 applies to transfer policy as well as taxation. This
problem examines this application of the principle.

a. Use a graph similar to Figure 4.5 to show that an income grant to a person provides more utility
than does a subsidy on good & that costs the same amount to the government.

b. Use the Cobb-Douglas expenditure function presented in Equation 4.52 to calculate the extra
purchasing power needed to raise this person’s utility from U =2 to U = 3.

c. Use Equation 4.52 again to estimate the degree to which good x must be subsidized in order
to raise this person’s utility from U =2 to U = 3. How much would this subsidy cost the
government? How would this cost compare to the cost calculated in part (b)?

d. Problem 4.10 asks you to compute an expenditure function for a more general Cobb-Douglas
utility function than the one used in Example 4.4. Use that expenditure function to re-solve
parts (b) and (c) here for the case o = 0.3, a figure close to the fraction of income that low-
income people spend on food.

e. How would your calculations in this problem have changed if we had used the expenditure
function for the fixed proportions case (Equation 4.54) instead?

4.8

Mr. Carr derives a lot of pleasure from driving under the wide blue skies. For the number of miles & that
he drives, he receives utility U(x) = 500x — &2. (Once he drives beyond a certain number of miles,
weariness kicks in and the ride becomes less and less enjoyable.) Now, his car gives him a decent highway
mileage of 25 miles to the gallon. But paying for gas, represented by ¥, induces disutility for Mr. Carr,
shown by U(y) = —1,000y. Mr. Carr is willing to spend up to $25 for leisurely driving every week.

a. Find the optimum number of miles driven by Mr. Carr every week, given that the price of gas is
$2.50 per gallon.

b. How does that value change when the price of gas rises to $5.00 per gallon?

c. Now, further assume that there is a probability of 0.001 that Mr. Carr will get a flat tire every
mile he drives. The disutility from a flat tire is given by U(z) = —50,000z (where z is the
number of flat tires incurred), and each flat tire costs $50 to replace. Find the distance driven
that maximizes Mr. Carr’s utility after taking into account the expected likelihood of flat tires
(assume that the price of gas is $2.50 per gallon).

4.9

Suppose that we have a utility function involving two goods that is linear of the form U (x, y) = ax + by.
Calculate the expenditure function for this utility function. Hint: The expenditure function will have
kinks at various price ratios.
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Analytical Problems

4.10 Cobb-Douglas utility

In Example 4.1 we looked at the Cobb-Douglas utility function U(x,y) = x%y'~% where 0 < « < 1.
This problem illustrates a few more attributes of that function.

a. Calculate the indirect utility function for this Cobb-Douglas case.
b. Calculate the expenditure function for this case.

c. Show explicitly how the compensation required to offset the effect of a rise in the price of x is
related to the size of the exponent a.

4.11 CES utility
The CES utility function we have used in this chapter is given by
Ky

a. Show that the first-order conditions for a constrained utility maximum with this function
require individuals to choose goods in the proportion

1/(3-1)
X _ (b
y (Py> '

b. Show that the result in part (a) implies that individuals will allocate their funds equally between
x and y for the Cobb-Douglas case (8 = 0), as we have shown before in several problems.

c. How does the ratio p,x/p,y depend on the value of 8 Explain your results intuitively. (For
further details on this function, see Extension E4.3.)

d. Derive the indirect utility and expenditure functions for this case and check your results by
describing the homogeneity properties of the functions you calculated.

4.12 Stone-Geary utility

Suppose individuals require a certain level of food (x) to remain alive. Let this amount be given by «;,.
Once x, is purchased, individuals obtain utility from food and other goods (y) of the form

U(x,9) = (v — %)y,
where a + B = 1.

a. Show thatif I > p, x, then the individual will maximize utility by spending a(I — p,%,) + p,%
on good x and B(I — p,x,) on good y. Interpret this result.

b. How do the ratios p,x/I and p,y/I change as income increases in this problem? (See also
Extension E4.2 for more on this utility function.)

4.13 CES indirect utility and expenditure functions

In this problem, we will use a more standard form of the CES utility function to derive indirect utility
and expenditure functions. Suppose utility is given by

Ulx,y) = (&* + 5"
[in this function the elasticity of substitution o = 1/(1 —3)].
a. Show that the indirect utility function for the utility function just given is
V=Ip+p)"",
where » =38/ —-1)=1—o0.
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b. Show that the function derived in part (a) is homogeneous of degree 0 in prices and income.

c. Show that this function is strictly increasing in income.

d. Show that this function is strictly decreasing in any price.

e. Show that the expenditure function for this case of CES utility is given by

E=V(g,+p)'".

f. Show that the function derived in part (e) is homogeneous of degree 1 in the goods’ prices.

g. Show that this expenditure function is increasing in each of the prices.

h. Show that the function is concave in each price.
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EXTENSIONS
Budget Shares

The nineteenth-century economist Ernst Engel was one
of the first social scientists to intensively study people’s
actual spending patterns. He focused specifically on
food consumption. His finding that the fraction of
income spent on food declines as income increases
has come to be known as Engel’s law and has been
confirmed in many studies. Engel’s law is such an
empirical regularity that some economists have sug-
gested measuring poverty by the fraction of income
spent on food. Two other interesting applications are:
(1) the study by Hayashi (1995) showing that the share
of income devoted to foods favored by the elderly is
much higher in two-generation households than in
one-generation households; and (2) findings by Behr-
man (1989) from less-developed countries showing
that people’s desires for a more varied diet as their
incomes rise may in fact result in reducing the fraction
of income spent on particular nutrients. In the remain-
der of this extension we look at some evidence on
budget shares (denoted by 5; = p;x;/I) together with
a bit more theory on the topic.

E4.1 The variability of budget shares

Table E4.1 shows some recent budget share data from
the United States. Engel’s law is clearly visible in the
table: as income rises families spend a smaller propor-
tion of their funds on food. Other important variations
in the table include the declining share ofincome spent
on health-care needs and the much larger share of
income devoted to retirement plans by higher-income
people. Interestingly, the shares of income devoted to
shelter and transportation are relatively constant over
the range of income shown in the table; apparently,
high-income people buy bigger houses and cars.

The variable income shares in Table E4.1 illustrate
why the Cobb-Douglas utility function is not useful
for detailed empirical studies of household behavior.
When utility is given by U(x,y) = 2%y, the implied
demand equations are x=oal/p, and y=BI/p,.
Therefore,

s;=px/I =a and
s,=p,y/1=8,
and budget shares are constant for all observed in-

come levels and relative prices. Because of this short-
coming, economists have investigated a number of

(i)
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other possible forms for the utility function that
permit more flexibility.

E4.2 Linear expenditure system

A generalization of the Cobb-Douglas function that
incorporates the idea that certain minimal amounts of
each good must be bought by an individual (x, ) is
the utility function
U(x,y) = (x — %0)"(y — J’O)B

for x > x, and y > y,, where again a + 3 = 1.

Demand functions can be derived from this utility
function in a way analogous to the Cobb-Douglas
case by introducing the concept of supernumerary in-
come (I*), which represents the amount of purchas-

ing power remaining after purchasing the minimum
bundle

(ii)

I* =1-pX—p,%. (iii)

Using this notation, the demand functions are

X = (pxx() +a1*)/px>

In this case, then, the individual spends a constant
fraction of supernumerary income on each good once
the minimum bundle has been purchased. Manipula-
tion of Equation iv yields the share equations

Sy =& + (BPxxo - apyyo)/la
Sy = B + (aPyJ’O - Bpxxo)/Ia

which show that this demand system is not homothetic.
Inspection of Equation v shows the unsurprising result
that the budget share of a good is positively related to
the minimal amount of that good needed and neg-
atively related to the minimal amount of the other good
required. Because the notion of necessary purchases
seems to accord well with real-world observation, this
linear expenditure system (LES), which was first devel-
oped by Stone (1954), is widely used in empirical stud-
ies. The utility function in Equation ii is also called a
Stone-Geary utility function.

(iv)

(v)

Traditional purchases

One of the most interesting uses of the LES is to
examine how its notion of necessary purchases changes
as conditions change. For example, Oczkowski and
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TABLE E4.1

Budget Shares of U.S. Households, 2004

Annual Income

$10,000-$14,999

$40,000-$49,999 Over $70,000

Expenditure Item

Food 15.3

Shelter 21.8

Utilities, fuel, and 10.2
public services

Transportation 15.4

Health insurance 49

Other health-care 44
expenses

Entertainment 4.4
(including alcohol)

Tobacco 1.2

Education 2.5

Insurance and 2.7
pensions

Other (apparel, 17.2

personal care, other
housing expenses,
and misc.)

14.3 11.8
18.5 17.6
7.7 54
18.4 17.6
3.8 2.3
29 24
4.6 5.4
0.9 0.4
1.1 2.6
9.6 14.7
18.2 19.8

Source: Consumer Expenditure Report, 2004, Bureau of Labor Statistics website: http://www.bls.gov.

Philip (1994) study how access to modern consumer
goods may affect the share of income that individuals
in transitional economies devote to traditional local
items. They show that villagers of Papua, New Guinea,
reduce such shares significantly as outside goods be-
come increasingly accessible. Hence, such improve-
ments as better roads for moving goods provide one
of the primary routes by which traditional cultural
practices are undermined.

E4.3 CES utility

In Chapter 3 we introduced the CES utility function
3 40

Ulx,y) == +% (vi)
for 8 < 1, 8 # 0. The primary use of this function is
to illustrate alternative substitution possibilities (as
reflected in the value of the parameter 3). Budget

shares implied by this utility function provide a

number of such insights. Manipulation of the first-
order conditions for a constrained utility maximum
with the CES function yields the share equations

se=1/1+(p,/p,)"],
s, = 1/[1+ (8,/p,)%],

where K =5%/(8 — 1).

The homothetic nature of the CES function is
shown by the fact that these share expressions depend
only on the price ratio, p, /p,. Behavior of the shares in
response to changes in relative prices depends on the
value of the parameter K. For the Cobb-Douglas case,
d=0andso K=0ands, =5, =1/2. When 8 > 0,
substitution possibilities are great and K < 0. In this
case, Equation vii shows that s, and p,/p, move in
opposite directions. If p,/p, rises, the individual sub-
stitutes y for x to such an extent that s, falls. Alterna-
tively, if & < 0, then substitution possibilities are
limited, K > 0, and s, and p,/p, move in the same

(vii)


http://www.bls.gov

direction. In this case, an increase in p,,/p, causes only
minor substitution of y for x, and s, actually rises be-
cause of the relatively higher price of good x.

North American free trade

CES demand functions are most often used in large-
scale computer models of general equilibrium (see
Chapter 13) that economists use to evaluate the impact
of major economic changes. Because the CES model
stresses that shares respond to changes in relative
prices, it is particularly appropriate for looking at inno-
vations such as changes in tax policy or in international
trade restrictions, where changes in relative prices are
quite likely. One important recent area of such research
has been on the impact of the North American Free
Trade Agreement for Canada, Mexico, and the United
States. In general, these models find that all of the
countries involved might be expected to gain from
the agreement, but that Mexico’s gains may be the
greatest because it is experiencing the greatest change
in relative prices. Kehoe and Kehoe (1995) present a
number of computable equilibrium models that econ-
omists have used in these examinations.'

E4.4 The almost ideal demand
system

An alternative way to study budget shares is to start from
a specific expenditure function. This approach is espe-
cially convenient because the envelope theorem shows
that budget shares can be derived directly from expen-
diture functions through logarithmic differentiation:

dInE(p,.p,,V) 1 IE  ap,
dlnp,  E(p.p,V) op, dlnp,
_ ’%x —s,. (viii)

Deaton and Muellbauer (1980) make extensive use of
this relationship to study the characteristics of a par-
ticular class of expenditure functions that they term an
almost ideal demand system (AIDS). Their expendi-
ture function takes the form

ln E(Pxﬁpy’ V) = ﬂo + ﬂl lnpx + ﬂzlnpy
+0.50,(Inp,)* + by Inp, Inp,
+0.565(Inp,)* + Veopld pf?.
(ix)

"The research on the North American Free Trade Agreement is discussed
in more detail in the Extensions to Chapter 13
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This form approximates any expenditure function. For
the function to be homogeneous of degree 1 in the
prices, the parameters of the function must obey the
constraints @, +a, = 1,4, + b, = 0,4, + b; = 0,and
¢, + ¢, = 0. Using the results of Equation viii shows
that, for this function,

s, =m+bInp, +bInp + Ve 0 by »

. (x)
s, =0y + by Inp, + byInp, + Ve pid py

Notice that, given the parameter restrictions, s, + 5, = 1.
Making use of the inverse relationship between indirect
utility and expenditure functions and some additional
algebraic manipulation will put these budget share
equations into a simple form suitable for econometric
estimation:

s;=m +bInp, +b,Inp, + ¢ (E/p),

sy = + bZ lnpx + b3 lnpy + CZ(E/P)a

(xi)

where p is an index of prices defined by
Inp=a,+a;Inp, +a,Inp, + 0.5111(1npx)2
+b,Inp,Inp, +0.505(In p,)’.
(xii)
In other words, the AIDS share equations state that
budget shares are linear in the logarithms of prices
and in total real expenditures. In practice, simpler
price indices are often substituted for the rather com-
plex index given by Equation xii, although there is

some controversy about this practice (see the Exten-
sions to Chapter 5).

British expenditure patterns

Deaton and Muellbauer apply this demand system to
the study of British expenditure patterns between
1954 and 1974. They find that both food and housing
have negative coefficients of real expenditures, imply-
ing that the share of income devoted to these items
falls (at least in Britain) as people get richer. The
authors also find significant relative price effects in
many of their share equations, and prices have espe-
cially large effects in explaining the share of expendi-
tures devoted to transportation and communication.
In applying the AIDS model to real-world data, the
authors also encounter a variety of econometric diffi-
culties, the most important of which is that many of
the equations do not appear to obey the restrictions
necessary for homogeneity. Addressing such issues has
been a major topic for further research on this demand
system.



140 Part 2 Choice and Demand

References

Behrman, Jere R. “Is Variety the Spice of Life? Implications
for Caloric Intake.” Review of Economics and Statistics
(November 1989): 666-72.

Deaton, Angus, and John Muellbauer. “An Almost Ideal
Demand System.” American Economic Review (June
1980): 312-26.

Hyashi, Fumio. “Is the Japanese Extended Family Altruis-
tically Linked? A Test Based on Engel Curves.” Journal
of Political Economy (June 1995): 661-74.

Kehoe, Patrick J., and Timothy J. Kehoe. Modeling North
American Economic Integration. London: Kluwer
Academic Publishers, 1995.

Oczkowski, E., and N. E. Philip. “Household Expenditure
Patterns and Access to Consumer Goods in a Transi-
tional Economy.” Journal of Ecomomic Development
(June 1994): 165-83.

Stone, R. “Linear Expenditure Systems and Demand
Analysis.” Economic Jonrnal (September 1954): 511-27.



CHAPTER

Income and Substitution Effects

In this chapter we will use the utility-maximization model to study how the quantity of a good that an
individual chooses is affected by a change in that good's price. This examination allows us to construct the
individual's demand curve for the good. In the process we will provide a number of insights into the nature
of this price response and into the kinds of assumptions that lie behind most analyses of demand.

DEMAND FUNCTIONS

As we pointed out in Chapter 4, in principle it will usually be possible to solve the necessary
conditions of a utility maximum for the optimal levels of %, , x,, ..., x,, (and \, the Lagrangian
multiplier) as functions of all prices and income. Mathematically, this can be expressed as 7z
demand functions of the form

NT = xl(plap2> --~3Pn> I)3

x; = xZ(pl’pb ---)Pna I),
(5.1)

x: = xn(?laPZa --~)Pna I)

If there are only two goods, x and y (the case we will usually be concerned with), this
notation can be simplified a bit as

x* = x(px’p}nI)’
¥ =P 2y 1)

Once we know the form of these demand functions and the values of all prices and income,
we can “predict” how much of each good this person will choose to buy. The notation
stresses that prices and income are “exogenous” to this process; that is, these are parameters
over which the individual has no control at this stage of the analysis. Changes in the pa-
rameters will, of course, shift the budget constraint and cause this person to make different
choices. That question is the focus of this chapter and the next. Specifically, in this chapter
we will be looking at the partial derivatives dx/dI and dx/dp, for any arbitrary good x.
Chapter 6 will carry the discussion further by looking at “cross-price” effects of the form
dx/ap, for any arbitrary pair of goods x and y.

(5.2)

Homogeneity

A first property of demand functions requires little mathematics. If we were to double all
prices and income (indeed, if we were to multiply them all by any positive constant), then
the optimal quantities demanded would remain unchanged. Doubling all prices and income
changes only the units by which we count, not the “real” quantity of goods demanded. This

141



142 Part 2 Choice and Demand

result can be seen in a number of ways, although perhaps the easiest is through a graphic
approach. Referring back to Figures 4.1 and 4.2, it is clear that doubling p,, p,, and I does
not affect the graph of the budget constraint. Hence, x*, y* will still be the combination that
is chosen. Further, p.x + py =1 is the same constraint as 2p,x + 2p,y = 21. Somewhat
more technically, we can write this result as saying that, for any good x;,

x;k = xi(Plapz, “'7Pn’I) = xi(tpl’tpb o By tI) (5.3)

for any ¢ > 0. Functions that obey the property illustrated in Equation 5.3 are said to be
homogeneous of degree 0." Hence, we have shown that individual demand functions are
homageneous of degree O in all prices and income. Changing all prices and income in the same
proportions will not affect the physical quantities of goods demanded. This result shows that
(in theory) individuals’ demands will not be affected by a “pure” inflation during which all
prices and incomes rise proportionally. They will continue to demand the same bundle of
goods. Of course, if an inflation were not pure (that is, if some prices rose more rapidly than
others), this would not be the case.

EXAMPLE 5.1 Homogeneity

Homogeneity of demand is a direct result of the utility-maximization assumption. Demand
functions derived from utility maximization will be homogeneous and, conversely, demand
functions that are not homogeneous cannot reflect utility maximization (unless prices enter
directly into the utility function itself, as they might for goods with snob appeal). If, for
example, an individual’s utility for food (x) and housing (y) is given by

utility = U(x, y) = £%39%7, (5.4)

then it is a simple matter (following the procedure used in Example 4.1) to derive the
demand functions

ﬁ:%?’
071 (5.5)
b,

These functions obviously exhibit homogeneity, since a doubling of all prices and income
would leave x™ and y* unaffected.
If the individual’s preferences for x and y were reflected instead by the CES function

Ul(x,y) = 2% + 55, (5.6)

then (as shown in Example 4.2) the demand functions are given by

o 1 I
L+p./p,) b

y = <1> 1
1+p,/p.) b,

As before, both of these demand functions are homogeneous of degree 0; a doubling of
Py Py, and I would leave x* and y* unaffected.

(5.7)

"More generally, as we saw in Chapters 2 and 4, a function f(x,,%,...,,) is said to be homogeneous of degree & if
Ftwy, 15y, ..., 25,) = t*F( %, %, ...,x,) for any ¢ > 0. The most common cases of homogeneous functions are & = 0 and
k=1.If f is homogenecous of degree 0, then doubling all of its arguments leaves f unchanged in value. If f is

homogeneous of degree 1, then doubling all of its arguments will double the value of f.
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QUERY: Do the demand functions derived in this example ensure that total spending on x
and y will exhaust the individual’s income for any combination of p,,, p,, and I? Can you prove
that this is the case?

CHANGES IN INCOME

As a person’s purchasing power rises, it is natural to expect that the quantity of each good
purchased will also increase. This situation is illustrated in Figure 5.1. As expenditures
increase from I} to I, to I, the quantity of ¥ demanded increases from x; to x, to ;.
Also, the quantity of y increases from ¥, to y, to y;. Notice that the budget lines 1}, I,, and I,
are all parallel, reflecting that only income is changing, not the relative prices of x and y.
Because the ratio p,/p, stays constant, the utility-maximizing conditions also require that the
MRS stay constant as the individual moves to higher levels of satisfaction. The MRS is
therefore the same at point (x5, ¥3) as at (x;, ¥,).

Normal and inferior goods

In Figure 5.1, both x and y increase as income increases—both dx/dI and dy/d [ are positive.
This might be considered the usual situation, and goods that have this property are called
normal goods over the range of income change being observed.

FIGURE 5.1 Effect of an Increase in Income on the Quantities of x and y Chosen

143

As income increases from I} to I, to I;, the optimal (utility-maximizing) choices of x and y are
shown by the successively higher points of tangency. Observe that the budget constraint shifts in a
parallel way because its slope (given by —p,/p,) does not change.

Quantity
of y

Quantity of x
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FIGURE 5.2 An Indifference Curve Map Exhibiting Inferiority

DEFINITION

In this diagram, good z is inferior because the quantity purchased actually declines as income
increases. Here, y is a normal good (as it must be if there are only two goods available), and purchases
of y increase as total expenditures increase.

Quantity
ofy

Z3 Zp Z4 Quantity of z

For some goods, however, the quantity chosen may decrease as income increases in some
ranges. Examples of such goods are rotgut whiskey, potatoes, and secondhand clothing. A
good z for which 9z/91 is negative is called an inferior good. This phenomenon is illustrated
in Figure 5.2. In this diagram, the good z is inferior because, for increases in income in the
range shown, less of z is actually chosen. Notice that indifference curves do not have to be
“oddly” shaped in order to exhibit inferiority; the curves corresponding to goods y and z in
Figure 5.2 continue to obey the assumption of a diminishing MRS. Good z is inferior because
of the way it relates to the other goods available (good y here), not because of a peculiarity
unique to it. Hence, we have developed the following definitions.

Inferior and normal goods. A good «; for which dx;/dI < 0 over some range of income

changes is an énferior good in that range. If dx,; /91 > 0 over some range of income variation
then the good is a normal (or “noninferior”) good in that range.

CHANGES IN A GOOD’S PRICE

The effect of a price change on the quantity of a good demanded is more complex to analyze
than is the effect of a change in income. Geometrically, this is because changing a price
involves changing not only the intercepts of the budget constraint but also its slope. Con-
sequently, moving to the new utility-maximizing choice entails not only moving to another
indifference curve but also changing the MRS. Therefore, when a price changes, two
analytically different effects come into play. One of these is a substitution effect: even if
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the individual were to stay on the same indifterence curve, consumption patterns would be
allocated so as to equate the MRS to the new price ratio. A second effect, the income effect,
arises because a price change necessarily changes an individual’s “real” income. The individ-
ual cannot stay on the initial indifference curve and must move to a new one. We begin by
analyzing these effects graphically. Then we will provide a mathematical development.

Graphical analysis of a fall in price

Income and substitution effects are illustrated in Figure 5.3. This individual is initially
maximizing utility (subject to total expenditures, I) by consuming the combination x™, y*.

FIGURE 5.3 Demonstration of the Income and Substitution Effects
of a Fall in the Price of x

When the price of x falls from p! to p2, the utility-maximizing choice shifts from x™, y* to &™*, y**.
This movement can be broken down into two analytically different effects: first, the substitution
effect, involving a movement along the initial indifference curve to point B, where the MRS is equal
to the new price ratio; and second, the income effect, entailing a movement to a higher level of utility
because real income has increased. In the diagram, both the substitution and income effects cause
more x to be bought when its price declines. Notice that point I/p, is the same as before the price
change; this is because p, has not changed. Point I/p, therefore appears on both the old and new
budget constraints.

Quantity
ofy

Uy

U

Uy

Quantity of x

Substitution Income
effect effect
N

Total increase
inx
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The initial budget constraintis I = plx + by Now suppose that the price of x falls to p2. The
new budget constraint is given by the equation I = p2x + 2y y in Flgure 5.3.

It is clear that the new position of maximum utility is at £™*, y** where the new budget
line is tangent to the indifference curve U,. The movement to this new point can be viewed as
being composed of two effects. First, the change in the slope of the budget constraint would
have motivated a move to point B, even if choices had been confined to those on the original
indifference curve Uj. The dashed line in Figure 5.3 has the same slope as the new budget
constraint (I = px + p,y) but is drawn to be tangent to U, because we are conceptually
holding “real” income (that is, utility) constant. A relatively lower price for x causes a move
from x™, y* to Bif we do not allow this individual to be made better offas a result of the lower
price. This movement is a graphic demonstration of the substitution effect. The further
move from B to the optimal point 4** y** is analytically identical to the kind of change
exhibited earlier for changes in income. Because the price of x has fallen, this person has a
greater “real” income and can afford a utility level ( U,) that is greater than that which could
previously be attained. If x is a normal good, more of it will be chosen in response to this
increase in purchasing power. This observation explains the origin of the term income effect
for the movement. Overall then, the result of the price decline is to cause more x to be
demanded.

It is important to recognize that this person does not actually make a series of choices
from x*, y* to B and then to x™*, y**. We never observe point B; only the two optimal
positions are reflected in observed behavior. However, the notion of income and substitution
effects is analytically valuable because it shows that a price change affects the quantity of x that
is demanded in two conceptually different ways. We will see how this separation offers major
insights in the theory of demand.

Graphical analysis of an increase in price

If the price of good x were to increase, a similar analysis would be used. In Figure 5.4, the
budget line has been shifted inward because of an increase in the price of x from pl. to p2. The
movement from the initial point of utility maximization (x*, y*) to the new point (x™*, y**)
can be decomposed into two effects. First, even if this person could stay on the initial in-
difference curve (U, ), there would still be an incentive to substitute y for x and move along
U, to point B. However, because purchasing power has been reduced by the rise in the price
of x, he or she must move to a lower level of utility. This movement is again called the income
effect. Notice in Figure 5.4 that both the income and substitution effects work in the same
direction and cause the quantity of x demanded to be reduced in response to an increase in
its price.

Effects of price changes for inferior goods

So far we have shown that substitution and income effects tend to reinforce one another. For
a price decline, both cause more of the good to be demanded, whereas for a price increase,
both cause less to be demanded. Although this analysis is accurate for the case of normal
(noninferior) goods, the possibility of inferior goods complicates the story. In this case,
income and substitution effects work in opposite directions, and the combined result of a
price change is indeterminate. A fall in price, for example, will always cause an individual to
tend to consume more of a good because of the substitution eftect. But if the good is inferior,
the increase in purchasing power caused by the price decline may cause less of the good to be
bought. The result is therefore indeterminate: the substitution effect tends to increase the
quantity of the inferior good bought, whereas the (perverse) income effect tends to reduce
this quantity. Unlike the situation for normal goods, it is not possible here to predict even the
direction of the effect of a change in p, on the quantity of x consumed.
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FIGURE 5.4 Demonstration of the Income and Substitution Effects
of an Increase in the Price of x

When the price of x increases, the budget constraint shifts inward. The movement from the initial
utility-maximizing point (%™, ¥*) to the new point (£**, y**) can be analyzed as two separate effects.
The substitution effect would be depicted as a movement to point B on the initial indifference curve
(U,). The price increase, however, would create a loss of purchasing power and a consequent
movement to a lower indifference curve. This is the income effect. In the diagram, both the income
and substitution effects cause the quantity of x to fall as a result of the increase in its price. Again, the
point I/ P, is not affected by the change in the price of x.

Quantity
of y

x** XB X*
Income Substitution

effect effect

Quantity of x

Total reduction
inx

Giffen’'s paradox

If the income effect of a price change is strong enough, the change in price and the resulting
change in the quantity demanded could actually move in the same direction. Legend has it
that the English economist Robert Giffen observed this paradox in nineteenth-century Ire-
land: when the price of potatoes rose, people reportedly consumed more of them. This
peculiar result can be explained by looking at the size of the income effect of a change in the
price of potatoes. Potatoes were not only inferior goods, they also used up a large portion of
the Irish people’s income. An increase in the price of potatoes therefore reduced real income
substantially. The Irish were forced to cut back on other luxury food consumption in order to
buy more potatoes. Even though this rendering of events is historically implausible, the
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OPTIMIZATION
PRINCIPLE

DEFINITION

possibility of an increase in the quantity demanded in response to an increase in the price of a
good has come to be known as Giffen’s paradox.? Later we will provide a mathematical
analysis of how Giffen’s paradox can occur.

A summary

Hence, our graphical analysis leads to the following conclusions.

Substitution and income effects. The utility-maximization hypothesis suggests that, for
normal goods, a fall in the price of a good leads to an increase in quantity purchased because:
(1) the substitution effect causes more to be purchased as the individual moves along an
indifference curve; and (2) the éncome effect causes more to be purchased because the price
decline has increased purchasing power, thereby permitting movement to a higher indiffer-
ence curve. When the price of a normal good rises, similar reasoning predicts a decline in the
quantity purchased. For inferior goods, substitution and income effects work in opposite
directions, and no definite predictions can be made.

THE INDIVIDUAL’S DEMAND CURVE

Economists frequently wish to graph demand functions. It will come as no surprise to you
that these graphs are called “demand curves.” Understanding how such widely used curves
relate to underlying demand functions provides additional insights to even the most funda-
mental of economic arguments. To simplify the development, assume there are only two
goods and that, as before, the demand function for good « is given by

The demand curve derived from this function looks at the relationship between x and p,
while holding p,, I, and preferences constant. That is, it shows the relationship

x* :x(px’i}n f)) (5'8)

where the bars over p, and I indicate that these determinants of demand are being held
constant. This construction is shown in Figure 5.5. The graph shows utility-maximizing
choices of x and ¥ as this individual is presented with successively lower prices of good x
(while holding p, and I constant). We assume that the quantities of x chosen increase from « ’
to x " to &' as that good’s price falls from p, to p. to p.”. Such an assumption is in accord
with our general conclusion that, except in the unusual case of Gitten’s paradox, dx/dp, is
negative.

In Figure 5.5b, information about the utility-maximizing choices of good x is trans-
terred to a demand curve with p,. on the vertical axis and sharing the same horizontal axis as
Figure 5.5a. The negative slope of the curve again reflects the assumption that dx/dp, is
negative. Hence, we may define an individual demand curve as follows.

Individual demand curve. An individual demand curve shows the relationship between the
price of a good and the quantity of that good purchased by an individual, assuming that all
other determinants of demand are held constant.

2A major problem with this explanation is that it disregards Marshall’s observation that both supply and demand factors
must be taken into account when analyzing price changes. If potato prices increased because of the potato blight in Ireland,
then supply should have become smaller, so how could more potatoes possibly have been consumed? Also, since many Irish
people were potato farmers, the potato price increase should have increased real income for them. For a detailed discussion
of these and other fascinating bits of potato lore, see G. P. Dwyer and C. M. Lindsey, “Robert Giffen and the Irish Potato,”
American Economic Review (March 1984): 188-92.



FIGURE 5.5 Construction of an Individual’'s Demand Curve

In (a), the individual’s utility-maximizing choices of x and y are shown for three different prices of
x(pl, pt,and p."). In (b), this relationship between p, and x is used to construct the demand curve
for x. The demand curve is drawn on the assumption that p,, I, and preferences remain constant as
b, varies.
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The demand curve illustrated in Figure 5.5 stays in a fixed position only so long as all other
determinants of demand remain unchanged. If one of these other factors were to change then
the curve might shift to a new position, as we now describe.

Shifts in the demand curve

Three factors were held constant in deriving this demand curve: (1) income; (2) prices of
other goods (say, p,); and (3) the individual’s preferences. If any of these were to change, the
entire demand curve might shift to a new position. For example, if I were to increase, the
curve would shift outward (provided that dx/dI > 0, that s, provided the good is a “normal”
good over this income range). More x would be demanded at each price. If another price
(say, p,) were to change then the curve would shift inward or outward, depending precisely
on how x and y are related. In the next chapter we will examine that relationship in detail.
Finally, the curve would shift if the individual’s preferences for good x were to change. A
sudden advertising blitz by the McDonald’s Corporation might shift the demand for ham-
burgers outward, for example.

As this discussion makes clear, one must remember that the demand curve is only a two-
dimensional representation of the true demand function (Equation 5.8) and that it is stable
only if other things do stay constant. It is important to keep clearly in mind the difference
between a movement along a given demand curve caused by a change in p, and a shift in the
entire curve caused by a change in income, in one of the other prices, or in preferences.
Traditionally, the term an increase in demand is reserved for an outward shift in the demand
curve, whereas the term an increase in the quantity demanded refers to a movement along a
given curve caused by a change in p, .

EXAMPLE 5.2 Demand Functions and Demand Curves

To be able to graph a demand curve from a given demand function, we must assume that the
preferences that generated the function remain stable and that we know the values of income
and other relevant prices. In the first case studied in Example 5.1, we found that

x= 031 (5.9)
y2»
and
071
= p_y
If preferences do not change and if this individual’s income is $100, these functions become
30
X = —
gg (5.10)
y= P_y’
or
p.x =30,
2,y =70,

which makes clear that the demand curves for these two goods are simple hyperbolas. A rise
in income would shift both of the demand curves outward. Notice also, in this case, that the
demand curve for x is not shifted by changes in p, and vice versa.
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For the second case examined in Example 5.1, the analysis is more complex. For good x,
we know that

w= (). L, (5.11)
1+p./p,) P

so to graph this in the p,—x plane we must know both I and p,. If we again assume I = 100
and let p, = I, then Equation 5.11 becomes

100
X=———,
Pt Py
which, when graphed, would also show a general hyperbolic relationship between price and

quantity consumed. In this case the curve would be relatively flatter because substitution
cffects are larger than in the Cobb-Douglas case. From Equation 5.11, we also know that

ox 1 1
T l— ). =>0 (5.13)
ox <1 +px/py> 2y

ax I
apy (px +py)2

so increases in I or p, would shift the demand curve for good x outward.

