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Preface

The 10th edition of Microeconomic Theory: Basic Principles and Extensions represents both
a continuation of a highly successful treatment of microeconomics at a relatively advanced
level and a major change from the past. This change, of course, is that Chris Snyder has
joined me as a co-author. His insights have improved all sections of the book, especially with
respect to its coverage of game theory, industrial organization, and models of imperfect
information. Hence in many ways this is a new book, although on matters of style and
pedagogy it retains much of what has made it successful for more than 35 years. This basic
approach is to focus on building intuition about economic models while providing students
with the mathematical tools needed to go further in their studies. The text also seeks to
facilitate that linkage by providing many numerical examples, advanced problems, and
extended discussions of empirical implementation—all of which are intended to show
students how microeconomic theory is used today. New developments have made the field
more exciting than ever, and I hope this edition manages to capture that excitement.

NEW TO THE TENTH EDITION

The primary change to this edition has been the inclusion of three entirely new chapters
written by Chris Snyder:

� an extended andmore advanced treatment of basic game theory concepts (Chapter 8);
� a thoroughly reworked and expanded chapter on models used in industrial organi-

zation theory (Chapter 15); and
� a completely new chapter on asymmetric information that focuses on the principal–

agent problem and modern contract theory (Chapter 18).

The importance of these additions to the overall quality of the text cannot be overstated.
Because the topics covered in these new chapters constitute some of the most important
growth areas in microeconomics, the book is now well positioned for many years into the
future.

Several other chapters of the book have undergone major revisions for this edition.

� A significant amount of material has been added to the chapter on mathematical
background (Chapter 2); new topics include:

� an expanded coverage of integration,
� basic models of dynamic optimization, and
� a brief introduction to mathematical statistics.

� The material on uncertainty and risk aversion has been thoroughly revised and
updated (Chapter 7).

� Much of the theory of the firm, especially of the firm’s demands for inputs, has been
expanded (Chapters 9–11).
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� The chapter on general equilibrium modeling (Chapter 13) has been thoroughly
reworked with the goal of providing students with more details about how compu-
table general equilibrium models actually work.

� The chapter on capital and time (Chapter 17) has been significantly expanded to
include more on optimal savings behavior and on resource allocation over time.

Numerous minor changes have also been made in the coverage and organization of the
book to ensure that it continues to provide clear and up-to-date coverage of all of the topics
examined.

Two modifications have been made to the text to enhance its linkage to more general
economic literature. First, the problems have been categorized into two types: basic
problems and analytical problems. Whereas the basic problems are intended to reinforce
concepts from the text, the analytical problems are intended to allow the student to go
further by showing them how to obtain results on their own. The number of such problems
has been significantly expanded in this edition. Many of the analytical problems provide
references so that students who wish to pursue the topic can read more.

A second modification of the text has been to expand and rewrite many of the end-of-
chapter Extensions. The common goal of these revised Extensions is to provide students
better linkage between the theoretical material in the text and that material’s use in actual
empirical applications. Therefore, many of the Extensions introduce the functional forms
customarily used as well as some of the econometric issues faced by researchers when using
available data. The Extensions are thus intended to show students the importance of joining
microeconomic theory and econometric practice.

SUPPLEMENTS TO THE TEXT

The thoroughly revised ancillaries for this edition include the following.

� The Solutions Manual and Test Bank (by the text authors). The Solutions Manual
contains comments and solutions to all problems and is available to all adopting
instructors in both print and electronic versions. The Solutions Manual and Test
Bankmay be downloaded only by qualified instructors at the textbook support Web
site (www.thomsonedu.com/economics/nicholson).

� PowerPoint Lecture Presentation Slides (by Linda Ghent, Eastern Illinois University).
PowerPoint slides for each chapter of the text provide a thorough set of outlines
for classroom use or for students as a study aid. Instructors and students may down-
load these slides from the book’s Web site (www.thomsonedu.com/economics/
nicholson).

ONLINE RESOURCES

Thomson South-Western provides students and instructors with a set of valuable online
resources that are an effective complement to this text. Each new copy of the book comes
with a registration card that provides access to Economic Applications and InfoTrac College
Edition.

Economic Applications
The purchase of this new textbook includes complimentary access to South-Western’s
Economic Applications (EconApps) Web site. The EconApps Web site includes a suite of
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regularly updated Web features for economics students and instructors: EconDebate
Online, EconNews Online, EconData Online, and EconLinks Online. These resources can
help students deepen their understanding of economic concepts by analyzing current news
stories, policy debates, and economic data. EconApps can also help instructors develop
assignments, case studies, and examples based on real-world issues.

EconDebates Online provides current coverage of economics policy debates; it includes a
primer on the issues, links to background information, and commentaries.

EconNews Online summarizes recent economics news stories and offers questions for
further discussion.

EconData Online presents current and historical economic data with accompanying com-
mentary, analysis, and exercises.

EconLinks Online offers a navigation partner for exploring economics on the Web via a list
of key topic links.

Students buying a used book can purchase access to the EconApps site at http://econapps
.swlearning.com.

InfoTrac College Edition
The purchase of this new textbook also comes with four months of access to InfoTrac. This
powerful and searchable online database provides access to full text articles from more than
a thousand different publications ranging from the popular press to scholarly journals.
Instructors can search topics and select readings for students, and students can search articles
and readings for homework assignments and projects. The publications cover a variety of
topics and include articles that range from current events to theoretical developments.
InfoTrac College Edition offers instructors and students the ability to integrate scholarship
and applications of economics into the learning process.

ACKNOWLEDGMENTS

In preparation for undertaking this revision, we received very helpful reviews from:

Tibor Besedes, Louisiana State University
Elaine P. Catilina, American University
Yi Deng, Southern Methodist University
Silke Forbes, University of California–San Diego
Joseph P. Hughes, Rutgers University
Qihong Liu, University of Oklahoma
Ragan Petrie, Georgia State University

We have usually tried to follow their good advice, but of course none of these individuals
bears any responsibility for the final outcome.

This edition of the book is the first that was written with my co-author, Chris Snyder of
DartmouthCollege. I have been very pleased with theworking relationship we have developed
and with Chris’s friendship. I hope many more editions will follow. I am also indebted to the
team at Thomson South-Western and especially to Susan Smart for once again bringing her
organizing andcajoling skills to this edition.Duringher temporary absence from theproject,we
were completely lost.
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Copyediting this manuscript was, I know, a real chore. Those at Newgen-Austin did a
great job of penetrating our messy manuscripts to obtain something that actually makes
sense. The design of the text by Michelle Kunkler succeeded in achieving two seemingly
irreconcilable goals—making the text both compact and easy to read. Cliff Kallemeyn did a fine
job of keeping the production on track; I especially appreciated the way he coordinated the
copyediting and page production processes.

As always, my Amherst College colleagues and students deserve some of the credit for this
new edition. Frank Westhoff has been my most faithful user of this text over many years. This
time (with his permission, I think) I actually lifted some of his work on general equilibrium to
significantly improve that portion of the text.

To the list of former students—Mark Bruni, Eric Budish, Adrian Dillon, David Macoy,
TatyanaMamut, Katie Merrill, JordanMilev, Doug Norton, and Jeff Rodman—whose efforts
are still evident I cannowaddthenameofAnoopMenon,whohelpedmesolveproblemswhenI
ran out of patience with the algebra.

As always, special thanks again go to my wife Susan; after seeing twenty editions of my
microeconomics texts come and go, she must surely hope that even this good thing must
eventually come to anend.Mychildren (Kate,David,Tory, andPaul) all seem tobe livinghappy
and productive lives despite a severe lack of microeconomic education. As the next generation
(Beth, Sarah, David, Sophia, and Abby) grows older, perhaps they will seek enlightenment—at
least to the extent of wondering what the books dedicated to them are all about.

Walter Nicholson
Amherst, Massachusetts

June 2007

It was a privilege to collaborate with Walter on this tenth edition. I used this textbook in the
first course I ever taught, as a graduate instructor at MIT, and I have enjoyed using it in my
microeconomics courses in the thirteen years since. I have always appreciated the text’s
ambitious coverage of the concepts and methods used by professional economists as well
as its accessibility to students, which is enhanced by numerous elegant examples together
with Walter’s lucid prose. It was a challenge to maintain this high standard with my con-
tribution—although this was made easier by Walter’s suggestions, patience, and example,
for which I am grateful.

I encourage teachers and students to e-mail me with any comments on the text
(Christopher.M.Snyder@dartmouth.edu).

I would like to add my wholehearted thanks to those whom Walter acknowledged for
contributing to the book. I also thank Gretchen Otto and her colleagues at Newgen–Austin
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Dartmouth College for providing the resources and environment that greatly facilitated
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and understanding.
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P A R T 1
Introduction
CHAPTER 1 Economic Models

CHAPTER 2 Mathematics for Microeconomics

This part contains only two chapters. Chapter 1 examines the general philosophy of how economists build
models of economic behavior. Chapter 2 then reviews some of the mathematical tools used in the construction
of these models. The mathematical tools from Chapter 2 will be used throughout the remainder of this book.
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C H A P T E R

1

Economic Models

The main goal of this book is to introduce you to the most important models that economists use to explain
the behavior of consumers, firms, andmarkets. Thesemodels are central to the study of all areas of economics.
Therefore, it is essential to understand both the need for such models and the basic framework used to
develop them. The goal of this chapter is to begin this process by outlining some of the conceptual issues that
determine the ways in which economists study practically every question that interests them.

THEORETICAL MODELS

Amodern economy is a complicated entity. Thousands of firms engage in producing millions
of different goods.Manymillions of people work in all sorts of occupations andmake decisions
aboutwhich of these goods to buy. Let’s use peanuts as an example. Peanutsmust be harvested
at the right time and shipped to processors who turn them into peanut butter, peanut oil,
peanut brittle, and numerous other peanut delicacies. These processors, in turn, must make
certain that their products arrive at thousands of retail outlets in the proper quantities to meet
demand.

Because it would be impossible to describe the features of even these peanut markets in
complete detail, economists have chosen to abstract from the complexities of the real world
and develop rather simple models that capture the “essentials.” Just as a road map is helpful
even though it does not record every house or every store, economicmodels of, say, themarket
for peanuts are also useful even though they do not record every minute feature of the peanut
economy. In this book we will study the most widely used economic models. We will see that,
even though these models often make heroic abstractions from the complexities of the real
world, they nonetheless capture essential features that are common to all economic activities.

The use ofmodels is widespread in the physical and social sciences. In physics, the notion of
a “perfect” vacuumor an “ideal” gas is an abstraction that permits scientists to study real-world
phenomena in simplified settings. In chemistry, the idea of an atom or a molecule is actually a
simplified model of the structure of matter. Architects use mock-up models to plan buildings.
Television repairers refer to wiring diagrams to locate problems. Economists’models perform
similar functions. They provide simplified portraits of the way individuals make decisions, the
way firms behave, and the way in which these two groups interact to establish markets.

VERIFICATION OF ECONOMIC MODELS

Of course, not all models prove to be “good.” For example, the earth-centered model of
planetary motion devised by Ptolemy was eventually discarded because it proved incapable of
accurately explaining how the planetsmove around the sun. An important purpose of scientific
investigation is to sort out the “bad” models from the “good.” Two general methods have
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been used for verifying economic models: (1) a direct approach, which seeks to establish the
validity of the basic assumptions onwhich amodel is based; and (2) an indirect approach,which
attempts to confirm validity by showing that a simplified model correctly predicts real-world
events. To illustrate the basic differences between the two approaches, let’s briefly examine a
model that we will use extensively in later chapters of this book—themodel of a firm that seeks
to maximize profits.

The profit-maximization model
The model of a firm seeking to maximize profits is obviously a simplification of reality. It
ignores the personal motivations of the firm’smanagers and does not consider conflicts among
them. It assumes that profits are the only relevant goal of the firm; other possible goals, such as
obtaining power or prestige, are treated as unimportant. The model also assumes that the firm
has sufficient information about its costs and the nature of the market to which it sells to
discover its profit-maximizing options. Most real-world firms, of course, do not have this
information readily available. Yet, such shortcomings in the model are not necessarily serious.
No model can exactly describe reality. The real question is whether this simple model has any
claim to being a good one.

Testing assumptions
One test of the model of a profit-maximizing firm investigates its basic assumption: Do firms
really seek maximum profits? Some economists have examined this question by sending ques-
tionnaires to executives, asking them to specify the goals they pursue. The results of such
studies have been varied. Businesspeople often mention goals other than profits or claim they
only do “the best they can” to increase profits given their limited information. On the other
hand, most respondents also mention a strong “interest” in profits and express the view that
profit maximization is an appropriate goal. Testing the profit-maximizing model by testing its
assumptions has therefore provided inconclusive results.

Testing predictions
Some economists,most notablyMiltonFriedman, deny that amodel canbe testedby inquiring
into the “reality” of its assumptions.1 They argue that all theoretical models are based on
“unrealistic” assumptions; the very nature of theorizing demands that we make certain ab-
stractions. These economists conclude that the only way to determine the validity of amodel is
to see whether it is capable of predicting and explaining real-world events. The ultimate test of
an economic model comes when it is confronted with data from the economy itself.

Friedman provides an important illustration of that principle.He asks what kind of a theory
one should use to explain the shots expert pool players will make. He argues that the laws of
velocity, momentum, and angles from theoretical physics would be a suitable model. Pool
players shoot shots as if they follow these laws. But most players asked whether they precisely
understand the physical principles behind the game of pool will undoubtedly answer that they
do not. Nonetheless, Friedman argues, the physical laws provide very accurate predictions and
therefore should be accepted as appropriate theoretical models of how experts play pool.

A test of the profit-maximization model, then, would be provided by predicting the
behavior of real-world firms by assuming that these firms behave as if they were maximizing
profits. (See Example 1.1 later in this chapter.) If these predictions are reasonably in accord
with reality, we may accept the profit-maximization hypothesis. However, we would reject

1SeeM. Friedman, Essays in Positive Economics (Chicago: University of Chicago Press, 1953), chap. 1. For an alternative view
stressing the importance of using “realistic” assumptions, see H. A. Simon, “Rational Decision Making in Business
Organizations,” American Economic Review 69, no. 4 (September 1979): 493–513.
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the model if real-world data seem inconsistent with it. Hence, the ultimate test of either
theory is its ability to predict real-world events.

Importance of empirical analysis
The primary concern of this book is the construction of theoretical models. But the goal of
such models is always to learn something about the real world. Although the inclusion of a
lengthy set of applied examples would needlessly expand an already bulky book,2 the Ex-
tensions included at the end of many chapters are intended to provide a transition between
the theory presented here and the ways in which that theory is actually applied in empirical
studies.

GENERAL FEATURES OF ECONOMIC MODELS

The number of economic models in current use is, of course, very large. Specific assumptions
used and the degree of detail provided vary greatly dependingon the problembeing addressed.
Themodels employed to explain the overall level of economic activity in theUnited States, for
example, must be considerablymore aggregated and complex than those that seek to interpret
the pricing of Arizona strawberries. Despite this variety, however, practically all economic
models incorporate three common elements: (1) the ceteris paribus (other things the same)
assumption; (2) the supposition that economic decision makers seek to optimize something;
and (3) a careful distinction between “positive” and “normative” questions. Because we will
encounter these elements throughout this book, it may be helpful at the outset to briefly
describe the philosophy behind each of them.

The ceteris paribus assumption
As in most sciences, models used in economics attempt to portray relatively simple rela-
tionships. A model of the market for wheat, for example, might seek to explain wheat prices
with a small number of quantifiable variables, such as wages of farmworkers, rainfall, and
consumer incomes. This parsimony inmodel specification permits the study ofwheat pricing in
a simplified setting in which it is possible to understand how the specific forces operate.
Although any researcherwill recognize thatmany “outside” forces (presence ofwheat diseases,
changes in the prices of fertilizers or of tractors, or shifts in consumer attitudes about eating
bread) affect the price of wheat, these other forces are held constant in the construction of the
model. It is important to recognize that economists are not assuming that other factors do not
affect wheat prices; rather, such other variables are assumed to be unchanged during the period
of study. In this way, the effect of only a few forces can be studied in a simplified setting. Such
ceteris paribus (other things equal) assumptions are used in all economic modeling.

Use of the ceteris paribus assumption does pose some difficulties for the verification of
economic models from real-world data. In other sciences, such problemsmay not be so severe
because of the ability to conduct controlled experiments. For example, a physicist who wishes
to test a model of the force of gravity probably would not do so by dropping objects from the
Empire State Building. Experiments conducted in that way would be subject to too many
extraneous forces (wind currents, particles in the air, variations in temperature, and so forth) to
permit a precise test of the theory. Rather, the physicist would conduct experiments in a
laboratory, using a partial vacuum in which most other forces could be controlled or elim-
inated. In this way, the theory could be verified in a simple setting, without considering all the
other forces that affect falling bodies in the real world.

2For an intermediate-level text containing an extensive set of real-world applications, see W. Nicholson and C. Snyder,
Intermediate Microeconomics and Its Application, 10th ed. (Mason, OH: Thomson/Southwestern, 2007).
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With a few notable exceptions, economists have not been able to conduct controlled
experiments to test their models. Instead, economists have been forced to rely on various
statistical methods to control for other forces when testing their theories. Although these
statistical methods are as valid in principle as the controlled experimentmethods used by other
scientists, in practice they raise a number of thorny issues. For that reason, the limitations and
precise meaning of the ceteris paribus assumption in economics are subject to greater con-
troversy than in the laboratory sciences.