(5.12)

and

>0,

QUERY: How would the demand functions in Equations 5.10 change if this person spent
half of his or her income on each good? Show that these demand functions predict the same x
consumption at the point p, = 1, p, = 1, I = 100 as does Equation 5.11. Use a numerical
example to show that the CES demand function is more responsive to an increase in p,, than is
the Cobb-Douglas demand function.

COMPENSATED DEMAND CURVES

In Figure 5.5, the level of utility this person gets varies along the demand curve. As p, falls, he
or she is made increasingly better-off, as shown by the increase in utility from U, to U, to Uj.
The reason this happens is that the demand curve is drawn on the assumption that nominal
income and other prices are held constant; hence, a decline in p, makes this person better off
by increasing his or her real purchasing power. Although this is the most common way to
impose the ceteris paribus assumption in developing a demand curve, it is not the only way.
An alternative approach holds 7za/ income (or utility) constant while examining reactions to
changes in p,.. The derivation is illustrated in Figure 5.6, where we hold utility constant (at
U,) while successively reducing p,.. As p, falls, the individual’s nominal income is effectively
reduced, thus preventing any increase in utility. In other words, the effects of the price change
on purchasing power are “compensated” so as to constrain the individual to remain on U, .
Reactions to changing prices include only substitution effects. If we were instead to examine
cffects of increases in p,, income compensation would be positive: This individual’s income
would have to be increased to permit him or her to stay on the U, indiftference curve in
response to the price rises. We can summarize these results as follows.

Compensated demand curve. A compensated demand curve shows the relationship be-
tween the price of a good and the quantity purchased on the assumption that other prices and
utility are held constant. The curve (which is sometimes termed a “Hicksian” demand curve

DEFINITION
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FIGURE 5.6 Construction of a Compensated Demand Curve

The curve x° shows how the quantity of x demanded changes when p, changes, holding p, and uzlity
constant. That is, the individual’s income is “compensated” so as to keep utility constant. Hence, x*
reflects only substitution effects of changing prices.
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(b) Compensated demand curve

after the British economist John Hicks) therefore illustrates only substitution effects. Mathe-
matically, the curve is a two-dimensional representation of the compensated demand function

x = x°(py, b, U). (5.14)

Relationship between compensated and uncompensated
demand curves

This relationship between the two demand curve concepts is illustrated in Figure 5.7. At p,”
the curves intersect, because at that price the individual’s income is just sufficient to attain
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FIGURE 5.7 Comparison of Compensated and Uncompensated Demand Curves
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The compensated (x°) and uncompensated (x) demand curves intersect at p, because x” is
demanded under each concept. For prices above p, the individual’s income is increased with the
compensated demand curve, so more x is demanded than with the uncompensated curve. For prices
below p., income is reduced for the compensated curve, so less x is demanded than with the
uncompensated curve. The standard demand curve is flatter because it incorporates both substitu-
tion and income effects whereas the curve x° reflects only substitution effects.
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utility level U, (compare Figures 5.5 and Figure 5.6). Hence, x” is demanded under either
demand concept. For prices below p,, however, the individual suffers a compensating
reduction in income on the curve x° that prevents an increase in utility from the lower
price. Hence, assuming x is a normal good, it follows that less x is demanded at p,” along
x° than along the uncompensated curve x. Alternatively, for a price above p,” (such as p),
income compensation is positive because the individual needs some help to remain on U,.
Hence, again assuming x is a normal good, at p, more x is demanded along ¢ than along x. In
general, then, for a normal good the compensated demand curve is somewhat less responsive
to price changes than is the uncompensated curve. This is because the latter reflects both
substitution and income effects of price changes, whereas the compensated curve reflects only
substitution effects.

The choice between using compensated or uncompensated demand curves in economic
analysis is largely a matter of convenience. In most empirical work, uncompensated curves
(which are sometimes called “Marshallian demand curves”) are used because the data on
prices and nominal incomes needed to estimate them are readily available. In the Extensions
to Chapter 12 we will describe some of these estimates and show how they might be em-
ployed for practical policy purposes. For some theoretical purposes, however, compensated
demand curves are a more appropriate concept because the ability to hold utility constant
offers some advantages. Our discussion of “consumer surplus” later in this chapter offers one
illustration of these advantages.
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EXAMPLE 5.3 Compensated Demand Functions

In Example 3.1 we assumed that the utility function for hamburgers (y) and soft drinks (x)
was given by

utility = U(x,y) = £%5y%5 (5.15)

and in Example 4.1 we showed that we can calculate the Marshallian demand functions for
such utility functions as

N
b 2
, E B i (5.16)
p, 2p,
Also, in Example 4.3 we calculated the indirect utility function by combining Equations 5.15
and 5.16 as
I
utility = V(L,p_,p,) = === (5.17)

To obtain the compensated demand functions for x and y, we simply use Equation 5.17 to
solve for I and then substitute this expression involving V into Equations 5.16. This permits
us to interchange income and utility so we may hold the latter constant, as is required for the
compensated demand concept. Making these substitutions yields

VPO'S
Yy
X¥="05>
xo 5 (5.18)
y o Ve
pg.S

These are the compensated demand functions for x and y. Notice that now demand depends on
utility (V') rather than on income. Holding utility constant, it is clear that increases in p, reduce
the demand for x, and this now reflects only the substitution effect (see also Example 5.4).

Although p, did not enter into the uncompensated demand function for good w, it does
enter into the compensated function: increases in p, shift the compensated demand curve for
x outward. The two demand concepts agree at the assumed initial point p, =1, p, =4,
I =8, and V = 2; Equations 5.16 predict x = 4, y = 1 at this point, as do Equations 5.18.
For p, > 1 or p, < 1, the demands differ under the two concepts, however. If, say, p, = 4,
then the uncompensated functions (Equations 5.16) predict x = 1, y = 1, whereas the
compensated functions (Equations 5.18) predict x = 2, y = 2. The reduction in x resulting
from the rise in its price is smaller with the compensated demand function than it is with the
uncompensated function because the former concept adjusts for the negative effect on
purchasing power that comes about from the price rise.

This example makes clear the different ceteris paribus assumptions inherent in the two
demand concepts. With uncompensated demand, expenditures are held constantat I = 2 and
so the rise in p,, from 1 to 4 results in a loss of utility; in this case, utility falls from 2 to 1. In the
compensated demand case, utility is held constant at V' =2. To keep utility constant,
expenditures must rise to E = 1(2) + 1(2) =4 in order to offset the effects of the price
rise (see Equation 5.17).

QUERY: Are the compensated demand functions given in Equations 5.18 homogeneous of
degree 0 in p, and p, if utility is held constant? Would you expect that to be true for all
compensated demand functions?
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A MATHEMATICAL DEVELOPMENT OF RESPONSE
TO PRICE CHANGES

Up to this point we have largely relied on graphical devices to describe how individuals
respond to price changes. Additional insights are provided by a more mathematical approach.
Our basic goal is to examine the partial derivative dx/dp,—that is, how a change in the price
of a good affects its purchase, ceteris paribus. In the next chapter, we take up the question of
how changes in the price of one commodity affect purchases of another commodity.

Direct approach

Our goal is to use the utility-maximization model to learn something about how the demand
for good x changes when p, changes; that is, we wish to calculate dx/dp,. The direct
approach to this problem makes use of the first-order conditions for utility maximization
(Equations 4.8). Differentiation of these 7 + 1 equations yields a new system of »+ 1
equations, which eventually can be solved for the derivative we seek.? Unfortunately, obtain-
ing this solution is quite cumbersome and the steps required yield little in the way of economic
insights. Hence, we will instead adopt an indirect approach that relies on the concept of
duality. In the end, both approaches yield the same conclusion, but the indirect approach is
much richer in terms of the economics it contains.

Indirect approach

To begin our indirect approach,* we will assume (as before) there are only two goods
(¢ and y) and focus on the compensated demand function, x(,, ,, U), introduced in
Equation 5.14. We now wish to illustrate the connection between this demand function
and the ordinary demand function, x(p,, p,, I). In Chapter 4 we introduced the expenditure
function, which records the minimal expenditure necessary to attain a given utility level. If we
denote this function by

minimum expenditure = E(p,, p,, U) (5.19)

then, by definition,
5 (P> 2y, U) = %[ py, 0, E(B,, P, U)]- (5.20)

This conclusion was already introduced in connection with Figure 5.7, which showed that the
quantity demanded is identical for the compensated and uncompensated demand functions
when income is exactly what is needed to attain the required utility level. Equation 5.20 is
obtained by inserting that expenditure level into the demand function, x(p,, p,, I). Now we
can proceed by partially differentiating Equation 5.20 with respect to p, and recognizing that
this variable enters into the ordinary demand function in two places. Hence

ax‘_ax ox OE

3_17,0_8_17,0—’_&'5_17,6’ (5.21)

and rearranging terms yields
dx dx° odx OE

@ = . 5 @ (5.22)

3See, for example, Paul A. Samuelson, Foundations of Economic Analysis (Cambridge, MA: Harvard University Press,
1947), pp. 101-3.

*The following proof is adapted from Phillip J. Cook, “A ‘One Line’ Proof of the Slutsky Equation,” American Economic
Review 62 (March 1972): 139.
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The substitution effect

Consequently, the derivative we seek has two terms. Interpretation of the first term is
straightforward: It is the slope of the compensated demand curve. But that slope represents
movement along a single indifference curve; it is, in fact, what we called the “substitution
effect” earlier. The first term on the right of Equation 5.22 is a mathematical representation
of that effect.

The income effect

The second term in Equation 5.22 reflects the way in which changes in p, affect the demand
for x through changes in necessary expenditure levels (that is, changes in purchasing power).
This term therefore reflects the income effect. The negative sign in Equation 5.22 shows the
direction of the effect. For example, an increase in p, increases the expenditure level that
would have been needed to keep utility constant (mathematically, dE/dp, > 0). But because
nominal income is held constant in Marshallian demand, these extra expenditures are not
available. Hence x (and y) must be reduced to meet this shortfall. The extent of the re-
duction in x is given by dx/9d E. On the other hand, if p, falls, the expenditure level required to
attain a given utility also falls. The decline in x that would normally accompany such a fall
in expenditures is precisely the amount that must be added back through the income effect.
Notice that in this case the income effect works to increase x.

The Slutsky equation

The relationships embodied in Equation 5.22 were first discovered by the Russian economist
Eugen Slutsky in the late nineteenth century. A slight change in notation is required to state
the result the way Slutsky did. First, we write the substitution effect as

ox° L (5.23)
apx apx U=constant

to indicate movement along a single indifference curve. For the income eftect, we have

ox 9B __ox OF
OE ap, oI ap.’

substitution effect =

income effect = — (5.24)

because changes in income or expenditures amount to the same thing in the function
%(py, pyo I)-

The second term in the income effect can be studied most directly by using the envelope
theorem. Remember that expenditure functions represent a minimization problem in which
the expenditure required to reach a minimum level of utility is minimized. The Lagrangian
expression for this minimization is £ = p.x + p,y + N[ U — U(«,)]. Applying the envelope
theorem to this problem yields

dE 9L

—=—=x

9P, Py
In words, the envelope theorem shows that partial differentiation of the expenditure func-
tion with respect to a good’s price yields the demand function for that good. Because utility
is held constant in the expenditure function, this demand function will be a compensated
one. This result, and a similar one in the theory of the firm, is usually called Shephard’s
lemma after the economist who first studied this approach to demand theory in detail.
The result is extremely useful in both theoretical and applied microeconomics; partial dif-
ferentiation of maximized or minimized functions is often the easiest way to derive demand

(5.25)



Chapter 5 Income and Substitution Effects 157

functions.® Notice also that the result makes intuitive sense. If we ask how much extra
expenditure is necessary to compensate for a rise in the price of good x, a simple appro-
ximation would be given by the number of units of x currently being consumed.

By combining Equations 5.23-5.25, we can arrive at the following complete statement of
the response to a price change.

Slutsky equation. The utility-maximization hypothesis shows that the substitution and
income effects arising from a price change can be represented by

d
% = substitution effect + income effect, (5.26)

X
or

ox 0 P
x_ox _ (5.27)

(917 4 ap % | U=constant oI

The Slutsky equation allows a more definitive treatment of the direction and size of substitu-
tion and income effects than was possible with a graphic analysis. First, the substitution eftect
(0x/09,| U—constant) 18 always negative as long as the MRS is diminishing. A fall (rise) in p,
reduces (increases) p,./p,, and utility maximization requires that the MRS fall (rise) too. But
this can occur along an indifference curve only if x increases (or, in the case of arise in p,, if x
decreases). Hence, insofar as the substitution effect is concerned, price and quantity always
move in opposite directions. Equivalently, the slope of the compensated demand curve must
be negative.® We will show this result in a somewhat different way in the final section of this
chapter.

The sign of the income effect ( — xdx/dI) depends on the sign of dx/dI. If x is a normal
good, then dx/9I is positive and the entire income effect, like the substitution effect, is
negative. Thus, for normal goods, price and quantity always move in opposite directions. For
example, a fall in p, raises real income and, because x is a normal good, purchases of x rise.
Similarly, a rise in p, reduces real income and so purchases of x fall. Overall, then, as we
described previously using a graphic analysis, substitution and income effects work in the
same direction to yield a negatively sloped demand curve. In the case of an inferior good,
dx/0I < 0 and the two terms in Equation 5.27 would have different signs. It is at least
theoretically possible that, in this case, the second term could dominate the first, leading to
Giffen’s paradox (dx/dp, > 0).

OPTIMIZATION
PRINCIPLE

EXAMPLE 5.4 A Slutsky Decomposition

The decomposition of a price effect that was first discovered by Slutsky can be nicely illus-
trated with the Cobb-Douglas example studied previously. In Example 5.3, we found that
the Marshallian demand function for good x was

0.51

%( Py by, 1) = e (5.28)

(continued)

SFor instance, in Example 4.4, for expenditure we found a simple Cobb-Douglas utility function of the form
E(py,p,, V) = 2Vp%p0>. Hence, from Shephard’s lemma we know that x = dE/dp, = Vp*°p95, which is the same
result we obtained in Example 5.3. ’

SIt is possible that substitution effects would be zero if indifference curves have an L-shape (implying that x and y are used
in fixed proportions). Some examples are provided in the Chapter 5 problems.
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EXAMPLE 5.4 CONTINUED

and that the Hicksian (compensated) demand function was

\% 0.5
*(Popy, V) = 71:,75 : (5.29)

X

The overall effect of a price change on the demand for good x can be found by differentiating
the Marshallian demand function:

ox _ —0.5I
O A
Now we wish to show that this effect is the sum of the two effects that Slutsky identified. As
before, the substitution effect is found by differentiating the compensated demand function:

ox’ B -0.5 VP;,)S

(5.30)

substitution effect = — = s (5.31)
Py x
We can eliminate indirect utility, V', by substitution from Equation 5.17:
—0.5(0.5T —0.5 ,—0.5) 40.5 —0.251I
substitution effect = (0.52p. "5, ")t = . (5.32)

15 22

X X
Calculation of the income effect in this example is considerably easier. Applying the results
from Equation 5.27, we have

o2 {0.51] 05 0251 (5.33)

income effect = —x — = — . =
2 y2» b

oI
A comparison of Equation 5.30 with Equations 5.32 and 5.33 shows that we have indeed
decomposed the price derivative of this demand function into substitution and income
components. Interestingly, the substitution and income effects are of precisely the same size.
This, as we will see in later examples, is one of the reasons that the Cobb-Douglas is a very
special case.

The well-worn numerical example we have been using also demonstrates this decomposi-
tion. When the price of x rises from $1 to $4, the (uncompensated) demand for x falls from
x = 4 tox = 1 but the compensated demand for x falls only from x = 4 to x = 2. Thatdecline
of 50 percent is the substitution effect. The further 50 percent fall from x = 2 to x = 1 rep-
resents reactions to the decline in purchasing power incorporated in the Marshallian demand
function. This income effect does not occur when the compensated demand notion is used.

QUERY: In this example, the individual spends half of his or her income on good x and half

on good y. How would the relative sizes of the substitution and income effects be altered if
the exponents of the Cobb-Douglas utility function were not equal?

DEMAND ELASTICITIES

So far in this chapter we have been examining how individuals respond to changes in prices
and income by looking at the derivatives of the demand function. For many analytical
questions this is a good way to proceed because calculus methods can be directly applied.
However, as we pointed out in Chapter 2, focusing on derivatives has one major disadvantage
for empirical work: the sizes of derivatives depend directly on how variables are measured.
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That can make comparisons among goods or across countries and time periods very difficult.
For this reason, most empirical work in microeconomics uses some form of elasticity measure.
In this section we introduce the three most common types of demand elasticities and explore
some of the mathematical relations among them. Again, for simplicity we will look at a
situation where the individual chooses between only two goods, though these ideas can be
easily generalized.

Marshallian demand elasticities

Most of the commonly used demand elasticities are derived from the Marshallian demand
function x(p,, p,, I). Specifically, the following definitions are used.

L. Price clasticity of demand (e, , ). This measures the proportionate change in quantity
demanded in response to a proportionate change in a good’s own price. Math-
ematically,

, _Ax/x Ax p. 0x p, (5.34)

PhOOAp/p, AP x Op X

2. Income elasticity of demand (e, ;). This measures the proportionate change in quan-
tity demanded in response to a proportionate change in income. In mathematical
terms,

Ax/x Ax I ox I

3. Cross-price elasticity of demand (e, , ). This measures the proportionate change in the
quantity of » demanded in response to a proportionate change in the price of some
other good (y):

. _Ax/x Ax Py ix B
B Ap/p, Ap, x o 0p, x

(5.36)

Notice that all of these definitions use partial derivatives, which signifies that all other
determinants of demand are to be held constant when examining the impact of a specific
variable. In the remainder of this section we will explore the own-price elasticity definition in
some detail. Examining the cross-price elasticity of demand is the primary topic of Chapter 6.

Price elasticity of demand

The (own-) price elasticity of demand is probably the most important elasticity concept in all
of microeconomics. Not only does it provide a convenient way of summarizing how people
respond to price changes for a wide variety of economic goods, but it is also a central concept
in the theory of how firms react to the demand curves facing them. As you probably already
learned in earlier economics courses, a distinction is usually made between cases of elastic
demand (where price affects quantity significantly) and inelastic demand (where the effect of
price is small). One mathematical complication in making these ideas precise is that the price
elasticity of demand itself is negative” because, except in the unlikely case of Giffen’s para-
dox, dx/dp, is negative. The dividing line between large and small responses is generally set

7Sometimes economists use the absolute value of the price elasticity of demand in their discussions. Although this is
mathematically incorrect, such usage is quite common. For example, a study that finds that ¢, —1.2 may sometimes

b T
report the price elasticity of demand as “1.2.” We will not do so here, however.

DEFINITION
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DEFINITION

at —1. If Cep, = —1, changes in x and p, are of the same proportionate size. That is, a
1 percent increase in prlce leads to a fall of 1 percent in quantity demanded. In this case,
demand is said to be “unit-clastic.” Alternatively, if ¢, , < —1, then quantity changes
are proportlonately larger than price changes and we say that dcmand is “elastic.” For
example, if ¢, —3, each 1 percent rise in price leads to a fall of 3 percent in quantity
demanded. Fmally, if e, b, > —1 then demand is inelastic and quantity changes are propor-
tionately smaller than price changes. A value of ¢, —0.3, for example, means that a
1 percent increase in price leads to a fall in quantity demanded of 0.3 percent. In Chapter 12
we will see how aggregate data are used to estimate the typical individual’s price elasticity of
demand for a good and how such estimates are used in a variety of questions in applied
microeconomics.

Price elasticity and total spending

The price elasticity of demand determines how a change in price, ceteris paribus, affects total
spending on a good. The connection is most easily shown with calculus:

M:px-a—x+x—x( +1). (5.37)
9P, Py
So, the sign of this derivative depends on whether ¢, , is larger or smaller than —1. If
demand is inelastic (0 > ¢, , > —1), the derivative is positive and price and total spending
move in the same direction. Intuitively, if price does not affect quantity demanded very
much, then quantity stays relatively constant as price changes and total spending reflects
mainly those price movements. This is the case, for example, with the demand for most
agricultural products. Weather-induced changes in price for specific crops usually cause total
spending on those crops to move in the same direction. On the other hand, if demand is
clastic (¢, , < —1), reactions to a price change are so large that the effect on total spending
is reversed: a rise in price causes total spending to fall (because quantity falls a lot) and a fall
in price causes total spending to rise (quantity increases significantly). For the unit-elastic
case (¢, , = —1), total spending is constant no matter how price changes.

Compensated price elasticities

Because some microeconomic analyses focus on the compensated demand function, it is also
useful to define elasticities based on that concept. Such definitions follow directly from their
Marshallian counterparts.

Let the compensated demand function be given by x°( g, p,, U). Then we have the following
definitions.

1. Compensated own-price elasticity of demand (e,. , ). This elasticity measures the pro-
portionate compensated change in quantity demanded in response to a proportionate
change in a good’s own price:

Ax* A d dx°
b, = XA p 0% Py (5.38)

2. Compensated cross-price elasticity of demand (e,. , ). This measures the proportionate
compensated change in quantity demanded in response to a proportionate change in
the price of another good:

A c c A c a c
b ) = Ax/x - Ax .ﬂf:i.ﬁf. (5.39)
y 2,/P, Py, X ap, «x
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Whether these price elasticities differ much from their Marshallian counterparts depends on
the importance of income effects in the overall demand for good x. The precise connection
between the two can be shown by multiplying the Slutsky result from Equation 5.27 by the
factor p,/x:

d ax° d
&_x —&i_&x il e —se (5.40)

X6 Py X%, 1

x ap, = x ap, «x ol
where s, = p,x/I is the share of total income devoted to the purchase of good x.
Equation 5.40 shows that compensated and uncompensated own-price elasticities of
demand will be similar if either of two conditions hold: (1) The share of income devoted
to good x () is small; or (2) the income elasticity of demand for good x (¢, ;) is small. Either
of these conditions serves to reduce the importance of the income compensétion employed in
the construction of the compensated demand function. If good x is unimportant in a person’s
budget, then the amount of income compensation required to offset a price change will be
small. Even if'a good has a large budget share, if demand does not react strongly to changes in
income then the results of either demand concept will be similar. Hence, there will be many
circumstances where one can use the two price elasticity concepts more or less interchange-
ably. Put another way, there are many economic circumstances in which substitution effects
constitute the most important component of price responses.

Relationships among demand elasticities

There are a number of relationships among the elasticity concepts that have been developed
in this section. All of these are derived from the underlying model of utility maximization.
Here we look at three such relationships that provide further insight on the nature of in-
dividual demand.

Homogeneity. The homogeneity of demand functions can also be expressed in elasticity
terms. Because any proportional increase in all prices and income leaves quantity demanded
unchanged, the net sum of all price elasticities together with the income elasticity for a
particular good must sum to zero. A formal proof of this property relies on Euler’s theorem
(see Chapter 2). Applying that theorem to the demand function x(p,, p,, I) and remember-
ing that this function is homogeneous of degree 0 yields

ax ax ax

0=>p,- — 4TI —. 5.41
Py apx+py apy+ Ve (5.41)
If we divide Equation 5.41 by x then we obtain
O=e,, + Cep, T x> (5.42)

as intuition suggests. This result shows that the elasticities of demand for any good cannot
follow a completely flexible pattern. They must exhibit a sort of internal consistency that
reflects the basic utility-maximizing approach on which the theory of demand is based.

Engel aggregation. In the Extensions to Chapter 4 we discussed the empirical analysis of
market shares and took special note of Engel’s law that the share of income devoted to food
declines as income increases. From an elasticity perspective, Engel’s law is a statement of the
empirical regularity that the income elasticity of demand for food is generally found to be
considerably less than 1. Because of this, it must be the case that the income elasticity of all
nonfood items must be greater than 1. If an individual experiences an increase in his or her
income then we would expect food expenditures to increase by a smaller proportional
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amount, but the income must be spent somewhere. In the aggregate, these other expendi-
tures must increase proportionally faster than income.

A formal statement of this property of income elasticities can be derived by differentiating
the individual’s budget constraint (I = p,x + p,y) with respect to income while treating the
prices as constants:

J
1=p, ==+8, 5. (5.43)

A bit of algebraic manipulation of this expression yields
ox xI dy oI

RNy R S Ry Y S 5.44
P ol xI Py oI yI xx1+yy1’ ( )

here, as before, s; represents the share of income spent on good . Equation 5.44 shows that
the weighted average on income elasticities for all goods that a person buys must be 1. If we
knew, say, that a person spent a fourth of his or her income on food and the income
clasticity of demand for food were 0.5, then the income elasticity of demand for everything
else must be approximately 1.17 [= (1 — 0.25-0.5)/0.75]. Because food is an important
“necessity,” everything else is in some sense a “luxury.”

Cournot aggregation. The cighteenth-century French economist Antoine Cournot pro-
vided one of the first mathematical analyses of price changes using calculus. His most
important discovery was the concept of marginal revenue, a concept central to the profit-
maximization hypothesis for firms. Cournot was also concerned with how the change in a
single price might affect the demand for all goods. Our final relationship shows that there are
indeed connections among all of the reactions to the change in a single price. We begin by
differentiating the budget constraint again, this time with respect to p,:

ol dy
_— = 0 =
op, B ‘91’ + “Ehy Ip,
Multiplication of this equation by p,/I yields
ix p, x Y2 9y Py
0= - X, _|_ _x + L LEx 2 ,
Pe ap, I By ap, I 'y (5.45)
0=s Syl p. T Sx +sye“,,
so the final Cournot result is
+se = —s,. (5.46)

xxp V7Y Py x

This equation shows that the size of the cross-price effect of a change in the price of x on the
quantity of y consumed is restricted because of the budget constraint. Direct, own-price
effects cannot be totally overwhelmed by cross-price effects. This is the first of many con-
nections among the demands for goods that we will study more intensively in the next
chapter.

Generalizations. Although we have shown these aggregation results only for the case of
two goods, they are actually easily generalized to the case of many goods. You are asked to
do just that in Problem 5.11. A more difficult issue is whether these results should be
expected to hold for typical economic data in which the demands of many people are
combined. Often economists treat aggregate demand relationships as describing the behav-
ior of a “typical person,” and these relationships should in fact hold for such a person. But
the situation may not be quite that simple, as we will show when discussing aggregation later
in the book.
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EXAMPLE 5.5 Demand Elasticities: The Importance of Substitution Effects

163

In this example we calculate the demand elasticities implied by three of the utility functions
we have been using. Although the possibilities incorporated in these functions are too simple
to reflect how economists actually study demand empirically, they do show how elasticities
ultimately reflect people’s preferences. One especially important lesson is to show why most
of the variation in demand elasticities among goods probably arises because of differences in
the size of substitution eftects.

Case 1: Cobb-Douglas (o = 1). U(x,y) = x*y*, where a + = 1.
The demand functions derived from this utility function are

al
x(anPy’I) = p_x>
BI (1-—a)I
b} >I = =
Y( P> 0y, 1) ’, 2

Application of the elasticity definitions shows that
ox p, —al y»

== A 77 =1
T ap x  p2 odfp,
_ox Py by,
e kit (5.47)

ox I « I
gxI:—.—:—.—zl
A x p, od/p,
The clasticities for good y take on analogous values. Hence, the elasticities associated
with the Cobb-Douglas utility function are constant over all ranges of prices and income and
take on especially simple values. That these obey the three relationships shown in the

previous section can be casily demonstrated using the fact that here 5, = a and 5, = B.

Homogeneity: e, , +e¢,, +¢,;=-1+0+1=0.
2y
Engel aggregation: se,  + s, =a-1+B-1=a+p=1.

Cournot aggregation: s, +56,, = a(-1)+B-0=—a=—s,.

¢
x’p){

We can also use the Slutsky equation in elasticity form (Equation 5.40) to derive
the compensated price elasticity in this example:

Coep. = Cup TS =—"1+a(l)=a—-1=-4. (5.48)

X5 Py

Here, then, the compensated price elasticity for ¥ depends on how important other goods
(y) are in the utility function.

Case 2: CES (0 = 2;3=0.5). U(x,y) = %% + %5,
In Example 4.2 we showed that the demand functions that can be derived from this utility
function are

1
#(poppd) = ——,
Pobr D) = T D)
I
5 >I = T 1.
Woobe ) = 4 05 1)

(continued)
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EXAMPLE 5.5 CONTINUED

As you might imagine, calculating elasticities directly from these functions can take some
time. Here we focus only on the own-price elasticity and make use of the result (from
Problem 5.6) that the “share elasticity” of any good is given by

_ %% P

€
b ap, s

X

=l+e,,. (5.49)

In this case,

I 1+ppYV

so the share elasticity is more easily calculated and is given by
1

_ 6sx .pxi _PJT Px _ _Pxp;l

(5.50)

e, , = . = .
Whape s (L+pV)? U+pp) Tt L+oay!

Because the units in which goods are measured are rather arbitrary in utility theory, we

might as well define them so that initially p, = p,, in which case® we get

-1
Cp =l 1= 17 7LS (551

Hence, demand is more elastic in this case than in the Cobb-Douglas example. The reason for
this is that the substitution effect is larger for this version of the CES utility function. This can be
shown by again applying the Slutsky equation (and using the facts thate, ; = land s, = 0.5):

Cyep, = Cup t 5o = —1.5+0.5(1) = -1, (5.52)

which is twice the size of the substitution effect for the Cobb-Douglas.
Case 3. CES (0 =0.5;8 = —1): U(x,y) = -« —y L.
Referring back to Example 4.2, we can see that the share of good x implied by this utility
function is given by
. 1
x 1 +P245p;045 >

so the share elasticity is given by

ai &7 Ospgsp;ls Px B 051,25?;05

X

e : - ’
heoape sy (14 p05p05)% (14 p05p05) t 1+ p)5p 08

(5.53)

If we again adopt the simplification of equal prices, we can compute the own-price elas-

ticity as
0.5
Cop =6 p — 1= >~ 1=-0.75 (5.54)
and the compensated price elasticity as
Cuep. = Cyp T 581 =—0754+0.5(1)=-0.25. (5.55)

So, for this version of the CES utility function, the own-price elasticity is smaller than in
Case 1 and Case 2 because the substitution effect is smaller. Hence, the main variation
among the cases is indeed caused by differences in the size of the substitution effect.

$Notice that this substitution must be made after differentiation because the definition of elasticity requires that we change
only p, while holding p, constant.
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If you never want to work out this kind of elasticity again, it may be helpful to make use of
the quite general result that

4

e = —(1—5,)0. (5.56)

You may wish to check out that this formula works in these three examples (with s, = 0.5
and o =1, 2, 0.5, respectively), and Problem 5.9 asks you to show that this result is gen-
erally true. Because all of these cases based on the CES utility function have a unitary income
elasticity, the own-price elasticity can be computed from the compensated price elasticity by
simply adding —s, to the figure computed in Equation 5.56.

QUERY: Why is it that the budget share for goods other than x (1 —s,) enters into the
compensated own-price elasticities in this example?

CONSUMER SURPLUS

An important problem in applied welfare economics is to devise a monetary measure of the
gains and losses that individuals experience when prices change. One use for such a measure is
to place a dollar value on the welfare loss that people experience when a market is monopo-
lized with prices exceeding marginal costs. Another application concerns measuring the
welfare gains that people experience when technical progress reduces the prices they pay
for goods. Related applications occur in environmental economics (measuring the welfare
costs of incorrectly priced resources), law and economics (evaluating the welfare costs of
excess protections taken in fear of lawsuits), and public economics (measuring the excess
burden of a tax). In order to make such calculations, economists use empirical data from
studies of market demand in combination with the theory that underlies that demand. In this
section we will examine the primary tools used in that process.

Consumer welfare and the expenditure function

The expenditure function provides the first component for the study of the price/welfare
connection. Suppose that we wished to measure the change in welfare that an individual
experiences if the price of good x rises from p® to pl. Initially this person requires expendi-
tures of E(p?, ,» Up) to reach a utility of Uj. To achieve the same utility once the price of x
rises, he or she would require spending of at least E(p., 0, Up)- In order to compensate for
the price rise, therefore, this person would require a compensation (formally called a compen-
sating variation or CV) of

CV = E(p;,0,, Up) — E(23, 1), Uy)- (5.57)

This situation is shown graphically in the top panel of Figure 5.8. Initially, this person
consumes the combination x, 5, and obtains utility of U,. When the price of x rises, he or
she would be forced to move to combination x,,y, and suffer a loss in utility. If he or she
were compensated with extra purchasing power of amount CV, he or she could afford to
remain on the U, indifference curve despite the price rise by choosing combination x,, y,.
The distance CV, therefore, provides a monetary measure of how much this person needs in
order to be compensated for the price rise.

Using the compensated demand curve to show CV

Unfortunately, individuals’ utility functions and their associated indifference curve maps are
not directly observable. But we can make some headway on empirical measurement by
determining how the CV amount can be shown on the compensated demand curve in the
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FIGURE 5.8 Showing Compensating Variation

If the price of « rises from 0 to p., this person needs extra expenditures of CV to remain on the U,
indifference curve. Integration shows that CV can also be represented by the shaded area below the

compensated demand curve in panel (b).
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bottom panel of Figure 5.8. Shephard’s lemma shows that the compensated demand func-
tion for a good can be found directly from the expenditure function by differentiation:
dE(p, ., p,, U
5 (P> By, U) = B2ty U) ). (5.58)
ap,
Hence, the compensation described in Equation 5.57 can be found by integrating across a
sequence of small increments to price from p? to pl:

P 7y
CV = de = fx‘(px,py, UO) ﬂlpx (5.59)
P b

while holding p, and utility constant. The integral defined in Equation 5.59 has a geometric
interpretation, which is shown in the lower panel of Figure 5.9: it is the shaded area to the
left of the compensated demand curve and bounded by p? and p!. So the welfare cost of this
price increase can also be illustrated using changes in the area below the compensated de-
mand curve.

The consumer surplus concept

There is another way to look at this issue. We can ask how much this person would be willing
to pay for the right to consume all of this good that he or she wanted at the market price of p°
rather than doing without the good completely. The compensated demand curve in the
bottom panel of Figure 5.8 shows that if the price of x rose to p2, this person’s consumption
would fall to zero and he or she would require an amount of compensation equal to area
2 Ap° in order to accept the change voluntarily. The right to consume ¥, at a price of p? is
therefore worth this amount to this individual. It is the extra benefit that this person receives
by being able to make market transactions at the prevailing market price. This value, given by
the area below the compensated demand curve and above the market price, is termed
consumer surplus. Looked at in this way, the welfare problem caused by a rise in the price
of x can be described as a loss in consumer surplus. When the price rises from p? to pl the
consumer surplus “triangle” decreases in size from p2 Ap® to p2 Bpl. As the figure makes clear,
that is simply another way of describing the welfare loss represented in Equation 5.59.

Welfare changes and the Marshallian demand curve

So far our analysis of the welfare effects of price changes has focused on the compensated
demand curve. This is in some ways unfortunate because most empirical work on demand
actually estimates ordinary (Marshallian) demand curves. In this section we will show that
studying changes in the area below a Marshallian demand curve may in fact be quite a good
way to measure welfare losses.

Consider the Marshallian demand curve x(p,, ...) illustrated in Figure 5.9. Initially this
consumer faces the price p% and chooses to consume x,. This consumption yields a utility
level of Uy, and the initial compensated demand curve for & [that is, x°(p,, Dy U,)] also
passes through the point &, #2 (which we have labeled point A). When price rises to p., the
Marshallian demand for good x falls to x; (point C on the demand curve) and this person’s
utility also falls to, say, U,. There is another compensated demand curve associated with this
lower level of utility, and it also is shown in Figure 5.9. Both the Marshallian demand curve
and this new compensated demand curve pass through point C.

The presence of a second compensated demand curve in Figure 5.9 raises an intriguing
conceptual question. Should we measure the welfare loss from the price rise as we did in
Figure 5.8 using the compensating variation (CV) associated with the initial compensated
demand curve (area pL BAp?) or should we, perhaps, use this new compensated demand curve
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FIGURE 5.9 Welfare Effects of Price Changes and the Marshallian Demand Curve

DEFINITION

The usual Marshallian (nominal income constant) demand curve for good x is x(p,, ...). Further,
x°(..., Up) and x°(..., U;) denote the compensated demand curves associated with the utility levels
experienced when p0 and p!, respectively, prevail. The area to the left of x(p,, ...) between pland p! is
bounded by the similar areas to the left of the compensated demand curves. Hence, for small changes
in price, the area to the left of the Marshallian demand curve is a good measure of welfare loss.

Px

X4 Xo Quantity of x per period

and measure the welfare loss as area p. CDp% A potential rationale for using the area under
the second curve would be to focus on the individual’s situation after the price rise (with
utility level U, ). We might ask how much he or she would now be willing to pay to see the
price return to its old, lower levels.” The answer to this would be given by area pL CDp®. The
choice between which compensated demand curve to use therefore boils down to choosing
which level of utility one regards as the appropriate target for the analysis.

Luckily, the Marshallian demand curve provides a convenient compromise between these
two measures. Because the size of the area between the two prices and below the Marshallian
curve (area pL CAp®) is smaller than that below the compensated demand curve based on U,
but larger than that below the curve based on U], it does seem an attractive middle ground.
Hence, this is the measure of welfare losses we will primarily use throughout this book.

Consumer surplus. Consumer surplus is the area below the Marshallian demand curve and
above market price. It shows what an individual would pay for the right to make voluntary
transactions at this price. Changes in consumer surplus can be used to measure the welfare
effects of price changes.

We should point out that some economists use either CV or EV to compute the welfare
effects of price changes. Indeed, economists are often not very clear about which measure of
welfare change they are using. Our discussion in the previous section shows that if income
effects are small, it really does not make much difference in any case.

This alternative measure of compensation is sometimes termed the “equivalent variation” (EV).
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EXAMPLE 5.6 Welfare Loss from a Price Increase

These ideas can be illustrated numerically by returning to our old hamburger/soft drink
example. Let’s look at the welfare consequences of an unconscionable price rise for soft drinks
(good x) from $1 to $4. In Example 5.3, we found that the compensated demand for good x

was given by 05
pr-
(s 8y V) = —55- (5.60)

X

Hence, the welfare cost of the price increase is given by
4 4 p.=4
CV = f & (pe 0y, V) dp, = f Vp)Pp,Pdp, = 2Vp)Sp2| . (5.61)
1 1 =1

If we use the values we have been assuming throughout this gastronomic feast (V =2,
py =4), then

Cv=2.2.2.(4%%-2.2.2.(1)* =38 (5.62)

This figure would be cut in half (to 4) if we believed that the utility level after the price rise
(V = 1) were the more appropriate utility target for measuring compensation. If instead we
had used the Marshallian demand function

x(p.p,, 1) = 0.5Ip, ",

the loss would be calculated as

4 4 4
loss = fx(px,py,l) dp, = fO.Sngldpx =05IInp,| . (5.63)
1 1 1
So, with I = 8, this loss is
loss =41In(4) — 4In(1) = 41In(4) = 4(1.39) = 5.55, (5.64)

which seems a reasonable compromise between the two alternative measures based on the
compensated demand functions.

QUERY: In this problem, none of the demand curves has a finite price at which demand goes

to precisely zero. How does this affect the computation of total consumer surplus? Does this
affect the types of welfare calculations made here?

REVEALED PREFERENCE AND THE SUBSTITUTION EFFECT

The principal unambiguous prediction that can be derived from the utility-maximation
model is that the slope (or price elasticity) of the compensated demand curve is negative.
The proof of this assertion relies on the assumption of a diminishing MRS and the related
observation that, with a diminishing MRS, the necessary conditions for a utility maximum
are also sufficient. To some economists, the reliance on a hypothesis about an unobservable
utility function represented a weak foundation indeed on which to base a theory of demand.
An alternative approach, which leads to the same result, was first proposed by Paul
Samuelson in the late 1940s.'® This approach, which Samuelson termed the #heory of
revealed preference, defines a principle of rationality that is based on observed behavior and

19Paul A. Samuelson, Foundations of Economic Analysis (Cambridge, MA: Harvard University Press, 1947).
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then uses this principle to approximate an individual’s utility function. In this sense, a person
who follows Samuelson’s principle of rationality behaves as if he or she were maximizing a
proper utility function and exhibits a negative substitution effect. Because Samuelson’s
approach provides additional insights into our model of consumer choice, we will briefly
examine it here.

Graphical approach

The principle of rationality in the theory of revealed preference is as follows: Consider two
bundles of goods, A and B. If, at some prices and income level, the individual can afford both
A and B but chooses A, we say that A has been “revealed preferred” to B. The principle of
rationality states that under any different price-income arrangement, B can never be revealed
preferred to A. If B is in fact chosen at another price-income configuration, it must be
because the individual could not afford A. The principle is illustrated in Figure 5.10. Suppose
that, when the budget constraint is given by I}, point A is chosen even though B also could
have been purchased. Then A has been revealed preferred to B. If] for some other budget
constraint, B is in fact chosen, then it must be a case such as that represented by I,, where A
could not have been bought. If B were chosen when the budget constraint is I, this would be
a violation of the principle of rationality because, with I, both A4 and B can be bought. With
budget constraint I, it is likely that some point other than either A or B (say, C) will be
bought. Notice how this principle uses observable reactions to alternative budget constraints
to rank commodities rather than assuming the existence of a utility function itself. Also notice

FIGURE 5.10 Demonstration of the Principle of Rationality in the Theory of Revealed Preference

With income I; the individual can afford both points A and B. If A is selected then A is revealed
preferred to B. It would be irrational for B to be revealed preferred to A in some other price-income
configuration.

Quantity
ofy

Quantity of x
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how the principle offers a glimpse of why indifference curves are convex. Now we turn to a
formal proof.

Negativity of the substitution effect

Suppose that an individual is izdifferent between two bundles, C (composed of x and y,)
and D (composed of x;, and yp,). Let p&, pyc be the prices at which bundle C is chosen and
2, pj,) the prices at which bundle D is chosen.

Because the individual is indifferent between C and D, it must be the case that when C
was chosen, D cost at least as much as C:

pExc+ pEye < pSxp + P (5.65)
A similar statement holds when D is chosen:
PYxp + 1) ¥p < PY%C + 1) Ve (5.66)

Rewriting these equations gives

5 (%¢ — xp) +1’yc(3’c —p) <0, (5.67)
2 (%p — %) + £, (9p — 3) < 0. (5.68)
Adding these together yields
(85 — p2) (¢ — %p) + (£ — £,) (e — 3p) < 0. (5.69)
Now suppose that only the price of x changes; assume that pyc = pf . Then
(2 = 2% — %p) 0. (5.70)

But Equation 5.70 says that price and quantity move in the opposite direction when utility is
held constant (remember, bundles C and D are equally attractive). This is precisely a
statement about the nonpositive nature of the substitution effect:

axc(anﬁy, V) o dx

= <0. (5.71)
3px 3px U=constant

We have arrived at the result by an approach that requires neither the existence of a utility
function nor the assumption of a diminishing MRS.

Mathematical generalization

Generalizing the revealed preference idea to # goods is straightforward. Ifat prices p?, bundle
x¥ is chosen instead of x} and if bundle «} is also affordable, then

i
n n
> opx) > phxis (5.72)
=1 =1

that is, bundle 0 has been “revealed preferred” to bundle 1. Consequently, at the prices that

prevail when bundle 1 is bought (say, p!), it must be the case that ¥ is more expensive:

n n
> pia? > > plai. (5.73)
i=1 =1

Although this initial definition of revealed preference focuses on the relationship between
two bundles of goods, the most often used version of the basic principle requires a degree of
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DEFINITION

transitivity for preferences among an arbitrarily large number of bundles. This is summarized
by the following “strong” axiom.

Strong axiom of revealed preference. The strong axiom of revealed prefevence states that if
commodity bundle 0 is revealed preferred to bundle 1, and if bundle 1 is revealed preferred to
bundle 2, and if bundle 2 is revealed preferred to bundle 3, ... , and if bundle K — 1 is
revealed preferred to bundle K, then bundle K cannot be revealed preferred to bundle 0
(where K is any arbitrary number of commodity bundles).

Most other properties that we have developed using the concept of utility can be proved
using this revealed preference axiom instead. For example, it is an easy matter to show that
demand functions are homogencous of degree 0 in all prices and income. It therefore is
apparent that the revealed preference axiom and the existence of “well-behaved” utility
functions are somehow equivalent conditions. That this is in fact the case was first shown
by H. S. Houthakker in 1950. Houthakker showed that a set of indifference curves can always
be derived for an individual who obeys the strong axiom of revealed preference.'! Hence, this
axiom provides a quite general and believable foundation for utility theory based on simple
comparisons among alternative budget constraints. This approach is widely used in the
construction of price indices and for a variety of other applied purposes.

SUMMARY

In this chapter, we used the utility-maximization model to
study how the quantity of a good that an individual chooses
responds to changes in income or to changes in that good’s
price. The final result of this examination is the derivation of
the familiar downward-sloping demand curve. In arriving at
that result, however, we have drawn a wide variety of insights
from the general economic theory of choice.

e Proportional changes in all prices and income do not
shift the individual’s budget constraint and therefore do
not change the quantities of goods chosen. In formal
terms, demand functions are homogeneous of degree 0
in all prices and income.

e When purchasing power changes (that is, when income
increases with prices remaining unchanged), budget con-
straints shift and individuals will choose new commodity
bundles. For normal goods, an increase in purchasing
power causes more to be chosen. In the case of inferior
goods, however, an increase in purchasing power causes
less to be purchased. Hence the sign of dx;/dI could be
cither positive or negative, although dx;/9I > 0 is the
most common case.

e A fall in the price of a good causes substitution and
income effects that, for a normal good, cause more of
the good to be purchased. For inferior goods, however,
substitution and income effects work in opposite direc-
tions and no unambiguous prediction is possible.

Similarly, a rise in price induces both substitution and
income effects that, in the normal case, cause less to be
demanded. For inferior goods the net result is again
ambiguous.

The Marshallian demand curve summarizes the total
quantity of a good demanded at each possible price.
Changes in price induce both substitution and income
effects that prompt movements along the curve. For a
normal good, dx;/dp; < 0 along this curve. If income,
prices of other goods, or preferences change, then the
curve may shift to a new location.

Compensated demand curves illustrate movements along
a given indifference curve for alternative prices. They are
constructed by holding utility constant and exhibit only
the substitution effects from a price change. Hence, their
slope is unambiguously negative.

Demand elasticities are often used in empirical work
to summarize how individuals react to changes in prices
and income. The most important such elasticity is
the (own-) price clasticity of demand, ¢, , . This mea-
sures the proportionate change in quantity in response
to a 1 percent change in price. A similar elasticity can
be defined for movements along the compensated de-
mand curve.

There are many relationships among demand elasticities.
Some of the more important ones are: (1) own-price

'H. S. Houthakker, “Revealed Preference and the Utility Function,” Economica 17 (May 1950): 159-74.



elasticities determine how a price change affects total
spending on a good; (2) substitution and income effects
can be summarized by the Slutsky equation in elasticity
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demand curves. Such changes affect the size of the con-
sumer surplus that individuals receive from being able to
make market transactions.

form; and (3) various aggregation relations hold among
elasticities—these show how the demands for different
goods are related.

e The negativity of the substitution effect is the most basic
conclusion from demand theory. This result can be
shown using revealed preference theory and so does

e  Welfare effects of price changes can be measured by not require assuming the existence of a utility function.

changing areas below either compensated or ordinary

PROBLEMS

5.1

Thirsty Ed drinks only pure spring water, but he can purchase itin two different-sized containers: 0.75 liter
and 2 liter. Because the water itself'is identical, he regards these two “goods” as perfect substitutes.

a. Assuming Ed’s utility depends only on the quantity of water consumed and that the containers
themselves yield no utility, express this utility function in terms of quantities of 0.75L contain-
ers (x) and 2L containers (y).

b. State Ed’s demand function for x in terms of p,, p,, and I.
¢. Graph the demand curve for x, holding I and p, constant.
d. How do changes in I and p, shift the demand curve for x?

e. What would the compensated demand curve for x look like in this situation?

5.2

David N. gets $3 per week as an allowance to spend any way he pleases. Because he likes only peanut
butter and jelly sandwiches, he spends the entire amount on peanut butter (at $0.05 per ounce) and jelly
(at $0.10 per ounce). Bread is provided free of charge by a concerned neighbor. David is a particular
eater and makes his sandwiches with exactly 1 ounce of jelly and 2 ounces of peanut butter. He is set in
his ways and will never change these proportions.

a. How much peanut butter and jelly will David buy with his $3 allowance in a week?

b. Suppose the price of jelly were to rise to $0.15 an ounce. How much of each commodity would
be bought?

¢. By how much should David’s allowance be increased to compensate for the rise in the price of
jelly in part (b)?

d. Graph your results in parts (a) to (c).

e. In what sense does this problem involve only a single commodity, peanut butter and jelly
sandwiches? Graph the demand curve for this single commodity.

f. Discuss the results of this problem in terms of the income and substitution effects involved in

the demand for jelly.

5.3
As defined in Chapter 3, a utility function is homothetic if any straight line through the origin cuts all
indifference curves at points of equal slope: The MRS depends on the ratio y/x.

a. Prove that, in this case, dx/9I is constant.

b. Prove that if an individual’s tastes can be represented by a homothetic indifference map then
price and quantity must move in opposite directions; that is, prove that Giffen’s paradox cannot
occur.
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5.4
As in Example 5.1, assume that utility is given by
utility = U(x,y) = x°-3y°47,

a. Use the uncompensated demand functions given in Example 5.1 to compute the indirect utility
function and the expenditure function for this case.

b. Use the expenditure function calculated in part (a) together with Shephard’s lemma to compute
the compensated demand function for good x.

¢. Use the results from part (b) together with the uncompensated demand function for good x to
show that the Slutsky equation holds for this case.

5.5
Suppose the utility function for goods & and ¥ is given by
utility = U(x,y) = xy + .

a. Calculate the uncompensated (Marshallian) demand functions for x and y and describe how the
demand curves for x and y are shifted by changes in I or the price of the other good.

b. Calculate the expenditure function for x and y.

¢. Use the expenditure function calculated in part (b) to compute the compensated demand
functions for goods x and y. Describe how the compensated demand curves for x and y are
shifted by changes in income or by changes in the price of the other good.

5.6

Over a three-year period, an individual exhibits the following consumption behavior:

y 2 x y
Year 1 3 3 7 4
Year 2 4 2 6 6
Year 3 5 1 7 3

Is this behavior consistent with the strong axiom of revealed preference?

5.7

Suppose that a person regards ham and cheese as pure complements—he or she will always use one slice
of ham in combination with one slice of cheese to make a ham and cheese sandwich. Suppose also that
ham and cheese are the only goods that this person buys and that bread is free.

a. Ifthe price of ham is equal to the price of cheese, show that the own-price elasticity of demand
for ham is —0.5 and that the cross-price elasticity of demand for ham with respect to the price of
cheese is also —0.5.

b. Explain why the results from part (a) reflect only income effects, not substitution eftfects. What
are the compensated price elasticities in this problem?

¢. Use the results from part (b) to show how your answers to part (a) would change if a slice of ham
cost twice the price of a slice of cheese.

d. Explain how this problem could be solved intuitively by assuming this person consumes only
one good—a ham-and-cheese sandwich.
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5.8

. . AlnE
Show that the share of income spent on a good x is s, =

———, where E is total expenditure.
dln p,

Analytical Problems
5.9 Share elasticities

In the Extensions to Chapter 4 we showed that most empirical work in demand theory focuses on
income shares. For any good, «, the income share is defined as s, = p,«/I. In this problem we show that
most demand elasticities can be derived from corresponding share elasticities.

a. Show that the elasticity of'a good’s budget share with respect to income (¢, ; = ds,/91 - I/s,)is
equal to ¢, ; — 1. Interpret this conclusion with a few numerical examples.

b. Show that the clasticity of a good’s budget share with respect to its own price (¢, , =
3s,/0p, - p,/s,) isequaltoe, , + 1. Again, interpret this finding with a few numerical examples.

c. Use your results from part (b) to show that the “expenditure elasticity” of good x with respect

to its own price [¢,, , = d(p, - x)/dp, - 1/x]isalsoequaltoe, , + 1.

d. Show that the elasticity of a good’s budget share with respect to a change in the price of some
other good (¢, , = ds,/dp, - p,/s,) isequaltoe, , .
%o Py J > Py

e. In the Extensions to Chapter 4 we showed that with a CES utility function, the share of income
devoted to good xis given by s, = 1/(1 + pf,p;k), where £ =98/(8 — 1) = 1 — ¢. Use this share
equation to prove Equation 5.56: ¢,. , = —(1 — s,)o. Hint: This problem can be simplified
by assuming p, = p,, in which case 5, = 0.5.

5.10 More on elasticities

Part (e) of Problem 5.9 has a number of useful applications because it shows how price responses
depend ultimately on the underlying parameters of the utility function. Specifically, use that result
together with the Slutsky equation in elasticity terms to show:

a. In the Cobb-Douglas case (o = 1), the following relationship holds between the own-price
elasticities of x and y: op T8, = 2.

+e,, > —2. Provide an intuitive

b.Ifo>1thene, , +e .2,

e G,
explanation for this result.

< =2, and if o <1 then Cy )

¢. How would you generalize this result to cases of more than two goods? Discuss whether such a
generalization would be especially meaningtful.

5.11 Aggregation of elasticities for many goods

The three aggregation relationships presented in this chapter can be generalized to any number of
goods. This problem asks you to do so. We assume that there are # goods and that the share of income
devoted to good 7 is denoted by s;. We also define the following elasticities:

. — ox; 1
Y x;
. — ox; I
I ap; %;

Use this notation to show:

a. Homogeneity: 377 1 ¢; ; +¢; ;1 = 0.
b. Engel aggregation: 337, 5;¢; ; = 1.

c. Cournot aggregation: Y 7 5 ;= 5.
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5.12 Quasi-linear utility (revisited)

Consider a simple quasi-linear utility function of the form U(x,y) = x + In y.

a. Calculate the income effect for each good. Also calculate the income elasticity of demand for

each good.

b. Calculate the substitution effect for each good. Also calculate the compensated own-price
elasticity of demand for each good.

c. Show that the Slutsky equation applies to this function.

d. Show that the elasticity form of the Slutsky equation also applies to this function. Describe any

special features you observe.

5.13 The almost ideal demand system
The general form of the almost ideal demand system (AIDS) is given by

n 1 n n k
In E(p,U) = ay + Zo‘i lnpi—l—z Z ZWj In p; In p; + UB, HPE’“,
i=1 i=1

=1 j=1

where p” is the vector of prices, E is the expenditure function, and U is the level of utility required. For
analytical ease, assume that the following restrictions apply:

n

Zai =1, and Z'Yij = ZBk =0.
=1 =1

i=1

Yij = Yji>

a. Derive the AIDS functional form for a two-goods case.

b. Given the previous restrictions, show that E(7, U) is homogencous of degree 1 in all prices.
This, along with the fact that this function resembles closely the actual data, makes it an “ideal”

function.
In E
c. Using the fact that s, = dL
dlnp
goods. x

5.14 Price indifference curves

(see Problem 5.8), calculate the income share of each of the two

Price indifference curves are iso-utility curves with the prices of two goods on the x- and y-axes,
respectively. Thus, they have the following general form: (g, p,)| v(p1, 22, 1) = -

a. Derive the formula for the price indifference curves for the Cobb-Douglas case with

a = B = 0.5. Sketch one of them.

b. What does the slope of the curve show?

c. What is the direction of increasing utility in your graph?
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EXTENSIONS

Demand Concepts and the Evaluation of Price Indices

In Chapters 4 and 5 we introduced a number of related
demand concepts, all of which were derived from the
underlying model of utility maximization. Relation-
ships among these various concepts are summarized
in Figure E5.1. We have already looked at most of the
links in the table formally. We have not yet discussed
the mathematical relationship between indirect utility
functions and Marshallian demand functions (Roy’s
identity), and we will do that below. All of the entries
in the table make clear that there are many ways to
learn something about the relationship between in-
dividuals’ welfare and the prices they face. In this ex-
tension we will explore some of these approaches.
Specifically, we will look at how the concepts can
shed light on the accuracy of the consumer price
index (CPI), the primary measure of inflation in the
United States. We will also look at a few other price
index concepts.

The CPI is a “market basket” index of the cost of
living. Researchers measure the amounts that people

FIGURE E5.1

Relationships among Demand Concepts

consume of a set of goods in some base period (in the
two-good case these base-period consumption levels
might be denoted by &, and y,) and then use current
price data to compute the changing price of this mar-
ket basket. Using this procedure, the cost of the
market basket initially would be I, = p%x, + p%, and
the cost in period 1 would be I; = plx, + pylj/o. The
change in the cost of living between these two periods
would then be measured by I, /I,. Although this pro-
cedure is an intuitively plausible way of measuring in-
flation and market basket price indices are widely used,
such indices have many shortcomings.

E5.1 Expenditure functions
and substitution bias

Market-basket price indices suffer from “substitution
bias.” Because the indices do not permit individuals to
make substitutions in the market basket in response to
changes in relative prices, they will tend to overstate
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the welfare losses that people incur from rising prices.
This exaggeration is illustrated in Figure E5.2. To
achieve the utility level U initially requires expendi-
tures of E,, resulting in a purchase of the basket x, ¥,-
If p./p, falls, the initial utility level can now be ob-
tained with expenditures of E, by altering the
consumption bundle to x;, . Computing the expen-
diture level needed to continue consuming x,, ¥,
exaggerates how much extra purchasing power this
person needs to restore his or her level of well-being.
Economists have extensively studied the extent of this
substitution bias. Aizcorbe and Jackman (1993), for
example, find that this difficulty with a market basket
index may exaggerate the level of inflation shown by
the CPI by about 0.2 percent per year.

FIGURE E5.2 Substitution Bias in the CPI
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E5.2 Roy’s identity and new
goods bias

When new goods are introduced, it takes some time
for them to be integrated into the CPI. For example,
Hausman (1999, 2003) states that it took more than
15 years for cell phones to appear in the index. The
problem with this delay is that market basket indices
will fail to reflect the welfare gains that people experi-
ence from using new goods. To measure these costs,
Hausman sought to measure a “virtual” price (p*) at
which the demand for, say, cell phones would be zero
and then argued that the introduction of the good at
its market price represented a change in consumer
surplus that could be measured. Hence, the author

Initially expenditures are given by E; and this individual buys x, 5. If p,./p, falls, utility level U, can
be reached most cheaply by consuming x,, ¥, and spending E, . Purchasing x,, ¥, at the new prices
would cost more than E;. Hence, holding the consumption bundle constant imparts an upward bias

to CPI-type computations.

Quantity
ofy

Xo X4

Quantity of x
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was faced with the problem of how to get from the
Marshallian demand function for cell phones (which
he estimated econometrically) to the expenditure
function. To do so he used Roy’s identity (see Roy,
1942). Remember that the consumer’s utility-maxi-
mizing problem can be represented by the Lagrangian
expression &£ = U(x,y) + NI — px — py). If we
apply the envelope theorem to this expression, we
know that

au* %
a = a5 _)\x(anPyaI)’
P 0P i
0
JU*  9F
oI oI
Hence the Marshallian demand function is given by
—oU*/ap, ..
%( Py )y I) = Ul (ii)

Using his estimates of the Marshallian demand
function, Hausman integrated Equation ii to obtain -
the implied indirect utility function and then calculat-
ed its inverse, the expenditure function (check Figure
E5.1 to see the logic of the process). Though this
certainly is a roundabout scheme, it did yield large
estimates for the gain in consumer welfare from cell
phones—a present value in 1999 of more than $100
billion. Delays in the inclusion of such goods into the
CPI can therefore result in a misleading measure of
consumer welfare.

E5.3 Other complaints about
the CPI

Researchers have found several other faults with the
CPI as currently constructed. Most of these focus on
the consequences of using incorrect prices to compute
the index. For example, when the quality of a good
improves, people are made better-off, though this may
not show up in the good’s price. Throughout the
1970s and 1980s the reliability of color television sets
improved dramatically, but the price of a set did not
change very much. A market basket that included
“one color television set” would miss this source of
improved welfare. Similarly, the opening of “big box”
retailers such as Costco and Home Depot during the
1990s undoubtedly reduced the prices that consumers
paid for various goods. But including these new retail
outlets into the sample scheme for the CPI took sev-
eral years, so the index misrepresented what people
were actually paying. Assessing the magnitude of error
introduced by these cases where incorrect prices are
used in the CPI can also be accomplished by using the

various demand concepts in Figure E5.1. For a sum-
mary of this research, see Moulton (1996).

E5.4 Exact price indices

In principle, it is possible that some of the shortcom-
ings of price indices such as the CPI might be amelio-
rated by more careful attention to demand theory. If
the expenditure function for the representative con-
sumer were known, for example, it would be possible
to construct an “exact” index for changes in purchas-
ing power that would take commodity substitution
into account. To illustrate this, suppose there are
only two goods and we wish to know how purchasing
power has changed between period 1 and period 2. If
the expenditure function is given by E(p,, p,, U) then
the ratio )
_ E(p3,9;,0)
12 = =
E(py,py,U)
shows how the cost of attaining the target utility level
U has changed between the two periods. If, for
example, I; , = 1.04, then we would say that the cost
of attaining the utility target had increased by 4 per-
cent. Of course, this answer is only a conceptual one.
Without knowing the representative person’s utility
function, we would not know the specific form of the
expenditure function. But in some cases Equation iii
may suggest how to proceed in index construction.
Suppose, for example, that the typical person’s pref-
erences could be represented by the Cobb-Douglas
utility function U(x,y) = x*y'~®. In this case it is
easy to show that the expenditure function is a gen-
eralization of the one given in Example 4.4:
E(p.,p,, U) = pipy U /(1 — )™ = kpp) ™ U.
Inserting this function into Equation iii yields

R @)U () ()
R ()T (o) ()

So, in this case, the exact price index is a relatively
simple function of the observed prices. The particularly
useful feature of this example is that the utility target
cancels out in the construction of the cost-of-living
index (as it will anytime the expenditure function is
homogeneous in utility). Notice also that the expendi-
ture shares (o and 1 — &) play an important role in
the index—the larger a good’s share, the more impor-
tant will changes be in that good’s price in the final
index.

(iii)

(iv)



E5.5 Development of exact
price indices

The Cobb-Douglas utility function is, of course, a very
simple one. Much recent research on price indices has
focused on more general types of utility functions and
on the discovery of the exact price indices they imply.
For example, Feenstra and Reinsdorf (2000) show
that the almost ideal demand system described in the
Extensions to Chapter 4 implies an exact price index
(I) that takes a “Divisia” form:

In(I) = Z w;,Aln p; (v)
i=1

(here the w; are weights to be attached to the change
in the logarithm of each good’s price). Often the
weights in Equation v are taken to be the budget
shares of the goods. Interestingly, this is precisely the
price index implied by the Cobb-Douglas utility
function in Equation iv, since
In(L ,)= alnp?+ (1 — a) lnpi
—alnpl — (1 - a)lnp;
=allnp, +(1-a)Alnp,. (vi)
In actual applications, the weights would change from
period to period to reflect changing budget shares.
Similarly, changes over several periods would be
“chained” together from a number of single-period
price change indices.

Changing demands for food in China. China has
one of the fastest growing economies in the world: its
GDP per capita is currently growing at a rate of about
8 percent per year. Chinese consumers also spend a
large fraction of their incomes on food—approximately
38 percent of total expenditures in recent survey data.
One implication of the rapid growth in Chinese
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incomes, however, is that patterns of food consump-
tion are changing rapidly. Purchases of staples, such as
rice or wheat, are declining in relative importance,
whereas purchases of poultry, fish, and processed
foods are growing rapidly. A recent paper by Gould
and Villarreal (2006) studies these patterns in detail
using the AIDS model. They identify a variety of sub-
stitution effects across specific food categories in re-
sponse to changing relative prices. Such changing
patterns imply that a fixed market basket price index
(such as the U.S. Consumer Price Index) would be
particularly inappropriate for measuring changes in
the cost of living in China and that some alternative
approaches should be examined.
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Demand Relationships among Goods

In Chapter 5 we examined how changes in the price of a particular good (say, good x) affect the quantity of
that good chosen. Throughout the discussion, we held the prices of all other goods constant. It should be
clear, however, that a change in one of these other prices could also affect the quantity of x chosen. For
example, if x were taken to represent the quantity of automobile miles that an individual drives, this quantity
might be expected to decline when the price of gasoline rises or increase when air and bus fares rise. In this
chapter we will use the utility-maximization model to study such relationships.

THE TWO-GOOD CASE

We begin our study of the demand relationship among goods with the two-good case.
Unfortunately, this case proves to be rather uninteresting because the types of relationships
that can occur when there are only two goods are quite limited. Still, the two-good case is
useful because it can be illustrated with two-dimensional graphs. Figure 6.1 starts our ex-
amination by showing two examples of how the quantity of x chosen might be affected by a
change in the price of y. In both panels of the figure, p, has fallen. This has the result of
shifting the budget constraint outward from I, to I;. In both cases, the quantity of good y
chosen has also increased from y, to ¥, as a result of the decline in p,, as would be expected if y
is a normal good. For good x, however, the results shown in the two panels differ. In (a) the
indifference curves are nearly L-shaped, implying a fairly small substitution effect. A decline in
p, does not induce a very large move along U, as y is substituted for x. That is, x drops
relatively little as a result of the substitution. The income effect, however, reflects the greater
purchasing power now available, and this causes the total quantity of x chosen to increase.
Hence, dx/dp, is negative (v and p, move in opposite directions).

In Figure 6.1Db this situation is reversed: dx/d p, is positive. The relatively flat indifference
curves in Figure 6.1b result in a large substitution effect from the fall in p,. The quantity of x
declines sharply as y is substituted for x along Uj,. As in Figure 6.1a, the increased purchasing
power from the decline in p, causes more x to be bought, but now the substitution effect
dominates and the quantity of x declines to ;. In this case, then, x and p, move in the same
direction.

A mathematical treatment

The ambiguity in the effect of changes in p, can be further illustrated by a Slutsky-type
equation. By using procedures similar to those in Chapter 5, it is fairly simple to show that

ox(p.,p,, I
% = substitution effect + income effect
y
_ y 6.1)
apy U=constant ar )



Chapter 6 Demand Relationships among Goods 183

FIGURE 6.1 Differing Directions of Cross-Price Effects

In both panels, the price of y has fallen. In (a), substitu-  gross complements. In (b), substitution effects are large so
tion effects are small so the quantity of x consumed  the quantity of x chosen falls. Because dx/dp, > 0, x and
increases along with y. Because dx/d py, < 0,xand yare ywould be termed gross substitutes.