Optimization assumptions
Many economic models start from the assumption that the economic actors being studied are
rationally pursuing some goal. We briefly discussed such an assumption when investigating the
notion of firms maximizing profits. Example 1.1 shows how that model can be used to make
testable predictions. Other examples we will encounter in this book include consumers maxi-
mizing their own well-being (utility), firms minimizing costs, and government regulators
attempting to maximize public welfare. Although, as we will show, all of these assumptions are
unrealistic, all have wonwidespread acceptance as good starting places for developing economic
models. There seem to be two reasons for this acceptance. First, the optimization assumptions
are very useful for generating precise, solvable models, primarily because such models can draw
on a variety of mathematical techniques suitable for optimization problems. Many of these
techniques, togetherwith the logic behind them, are reviewed inChapter 2. A second reason for
the popularity of optimizationmodels concerns their apparent empirical validity. As some of our
Extensions show, such models seem to be fairly good at explaining reality. In all, then, opti-
mization models have come to occupy a prominent position in modern economic theory.

EXAMPLE 1.1 Profit Maximization

The profit-maximization hypothesis provides a good illustration of how optimization as-
sumptions can be used to generate empirically testable propositions about economic
behavior. Suppose that a firm can sell all the output that it wishes at a price of p per unit and
that the total costs of production, C , depend on the amount produced, q. Then, profits are
given by

profits ¼ π ¼ pq � CðqÞ: (1:1)

Maximization of profits consists of finding that value of q which maximizes the profit ex-
pression in Equation 1.1. This is a simple problem in calculus. Differentiation of Equation 1.1
and setting that derivative equal to 0 give the following first-order condition for a maximum:

dπ
dq

¼ p � C 0ðqÞ ¼ 0 or p ¼ C 0ðqÞ: (1:2)

In words, the profit-maximizing output level (q�) is found by selecting that output level for
which price is equal to marginal cost, C 0ðqÞ. This result should be familiar to you from your
introductory economics course. Notice that in this derivation the price for the firm’s output is
treated as a constant because the firm is a price taker.

Equation 1.2 is only the first-order condition for a maximum. Taking account of the
second-order condition can help us to derive a testable implication of this model. The second-
order condition for a maximum is that at q� it must be the case that

d2π

dq2
¼ �C 00ðqÞ < 0 or C 00ðq�Þ > 0: (1:3)
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That is, marginal cost must be increasing at q� for this to be a true point of maximum profits.
Ourmodel cannowbeused to“predict”howafirmwill react to a change inprice.Todo so,

we differentiate Equation 1.2 with respect to price (p), assuming that the firm continues to
choose a profit-maximizing level of q:

d ½p � C 0ðq�Þ ¼ 0�
dp

¼ 1�C 00ðq�Þ � dq
�

dp
¼ 0: (1:4)

Rearranging terms a bit gives

dq�
dp

¼ 1
C 00ðq�Þ > 0: (1:5)

Here thefinal inequality again reflects the fact thatmarginal costmust be increasing if q� is to be
a true maximum. This then is one of the testable propositions of the profit-maximization
hypothesis—if other things do not change, a price-taking firm should respond to an increase in
price by increasing output.On the other hand, if firms respond to increases in price by reducing
output, there must be something wrong with our model.

Although this is a very simple model, it reflects the way we will proceed throughout
much of this book. Specifically, the fact that the primary implication of the model is derived
by calculus, and consists of showing what sign a derivative should have, is the kind of result
we will see many times.

QUERY: In general terms, how would the implications of this model be changed if the price
a firm obtains for its output were a function of how much it sold? That is, how would the
model work if the price-taking assumption were abandoned?

Positive-normative distinction
A final feature of most economic models is the attempt to differentiate carefully between
“positive” and “normative” questions. So far we have been concerned primarily with positive
economic theories. Such theories take the real world as an object to be studied, attempting to
explain those economic phenomena that are observed. Positive economics seeks to determine
how resources are in fact allocated in an economy. A somewhat different use of economic
theory is normative analysis, taking a definite stance about what should be done. Under the
heading of normative analysis, economists have a great deal to say about how resources should
be allocated. For example, an economist engaged in positive analysis might investigate how
prices are determined in the U.S. health-care economy. The economist also might want to
measure the costs and benefits of devoting evenmore resources to health care. But when he or
she specifically advocates that more resources should be allocated to health care, the analysis
becomes normative.

Some economists believe that the only proper economic analysis is positive analysis.
Drawing an analogy with the physical sciences, they argue that “scientific” economics should
concern itself only with the description (and possibly prediction) of real-world economic
events. To take moral positions and to plead for special interests are considered to be outside
the competence of an economist acting as such. Other economists, however, believe strict
application of the positive-normative distinction to economic matters is inappropriate. They
believe that the study of economics necessarily involves the researchers’ownviews about ethics,
morality, and fairness. According to these economists, searching for scientific “objectivity” in
such circumstances is hopeless. Despite some ambiguity, this book adopts a mainly positivist
tone, leaving normative concerns for you to decide for yourself.
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DEVELOPMENT OF THE ECONOMIC THEORY OF VALUE

Because economic activity has been a central feature of all societies, it is surprising that these
activities were not studied in any detail until recently. For themost part, economic phenomena
were treated as a basic aspect of human behavior that was not sufficiently interesting to deserve
specific attention. It is, of course, true that individuals have always studied economic activities
with a view towardmaking some kind of personal gain. Roman traders were not abovemaking
profits on their transactions. But investigations into the basic nature of these activities did not
begin in any depth until the eighteenth century.3 Because this book is about economic theory
as it stands today, rather than the history of economic thought, our discussion of the evolution
of economic theory will be brief. Only one area of economic study will be examined in its
historical setting: the theory of value.

Early economic thoughts on value
The theory of value, not surprisingly, concerns the determinants of the “value” of a commodity.
This subject is at the center ofmodernmicroeconomic theory and is closely intertwinedwith the
fundamental economic problem of allocating scarce resources to alternative uses. The logical
place to start iswith adefinitionof theword “value.”Unfortunately, themeaningof this termhas
not been consistent throughout the development of the subject. Todaywe regard value as being
synonymous with the price of a commodity.4 Earlier philosopher-economists, however, made a
distinction between the market price of a commodity and its value. The term “value” was then
thought of as being, in some sense, synonymous with “importance,” “essentiality,” or (at times)
“godliness.” Because “price” and “value” were separate concepts, they could differ, and most
early economic discussions centered on these divergences. For example, St. Thomas Aquinas
believed value to be divinely determined. Since prices were set by humans, it was possible for the
price of a commodity to differ from its value. A person accused of charging a price in excess of a
good’s value was guilty of charging an “unjust” price. For example, St. Thomas believed the
“just” rate of interest to be zero. Any lenderwho demanded a payment for the use ofmoneywas
charging an unjust price and could be—and sometimes was—prosecuted by church officials.

The founding of modern economics
During the latter part of the eighteenth century, philosophers began to take a more scientific
approach to economic questions. The 1776 publication of The Wealth of Nations by Adam
Smith (1723–1790) is generally considered the beginning of modern economics. In his vast,
all-encompassing work, Smith laid the foundation for thinking about market forces in an
ordered and systematic way. Still, Smith and his immediate successors, such as David Ricardo
(1772–1823), continued to distinguish between value and price. To Smith, for example, the
value of a commodity meant its “value in use,” whereas the price represented its “value in
exchange.” The distinction between these two concepts was illustrated by the famous water-
diamond paradox. Water, which obviously has great value in use, has little value in exchange
(it has a low price); diamonds are of little practical use but have a great value in exchange. The
paradox with which early economists struggled derives from the observation that some very
useful items have low prices whereas certain nonessential items have high prices.

3For a detailed treatment of early economic thought, see the classic work by J. A. Schumpeter, History of Economic Analysis
(New York: Oxford University Press, 1954), pt. II, chaps. 1–3.
4This is not completely true when “externalities” are involved and a distinction must be made between private and social
value (see Chapter 19).
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Labor theory of exchange value
Neither Smith nor Ricardo ever satisfactorily resolved the water-diamond paradox. The con-
cept of value in use was left for philosophers to debate, while economists turned their attention
to explaining the determinants of value in exchange (that is, to explaining relative prices). One
obvious possible explanation is that exchange values of goods are determinedbywhat it costs to
produce them. Costs of production are primarily influenced by labor costs—at least this was so
in the time of Smith andRicardo—and therefore it was a short step to embrace a labor theory of
value. For example, to paraphrase an example from Smith, if catching a deer takes twice the
number of labor hours as catching a beaver, then one deer should exchange for two beavers. In
other words, the price of a deer should be twice that of a beaver. Similarly, diamonds are
relatively costly because their production requires substantial labor input.

To students with even a passing knowledge of what we now call the law of supply and
demand, Smith’s and Ricardo’s explanation must seem incomplete. Didn’t they recognize the
effects of demand on price? The answer to this question is both yes and no. They did observe
periods of rapidly rising and falling relative prices and attributed such changes to demand shifts.
However, they regarded these changes as abnormalities that produced only a temporary
divergence of market price from labor value. Because they had not really developed a theory of
value in use, they were unwilling to assign demand any more than a transient role in deter-
mining relative prices. Rather, long-run exchange valueswere assumed to be determined solely
by labor costs of production.

The marginalist revolution
Between 1850 and 1880, economists became increasingly aware that to construct an adequate
alternative to the labor theory of value, they had to come to devise a theory of value in use.
During the 1870s, several economists discovered that it is not the total usefulness of a
commodity that helps to determine its exchange value, but rather the usefulness of the last unit
consumed. For example, water is certainly very useful—it is necessary for all life. But, because
water is relatively plentiful, consuming onemore pint (ceteris paribus) has a relatively low value
to people. These “marginalists” redefined the concept of value in use from an idea of overall
usefulness to one ofmarginal, or incremental, usefulness—the usefulness of an additional unit
of a commodity. The concept of the demand for an incremental unit of output was now
contrasted to Smith’s and Ricardo’s analysis of production costs to derive a comprehensive
picture of price determination.5

Marshallian supply-demand synthesis
The clearest statement of these marginal principles was presented by the English economist
Alfred Marshall (1842–1924) in his Principles of Economics, published in 1890. Marshall
showed that demand and supply simultaneously operate to determine price. AsMarshall noted,
just as you cannot tell which blade of a scissors does the cutting, so too you cannot say that
either demand or supply alone determines price. That analysis is illustrated by the famous
Marshallian cross shown in Figure 1.1. In the diagram the quantity of a good purchased per
period is shown on the horizontal axis and its price appears on the vertical axis. The curveDD
represents the quantity of the good demanded per period at each possible price. The curve is
negatively sloped to reflect the marginalist principle that as quantity increases, people are

5Ricardo had earlier provided an important first step inmarginal analysis in his discussion of rent. Ricardo theorized that as the
production of corn increased, land of inferior quality would be used and this would cause the price of corn to rise. In his
argument Ricardo implicitly recognized that it is themarginal cost—the cost of producing an additional unit—that is relevant
to pricing. Notice that Ricardo implicitly held other inputs constant when discussing diminishing land productivity; that is, he
employed one version of the ceteris paribus assumption.
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willing to pay less for the last unit purchased. It is the value of this last unit that sets the price for
all units purchased. The curve SS shows how (marginal) production costs rise asmore output is
produced. This reflects the increasing cost of producing onemore unit as total output expands.
In other words, the upward slope of the SS curve reflects increasing marginal costs, just as the
downward slope of theDD curve reflects decreasingmarginal value.The two curves intersect at
p�, q�. This is an equilibrium point—both buyers and sellers are content with the quantity
being traded and the price atwhich it is traded. If one of the curves should shift, the equilibrium
point would shift to a new location. Thus price and quantity are simultaneously determined by
the joint operation of supply and demand.

Paradox resolved
Marshall’s model resolves the water-diamond paradox. Prices reflect both the marginal eval-
uation that demanders place on goods and the marginal costs of producing the goods. Viewed
in this way, there is no paradox. Water is low in price because it has both a low marginal value
and a lowmarginal cost of production. On the other hand, diamonds are high in price because
they have both a high marginal value (because people are willing to pay quite a bit for one
more) and a high marginal cost of production. This basic model of supply and demand lies
behind much of the analysis presented in this book.

General equilibrium models
Although the Marshallian model is an extremely useful and versatile tool, it is a partial
equilibriummodel, looking at only onemarket at a time. For some questions, this narrowing of
perspective gives valuable insights and analytical simplicity. For other, broader questions, such
a narrow viewpoint may prevent the discovery of important relationships among markets. To
answer more general questions we must have a model of the whole economy that suitably
mirrors the connections among various markets and economic agents. The French economist
Leon Walras (1831–1910), building on a long Continental tradition in such analysis, created
the basis formodern investigations into those broad questions.Hismethod of representing the

FIGURE 1.1 The Marshallian Supply-Demand Cross

Marshall theorized that demand and supply interact to determine the equilibrium price (p�) and the
quantity (q�) that will be traded in the market. He concluded that it is not possible to say that either
demand or supply alone determines price or therefore that either costs or usefulness to buyers alone
determines exchange value.
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economy by a large number of simultaneous equations forms the basis for understanding the
interrelationships implicit in general equilibrium analysis. Walras recognized that one cannot
talk about a single market in isolation; what is needed is a model that permits the effects of a
change in one market to be followed through other markets.

EXAMPLE 1.2 Supply-Demand Equilibrium

Although graphical presentations are adequate for some purposes, economists often use
algebraic representations of their models to both clarify their arguments and make themmore
precise. As an elementary example, suppose wewished to study themarket for peanuts and, on
the basis of statistical analysis of historical data, concluded that the quantity of peanuts
demanded each week (q, measured in bushels) depended on the price of peanuts (p, measured
in dollars per bushel) according to the equation

quantity demanded ¼ qD ¼ 1,000� 100p: (1:6)

Because this equation for qD contains only the single independent variable p, we are implicitly
holding constant all other factors that might affect the demand for peanuts. Equation 1.6
indicates that, if other things do not change, at a price of $5 per bushel people will demand 500
bushels of peanuts, whereas at a price of $4 per bushel they will demand 600 bushels. The
negative coefficient for p in Equation 1.6 reflects themarginalist principle that a lower pricewill
cause people to buy more peanuts.

To complete this simple model of pricing, suppose that the quantity of peanuts supplied
also depends on price:

quantity supplied ¼ qS ¼ �125þ 125p: (1:7)

Here the positive coefficient of price also reflects the marginal principle that a higher price will call
forth increased supply—primarily because (as we saw in Example 1.1) it permits firms to incur
higher marginal costs of production without incurring losses on the additional units produced.

Equilibrium price determination. Equation 1.6 and 1.7 therefore reflect ourmodel of price
determination in the market for peanuts. An equilibrium price can be found by setting quantity
demanded equal to quantity supplied:

qD ¼ qS (1:8)

or

1,000� 100p ¼ �125þ 125p (1:9)

or

225p ¼ 1,125, (1:10)

so

p� ¼ 5: (1:11)

At a price of $5 per bushel, this market is in equilibrium: at this price people want to
purchase 500 bushels, and that is exactly what peanut producers are willing to supply. This
equilibrium is pictured graphically as the intersection of D and S in Figure 1.2.

A more general model. In order to illustrate how this supply-demandmodel might be used,
let’s adopt a more general notation. Suppose now that the demand and supply functions are
given by

(continued)
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EXAMPLE 1.2 CONTINUED

FIGURE 1.2 Changing Supply-Demand Equilibria

The initial supply-demand equilibrium is illustrated by the intersection of D and S (p� ¼ 5, q� ¼ 500).
Whendemand shifts toqD 0 ¼ 1,450� 100p (denotedasD 0), the equilibriumshifts top� ¼ 7,q� ¼ 750.
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qD ¼ a þ bp and qS ¼ c þ dp (1:12)

where a and c are constants that can be used to shift the demand and supply curves,
respectively, and b (<0) and d (>0) represent demanders’ and suppliers’ reactions to price.
Equilibrium in this market requires

qD ¼ qS or

a þ bp ¼ c þ dp:
(1:13)

So, equilibrium price is given by6

p� ¼ a � c
d � b

: (1:14)

6Equation 1.14 is sometimes called the “reduced form” for the supply-demand structural model of Equations 1.12 and
1.13. It shows that the equilibrium value for the endogenous variable p ultimately depends only on the exogenous factors
in the model (a and c) and on the behavioral parameters b and d. A similar equation can be calculated for equilibrium
quantity.
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Notice that, in our prior example, a ¼ 1,000, b ¼ �100, c ¼ �125, and d ¼ 125, so

p� ¼ 1,000þ 125
125þ 100

¼ 1,125
225

¼ 5: (1:15)

With this more general formulation, however, we can pose questions about how the equi-
librium price might change if either the demand or supply curve shifted. For example,
differentiation of Equation 1.14 shows that

dp�

da
¼ 1

d � b
> 0,

dp�

dc
¼ �1

d � b
< 0:

(1:16)

That is, an increase in demand (an increase in a) increases equilibrium price whereas an in-
crease in supply (an increase in c) reduces price. This is exactly what a graphical analysis of
supply and demand curves would show. For example, Figure 1.2 shows that when the con-
stant term, a, in the demand equation increases to 1450, equilibrium price increases to
p� ¼ 7 ½¼ ð1,450þ 125Þ=225�.