Quantity of y Quantity of y

Y1

yo ————————— U1

Uo

Quantity Xq Xo Quantity
of x of x

(a) Gross complements (b) Gross substitutes

or, in elasticity terms,

(6.2)

Cu,p, = Cuep, T 5Ok, I

Notice that the size of the income effect is determined by the share of good y in this person’s
purchases. The impact of a change in p, on purchasing power is determined by how im-
portant y is to this person.

For the two-good case, the terms on the right side of Equations 6.1 and 6.2 have different
signs. Assuming that indifference curves are convex, the substitution effect 04/3p,[ ;_constant
is positive. If we confine ourselves to moves along one indifference curve, increases in 2y
increase x and decreases in p, decrease the quantity of x chosen. But, assuming x is a normal
good, the income effect (= ydx/dI or —s,e, ) is clearly negative. Hence, the combined
effect is ambiguous; dx/dp, could be either positive or negative. Even in the two-good case,
the demand relationship between x and p, is rather complex.

EXAMPLE 6.1 Another Slutsky Decomposition for Cross-Price Effects

In Example 5.4 we examined the Slutsky decomposition for the effect of a change in the price
of x. Now let’s look at the cross-price effect of a change in y prices on x purchases. Remember
that the uncompensated and compensated demand functions for x are given by

0.51
x(px’pya I) = (6‘3)
.
and
& (P by, V) = V)5, 03 (6.4)

(continued)
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EXAMPLE 6.1 CONTINUED

As we have pointed out before, the Marshallian demand function in this case yields
dx/dp, = 05 that is, changes in the price of y do not affect x purchases. Now we show that
this occurs because the substitution and income effects of a price change are precisely
counterbalancing. The substitution effect in this case is given by

— a_xt =0.5V; -05,-05 (6.5)
=0 (R .

U = constant y

x

81)},

Substituting for ¥ from the indirect utility function (V = 0.5[17;05 £.°5) gives a final state-
ment for the substitution effect:

x

ap,
Returning to the Marshallian demand function for y (y = O.SIpy’l) to calculate the income
effect yields

=0.25Ip,'p, . (6.6)

U= constant

—yz—’; = —[0.5Ip,"] - [0.5p, '] = —0.25Ip, " p, ", (6.7)
and combining Equations 6.6 and 6.7 gives the total effect of the change in the price of y as
dx ~1,-1 -1,-1
— =025Ip, p. — 0.25Ip, p.- = 0. (6.8)
op, y Fx y Fx
This makes clear that the reason that changes in the price of ¥ have no effect on x purchases
in the Cobb-Douglas case is that the substitution and income eftects from such a change are
precisely offsetting; neither of the effects alone, however, is zero.

Returning to our numerical example (p, = 1,p, = 4,1 =8,V = 2), suppose now that p,
falls to 2. This should have no effect on the Marshallian demand for good x. The compen-
sated demand function in Equation 6.4 shows that the price change would cause the quantity
of x demanded to decline from 4 to 2.83 (= 2v/2) as y is substituted for x with utility
unchanged. However, the increased purchasing power arising from the price decline precisely
reverses this effect.

QUERY: Why would it be incorrect to argue that if 9,/dp, = 0, then x and y have no

substitution possibilities—that is, they must be consumed in fixed proportions? Is there any
case in which such a conclusion could be drawn?

SUBSTITUTES AND COMPLEMENTS

With many goods, there is much more room for interesting relations among goods. It is

relatively easy to generalize the Slutsky equation for any two goods x;, x; as

0x; I 0x; ax;
1(1’13 7pna ) _ _ xj_z, (6.9)

apj apj U=constant oI

and again this can be readily translated into an elasticity relation:
€ ;=€ ; — S (6.10)

This says that the change in the price of any good (here, good j) induces income and
substitution effects that may change the quantity of every good demanded. Equations 6.9 and
6.10 can be used to discuss the idea of substitutes and complements. Intuitively, these ideas are
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rather simple. Two goods are substitutes if one good may, as a result of changed conditions,
replace the other in use. Some examples are tea and coffee, hamburgers and hot dogs, and
butter and margarine. Complements, on the other hand, are goods that “go together,” such as
coffee and cream, fish and chips, or brandy and cigars. In some sense, “substitutes” substitute
for one another in the utility function whereas “complements” complement each other.

There are two different ways to make these intuitive ideas precise. One of these focuses on
the “gross” effects of price changes by including both income and substitution eftects; the
other looks at substitution effects alone. Because both definitions are used, we will examine
each in detail.

Gross substitutes and complements

Whether two goods are substitutes or complements can be established by referring to
observed price reactions as follows.

Gross substitutes and complements. Two goods, x; and x;, are said to be gross substi-

tutes if

0%;

Ziso (6.11)
and gross complements if

A%;

%o, (6.12)

That is, two goods are gross substitutes if a rise in the price of one good causes more of the
other good to be bought. The goods are gross complements if a rise in the price of one good
causes less of the other good to be purchased. For example, if the price of coffee rises, the
demand for tea might be expected to increase (they are substitutes), whereas the demand for
cream might decrease (coftee and cream are complements). Equation 6.9 makes it clear that
this definition is a “gross” definition in that it includes both income and substitution effects
that arise from price changes. Because these effects are in fact combined in any real-world
observation we can make, it might be reasonable always to speak only of “gross” substitutes
and “gross” complements.

Asymmetry of the gross definitions

There are, however, several things that are undesirable about the gross definitions of sub-
stitutes and complements. The most important of these is that the definitions are not
symmetric. It is possible, by the definitions, for x; to be a substitute for x, and at the same
time for x, to be a complement of &, . The presence of income effects can produce paradoxical
results. Let’s look at a specific example.

DEFINITION

EXAMPLE 6.2 Asymmetry in Cross-Price Effects

Suppose the utility function for two goods (x and y) has the quasi-linear form

U(x,y) =Inx+y. (6.13)
Setting up the Lagrangian expression
L=Inx+y+NI-px—py) (6.14)

(continued)
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EXAMPLE 6.2 CONTINUED

DEFINITION

yields the following first-order conditions:
o 1

ax X px b

ﬁzl—)\p =0, (6.15)

dy Y

oL

Moving the terms in \ to the right and dividing the first equation by the second yields

1
Sl (6.16)
X py

Substitution into the budget constraint now permits us to solve for the Marshallian demand
function for y:

I=px+py=0p,+0)y. (6.18)

Hence,
I - 2,
p

This equation shows that an increase in p, must decrease spending on good y (that is, p,y).
Therefore, since p, and I are unchanged, spending on x must rise. So

(6.19)

y:

0x

pr
and we would term x and y gross substitutes. On the other hand, Equation 6.19 shows that
spending on y is independent of p,. Consequently,

ay

apx
and, looked at in this way, x and y would be said to be independent of each other; they are

neither gross substitutes nor gross complements. Relying on gross responses to price changes
to define the relationship between x and y would therefore run into ambiguity.

>0, (6.20)

=0 (6.21)

QUERY: In Example 3.4, we showed thata utility function of the form given by Equation 6.13
is not homothetic: the MRS does not depend only on the ratio of x to y. Can asymmetry arise in
the homothetic case?

NET SUBSTITUTES AND COMPLEMENTS

Because of the possible asymmetries involved in the definition of gross substitutes and
complements, an alternative definition that focuses only on substitution effects is often used.

Net substitutes and complements. Goods ; and x; are said to be net substitutes if
ax;
— >0 (6.22)
ap J | U=constant
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and net complements if

0X:
% <0. (6.23)
apj U=constant

These definitions,’ then, look only at the substitution terms to determine whether two goods
are substitutes or complements. This definition is both intuitively appealing (because it looks
only at the shape of an indifference curve) and theoretically desirable (because it is unambig-
uous). Once x; and x; have been discovered to be substitutes, they stay substitutes, no matter
in which direction the definition is applied. As a matter of fact, the definitions are perfectly
symmetric:

ox;

op;
The substitution effect of a change in p; on good «; is identical to the substitution effect of a
change in p; on the quantity of x; chosen. This symmetry is important in both theoretical
and empirical work.?

The differences between the two definitions of substitutes and complements are casily
demonstrated in Figure 6.1a. In this figure, x and y are gross complements, but they are net
substitutes. The derivative dx/dp, turns out to be negative (x and y are gross complements)
because the (positive) substitution effect is outweighed by the (negative) income effect (a fall
in the price of y causes real income to increase greatly, and, consequently, actual purchases of
x increase). However, as the figure makes clear, if there are only two goods from which
to choose, they must be net substitutes, although they may be either gross substitutes or
gross complements. Because we have assumed a diminishing MRS, the own-price sub-
stitution effect must be negative and, consequently, the cross-price substitution effect must
be positive.

0x;:
= (6.24)

U=constant (:)17 7| U=constant

SUBSTITUTABILITY WITH MANY GOODS

Once the utility-maximizing model is extended to many goods, a wide variety of demand
patterns become possible. Whether a particular pair of goods are net substitutes or net
complements is basically a question of a person’s preferences, so one might observe all sorts
of odd relationships. A major theoretical question that has concerned economists is whether
substitutability or complementarity is more prevalent. In most discussions, we tend to regard
goods as substitutes (a price rise in one market tends to increase demand in most other
markets). It would be nice to know whether this intuition is justified.

"These are sometimes called “Hicksian” substitutes and complements, named after the British economist John Hicks, who
originally developed the definitions.

2This symmetry is casily shown using Shephard’s lemma. Compensated demand functions can be calculated from ex-
penditure functions by differentiation:

GE(pys- Py V.
51ty V) = B Y,

Hence, the substitution effect is given by
ax; A B
apj U=constant apj apjapi v

But now we can apply Young’s theorem to the expenditure function:

9

E.=E, = —=- R
v ’ dpi dpi U=constant

_

which proves the symmetry.
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The British economist John Hicks studied this issue in some detail about 50 years ago and
reached the conclusion that “most” goods must be substitutes. The result is summarized in
what has come to be called “Hicks’ second law of demand.”® A modern proof starts with the
compensated demand function for a particular good: x¢(p,,...,p,, V). This function is
homogeneous of degree 0 in all prices (if utility is held constant and prices double, quantities
demanded do not change because the utility-maximizing tangencies do not change). Apply-
ing Euler’s theorem to the function yields

x5 x5 L
. . . =0. 6.25
We can put this result into elasticity terms by dividing Equation 6.25 by x;:
e +e,+ - +e,=0. (6.26)

But we know that ¢/, < 0 because of the negativity of the own-substitution effect. Hence it
must be the case that
> e >0. (6.27)
J#i
In words, the sum of all the compensated cross-price elasticities for a particular good
must be positive (or zero). This is the sense that “most” goods are substitutes. Empirical
evidence seems generally consistent with this theoretical finding: instances of net com-
plementarity between goods are encountered relatively infrequently in empirical studies
of demand.

COMPOSITE COMMODITIES

Our discussion in the previous section showed that the demand relationships among goods
can be quite complicated. In the most general case, an individual who consumes 7 goods will
have demand functions that reflect #(z + 1)/2 different substitution effects.* When 7 is very
large (as it surely is for all the specific goods that individuals actually consume), this general
case can be unmanageable. It is often far more convenient to group goods into larger
aggregates such as food, clothing, shelter, and so forth. At the most extreme level of
aggregates, we might wish to examine one specific good (say, gasoline, which we might
call x) and its relationship to “all other goods,” which we might call y. This is the procedure
we have been using in some of our two-dimensional graphs, and we will continue to do so at
many other places in this book. In this section we show the conditions under which this
procedure can be defended. In the Extensions to this chapter, we explore more general issues
involved in aggregating goods into larger groupings.

Composite commodity theorem

Suppose consumers choose among # goods but that we are only interested specifically in
one of them—say, x,. In general, the demand for x; will depend on the individual prices
of the other » — 1 commodities. But if all these prices move together, it may make sense to

3See John Hicks, Value and Capital (Oxford: Oxford University Press, 1939), mathematical appendices. There is some
debate about whether this result should be called Hicks” “second” or “third” law. In fact, two other laws that we have already
seen are listed by Hicks: (1) dx7/9p; < 0 (negativity of the own-substitution effect); and (2) 9x7/dp; = 9x;/dp; (symmetry of
cross-substitution effects). But he refers explicitly only to two “properties” in his written summary of his results.

*To see this, notice that all substitution effects, Sif> could be recorded in an 7 x 7 matrix. However, symmetry of the effects
(57 = s;;) implies that only those terms on and below the principal diagonal of this matrix may be distinctly different from
cach other. This amounts to half the terms in the matrix (%2 /2) plus the remaining half of the terms on the main diagonal

of the matrix (7/2).
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lump them into a single “composite commodity,” y. Formally, if we let 9, ..., p% represent
the initial prices of these goods, then we assume that these prices can only vary together.
They might all double, or all decline by 50 percent, but the relative prices of x,, ..., x, would
not change. Now we define the composite commodity y to be total expenditures on
%y, ..., X,,, Using the initial prices 29, ..., p2:

Y= 03% + P3%; + o %, (6.28)
This person’s initial budget constraint is given by
I=pyoy + 93y + o+ %, = P14y + 9. (6.29)

By assumption, all of the prices p,, ..., p, change in unison. Assume all of these prices change
by a factor of ¢ (¢ > 0). Now the budget constraint is
I=pyxy +1p3%, + - + 9%, = pay + 1. (6.30)

Consequently, the factor of proportionality, ¢, plays the same role in this person’s budget
constraint as did the price of y(p,) in our earlier two-good analysis. Changes in p; or ¢
induce the same kinds of substitution effects we have been analyzing. So long as p,, ..., p,
move together, we can therefore confine our examination of demand to choices between
buying x; or buying “everything else.”® Simplified graphs that show these two goods on
their axes can therefore be defended rigorously so long as the conditions of this “composite
commodity theorem” (that all other prices move together) are satisfied. Notice, however,
that the theorem makes no predictions about how choices of x,, ..., %, behave; they need
not move in unison. The theorem focuses only on total spending on x, ..., x,,, not on how
that spending is allocated among specific items (although this allocation is assumed to be
done in a utility-maximizing way).

Generalizations and limitations

The composite commodity theorem applies to any group of commodities whose relative
prices all move together. It is possible to have more than one such commodity if there are
several groupings that obey the theorem (i.e., expenditures on “food,” “clothing,” and so
forth). Hence, we have developed the following definition.

Composite commodity. A composite commodity is a group of goods for which all prices
move together. These goods can be treated as a single “commodity” in that the individual
behaves as if he or she were choosing between other goods and total spending on the entire
composite group.

This definition and the related theorem are very powerful results. They help simplify many
problems that would otherwise be intractable. Still, one must be rather careful in applying
the theorem to the real world because its conditions are stringent. Finding a set of com-
modities whose prices move together is rare. Slight departures from strict proportionality
may negate the composite commodity theorem if cross-substitution effects are large. In
the Extensions to this chapter, we look at ways to simplify situations where prices move
independently.

®The idea of a “composite commodity” was also introduced by J. R. Hicks in Value and Capital, 2nd ed. (Oxford: Oxford
University Press, 1946), pp. 312-13. Proof of the theorem relies on the notion that to achieve maximum utility, the ratio of
the marginal utilities for x,, ..., x, must remain unchanged when p,, ..., p, all move together. Hence, the #-good problem
can be reduced to the two-dimensional problem of equating the ratio of the marginal utility from x to that from ¥ to the

“price ratio” p, /t.

DEFINITION
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EXAMPLE 6.3 Housing Costs as a Composite Commodity

Suppose that an individual receives utility from three goods: food (x), housing services (y)
measured in hundreds of square feet, and household operations (z) as measured by elec-
tricity use.

If the individual’s utility is given by the three-good CES function

1 1 1
tility = U =— - — = = 6.31
utility (x,9,2) priv i (6.31)
then the Lagrangian technique can be used to calculate Marshallian demand functions for
these goods as

I
x = R
b+ /DD, + /PP

y (6.32)

I
P+ /Bt /DD
I

z = .
Pst VPPt /Dy
If initially I =100, p, = 1,p, =4, and p, = 1, then the demand functions predict

x* =25,
y* =12.5, (6.33)
z* =25,

Hence, 25 is spent on food and a total of 75 is spent on housing-related needs. If we assume
that housing service prices (p,) and household operation prices (p,) always move together,
then we can use their initial prices to define the “composite commodity” housing (%) as
b= 4y+ 1z. (6.34)
Here, we also (arbitrarily) define the initial price of housing (p,) to be 1. The initial quantity
of housing is simply total dollars spent on 4:
h=4(12.5)+1(25) = 75. (6.35)
Furthermore, because p, and p, always move together, p), will always be related to these
prices by
Py =1,=025p, (6.36)
Using this information, we can recalculate the demand function for x as a function of 1, p,,
and p,:
I

x =
px + V 4pxph + Vpxph
I

5, +3VRD,
As before, initially I =100, p, = 1, and p, = 1, so x™ = 25. Spending on housing can be
most easily calculated from the budget constraint as 4™ = 75, because spending on housing
represents “everything” other than food.

(6.37)

An increase in housing costs. If the prices of y and z were to rise proportionally to p, = 16,
p., = 4 (with p, remaining at 1), then p;, would also rise to 4. Equation 6.37 now predicts that
the demand for x would fall to

. 100 100

= m =~ (6.38)
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and that housing purchases would be given by
100 600

b =100 - — = — 6.39
or, because p, =4,
1
b = $~ (6.40)

Notice that this is precisely the level of housing purchases predicted by the original demand
functions for three goods in Equation 6.32. With I =100, p, =1, p, =16, and p, = 4,
these equations can be solved as

100
*
X =
100
¥ - 6.41
YT g (641)
100
*
T 1

and so the total amount of the composite good “housing” consumed (according to Equa-
tion 6.34) is given by

150
>
Hence, we obtained the same responses to price changes regardless of whether we chose to
examine demands for the three goods «, y, and z or to look only at choices between x and
the composite good 4.

b =4y" +15% = (6.42)

QUERY: How do we know that the demand function for x in Equation 6.37 continues to
ensure utility maximization? Why is the Lagrangian constrained maximization problem
unchanged by making the substitutions represented by Equation 6.36?

HOME PRODUCTION, ATTRIBUTES OF GOODS,
AND IMPLICIT PRICES

So far in this chapter we have focused on what economists can learn about the relationships
among goods by observing individuals’ changing consumption of these goods in reaction to
changes in market prices. In some ways this analysis skirts the central question of why coffee
and cream go together or why fish and chicken may substitute for each other in a person’s diet.
To develop a deeper understanding of such questions, economists have sought to explore
activities within individuals’ households. That is, they have devised models of nonmarket
types of activities such as parental child care, meal preparation, or do-it-yourself construction
to understand how such activities ultimately result in demands for goods in the market. In this
section we briefly review some of these models. Our primary goal is to illustrate some of the
implications of this approach for the traditional theory of choice.

Household production model

The starting point for most models of household production is to assume that individuals do
not receive utility directly from goods they purchase in the market (as we have been assuming
so far). Instead, it is only when market goods are combined with time inputs by the individual
that utility-providing outputs are produced. In this view, then, raw beef and uncooked
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potatoes yield no utility until they are cooked together to produce stew. Similarly, market
purchases of beef and potatoes can be understood only by examining the individual’s
preferences for stew and the underlying technology through which it is produced.

In formal terms, assume as before that there are three goods that a person might purchase
in the market: x,y, and z. Purchasing these goods provides no direct utility, but the goods
can be combined by the individual to produce either of two home-produced goods: 2, or a,.
The technology of this household production can be represented by the production func-
tions f; and f, (see Chapter 9 for a more complete discussion of the production function

concept). Therefore,
1 Zfi(x,y,z), (6 43)
a4y = fz(xaj’, z))

and
utility = U(a,, a,). (6.44)

The individual’s goal is to choose x, ¥, z so as to maximize utility subject to the production
constraints and to a financial budget constraint:°

px+py+p.2=1 (6.45)

Although we will not examine in detail the results that can be derived from this general
model, two insights that can be drawn from it might be mentioned. First, the model may
help clarify the nature of market relationships among goods. Because the production func-
tions in Equations 6.43 are in principle measurable using detailed data on household
operations, households can be treated as “multi-product” firms and studied using many of
the techniques economists use to study production.

A second insight provided by the household production approach is the notion of the
“implicit” or “shadow” prices associated with the home-produced goods 2, and #,. Because
consuming more #,, say, requires the use of more of the “ingredients” x, y, and z, this activity
obviously has an opportunity cost in terms of the quantity of a, that can be produced. To
produce more bread, say, a person must not only divert some flour, milk, and eggs from using
them to make cupcakes but may also have to alter the relative quantities of these goods
purchased because he or she is bound by an overall budget constraint. Hence, bread will have
an implicit price in terms of the number of cupcakes that must be forgone in order to be able
to consume one more loaf. That implicit price will reflect not only the market prices of bread
ingredients but also the available household production technology and, in more complex
models, the relative time inputs required to produce the two goods. As a starting point,
however, the notion of implicit prices can be best illustrated with a very simple model.

The linear attributes model

A particularly simple form of the houschold production model was first developed by
K. J. Lancaster to examine the underlying “attributes” of goods.” In this model, it is the
attributes of goods that provide utility to individuals, and each specific good contains a fixed
set of attributes. If, for example, we focus only on the calories (#,) and vitamins (a,) that
various foods provide, Lancaster’s model assumes that utility is a function of these attributes
and that individuals purchase various foods only for the purpose of obtaining the calories and
vitamins they offer. In mathematical terms, the model assumes that the “production”

SOften houschold production theory also focuses on the individual’s allocation of time to producing a; and a, or to
working in the market. In Chapter 16 we look at a few simple models of this type.

7See K. J. Lancaster, “A New Approach to Consumer Theory,” Journal of Political Economy 74 (April 1966): 132-57.
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equations have the simple form

M =ax+ayy+alz,
> > > (6.46)

n =ax+tay+azs,
where ! represents the number of calories per unit of food «, a2 represents the number of
vitamins per unit of food x, and so forth. In this form of the model, then, there is no actual
“production” in the home. Rather, the decision problem is how to choose a diet that
provides the optimal mix of calories and vitamins given the available food budget.

lllustrating the budget constraints

To begin our examination of the theory of choice under the attributes model, we first
illustrate the budget constraint. In Figure 6.2, the ray Ox records the various combinations
of a; and a, available from successively larger amounts of good x. Because of the linear
production technology assumed in the attributes model, these combinations of #, and a, lie
along such a straight line, though in more complex models of home production that might
not be the case. Similarly, rays of 0y and 0z show the quantities of the attributes #, and a,
provided by various amounts of goods y and z that might be purchased.

If this person spends all of his or her income on good x, then the budget constraint
(Equation 6.45) allows the purchase of

I
Xt == (6.47)
y2»
and that will yield
af = alx* = ﬂ’ch,
Px (6.48)
21
ay = alx* = =
Py

This point is recorded as point ™ on the 0« ray in Figure 6.2. Similarly, the points y* and z*
represent the combinations of #; and #, that would be obtained if all income were spent on
good y or good z, respectively.

Bundles of #; and 2, that are obtainable by purchasing both x and y (with a fixed budget)
are represented by the line joining x* and y* in Figure 6.2.® Similarly, the line x*z* represents
the combinations of #; and , available from x and z, and the line y*z* shows combinations
available from mixing y and z. All possible combinations from mixing the three market goods

are represented by the shaded triangular area x™y*z*.

Corner solutions

One fact is immediately apparent from Figure 6.2: A utility-maximizing individual would
never consume positive quantities of all three of these goods. Only the northeast perimeter of
the x™y*z* triangle represents the maximal amounts of #; and #, available to this person
given his or her income and the prices of the market goods. Individuals with a preference
toward 4, will have indifference curves similar to U, and will maximize utility by choosing a
point such as E. The combination of #; and 2, specified by that point can be obtained by

8Mathematically, suppose a fraction a of the budget is spent on x and (1 — «) on y; then
m = ams® + (1 - @)a)y*,
a, = anla® + (1 - a)aly*.

The line #*y* is traced out by allowing « to vary between 0 and 1. The lines x*z* and y*z* are traced out in a similar way,
as is the triangular area ™ y* 2™

193
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FIGURE 6.2 Utility Maximization in the Attributes Model

The points ¥, y*, and z* show the amounts of attributes #, and , that can be purchased by buying
only x, y, or z, respectively. The shaded area shows all combinations that can be bought with mixed
bundles. Some individuals may maximize utility at E, others at E'.

consuming only goods y and z. Similarly, a person with preferences represented by the
indifference curve Uy will choose point E' and consume only goods x and y. The attributes
model therefore predicts that corner solutions at which individuals consume zero amounts of
some commodities will be relatively common, especially in cases where individuals attach
value to fewer attributes (here, two) than there are market goods to choose from (three). If
income, prices, or preferences change, then consumption patterns may also change abruptly.
Goods that were previously consumed may cease to be bought and goods previously ne-
glected may experience a significant increase in purchases. This is a direct result of the linear
assumptions inherent in the production functions assumed here. In household production
models with greater substitutability assumptions, such discontinuous reactions are less likely.

SUMMARY

In this chapter, we used the utility-maximizing model of
choice to examine relationships among consumer goods.
Although these relationships may be complex, the analysis
presented here provided a number of ways of categorizing
and simplifying them.

e When there are only two goods, the income and substi-
tution effects from the change in the price of one good
(say, p,) on the demand for another good (x) usually
work in opposite directions. The sign of dx/dp, is there-
fore ambiguous: its substitution effect is positive but its
income effect is negative.

In cases of more than two goods, demand relationships
can be specified in two ways. Two goods (x; and xj) are
“gross substitutes” if dx;/dp; > 0 and “gross comple-
ments” if 9x;/dp; < 0. Unfortunately, because these
price effects include income eftects, they need not be sym-
metric. Thatis, dx;/d p; does not necessarily equal dx; /9p;.

Focusing only on the substitution effects from price
changes eliminates this ambiguity because substitution
effects are symmetric; that is, dx¢ /v8p]- = axs/ 811.;.. NOW
two goods are defined as net (or Hicksian) substitutes if
dx5/dp; > 0 and net complements if 9} /dp; < 0. Hicks’



Chapter 6 Demand Relationships among Goods

195

“second law of demand” shows that net substitutes are ® An alternative way to develop the theory of choice
more prevalent. among market goods is to focus on the ways in which

e If a group of goods has prices that always move in
unison, then expenditures on these goods can be treated
as a “composite commodity” whose “price” is given by
the size of the proportional change in the composite
goods’ prices.

PROBLEMS

6.1
Heidi receives utility from two goods, goat’s milk (72) and strudel (s), according to the utility function
U(m,s) =m - s.
a. Show that increases in the price of goat’s milk will not affect the quantity of strudel Heidi buys;
that is, show that ds/dp,, = 0.
b. Show also that dm/ap, = 0.

¢. Use the Slutsky equation and the symmetry of net substitution effects to prove that the income
effects involved with the derivatives in parts (a) and (b) are identical.

d. Prove part (c) explicitly using the Marshallian demand functions for » and s.

6.2

Hard Times Burt buys only rotgut whiskey and jelly donuts to sustain him. For Burt, rotgut whiskey is
an inferior good that exhibits Giffen’s paradox, although rotgut whiskey and jelly donuts are Hicksian
substitutes in the customary sense. Develop an intuitive explanation to suggest why a rise in the price of
rotgut must cause fewer jelly donuts to be bought. That is, the goods must also be gross complements.

6.3

Donald, a frugal graduate student, consumes only coffee (¢) and buttered toast (&z). He buys these
items at the university cafeteria and always uses two pats of butter for each piece of toast. Donald spends
exactly half of his meager stipend on coffee and the other half on buttered toast.

a. In this problem, buttered toast can be treated as a composite commodity. What is its price in
terms of the prices of butter (p,) and toast (p,)?

b. Explain why dc/dp,, = 0.

c. Isitalso true here that d¢/dp, and dc/dp, are equal to 0?

6.4

Ms. Sarah Traveler does not own a car and travels only by bus, train, or plane. Her utility function is
given by
utility =4 - ¢ - p,
where each letter stands for miles traveled by a specific mode. Suppose that the ratio of the price of
train travel to that of bus travel (p,/p,) never changes.
a. How might one define a composite commodity for ground transportation?

b. Phrase Sarah’s optimization problem as one of choosing between ground (g) and air (p)
transportation.

c. What are Sarah’s demand functions for 4 and p?

d. Once Sarah decides how much to spend on g, how will she allocate those expenditures between
band 2

market goods are used in household production to yield
utility-providing attributes. This may provide additional
insights into relationships among goods.
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6.5

Suppose that an individual consumes three goods, x;, x,, and x5, and that », and x; are similar
commodities (i.e., cheap and expensive restaurant meals) with p, = kp;, where & < 1—that is, the
goods’ prices have a constant relationship to one another.

a.

b.

6.6

Show that &, and x; can be treated as a composite commodity.

Suppose both x, and x; are subject to a transaction cost of # per unit (for some examples, see
Problem 6.6). How will this transaction cost affect the price of ;, relative to that of x;? How will
this effect vary with the value of #?

Can you predict how an income-compensated increase in ¢ will affect expenditures on the
composite commodity &, and x;? Does the composite commodity theorem strictly apply to
this case?

How will an income-compensated increase in ¢ affect how total spending on the composite
commodity is allocated between x, and x5?

Apply the results of Problem 6.5 to explain the following observations:

a.

6.7

It is difficult to find high-quality apples to buy in Washington State or good fresh oranges in
Florida.

. People with significant baby-sitting expenses are more likely to have meals out at expensive

(rather than cheap) restaurants than are those without such expenses.

Individuals with a high value of time are more likely to fly the Concorde than those with a lower
value of time.

. Individuals are more likely to search for bargains for expensive items than for cheap ones. Noze:

Observations (b) and (d) form the bases for perhaps the only two murder mysteries in which
an economist solves the crime; see Marshall Jevons, Murder at the Margin and The Fatal
Equilibrinm.

In general, uncompensated cross-price effects are not equal. That is,

dx; 0%
ap; "~ op;

Use the Slutsky equation to show that these effects are equal if the individual spends a constant fraction
of income on each good regardless of relative prices. (This is a generalization of Problem 6.1.)

6.8

Example 6.3 computes the demand functions implied by the three-good CES utility function

a.

b.

1 1 1
Ux,y,3) = —— — — — —.
®y.8)==2~77 3
Use the demand function for x in Equation 6.32 to determine whether x and y or x and z are
gross substitutes or gross complements.

How would you determine whether x and y or x and z are net substitutes or net complements?

Analytical Problems
6.9 Consumer surplus with many goods

In Chapter 5, we showed how the welfare costs of changes in a single price can be measured using
expenditure functions and compensated demand curves. This problem asks you to generalize this to
price changes in two (or many) goods.
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a. Suppose that an individual consumes 7 goods and that the prices of two of those goods (say, p,
and p,) rise. How would you use the expenditure function to measure the compensating
variation (CV) for this person of such a price rise?

b. A way to show these welfare costs graphically would be to use the compensated demand curves
for goods x; and x, by assuming that one price rose before the other. Illustrate this approach.

¢. In your answer to part (b), would it matter in which order you considered the price changes?
Explain.

d. In general, would you think that the CV for a price rise of these two goods would be greater if
the goods were net substitutes or net complements? Or would the relationship between the
goods have no bearing on the welfare costs?

6.10 Separable utility

A utility function is called separable if it can be written as
U(x,y) = Uy (%) + U, (),
where U/ > 0,U” < 0, and U, U, need not be the same function.

a. What does separability assume about the cross-partial derivative U,,? Give an intuitive discus-
sion of what word this condition means and in what situations it mlght be plausible.

b. Show that if utility is separable then neither good can be inferior.

c. Does the assumption of separability allow you to conclude definitively whether x and y are gross
substitutes or gross complements? Explain.

d. Use the Cobb-Douglas utility function to show that separability is not invariant with respect to
monotonic transformations. Note: Separable functions are examined in more detail in the Exten-
sions to this chapter.

6.11 Graphing complements

Graphing complements is complicated because a complementary relationship between goods (under
the Hicks definition) cannot occur with only two goods. Rather, complementarity necessarily involves
the demand relationships among three (or more) goods. In his review of complementarity, Samuelson
provides a way of illustrating the concept with a two-dimensional indifference curve diagram (see the
Suggested Readings). To examine this construction, assume there are three goods that a consumer
might choose. The quantities of these are denoted by x;, &,, x;. Now proceed as follows.

a. Draw an indifference curve for x, and x,, holding the quantity of x; constant at x9. This
indifference curve will have the customary convex shape.

b. Now draw a second (higher) indifference curve for x,, x5, holding x; constant at ¥ — 4. For
this new indifference curve, show the amount of extra x, that would compensate this person for
the loss of x; ; call this amount 7. Similarly, show that amount of extra x; that would compensate
for the loss of x, and call this amount £.

c. Suppose now that an individual is given both amounts 7 and %, thereby permitting him or her to
move to an even higher «, /x; indifference curve. Show this move on your graph and draw this
new indifterence curve.

d. Samuelson now suggests the following definitions:

o If the new indifference curve corresponds to the indifference curve when x,= &) — 24,
goods 2 and 3 are independent.

* Ifthe new indifference curve provides more utility than when x; = x — 24, goods 2 and 3
are complements.

e Ifthe new indifference curve provides less utility than when x; = 59 — 24, goods 2 and 3 are
substitutes.

Show that these graphical definitions are symmetric.
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¢. Discuss how these graphical definitions correspond to Hicks’ more mathematical definitions
given in the text.

f. Looking at your final graph, do you think that this approach fully explains the types of relation-
ships that might exist between x, and x;?

6.12 Shipping the good apples out

Details of the analysis suggested in Problems 6.5 and 6.6 were originally worked out by Borcherding
and Silberberg (see the Suggested Readings) based on a supposition first proposed by Alchian and
Allen. These authors look at how a transaction charge affects the relative demand for two closely
substitutable items. Assume that goods x, and x5 are close substitutes and are subject to a transaction
charge of ¢ per unit. Suppose also that good 2 is the more expensive of the two goods (i.e., “good apples”
as opposed to “cooking apples”). Hence the transaction charge lowers the relative price of the more
expensive good [thatis, (p, + £)/(p; + ¢) falls as ¢ increases]. This will increase the relative demand for
the expensive good if 9(x5/x5)/9¢ > 0 (where we use compensated demand functions in order to
eliminate pesky income effects). Borcherding and Silberberg show this result will probably hold using
the following steps.

a. Use the derivative of a quotient rule to expand (x5 /x5)/dz.

b. Use your result from part (a) together with the fact that, in this problem, dx¢/dr =
axt/apy + 9x5/dp, for i = 2,3, to show that the derivative we seek can be written as

A(x5/x5) _ %5[$n | 53 32 %33

at x5l x, % x5 x5
where s;; = dx7/9p;.

c. Rewrite the result from part (b) in terms of compensated price elasticities:
C .
. _ 0% P

Bij - 9 pj X

1

d. Use Hicks’ third law (Equation 6.26) to show that the term in brackets in parts (b) and (c) can
now be written as [(ey; — €3,)(1/py —1/p3) + (63 — €31)/83)-

¢. Develop an intuitive argument about why the expression in part (d) is likely to be positive under
the conditions of this problem. Hinzs: Why is the first product in the brackets positive? Why is
the second term in brackets likely to be small?

f. Return to Problem 6.6 and provide more complete explanations for these various findings.
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EXTENSIONS

Simplifying Demand and Two-Stage Budgeting

In Chapter 6 we saw that the theory of utility maximi-
zation in its full generality imposes rather few restric-
tions on what might happen. Other than the fact that
net cross-substitution effects are symmetric, practically
any type of relationship among goods is consistent
with the underlying theory. This situation poses prob-
lems for economists who wish to study consumption
behavior in the real world—theory just does not pro-
vide very much guidance when there are many thou-
sands of goods potentially available for study.

There are two general ways in which simplifications
are made. The first uses the composite commodity
theorem from Chapter 6 to aggregate goods into cate-
gories within which relative prices move together. For
situations where economists are specifically interested
in changes in relative prices within a category of spend-
ing (such as changes in the relative prices of various
forms of energy), this process will not do, however. An
alternative is to assume that consumers engage in a
two-stage process in their consumption decisions.
First they allocate income to various broad groupings
of goods (food, clothing, and so forth) and then, given
these expenditure constraints, they maximize utility
within each of the subcategories of goods using only
information about those goods’ relative prices. In that
way, decisions can be studied in a simplified setting by
looking only at one category at a time. This process is
called “two-stage” budgeting. In these extensions, we
first look at the general theory of two-stage budgeting
and then turn to examine some empirical examples.

E6.1 Theory of two-stage
budgeting

The issue that arises in two-stage budgeting can be
stated succinctly: Does there exist a partition of goods
into s nonoverlapping groups (denoted by » = 1, m)
and a separate budget (/,) devoted to each category
such that the demand functions for the goods within
any one category depend only on the prices of goods
within the category and on the category’s budget allo-
cation? That is, can we partition goods so that demand
is given by
xi(P1,~.-,Pn,I) = xiEV(piewa) 0

for » = 1, m,? That it might be possible to do this is

suggested by comparing the following two-stage
maximization problem,

V*(pl)-..)pfwllv'--alm)
= max [U(xl,...,xn) s.t.ZpixiSI,,,rzl,m}

Foeeeo%n icr
(ii)
and

max V*
L,...1,

s.t. iIr =1,
r=1

to the utility-maximization problem we have been
studying,

mxetlx U(xy,...,%,) s.t leixi <I. (i)

Without any further restrictions, these two maxi-
mization processes will yield the same result; that is,
Equation ii is just a more complicated way of stating
Equation iii. So, some restrictions have to be placed on
the utility function to ensure that the demand functions
that result from solving the two-stage process will be
of the form specified in Equation i. Intuitively, it seems
that such a categorization of goods should work
providing that changes in the price of a good in one
category do not affect the allocation of spending
for goods in any category other than its own. In
Problem 6.9 we showed a case where this is true for an
“additively separable” utility function. Unfortunately,
this proves to be a very special case. The more general
mathematical restrictions that must be placed on the
utility function to justify two-stage budgeting have
been derived (see Blackorby, Primont, and Russell,
1978), but these are not especially intuitive. Of course,
economists who wish to study decentralized decisions
by consumers (or, perhaps more importantly, by firms
that operate many divisions) must do something to
simplify matters. Now we look at a few applied
examples.

E6.2 Relation to the composition
commodity theorem

Unfortunately, neither of the two available theoretical
approaches to demand simplification is completely sat-
isfying. The composite commodity theorem requires
that the relative prices for goods within one group
remain constant over time, an assumption that has
been rejected during many different historical periods.



On the other hand, the kind of separability and two-
stage budgeting indicated by the utility function in
Equation 1 also requires very strong assumptions
about how changes in prices for a good in one group
affect spending on goods in any other group. These
assumptions appear to be rejected by the data (see
Diewert and Wales, 1995).

Economists have tried to devise even more elabo-
rate, hybrid methods of aggregation among goods.
For example, Lewbel (1996) shows how the compos-
ite commodity theorem might be generalized to cases
where within-group relative prices exhibit considerable
variability. He uses this generalization for aggregating
U.S. consumer expenditures into six large groups
(food, clothing, household operation, medical care,
transportation, and recreation). Using these aggre-
gates, he concludes that his procedure is much more
accurate than assuming two-stage budgeting among
these expenditure categories.

E6.3 Homothetic functions and
energy demand

One way to simplify the study of demand when there
are many commodities is to assume that utility for
certain subcategories of goods is homothetic and
may be separated from the demand for other com-
modities. This procedure was followed by Jorgenson,
Slesnick, and Stoker (1997) in their study of energy
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demand by U.S. consumers. By assuming that demand
functions for specific types of energy are proportional
to total spending on energy, the authors were able to
concentrate their empirical study on the topic that is of
most interest to them: estimating the price elasticities
of demand for various types of energy. They conclude
that most types of energy (that is, electricity, natural
gas, gasoline, and so forth) have fairly elastic demand
functions. Demand appears to be most responsive to
price for electricity.
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Uncertainty and Information

In this chapter we will explore some of the basic elements of the theory of individual behavior in uncertain
situations. Our general goal is to show why individuals do not like risk and how they may adopt strategies to
reduce it. More generally, the chapter is intended to provide a brief introduction to issues raised by the
possibility that information may be imperfect when individuals make utility-maximizing decisions. Some of
the themes developed here will recur throughout the remainder of the book.

MATHEMATICAL STATISTICS

Many of the formal tools for modeling uncertainty in economic situations were originally
developed in the field of mathematical statistics. Some of these tools were reviewed in
Chapter 2 and in this chapter we will be making a great deal of use of the concepts introduced
there. Specifically, four statistical ideas will recur throughout this chapter.

¢ Random variable: A random variable is a variable that records, in numerical form, the
possible outcomes from some random event.

®  Probability density function (PDF): A function that shows the probabilities associ-
ated with the possible outcomes from a random variable.

o Expected value of a random variable: The outcome of a random variable that will
occur “on average.” The expected value is denoted by E(x). If x is a discrete random
variable with 7 outcomes then E(x) = Y7 | x; = f(x;), where f(x) is the PDF for
the random variable x. If x is a continuous random variable, then E(x)=
[1% xf (x) dx.

o  Vaviance and standavd deviation of a random variable: These concepts mea-
sure the dispersion of a random variable about its expected value. In the discrete

2

case, Var(x) = o2 = 327 [x; — E(x)]’f(x;); in the continuous case, Var(x) = o2 =

[+%[x — E(x))*f () dv. The standard deviation is the square root of the variance.

As we shall see, all of these concepts will come into play when we begin looking at the
decision-making process of a person faced with a number of uncertain outcomes that can be
conceptually represented by a random variable.

"When it is necessary to differentiate between random variables and nonrandom variables, we will use the notation ¥ to
denote the fact that the variable x is random in that it takes on a number of potential randomly determined outcomes.
Often, however, it will not be necessary to make the distinction because randomness will be clear from the context of the
problem.
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FAIR GAMES AND THE EXPECTED UTILITY HYPOTHESIS

A “fair game” is a random game with a specified set of prizes and associated probabilities that
has an expected value of zero. For example, if you flip a coin with a friend for a dollar, the
expected value of this game is zero because

E(x) =0.5(+%$1) + 0.5(—%1) =0, (7.1)
where wins are recorded with a plus sign and losses with a minus sign. Similarly, a game that

promised to pay you $10 if a coin came up heads but would cost you only $1 if it came up
tails would be “unfair” because

E(x) = 0.5(+810) +- 0.5(—$1) = $4.50. (7.2)
This game can easily be converted into a fair game, however, simply by charging you an
entry fee of $4.50 for the right to play.?

It has long been recognized that most people would prefer not to play fair games.
Although people may sometimes willingly flip a coin for a few dollars, they would generally
balk at playing a similar game whose outcome was +$1 million or —$1 million. One of the
first mathematicians to study the reasons for this unwillingness to engage in fair bets was
Daniel Bernoulli in the eighteenth century.® His examination of the famous St. Petersburg
paradox provided the starting point for virtually all studies of the behavior of individuals in
uncertain situations.

St. Petersburg paradox

In the St. Petersburg paradox, the following game is proposed: A coin is flipped until a head
appears. If'a head first appears on the nth flip, the player is paid $2”. This game has an infinite
number of outcomes (a coin might be flipped from now until doomsday and never come up a
head, although the likelihood of this is small), but the first few can easily be written down. If
x; represents the prize awarded when the first head appears on the zth trial, then

6, =32, %, =%4,x;, =88, ..., x, = 82" (7.3)
The probability of getting a head for the first time on the sth trial is () ", it is the probability
of getting (¢ — 1) tails and then a head. Hence the probabilities of the prizes given in

Equation 7.3 are

1 1 1

’IT1= ,TFZZZ, 7T3:§, ceey Trn 21’!

N~

The expected value of the St. Petersburg paradox game is therefore infinite:

E(x) = Z K = Z 2/(1/2%)

=1+1+1+-+1+: = (7.5)
Some introspection, however, should convince anyone that no player would pay very much
(much less than infinity) to play this game. If I charged $1 billion to play the game, I would
surely have no takers, despite the fact that $1 billion is still considerably less than the expected
value of the game. This, then, is the paradox: Bernoulli’s game is in some sense not worth its
(infinite) expected dollar value.

2The games discussed here are assumed to yield no utility in their play other than the prizes; hence, the observation that
many individuals gamble at “unfair” odds is not necessarily a refutation of this statement. Rather, such individuals can
reasonably be assumed to be deriving some utility from the circumstances associated with the play of the game. It is
therefore possible to differentiate the consumption aspect of gambling from the pure risk aspect.

*The original Bernoulli paper has been reprinted as D. Bernoulli, “Exposition of a New Theory on the Measurement of
Risk,” Econometrica 22 (January 1954): 23-36.
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Expected utility

Bernoulli’s solution to this paradox was to argue that individuals do not care directly about
the dollar prizes of a game; rather, they respond to the utility these dollars provide. If we
assume that the marginal utility of wealth declines as wealth increases, the St. Petersburg
game may converge to a finite expected utility value that players would be willing to pay for
the right to play. Bernoulli termed this expected utility value the moral value of the game
because it represents how much the game is worth to the individual. Because utility may rise
less rapidly than the dollar value of the prizes, it is possible that a game’s moral value will fall
short of its monetary expected value. Example 7.1 looks at some issues related to Bernoulli’s
solution.

EXAMPLE 7.1 Bernoulli’s Solution to the Paradox and Its Shortcomings

Suppose, as did Bernoulli, that the utility of cach prize in the St. Petersburg paradox is given by
This logarithmic utility function exhibits diminishing marginal utility (that is, U’ > 0 but
U"” < 0), and the expected utility value of this game converges to a finite number:

expected utility = Z w,U(x
i=1

= Z l (7.7)

Some manipulation of this expression yields®* the result that the expected utility value of this
game is 1.39. An individual with this type of utility function might therefore be willing to
invest resources that otherwise yield up to 1.39 units of utility (a certain wealth of about $4
provides this utility) in purchasing the right to play this game. Assuming that the very large
prizes promised by the St. Petersburg paradox encounter diminishing marginal utility there-
fore permitted Bernoulli to offer a solution to the paradox.

Unbounded utility. Bernoulli’s solution to the St. Petersburg paradox, unfortunately, does
not completely solve the problem. So long as there is no upper bound to the utility function,
the paradox can be regenerated by redefining the game’s prizes. For example, with the
logarithmic utility function, prizes can be set as x; = ¢2', in which case

U(x,) = In[¢?] = 2 (7.8)
and the expected utility value of the game would again be infinite. Of course, the prizes in this
redefined game are Very large. For example, if a head first appears on the ﬁfth flip, a person
would win ¢2° = ¢32 = $7.9.10"3, though the probability of winning this would be only
1/25 = 0.031. The idea that people would pay a great deal (say, billions of dollars) to play

games with small probabilities of such large prizes seems, to many observers, to be unlikely.
Hence, in many respects the St. Petersburg game remains a paradox.

* Proof:
expected utility = Z -In2=In2 Z —

But the value of this final infinite series can be shown to be 2.0. Hence, expected utility =2 In 2 = 1.39.
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QUERY: Here are two alternative solutions to the St. Petersburg paradox. For each, calculate
the expected value of the original game.

1. Suppose individuals assume that any probability less than 0.01 is in fact zero.
2. Suppose that the utility from the St. Petersburg prizes is given by

Ulx) = { % if x; < 1,000,000,
%) = 11,000,000 if x, > 1,000,000.

THE VON NEUMANN-MORGENSTERN THEOREM

In their book The Theory of Games and Economic Behavior, John von Neumann and Oscar
Morgenstern developed mathematical models for examining the economic behavior of in-
dividuals under conditions of uncertainty.® To understand these interactions, it was necessary
first to investigate the motives of the participants in such “games.” Because the hypothesis
that individuals make choices in uncertain situations based on expected utility seemed
intuitively reasonable, the authors set out to show that this hypothesis could be derived
from more basic axioms of “rational” behavior. The axioms represent an attempt by the
authors to generalize the foundations of the theory of individual choice to cover uncertain
situations. Although most of these axioms seem eminently reasonable at first glance, many
important questions about their tenability have been raised. We will not pursue these
questions here, however.®

The von Neumann-Morgenstern utility index

To begin, suppose that there are # possible prizes that an individual might win by participat-
ing in a lottery. Let these prizes be denoted by x;, x,, ..., x, and assume that these have been
arranged in order of ascending desirability. Therefore, x; is the least preferred prize for the
individual and x,, is the most preferred prize. Now assign arbitrary utility numbers to these
two extreme prizes. For example, it is convenient to assign

U(xl) =0,

U(xn) =1,
but any other pair of numbers would do equally well.” Using these two values of utility, the
point of the von Neumann—-Morgenstern theorem is to show that a reasonable way exists to
assign specific utility numbers to the other prizes available. Suppose that we choose any other
prize, say, x;. Consider the following experiment. Ask the individual to state the probability,
say, 7;, at which he or she would be indifferent between x; with certainty, and a gamble
offering prizes of x, with probability 1r; and x, with probability (1 — ;). It seems reasonable
(although this is the most problematic assumption in the von Neumann-Morgenstern
approach) that such a probability will exist: The individual will always be indifferent between a
gamble and a sure thing, provided that a high enough probability of winning the best prize is
offered. It also seems likely that 1, will be higher the more desirable x; is; the better «x; is, the

(7.9)

®J. von Neumann and O. Morgenstern, The Theory of Games and Economic Behavior (Princeton, NJ: Princeton University
Press, 1944 ). The axioms of rationality in uncertain situations are discussed in the book’s appendix.

SFor a discussion of some of the issues raised in the debate over the von Neumann-Morgenstern axioms, especially the
assumption of independence, see C. Gollier, The Economics of Risk and Time (Cambridge, MA: MIT Press, 2001), chap. 1.

7Technically, a von Neumann-Morgenstern utility index is unique only up to a choice of scale and origin—that is, only up to
a “linear transformation.” This requirement is more stringent than the requirement that a utility function be unique up to a
monotonic transformation.
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better the chance of winning x,, must be to get the individual to gamble. The probability w,
therefore measures how desirable the prize x; is. In fact, the von Neumann—Morgenstern
technique is to define the utility of x; as the expected utility of the gamble that the individual
considers equally desirable to x;:

Ulx;) =m; - Ulw,) + (1 —m;) - Ulxy). (7.10)
Because of our choice of scale in Equation 7.9, we have
U)=m;-1+(1-m;) -0=m, (7.11)

By judiciously choosing the utility numbers to be assigned to the best and worst prizes, we
have been able to devise a scale under which the utility number attached to any other prize
is simply the probability of winning the top prize in a gamble the individual regards as
equivalent to the prize in question. This choice of utility numbers is arbitrary. Any other
two numbers could have been used to construct this utility scale, but our initial choice
(Equation 7.9) is a particularly convenient one.

Expected utility maximization

In line with the choice of scale and origin represented by Equation 7.9, suppose that
probability 7, has been assigned to represent the utility of every prize x;. Notice in particular
that m; = 0,7, = 1, and that the other utility values range between these extremes. Using
these utility numbers, we can show that a “rational” individual will choose among gambles
based on their expected “utilities” (that is, based on the expected value of these von
Neumann—Morgenstern utility index numbers).

As an example, consider two gambles. One gamble offers x,, with probability g, and x5,
with probability (1 — g). The other offers «;, with probability z, and x,, with probability
(1 — £). We want to show that this person will choose gamble 1 if and only if the expected
utility of gamble 1 exceeds that of gamble 2. Now for the gambles:

expected utility (1) =g - U(x,) + (1 — g) - U(xz),
expected utility (2) =2 - U(xg) + (1 —2) - U(xg).
Substituting the utility index numbers (that is, 1, is the “utility” of x,, and so forth) gives

(7.12)

expected utility(1) = g - w, + (1 — ¢) - 3,

expected utility(2) = ¢ - wg + (1 — 2) - 7.
We wish to show that the individual will prefer gamble 1 to gamble 2 if and only if

g -+ 1—9q)  -my>t-m+(1—12) - mg. (7.14)
To show this, recall the definitions of the utility index. The individual is indifferent between x,
and a gamble promising x; with probability (1 — 1,) and x, with probability m,. We can use
this fact to substitute gambles involving only », and x,, for all utilities in Equation 7.13 (even
though the individual is indifferent between these, the assumption that this substitution can
be made implicitly assumes that people can see through complex lottery combinations). After
a bit of messy algebra, we can conclude that gamble 1 is equivalent to a gamble promising
x, with probability g1, + (1 — g)m;,and gamble 2 is equivalent to a gamble promising x,, with
probability #w; + (1 — #)mg. The individual will presumably prefer the gamble with the
higher probability of winning the best prize. Consequently, he or she will choose gamble 1 if
and only if

(7.13)

g, + (1 — g)mz > twg + (1 — t)mg. (7.15)
But this is precisely what we wanted to show. Consequently, we have proved that an individ-
ual will choose the gamble that provides the highest level of expected (von Neumann—
Morgenstern) utility. We now make considerable use of this result, which can be summarized
as follows.
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Expected utility maximization. If individuals obey the von Neumann-Morgenstern |gptimMizZATION

axioms of behavior in uncertain situations, they will act as if they choose the option that
maximizes the expected value of their von Neumann—Morgenstern utility index.

RISK AVERSION

Two lotteries may have the same expected monetary value but may differ in their riskiness.
For example, flipping a coin for $1 and flipping a coin for $1,000 are both fair games, and
both have the same expected value (0). However, the latter is in some sense more “risky”
than the former, and fewer people would participate in the game where the prize was winning
or losing $1,000. The purpose of this section is to discuss the meaning of the term 7isky and
explain the widespread aversion to risk.

The term 7isk refers to the variability of the outcomes of some uncertain activity.® If
variability is low, the activity may be approximately a sure thing. With no more precise notion
of variability than this, it is possible to show why individuals, when faced with a choice
between two gambles with the same expected value, will usually choose the one with a
smaller variability of return. Intuitively, the reason behind this is that we usually assume that
the marginal utility from extra dollars of prize money (that is, wealth) declines as the prizes
get larger. A flip of a coin for $1,000 promises a relatively small gain of utility if you win but a
large loss of utility if you lose. A bet of only $1 is “inconsequential,” and the gain in utility
from a win approximately counterbalances the decline in utility from a loss.”

Risk aversion and fair bets

This argument is illustrated in Figure 7.1. Here W* represents an individual’s current wealth
and U(W) is a von Neumann—Morgenstern utility index that reflects how he or she feels
about various levels of wealth.'” In the figure, U(W) is drawn as a concave function of W to
reflect the assumption of a diminishing marginal utility. It is assumed that obtaining an extra
dollar adds less to enjoyment as total wealth increases. Now suppose this person is oftered two
fair gambles: a 50-50 chance of winning or losing $4 or a 50-50 chance of winning or losing
$25. The utility of present wealth is U(W?*). The expected utility if he or she participates in
gamble 1 is given by U”(W*):

U’ (w*) = %U(W* +h) + %U(W* —h), (7.16)
and the expected utility of gamble 2 is given by U(W*):
U(w*) = %U(W* +2h) + %U(W* —2h). (7.17)
It is geometrically clear from the figure that'!
U(w*) > Uu"(w*) > U*(w*). (7.18)

80ften the statistical concepts of variance and standard deviation are used to measure risk. We will do so at several places
later in this chapter.

Technically, this result is a direct consequence of Jensen’s inequality in mathematical statistics. The inequality states that if
x is a random variable and f(x) is a concave function of that variable, then E[ f(x)] < f[E(x)]. In the udility context, this
means that if utility is concave in a random variable measuring wealth (i.e., if U'(W) > 0 and U"(W) < 0), then the
expected utility of wealth will be less than the utility associated with the expected value of W.

Technically, U(W) is an indirect utility function because it is the consumption allowed by wealth that provides direct
utility. In Chapter 17 we will take up the relationship between consumption-based utility functions and their implied
indirect utility of wealth functions.

"'To see why the expected utilities for bet 4 and bet 2/ are those shown, notice that these expected utilities are the average

of the utilities from a favorable and an unfavorable outcome. Because W* is halfway between W* + s and W* — b, U* is
also halfivay between U(W* + h) and U(W* — ).

PRINCIPLE
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FIGURE 7.1 Utility of Wealth from Two Fair Bets of Differing Variability

If the utility-of-wealth function is concave (i.e., exhibits a diminishing marginal utility of wealth),
then this person will refuse fair bets. A 50-50 bet of winning or losing 4 dollars, for example, yields
less utility [U”(W*)] than does refusing the bet. The reason for this is that winning 4 dollars means
less to this individual than does losing /4 dollars.

Utility
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UMW) | o ____ — 7
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This person therefore will prefer his or her current wealth to that wealth combined with a fair
gamble and will prefer a small gamble to a large one. The reason for this is that winning a fair
bet adds to enjoyment less than losing hurts. Although in this case the prizes are equal,
winning provides less than losing costs in utility terms.

Risk aversion and insurance

As a matter of fact, this person might be willing to pay some amount to avoid participating in
any gamble at all. Notice that a certain wealth of W provides the same utility as does
participating in gamble 1. This person would be willing to pay up to W* — W in order to
avoid participating in the gamble. This explains why people buy insurance. They are giving up
a small, certain amount (the insurance premium) to avoid the risky outcome they are being
insured against. The premium a person pays for automobile collision insurance, for example,
provides a policy that agrees to repair his or her car should an accident occur. The widespread
use of insurance would seem to imply that aversion to risk is quite prevalent. Hence, we
introduce the following definition.

Risk aversion. An individual who always refuses fair bets is said to be risk averse. If
individuals exhibit a diminishing marginal utility of wealth, they will be risk averse. As a
consequence, they will be willing to pay something to avoid taking fair bets.

EXAMPLE 7.2 Willingness to Pay for Insurance

To illustrate the connection between risk aversion and insurance, consider a person with a
current wealth of $100,000 who faces the prospect of'a 25 percent chance of losing his or her
$20,000 automobile through theft during the next year. Suppose also that this person’s von
Neumann—Morgenstern utility index is logarithmic; that is, U(W) = In(W).

DEFINITION
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If this person faces next year without insurance, expected utility will be
expected utility = 0.75U(100,000) + 0.25U(80,000)
=0.751n100,000 + 0.251n 80,000
=11.45714. (7.19)

In this situation, a fair insurance premium would be $5,000 (25 percent of $20,000,
assuming that the insurance company has only claim costs and that administrative costs are
$0). Consequently, if this person completely insures the car, his or her wealth will be
$95,000 regardless of whether the car is stolen. In this case, then,

expected utility = U(95,000)
= In(95,000)
=11.46163. (7.20)

This person is made better-off by purchasing fair insurance. Indeed, we can determine the
maximum amount that might be paid for this insurance protection (x) by setting

expected utility = U(100,000 — x)
= In(100,000 — x)

=11.45714. (7.21)
Solving this equation for x yields
100,000 — x = 145714, (7.22)
Therefore, the maximum premium is
x = 5,426. (7.23)

This person would be willing to pay up to $426 in administrative costs to an insurance
company (in addition to the $5,000 premium to cover the expected value of the loss). Even
when these costs are paid, this person is as well-off as he or she would be when facing the
world uninsured.

QUERY: Suppose utility had been linear in wealth. Would this person be willing to pay

anything more than the actuarially fair amount for insurance? How about the case where
utility is a convex function of wealth?

MEASURING RISK AVERSION

In the study of economic choices in risky situations, it is sometimes convenient to have a
quantitative measure of how averse to risk a person is. The most commonly used measure of
risk aversion was initially developed by J. W. Pratt in the 1960s."* This risk aversion measure,
r(W), is defined as

Ull (W)
(W) = ~Zrw) (7.24)
Because the distinguishing feature of risk-averse individuals is a diminishing marginal
utility of wealth [U”(W) < 0], Pratt’s measure is positive in such cases. The measure is
invariant with respect to linear transformations of the utility function, and therefore not
affected by which particular von Neumann—-Morgenstern ordering is used.

121, W. Pratt, “Risk Aversion in the Small and in the Large,” Econometrica (January/April 1964): 122-36.
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Risk aversion and insurance premiums

A useful feature of the Pratt measure of risk aversion is that it is proportional to the amount an
individual will pay for insurance against taking a fair bet. Suppose the winnings from such
a fair bet are denoted by the random variable /4 (this variable may be either positive or
negative). Because the bet is fair, E(4#) = 0. Now let p be the size of the insurance premium
that would make the individual exactly indifterent between taking the fair bet » and paying p
with certainty to avoid the gamble:

E[UW + b)) =U(W —p), (7.25)
where W is the individual’s current wealth. We now expand both sides of Equation 7.25
using Taylor’s series.'® Because 2 is a fixed amount, a linear approximation to the right-hand
side of the equation will suffice:
U(W —p)= U(W) — pU' (W) + higher-order terms. (7.26)
For the left-hand side, we need a quadratic approximation to allow for the variability in the
gamble, /:

2
E[UW+h)| =E|UW)+ hU (W)+ %U"(W)
+ higher-order terms (7.27)

= U(W)+ EMb) U (W)+ %MU/'(W)

+ higher-order terms. (7.28)

If we recall that E(») = 0 and then drop the higher-order terms and use the constant % to
represent E(4?)/2, we can equate Equations 7.26 and 7.28 as

U(W) — pU' (W) =U(W) + kU" (W) (7.29)
p=- % = kr(W). (7.30)

That is, the amount that a risk-averse individual is willing to pay to avoid a fair bet is
approximately proportional to Pratt’s risk aversion measure.'* Because insurance premiums
paid are observable in the real world, these are often used to estimate individuals’ risk
aversion coefficients or to compare such coefficients among groups of individuals. It is
therefore possible to use market information to learn quite a bit about attitudes toward risky
situations.

Risk aversion and wealth

An important question is whether risk aversion increases or decreases with wealth. Intuitively,
one might think that the willingness to pay to avoid a given fair bet would decline as wealth
increases, because diminishing marginal utility would make potential losses less serious for
high-wealth individuals. This intuitive answer is not necessarily correct, however, because
diminishing marginal utility also makes the gains from winning gambles less attractive. So the

13Taylor’s series provides a way of approximating any differentiable function around some point. If £(x) has derivatives of
all orders, it can be shown that

f(x+b) = f(x) + bf'(x) + (#*/2)f" (x) + higher-order terms.
The point-slope formula in algebra is a simple example of Taylor’s series.

1n this case, the factor of proportionality is also proportional to the variance of / because Var(h) = E[h — E(h)]2 = E(?).
For an illustration where this equation fits exactly, see Example 7.3.
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net result is indeterminate; it all depends on the precise shape of the utility function. Indeed,
if utlity is quadratic in wealth,

UW)=a+bW +cW?, (7.31)
where & > 0 and ¢ < 0, then Pratt’s risk aversion measure is
U'(w -2
rw) = - L W) ¢ (7.32)

TUW) b+ 2w
which, contrary to intuition, increases as wealth increases.
On the other hand, if utility is logarithmic in wealth,

UW)=In(W) (W>0), (7.33)
then we have
. U//(W) 7 i
r(W) = T W (7.34)

which does indeed decrease as wealth increases.
The exponential utility function
UW)=—" = _exp(—AW) (7.35)
(where A is a positive constant) exhibits constant absolute risk aversion over all ranges of
wealth, because now

U//(W) B AZB_AW

U (W)  Ae 4w

This feature of the exponential utility function'® can be used to provide some numerical
estimates of the willingness to pay to avoid gambles, as the next example shows.

#(W) = = A. (7.36)
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EXAMPLE 7.3 Constant Risk Aversion

Suppose an individual whose initial wealth is W, and whose utility function exhibits constant
absolute risk aversion is facing a 50-50 chance of winning or losing $1,000. How much (f')
would he or she pay to avoid the risk? To find this value, we set the utility of W, — f equal to
the expected utility from the gamble:

—exp[—A(W, — f)] = —0.5 exp[—A(W, + 1,000)]

—0.5exp[—A(W, — 1,000)]. (7.37)

Because the factor —exp(—AW,) is contained in all of the terms in Equation 7.37, this may
be divided out, thereby showing that (for the exponential utility function) the willingness to
pay to avoid a given gamble is independent of initial wealth. The remaining terms

exp(Af) = 0.5exp(—1,0004) + 0.5 exp(1,0004) (7.38)
can now be used to solve for f for various values of A. If A = 0.0001, then f =49.9; a
person with this degree of risk aversion would pay about $50 to avoid a fair bet of $1,000.
Alternatively, if A = 0.0003, this more risk-averse person would pay f = 147.8 to avoid the

gamble. Because intuition suggests that these values are not unreasonable, values of the risk
aversion parameter A in these ranges are sometimes used for empirical investigations.

(continued)

5Because the exponential utility function exhibits constant (absolute) risk aversion, it is sometimes abbreviated by the term
CARA utility.
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EXAMPLE 7.3 CONTINUED

A normally distributed risk. The constant risk aversion utility function can be combined
with the assumption that a person faces a random threat to his or her wealth that follows a
normal distribution (see Chapter 2) to arrive at a particularly simple result. Speciﬁcally, if
a person’s risky wealth follows a normal distribution with mean py; and variance 0%, then
the probability density function for wealth is given by £(W) = (1/v2w)e=/2, where z =

(W — wyy) /o). If this person has a utility function for wealth given by U(W) = 4V
then expected utility from his or her risky wealth is given by
U(W)f(W)dW = f e AW (Wovwl/owl’2 gy (7.39)
- 7

Perhaps surprisingly, this integration is not too difficult to accomplish, though it does take
patience. Performing this integration and taking a variety of monotonic transformations of
the resulting expression yields the final result that

E[UW)=py — = - oy (7.40)

Hence, expected utility is a linear function of the two parameters of the wealth probability
density function, and the individual’s risk aversion parameter (A) determines the size of the
negative effect of variability on expected utility. For example, suppose a person has invested
his or her funds so that wealth has an expected value of $100,000 but a standard deviation
(o) of $10,000. With the Normal distribution, he or she might therefore expect wealth to
decline below $83,500 about 5 percent of the time and rise above $116,500 a similar
fraction of the time. With these parameters, expected utility is given by E[U(W)] =
100,000 — (A/2)(10,000). If A = 0.0001 = 10~*, expected utility is given by 100,0000—
0.5- 107*. (10*)* = 95,000. Hence, this person receives the same utility from his or her risky
wealth as would be obtained from a certain wealth of $95,000. A more risk-averse person
might have A = 0.0003 and in this case the “certainty equivalent” of his or her wealth would
be $85,000.

QUERY: Suppose this person had two ways to invest his or her wealth: Allocation 1,
py = 107,000 and oy, = 10,0005 Allocation 2, pyy = 102,000 and oy = 2,000. How

would this person’s attitude toward risk affect his or her choice between these allocations?'®

Relative risk aversion

It seems unlikely that the willingness to pay to avoid a given gamble is independent of a
person’s wealth. A more appealing assumption may be that such willingness to pay is inversely
proportional to wealth and that the expression

U//( W)
U(w)
might be approximately constant. Following the terminology proposed by J. W. Pratt,'” the

77(W) function defined in Equation 7.41 is a measure of relative risk aversion. The power
utility function

rr(W) = Wr(W) =-W (7.41)

16This numerical example (very roughly) approximates historical data on real returns of stocks and bonds, respectively,
though the calculations are illustrative only.