QUERY: How might you use Equation 1.16 to “predict” how each unit increase in the
constant a affects p�? Does this equation correctly predict the increase in p� when the constant
a increases from 1,000 to 1,450?

For example, suppose that the demand for peanuts were to increase. This would cause the
priceof peanuts to increase.Marshalliananalysiswould seek tounderstand the sizeof this increase
by looking at conditions of supply and demand in the peanut market. General equilibrium
analysiswould looknotonly at thatmarketbut also at repercussions inothermarkets.A rise in the
price of peanuts would increase costs for peanut butter makers, which would, in turn, affect the
supply curve for peanut butter. Similarly, the rising price of peanuts might mean higher land
prices for peanut farmers, which would affect the demand curves for all products that they buy.
The demand curves for automobiles, furniture, and trips to Europe would all shift out, and that
might create additional incomes for the providers of those products.Consequently, the effects of
the initial increase in demand for peanuts eventually would spread throughout the economy.
General equilibriumanalysis attempts todevelopmodels thatpermitus toexamine sucheffects in
a simplified setting. Several models of this type are described in Chapter 13.

Production possibility frontier
Here we briefly introduce some general equilibrium ideas by using another graph you should
remember from introductory economics—the production possibility frontier. This graph shows
the various amounts of two goods that an economy can produce using its available resources
during some period (say, one week). Because the production possibility frontier shows two
goods, rather than the single good in Marshall’s model, it is used as a basic building block for
general equilibrium models.

Figure 1.3 shows the production possibility frontier for two goods, food and clothing.
The graph illustrates the supply of these goods by showing the combinations that can be
produced with this economy’s resources. For example, 10 pounds of food and 3 units of
clothing could be produced, or 4 pounds of food and 12 units of clothing. Many other
combinations of food and clothing could also be produced. The production possibility
frontier shows all of them. Combinations of food and clothing outside the frontier cannot
be produced because not enough resources are available. The production possibility frontier
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reminds us of the basic economic fact that resources are scarce—there are not enough
resources available to produce all we might want of every good.

This scarcity means that we must choose how much of each good to produce. Figure 1.3
makes clear that each choice has its costs. For example, if this economy produces 10 pounds of
food and 3 units of clothing at pointA, producing 1more unit of clothing would “cost” 1

2 pound
of food—increasing the output of clothing by 1 unit means the production of food would have
to decrease by 1

2 pound. So, the opportunity cost of 1 unit of clothing at pointA is 12 pound of food.
On the other hand, if the economy initially produces 4 pounds of food and 12 units of clothing
at point B, it would cost 2 pounds of food to produce 1 more unit of clothing. The opportunity
cost of 1 more unit of clothing at point B has increased to 2 pounds of food. Because more units
of clothing are produced at point B than at point A, both Ricardo’s and Marshall’s ideas
of increasing incremental costs suggest that the opportunity cost of an additional unit of
clothing will be higher at point B than at point A. This effect is shown by Figure 1.3.

The production possibility frontier provides two general equilibrium insights that are not
clear in Marshall’s supply and demand model of a single market. First, the graph shows that
producingmoreof onegoodmeans producing less of another goodbecause resources are scarce.
Economists often (perhaps too often!) use the expression “there is no such thing as a free lunch”
to explain that every economic action has opportunity costs. Second, the production possibility
frontier shows that opportunity costs depend on how much of each good is produced. The
frontier is like a supply curve for two goods: it shows the opportunity cost of producing more of
onegoodas thedecrease in the amountof the secondgood.Theproductionpossibility frontier is
therefore a particularly useful tool for studying several markets at the same time.

FIGURE 1.3 Production Possibility Frontier

The production possibility frontier shows the different combinations of two goods that can be
produced from a certain amount of scarce resources. It also shows the opportunity cost of producing
more of one good as the amount of the other good that cannot then be produced. The opportunity
cost at two different levels of clothing production can be seen by comparing points A and B.
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EXAMPLE 1.3 The Production Possibility Frontier and Economic Inefficiency

General equilibrium models are good tools for evaluating the efficiency of various economic
arrangements. Aswewill see inChapter 13, suchmodels have been used to assess awide variety
of policies such as trade agreements, tax structures, and environmental regulation. In this
simple example, we explore the idea of efficiency in its most elementary form.

Suppose that an economy produces two goods, x and y, using labor as the only input.The
production function for good x is x ¼ l0:5x (where lx is the quantity of labor used in x
production) and the production function for good y is y ¼ 2l0:5y . Total labor available is
constrained by lx þ ly � 200. Construction of the production possibility frontier in this
economy is extremely simple:

lx þ ly ¼ x2 þ 0:25y2 � 200 (1:17)

if the economy is to be producing as much as possible (which, after all, is why it’s called a
“frontier”). Equation 1.17 shows that the frontier here has the shape of a quarter ellipse—its
concavity derives from the diminishing returns exhibited by each production function.

Opportunity cost. Assuming this economy is on the frontier, the opportunity cost of good y
in terms of good x can be derived by solving for y as

y2 ¼ 800� 4x2 or y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
800� 4x2

p
¼ ½800� 4x2�0:5 (1:18)

and then differentiating this expression:

dy
dx

¼ 0:5½800� 4x2��0:5ð�8xÞ ¼ �4x
y

: (1:19)

Suppose, for example, labor is equally allocated between the two goods. Then x ¼ 10, y ¼ 20,
and dy=dx ¼ �4ð10Þ=20 ¼ �2. With this allocation of labor, each unit increase in x output
would require a reduction in y of 2 units. This can be verified by considering a slightly different
allocation, lx ¼ 101 and ly ¼ 99. Now production is x ¼ 10:05 and y ¼ 19:9. Moving to this
alternative allocation would have

Dy
Dx

¼ ð19:9� 20Þ
ð10:05� 10Þ ¼

�0:1
0:05

¼ �2,

which is precisely what was derived from the calculus approach.

Concavity. Equation 1.19 clearly illustrates the concavity of the production possibility frontier.
The slope of the frontier becomes steeper (more negative) as x output increases and y output falls.
For example, if labor is allocated so that lx ¼ 144 and ly ¼ 56, then outputs are x ¼ 12 and
y � 15 and so dy=dx ¼ �4ð12Þ=15 ¼ �3:2.With expanded x production, the opportunity cost
of one more unit of x increases from 2 to 3.2 units of y.

Inefficiency. If an economy operates inside its production possibility frontier, it is operating
inefficiently. Moving outward to the frontier could increase the output of both goods. In this
book we will explore many reasons for such inefficiency. These usually derive from a failure of
somemarket to perform correctly. For the purposes of this illustration, let’s assume that the labor
market in this economy does not work well and that 20 workers are permanently unemployed.
Now the production possibility frontier becomes

x2 þ 0:25y2 ¼ 180, (1:20)

(continued)
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EXAMPLE 1.3 CONTINUED

and the output combinations we described previously are no longer feasible. For example, if
x ¼ 10 then y output is now y � 17:9. The loss of about 2.1 units of y is a measure of the cost of
the labor market inefficiency. Alternatively, if the labor supply of 180 were allocated evenly
between the production of the two goods then we would have x � 9:5 and y � 19, and the
inefficiency would show up in both goods’ production—more of both goods could be pro-
duced if the labor market inefficiency were resolved.

QUERY: How would the inefficiency cost of labor market imperfections be measured solely
in terms of x production in this model? How would it be measured solely in terms of y
production? What would you need to know in order to assign a single number to the
efficiency cost of the imperfection when labor is equally allocated to the two goods?

Welfare economics
Inaddition to theiruse inexaminingpositivequestions abouthowtheeconomyoperates, the tools
used in general equilibrium analysis have also been applied to the study of normative questions
about the welfare properties of various economic arrangements. Although such questions were a
major focus of the great eighteenth- and nineteenth-century economists (Smith, Ricardo, Marx,
Marshall, and so forth), perhaps the most significant advances in their study were made by the
British economist Francis Y. Edgeworth (1848–1926) and the Italian economist Vilfredo Pareto
(1848–1923) in the early years of the twentieth century. These economists helped to provide a
precise definition for the concept of “economic efficiency” and to demonstrate the conditions
under which markets will be able to achieve that goal. By clarifying the relationship between the
allocation pricing of resources, they provided some support for the idea, first enunciated byAdam
Smith, that properly functioningmarkets provide an “invisible hand” that helps allocate resources
efficiently. Later sections of this book focus on some of these welfare issues.

MODERN DEVELOPMENTS

Research activity in economics expanded rapidly in the years followingWorldWar II. A major
purpose of this book is to summarize much of this research. By illustrating how economists
have tried to develop models to explain increasingly complex aspects of economic behavior,
this book seeks to help you recognize some of the remaining unanswered questions.

The mathematical foundations of economic models
Amajor postwar development inmicroeconomic theorywas the clarification and formalization
of the basic assumptions that are made about individuals and firms. The first landmark in this
development was the 1947 publication of Paul Samuelson’s Foundations of Economic Analysis,
in which the author (the first AmericanNobel Prize winner in economics) laid out a number of
models of optimizing behavior.7 Samuelson demonstrated the importance of basing behav-
ioralmodels onwell-specifiedmathematical postulates so that various optimization techniques
from mathematics could be applied. The power of his approach made it inescapably clear that
mathematics had become an integral part of modern economics. In Chapter 2 of this book we
review some of the mathematical concepts most often used in microeconomics.

7Paul A. Samuelson, Foundations of Economic Analysis (Cambridge, MA: Harvard University Press, 1947).

16 Part 1 Introduction



New tools for studying markets
A second feature that has been incorporated into this book is the presentation of a number of
new tools for explaining market equilibria. These include techniques for describing pricing in
single markets, such as increasingly sophisticated models of monopolistic pricing or models of
the strategic relationships among firms that use game theory. They also include general
equilibrium tools for simultaneously exploring relationships amongmanymarkets. As we shall
see, all of these new techniques help to provide a more complete and realistic picture of how
markets operate.

The economics of uncertainty and information
A finalmajor theoretical advance during the postwar periodwas the incorporation of uncertainty
and imperfect information into economic models. Some of the basic assumptions used to study
behavior in uncertain situations were originally developed in the 1940s in connection with the
theory of games. Later developments showed how these ideas could be used to explain why
individuals tend to be adverse to risk and how theymight gather information in order to reduce
the uncertainties they face. In this book, problems of uncertainty and information enter the
analysis on many occasions.

Computers and empirical analysis
One final aspect of the postwar development of microeconomics should be mentioned—the
increasinguseof computers to analyze economicdata andbuild economicmodels. As computers
have become able to handle larger amounts of information and carry out complexmathematical
manipulations, economists’ ability to test their theories has dramatically improved. Whereas
previous generations had to be content with rudimentary tabular or graphical analyses of real-
world data, today’s economists have available a wide variety of sophisticated techniques together
with extensive microeconomic data with which to test their models. To examine these tech-
niques and some of their limitations would be beyond the scope and purpose of this book. But,
Extensions at the endofmost chapters are intended tohelp you start reading about someof these
applications.

SUMMARY

This chapter provided background on how economists ap-
proach the study of the allocation of resources. Much of the
material discussed here should be familiar to you from intro-
ductory economics. Inmany respects, the study of economics
represents acquiring increasingly sophisticated tools for ad-
dressing the same basic problems. The purpose of this book
(and, indeed, of most upper-level books on economics) is to
provide you with more of these tools. As a starting place, this
chapter reminded you of the following points:

• Economics is the study of how scarce resources are al-
located among alternative uses. Economists seek to
develop simple models to help understand that process.
Many of these models have a mathematical basis be-
cause the use of mathematics offers a precise shorthand for
stating the models and exploring their consequences.

• The most commonly used economic model is the
supply-demand model first thoroughly developed by

Alfred Marshall in the latter part of the nineteenth
century. This model shows how observed prices can be
taken to represent an equilibrium balancing of the
production costs incurred by firms and the willingness
of demanders to pay for those costs.

• Marshall’s model of equilibrium is only “partial”—that
is, it looks only at one market at a time. To look at many
markets together requires an expanded set of general
equilibrium tools.

• Testing the validity of an economic model is perhaps the
most difficult task economists face. Occasionally, a
model’s validity can be appraised by asking whether
it is based on “reasonable” assumptions. More often,
however, models are judged by howwell they can explain
economic events in the real world.
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C H A P T E R

2

Mathematics for Microeconomics

Microeconomic models are constructed using a wide variety of mathematical techniques. In this chapter we
provide a brief summary of some of themost important techniques that youwill encounter in this book. Amajor
portion of the chapter concerns mathematical procedures for finding the optimal value of some function.
Because we will frequently adopt the assumption that an economic actor seeks to maximize or minimize some
function, we will encounter these procedures (most of which are based on differential calculus) many times.

After our detailed discussion of the calculus of optimization, we turn to four topics that are covered more
briefly. First, we look at a few special types of functions that arise in economic problems. Knowledge of
properties of these functions can often be very helpful in solving economic problems. Next, we provide a
brief summary of integral calculus. Although integration is used in this book far less frequently than is
differentiation, we will nevertheless encounter several situations where we will want to employ integrals to
measure areas that are important to economic theory or to add up outcomes that occur over time or across
many individuals. One particular use of integration is to examine problems in which the objective is to
maximize a stream of outcomes over time. Our third added topic focuses on techniques to be used for such
problems in dynamic optimization. Finally, Chapter 2 concludes with a brief summary of mathematical
statistics, which will be particularly useful in our study of economic behavior in uncertain situations.

MAXIMIZATION OF A FUNCTION OF ONE VARIABLE

Let’s start our study of optimization with a simple example. Suppose that a manager of a firm
desires to maximize1 the profits received from selling a particular good. Suppose also that the
profits ðπÞ received depend only on the quantity ðqÞ of the good sold. Mathematically,

π ¼ f ðqÞ: (2.1)

Figure 2.1 shows a possible relationship between π and q. Clearly, to achieve maximum
profits, the manager should produce output q�, which yields profits π�. If a graph such as
that of Figure 2.1 were available, this would seem to be a simple matter to be accomplished
with a ruler.

Suppose, however, as is more likely, the manager does not have such an accurate picture
of the market. He or she may then try varying q to see where a maximum profit is obtained.
For example, by starting at q1, profits from sales would be π1. Next, the manager may try
output q2, observing that profits have increased to π2. The commonsense idea that profits
have increased in response to an increase in q can be stated formally as

π2 � π1

q2 � q1
> 0 or

∆π
∆q

> 0, (2.2)

1Here we will generally explore maximization problems. A virtually identical approach would be taken to study minimiza-
tion problems because maximization of f ðxÞ is equivalent to minimizing �f ðxÞ.
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where the ∆ notation is used to mean “the change in” π or q. As long as ∆π=∆q is positive,
profits are increasing and the manager will continue to increase output. For increases in
output to the right of q�, however, ∆π=∆q will be negative, and the manager will realize that
a mistake has been made.

Derivatives
As you probably know, the limit of ∆π=∆q for very small changes in q is called the derivative
of the function, π ¼ f ðqÞ, and is denoted by dπ=dq or df =dq or f 0ðqÞ. More formally, the
derivative of a function π ¼ f ðqÞ at the point q1 is defined as

dπ
dq

¼ df
dq

¼ lim
h!0

f ðq1 þ hÞ � f ðq1Þ
h

: (2.3)

Notice that the value of this ratio obviously depends on the point q1 that is chosen.

Value of the derivative at a point
A notational convention should be mentioned: Sometimes one wishes to note explicitly the
point at which the derivative is to be evaluated. For example, the evaluation of the derivative
at the point q ¼ q1 could be denoted by

dπ
dq

����
q¼q1

: (2.4)

At other times, one is interested in the value of dπ=dq for all possible values of q and no
explicit mention of a particular point of evaluation is made.

In the example of Figure 2.1,
dπ
dq

����q¼q1
> 0,

whereas
dπ
dq

����q¼q3
< 0:

What is the value of dπ=dq at q�? It would seem to be 0, because the value is positive for
values of q less than q� and negative for values of q greater than q�. The derivative is the
slope of the curve in question; this slope is positive to the left of q� and negative to the right
of q�. At the point q�, the slope of f ðqÞ is 0.

FIGURE 2.1 Hypothetical Relationship between Quantity Produced and Profits

If a manager wishes to produce the level of output that maximizes profits, then q� should be
produced. Notice that at q�, dπ=dq ¼ 0.

π = f(q)

π

Quantityq1 q2 q* q3

π*
π2

π3

π1
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First-order condition for a maximum
This result is quite general. For a function of one variable to attain its maximum value at some
point, the derivative at that point (if it exists) must be 0. Hence, if a manager could estimate
the function f ðqÞ from some sort of real-world data, it would theoretically be possible to find
the point where df =dq ¼ 0. At this optimal point (say, q�),

df
dq

����q¼q�
¼ 0: (2.5)

Second-order conditions
An unsuspecting manager could be tricked, however, by a naive application of this first-
derivative rule alone. For example, suppose that the profit function looks like that shown in
either Figure 2.2a or 2.2b. If the profit function is that shown in Figure 2.2a, the manager, by
producing where dπ=dq ¼ 0, will choose point q�a . This point in fact yields minimum,
not maximum, profits for the manager. Similarly, if the profit function is that shown in
Figure 2.2, the manager will choose point q�b , which, although it yields a profit greater than
that for any output lower than q�b , is certainly inferior to any output greater than q�b . These
situations illustrate the mathematical fact that dπ=dq ¼ 0 is a necessary condition for a
maximum, but not a sufficient condition. To ensure that the chosen point is indeed a
maximum point, a second condition must be imposed.