7Pratt, “Risk Aversion.”
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WR
UW)= 2 (R<1,R#0) (7.42)

and
UW)=InW (R=0)
exhibits diminishing absolute risk aversion,
U"(W) (R-1)WR2  (R-1)

W) = — = = — 7.4
V( ) U/(W) WR,1 w > ( 3)
but constant relative risk aversion:
rr(W)=Wr(W)=—(R—-1)=1-R. (7.44)

Empirical evidence'® is generally consistent with values of R in the range of -3 to —1.
Hence, individuals seem to be somewhat more risk averse than is implied by the logarithmic
utility function, though in many applications that function provides a reasonable approx-
imation. It is useful to note that the constant relative risk aversion utility function in
Equation 7.42 has the same form as the general CES utility function we first described in
Chapter 3. This provides some geometric intuition about the nature of risk aversion that we
will explore later in this chapter.
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EXAMPLE 7.4 Constant Relative Risk Aversion

An individual whose behavior is characterized by a constant relative risk aversion utility
function will be concerned about proportional gains or loss of wealth. We can therefore ask
what fraction of initial wealth ( ) such a person would be willing to give up to avoid a fair
gamble of, say, 10 percent of initial wealth. First, we assume R = 0, so the logarithmic utility
function is appropriate. Setting the utility of this individual’s certain remaining wealth equal
to the expected utility of the 10 percent gamble yields

In[(1 — £)W,] = 0.5 In(1.1W,) + 0.5 In(0.9W,). (7.45)

Because each term contains In W), initial wealth can be eliminated from this expression:

In(1 - £) = 0.5[n(1.1) + In(0.9)] = In(0.99)°%;

hence
(1-f) =(0.99)"% = 0.995
and
f=0.005. (7.46)
This person will thus sacrifice up to 0.5 percent of wealth to avoid the 10 percent gamble. A
similar calculation can be used for the case R = —2 to yield
f=0.015. (7.47)

Hence this more risk-averse person would be willing to give up 1.5 percent of his or her
initial wealth to avoid a 10 percent gamble.

QUERY: With the constant relative risk aversion function, how does this person’s willingness
to pay to avoid a given absolute gamble (say, of 1,000) depend on his or her initial wealth?

18Some authors write the utility function in Equation 7.42 as U(W) = W'~*/(1 — a) and seek to measure # = 1 — R. In
this case, 2 is the relative risk aversion measure. The constant relative risk aversion function is sometimes abbreviated as
CRRA.
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THE PORTFOLIO PROBLEM

One of the classic problems in the theory of behavior under uncertainty is the issue of how
much of his or her wealth a risk-averse investor should invest in a risky asset. Intuitively, it
seems that the fraction invested in risky assets should be smaller for more risk-averse investors,
and one goal of our analysis will be to show that formally. To get started, assume that an
investor has a certain amount of wealth, W), to invest in one of two assets. The first asset
yields a certain return of 7., whereas the second asset’s return is a random variable, 7. If we let
the amount invested in the risky asset be denoted by %, then this person’s wealth at the end of
one period will be

W= (Wy—k)(1+7,)+ k(1 +7) = Wo(1+ 7p) + k(T — 7p). (7.48)

Notice three things about this end-of-period wealth. First, W is a random variable because
its value depends on 7. Second, % can be either positive or negative here depending on
whether this person buys the risky asset or sells it short. As we shall see, however, in the usual
case E(7 — »,) > 0 and this will imply % > 0. Finally, notice also that Equation 7.48 allows
for a solution in which & > W,,. In this case, this investor would leverage his or her investment
in the risky asset by borrowing at the risk-free rate 7,.

If we let U(W) represent this investor’s utility function, then the von Neumann—-Mor-
genstern theorem states that he or she will choose % to maximize E[U(W)]. The first-order
condition for such a maximum is"®

AE[U(Wy(1 + 7 k(7 — 7
aE[gliW)] _ OE[U(Wy( +a£) + k(T — 1)) E[U' - (7 — 1] = 0. (7.49)

Because this first-order condition lies at the heart of many problems in the theory of uncer-
tainty, it may be worthwhile spending some time to understand it intuitively. Equation 7.49
is looking at the expected value of the product of marginal utility and the term 7 — 7,. Both of
these terms are random. Whether 7 — 7, is positive or negative will depend on how well
the risky assets perform over the next period. But the return on this risky asset will also affect
this investor’s end-of-period wealth and thus will affect his or her marginal utility. If the
investment does well, W will be large and marginal utility will be relatively low (because
of diminishing marginal utility). If the investment does poorly, wealth will be relatively
low and marginal utility will be relatively high. Hence, in the expected value calculation in
Equation 7.49, negative outcomes for 7 — 7, will be weighted more heavily than positive
outcomes to take the utility consequences of these outcomes into account. If the expected
value in Equation 7.49 were positive, a person could increase his or her expected utility by
investing more in the risky asset. If the expected value were negative, he or she could increase
expected utility by reducing the amount of the risky asset held. Only when the first-order
condition holds will this person have an optimal portfolio.

Two other conclusions can be drawn from the optimality condition in Equation 7.49. First,
so long as E(7 — 7;) > 0, an investor will choose positive amounts of the risky asset. To see
why, notice that meeting Equation 7.49 will require that fairly large values of U’ be attached to
situations where 77 — 7, turns out to be negative. That can only happen if the investor owns
positive amounts of the risky asset so that end-of-period wealth is low in such situations.

A second conclusion from the first-order condition in Equation 7.49 is that investors
who are more risk averse will hold smaller amounts of the risky asset than will investors
who are more tolerant of risk. Again, the reason relates to the shape of the U’ function. For
very risk-averse investors, marginal utility rises rapidly as wealth falls. Hence, they need
relatively little exposure to potential negative outcomes from holding the risky asset to satisty

In calculating this first-order condition, we can differentiate through the expected value operator. See Chapter 2 for a
discussion of differentiating integrals.
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Equation 7.49. Investors who are more tolerant of risk will find that U’ rises less rapidly when
the risky asset performs poorly, so they will be willing to hold more of it.

In summary, then, a formal study of the portfolio problem confirms simple intuitions
about how people choose to invest. To make further progress on the question requires that
we make some specific assumptions about the investor’s utility function. In Example 7.5, we
look at a two examples.
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EXAMPLE 7.5 The Portfolio Problem with Specific Utility Functions

In this problem we show the implications of assuming either CARA or CRRA utility for the
solution to the portfolio allocation problem.

1. CARA Utility. If U(W) = —exp(—AW) then the marginal utility function is given by
U' (W) = Aexp(—AW); substituting for end-of-period wealth, we have

U'(W) = Aexp[-A(Wy(1 + 7p) + k(7 — 7;))]
= Aexp[—AW,(1 + 7;)] exp[—Ak(7 — 7;)]. (7.50)

Thatis, the marginal utility function can be separated into a random part and a nonrandom part
(both initial wealth and the risk-free rate are nonrandom). Hence, the optimality condition
from Equation 7.49 can be written as

E[U - (7~ ;)] = A exp[~AW,(1+7;)] Elexp(—Ak(7 —7;)) - (7 — ;)] = 0. (7.51)

Now we can divide by the exponential function of initial wealth, leaving an optimality
condition that involves only terms in &, A, and 7 — 7,. Solving this condition for the optimal
level of % can in general be quite difficult (but see Problem 7.14). Regardless of the specific
solution, however, Equation 7.51 shows that this optimal investment amount will be a
constant regardless of the level of initial wealth. Hence, the CARA function implies that the
fraction of wealth that an investor holds in risky assets should decline as wealth increases—a
conclusion that seems precisely contrary to empirical data, which tend to show the fraction
of wealth held in risky assets rising with wealth.

2. CRRA Utility. If U(W) = WX/R then the marginal utility function is given by U’ (W) =
WR-1, Substituting the expression for final wealth into this equation yields

U'(W) = [Wy(1+7p) + k(F — 7))

= [Wo(1+#)]* 1|1+ LT =) (7.52)

Wy (1 + 7y)
Inserting this expression into the optimality condition in Equation 7.49 shows that the term
[Wo (1 + 1’f)]R_1 can be canceled out, implying that the optimal solution will not involve the
absolute level of initial wealth but only the ratio £/ W, (1 + 7). In words, the CRRA utility
function implies that all individuals with the same risk tolerance will hold the same fraction of
wealth in risky assets, regardless of their absolute levels of wealth. Though this conclusion is
slightly more in accord with the facts than is the conclusion from the CARA function, it still
falls short of explaining why the fraction of wealth held in risky assets tends to rise with wealth.

QUERY: Can you suggest a reason why investors might increase the proportion of their
portfolios invested in risky assets as wealth increases even though their preferences are
characterized by the CRRA utility function?
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THE STATE-PREFERENCE APPROACH TO
CHOICE UNDER UNCERTAINTY

Although our analysis in this chapter has offered insights on a number of issues, it seems
rather different from the approach we took in other chapters. The basic model of utility
maximization subject to a budget constraint seems to have been lost. In order to make
further progress in the study of behavior under uncertainty, we will therefore develop some
new techniques that will permit us to bring the discussion of such behavior back into the
standard choice-theoretic framework.

States of the world and contingent commodities

We start by assuming that the outcomes of any random event can be categorized into a
number of states of the world. We cannot predict exactly what will happen, say, tomorrow, but
we assume that it is possible to categorize all of the possible things that might happen into a
fixed number of well-defined states. For example, we might make the very crude approxima-
tion of saying that the world will be in only one of two possible states tomorrow: It will be
either “good times” or “bad times.” One could make a much finer gradation of states of the
world (involving even millions of possible states), but most of the essentials of the theory can
be developed using only two states.

A conceptual idea that can be developed concurrently with the notion of states of the
world is that of contingent commodities. These are goods delivered only if a particular state of
the world occurs. As an example, “$1 in good times” is a contingent commodity that promises
the individual $1 in good times but nothing should tomorrow turn out to be bad times. It is
even possible, by stretching one’s intuitive ability somewhat, to conceive of being able to
purchase this commodity: I might be able to buy from someone the promise of $1 if
tomorrow turns out to be good times. Because tomorrow could be bad, this good will
probably sell for less than $1. If someone were also willing to sell me the contingent
commodity “$1 in bad times,” then I could assure myself of having $1 tomorrow by buying
the two contingent commodities “$1 in good times” and “$1 in bad times.”

Utility analysis

Examining utility-maximizing choices among contingent commodities proceeds formally in
much the same way we analyzed choices previously. The principal difference is that, after the
fact, a person will have obtained only one contingent good (depending on whether it turns
out to be good or bad times). Before the uncertainty is resolved, however, the individual has
two contingent goods from which to choose and will probably buy some of each because he
or she does not know which state will occur. We denote these two contingent goods by W,
(wealth in good times) and W, (wealth in bad times). Assuming that utility is independent
of which state occurs®® and that this individual believes that good times will occur with
probability , the expected utility associated with these two contingent goods is

V(W,, W,) = wU(W,) + (1 — =) U(W,). (7.53)

This is the magnitude this individual seeks to maximize given his or her initial wealth, W.

29This assumption is untenable in circumstances where utility of wealth depends on the state of the world. For example,
the utility provided by a given level of wealth may differ depending on whether an individual is “sick” or “healthy.”
We will not pursue such complications here, however. For most of our analysis, utility is assumed to be concave in wealth:
U'(W)>0,U"(W)<0.
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Prices of contingent commodities

Assuming that this person can purchase a dollar of wealth in good times for p, and a dollar of
wealth in bad times for p,, his or her budget constraint is then

W=p W +p,W, (7.54)

The price ratio p,/p, shows how this person can trade dollars of wealth in good times for
dollars in bad times. If, for example, p, = 0.80 and p;, = 0.20, the sacrifice of $1 of wealth in
good times would permit this person to buy contingent claims yielding $4 of wealth should
times turn out to be bad. Whether such a trade would improve utility will, of course, depend
on the specifics of the situation. But looking at problems involving uncertainty as situations
in which various contingent claims are traded is the key insight offered by the state-
preference model.

Fair markets for contingent goods

If markets for contingent wealth claims are well developed and there is general agreement
about the likelihood of good times (), then prices for these claims will be actuarially fair—
that is, they will equal the underlying probabilities:

b= (7.55)
Py =1 —m).

Hence, the price ratio p,/p, will simply reflect the odds in favor of good times:
b_ ™ (7.56)
p, 1-—m

In our previous example, if p, = m = 0.8 and p, = (1 — ) = 0.2 then /(1 — m) = 4.
In this case the odds in favor of good times would be stated as “4-to-1.” Fair markets for
contingent claims (such as insurance markets) will also reflect these odds. An analogy is
provided by the “odds” quoted in horse races. These odds are “fair” when they reflect the
true probabilities that various horses will win.

Risk aversion

We are now in a position to show how risk aversion is manifested in the state-preference
model. Specifically, we can show that, if contingent claims markets are fair, then a utility-
maximizing individual will opt for a situation in which W, = W,; thatis, he or she will arrange
matters so that the wealth ultimately obtained is the same no matter what state occurs.

As in previous chapters, maximization of utility subject to a budget constraint requires
that this individual set the MRS of W, for W, equal to the ratio of these “goods” prices:

!/
urs = VW TUW,) by (7.57)
aV/iew, (1-mUW,) p,

In view of the assumption that markets for contingent claims are fair (Equation 7.56),

this first-order condition reduces to

Or21

W, = W,. (7.58)

2!This step requires that utility be state independent and that U’(W) > 0.
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FIGURE 7.2 Risk Aversions in the State-Preference Model

The line I represents the individual’s budget constraint for contingent wealth claims: W = p, W +
0, Wy, If the market for contingent claims is actuarially fair [, /p, = w/(1 — )], then utility maxi-

mization will occur on the certainty line where W, = W, = W*. If prices are not actuarially fair, the
budget constraint may resemble I" and utility maximization will occur at a point where W, > W,.

W,

Certainty
line

wx W

Hence this individual, when faced with fair markets in contingent claims on wealth, will be
risk averse and will choose to ensure that he or she has the same level of wealth regardless of
which state occurs.

A graphic analysis

Figure 7.2 illustrates risk aversion with a graph. This individual’s budget constraint (1) is
shown to be tangent to the U, indifference curve where W, = W;,—a point on the “certainty
line” where wealth (W*) is independent of which state of the world occurs. At W* the slope
of the indifference curve [m/(1 — )] is precisely equal to the price ratio p,/p,.

If the market for contingent wealth claims were not fair, utility maximization might not
occur on the certainty line. Suppose, for example, that /(1 — ) = 4 but that p,/p, = 2
because ensuring wealth in bad times proves quite costly. In this case the budget constraint
would resemble line I’ in Figure 7.2 and utility maximization would occur below the
certainty line.>? In this case this individual would gamble a bit by opting for w,> W,
because claims on W, are relatively costly. Example 7.6 shows the usefulness of this approach
in evaluating some of the alternatives that might be available.

22Because (as Equation 7.58 shows) the MRS on the certainty line is always /(1 — ), tangencies with a flatter slope than
this must occur below the line.
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EXAMPLE 7.6 Insurance in the State-Preference Model

We can illustrate the state-preference approach by recasting the auto insurance illustration
from Example 7.2 as a problem involving the two contingent commodities “wealth with no
theft” (W) and “wealth with a theft” (W,). If, as before, we assume logarithmic utility and
that the probability of a theft (that is, 1 — ) is 0.25, then
expected utility = 0.75U(W,) + 0.25U(W,)
=075In W, +0.251n W,. (7.59)
If the individual takes no action then utility is determined by the initial wealth endowment,
W; = 100,000 and W} = 80,000, so
expected utility = 0.75 In 100,000 + 0.25 In 80,000
=11.45714. (7.60)

To study trades away from these initial endowments, we write the budget constraint in
terms of the prices of the contingent commodities, p, and p:

2,W, +0,W, = p, W, +p,W,. (7.61)
Assuming that these prices equal the probabilities of the two states (p, = 0.75, p, = 0.25),
this constraint can be written
0.75(100,000) + 0.25(80,000) = 95,000 = 0.75W, + 0.25W,;  (7.62)

that is, the expected value of wealth is $95,000, and this person can allocate this amount
between W, and W,. Now maximization of utility with respect to this budget constraint
yields W, = W, = 95,000. Consequently, the individual will move to the certainty line and
receive an expected utility of

expected utility = In 95,000 = 11.46163, (7.63)

a clear improvement over doing nothing. To obtain this improvement, this person must be
able to transfer $5,000 of wealth in good times (no theft) into $15,000 of extra wealth in
bad times (theft). A fair insurance contract would allow this because it would cost $5,000
but return $20,000 should a theft occur (but nothing should no theft occur). Notice here
that the wealth changes promised by insurance—dW,/dW, = 15,000/—5,000 = —3—
exactly equal the negative of the odds ratio —m/(1 — w) = —0.75/0.25 = —3.

A policy with a deductible provision. A number of other insurance contracts might be
utility improving in this situation, though not all of them would lead to choices that lie on the
certainty line. For example, a policy that cost $5,200 and returned $20,000 in case of a theft
would permit this person to reach the certainty line with W, = W, = 94,800 and
expected utility = In 94,800 = 11.45953, (7.64)

which also exceeds the utility obtainable from the initial endowment. A policy that costs
$4,900 and requires the individual to incur the first $1,000 of a loss from theft would yield
wW_=100,000 — 4,900 = 95,100,
g (7.65)
W, = 80,000 — 4,900 + 19,000 = 94,100;
then
expected utility = 0.75 In 95,100 + 0.25 In 94,100
= 11.46004. (7.66)
Although this policy does not permit this person to reach the certainty line, it is utility
improving. Insurance need not be complete in order to offer the promise of higher utility.

(continued)
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EXAMPLE 7.6 CONTINUED

QUERY: What is the maximum amount an individual would be willing to pay for an
insurance policy under which he or she had to absorb the first $1,000 of loss?

Risk aversion and risk premiums

The state-preference model is also especially useful for analyzing the relationship between
risk aversion and individuals’ willingness to pay for risk. Consider two people, each of whom
starts with a certain wealth, W*. Each person seeks to maximize an expected utility function
of the form

WR wWR
V(W,,W,) = wa’ +(1—m) Tb' (7.67)

Here the utility function exhibits constant relative risk aversion (see Example 7.4). Notice
also that the function closely resembles the CES utility function we examined in Chapter 3
and elsewhere. The parameter R determines both the degree of risk aversion and the degree
of curvature of indifference curves implied by the function. A very risk-averse individual will
have a large negative value for R and have sharply curved indifference curves, such as U,
shown in Figure 7.3. A person with more tolerance for risk will have a higher value of R and
flatter indifference curves (such as Uz).23

23Tangency of U, and U, at W* is ensured, because the MRS along the certainty line is given by /(1 — ) regardless of
the value of R.

FIGURE 7.3 Risk Aversion and Risk Premiums

Indifference curve U, represents the preferences of a very risk-averse person, whereas the person with
preferences represented by U, is willing to assume more risk. When faced with the risk of losing 4 in
bad times, person 2 will require compensation of W, — W* in good times whereas person 1 will
require a larger amount given by W, — W*.

W

Certainty
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Suppose now these individuals are faced with the prospect of losing 4 dollars of wealth
in bad times. Such a risk would be acceptable to individual 2 if wealth in good times were
to increase from W* to W, For the very risk-averse individual 1, however, wealth would have
to increase to W, to make the risk acceptable. The difference between W, and W, therefore
indicates the effect of risk aversion on willingness to assume risk. Some of the problems in this
chapter make use of this graphic device for showing the connection between preferences (as
reflected by the utility function in Equation 7.67) and behavior in risky situations.

THE ECONOMICS OF INFORMATION

Information is a valuable economic resource. People who know where to buy high-quality
goods cheaply can make their budgets stretch further than those who don’t; farmers with
access to better weather forecasting may be able to avoid costly mistakes; and government
environmental regulation can be more efficient if it is based on good scientific knowledge.
Although these observations about the value of information have long been recognized,
formal economic modeling of information acquisition and its implications for resource
allocation are fairly recent.”* Despite its late start, the study of information economics has
become one of the major areas in current research. In this chapter we briefly survey some of
the issues raised by this research. Far more detail on the economics of information is provided
in Chapter 18.

PROPERTIES OF INFORMATION

One difficulty encountered by economists who wish to study the economics of information is
that “information” itself is not easy to define. Unlike the economic goods we have been
studying so far, the “quantity” of information obtainable from various actions is not well
defined, and what information is obtained is not homogeneous among its users. The forms of
economically useful information are simply too varied to permit the kinds of price-quantity
characterizations we have been using for basic consumer goods. Instead, economists who
wish to study information must take some care to specify what the informational environment
is in a particular decision problem (this is sometimes called the nformation set) and how that
environment might be changed through individual actions. As might be expected, this
approach has resulted in a vast number of models of specific situations with little overall
commonality among them.

A second complication involved in the study of information concerns some technical
properties of information itself. Most information is durable and retains value after it has been
used. Unlike a hot dog, which is consumed only once, knowledge of a special sale can be used
not only by the person who discovers it but also by any friends with whom the information is
shared. The friends then may gain from this information even though they don’t have to
spend anything to obtain it. Indeed, in a special case of this situation, information has the
characteristic of a pure public good (see Chapter 19). That is, the information is both nonrival
in that others may use it at zero cost and nonexclusive in that no individual can prevent others
from using the information. The classic example of these properties is a new scientific dis-
covery. When some prehistoric people invented the wheel, others could use it without
detracting from the value of the discovery, and everyone who saw the wheel could copy it
freely.

These technical properties of information imply that market mechanisms may often ope-
rate imperfectly in allocating resources to information provision and acquisition. Standard

24The formal modeling of information is sometimes dated from the path-breaking article by G. J. Stigler, “The Economics
of Information,” Journal of Political Economy (June 1961): 213-25.
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models of supply and demand may therefore be of relatively limited use in understanding
such activities. At a minimum, models have to be developed that accurately reflect the
properties being assumed about the informational environment. Throughout the latter
portions of this book, we will describe some of the situations in which such models are called
for. Here, however, we will pay relatively little attention to supply-demand equilibria and will
instead focus primarily on information issues that arise in the theory of individual choice.

THE VALUE OF INFORMATION

Developing models of information acquisition necessarily requires using tools from our study
of uncertainty earlier in this chapter. Lack of information clearly represents a problem in-
volving uncertainty for a decision maker. In the absence of perfect information, he or she may
not be able to know exactly what the consequences of a particular action will be. Better
information can reduce that uncertainty and therefore lead to better decisions that provide
increased utility.

Information and subjective possibilities

This relationship between uncertainty and information acquisition can be illustrated using the
state-preference model. Earlier we assumed that an individual forms subjective opinions about
the probabilities of the two states of the world, “good times” and “bad times.” In this model,
information is valuable because it allows the individual to revise his or her estimates of these
probabilities and to take advantage of these revisions. For example, information that foretold
that tomorrow would definitely be “good times” would cause this person to revise his or her
probabilities to w, = 1, m, = 0 and to change his or her purchases accordingly. When the
information received is less definitive, the probabilities may be changed only slightly, but even
small revisions may be quite valuable. If you ask some friends about their experiences with a
few brands of DVD players you are thinking of buying, you may not want their opinions to
dictate your choice. The prices of the players and other types of information (say, obtained
from consulting Consumer Reports) will also affect your views. Ultimately, however, you must
process all of these factors into a decision that reflects your assessment of the probabilities of
various “states of the world” (in this case, the quality obtained from buying different brands).

A formal model

To illustrate why information has value, assume that an individual faces an uncertain situation
involving “good” and “bad” times and that he or she can invest in a “message” that will yield
some information about the probabilities of these outcomes. This message can take on two
potential values, 1 or 2, with probabilities p and (1 — p), respectively. If the message takes
the value 1, then this person will believe that the probability of good times s given by TI'; [and the
probability of bad times by w} = (1 — ﬂ;) ]. If the message takes the value 2, on the other hand,
the probabilities are 'n'j and (1 — 'n';). Once the message is received, this person has the oppor-
tunity to maximize expected utility on the basis of these probabilities. In general, it would be
expected that he or she will make different decisions depending on what the message is. Let 1]
be the (indirect) maximal expected utility when the message takes the value 1 and V, be this
maximal utility when the message takes the value 2. Hence, when this person is considering
purchasing the message (that is, before it is actually received), expected utility is given by:

Ewithm:pVI +(]‘_1))V2' (7'68)
Now let’s consider the situation of this person when he or she decides not to purchase the
message. In this case, a single decision must be made that is based on the probabilities of
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good and bad times, 7, Oand (1 — ) Becausc the individual knows the various probabilities
involved, consistency requlres that "IT = p’n’ +(1- p)Trf]. Now let ¥, represent the maximal
expected utility this person can obtam w1th these probabilities. Hence, we can write
expected utility without the message as
Egithouem = Vo = 2Vo + (L= p) V5. (7.69)

A comparison of Equations 7.68 and 7.69 shows that this person can always achieve
E,ihour »» When he or she has the information provided by the message. That is, he or she can
just choose to disregard what the message says. But if he or she chooses to make new,
different decisions based on the information in the message, it must be the case that this
information has value. That is:

E > E

‘with m = “without m* (7.70)
Presumably, then, this person will be willing to pay something for the message because of
the better decision-making opportunities it provides.?> Example 7.7 provides a simple

illustration.
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EXAMPLE 7.7 The Value of Information on Prices

To illustrate how new information may affect utility maximization, let’s return to one of the
first models we used in Chapter 4. There we showed that if an individual consumes two goods
and utility is given by U(x, y) = x%%y%5 then the indirect utility function is

I

V(per ), I) = 305705 (7.71)

As a numerical example, we considered the case p, = 1,p, =4, = 8, and calculated that
V =1/2-1.-2=2. Now suppose that good y represents, say, a can of brand-name tennis
balls, and this consumer knows that these can be bought at a price of either $3 or $5 from
two stores but does not know which store charges which price. Because it is equally likely
that either store has the lower price, the expected value of the price is $4. But, because the
indirect utility function is convex in price, this person receives an expected value of greater
than V' =2 from shopping because he or she can buy more if the low-priced store is
encountered. Before shopping, expected utility is
E[V(p,.p,,1)] =05 -V(1,3,8 +05-V(1,5,8)
=1.155+ 0.894 = 2.049. (7.72)

If the consumer knew which store offered the lower price, utility would be even greater. If
this person could buy at p, = 3 with certainty, then indirect utility would be V' = 2.309 and
we can use this result to calculate what the value of this information is. That is, we can ask
what level of income, I'*, would yield the same utility when p, = 3, as is obtained when this
person must choose which store to patronize by chance. Hence we need to solve the
equation

V(b p),17) = 2172'51]2‘5 = 31,305 2.049. (7.73)
Solving this yields a value of I* = 7.098. Hence, this person would be willing to pay up to
0.902 (= 8 — 7.098) for the information. Notice that availability of the price information

(continued)

25A more general way to state this result is to consider the properties of the individual’s indirect expected utility function
(V) as dependent on the probabilities in the problem. That is, V(m,) = max[m, U(W,) + (1 — m,) U(W,)]. Compar-
ing Equations 7.68 and 7.69 amounts to comparing pV(Tr}) +(1-p V('IT;) to V(wg) = V[pﬂ'r; +(1- p)*rr;]. Because the

V function is convex in m, the inequality in Equation 7.70 necessarily holds.
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EXAMPLE 7.7 CONTINUED

helps this person in two ways: (1) it increases the probability he or she will patronize the
low-price store from 0.5 to 1.0; and (2) it permits this person to take advantage of the lower
price offered by buying more.

QUERY: It scems odd in this problem that expected utility with price uncertainty

(V =2.049) is greater than utility when price takes its expected value (V' = 2). Does this
violate the assumption of risk aversion?

FLEXIBILITY AND OPTION VALUE

The availability of new information allows individuals to make better decisions in situations
involving uncertainty. It may therefore be beneficial to try to postpone making decisions until
the information arrives. Of course, flexibility may sometimes involve costs of its own, so the
decision-making process can become complex. For example, someone planning a trip to the
Caribbean would obviously like to know whether he or she will have good weather. A
vacationer who could wait until the last minute in deciding when to go could use the latest
weather forecast to make that decision. But waiting may be costly (perhaps because last-
minute airfares are much higher), so the choice can be a difficult one. Clearly the option to
delay the decision is valuable, but whether this “option value” exceeds the costs involved in
delay is the crucial question.

Modeling the importance of flexibility in decision making has become a major topic in the
study of uncertainty and information. “Real option theory” has come to be an important
component of financial and management theory. Other applications are beginning to emerge
in such diverse fields as development economics, natural resource economics, and law and
economics. Because this book focuses on general theory, however, we cannot pursue these
interesting innovations here. Rather, our brief treatment will focus on how questions of
flexibility might be incorporated into some of the models we have already examined, followed
by a few concluding remarks.

Flexibility in the portfolio model

Some of the basic principles of real option theory can be illustrated by combining the
portfolio choice model that we introduced earlier in this chapter with the idea of information
messages introduced in the previous section. Suppose that an investor is considering putting
some portion of his or her wealth (%) into a risky asset. The return on the asset is random and
its characteristics will depend on whether there are “good times” or “bad times.” The returns
under these two situations are designated by #, and 7,, respectively. First, consider a situation
where this person will get a message telling him or her whether it is good or bad times, but
the message will arrive after the investment decision is made. The probability that the message
will indicate good times is given by p. In this case, this person can be viewed as investing in a
risky asset whose return is given by 7, = p7, + (1 — p)7,. Following the procedure outlined
earlier, associated with this asset will be an optimal investment, k,, and the expected utility
associated with this portfolio will be Uj,.

Suppose, alternatively, that this person has the flexibility to wait until after the message is
received to decide on how his or her portfolio will be allocated. If the message reveals good
times, then he or she will choose to invest %, in the risky asset and expected utility will be U .
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On the other hand, if the message reveals bad times, then he or she will choose to invest £, in
the risky asset and expected utility will be U,. Hence, the expected utility provided by the
option of waiting before choosing % will be

U* =pU, + (1 -p)U,. (7.74)
As before, it is clear that U* > Uj,. The investor could always choose to invest k, no matter
what the message says, but if he or she chooses differing %#’s depending on the information
in the message, it must be because that strategy provides more expected utility. When

U* > U,, the option to wait has real value and this person will be willing to pay something
(say, in forgone interest receipts) for that possibility.

Financial options

In some cases option values can be observed in actual markets. For example, financial options
provide a buyer the right, but not the obligation, to conduct an economic transaction
(typically buying or selling a stock) at specified terms at a certain date in the future. An
option on Microsoft Corporation shares, for instance, might give the buyer the right (but not
the obligation) to buy the stock in six months at a price of $30 per share. Or a foreign
exchange option might provide the buyer with the right to buy euros at a price of $1.30 per
curo in three months. All such options have value because they permit the owner to either
make or decline the specified transaction depending on what new information becomes
available over the option’s duration. Such built-in flexibility is useful in a wide variety of
investment strategies.

Options embedded in other transactions

Many other types of economic transactions have options embedded in them. For example,
the purchase of'a good that comes with a “money-back guarantee” gives the buyer an option
to reverse the transaction should his or her experience with the good be unfavorable.
Similarly, many mortgages provide the homeowner with the option to pay off the loan
without penalty should conditions change. All such options are clearly valuable. A car
buyer is not required to return his or her purchase if the car runs well and the homeowner
need not pay off the mortgage if interest rates rise. Hence, embedding a buyer’s option in a
transaction can only increase the value of that transaction to the buyer. Contracts with such
options would be expected to have higher prices. On the other hand, transactions with
embedded seller options (for example, the right to repurchase a house at a stated price) will
have lower prices. Examining price differences can therefore be one way to infer the value of
some embedded options.

ASYMMETRY OF INFORMATION

One obvious implication of the study of information acquisition is that the level of informa-
tion that an individual buys will depend on the per-unit price of information messages. Unlike
the market price for most goods (which we usually assume to be the same for everyone), there
are many reasons to believe that information costs may differ significantly among individuals.
Some individuals may possess specific skills relevant to information acquisition (they may be
trained mechanics, for example) whereas others may not possess such skills. Some individuals
may have other types of experience that yield valuable information, whereas others may lack
that experience. For example, the seller of a product will usually know more about its
limitations than will a buyer, because the seller will know precisely how the good was made
and where possible problems might arise. Similarly, large-scale repeat buyers of a good may
have greater access to information about it than would first-time buyers. Finally, some
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individuals may have invested in some types of information services (for example, by having a
computer link to a brokerage firm or by subscribing to Consumer Reports) that make the
marginal cost of obtaining additional information lower than for someone without such an

investment.

All of these factors suggest that the level of information will sometimes differ among the
participants in market transactions. Of course, in many instances, information costs may be
low and such differences may be minor. Most people can appraise the quality of fresh
vegetables fairly well just by looking at them, for example. But when information costs are
high and variable across individuals, we would expect them to find it advantageous to acquire
different amounts of information. We will postpone a detailed study of such situations until

Chapter 18.

SUMMARY

The goal of this chapter was to provide some basic material
for the study of individual behavior in uncertain situations.
The key concepts covered may be listed as follows.

The most common way to model behavior under uncer-
tainty is to assume that individuals seek to maximize the
expected utility of their actions.

Individuals who exhibit a diminishing marginal utility of
wealth are risk averse. That s, they generally refuse fair bets.

Risk-averse individuals will wish to insure themselves
completely against uncertain events if insurance pre-
miums are actuarially fair. They may be willing to pay
more than actuarially fair premiums in order to avoid
taking risks.

Two utility functions have been extensively used in the
study of behavior under uncertainty: the constant
absolute risk aversion (CARA) function and the con-

PROBLEMS

71

stant relative risk aversion (CRRA) function. Neither is
completely satisfactory on theoretical grounds.

One of the most extensively studied issues in the eco-
nomics of uncertainty is the “portfolio problem,” which
asks how an investor will split his or her wealth between
risky and risk-free assets. In some cases it is possible to
obtain precise solutions to this problem, depending on
the nature of the risky assets that are available.

The state-preference approach allows decision making
under uncertainty to be approached in a familiar choice-
theoretic framework. The approach is especially useful
for looking at issues that arise in the economics of
information.

Information is valuable because it permits individuals to
make better decisions in uncertain situations. Informa-
tion can be most valuable when individuals have some
flexibility in their decision making.

George is seen to place an even-money $100,000 bet on the Bulls to win the NBA Finals. If George has
a logarithmic utility-of-wealth function and if his current wealth is $1,000,000, what must he believe is
the minimum probability that the Bulls will win?

7.2

Show that if an individual’s utility-of-wealth function is convex then he or she will prefer fair gambles to
income certainty and may even be willing to accept somewhat unfair gambles. Do you believe this sort
of risk-taking behavior is common? What factors might tend to limit its occurrence?

7.3

An individual purchases a dozen eggs and must take them home. Although making trips home is
costless, there is a 50 percent chance that all of the eggs carried on any one trip will be broken during the
trip. The individual considers two strategies: (1) take all 12 eggs in one trip; or (2) take two trips with

6 eggs in each trip.
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a. List the possible outcomes of each strategy and the probabilities of these outcomes. Show that,
on average, 6 eggs will remain unbroken after the trip home under either strategy.

b. Develop a graph to show the utility obtainable under each strategy. Which strategy will be
preferable?

¢. Could utility be improved further by taking more than two trips? How would this possibility be
affected if additional trips were costly?

7.4

Suppose there is a 50-50 chance that a risk-averse individual with a current wealth of $20,000 will
contract a debilitating disease and suffer a loss of $10,000.

a. Calculate the cost of actuarially fair insurance in this situation and use a utility-of-wealth graph
(such as shown in Figure 7.1) to show that the individual will prefer fair insurance against this
loss to accepting the gamble uninsured.

b. Suppose two types of insurance policies were available:
(1) a fair policy covering the complete loss; and
(2) a fair policy covering only half of any loss incurred.

Calculate the cost of the second type of policy and show that the individual will generally
regard it as inferior to the first.

7.5
Ms. Fogg is planning an around-the-world trip on which she plans to spend $10,000. The utility from
the trip is a function of how much she actually spends on it (7'), given by
UY)=In7Y.
a. Ifthereis a 25 percent probability that Ms. Fogg will lose $1,000 of her cash on the trip, what is
the trip’s expected utility?

b. Suppose that Ms. Fogg can buy insurance against losing the $1,000 (say, by purchasing
traveler’s checks) at an “actuarially fair” premium of $250. Show that her expected utility is
higher if she purchases this insurance than if she faces the chance of losing the $1,000 without
insurance.

¢. What is the maximum amount that Ms. Fogg would be willing to pay to insure her $1,0002

7.6

In deciding to park in an illegal place, any individual knows that the probability of getting a ticket is p
and that the fine for receiving the ticket is f. Suppose that all individuals are risk averse (that is,
U"(W) < 0, where W is the individual’s wealth).

Will a proportional increase in the probability of being caught or a proportional increase in the fine
be a more effective deterrent to illegal parking? Hint: Use the Taylor series approximation U(W — f) =
U(W) = fU' (W) + (f2/2)U"(W).

7.7
A farmer believes there is a 50-50 chance that the next growing season will be abnormally rainy. His
expected utility function has the form
.. 1 1
expected utility = > In Yy + > In Ty,
where Yy, and 1 represent the farmer’s income in the states of “normal rain” and “rainy,”
respectively.
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a. Suppose the farmer must choose between two crops that promise the following income

prospects:
Crop Tar T
Wheat $28,000 $10,000
Corn 19,000 15,000

Which of the crops will he plant?

b. Suppose the farmer can plant half his field with each crop. Would he choose to do so? Explain
your result.

¢. What mix of wheat and corn would provide maximum expected utility to this farmer?

d. Would wheat crop insurance—which is available to farmers who grow only wheat and which
costs $4,000 and pays off $8,000 in the event of a rainy growing season—cause this farmer to
change what he plants?

7.8

In Equation 7.30 we showed that the amount an individual is willing to pay to avoid a fair gamble (%) is
given by p = 0.5E(/?)r(W), where #(W) is the measure of absolute risk aversion at this person’s initial
level of wealth. In this problem we look at the size of this payment as a function of the size of the risk
faced and this person’s level of wealth.

a. Consider a fair gamble () of winning or losing $1. For this gamble, what is E(?)?

b. Now consider varying the gamble in part (a) by multiplying each prize by a positive constant k.
Let b = kv. What is the value of E(4?)?

c. Suppose this person has a logarithmic utility function U(W) = In W. What is a general
expression for 7(W)?

d. Compute the risk premium (p) for £ = 0.5,1, and 2 and for W = 10 and 100. What do you
conclude by comparing the six values?

Analytical Problems
7.9 HARA Utility

The CARA and CRRA utility functions are both members of a more general class of utility functions
called harmonic absolute visk aversion (HARA) functions. The general form for this function is
U(W) = 6(+ W/y)' ™", where the various parameters obey the following restrictions:

e vy<1
* u+W/iy>0,
s 60[(1-v)/v]>0.
The reasons for the first two restrictions are obvious; the third is required so that U’ > 0.

a. Calculate »(W) for this function. Show that the reciprocal of this expression is linear in W. This
is the origin of the term “harmonic” in the function’s name.

b. Show that, when w =0 and 6 =[(1 —)/]""", this function reduces to the CRRA function
given in Chapter 7 (see footnote 17).

c. Use your result from part (a) to show that if y — o then »( W) is a constant for this function.

d. Let the constant found in part (c) be represented by A. Show that the implied form for the
utility function in this case is the CARA function given in Equation 7.35.

¢. Finally, show that a quadratic utility function can be generated from the HARA function simply
by setting y = — 1.

f. Despite the seeming generality of the HARA function, it still exhibits several limitations for the
study of behavior in uncertain situations. Describe some of these shortcomings.
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7.10 The resolution of uncertainty

In some cases individuals may care about the date at which the uncertainty they face is resolved.
Suppose, for example, that an individual knows that his or her consumption will be 10 units today
(¢,) but that tomorrow’s consumption (¢, ) will be either 10 or 2.5, depending on whether a coin comes
up heads or tails. Suppose also that the individual’s utility function has the simple Cobb-Douglas form

Uler, 65) = Vi 65
a. Ifan individual cares only about the expected value of utility, will it matter whether the coin is
flipped just before day 1 or just before day 22 Explain.

b. More generally, suppose that the individual’s expected utility depends on the timing of the coin
flip. Specifically, assume that

expected utility = E,[{ Ey[Ulcy, )]},
where E; represents expectations taken at the start of day 1, E, represents expectations at the

start of day 2, and « represents a parameter that indicates timing preferences. Show that if
a = 1, the individual is indifferent about when the coin is flipped.

c. Show thatif o = 2, the individual will prefer early resolution of the uncertainty—that is, flipping
the coin at the start of day 1.

d. Show thatif a = 0.5, the individual will prefer later resolution of the uncertainty (flipping at the
start of day 2).

e. Explain your results intuitively and indicate their relevance for information theory. Noze:
This problem is an illustration of “resolution seeking” and “resolution averse” behavior; see
D. M. Kreps and E. L. Porteus, “Temporal Resolution of Uncertainty and Dynamic Choice
Theory,” Econometrica (January 1978): 185-200.

7.11 More on the CRRA function

For the constant relative risk aversion utility function (Equation 7.42), we showed that the degree of
risk aversion is measured by (1 — R). In Chapter 3 we showed that the elasticity of substitution for the
same function is given by 1/(1 — R). Hence, the measures are reciprocals of each other. Using this
result, discuss the following questions.

a. Why is risk aversion related to an individual’s willingness to substitute wealth between states of
the world? What phenomenon is being captured by both concepts?

b. How would you interpret the polar cases R =1 and R = — in both the risk-aversion and
substitution frameworks?

¢. Arise in the price of contingent claims in “bad” times (P,) will induce substitution and income
effects into the demands for W, and W,,. If the individual has a fixed budget to devote to these
two goods, how will choices among them be affected? Why might W), rise or fall depending on

the degree of risk aversion exhibited by the individual?

d. Suppose that empirical data suggest an individual requires an average return of 0.5 percent
before being tempted to invest in an investment that has a 50-50 chance of gaining or losing
5 percent. That is, this person gets the same utility from W, as from an even bet on 1.055 W,
and 0.955Wj,.

(1) What value of R is consistent with this behavior?

(2) How much average return would this person require to accept a 50-50 chance of gaining or
losing 10 percent?

Note: This part requires solving nonlinear equations, so approximate solutions will suffice. The
comparison of the risk-reward trade-off illustrates what is called the “equity premium puzzle”
in that risky investments seem actually to earn much more than is consistent with the degree of
risk aversion suggested by other data. See N. R. Kocherlakota, “The Equity Premium: It’s Still
a Puzzle,” Journal of Economic Literature (March 1996): 42-71.
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7.12 Graphing risky investments

Investment in risky assets can be examined in the state-preference framework by assuming that W*
dollars invested in an asset with a certain return » will yield W*(1 + 7) in both states of the world,
whereas investment in a risky asset will yield W*(1 + rﬂ) in good times and W*(1 + #,) in bad times
(Where 7, > 7 > 7).

a. Graph the outcomes from the two investments.

b. Show how a “mixed portfolio” containing both risk-free and risky assets could be illustrated in
your graph. How would you show the fraction of wealth invested in the risky asset?

c. Show how individuals’ attitudes toward risk will determine the mix of risk-free and risky assets
they will hold. In what case would a person hold no risky assets?

d. If an individual’s utility takes the constant relative risk aversion form (Equation 7.42), explain
why this person will not change the fraction of risky assets held as his or her wealth increases.*®

7.13 Taxing risks assets

Suppose the asset returns in Problem 7.12 are subject to taxation.

a. Show, under the conditions of Problem 7.12, why a proportional tax on wealth will not affect
the fraction of wealth allocated to risky assets.

b. Suppose that only the returns from the safe asset were subject to a proportional income tax.
How would this affect the fraction of wealth held in risky assets? Which investors would be most
affected by such a tax?

¢. How would your answer to part (b) change if all asset returns were subject to a proportional
income tax?

Note: This problem asks you to compute the pre-tax allocation of wealth that will result in post-tax
utility maximization.

7.14 The portfolio problem with a Normally distributed risky asset

In Example 7.3 we showed that a person with a CARA utility function who faces a Normally distributed
risk will have expected utility of the form E[U(W)] = py, — (A/2)0%,, where Ly, is the expected value
of wealth and 0%, is its variance. Use this fact to solve for the optimal portfolio allocation for a person
with a CARA utility function who must invest % of his or her wealth in a Normally distributed risky asset
whose expected return is ., and variance in return is o2 (your answer should depend on A). Explain
your results intuitively.

2This problem and the next are taken from J. E. Stiglitz, “The Effects of Income, Wealth, and Capital Gains Taxation in
Risk Taking,” Quarterly Journal of Economics (May 1969): 263-83.
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EXTENSIONS
Portfolios of Many Risky Assets

The portfolio problem we studied in Chapter 7 looked
at an investor’s decision to invest a portion of his or her
wealth in a single risky asset. In these Extensions we
will see how this model can be generalized to consider
portfolios with many such assets. Throughout our dis-
cussion we will assume that there are # risky assets.
The return on each asset is a random variable denoted
by 7; (i = 1, »). The expected values and variances of
these assets’ returns are denoted by E(7;) = p, and
Var(#;) = o2, respectively. An investor who invests a
portion of his or her wealth in a portfolio of these
assets will obtain a random return (7,) given by

n
p=Y o7, (i)
=1

where o, (> 0) is the fraction of the risky portfolio
held in asset 7 and where Y7 | o; = 1. In this sit-
uation, the expected return on this portfolio will be

E(rp) = pp = Zo‘il*i' (ii)
i—1

If the returns of each asset are independent, then the
variance of the portfolio’s return will be

n
Var(rp) = 0% = Z alo?.

i=1
If the returns are not independent, Equation iii would
have to be modified to take covariances among the
returns into account. Using this general notation, we
now proceed to look at some aspects of this portfolio

allocation problem.

(iii)

E7.1 Diversification with two
risky assets

Equation iii provides the basic rationale for holding
many assets in a portfolio: so that diversification can
reduce risk. Suppose, for example, that there are only
two independent assets and that the expected returns
and variances of those returns for each of the assets are
identical. That is, assume p; = p, and o2 = 03. A
person who invests his or her risky portfolio in only
one of these seemingly identical assets will obtain p., =
B, =R, and 0% =o? = o3. By mixing the assets,
however, this investor can do better in the sense that
he or she can get the same expected yield with lower
variance. Notice that, no matter how this person

invests, the expected return on the portfolio will be
the same:

wp =gy + (1 —ay)u, = py =y (i)
But the variance will depend on the allocation be-
tween the two assets:

o2 =atoi+ (1 - 0(1)20% = (1 - 2a; + 2a3)03.

(v)

Choosing o; to minimize this expression yields a; =

0.5 and

02 = 0.507. (vi)
Hence, holding half of one’s portfolio in each asset
yields the same expected return as holding only one
asset, but it promises a variance of return that is only
half as large. As we showed earlier in Chapter 7, this is
the primary benefit of diversification.

E7.2 Efficient portfolios

With many assets, the optimal diversification problem
is to choose asset weightings (the a’s) so as to mini-
mize the variance (or standard deviation) of the port-
folio for each potential expected return. The solution
to this problem yields an “efficiency frontier” for risky
asset portfolios such as that represented by the line EE
in Figure E7.1. Portfolios that lie below this frontier
are inferior to those on the frontier because they offer
lower expected returns for any degree of risk. Portfolio
returns above the frontier are unattainable. Sharpe
(1970) discusses the mathematics associated with con-
structing the EE frontier.

Mutual funds

The notion of portfolio efficiency has been widely
applied to the study of mutual funds. In general, mu-
tual funds are a good answer to small investors’ diver-
sification needs. Because such funds pool the funds of
many individuals, they are able to achieve economies
of scale in transactions and management costs. This
permits fund owners to share in the fortunes of a much
wider variety of equities than would be possible if each
acted alone. But mutual fund managers have incen-
tives of their own, so the portfolios they hold may not
always be perfect representations of the risk attitudes
of their clients. For example, Scharfstein and Stein
(1990) develop a model that shows why mutual fund
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The frontier EE represents optimal mixtures of risky assets that minimize the standard deviation of the
portfolio, o, for each expected return, w,. A risk-free asset with return g offers investors the
opportunity to hold mixed portfolios along PP that mix this risk-free asset with the market portfolio, 4.

©p

op

managers have incentives to “follow the herd” in their
investment picks. Otherstudies, such as the classicinves-
tigation by Jensen (1968), find that mutual fund man-
agers are seldom able to attain extra returns large
enough to offset the expenses they charge investors.
In recent years this has led many mutual fund buyers
to favor “index” funds that seek simply to duplicate
the market average (as represented, say, by the Stan-
dard and Poor’s 500 stock index). Such funds have
very low expenses and therefore permit investors to
achieve diversification at minimal cost.

E7.3 Portfolio separation

If there exists a risk-free asset with expected return
ppand o, = 0, then optimal portfolios will consist of
mixtures of this asset with risky ones. All such portfo-
lios will lie along the line PP in Figure 7.1, because this
shows the maximum return attainable for each value of
o for various portfolio allocations. These allocations
will contain only one specific set of risky assets: the set
represented by point M. In equilibrium this will be the
“market portfolio” consisting of all capital assets held
in proportion to their market valuations. This market
portfolio will provide an expected return of w,, and a

standard deviation of that return of o,,. The equation
for the line PP that represents any mixed portfolio is
given by the linear equation

Ky — HBr

Hp:Mf+7 Op.

(vii)

This shows that the market line PP permits individ-
ual investors to “purchase” returns in excess of the risk-
free return (m, — p,) by taking on proportionally
more risk (op/0,,). For choices on PP to the left of
the market point M, op/0), < land p, < pp < py.
High-risk points to the right of M—which can be
obtained by borrowing to produce a leveraged port-
folio—will have op/0,, >1 and will promise an
expected return in excess of what is provided by the
market portfolio (i, > ). Tobin (1958) was one of
the first economists to recognize the role that risk-free
assets play in identifying the market portfolio and in
setting the terms on which investors can obtain returns
above risk-free levels.

E7.4 Individual choices

Figure E7.2 illustrates the portfolio choices of various
investors facing the options offered by the line PP.
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FIGURE E7.2 Investor Behavior and Risk Aversion

Given the market options PP, investors can choose how much risk they wish to assume. Very risk-
averse investors ( U;) will hold mainly risk-free assets, whereas risk takers (U, ) will opt for leveraged

portfolios.

HMp

gp

This figure illustrates the type of portfolio choice
model previously described in this chapter. Individuals
with low tolerance for risk (1) will opt for portfolios
that are heavily weighted toward the risk-free asset.
Investors willing to assume a modest degree of risk
(1I) will opt for portfolios close to the market portfo-
lio. High-risk investors (III) may opt for leveraged
portfolios. Notice that all investors face the same
“price” of risk (n,, — p,) with their expected returns
being determined by how much relative risk (o p/0,,)
they are willing to incur. Notice also that the risk as-
sociated with an investor’s portfolio depends only on
the fraction of the portfolio invested in the market
portfolio (a), since 0% = a0, + (1 — a)?-0. Hence,
op/0,, = a and so the investor’s choice of portfolio is
equivalent to his or her choice of risk.

E7.5 Capital asset pricing model

Although the analysis of E7.4 shows how a portfolio
that mixes a risk-free asset with the market portfolio

will be priced, it does not describe the risk-return trade-
off for a single asset. Because (assuming transactions
are costless) an investor can always avoid risk unrelated
to the overall market by choosing to diversify with
a “market portfolio,” such “unsystematic” risk will
not warrant any excess return. An asset will, however,
earn an excess return to the extent that it contributes
to overall market risk. An asset that does not yield
such extra returns would not be held in the market
portfolio, so it would not be held at all. This is the
fundamental insight of the capital asset pricing
model (CAPM).

To examine these results formally, consider a port-
folio that combines a small amount (a) of an asset with
a random return of x with the market portfolio (which
has a random return of M). The return on this port-
folio (z) would be given by

z=ax+ (1 —a)M. (viii)
The expected return is
ey = apy, + (1 — o)y (ix)



with variance
2

o2 =002+ (1-a) ol + 2a(1— @)oy a0

where o, ,, is the covariance between the return on x

and the return on the market.
But our previous analysis shows

(xi)

B =Ryt (lyr — Rp) - Tar

Setting Equation ix equal to xi and differentiating
with respect to a yields

I, By — Kpdo,
da — TP = Oy o

(xii)

By calculating do /9o from Equation x and taking the
limit as o approaches zero, we get

we =y — Mar — Vg [ Oy ar — T (xiii)
— Py = ,
¥ Ou M

or, rearranging terms,

Gx, M

By = Bp + (Rar — Bg) - )
M

(xiv)

Again, risk has a reward of w,;, — ., but now the
quantity of risk is measured by o,, ,,/07,. This ratio of
the covariance between the return x and the market
to the variance of the market return is referred to as
the beta coefficient for the asset. Estimated beta co-
efficients for financial assets are reported in many
publications.

Studies of the CAPM
This version of the capital asset pricing model carries
strong implications about the determinants of any
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asset’s expected rate of return. Because of this simplic-
ity, the model has been subject to a large number of
empirical tests. In general these find that the model’s
measure of systemic risk (beta) is indeed correlated
with expected returns, while simpler measures of risk
(for example, the standard deviation of past returns)
are not. Perhaps the most influential early empirical
test that reached such a conclusion was Fama and
MacBeth (1973). But the CAPM itself explains only
a small fraction of differences in the returns of various
assets. And, contrary to the CAPM, a number of
authors have found that many other economic factors
significantly affect expected returns. Indeed, a promi-
nent challenge to the CAPM comes from one of its
original founders—see Fama and French (1992).

References

Fama, E. F., and K. R. French. “The Cross Section of
Expected Stock Returns.” Journal of Finance 47 (1992):
427-66.

Fama, E. F., and J. MacBeth. “Risk, Return, and Equilib-
rium.” Journal of Political Economy 8 (1973): 607-36.

Jensen, M. “The Performance of Mutual Funds in the Period
1945-1964.” Journal of Finance (May 1968): 386—416.

Scharfstein, D. S.; and J. Stein. “Herd Behavior and
Investment.” Awmerican Economic Review (June 1990):
465-89.

Sharpe, W. E. Portfolio Theory and Capital Markets. New
York: McGraw-Hill, 1970.

Tobin, J. “Liquidity Preference as Behavior Towards Risk.”
Review of Economic Studies (February 1958): 65-86.



CHAPTER

236

v

Strategy and Game Theory

This chapter provides an introduction to noncooperative game theory, a tool used to understand the strategic
interactions among two or more agents. The range of applications of game theory has been growing
constantly, including all areas of economics (from labor economics to macroeconomics) and other fields
such as political science and biology. Game theory is particularly useful in understanding the interaction
between firms in an oligopoly, so the concepts learned here will be used extensively in Chapter 15. We begin
with the central concept of Nash equilibrium and study its application in simple games. We then go on to
study refinements of Nash equilibrium that are used in games with more complicated timing and information
structures.

BASIC CONCEPTS

So far in Part IT of this text, we have studied individual decisions made in isolation. In this
chapter we study decision making in a more complicated, strategic setting. In a strategic
setting, a person may no longer have an obvious choice that is best for him or her. What is best
for one decision maker may depend on what the other is doing and vice versa.

For example, consider the strategic interaction between drivers and the police. Whether
drivers prefer to speed may depend on whether the police set up speed traps. Whether the
police find speed traps valuable depends on how much drivers speed. This confusing circularity
would seem to make it difficult to make much headway in analyzing strategic behavior. In fact,
the tools of game theory will allow us to push the analysis nearly as far, for example, as our
analysis of consumer utility maximization in Chapter 4.

There are two major tasks involved when using game theory to analyze an economic
situation. The first is to distill the situation into a simple game. Because the analysis involved in
strategic settings quickly grows more complicated than in simple decision problems, it is
important to simplify the setting as much as possible by retaining only a few essential elements.
There is a certain art to distilling games from situations that is hard to teach. The examples in
the text and problems in this chapter can serve as models that may help in approaching new
situations.

The second task is to “solve” the given game, which results in a prediction about what
will happen. To solve a game, one takes an equilibrium concept (Nash equilibrium, for ex-
ample) and runs through the calculations required to apply it to the given game. Much of the
chapter will be devoted to learning the most widely used equilibrium concepts (including
Nash equilibrium) and to practicing the calculations necessary to apply them to particular
games.

A game is an abstract model of a strategic situation. Even the most basic games have three
essential elements: players, strategies, and payofts. In complicated settings, it is sometimes also
necessary to specify additional elements such as the sequence of moves and the information
that players have when they move (who knows what when) to describe the game fully.
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Players

Each decision maker in a game is called a p/ayer. These players may be individuals (as in poker
games), firms (as in markets with few firms), or entire nations (as in military conflicts). A player
is characterized as having the ability to choose from among a set of possible actions. Usually,
the number of players is fixed throughout the “play” of the game. Games are sometimes
characterized by the number of players involved (two-player, three-player, or z-player games).
As does much of the economic literature, this chapter often focuses on two-player games
because this is the simplest strategic setting.

We will label the players with numbers, so in a two-player game we will have players 1
and 2. In an #n-player game we will have players 1, 2, ..., », with the generic player labeled :.

Strategies

Each course of action open to a player during the game is called a strategy. Depending on the
game being examined, a strategy may be a simple action (drive over the speed limit or not) or
a complex plan of action that may be contingent on earlier play in the game (say, speeding
only if the driver has observed speed traps less than a quarter of the time in past drives). Many
aspects of game theory can be illustrated in games in which players choose between just two
possible actions.

Let §; denote the set of strategies open to player 1, S, the set open to player 2, and (more
generally) S; the set open to player 7. Let 5; € §; be a particular strategy chosen by player 1
from the set of possibilities, s, € S, the particular strategy chosen by player 2, and s; € §; for
player 7. A strategy profile will refer to a listing of particular strategies chosen by each of a
group of players.

Payoffs

The final returns to the players at the conclusion of a game are called payoffs. Payoffs are
measured in levels of utility obtained by the players. For simplicity, monetary payofts (say,
profits for firms) are often used. More generally, payoffs can incorporate nonmonetary out-
comes such as prestige, emotion, risk preferences, and so forth. Players are assumed to prefer
higher payoffs than lower payofts.

In a two-player game, #,(s;,5,) denotes player 1’s payoft given that he or she chooses s
and the other player chooses 5, and similarly #, (s,, 5, ) denotes player 2’s payoff. The fact player
1’s payoft may depend on 2’s strategy (and vice versa) is where the strategic interdependence
shows up. In an #-player game, we can write the payoft of a generic player 7 as #,(s;, s_;), which
depends on player i’s own strategy s; and the profile 5 ; = (s,...,5_1,5.1,...,5,) of the
strategies of all players other than 7.

PRISONERS’ DILEMMA

The Prisoners’ Dilemma, introduced by A. W. Tucker in the 1940s, is one of the most famous
games studied in game theory and will serve here as a nice example to illustrate all the
notation just introduced. The title stems from the following situation. Two suspects are ar-
rested for a crime. The district attorney has little evidence in the case and is eager to extract
a confession. She separates the suspects and tells each: “If you fink on your companion
but your companion doesn’t fink on you, I can promise you a reduced (one-year) sentence,
whereas your companion will get four years. If you both fink on each other, you will each get
a three-year sentence.” Each suspect also knows that if neither of them finks then the lack of
evidence will result in being tried for a lesser crime for which the punishment is a two-year
sentence.
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FIGURE 8.1

Boiled down to its essence, the Prisoners’ Dilemma has two strategic players, the suspects,
labeled 1 and 2. (There is also a district attorney, but since her actions have already been fully
specified, there is no reason to complicate the game and include her in the specification.) Each
player has two possible strategies open to him: fink or remain silent. We therefore write their
strategy sets as §; = S, {fink, silent}. To avoid negative numbers we will specify payoffs as
the years of freedom over the next four years. For example, if suspect 1 finks and 2 does not,
suspect 1 will enjoy three years of freedom and 2 none, that is, #,(fink,silent) = 3 and
u, (silent, fink) = 0.

Extensive form

There are 2? = 4 combinations of strategies and two payoffs to specify for each combi-
nation. So instead of listing all the payofs, it will be clearer to organize them in a game tree
or a matrix.

The game tree, also called the extensive form, is shown in Figure 8.1. The action proceeds
from left to right. Each node (shown as a dot on the tree) represents a decision point for the
player indicated there. The first move in this game belongs to player 1; he must choose
whether to fink or be silent. Then player 2 makes his decision. The dotted oval drawn around
the nodes at which player 2 moves indicates that the two nodes are in the same information
set, that is, player 2 does not know what player 1 has chosen when 2 moves. We put the two
nodes in the same information set because the district attorney approaches each suspect
separately and does not reveal what the other has chosen. We will later look at games in which
the second mover does have information about the first mover’s choice and so the two nodes
are in separate information sets. Payofts are given at the end of the tree. The convention is for
player 1’s payoff to be listed first, then player 2’s.

Extensive Form for the Prisoners’ Dilemma

In this game, player 1 chooses to fink or be silent, and player 2 has the same choice. The oval
surrounding 2’s nodes indicates that they share the same (lack of) information: 2 does not know
what strategy 1 has chosen because the district attorney approaches each player in secret. Payofts are
listed at the right.

ui=1,u=1

uy=3,u,=0

U1:0,U2:3

ug=2,u,=2
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TABLE 8.1 Normal Form for the Prisoners’ Dilemma

Suspect 2
— Fink Silent
5 Fink w=1u=1 w =3, u,=0
a
m% Silent | #; =0, #, =3 w =2, uy =2

Normal form

Although the extensive form in Figure 8.1 offers a useful visual presentation of the complete
structure of the game, sometimes it is more convenient to represent games in matrix form,
called the normal form of the game; this is shown for the Prisoners’ Dilemma in Table 8.1.
Player 1 is the row player, and 2 is the column player. Each entry in the matrix lists the payofts
first for player 1 and then for 2.

Thinking strategically about the Prisoners’ Dilemma

Although we have not discussed how to solve games yet, it is worth thinking about what we
might predict will happen in the Prisoners’ Dilemma. Studying Table 8.1, on first thought
one might predict that both will be silent. This gives the most total years of freedom for both
(four) compared to any other outcome. Thinking a bit deeper, this may not be the best
prediction in the game. Imagine ourselves in player 1’s position for a moment. We don’t
know what player 2 will do yet since we haven’t solved out the game, so let’s investigate each
possibility. Suppose 2 chose to fink. By finking ourselves we would earn one year of freedom
versus none if we remained silent, so finking is better for us. Suppose 2 chose to remain silent.
Finking is still better for us than remaining silent since we get three rather than two years of
freedom. Regardless of what the other player does, finking is better for us than being silent
since it results in an extra year of freedom. Since players are symmetric, the same reasoning
holds if we imagine ourselves in player 2’s position. Therefore, the best prediction in the
Prisoners’ Dilemma is that both will fink. When we formally introduce the main solution
concept—Nash equilibrium—we will indeed find that both finking is a Nash equilibrium.

The prediction has a paradoxical property: by both finking, the suspects only enjoy one
year of freedom, but if they were both silent they would both do better, enjoying two years of
freedom. The paradox should not be taken to imply that players are stupid or that our
prediction is wrong. Rather, it reveals a central insight from game theory that pitting players
against each other in strategic situations sometimes leads to outcomes that are inefficient for
the players. (When we say the outcome is inefficient, we are focusing just on the suspects’
utilities; if the focus were shifted to society at large, then both finking might be quite a good
outcome for the criminal justice system—presumably the motivation behind the district
attorney’s offer.) The suspects might try to avoid the extra prison time by coming to an
agreement beforehand to remain silent, perhaps reinforced by threats to retaliate afterwards if
one or the other finks. Introducing agreements and threats leads to a game that differs from
the basic Prisoners’ Dilemma, a game that should be analyzed on its own terms using the
tools we will develop shortly.

Solving the Prisoners’ Dilemma was easy because there were only two players and two
strategies and because the strategic calculations involved were fairly straightforward. It would
be useful to have a systematic way of solving this as well as more complicated games. Nash
equilibrium provides us with such a systematic solution.
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NASH EQUILIBRIUM

In the economic theory of markets, the concept of equilibrium is developed to indicate a
situation in which both suppliers and demanders are content with the market outcome. Given
the equilibrium price and quantity, no market participant has an incentive to change his or
her behavior. In the strategic setting of game theory, we will adopt a related notion of
equilibrium, formalized by John Nash in the 1950s, called Nash equilibrium.' Nash equilib-
rium involves strategic choices that, once made, provide no incentives for the players to alter
their behavior further. A Nash equilibrium is a strategy for each player that is the best choice
for each player given the others’ equilibrium strategies.

Nash equilibrium can be defined very simply in terms of best responses. In an n-player
game, strategy s, is a best response to rivals’ strategies s_; if player ¢ cannot obtain a strictly
higher payoff with any other possible strategy s; € §; given that rivals are playing s_;.

1

Best response. s; is a best response for player 7 to rivals’ strategies s_;, denoted s; € BR,(s_;),

—7
if

w;(s;,8;) > w;(s,,s;) forall s €8, (8.1)

> 5

A technicality embedded in the definition is that there may be a set of best responses rather
than a unique one; that is why we used the set inclusion notation s; € BR;(s_;). There may be
a tie for the best response, in which case the set BR,(s_;) will contain more than one element.
If there isn’t a tie, then there will be a single best response s5; and we can simply write
5; = BR,(s_;).

We can now define a Nash equilibrium in an #z-player game as follows.

Nash equilibrium. A Nash equilibrium is a strategy profile (s}, 53, ..., s¥) such that, for each

ceydy,

player i = 1,2,...,n, sT isa best response to the other players’ equilibrium strategies s*;. That
is, 57 € BR,(s%).