Intuitively, this additional condition is clear: The profit available by producing either a bit
more or a bit less than q� must be smaller than that available from q�. If this is not true,
the manager can do better than q�. Mathematically, this means that dπ=dq must be greater

FIGURE 2.2 Two Profit Functions That Give Misleading Results If the First Derivative
Rule Is Applied Uncritically

In (a), the application of the first derivative rule would result in point q�a being chosen. This point is
in fact a point of minimum profits. Similarly, in (b), output level q�b would be recommended by the
first derivative rule, but this point is inferior to all outputs greater than q�b . This demonstrates
graphically that finding a point at which the derivative is equal to 0 is a necessary, but not a sufficient,
condition for a function to attain its maximum value.

q*a

π*b

π*a

q*b

π

Quantity

(a) (b)

π

Quantity

Chapter 2 Mathematics for Microeconomics 21



than 0 for q < q� and must be less than 0 for q > q�. Therefore, at q�, dπ=dq must be
decreasing. Another way of saying this is that the derivative of dπ=dq must be negative at q�.

Second derivatives
The derivative of a derivative is called a second derivative and is denoted by

d2π

dq2
or

d2f
dq2

or f qð Þ:

The additional condition for q� to represent a (local) maximum is therefore

d2π

dq2

����q¼q�
¼ f ″ qð Þ

q¼q�
< 0,

���� (2.6)

where the notation is again a reminder that this second derivative is to be evaluated at q�.
Hence, although Equation 2.5 ðdπ=dq ¼ 0Þ is a necessary condition for a maximum, that

equation must be combined with Equation 2.6 ðd2π=dq2 < 0Þ to ensure that the point is a
local maximum for the function. Equations 2.5 and 2.6 together are therefore sufficient
conditions for such a maximum. Of course, it is possible that by a series of trials the manager
may be able to decide on q� by relying on market information rather than on mathematical
reasoning (remember Friedman’s pool-player analogy). In this book we shall be less interest-
ed in how the point is discovered than in its properties and how the point changes when
conditions change. A mathematical development will be very helpful in answering these
questions.

Rules for finding derivatives
Here are a few familiar rules for taking derivatives. Wewill use these at many places in this book.

1. If b is a constant, then
db
dx

¼ 0:

2. If b is a constant, then

d ½bf ðxÞ�
dx

¼ bf 0 xð Þ:

3. If b is a constant, then

dxb

dx
¼ bxb�1:

4.
d ln x
dx

¼ 1
x

where ln signifies the logarithm to the base e ð¼ 2:71828Þ.
5.

dax

dx
¼ ax ln a for any constant a

A particular case of this rule is dex=dx ¼ ex .

Now suppose that f ðxÞ and gðxÞ are two functions of x and that f 0ðxÞ and g 0ðxÞ exist. Then:

6. d ½ f ðxÞ þ gðxÞ�
dx

¼ f 0 xð Þ þ g 0 xð Þ:

22 Part 1 Introduction



7. d ½ f ðxÞ ⋅ gðxÞ�
dx

¼ f xð Þg 0 xð Þ þ f 0 xð Þg xð Þ:

8. d ½ f ðxÞ=gðxÞ�
dx

¼ f 0ðxÞgðxÞ � f ðxÞg 0ðxÞ
½ gðxÞ�2 ,

provided that gðxÞ 6¼ 0.

Finally, if y ¼ f ðxÞ and x ¼ gðzÞ and if both f 0ðxÞ and g 0ðzÞ exist, then
9. dy

dz
¼ dy

dx ⋅
dx
dz

¼ df
dx ⋅

dg
dz

:

This result is called the chain rule. It provides a convenient way to study how one variable
ðzÞ affects another variable ðyÞ solely through its influence on some intermediate variable
ðxÞ. Some examples are

10. deax

dx
¼ deax

dðaxÞ ⋅
dðaxÞ
dx

¼ eax ⋅ a ¼ aeax :

11. d ½lnðaxÞ�
dx

¼ d ½lnðaxÞ�
dðaxÞ ⋅

dðaxÞ
dx

¼ 1
ax ⋅ a ¼ 1

x
:

12. d ½lnðx2Þ�
dx

¼ d ½lnðx2Þ�
dðx2Þ ⋅

dðx2Þ
dx

¼ 1
x2 ⋅2x ¼ 2

x
:

FUNCTIONS OF SEVERAL VARIABLES

Economic problems seldom involve functions of only a single variable. Most goals of interest to
economic agents dependon several variables, and trade-offsmust bemade among these variables.
For example, the utility an individual receives from activities as a consumer depends on the
amount of eachgood consumed. For afirm’s production function, the amount produceddepends
on the quantity of labor, capital, and land devoted to production. In these circumstances, this
dependence of one variable ðyÞ on a series of other variables ðx1, x2,…, xnÞ is denoted by

y ¼ f ðx1, x2,…, xnÞ: (2.7)

Partial derivatives
We are interested in the point at which y reaches a maximum and in the trade-offs that must
be made to reach that point. It is again convenient to picture the agent as changing the
variables at his or her disposal (the x’s) in order to locate a maximum. Unfortunately, for a
function of several variables, the idea of the derivative is not well-defined. Just as the steepness
of ascent when climbing a mountain depends on which direction you go, so does the slope
(or derivative) of the function depend on the direction in which it is taken. Usually, the only
directional slopes of interest are those that are obtained by increasing one of the x’s while
holding all the other variables constant (the analogy for mountain climbing might be to
measure slopes only in a north-south or east-west direction). These directional slopes are
called partial derivatives. The partial derivative of y with respect to (that is, in the direction
of) x1 is denoted by

∂y
∂x1

or
∂f
∂x1

or fx1 or f1:

It is understood that in calculating this derivative all of the other x’s are held constant. Again
it should be emphasized that the numerical value of this slope depends on the value of x1
and on the (preassigned) values of x2,…, xn.
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EXAMPLE 2.1 Profit Maximization

Suppose that the relationship between profits ðπÞ and quantity produced ðqÞ is given by

πðqÞ ¼ 1,000q � 5q2: (2.8)

A graph of this function would resemble the parabola shown in Figure 2.1. The value of q
that maximizes profits can be found by differentiation:

dπ
dq

¼ 1,000� 10q ¼ 0, (2.9)

so

q� ¼ 100: (2.10)

At q ¼ 100, Equation 2.8 shows that profits are 50,000—the largest value possible. If, for
example, the firm opted to produce q ¼ 50, profits would be 37,500. At q ¼ 200, profits are
precisely 0.

That q ¼ 100 is a “global” maximum can be shown by noting that the second derivative
of the profit function is�10 (see Equation 2.9). Hence, the rate of increase in profits is always
decreasing—up to q ¼ 100 this rate of increase is still positive, but beyond that point it
becomes negative. In this example, q ¼ 100 is the only local maximum value for the function
π. With more complex functions, however, there may be several such maxima.

QUERY: Suppose that a firm’s output ðqÞ is determined by the amount of labor ðlÞ it hires
according to the function q ¼ 2

ffiffi
l

p
. Suppose also that the firm can hire all of the labor it wants

at $10 per unit and sells its output at $50 per unit. Profits are therefore a function of l given
by π lð Þ ¼ 100

ffiffi
l

p � 10l . How much labor should this firm hire in order to maximize profits,
and what will those profits be?

A somewhat more formal definition of the partial derivative is

∂f
∂x1

���� _
x 2,…,

_
x n

¼ lim
h→0

f ðx1þh;
_
x2,…,

_
xnÞ � f ðx1,

_
x2,…,

_
xnÞ

h
, (2.11)

where the notation is intended to indicate that x2,…, xn are all held constant at the preassigned
values

_
x2,…,

_
xn so the effect of changing x1 only can be studied. Partial derivatives with

respect to the other variables ðx2,…, xnÞ would be calculated in a similar way.

Calculating partial derivatives
It is easy to calculate partial derivatives. The calculation proceeds as for the usual derivative by
treating x2,…, xn as constants (which indeed they are in the definition of a partial derivative).
Consider the following examples.

1. If y ¼ f x1, x2
� � ¼ ax21 þ bx1x2 þ cx22, then

∂f
∂x1

¼ f1 ¼ 2ax1 þ bx2

and

∂f
∂x2

¼ f2 ¼ bx1 þ 2cx2:
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Notice that ∂f =∂x1 is in general a function of both x1 and x2 and therefore its value
will depend on the particular values assigned to these variables. It also depends on the
parameters a, b, and c, which do not change as x1 and x2 change.

2. If y ¼ f ðx1, x2Þ ¼ eax1þbx2 , then

∂f
∂x1

¼ f1 ¼ aeax1þbx2

and

∂f
∂x2

¼ f2 ¼ beax1þbx2 :

3. If y ¼ f ðx1, x2Þ ¼ a ln x1 þ b ln x2, then

∂f
∂x1

¼ f1 ¼ a
x1

and

∂f
∂x2

¼ f2 ¼ b
x2

:

Notice here that the treatment of x2 as a constant in the derivation of ∂f =∂x1 causes the term
b ln x2 to disappear upon differentiation because it does not change when x1 changes. In this
case, unlike our previous examples, the size of the effect of x1 on y is independent of the value
of x2. In other cases, the effect of x1 on y will depend on the level of x2.

Partial derivatives and the ceteris paribus assumption
In Chapter 1, we described the way in which economists use the ceteris paribus assumption in
their models to hold constant a variety of outside influences so the particular relationship
being studied can be explored in a simplified setting. Partial derivatives are a precise mathe-
matical way of representing this approach; that is, they show how changes in one variable
affect some outcome when other influences are held constant—exactly what economists need
for their models. For example, Marshall’s demand curve shows the relationship between price
ðpÞ and quantity ðqÞ demanded when other factors are held constant. Using partial deriva-
tives, we could represent the slope of this curve by ∂q=∂p to indicate the ceteris paribus
assumptions that are in effect. The fundamental law of demand—that price and quantity
move in opposite directions when other factors do not change—is therefore reflected by the
mathematical statement “∂q=∂p < 0.” Again, the use of a partial derivative serves as a re-
minder of the ceteris paribus assumptions that surround the law of demand.

Partial derivatives and units of measurement
In mathematics relatively little attention is paid to how variables are measured. In fact, most
often no explicit mention is made of the issue. But the variables used in economics usually
refer to real-world magnitudes and therefore we must be concerned with how they are
measured. Perhaps the most important consequence of choosing units of measurement is
that the partial derivatives often used to summarize economic behavior will reflect these units.
For example, if q represents the quantity of gasoline demanded by all U.S. consumers during
a given year (measured in billions of gallons) and p represents the price in dollars per gallon,
then ∂q=∂p will measure the change in demand (in billions of gallons per year) for a dollar per
gallon change in price. The numerical size of this derivative depends on how q and p are
measured. A decision to measure consumption in millions of gallons per year would multiply
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the size of the derivative by 1,000, whereas a decision to measure price in cents per gallon
would reduce it by a factor of 100.

The dependence of the numerical size of partial derivatives on the chosen units of mea-
surement poses problems for economists. Although many economic theories make predic-
tions about the sign (direction) of partial derivatives, any predictions about the numerical
magnitude of such derivatives would be contingent on how authors chose to measure their
variables. Making comparisons among studies could prove practically impossible, especially
given the wide variety of measuring systems in use around the world. For this reason, econ-
omists have chosen to adopt a different, unit-free way to measure quantitative impacts.

Elasticity—A general definition
Economists use elasticities to summarize virtually all of the quantitative impacts that are of
interest to them. Because such measures focus on the proportional effect of a change in one
variable on another, they are unit-free—the units “cancel out”when the elasticity is calculated.
Suppose, for example, that y is a function of x and, possibly, other variables. Then the elasticity
of y with respect to x (denoted as ey, x) is defined as

ey, x ¼
∆y
y
∆x
x

¼ ∆y
∆x ⋅

x
y
¼ ∂y

∂x ⋅
x
y
: (2.12)

Notice that, no matter how the variables y and x are measured, the units of measurement
cancel out because they appear in both a numerator and a denominator. Notice also that,
because y and x are positive in most economic situations, the elasticity ey, x and the partial
derivative ∂y=∂x will have the same sign. Hence, theoretical predictions about the direction
of certain derivatives will also apply to their related elasticities.

Specific applications of the elasticity concept will be encountered throughout this book.
These include ones with which you should be familiar, such as the market price elasticity of
demand or supply. But many new concepts that can be expressed most clearly in elasticity
terms will also be introduced.

EXAMPLE 2.2 Elasticity and Functional Form

The definition in Equation 2.12 makes clear that elasticity should be evaluated at a specific
point on a function. In general the value of this parameter would be expected to vary across
different ranges of the function. This observation is most clearly shown in the case where y is a
linear function of x of the form

y ¼ a þ bx þ other terms:

In this case,

ey, x ¼ ∂y
∂x ⋅

x
y
¼ b ⋅

x
y
¼ b ⋅

x
a þ bx þ…

, (2.13)

which makes clear that ey, x is not constant. Hence, for linear functions it is especially impor-
tant to note the point at which elasticity is to be computed.

If the functional relationship between y and x is of the exponential form

y ¼ axb

then the elasticity is a constant, independent of where it is measured:

ey, x ¼ ∂y
∂x ⋅

x
y
¼ abxb�1 ⋅

x
axb ¼ b:
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A logarithmic transformation of this equation also provides a very convenient alternative
definition of elasticity. Because

ln y ¼ ln a þ b ln x,

we have

ey, x ¼ b ¼ ∂ ln y
∂ ln x

: (2.14)

Hence, elasticities can be calculated through “logarithmic differentiation.” As we shall see,
this is frequently the easiest way to proceed in making such calculations.

QUERY: Are there any functional forms in addition to the exponential that have a constant
elasticity, at least over some range?

Second-order partial derivatives
The partial derivative of a partial derivative is directly analogous to the second derivative of a
function of one variable and is called a second-order partial derivative. This may be written as

∂ð∂f =∂xiÞ
∂xj

or more simply as

∂2f
∂xj ∂xi

¼ fij : (2.15)

For the examples above:

1. ∂2f
∂x1∂x1

¼ f11¼ 2a

f12 ¼ b

f21 ¼ b

f22 ¼ 2c:

2. f11¼ a2eax1þbx2

f12¼ abeax1þbx2

f21¼ abeax1þbx2

f22¼ b2eax1þbx2

3. f11¼
�a
x2
1

f12¼ 0

f21¼ 0

f22¼
�b
x2
2
:
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Young’s theorem
These examples illustrate the mathematical result that, under quite general conditions, the
order in which partial differentiation is conducted to evaluate second-order partial derivatives
does not matter. That is,

fij ¼ fji (2.16)

for any pair of variables xi, xj . This result is sometimes called “Young’s theorem.” For an
intuitive explanation of the theorem, we can return to our mountain-climbing analogy. In
this example, the theorem states that the gain in elevation a hiker experiences depends on
the directions and distances traveled, but not on the order in which these occur. That is, the
gain in altitude is independent of the actual path taken as long as the hiker proceeds from
one set of map coordinates to another. He or she may, for example, go one mile north, then
one mile east or proceed in the opposite order by first going one mile east, then one mile
north. In either case, the gain in elevation is the same since in both cases the hiker is moving
from one specific place to another. In later chapters we will make good use of this result
because it provides a very convenient way of showing some of the predictions that economic
models make about behavior.2

Uses of second-order partials
Second-order partial derivatives will play an important role in many of the economic theories
that are developed throughout this book. Probably the most important examples relate to the
“own” second-order partial, fii . This function shows how the marginal influence of xi on y
ði:e:, ∂y=∂xiÞ changes as the value of xi increases. A negative value for fii is the mathematical
way of indicating the economic idea of diminishing marginal effectiveness. Similarly, the
cross-partial fij indicates how the marginal effectiveness of xi changes as xj increases. The sign
of this effect could be either positive or negative. Young’s theorem indicates that, in general,
such cross-effects are symmetric. More generally, the second-order partial derivatives of a
function provide information about the curvature of the function. Later in this chapter we
will see how such information plays an important role in determining whether various
second-order conditions for a maximum are satisfied.

MAXIMIZATION OF FUNCTIONS OF SEVERAL VARIABLES

Using partial derivatives, we can now discuss how to find the maximum value for a function of
several variables. To understand the mathematics used in solving this problem, an analogy to
the one-variable case is helpful. In this one-variable case, we can picture an agent varying x by
a small amount, dx, and observing the change in y, dy. This change is given by

dy ¼ f 0ðxÞdx: (2.17)

The identity in Equation 2.17 records the fact that the change in y is equal to the change in
x times the slope of the function. This formula is equivalent to the point-slope formula used
for linear equations in basic algebra. As before, the necessary condition for a maximum is
that dy ¼ 0 for small changes in x around the optimal point. Otherwise, y could be increased
by suitable changes in x. But because dx does not necessarily equal 0 in Equation 2.17,
dy ¼ 0 must imply that at the desired point, f 0ðxÞ ¼ 0. This is another way of obtaining the
first-order condition for a maximum that we already derived.

2Young’s theorem implies that the matrix of the second-order partial derivatives of a function is symmetric. This symmetry
offers a number of economic insights. For a brief introduction to the matrix concepts used in economics, see the Extensions
to this chapter.

28 Part 1 Introduction



Using this analogy, let’s look at the decisions made by an economic agent who must
choose the levels of several variables. Suppose that this agent wishes to find a set of x’s that
will maximize the value of y ¼ f ðx1, x2,…, xnÞ. The agent might consider changing only one
of the x’s, say x1, while holding all the others constant. The change in y (that is, dy) that
would result from this change in x1 is given by

dy ¼ ∂f
∂x1

dx1 ¼ f1dx1:

This says that the change in y is equal to the change in x1 times the slope measured in the x1
direction. Using the mountain analogy again, the gain in altitude a climber heading north
would achieve is given by the distance northward traveled times the slope of the mountain
measured in a northward direction.

Total differential
If all the x’s are varied by a small amount, the total effect on y will be the sum of effects such as
that shown above. Therefore the total change in y is defined to be

dy ¼ ∂f
∂x1

dx1 þ
∂f
∂x2

dx2 þ…þ ∂f
∂xn

dxn

¼ f1dx1 þ f2dx2 þ…þ fndxn: (2.18)

This expression is called the total differential of f and is directly analogous to the expression
for the single-variable case given in Equation 2.17. The equation is intuitively sensible: The
total change in y is the sum of changes brought about by varying each of the x’s.3

First-order condition for a maximum
A necessary condition for a maximum (or a minimum) of the function f ðx1, x2,…, xnÞ is that
dy ¼ 0 for any combination of small changes in the x’s. The only way this can happen is if, at
the point being considered,

f1 ¼ f2 ¼ … ¼ fn ¼ 0: (2.19)

A point where Equations 2.19 hold is called a critical point. Equations 2.19 are the
necessary conditions for a local maximum. To see this intuitively, note that if one of the
partials (say, fi) were greater (or less) than 0, then y could be increased by increasing (or
decreasing) xi. An economic agent then could find this maximal point by finding the spot
where y does not respond to very small movements in any of the x’s. This is an extremely
important result for economic analysis. It says that any activity (that is, the x’s) should be
pushed to the point where its “marginal” contribution to the objective (that is, y) is 0. To
stop short of that point would fail to maximize y.

3The total differential in Equation 2.18 can be used to derive the chain rule as it applies to functions of several variables.
Suppose that y ¼ f ðx1, x2Þ and that x1 ¼ gðzÞ and x2 ¼ hðzÞ. If all of these functions are differentiable, then it is possible to
calculate the effects of a change in z on y. The total differential of y is

dy ¼ f1dx1 þ f2dx2:

Dividing this equation by dz gives

dy
dz

¼ f1
dx1
dz

þ f2
dx2
dz

¼ f1
dg
dz

þ f2
dh
dz

:

Hence, calculating the effect of z on y requires calculating how z affects both of the determinants of y (that is, x1 and x2). If
y depends on more than two variables, an analogous result holds. This result acts as a reminder to be rather careful to
include all possible effects when calculating derivatives of functions of several variables.
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EXAMPLE 2.3 Finding a Maximum

Suppose that y is a function of x1 and x2 given by

y ¼ �ðx1 � 1Þ2 � ðx2 � 2Þ2 þ 10 (2.20)

or

y ¼ �x2
1 þ 2x1 � x2

2 þ 4x2 þ 5:

For example, y might represent an individual’s health (measured on a scale of 0 to 10),
and x1 and x2 might be daily dosages of two health-enhancing drugs. We wish to find values
for x1 and x2 that make y as large as possible. Taking the partial derivatives of y with respect
to x1 and x2 and applying the necessary conditions given by Equations 2.19 yields

∂y
∂x1

¼ �2x1 þ 2 ¼ 0,

∂y
∂x2

¼ �2x2 þ 4 ¼ 0
(2.21)

or

x�1 ¼ 1,
x�2 ¼ 2:

The function is therefore at a critical point when x1 ¼ 1, x2 ¼ 2. At that point, y ¼ 10 is the
best health status possible. A bit of experimentation provides convincing evidence that this is
the greatest value y can have. For example, if x1 ¼ x2 ¼ 0, then y ¼ 5, or if x1 ¼ x2 ¼ 1,
then y ¼ 9. Values of x1 and x2 larger than 1 and 2, respectively, reduce y because the
negative quadratic terms in Equation 2.20 become large. Consequently, the point found by
applying the necessary conditions is in fact a local (and global) maximum.4

QUERY: Suppose y took on a fixed value (say, 5). What would the relationship implied
between x1 and x2 look like? How about for y ¼ 7? Or y ¼ 10? (These graphs are contour
lines of the function and will be examined in more detail in several later chapters. See also
Problem 2.1.)

Second-order conditions
Again, however, the conditions of Equations 2.19 are not sufficient to ensure a maximum.
This can be illustrated by returning to an already overworked analogy: All hilltops are
(more or less) flat, but not every flat place is a hilltop. A second-order condition similar to
Equation 2.6 is needed to ensure that the point found by applying Equations 2.19 is a local
maximum. Intuitively, for a local maximum, y should be decreasing for any small changes in
the x’s away from the critical point. As in the single-variable case, this necessarily involves
looking at the second-order partial derivatives of the function f . These second-order partials
must obey certain restrictions (analogous to the restriction that was derived in the single-
variable case) if the critical point found by applying Equations 2.19 is to be a local maximum.
Later in this chapter we will look at these restrictions.

4More formally, the point x1 ¼ 1, x2 ¼ 2 is a global maximum because the function described by Equation 2.20 is concave
(see our discussion later in this chapter).

30 Part 1 Introduction



IMPLICIT FUNCTIONS

Although mathematical equations are often written with a “dependent” variable (y) as a func-
tion of one or more independent variables (x), this is not the only way to write such a rela-
tionship. As a trivial example, the equation

y ¼ mx þ b (2.22)

can also be written as

y �mx � b ¼ 0 (2.23)

or, even more generally, as

f ðx, y,m, bÞ ¼ 0, (2.24)

where this functional notation indicates a relationship between x and y that also depends on
the slope (m) and intercept (b) parameters of the function, which do not change. Functions
written in these forms are sometimes called implicit functions because the relationships
between the variables and parameters are implicitly present in the equation rather than being
explicitly calculated as, say, y as a function of x and the parameters m and b.

Often it is a simple matter to translate from implicit functions to explicit ones. For
example, the implicit function

x þ 2y � 4 ¼ 0 (2.25)

can easily be “solved” for x as

x ¼ �2y þ 4 (2.26)

or for y as

y ¼ �x
2

þ 2: (2.27)

Derivatives from implicit functions
In many circumstances it is helpful to compute derivatives directly from implicit functions
without solving for one of the variables directly. For example, the implicit function f ðx, yÞ ¼ 0
has a total differential of 0 ¼ fxdx þ fydy, so

dy
dx

¼ � fx
fy

: (2.28)

Hence, the implicit derivative dy=dx can be found as the negative of the ratio of the partial
derivatives of the implicit function, providing fy 6¼ 0.

EXAMPLE 2.4 A Production Possibility Frontier—Again

In Example 1.3 we examined a production possibility frontier for two goods of the form

x2 þ 0:25y2 ¼ 200 (2.29)

or, written implicitly,

f ðx, yÞ ¼ x2 þ 0:25y2 � 200 ¼ 0: (2.30)

Hence,

(continued)
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EXAMPLE 2.4 CONTINUED

fx ¼ 2x,
fy ¼ 0:5y,

and, by Equation 2.28, the opportunity cost trade-off between x and y is

dy
dx

¼ �fx
fy

¼ �2x
0:5y

¼ �4x
y

, (2.31)

which is precisely the result we obtained earlier, with considerably less work.

QUERY: Why does the trade-off between x and y here depend only on the ratio of x to y
and not on the size of the labor force as reflected by the 200 constant?

Implicit function theorem
It may not always be possible to solve implicit functions of the form gðx, yÞ ¼ 0 for unique
explicit functions of the form y ¼ f ðxÞ. Mathematicians have analyzed the conditions under
which a given implicit function can be solved explicitly with one variable being a function of
other variables and various parameters. Although we will not investigate these conditions
here, they involve requirements on the various partial derivatives of the function that are
sufficient to ensure that there is indeed a unique relationship between the dependent and
independent variables.5 In many economic applications, these derivative conditions are
precisely those required to ensure that the second-order conditions for a maximum (or a
minimum) hold. Hence, in these cases, we will assert that the implicit function theorem holds
and that it is therefore possible to solve explicitly for trade-offs among the variables involved.

THE ENVELOPE THEOREM

One major application of the implicit function theorem, which will be used many times in this
book, is called the envelope theorem; it concerns how the optimal value for a particular function
changeswhen a parameter of the function changes. Becausemany of the economic problemswe
will be studying concern the effects of changing a parameter (for example, the effects that
changing the market price of a commodity will have on an individual’s purchases), this is a type
of calculation we will frequently make. The envelope theorem often provides a nice shortcut.

A specific example
Perhaps the easiest way to understand the envelope theorem is through an example. Suppose
y is a function of a single variable ðxÞ and a parameter ðaÞ given by

y ¼ �x2 þ ax: (2.32)

For different values of the parameter a, this function represents a family of inverted parab-
olas. If a is assigned a specific value, Equation 2.32 is a function of x only, and the value of x that
maximizes y can be calculated. For example, if a ¼ 1, then x� ¼ 1

2 and, for these values of x
and a, y ¼ 1

4 (itsmaximal value). Similarly, if a ¼ 2, then x� ¼ 1 and y� ¼ 1.Hence, an increase

5For a detailed discussion of the implicit function theorem in various contexts, see Carl P. Simon and Lawrence Blume,
Mathematics for Economists (New York: W. W. Norton, 1994), chap. 15.
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of 1 in the value of the parameter a has increased the maximum value of y by 3
4. In Table 2.1,

integral values of a between 0 and 6 are used to calculate the optimal values for x and the
associated values of the objective, y. Notice that as a increases, the maximal value for y also
increases. This is also illustrated in Figure 2.3, which shows that the relationship between a and
y� is quadratic. Nowwe wish to calculate explicitly how y� changes as the parameter a changes.

TABLE 2.1 Optimal Values of y and x for Alternative Values of a in y ¼�x2 þ ax

Value of a Value of x� Value of y�
0 0 0

1 1
2

1
4

2 1 1

3 3
2

9
4

4 2 4

5 5
2

25
4

6 3 9

FIGURE 2.3 Illustration of the Envelope Theorem

The envelope theorem states that the slope of the relationship between y� (the maximum value of y )
and the parameter a can be found by calculating the slope of the auxiliary relationship found by
substituting the respective optimal values for x into the objective function and calculating ∂y=∂a.

a

y*

0 631 52 4

1

2

3

4

5

6

7

8

9

10
y* = f(a)
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A direct, time-consuming approach
The envelope theorem states that there are two equivalent ways we can make this calculation.
First, we can calculate the slope of the function in Figure 2.3 directly. To do so, we must solve
Equation 2.32 for the optimal value of x for any value of a:

dy
dx

¼ �2x þ a ¼ 0;

hence,

x� ¼ a
2
:

Substituting this value of x� in Equation 2.32 gives

y�¼ �ðx�Þ2 þ aðx�Þ

¼ � a
2

� �2
þ a

a
2

� �
¼ � a2

4
þ a2

2
¼ a2

4
,

and this is precisely the relationship shown in Figure 2.3. From the previous equation, it is
easy to see that

dy�
da

¼ 2a
4

¼ a
2

(2.33)

and, for example, at a ¼ 2, dy�=da ¼ 1. That is, near a ¼ 2 the marginal impact of increasing
a is to increase y� by the same amount. Near a ¼ 6, any small increase in a will increase y�
by three times this change. Table 2.1 illustrates this result.

The envelope shortcut
Arriving at this conclusion was a bit complicated. We had to find the optimal value of x for
each value of a and then substitute this value for x� into the equation for y. In more general
cases this may be quite burdensome since it requires repeatedly maximizing the objective
function. The envelope theorem, providing an alternative approach, states that for small
changes in a, dy�=da can be computed by holding x constant at its optimal value and simply
calculating ∂y=∂a from the objective function directly.

Proceeding in this way gives

∂y
∂a

¼ x, (2.34)

and at x� we have

∂y�
∂a

¼ x� ¼ a
2
: (2.35)

This is precisely the result obtained earlier. The reason that the two approaches yield identical
results is illustrated in Figure 2.3. The tangents shown in the figure report values of y for a fixed
x�. The tangents’ slopes are ∂y=∂a. Clearly, at y� this slope gives the value we seek.

This result is quite general, and we will use it at several places in this book to simplify
our analysis. To summarize, the envelope theorem states that the change in the optimal
value of a function with respect to a parameter of that function can be found by partially
differentiating the objective function while holding x constant at its optimal value. That is,
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dy�
da

¼ ∂y
∂a

x ¼ x� að Þ� �
, (2.36)

where the notation provides a reminder that ∂y=∂a must be computed at that value of x that
is optimal for the specific value of the parameter a being examined.

Many-variable case
An analogous envelope theorem holds for the case where y is a function of several variables.
Suppose that y depends on a set of x’s ðx1,…, xnÞ and on a particular parameter of interest, say, a:

y ¼ f ðx1,…, xn , aÞ: (2.37)

Finding an optimal value for y would consist of solving n first-order equations of the form
∂y
∂xi

¼ 0 i ¼ 1,…,nð Þ, (2.38)

and a solution to this process would yield optimal values for these x’s x�1 , x�2 ,…, x�n
� �

that
would implicitly depend on the parameter a. Assuming the second-order conditions are
met, the implicit function theorem would apply in this case and ensure that we could solve
each x�i as a function of the parameter a:

x�1 ¼ x�1 ðaÞ,
x�2 ¼ x�2 ðaÞ,

..

.

x�n ¼ x�n ðaÞ:

(2.39)

Substituting these functions into our original objective (Equation 2.37) yields an expression
in which the optimal value of y (say, y�) depends on the parameter a both directly and
indirectly through the effect of a on the x�’s:

y� ¼ f ½x�1 ðaÞ, x�2 ðaÞ,…, x�n ðaÞ, a�:
Totally differentiating this expression with respect to a yields

dy�
da

¼ ∂f
∂x1

⋅
dx1
da

þ ∂f
∂x2

⋅
dx2
da

þ…þ ∂f
∂xn

⋅
dxn
da

þ ∂f
∂a

: (2.40)

But, because of the first-order conditions all of these terms except the last are equal to 0 if
the x’s are at their optimal values. Hence, again we have the envelope result:

dy�
da

¼ ∂f
∂a

, (2.41)

where this derivative is to be evaluated at the optimal values for the x’s.

EXAMPLE 2.5 The Envelope Theorem: Health Status Revisited

Earlier, in Example 2.3, we examined the maximum values for the health status function

y ¼ �ðx1 � 1Þ2 � ðx2 � 2Þ2 þ 10 (2.42)

and found that

x�1 ¼ 1,
x�2 ¼ 2,

(2.43)

(continued)
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EXAMPLE 2.5 CONTINUED

and

y� ¼ 10:

Suppose now we use the arbitrary parameter a instead of the constant 10 in Equation 2.42.
Here a might represent a measure of the best possible health for a person, but this value
would obviously vary from person to person. Hence,

y ¼ f ðx1, x2,aÞ ¼ �ðx1 � 1Þ2 � ðx2 � 2Þ2 þ a: (2.44)

In this case the optimal values for x1 and x2 do not depend on a (they are always x�1 ¼ 1,
x�2 ¼ 2), so at those optimal values we have

y� ¼ a (2.45)

and
dy�
da

¼ 1: (2.46)

People with “naturally better health” will have concomitantly higher values for y�, providing
they choose x1 and x2 optimally. But this is precisely what the envelope theorem indicates,
because

dy�
da

¼ ∂f
∂a

¼ 1 (2.47)

from Equation 2.44. Increasing the parameter a simply increases the optimal value for y� by
an identical amount (again, assuming the dosages of x1 and x2 are correctly chosen).

QUERY: Suppose we focused instead on the optimal dosage for x1 in Equation 2.42—that is,
suppose we used a general parameter, say b, instead of 1. Explain in words and using
mathematics why ∂y�=∂b would necessarily be 0 in this case.

CONSTRAINED MAXIMIZATION

So far we have focused our attention on finding the maximum value of a function without
restricting the choices of the x’s available. In most economic problems, however, not all
values for the x’s are feasible. In many situations, for example, it is required that all the x’s be
positive. This would be true for the problem faced by the manager choosing output to
maximize profits; a negative output would have no meaning. In other instances the x’s may
be constrained by economic considerations. For example, in choosing the items to consume,
an individual is not able to choose any quantities desired. Rather, choices are constrained by
the amount of purchasing power available; that is, by this person’s budget constraint. Such
constraints may lower the maximum value for the function being maximized. Because we are
not able to choose freely among all the x’s, y may not be as large as it could be. The
constraints would be “nonbinding” if we could obtain the same level of y with or without
imposing the constraint.

Lagrangian multiplier method
One method for solving constrained maximization problems is the Lagrangian multiplier
method, which involves a clever mathematical trick that also turns out to have a useful
economic interpretation. The rationale of this method is quite simple, although no rigorous
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presentation will be attempted here.6 In a prior section, the necessary conditions for a local
maximum were discussed. We showed that at the optimal point all the partial derivatives of f
must be 0. There are therefore n equations ( fi ¼ 0 for i ¼ 1,…,n) in n unknowns (the x’s).
Generally, these equations can be solved for the optimal x’s. When the x’s are constrained,
however, there is at least one additional equation (the constraint) but no additional variables.
The set of equations therefore is overdetermined. The Lagrangian technique introduces an
additional variable (the Lagrangian multiplier), which not only helps to solve the problem at
hand (because there are now n þ 1 equations in n þ 1 unknowns), but also has an interpre-
tation that is useful in a variety of economic circumstances.