These definitions involve a lot of notation. The notation is a bit simpler in a two-player game.
In a two-player game, (s},53) is a Nash equilibrium if 5§ and s5 are mutual best responses
against each other:

uy(sy,s55) > u(s,s;) forall s €8, (8.2)
and
1y (55,57) > my(s,,57) forall s, €8,. (8.3)

A Nash equilibrium is stable in that, even if all players revealed their strategies to each other,
no player would have an incentive to deviate from his or her equilibrium strategy and choose
something else. Nonequilibrium strategies are not stable in this way. If an outcome is not a
Nash equilibrium, then at least one player must benefit from deviating. Hyperrational players
could be expected to solve the inference problem and deduce that all would play a Nash
equilibrium (especially if there is a unique Nash equilibrium). Even if players are not hyper-
rational, over the long run we can expect their play to converge to a Nash equilibrium as they
abandon strategies that are not mutual best responses.

ohn Nash, “Equilibrium Points in #-Person Games,” Proceedings of the National Academy of Sciences 36 (1950): 48—49.
Nash is the principal figure in the 2001 film A Beautiful Mind (see Problem 8.7 for a game-theory example from the film)
and co-winner of the 1994 Nobel Prize in economics.
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Besides this stability property, another reason Nash equilibrium is used so widely in
economics is that it is guaranteed to exist for all games we will study (allowing for mixed
strategies, to be defined below; Nash equilibria in pure strategies do not have to exist). Nash
equilibrium has some drawbacks. There may be multiple Nash equilibria, making it hard to
come up with a unique prediction. Also, the definition of Nash equilibrium leaves unclear
how a player can choose a best-response strategy before knowing how rivals will play.

Nash equilibrium in the Prisoners’ Dilemma

Let’s apply the concepts of best response and Nash equilibrium to the example of the
Prisoners” Dilemma. Our educated guess was that both players will end up finking. We will
show that both finking is a Nash equilibrium of the game. To do this, we need to show that
finking is a best response to the other players’ finking. Refer to the payoff matrix in Table 8.1.
If player 2 finks, we are in the first column of the matrix. If player 1 also finks, his payoffis 1;if
he is silent, his payoft'is 0. Since he carns the most from finking given player 2 finks, finking is
player 1’s best response to player 2’s finking. Since players are symmetric, the same logic
implies that player 2’s finking is a best response to player 1’s finking. Therefore, both finking
is indeed a Nash equilibrium.

We can show more: that both finking is the only Nash equilibrium. To do so, we need to
rule out the other three outcomes. Consider the outcome in which player 1 finks and 2 is
silent, abbreviated (fink, silent), the upper right corner of the matrix. This is not a Nash
equilibrium. Given that player 1 finks, as we have already said, player 2’s best response is to
fink, not to be silent. Symmetrically, the outcome in which player 1 is silent and 2 finks in the
lower left corner of the matrix is not a Nash equilibrium. That leaves the outcome in which
both are silent. Given that player 2 is silent, we focus our attention on the second column of
the matrix: the two rows in that column show that player 1’s payoft'is 2 from being silent and
3 from finking. Therefore, silent is not a best response to fink and so both being silent cannot
be a Nash equilibrium.

To rule out a Nash equilibrium, it is enough to find just one player who is not playing a
best response and so would want to deviate to some other strategy. Considering the outcome
(fink, silent), although player 1 would not deviate from this outcome (he earns 3, which is the
most possible), player 2 would prefer to deviate from silent to fink. Symmetrically, consider-
ing the outcome (silent, fink), although player 2 does not want to deviate, player 1 prefers to
deviate from silent to fink, so this is not a Nash equilibrium. Considering the outcome (silent,
silent), both players prefer to deviate to another strategy. Having two players prefer to deviate
is more than enough to rule out a Nash equilibrium.

Underlining best-response payoffs

A quick way to find the Nash equilibria of a game is to underline best-response payoffs in the
matrix. The underlining procedure is demonstrated for the Prisoners’ Dilemma in Table 8.2.
The first step is to underline the payoffs corresponding to player 1’s best responses. Player 1’s

TABLE 8.2 Underlining Procedure in the Prisoners’ Dilemma

Suspect 2
Fink Silent

Fink w =3, =0

Silent w =0, u,=3 w =2, uy =2

Suspect 1
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best response is to fink if player 2 finks, so we underline #, = 1 in the upper left box, and to
fink if player 2 is silent, so we underline #; = 3 in the upper left box. Next, we move to un-
derlining the payoffs corresponding to player 2’s best responses. Player 2’s best response is to
fink if player 1 finks, so we underline %, = 1 in the upper left box, and to fink if player 1 is
silent, so we underline #, = 3 in the lower left box.

Now that the best-response payofts have been underlined, we look for boxes in which
every player’s payoff is underlined. These boxes correspond to Nash equilibria. (There may
be additional Nash equilibria involving mixed strategies, defined later in the chapter.) In
Table 8.2, only in the upper left box are both payofts underlined, verifying that (fink, fink)—
and none of the other outcomes—is a Nash equilibrium.

Dominant Strategies

(Fink, fink) is a Nash equilibrium in the Prisoners’ Dilemma because finking is a best response
to the other player’s finking. We can say more: finking is the best response to all of the other
player’s strategies, fink and silent. (This can be seen, among other ways, from the underlining
procedure shown in Table 8.2: all player 1’s payoffs are underlined in the row in which he
plays fink, and all player 2’s payofts are underlined in the column in which he plays fink.)

A strategy that is a best response to any strategy the other players might choose is called a
dominant strategy. Players do not always have dominant strategies, but when they do there is
strong reason to believe they will play that way. Complicated strategic considerations do not
matter when a player has a dominant strategy because what is best for that player is indepen-
dent of what others are doing.

Dominant strategy. A dominant strategy is a strategy s, for player 7 that is a best response to
all strategy profiles of other players. That is, s7 € BR,(s_;) forall s_;.

Note the difference between a Nash equilibrium strategy and a dominant strategy. A strategy
that is part of a Nash equilibrium need only be a best response to one strategy profile of other
players—namely, their equilibrium strategies. A dominant strategy must be a best response
not just to the Nash equilibrium strategies of other players but to all the strategies of those
players.

If all players in a game have a dominant strategy, then we say the game has a dominant
strateqy equilibrium. As well as being the Nash equilibrium of the Prisoners’ Dilemma, (fink,
fink) is a dominant strategy equilibrium. As is clear from the definitions, in any game with a
dominant strategy equilibrium, the dominant strategy equilibrium is a Nash equilibrium.
Problem 8.4 will show that when a dominant strategy exists, it is the unique Nash equilibrium.

Battle of the Sexes

The famous Battle of the Sexes game is another example that illustrates the concepts of best
response and Nash equilibrium. The story goes that a wife (player 1) and husband (player 2)
would like to meet each other for an evening out. They can go ecither to the ballet or to a
boxing match. Both prefer to spend time together than apart. Conditional on being together,
the wife prefers to go to the ballet and the husband to boxing. The extensive form of the
game is presented in Figure 8.2 and the normal form in Table 8.3. For brevity we dispense
with the #; and #, labels on the payoffs and simply re-emphasize the convention that the first
payoff is player 1’s and the second player 2’s.

We will work with the normal form, examining each of the four boxes in Table 8.3 and
determining which are Nash equilibria and which are not. Start with the outcome in which
both players choose ballet, written (ballet, ballet), the upper left corner of the payoft matrix.
Given that the husband plays ballet, the wife’s best response is to play ballet (this gives her her
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FIGURE 8.2 Extensive Form for the Battle of the Sexes
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In this game, player 1 (wife) and player 2 (husband) choose to attend the ballet or a boxing match.
They prefer to coordinate but disagree on which event to coordinate. Because they choose simulta-
neously, the husband does not know the wife’s choice when he moves, so his decision nodes are
connected in the same information set.

2,1
Ballet
0,0
1
. 0,0
Boxing Ballet
1,2

TABLE 8.3 Normal Form for the Battle of the Sexes
Player 2 (Husband)

Ballet Boxing
Ballet 2,1 0,0

Boxing | 0,0 1,2

Player 1
(Wife)

highest payoff in the matrix of 2). Using notation, ballet = BR, (ballet). [We don’t need the
fancy set-inclusion symbol as in “ballet € BR, (ballet)” because the husband has only one
best response to the wife’s choosing ballet.] Given that the wife plays ballet, the husband’s
best response is to play ballet. If he deviated to boxing then he would earn 0 rather than 1,
since they would end up not coordinating. Using notation, ballet = BR, (ballet). So (ballet,
ballet) is indeed a Nash equilibrium. Symmetrically, (boxing, boxing) is a Nash equilibrium.

Consider the outcome (ballet, boxing) in the upper left corner of the matrix. Given the
husband chooses boxing, the wife earns 0 from choosing ballet but 1 from choosing boxing,
so ballet is not a best response for the wife to the husband’s choosing boxing. In notation,
ballet ¢ BR, (boxing). Hence (ballet, boxing) cannot be a Nash equilibrium. [ The husband’s
strategy of boxing is not a best response to the wife’s playing ballet either, so in fact both
players would prefer to deviate from (ballet, boxing), although we only need to find one
player who would want to deviate to rule out an outcome as a Nash equilibrium. ] Symmetri-
cally, (boxing, ballet) is not a Nash equilibrium, either.
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TABLE 8.4 Underlining Procedure in the Battle of the Sexes

Player 2 (Husband)
Ballet Boxing

Ballet 0,0
Boxing 0,0

Player 1
(Wife)

The Battle of the Sexes is an example of a game with more than one Nash equilibrium (in
fact, it has three—a third in mixed strategies, as we will see). It is hard to say which of the two
we have found so far is more plausible, since they are symmetric. It is therefore difficult to
make a firm prediction in this game. The Battle of the Sexes is also an example of a game with
no dominant strategies. A player prefers to play ballet if the other plays ballet and boxing if the
other plays boxing.

Table 8.4 applies the underlining procedure, used to find Nash equilibria quickly, to the
Battle of the Sexes. The procedure verifies that the two outcomes in which the players succeed
in coordinating are Nash equilibria and the two outcomes in which they don’t coordinate
are not.

Examples 8.1, 8.2, and 8.3 provide additional practice in finding Nash equilibria in more
complicated settings (a game that has many ties for best responses in Example 8.1, a game with
three strategies for each player in Example 8.2, and a game with three players in Example 8.3).

EXAMPLE 8.1 The Prisoners’ Dilemma Redux

In this variation on the Prisoners’ Dilemma, a suspect is convicted and receives a sentence of
four years if he is finked on and goes free if not. The district attorney does not reward finking.
Table 8.5 presents the normal form for the game before and after applying the procedure for
underlining best responses. Payoffs are again restated in terms of years of freedom.

Ties for best responses are rife. For example, given player 2 finks, player 1’s payoft is 0
whether he finks or is silent. So there is a tie for 1’s best response to 2’s finking. This is an example
of the set of best responses containing more than one element: BR, (fink) = {fink, silent}.

TABLE 8.5 The Prisoners’ Dilemma Redux

(a) Normal form

Suspect 2
Fink Silent
lam)
g Fink 0,0 1,0
2 Silent 0,1 1,1
[95)
(b) Underlining procedure
Suspect 2
Fink Silent

Fink

Silent

Suspect 1




Chapter 8 Strategy and Game Theory

The underlining procedure shows that there is a Nash equilibrium in each of the four
boxes. Given that suspects receive no personal reward or penalty for finking, they are both
indifferent between finking and being silent; thus any outcome can be a Nash equilibrium.

QUERY: Does any player have a dominant strategy? Can you draw the extensive form for
the game?
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EXAMPLE 8.2 Rock, Paper, Scissors

Rock, Paper, Scissors is a children’s game in which the two players simultaneously display one
of three hand symbols. Table 8.6 presents the normal form. The zero payoffs along the
diagonal show that if players adopt the same strategy then no payments are made. In other
cases, the payoffs indicate a $1 payment from loser to winner under the usual hierarchy (rock
breaks scissors, scissors cut paper, paper covers rock).

TABLE 8.6 Rock, Paper, Scissors

(a) Normal form

Player 2
Rock Paper Scissors
~  Rock 0,0 -1,1 1, -1
§ Paper 1, -1 0,0 —-1,1
Scissors 1,1 1, -1 0,0
(b) Underlying procedure
Player 2
Rock Paper Scissors
"~ Rock 0,0 -1,1 1,-1
5 Paper 1, -1 0,0 -1,1
Scissors -1,1 1, -1 0,0

As anyone who has played this game knows, and as the underlining procedure reveals,
none of the nine boxes represents a Nash equilibrium. Any strategy pair is unstable because it
offers at least one of the players an incentive to deviate. For example, (scissors, scissors)
provides an incentive for either player 1 or 2 to choose rock; (paper, rock) provides an

incentive for 2 to choose scissors.
The game does have a Nash equilibrium—not any of the nine boxes in Table 8.6 but in

mixed strategies, defined in the next section.

QUERY: Does any player have a dominant strategy? Why isn’t (paper, scissors) a Nash
equilibrium?
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EXAMPLE 8.3 Three's Company

Three’s Company is a three-player version of the Battle of the Sexes based on a 1970s sitcom
of the same name about the misadventures of a man (Jack) and two women (Janet and
Chrissy) who shared an apartment to save rent.

Modify the payoffs from the Battle of the Sexes as follows. Players get one “util” from
attending their favorite event (Jack’s is boxing and Janet and Chrissy’s is ballet). Players get an
additional util for each of the other players who shows up at the event with them. Table 8.7
presents the normal form. For each of player 3’s strategies, there is a separate payoft matrix
with all combinations of player 1 and 2’s strategies. Each box lists the three players’ payoffs

in order.

TABLE 8.7 Three's Company

(a) Normal form

Player 3 (Jack) plays Ballet Player 3 (Jack) plays Boxing
Player 2 (Chrissy) Player 2 (Chrissy)
Ballet  Boxing Ballet  Boxing

Ballet 3,3,2 | 2,0,1
Boxing | 0,2,1 [ 1,1,0

Ballet | 2,2,1 | 1,1,2
= Boxing| 1,1,2 | 2,23

(b) Underlining Procedure

Player 3 (Jack) plays Ballet Player 3 (Jack) plays Boxing
Player 2 (Chrissy) Player 2 (Chrissy)
Ballet  Boxing Ballet  Boxing
— — o~
5§ Baller (3,3,2) 2,0,1 5§ Baller 22,11 1,1,2
=2 Boxing | 0,2,1 | 1,1,0 == Boxing| 1,1,2

For players 1 and 2, the underlining procedure is the same as in a two-player game except
that it must be repeated for the two payoft matrices. To underline player 3’s best-response
payofts, compare the two boxes in the same position in the two different matrices. For
example, given Janet and Chrissy both play ballet, we compare the third payoft in the
upper-left box in both matrices: Jack’s payoffis 2 in the first matrix (in which he plays ballet)
and 1 in the second (in which he plays boxing). So we underline the 2.

As in the Battle of the Sexes, Three’s Company has two Nash equilibria, one in which all
go to ballet and one in which all go to boxing.

QUERY: What payofts might make Three’s Company even closer in spirit to the Battle of
the Sexes? What would the normal form look like for Four’s Company? (Four’s Company is
similar to Three’s Company except with two men and two women.)
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MIXED STRATEGIES

Players’ strategies can be more complicated than simply choosing an action with certainty. In
this section we study mixed strategies, which have the player randomly select from several
possible actions. By contrast, the strategies considered in the examples so far have a player
choose one action or another with certainty; these are called pure strategies. For example, in
the Battle of the Sexes, we have considered the pure strategies of choosing either ballet or
boxing for sure. A possible mixed strategy in this game would be to flip a coin and then
attend the ballet if and only if the coin comes up heads, yielding a 50-50 chance of showing
up at either event.

Although at first glance it may seem bizarre to have players flipping coins to determine
how they will play, there are good reasons for studying mixed strategies. First, some games
(such as Rock, Paper, Scissors) have no Nash equilibria in pure strategies. As we will see in
the section on existence, such games will always have a Nash equilibrium in mixed strategies,
so allowing for mixed strategies will enable us to make predictions in such games where it
was impossible to do so otherwise. Second, strategies involving randomization are quite
natural and familiar in certain settings. Students are familiar with the setting of class exams.
Class time is usually too limited for the professor to examine students on every topic taught
in class, but it may be sufficient to test students on a subset of topics to induce them to study
all of the material. If students knew which topics were on the test then they might be
inclined to study only those and not the others, so the professor must choose the topics at
random in order to get the students to study everything. Random strategies are also familiar
in sports (the same soccer player sometimes shoots to the right of the net and sometimes to
the left on penalty kicks) and in card games (the poker player sometimes folds and some-
times blufts with a similarly poor hand at different times). Third, it is possible to “purify”
mixed strategies by specifying a more complicated game in which one or the other action is
better for the player for privately known reasons and where that action is played with
certainty.> For example, a history professor might decide to ask an exam question about
World War I because, unbeknownst to the students, she recently read an interesting journal
article about it.

To be more formal, suppose that player 7 has a set of M possible actions 4; = {a}, ...,
a”,...,aM}, where the subscript refers to the player and the superscript to the different
choices. A mixed strategy is a probability distribution over the M actions, s; = (o}, ...,
a”,...,aM), where 67 is a number between 0 and 1 that indicates the probability of player
i playing action #?*. The probabilities in s; must sum to unity: o} + - +o”+ - + oM =1.

In the Battle of the Sexes, for example, both players have the same two actions of ballet
and boxing, so we can write A; = A, = {ballet, boxing}. We can write a mixed strategy as
a pair of probabilities (o, 1 — o), where o is the probability that the player chooses ballet.
The probabilities must sum to unity and so, with two actions, once the probability of one
action is specified, the probability of the other is determined. Mixed strategy (1/3, 2/3)
means that the player plays ballet with probability 1/3 and boxing with probability 2/3;
(1/2,1/2) means that the player is equally likely to play ballet or boxing; (1, 0) means that
the player chooses ballet with certainty; and (0, 1) means that the player chooses boxing
with certainty.

In our terminology, a mixed strategy is a general category that includes the special case of
a pure strategy. A pure strategy is the special case in which only one action is played with

*John Harsanyi, “Games with Randomly Disturbed Payoffs: A New Rationale for Mixed-Strategy Equilibrium Points,”
International Journal of Game Theory 2 (1973): 1-23. Harsanyi was a co-winner (along with Nash) of the 1994 Nobel

Prize in economics.
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positive probability. Mixed strategies that involve two or more actions being played with pos-
itive probability are called strictly mixed strategies. Returning to the examples from the
previous paragraph of mixed strategies in the Battle of the Sexes, all four strategies (1/3,
2/3),(1/2,1/2),(1,0),and (0, 1) are mixed strategies. The first two are strictly mixed and
the second two are pure strategies.

With this notation for actions and mixed strategies behind us, we do not need new
definitions for best response, Nash equilibrium, and dominant strategy. The definitions
introduced when s; was taken to be a pure strategy also apply to the case in which s is
taken to be a mixed strategy. The only change is that the payoft function #;(s;,s_;), rather
than being a certain payoft, must be reinterpreted as the expected value of a random payoft,
with probabilities given by the strategies 5 and s_;. Example 8.4 provides some practice in
computing expected payoffs in the Battle of the Sexes.

EXAMPLE 8.4 Expected Payoffs in the Battle of the Sexes

Let’s compute players’ expected payofls if the wife chooses the mixed strategy (1/9, 8/9) and
the husband (4/5, 1/5) in the Battle of the Sexes. The wife’s expected payoff is

(A9 (40)) - (2) () trtsten e + (1) (2) ot soing
+ (g) (%) U, (boxing, ballet) + (g) @) U, (boxing, boxing)

1\ /4 1\ /1 8\ /4 8\ /1
()5 () (S (5)(5) o+ () (5)
_16 (8.4)
45

To understand Equation 8.4, it is helpful to review the concept of expected value from
Chapter 2. Equation (2.176) indicates that an expected value of a random variable equals
the sum over all outcomes of the probability of the outcome multiplied by the value of the
random variable in that outcome. In the Battle of the Sexes, there are four outcomes,
corresponding to the four boxes in Table 8.3. Since players randomize independently, the
probability of reaching a particular box equals the product of the probabilities that each
player plays the strategy leading to that box. So, for example, the probability of (boxing,
ballet)—that is, the wife plays boxing and the husband plays ballet—equals (8/9) x (4/5).
The probabilities of the four outcomes are multiplied by the value of the relevant random
variable (in this case, player 1’s payoff) in each outcome.

Next we compute the wife’s expected payoft if she plays the pure strategy of going to
ballet [the same as the mixed strategy (1, 0)] and the husband continues to play the mixed
strategy (4/5,1/5). Now there are only two relevant outcomes, given by the two boxes in the
row in which the wife plays ballet. The probabilities of the two outcomes are given by the
probabilities in the husband’s mixed strategy. Therefore,

U, (ballet, (:, ;)) = (:) U, (ballet, ballet) + (;) U, (ballet, boxing)

(o (Jo-

Finally, we will compute the general expression for the wife’s expected payoft when she
plays mixed strategy (w, 1 — w) and the husband plays (4,1 — 4): if the wife plays ballet with
probability w and the husband with probability 4, then
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w, (w, 1 —w), (h,1 — b)) = (w)(h)Uj(ballet, ballet) + (w)(1 — &) U, (ballet, boxing)

+ (1 — w)(h) U; (boxing, ballet)
+ (1 — w)(1 — b) U; (boxing, boxing)
= (w)(B)(2) + (w)(1 = h)(0) + (1 — w)(h)(0)
- w1 - K1)
=1—-bh—w+ 3bw. (8.6)

QUERY: What is the husband’s expected payoft in each case? Show that his expected payoft
is 2 — 2h — 2w + 3bw in the general case. Given the husband plays the mixed strategy (4/5,
1/5), what strategy provides the wife with the highest payoft?

Computing Nash equilibrium of a game when strictly mixed strategies are involved is
quite a bit more complicated than when pure strategies are involved. Before wading in, we
can save a lot of work by asking whether the game even has a Nash equilibrium in strictly
mixed strategies. If it does not then, having found all the pure-strategy Nash equilibria, one
has finished analyzing the game. The key to guessing whether a game has a Nash equilibrium
in strictly mixed strategies is the surprising result that almost all games have an odd number of
Nash equilibria.?

Let’s apply this insight to some of the examples considered so far. We found an odd
number (one) of pure-strategy Nash equilibria in the Prisoners’ Dilemma, suggesting we need
not look further for one in strictly mixed strategies. In the Battle of the Sexes, we found an
even number (two) of pure-strategy Nash equilibria, suggesting the existence of a third one in
strictly mixed strategies. Example 8.2—Rock, Paper, Scissors—has no pure-strategy Nash
equilibria. To arrive at an odd number of Nash equilibria, we would expect to find one Nash
equilibrium in strictly mixed strategies.
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EXAMPLE 8.5 Mixed-Strategy Nash Equilibrium in the Battle of the Sexes

A general mixed strategy for the wife in the Battle of the Sexes is (w, 1 — w) and for the
husband is (4, 1 — /), where w and 4 are the probabilities of playing ballet for the wife and
husband, respectively. We will compute values of w and 4 that make up Nash equilibria. Both
players have a continuum of possible strategies between 0 and 1. Therefore, we cannot write
these strategies in the rows and columns of a matrix and underline best-response payofts
to find the Nash equilibria. Instead, we will use graphical methods to solve for the Nash
equilibria.

Given players’ general mixed strategies, we saw in Example 8.4 that the wife’s expected
payoft is

w((w, 1 —w), (b,1—h)=1—h—w+ 3bw. (8.7)

As Equation 8.7 shows, the wife’s best response depends on 4. If 4 < 1/3, she wants to set
w as low as possible: w = 0. If 4 > 1/3, her best response is to set w as high as possible:
w = 1. When » = 1/3, her expected payoff equals 2/3 regardless of what w she chooses. In
this case there is a tie for the best response, including any w from 0 to 1.

(continued)

3John Harsanyi, “Oddness of the Number of Equilibrium Points: A New Proof,” International Journal of Game Theory 2
(1973): 235-50. Games in which there are ties between payofts may have an even or infinite number of Nash equilibria.
Example 8.1, the Prisoners’ Dilemma Redux, has several payoff ties. The game has four pure-strategy Nash equilibria and
an infinite number of different mixed strategy equilibria.
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EXAMPLE 8.5 CONTINUED

FIGURE 8.3 Nash Equilibria in Mixed Strategies in the Battle of the Sexes

Ballet is chosen by the wife with probability w and by the husband with probability 4. Players’ best
responses are graphed on the same set of axes. The three intersection points E,, E,, and E; are Nash
equilibria. The Nash equilibrium in strictly mixed strategies, Ej, is w* = 2/3 and 4™ = 1/3.
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In Example 8.4, we stated that the husband’s expected payoft is
U,((h,1 —h), (w,1 —w))=2-2h—2w+ 3bw. (8.8)

When w < 2/3, his expected payoff is maximized by # = 0; when w > 2/3, his expected
payoft is maximized by # = 1; and when w = 2/3, he is indifferent among all values of 4,
obtaining an expected payoff of 2/3 regardless.

The best responses are graphed in Figure 8.3. The Nash equilibria are given by the
intersection points between the best responses. At these intersection points, both players
are best responding to each other, which is what is required for the outcome to be a Nash
equilibrium. There are three Nash equilibria. The points E; and E, are the pure-strategy Nash
equilibria we found before, with E; corresponding to the pure-strategy Nash equilibrium in
which both play boxing and E, to that in which both play ballet. Point E; is the strictly
mixed-strategy Nash equilibrium, which can can be spelled out as “the wife plays ballet with
probability 2 /3 and boxing with probability 1/3 and the husband plays ballet with probability
1/3 and boxing with probability 2/3.” More succinctly, having defined w and 4, we may
write the equilibruim as “w* = 2/3 and »* = 1/3.”

QUERY: What is a player’s expected payoff in the Nash equilibrium in strictly mixed strate-
gies? How does this payoft compare to those in the pure-strategy Nash equilibriaz What
arguments might be offered that one or another of the three Nash equilibria might be the
best prediction in this game?
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Example 8.5 runs through the lengthy calculations involved in finding all the Nash equi-
libria of the Battle of the Sexes, those in pure strategies and those in strictly mixed strategies.
The steps involve finding players’ expected payoffs as functions of general mixed strategies,
using these to find players’ best responses, and then graphing players’ best responses to see
where they intersect. A shortcut to finding the Nash equilibrium in strictly mixed strategies is
based on the insight that a player will be willing to randomize between two actions in
equilibrium only if he or she gets the same expected payoff from playing either action or, in
other words, is indifferent between the two actions in equilibrium. Otherwise, one of the two
actions would provide a higher expected payoft, and the player would prefer to play that action
with certainty.

Suppose the husband is playing mixed strategy (4, 1 — 4), that is, playing ballet with
probability »# and boxing with probability 1 — 4. The wife’s expected payoft from playing
ballet is

U, (ballet, (b,1 — b)) = (h)(2) + (1 — b)(0) = 24. (8.9)
Her expected payoft from playing boxing is
U, (boxing, (h,1 — b)) = (h)(0)+ (1 —h)(1) =1 — bh. (8.10)

For the wife to be indifferent between ballet and boxing in equilibrium, Equations 8.9 and 8.10
must be equal: 24 = 1 — kb, implying #* = 1/3. Similar calculations based on the husband’s
indifference between playing ballet and boxing in equilibrium show that the wife’s probability
of playing ballet in the strictly mixed strategy Nash equilibrium is w* = 2/3. (Work through
these calculations as an exercise.)

Notice that the wife’s indifference condition does not “pin down” her equilibrium mixed
strategy. The wife’s indifference condition cannot pin down her own equilibrium mixed strat-
egy because, given that she is indifferent between the two actions in equilibrium, her overall
expected payoft is the same no matter what probability distribution she plays over the
two actions. Rather, the wife’s indifference condition pins down the other player’s—the
husband’s—mixed strategy. There is a unique probability distribution he can use to play ballet
and boxing that makes her indifferent between the two actions and thus makes her willing to
randomize. Given any probability of his playing ballet and boxing other than (1/3, 2/3), it
would not be a stable outcome for her to randomize.

Thus, two principles should be kept in mind when seeking Nash equilibria in strictly
mixed strategies. One is that a player randomizes over only those actions among which he or
she is indifferent, given other players’ equilibrium mixed strategies. The second is that one
player’s indifference condition pins down the other player’s mixed strategy.

EXISTENCE

One of the reasons Nash equilibrium is so widely used is that a Nash equilibrium is
guaranteed to exist in a wide class of games. This is not true for some other equilibrium
concepts. Consider the dominant strategy equilibrium concept. The Prisoners’ Dilemma has
a dominant strategy equilibrium (both suspects fink), but most games do not. Indeed, there
are many games—including, for example, the Battle of the Sexes—in which no player has a
dominant strategy, let alone all the players. In such games, we can’t make predictions using
dominant strategy equilibrium but we can using Nash equilibrium.

The Extensions section at the end of this chapter will provide the technical details behind
John Nash’s proof of the existence of his equilibrium in all finite games (games with a finite
number of players and a finite number of actions). The existence theorem does not guarantee
the existence of a pure-strategy Nash equilibrium. We already saw an example: Rock, Paper,
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Scissors in Example 8.2. However, if a finite game does not have a pure-strategy Nash
equilibrium, the theorem guarantees that it will have a mixed-strategy Nash equilibrium.
The proof of Nash’s theorem is similar to the proof in Chapter 13 of the existence of prices
leading to a general competitive equilibrium. The Extensions section includes an existence
proof for games with a continuum of actions, as studied in the next section.

CONTINUUM OF ACTIONS

Most of the insight from economic situations can often be gained by distilling the situation
down to a few or even two actions, as with all the games studied so far. Other times,
additional insight can be gained by allowing a continuum of actions. To be clear, we have
already encountered a continuum of strategies—in our discussion of mixed strategies—but
still the probability distributions in mixed strategies were over a finite number of actions. In
this section we focus on continuum of actions.

Some settings are more realistically modeled via a continuous range of actions. In Chapter 15,
for example, we will study competition between strategic firms. In one model (Bertrand), firms
set prices; in another (Cournot), firms set quantities. It is natural to allow firms to choose any
nonnegative price or quantity rather than artificially restricting them to just two prices (say, $2 or
$5) or two quantities (say, 100 or 1,000 units). Continuous actions have several other advan-
tages. With continuous actions, the familiar methods from calculus can often be used to solve for
Nash equilibria. It is also possible to analyze how the equilibrium actions vary with changes in
underlying parameters. With the Cournot model, for example, we might want to know how
equilibrium quantities change with a small increase in a firm’s marginal costs or a demand
parameter.

Tragedy of the Commons

Example 8.6 illustrates how to solve for the Nash equilibrium when the game (in this case,
the Tragedy of the Commons) involves a continuum of actions. The first step is to write down
the payoff for each player as a function of all players’ actions. The next step is to compute the
first-order condition associated with each player’s payoff maximum. This will give an equa-
tion that can be rearranged into the best response of each player as a function of all other
players’ actions. There will be one equation for each player. With # players, the system of »
equations for the »# unknown equilibrium actions can be solved simultaneously by either
algebraic or graphical methods.

EXAMPLE 8.6 Tragedy of the Commons

The term “Tragedy of the Commons” has come to signify environmental problems of over-
use that arise when scarce resources are treated as common property.* A game-theoretic
illustration of this issue can be developed by assuming that two herders decide how many
sheep to graze on the village commons. The problem is that the commons is quite small and
can rapidly succumb to overgrazing.

In order to add some mathematical structure to the problem, let g, be the number of
sheep that herder 7 = 1,2 grazes on the commons, and suppose that the per-sheep value of
grazing on the commons (in terms of wool and sheep-milk cheese) is

*This term was popularized by G. Hardin, “The Tragedy of the Commons,” Science 162 (1968): 1243-48.
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(415 1) = 120 — (¢ + 1)- (8.11)
This function implies that the value of grazing a given number of sheep is lower the more
sheep are around competing for grass. We cannot use a matrix to represent the normal form
of this game of continuous actions. Instead, the normal form is simply a listing of the
herders’ payoff functions
(4, 1) = mv(4, %) = 1 (120 — 4y — ),
(1> 1) = v, 1) = (120 — 4y — 4p).

To find the Nash equilibrium, we solve herder 1’s value-maximization problem:

(8.12)

max{g, (120 — g, — 4,)}- (8.13)
1
The first-order condition for a maximum is
120-24, — 9, =0 (8.14)
or, rearranging,
g, =60 — % = BR,(q,)- (8.15)

Similar steps show that herder 2’s best response is
2, =60 — 2~ BR,(g,). (8.16)

The Nash equilibrium is given by the pair (47, 45) that satisfies Equations 8.15 and 8.16
simultaneously. Taking an algebraic approach to the simultaneous solution, Equation 8.16
can be substituted into Equation 8.15, which yields

1 ).
g, = 60 2(60 2), (8.17)
upon rearranging, this implies 47 = 40. Substituting 47 = 40 into Equation 8.17 implies
75 = 40 as well. Thus, each herder will graze 40 sheep on the common. Each earns a payoft of
1,600, as can be seen by substituting 47 = 45 = 40 into the payoff function in Equation 8.13.

Equations 8.15 and 8.16 can also be solved simultancously using graphical methods.
Figure 8.4 plots the two best responses on a graph with player 1’s action on the horizontal
axis and player 2’s on the vertical axis. These best responses are simply lines and so are easy to
graph in this example. (To be consistent with the axis labels, the inverse of Equation 8.15 is
actually what is graphed.) The two best responses intersect at the Nash equilibrium E;.

The graphical method is useful for showing how the Nash equilibrium shifts with changes
in the parameters of the problem. Suppose the per-sheep value of grazing increases for the
first herder while the second remains as in Equation 8.11, perhaps because the first herder
starts raising merino sheep with more valuable wool. This change would shift the best
response out for herder 1 while leaving 2’s the same. The new intersection point (E, in
Figure 8.4), which is the new Nash equilibrium, involves more sheep for 1 and fewer for 2.

The Nash equilibrium is not the best use of the commons. In the original problem, both
herders’ per-sheep value of grazing is given by Equat