The formal problem
More specifically, suppose that we wish to find the values of x1, x2,…, xn that maximize

y ¼ f ðx1, x2,…, xnÞ, (2.48)

subject to a constraint that permits only certain values of the x’s to be used. A general way
of writing that constraint is

gðx1, x2,…, xnÞ ¼ 0, (2.49)

where the function7 g represents the relationship that must hold among all the x’s.

First-order conditions
The Lagrangian multiplier method starts with setting up the expression

ℒ ¼ f ðx1, x2,…, xnÞ þ λgðx1, x2,…, xnÞ, (2.50)

where λ is an additional variable called the Lagrangian multiplier. Later we will interpret this
new variable. First, however, notice that when the constraint holds, ℒ and f have the same
value [because gðx1, x2,…, xnÞ ¼ 0]. Consequently, if we restrict our attention only to
values of the x’s that satisfy the constraint, finding the constrained maximum value of f is
equivalent to finding a critical value of ℒ. Let us proceed then to do so, treating λ also as a
variable (in addition to the x’s). From Equation 2.50, the conditions for a critical point are:

∂ℒ
∂x1

¼ f1 þ λg1 ¼ 0,

∂ℒ
∂x2

¼ f2 þ λg2 ¼ 0,

..

.

∂ℒ
∂xn

¼ fn þ λgn ¼ 0,

∂ℒ
∂λ

¼ gðx1, x2,…, xnÞ ¼ 0:

(2.51)

Equations 2.51 are then the conditions for a critical point for the function ℒ. Notice that
there are n þ 1 equations (one for each x and a final one for λ) in n þ 1 unknowns. The
equations can generally be solved for x1, x2,…, xn, and λ. Such a solution will have two

6For a detailed presentation, see A. K. Dixit, Optimization in Economic Theory, 2nd ed. (Oxford: Oxford University Press,
1990), chap. 2.
7As we pointed out earlier, any function of x1, x2,…, xn can be written in this implicit way. For example, the constraint
x1 þ x2 ¼ 10 could be written 10� x1 � x2 ¼ 0. In later chapters, we will usually follow this procedure in dealing with
constraints. Often the constraints we examine will be linear.
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properties: (1) the x’s will obey the constraint because the last equation in 2.51 imposes that
condition; and (2) among all those values of x’s that satisfy the constraint, those that also
solve Equations 2.51 will make ℒ (and hence f ) as large as possible (assuming second-order
conditions are met). The Lagrangian multiplier method therefore provides a way to find a
solution to the constrained maximization problem we posed at the outset.8

The solution to Equations 2.51 will usually differ from that in the unconstrained case (see
Equations 2.19). Rather than proceeding to the point where the marginal contribution of
each x is 0, Equations 2.51 require us to stop short because of the constraint. Only if the
constraint were ineffective (in which case, as we show below, λ would be 0) would the con-
strained and unconstrained equations (and their respective solutions) agree. These revised
marginal conditions have economic interpretations in many different situations.

Interpretation of the Lagrangian multiplier
So far we have used the Lagrangian multiplier (λ) only as a mathematical “trick” to arrive at
the solution we wanted. In fact, that variable also has an important economic interpretation,
which will be central to our analysis at many points in this book. To develop this interpreta-
tion, rewrite the first n equations of 2.51 as

f1
�g1

¼ f2
�g2

¼ … ¼ fn
�gn

¼ λ: (2.52)

In other words, at the maximum point, the ratio of fi to gi is the same for every xi . The
numerators in Equations 2.52 are the marginal contributions of each x to the function f .
They show the marginal benefit that one more unit of xi will have for the function that is
being maximized (that is, for f ).

A complete interpretation of the denominators in Equations 2.52 is probably best left until
we encounter these ratios in actual economic applications. There we will see that these usually
have a “marginal cost” interpretation. That is, they reflect the added burden on the constraint
of using slightly more xi. As a simple illustration, suppose the constraint required that total
spending on x1 and x2 be given by a fixed dollar amount, F . Hence, the constraint would
be p1x1 þ p2x2 ¼ F (where pi is the per unit cost of xi ). Using our present terminology, this
constraint would be written in implicit form as

gðx1, x2Þ ¼ F � p1x1 � p2x2 ¼ 0: (2.53)

In this situation, then,

�gi ¼ pi (2.54)

and the derivative�gi does indeed reflect the per unit, marginal cost of using xi. Practically all
of the optimization problems we will encounter in later chapters have a similar interpretation
for the denominators in Equations 2.52.

Lagrangian multiplier as a benefit-cost ratio
Now we can give Equations 2.52 an intuitive interpretation. They indicate that, at the
optimal choices for the x’s, the ratio of the marginal benefit of increasing xi to the marginal
cost of increasing xi should be the same for every x. To see that this is an obvious condition

8Strictly speaking, these are the necessary conditions for an interior local maximum. In some economic problems, it is
necessary to amend these conditions (in fairly obvious ways) to take account of the possibility that some of the x’s may be
on the boundary of the region of permissible x’s. For example, if all of the x’s are required to be nonnegative, it may be that
the conditions of Equations 2.51 will not hold exactly, because these may require negative x’s. We look at this situation
later in this chapter.
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for a maximum, suppose that it were not true: Suppose that the “benefit-cost ratio” were
higher for x1 than for x2. In this case, slightly more x1 should be used in order to achieve a
maximum. Consider using more x1 but giving up just enough x2 to keep g (the constraint)
constant. Hence, the marginal cost of the additional x1 used would equal the cost saved by
using less x2. But because the benefit-cost ratio (the amount of benefit per unit of cost) is
greater for x1 than for x2, the additional benefits from using more x1 would exceed the loss in
benefits from using less x2. The use of more x1 and appropriately less x2 would then increase y
because x1 provides more “bang for your buck.” Only if the marginal benefit–marginal cost
ratios are equal for all the x’s will there be a local maximum, one in which no small changes in
the x’s can increase the objective. Concrete applications of this basic principle are developed
in many places in this book. The result is fundamental for the microeconomic theory of
optimizing behavior.

The Lagrangian multiplier (λ) can also be interpreted in light of this discussion. λ is the
common benefit-cost ratio for all the x’s. That is,

λ ¼ marginal benefit of xi
marginal cost of xi

(2.55)

for every xi . If the constraint were relaxed slightly, it would not matter exactly which x is
changed (indeed, all the x’s could be altered), because, at the margin, each promises the
same ratio of benefits to costs. The Lagrangian multiplier then provides a measure of how
such an overall relaxation of the constraint would affect the value of y. In essence, λ assigns a
“shadow price” to the constraint. A high λ indicates that y could be increased substantially
by relaxing the constraint, because each x has a high benefit-cost ratio. A low value of λ, on
the other hand, indicates that there is not much to be gained by relaxing the constraint. If
the constraint is not binding at all, λ will have a value of 0, thereby indicating that the
constraint is not restricting the value of y. In such a case, finding the maximum value of y
subject to the constraint would be identical to finding an unconstrained maximum. The
shadow price of the constraint is 0. This interpretation of λ can also be shown using the
envelope theorem as described later in this chapter.9

Duality
This discussion shows that there is a clear relationship between the problem of maximizing a
function subject to constraints and the problem of assigning values to constraints. This reflects
what is called the mathematical principle of “duality”: Any constrained maximization problem
has an associated dual problem in constrained minimization that focuses attention on the
constraints in the original (primal) problem. For example, to jump a bit ahead of our story,
economists assume that individuals maximize their utility, subject to a budget constraint. This
is the consumer’s primal problem. The dual problem for the consumer is to minimize the
expenditure needed to achieve a given level of utility. Or, a firm’s primal problem may be to
minimize the total cost of inputs used to produce a given level of output, whereas the dual
problem is to maximize output for a given cost of inputs purchased. Many similar examples will
be developed in later chapters. Each illustrates that there are always two ways to look at any
constrained optimization problem. Sometimes taking a frontal attack by analyzing the primal
problem can lead to greater insights. In other instances, the “back door” approach of examining
the dual problem may be more instructive. Whichever route is taken, the results will generally,
though not always, be identical, so the choice made will mainly be a matter of convenience.

9The discussion in the text concerns problems involving a single constraint. In general, one can handle m constraints
ðm < nÞ by simply introducing m new variables (Lagrangian multipliers) and proceeding in an analogous way to that
discussed above.
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EXAMPLE 2.6 Constrained Maximization: Health Status Yet Again

Let’s return once more to our (perhaps tedious) health maximization problem. As before, the
individual’s goal is to maximize

y ¼ �x2
1 þ 2x1 � x2

2 þ 4x2 þ 5,

but now assume that choices of x1 and x2 are constrained by the fact that he or she can only
tolerate one drug dose per day. That is,

x1 þ x2 ¼ 1 (2.56)

or

1� x1 � x2 ¼ 0:

Notice that the original optimal point ðx1 ¼ 1, x2 ¼ 2Þ is no longer attainable because of the
constraint on possible dosages: other values must be found. To do so, we first set up the
Lagrangian expression:

ℒ ¼ �x2
1 þ 2x1 � x2

2 þ 4x2 þ 5þ λð1� x1 � x2Þ: (2.57)

Differentiation of ℒ with respect to x1, x2, and λ yields the following necessary condition for
a constrained maximum:

∂ℒ
∂x1

¼ �2x1 þ 2� λ ¼ 0,

∂ℒ
∂x2

¼ �2x2 þ 4� λ ¼ 0,

∂ℒ
∂λ

¼ 1� x1 � x2 ¼ 0:

(2.58)

These equations must now be solved for the optimal values of x1, x2, and λ. Using the first
and second equations gives

�2x1 þ 2 ¼ λ ¼ �2x2 þ 4

or

x1 ¼ x2 � 1: (2.59)

Substitution of this value for x1 into the constraint yields the solution:

x2 ¼ 1,
x1 ¼ 0: (2.60)

In words, if this person can tolerate only one dose of drugs, he or she should opt for taking
only the second drug. By using either of the first two equations, it is easy to complete our
solution by showing that

λ ¼ 2: (2.61)

This, then, is the solution to the constrained maximum problem. If x1 ¼ 0, x2 ¼ 1, then y
takes on the value 8. Constraining the values of x1 and x2 to sum to 1 has reduced the
maximum value of health status, y, from 10 to 8.

QUERY: Suppose this individual could tolerate two doses per day. Would you expect y to
increase? Would increases in tolerance beyond three doses per day have any effect on y?
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EXAMPLE 2.7 Optimal Fences and Constrained Maximization

Suppose a farmer had a certain length of fence, P , and wished to enclose the largest possible
rectangular area. What shape area should the farmer choose? This is clearly a problem in
constrained maximization. To solve it, let x be the length of one side of the rectangle and y
be the length of the other side. The problem then is to choose x and y so as tomaximize the area
of the field (given by A ¼ x ⋅ y), subject to the constraint that the perimeter is fixed at
P ¼ 2x þ 2y.

Setting up the Lagrangian expression gives

ℒ ¼ x ⋅ y þ λðP � 2x � 2yÞ, (2.62)

where λ is an unknown Lagrangian multiplier. The first-order conditions for a maximum are

∂ℒ
∂x

¼ y � 2λ ¼ 0,

∂ℒ
∂y

¼ x � 2λ ¼ 0,

∂ℒ
∂λ

¼ P � 2x � 2y ¼ 0:

(2.63)

The three equations in 2.63 must be solved simultaneously for x, y, and λ. The first two
equations say that y=2 ¼ x=2 ¼ λ, showing that x must be equal to y (the field should be
square). They also imply that x and y should be chosen so that the ratio of marginal benefits to
marginal cost is the same for both variables. The benefit (in terms of area) of onemore unit of x
is given by y (area is increased by 1 � y), and the marginal cost (in terms of perimeter) is 2 (the
available perimeter is reduced by 2 for each unit that the length of side x is increased). The
maximum conditions state that this ratio should be equal for each of the variables.

Since we have shown that x ¼ y, we can use the constraint to show that

x ¼ y ¼ P
4
, (2.64)

and, because y ¼ 2λ,

λ ¼ P
8
: (2.65)

Interpretation of the Lagrangian Multiplier. If the farmer were interested in knowing how
much more field could be fenced by adding an extra yard of fence, the Lagrangian multiplier
suggests that he or she could find out by dividing the present perimeter by 8. Some specific
numbersmightmake this clear. Suppose that the field currently has a perimeter of 400 yards. If
the farmer has planned “optimally,” the fieldwill be a square with 100 yards ð¼ P=4Þ on a side.
The enclosed area will be 10,000 square yards. Suppose now that the perimeter (that is, the
available fence) were enlarged by one yard. Equation 2.65 would then “predict” that the total
area would be increased by approximately 50 ð¼ P=8Þ square yards. That this is indeed the
case can be shown as follows: Because the perimeter is now 401 yards, each side of the square
will be 401=4 yards. The total area of the field is therefore ð401=4Þ2, which, according to the
author’s calculator, works out to be 10,050.06 square yards. Hence, the “prediction” of a 50-
square-yard increase that is provided by the Lagrangian multiplier proves to be remarkably
close. As in all constrained maximization problems, here the Lagrangian multiplier provides
useful information about the implicit value of the constraint.

(continued)
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EXAMPLE 2.7 CONTINUED

Duality. The dual of this constrained maximization problem is that for a given area of a
rectangular field, the farmer wishes to minimize the fence required to surround it. Mathe-
matically, the problem is to minimize

P ¼ 2x þ 2y, (2.66)

subject to the constraint

A ¼ x ⋅ y: (2.67)

Setting up the Lagrangian expression

ℒD ¼ 2x þ 2y þ λDðA � x ⋅ yÞ (2.68)

(where the D denotes the dual concept) yields the following first-order conditions for a
minimum:

∂ℒD

∂x
¼ 2� λD ⋅ y ¼ 0,

∂ℒD

∂y
¼ 2� λD ⋅ x ¼ 0,

∂ℒD

∂λD
¼ A � x ⋅ y ¼ 0:

(2.69)

Solving these equations as before yields the result

x ¼ y ¼
ffiffiffiffi
A

p
: (2.70)

Again, the field should be square if the length of fence is to be minimized. The value of the
Lagrangian multiplier in this problem is

λD ¼ 2
y
¼ 2

x
¼ 2ffiffiffiffi

A
p : (2.71)

As before, this Lagrangian multiplier indicates the relationship between the objective
(minimizing fence) and the constraint (needing to surround the field). If the field were 10,000
square yards, as we saw before, 400 yards of fence would be needed. Increasing the field by one
square yardwould require about .02more yards of fence (¼ 2=

ffiffiffiffi
A

p ¼ 2=100). The readermay
wish to fire up his or her calculator to show this is indeed the case—a fence 100.005 yards on
each side will exactly enclose 10,001 square yards.Here, as inmost duality problems, the value
of the Lagrangian in the dual is the reciprocal of the value for the Lagrangian in the primal
problem. Both provide the same information, although in a somewhat different form.

QUERY: An implicit constraint here is that the farmer’s field be rectangular. If this constraint
were not imposed, what shape field would enclose maximal area? How would you prove that?

ENVELOPE THEOREM IN CONSTRAINED
MAXIMIZATION PROBLEMS

The envelope theorem, which we discussed previously in connection with unconstrainedmaxi-
mization problems, also has important applications in constrained maximization problems.
Here we will provide only a brief presentation of the theorem. In later chapters we will look at a
number of applications.
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Suppose we seek the maximum value of

y ¼ f ðx1,…, xn; aÞ, (2.72)

subject to the constraint

gðx1,…, xn; aÞ ¼ 0, (2.73)

where we have made explicit the dependence of the functions f and g on some parameter a.
As we have shown, one way to solve this problem is to set up the Lagrangian expression

ℒ ¼ f ðx1,…, xn ; aÞ þ λgðx1,…, xn; aÞ (2.74)

and solve the first-order conditions (see Equations 2.51) for the optimal, constrained values
x�1 ,…, x�n . Alternatively, it can be shown that

dy�
da

¼ ∂ℒ
∂a

ðx�1 ,…, x�n ; aÞ: (2.75)

That is, the change in themaximal value of y that results when the parameter a changes (and all
of the x’s are recalculated to new optimal values) can be found by partially differentiating
the Lagrangian expression (Equation 2.74) and evaluating the resultant partial derivative
at the optimal point.10 Hence, the Lagrangian expression plays the same role in applying the
envelope theorem to constrained problems as does the objective function alone in un-
constrained problems. As a simple exercise, the reader may wish to show that this result holds
for the problem of fencing a rectangular field described in Example 2.7.11

INEQUALITY CONSTRAINTS

In some economic problems the constraints need not hold exactly. For example, an indivi-
dual’s budget constraint requires that he or she spend no more than a certain amount per
period, but it is at least possible to spend less than this amount. Inequality constraints also
arise in the values permitted for some variables in economic problems. Usually, for example,
economic variables must be nonnegative (though they can take on the value of zero). In this
section we will show how the Lagrangian technique can be adapted to such circumstances.
Although we will encounter only a few problems later in the text that require this mathemat-
ics, development here will illustrate a few general principles that are quite consistent with
economic intuition.

A two-variable example
In order to avoid much cumbersome notation, we will explore inequality constraints only for
the simple case involving two choice variables. The results derived are readily generalized.
Suppose that we seek to maximize y ¼ f ðx1, x2Þ subject to three inequality constraints:

10For a more complete discussion of the envelope theorem in constrained maximization problems, see Eugene Silberberg
and Wing Suen, The Structure of Economics: A Mathematical Analysis, 3rd ed. (Boston: Irwin/McGraw-Hill, 2001),
pp. 159–61.
11For the primal problem, the perimeter P is the parameter of principal interest. By solving for the optimal values of x and y
and substituting into the expression for the area ðAÞ of the field, it is easy to show that dA=dP ¼ P=8. Differentiation of
the Lagrangian expression (Equation 2.62) yields ∂ℒ=∂P ¼ λ and, at the optimal values of x and y, dA=dP ¼
∂ℒ=∂P ¼ λ ¼ P=8. The envelope theorem in this case then offers further proof that the Lagrangian multiplier can be used
to assign an implicit value to the constraint.
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1: g x1, x2
� � 	 0;

2: x1 	 0; and
3: x2 	 0:

(2.76)

Hence, we are allowing for the possibility that the constraint we introduced before need not
hold exactly (a person need not spend all of his or her income) and for the fact that both of
the x’s must be nonnegative (as in most economic problems).

Slack variables
One way to solve this optimization problem is to introduce three new variables ða, b, and cÞ
that convert the inequality constraints in Equation 2.76 into equalities. To ensure that the
inequalities continue to hold, we will square these new variables, ensuring that the resulting
values are positive. Using this procedure, the inequality constraints become

1: g x1, x2
� �� a2 ¼ 0;

2: x1 � b2 ¼ 0; and

3: x2 � c2 ¼ 0:

(2.77)

Any solution that obeys these three equality constraints will also obey the inequality
constraints. It will also turn out that the optimal values for a, b, and c will provide several
insights into the nature of the solutions to a problem of this type.

Solution by the method of Lagrange
By converting the original problem involving inequalities into one involving equalities, we are
now in a position to use Lagrangianmethods to solve it. Because there are three constraints, we
must introduce three Lagrangian multipliers: λ1, λ2, and λ3. The full Lagrangian expression is

ℒ ¼ f ðx1, x2Þ þ λ1½gðx1, x2Þ � a2� þ λ2ðx1 � b2Þ þ λ3ðx2 � c2Þ: (2.78)

Wewish to find the values of x1, x2, a, b, c, λ1, λ2, and λ3 that constitute a critical point for
this expression. This will necessitate eight first-order conditions:

∂ℒ
∂x1

¼ f1 þ λ1g1 þ λ2 ¼ 0,

∂ℒ
∂x2

¼ f2 þ λ1g2 þ λ3 ¼ 0,

∂ℒ
∂a

¼�2aλ1 ¼ 0,

∂ℒ
∂b

¼�2bλ2 ¼ 0,

∂ℒ
∂c

¼�2cλ3 ¼ 0,

∂ℒ
∂λ1

¼ gðx1, x2Þ � a2 ¼ 0,

∂ℒ
∂λ2

¼ x1 � b2 ¼ 0,

∂ℒ
∂λ3

¼ x2 � c2 ¼ 0,

(2.79)

Inmanyways these conditions resemble thosewe derived earlier for the case of a single equality
constraint (see Equation 2.51). For example, the final three conditionsmerely repeat the three
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revised constraints. This ensures that any solution will obey these conditions. The first two
equations also resemble the optimal conditions developed earlier. If λ2 and λ3 were 0, the
conditions would in fact be identical. But the presence of the additional Lagrangianmultipliers
in the expressions shows that the customary optimality conditions may not hold exactly here.

Complementary slackness
The three equations involving the variables a, b, and c provide the most important insights
into the nature of solutions to problems involving inequality constraints. For example, the
third line in Equation 2.79 implies that, in the optimal solution, either λ1 or amust be 0.12 In
the second case ða ¼ 0Þ, the constraint gðx1, x2Þ ¼ 0 holds exactly and the calculated value of
λ1 indicates its relative importance to the objective function, f . On the other hand, if a 6¼ 0,
then λ1 ¼ 0 and this shows that the availability of some slackness in the constraint implies that
its value to the objective is 0. In the consumer context, this means that if a person does not
spend all his or her income, evenmore incomewould do nothing to raise his or her well-being.

Similar complementary slackness relationships also hold for the choice variables x1 and x2.
For example, the fourth line in Equation 2.79 requires that the optimal solution have either b
or λ2 be 0. If λ2 ¼ 0 then the optimal solution has x1 > 0, and this choice variable meets the
precise benefit-cost test that f1 þ λ1g1 ¼ 0. Alternatively, solutions where b ¼ 0 have x1 ¼ 0,
and also require that λ2 > 0. So, such solutions do not involve any use of x1 because that
variable does not meet the benefit-cost test as shown by the first line of Equation 2.79, which
implies that f1 þ λ1g1 < 0. An identical result holds for the choice variable x2.

These results, which are sometimes called Kuhn-Tucker conditions after their discoverers,
show that the solutions to optimization problems involving inequality constraints will differ
from similar problems involving equality constraints in rather simple ways. Hence, we cannot
go far wrong by working primarily with constraints involving equalities and assuming that we
can rely on intuition to state what would happen if the problems actually involved inequal-
ities. That is the general approach we will take in this book.13

SECOND-ORDER CONDITIONS

So far our discussion of optimization has focused primarily on necessary (first-order) condi-
tions for finding a maximum. That is indeed the practice we will follow throughout much of
this book because, as we shall see, most economic problems involve functions for which the
second-order conditions for a maximum are also satisfied. In this section we give a brief
analysis of the connection between second-order conditions for a maximum and the related
curvature conditions that functions must have to ensure that these hold. The economic
explanations for these curvature conditions will be discussed throughout the text.

Functions of one variable
First consider the case in which the objective, y, is a function of only a single variable, x.
That is,

y ¼ f ðxÞ: (2.80)

12We will not examine the degenerate case where both of these variables are 0.
13The situation can become much more complex when calculus cannot be relied upon to give a solution, perhaps because
some of the functions in a problem are not differentiable. For a discussion, see Avinask K. Dixit, Optimization in Economic
Theory, 2nd ed. (Oxford: Oxford University Press, 1990).
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A necessary condition for this function to attain its maximum value at some point is that
dy
dx

¼ f 0 xð Þ ¼ 0 (2.81)

at that point. To ensure that the point is indeed a maximum, we must have y decreasing for
movements away from it. We already know (by Equation 2.81) that for small changes in x,
the value of y does not change; what we need to check is whether y is increasing before that
“plateau” is reached and declining thereafter. We have already derived an expression for the
change in yðdyÞ, which is given by the total differential

dy ¼ f 0ðxÞdx: (2.82)

What we now require is that dy be decreasing for small increases in the value of x. The
differential of Equation 2.82 is given by

d dyð Þ ¼ d2y ¼ d ½ f 0ðxÞdx�
dx ⋅ dx ¼ f 00 xð Þdx ⋅ dx ¼ f 00 xð Þdx2: (2.83)

But

d2y < 0

implies that

f 00ðxÞdx2 < 0, (2.84)

and since dx2 must be positive (because anything squared is positive), we have

f 00ðxÞ < 0 (2.85)

as the required second-order condition. In words, this condition requires that the function f
have a concave shape at the critical point (contrast Figures 2.1 and 2.2). Similar curvature
conditions will be encountered throughout this section.

EXAMPLE 2.8 Profit Maximization Again

In Example 2.1 we considered the problem of finding the maximum of the function

π ¼ 1,000q � 5q2: (2.86)

The first-order condition for a maximum requires

dπ
dq

¼ 1,000� 10q ¼ 0 (2.87)

or

q� ¼ 100: (2.88)

The second derivative of the function is given by

d2π

dq2
¼ �10 < 0, (2.89)

and hence the point q� ¼ 100 obeys the sufficient conditions for a local maximum.

QUERY: Here the second derivative is negative not only at the optimal point; it is always
negative. What does that imply about the optimal point? How should the fact that the second
derivative is a constant be interpreted?

46 Part 1 Introduction



Functions of two variables
As a second case, we consider y as a function of two independent variables:

y ¼ f ðx1, x2Þ: (2.90)

A necessary condition for such a function to attain its maximum value is that its partial
derivatives, in both the x1 and the x2 directions, be 0. That is,

∂y
∂x1

¼ f1 ¼ 0,

∂y
∂x2

¼ f2 ¼ 0:
(2.91)

A point that satisfies these conditions will be a “flat” spot on the function (a point where
dy ¼ 0) and therefore will be a candidate for a maximum. To ensure that the point is a local
maximum, y must diminish for movements in any direction away from the critical point: In
pictorial terms there is only one way to leave a true mountaintop, and that is to go down.

An intuitive argument
Before describing the mathematical properties required of such a point, an intuitive approach
may be helpful. If we consider only movements in the x1 direction, the required condition is
clear: The slope in the x1 direction (that is, the partial derivative f1) must be diminishing at the
critical point. This is a direct application of our discussion of the single-variable case. It shows
that, for a maximum, the second partial derivative in the x1 direction must be negative. An
identical argument holds for movements only in the x2 direction. Hence, both own second
partial derivatives ð f11and f22Þ must be negative for a local maximum. In our mountain
analogy, if attention is confined only to north-south or east-west movements, the slope of
the mountain must be diminishing as we cross its summit—the slope must change from
positive to negative.

The particular complexity that arises in the two-variable case involves movements
through the optimal point that are not solely in the x1 or x2 directions (say, movements
from northeast to southwest). In such cases, the second-order partial derivatives do not
provide complete information about how the slope is changing near the critical point.
Conditions must also be placed on the cross-partial derivative ð f12 ¼ f21Þ to ensure that dy
is decreasing for movements through the critical point in any direction. As we shall see, those
conditions amount to requiring that the own second-order partial derivatives be sufficiently
negative so as to counterbalance any possible “perverse” cross-partial derivatives that may
exist. Intuitively, if the mountain falls away steeply enough in the north-south and east-west
directions, relatively minor failures to do so in other directions can be compensated for.

A formal analysis
We now proceed to make these points more formally. What we wish to discover are the
conditions that must be placed on the second partial derivatives of the function f to ensure
that d2y is negative for movements in any direction through the critical point. Recall first that
the total differential of the function is given by

dy ¼ f1dx1 þ f2dx2: (2.92)

The differential of that function is given by

d2y ¼ ðf11dx1 þ f12dx2Þdx1 þ ð f21dx1 þ f22dx2Þdx2 (2.93)

or

d2y ¼ f11dx
2
1 þ f12dx2dx1 þ f21dx1dx2 þ f22dx

2
2: (2.94)
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Because, by Young’s theorem, f12 ¼ f21, we can arrange terms to get

d2y ¼ f11dx
2
1 þ 2f12dx1dx2 þ f22dx

2
2: (2.95)

For Equation 2.95 to be unambiguously negative for any change in the x’s (that is, for any
choices of dx1 and dx2), it is obviously necessary that f11 and f22 be negative. If, for example,
dx2 ¼ 0, then

d2y ¼ f11dx
2
1 (2.96)

and d2y < 0 implies

f11 < 0: (2.97)

An identical argument can be made for f22 by setting dx1 ¼ 0. If neither dx1 nor dx2 is 0, we
then must consider the cross partial, f12, in deciding whether or not d2y is unambiguously
negative. Relatively simple algebra can be used to show that the required condition is14

f11f22 � f 2
12 > 0: (2.98)

Concave functions
Intuitively, what Equation 2.98 requires is that the own second partial derivatives
ð f11and f22Þ be sufficiently negative so that their product (which is positive) will outweigh
any possible perverse effects from the cross-partial derivatives ð f12 ¼ f21Þ. Functions that
obey such a condition are called concave functions. In three dimensions, such functions
resemble inverted teacups (for an illustration, see Example 2.10). This image makes it clear
that a flat spot on such a function is indeed a true maximum because the function always
slopes downward from such a spot. More generally, concave functions have the property that
they always lie below any plane that is tangent to them—the plane defined by the maximum
value of the function is simply a special case of this property.

EXAMPLE 2.9 Second-Order Conditions: Health Status for the Last Time

In Example 2.3 we considered the health status function

y ¼ f x1, x2
� � ¼ �x2

1 þ 2x1 � x2
2 þ 4x2 þ 5: (2.99)

The first-order conditions for a maximum are

f1 ¼ �2x1 þ 2 ¼ 0,
f2 ¼ �2x2 þ 4 ¼ 0

(2.100)

or

x�1 ¼ 1,
x�2 ¼ 2:

(2.101)

14The proof proceeds by adding and subtracting the term ð f12dx2Þ2=f11 to Equation 2.95 and factoring. But this approach
is only applicable to this special case. A more easily generalized approach that uses matrix algebra recognizes that Equation
2.95 is a “Quadratic Form” in dx1 and dx2, and that Equations 2.97 and 2.98 amount to requiring that the Hessian matrix

f11 f12
f21 f22

	 

be “negative definite.” In particular, Equation 2.98 requires that the determinant of this Hessian be positive. For a
discussion, see the Extensions to this chapter.
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The second-order partial derivatives for Equation 2.99 are

f11 ¼ �2,
f22 ¼ �2,
f12 ¼ 0:

(2.102)

These derivatives clearly obey Equations 2.97 and 2.98, so both necessary and sufficient
conditions for a local maximum are satisfied.15

QUERY: Describe the concave shape of the health status function and indicate why it has
only a single global maximum value.

Constrained maximization
As another illustration of second-order conditions, consider the problem of choosing x1 and
x2 to maximize

y ¼ f ðx1, x2Þ, (2.103)

subject to the linear constraint

c � b1x1 � b2x2 ¼ 0 (2.104)

(where c, b1, b2 are constant parameters in the problem). This problem is of a type that will
be frequently encountered in this book and is a special case of the constrained maximum
problems that we examined earlier. There we showed that the first-order conditions for a
maximum may be derived by setting up the Lagrangian expression

ℒ ¼ f ðx1, x2Þ þ λðc � b1x1 � b2x2Þ: (2.105)

Partial differentiation with respect to x1, x2, and λ yields the familiar results:

f1 � λb1 ¼ 0,
f2 � λb2 ¼ 0,

c � b1x1 � b2x2 ¼ 0:
(2.106)

These equations can in general be solved for the optimal values of x1, x2, and λ. To ensure
that the point derived in that way is a local maximum, we must again examine movements
away from the critical points by using the “second” total differential:

d2y ¼ f11dx
2
1 þ 2f12dx1dx2 þ f22dx

2
2: (2.107)

In this case, however, not all possible small changes in the x’s are permissible. Only those
values of x1 and x2 that continue to satisfy the constraint can be considered valid alternatives
to the critical point. To examine such changes, we must calculate the total differential of the
constraint:

�b1dx1 � b2dx2 ¼ 0 (2.108)

or

dx2 ¼ � b1
b2

dx1: (2.109)

15Notice that Equations 2.102 obey the sufficient conditions not only at the critical point but also for all possible choices of
x1 and x2. That is, the function is concave. In more complex examples this need not be the case: The second-order
conditions need be satisfied only at the critical point for a local maximum to occur.
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This equation shows the relative changes in x1 and x2 that are allowable in considering
movements from the critical point. To proceed further on this problem, we need to use the
first-order conditions. The first two of these imply

f1
f2

¼ b1
b2

, (2.110)

and combining this result with Equation 2.109 yields

dx2 ¼ � f1
f2

dx1: (2.111)

We now substitute this expression for dx2 in Equation 2.107 to demonstrate the conditions
that must hold for d2y to be negative:

d2y ¼ f11dx
2
1 þ 2f12dx1 � f1

f2
dx1

� �
þ f22 � f1

f2
dx1

� �2

¼ f11dx
2
1 � 2f12

f1
f2
dx2

1 þ f22
f 2
1

f 2
2
dx2

1: (2.112)

Combining terms and putting each over a common denominator gives

d2y ¼ ð f11f 2
2 � 2f12 f1 f2 þ f22 f

2
1Þ

dx2
1

f 2
2
: (2.113)

Consequently, for d2y < 0, it must be the case that

f11 f
2
2 � 2f12 f1 f2 þ f22 f

2
1 < 0: (2.114)

Quasi-concave functions
Although Equation 2.114 appears to be little more than an inordinately complex mass of
mathematical symbols, in fact the condition is an important one. It characterizes a set of
functions termed quasi-concave functions. These functions have the property that the set of all
points for which such a function takes on a value greater than any specific constant is a convex
set (that is, any two points in the set can be joined by a line contained completely within the
set). Many economic models are characterized by such functions and, as we will see in
considerable detail in Chapter 3, in these cases the condition for quasi-concavity has a
relatively simple economic interpretation. Problems 2.9 and 2.10 examine two specific
quasi-concave functions that we will frequently encounter in this book. Example 2.10
shows the relationship between concave and quasi-concave functions.

EXAMPLE 2.10 Concave and Quasi-Concave Functions

The differences between concave and quasi-concave functions can be illustrated with the
function16

y ¼ f ðx1, x2Þ ¼ ðx1 ⋅ x2Þk, (2.115)

where the x’s take on only positive values, and the parameter k can take on a variety of
positive values.

16This function is a special case of the Cobb-Douglas function. See also Problem 2.10 and the Extensions to this chapter
for more details on this function.
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No matter what value k takes, this function is quasi-concave. One way to show this is
to look at the “level curves” of the function by setting y equal to a specific value, say c. In
this case

y ¼ c ¼ ðx1x2Þk or x1x2 ¼ c1=k ¼ c0: (2.116)

But this is just the equation of a standard rectangular hyperbola. Clearly the set of points for
which y takes on values larger than c is convex because it is bounded by this hyperbola.

A more mathematical way to show quasi-concavity would apply Equation 2.114 to this
function. Although the algebra of doing this is a bit messy, it may be worth the struggle. The
various components of Equation 2.114 are:

f1 ¼ kxk�1
1 xk

2,

f2 ¼ kxk
1x

k�1
2 ,

f11 ¼ kðk � 1Þxk�2
1 xk

2,

f22 ¼ kðk � 1Þxk
1x

k�2
2 ,

f12 ¼ k2xk�1
1 xk�1

2 :

(2.117)

So,

f11 f
2
2 � 2f12 f1f2 þ f22 f

2
1 ¼ k3ðk � 1Þx3k�2

1 x3k�2
2 � 2k4x3k�2

1 x3k�2
2

þ k3ðk � 1Þx3k�2
1 x3k�2

2

¼ 2k3x3k�2
1 x3k�2

2 ð�1Þ, (2.118)

which is clearly negative, as is required for quasi-concavity.
Whether or not the function f is concave depends on the value of k. If k < 0:5 the

function is indeed concave. An intuitive way to see this is to consider only points where
x1 ¼ x2. For these points,

y ¼ ðx2
1Þk ¼ x2k

1 , (2.119)

which, for k < 0:5, is concave. Alternatively, for k > 0:5, this function is convex.
A more definitive proof makes use of the partial derivatives from Equation 2.117. In this

case the condition for concavity can be expressed as

f11f22 � f 212 ¼ k2ðk � 1Þ2x2k�2
1 x2k�2

2 � k4x2k�2
1 x2k�2

2

¼ x2k�2
1 x2k�2

2 ½k2ðk � 1Þ2�k4�
¼ x2k�1

1 x2k�1
2 ½k2ð�2k þ 1Þ�, (2.120)

and this expression is positive (as is required for concavity) for

ð�2k þ 1Þ > 0 or k < 0:5:

On the other hand, the function is convex for k > 0:5.

A graphic illustration. Figure 2.4 provides three-dimensional illustrations of three specific
examples of this function: for k ¼ 0:2, k ¼ 0:5, and k ¼ 1. Notice that in all three cases the
level curves of the function have hyperbolic, convex shapes. That is, for any fixed value of y
the functions are quite similar. This shows the quasi-concavity of the function. The primary
differences among the functions are illustrated by the way in which the value of y increases as

(continued)
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EXAMPLE 2.10 CONTINUED

both x’s increase together. In Figure 2.4a (when k ¼ 0:2), the increase in y slows as the x’s
increase. This gives the function a rounded, teacuplike shape that indicates its concavity. For
k ¼ 0:5, y appears to increase linearly with increases in both of the x’s. This is the borderline
between concavity and convexity. Finally, when k ¼ 1 (as in Figure 2.4c), simultaneous
increases in the values of both of the x’s increase y very rapidly. The spine of the function
looks convex to reflect such increasing returns.

FIGURE 2.4 Concave and Quasi-Concave Functions

In all three cases these functions are quasi-concave. For a fixed y, their level curves are convex. But
only for k ¼ 0:2 is the function strictly concave. The case k ¼ 1:0 clearly shows nonconcavity because
the function is not below its tangent plane.

(a) k = 0.2 (b) k = 0.5

(c) k = 1.0
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A careful look at Figure 2.4a suggests that any function that is concave will also be quasi-
concave. You are asked to prove that this is indeed the case in Problem 2.8. This example
shows that the converse of this statement is not true—quasi-concave functions need not
necessarily be concave. Most functions we will encounter in this book will also illustrate this
fact; most will be quasi-concave but not necessarily concave.

QUERY: Explain why the functions illustrated both in Figure 2.4a and 2.4c would have maxi-
mum values if the x’s were subject to a linear constraint, but only the graph in Figure 2.4a
would have an unconstrained maximum.

HOMOGENEOUS FUNCTIONS

Many of the functions that arise naturally out of economic theory have additional mathemat-
ical properties. One particularly important set of properties relates to how the functions
behave when all (or most) of their arguments are increased proportionally. Such situations
arise when we ask questions such as what would happen if all prices increased by 10 percent or
how would a firm’s output change if it doubled all of the inputs that it uses. Thinking about
these questions leads naturally to the concept of homogeneous functions. Specifically, a
function f ðx1, x2,…, xnÞ is said to be homogeneous of degree k if

f ðtx1, tx2,…, txnÞ ¼ t k f ðx1, x2,…, xnÞ: (2.121)

The most important examples of homogeneous functions are those for which k ¼ 1 or
k ¼ 0. In words, when a function is homogeneous of degree one, a doubling of all of its
arguments doubles the value of the function itself. For functions that are homogeneous of
degree 0, a doubling of all of its arguments leaves the value of the function unchanged.
Functions may also be homogeneous for changes in only certain subsets of their arguments—
that is, a doubling of some of the x’s may double the value of the function if the other
arguments of the function are held constant. Usually, however, homogeneity applies to
changes in all of the arguments in a function.

Homogeneity and derivatives
If a function is homogeneous of degree k and can be differentiated, the partial derivatives of
the function will be homogeneous of degree k � 1. A proof of this follows directly from the
definition of homogeneity. For example, differentiating Equation 2.121 with respect to its
first argument gives

∂f ðtx1,…, txnÞ
∂x1

⋅ t ¼ t k
∂f ðx1,…, xnÞ

∂x1
or

f1ðtx1,…, txnÞ ¼ t k�1f1ðx1,…, xnÞ, (2.122)

which shows that f1 meets the definition for homogeneity of degree k � 1. Because marginal
ideas are so prevalent in microeconomic theory, this property shows that some important
properties of marginal effects can be inferred from the properties of the underlying function
itself.

Chapter 2 Mathematics for Microeconomics 53



Euler’s theorem
Another useful feature of homogeneous functions can be shown by differentiating the
definition for homogeneity with respect to the proportionality factor, t . In this case, we
differentiate the right side of Equation 2.121 first:

kt k�1f1ðx1,…, xnÞ ¼ x1f1ðtx1,…, txnÞ þ…þ xn fnðtx1,…, txnÞ:
If we let t ¼ 1, this equation becomes

kf ðx1,…, xnÞ ¼ x1f1ðx1,…, xnÞ þ…þ xn fnðx1,…, xnÞ: (2.123)

This equation is termed Euler’s theorem (after the mathematician who also discovered the
constant e) for homogeneous functions. It shows that, for a homogeneous function, there is a
definite relationship between the values of the function and the values of its partial derivatives.
Several important economic relationships among functions are based on this observation.

Homothetic functions
A homothetic function is one that is formed by taking a monotonic transformation of a
homogeneous function.17 Monotonic transformations, by definition, preserve the order of
the relationship between the arguments of a function and the value of that function. If certain
sets of x’s yield larger values for f , they will also yield larger values for a monotonic transfor-
mation of f . Because monotonic transformations may take many forms, however, they would
not be expected to preserve an exact mathematical relationship such as that embodied in
homogeneous functions. Consider, for example, the function f ðx, yÞ ¼ x ⋅ y. Clearly this
function is homogeneous of degree 2—a doubling of its two arguments will multiply the value
of the function by 4. But the monotonic transformation, F , that simply adds 1 to f [that is,
F ð f Þ ¼ f þ 1 ¼ xy þ 1] is not homogeneous at all. Hence, except in special cases, homo-
thetic functions do not possess the homogeneity properties of their underlying functions.
Homothetic functions do, however, preserve one nice feature of homogeneous functions.
This property is that the implicit trade-offs among the variables in a function depend only on
the ratios of those variables, not on their absolute values. Here we show this for the simple
two-variable, implicit function f ðx, yÞ ¼ 0. It will be easier to demonstrate more general cases
when we get to the economics of the matter later in this book.

Equation 2.28 showed that the implicit trade-off between x and y for a two-variable
function is given by

dy
dx

¼ � fx
fy

:

If we assume f is homogeneous of degree k, its partial derivatives will be homogeneous of
degree k � 1 and the implicit trade-off between x and y is

dy
dx

¼ � t k�1fxðtx, tyÞ
t k�1fyðtx, tyÞ

¼ � fxðtx, tyÞ
fyðtx, tyÞ

: (2.124)

Now let t ¼ 1=y and Equation 2.124 becomes

dy
dx

¼ � fxðx=y,1Þ
fyðx=y,1Þ

, (2.125)

which shows that the trade-off depends only on the ratio of x to y. Now if we apply
any monotonic transformation, F (with F 0 > 0), to the original homogeneous function f ,
we have

17Because a limiting case of a monotonic transformation is to leave the function unchanged, all homogeneous functions are
also homothetic.
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dy
dx

¼ �F 0fxðx=y,1Þ
F 0fyðx=y,1Þ

¼ � fxðx=y,1Þ
fyðx=y,1Þ

, (2.126)

and this shows both that the trade-off is unaffected by the monotonic transformation and
that it remains a function only of the ratio of x to y. In Chapter 3 (and elsewhere) this
property will make it very convenient to discuss some theoretical results with simple two-
dimensional graphs, for which we need not consider the overall levels of key variables, but
only their ratios.

EXAMPLE 2.11 Cardinal and Ordinal Properties

In applied economics it is sometimes important to know the exact numerical relationship
among variables. For example, in the study of production, one might wish to know
precisely how much extra output would be produced by hiring another worker. This is a
question about the “cardinal” (i.e., numerical) properties of the production function. In
other cases, one may only care about the order in which various points are ranked. In the
theory of utility, for example, we assume that people can rank bundles of goods and will
choose the bundle with the highest ranking, but that there are no unique numerical values
assigned to these rankings. Mathematically, ordinal properties of functions are preserved by
any monotonic transformation because, by definition, a monotonic transformation pre-
serves order. Usually, however, cardinal properties are not preserved by arbitrary mono-
tonic transformations.

These distinctions are illustrated by the functions we examined in Example 2.10. There
we studied monotonic transformations of the function

f ðx1, x2Þ ¼ ðx1x2Þk (2.127)

by considering various values of the parameter k. We showed that quasi-concavity (an
ordinal property) was preserved for all values of k. Hence, when approaching problems that
focus on maximizing or minimizing such a function subject to linear constraints we need not
worry about precisely which transformation is used. On the other hand, the function in
Equation 2.127 is concave (a cardinal property) only for a narrow range of values of k. Many
monotonic transformations destroy the concavity of f .

The function in Equation 2.127 also can be used to illustrate the difference between
homogeneous and homothetic functions. A proportional increase in the two arguments of f
would yield

f ðtx1, tx2Þ ¼ t 2kx1x2 ¼ t 2kf ðx1, x2Þ: (2.128)

Hence, the degree of homogeneity for this function depends on k—that is, the degree of
homogeneity is not preserved independently of which monotonic transformation is used.
Alternatively, the function in Equation 2.127 is homothetic because

dx2
dx1

¼ � f1
f2

¼ � kxk�1
1 xk

2

kxk
1x

k�1
2

¼ � x2
x1

: (2.129)

That is, the trade-off between x2 and x1 depends only on the ratio of these two variables and
is unaffected by the value of k. Hence, homotheticity is an ordinal property. As we shall see,
this property is quite convenient when developing graphical arguments about economic
propositions.

QUERY: How would the discussion in this example be changed if we considered monotonic
transformations of the form f ðx1, x2, kÞ ¼ x1x2 þ k for various values of k?
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INTEGRATION

Integration is another of the tools of calculus that finds a number of applications in microeco-
nomic theory. The technique is used both to calculate areas that measure various economic
outcomes and, more generally, to provide a way of summing up outcomes that occur over
time or across individuals. Our treatment of the topic here necessarily must be brief, so readers
desiring a more complete background should consult the references at the end of this chapter.

Anti-derivatives
Formally, integration is the inverse of differentiation. When you are asked to calculate the
integral of a function, f ðxÞ, you are being asked to find a function that has f ðxÞ as its derivative.
If we call this “anti-derivative” F ðxÞ, this function is supposed to have the property that

dF ðxÞ
dx

¼ F 0ðxÞ ¼ f ðxÞ: (2.130)

If such a function exists then we denote it as

F ðxÞ ¼ ∫ f ðxÞ dx: (2.131)

The precise reason for this rather odd-looking notation will be described in detail later. First,
let’s look at a few examples. If f ðxÞ ¼ x then

F ðxÞ ¼ ∫ f ðxÞ dx ¼ ∫ x dx ¼ x2

2
þ C , (2.132)

where C is an arbitrary “constant of integration” that disappears upon differentiation. The
correctness of this result can be easily verified:

F 0ðxÞ ¼ dðx2=2þCÞ
dx

¼ x þ 0 ¼ x: (2.133)

Calculating anti-derivatives
Calculation of anti-derivatives can be extremely simple, or difficult, or agonizing, or impossi-
ble, depending on the particular f ðxÞ specified. Here we will look at three simple methods for
making such calculations, but, as you might expect, these will not always work.

1. Creative guesswork. Probably the most common way of finding integrals (anti-
derivatives) is to work backwards by asking “what function will yield f ðxÞ as its derivative?”
Here are a few obvious examples:

FðxÞ ¼ ∫x2 dx ¼ x3

3
þ C ,

FðxÞ ¼ ∫xn dx ¼ xnþ1

n þ 1
þ C ,

FðxÞ ¼ ∫ðax2 þ bx þ cÞ dx ¼ ax3

3
þ bx2

2
þ cx þ C ,

FðxÞ ¼ ∫ex dx ¼ ex þC ,

FðxÞ ¼ ∫ax dx ¼ ax

ln a
þ C ,

FðxÞ ¼ ∫ 1
x

� �
dx ¼ lnðjxjÞ þ C ,

FðxÞ ¼ ∫ðln xÞ dx ¼ x ln x � x þ C :

(2.134)
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You should use differentiation to check that all of these obey the property that F 0ðxÞ ¼ f ðxÞ.
Notice that in every case the integral includes a constant of integration because anti-deriva-
tives are unique only up to an additive constant which would become zero upon differentia-
tion. For many purposes, the results in Equation 2.134 (or trivial generalizations of them)
will be sufficient for our purposes in this book. Nevertheless, here are two more methods that
may work when intuition fails.

2. Change of variable. A clever redefinition of variables may sometimes make a function
much easier to integrate. For example, it is not at all obvious what the integral of 2x=ð1þ x2Þ
is. But, if we let y ¼ 1þ x2, then dy ¼ 2xdx and

∫ 2x
1þ x2 dx ¼ ∫1

y
dy ¼ lnðjyjÞ ¼ lnðj1þ x2jÞ: (2.135)

The key to this procedure is in breaking the original function into a term in y and a term in
dy. It takes a lot of practice to see patterns for which this will work.

3. Integration by parts. A similar method for finding integrals makes use of the differen-
tial expression duv ¼ udv þ vdu for any two functions u and v. Integration of this differential
yields

∫ duv ¼ uv ¼ ∫u dv þ ∫ v du or ∫u dv ¼ uv � ∫ v du: (2.136)

Here the strategy is to define functions u and v in a way that the unknown integral on the
left can be calculated by the difference between the two known expressions on the right. For
example, it is by no means obvious what the integral of xex is. But we can define u ¼ x (so
du ¼ dx) and dv ¼ exdx (so v ¼ ex). Hence we now have

∫ xex dx ¼ ∫u dv ¼ uv � ∫ v du ¼ xex � ∫ ex dx ¼ ðx � 1Þex þC : (2.137)

Again, only practice can suggest useful patterns in the ways in which u and v can be defined.

Definite integrals
The integrals we have been discussing so far are “indefinite” integrals—they provide only a
general function that is the anti-derivative of another function. A somewhat different, though
related, approach uses integration to sum up the area under a graph of a function over some
defined interval. Figure 2.5 illustrates this process. We wish to know the area under the
function f ðxÞ from x ¼ a to x ¼ b. One way to do this would be to partition the interval into
narrow slivers of xð∆xÞ and sum up the areas of the rectangles shown in the figure. That is:

area under f ðxÞ �
X
i

f ðxiÞ∆xi, (2.138)

where the notation is intended to indicate that the height of each rectangle is approximated
by the value of f ðxÞ for a value of x in the interval. Taking this process to the limit by
shrinking the size of the ∆x intervals yields an exact measure of the area we want and is
denoted by:

area under f ðxÞ ¼ ∫
x¼b

x¼a

f ðxÞ dx: (2.139)

This then explains the origin of the oddly shaped integral sign—it is a stylized S, indicating
“sum.”As we shall see, integrating is a very general way of summing the values of a continuous
function over some interval.
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Fundamental theorem of calculus
Evaluating the integral in Equation 2.139 is very simple if we know the anti-derivative of
f ðxÞ, say, F ðxÞ. In this case we have

area under f ðxÞ ¼ ∫
x¼b

x¼a

f ðxÞ dx ¼ FðbÞ � FðaÞ: (2.140)

That is, all we need do is calculate the anti-derivative of f ðxÞ and subtract the value of this
function at the lower limit of integration from its value at the upper limit of integration. This
result is sometimes termed the “fundamental theorem of calculus” because it directly ties
together the two principal tools of calculus, derivatives and integrals. In Example 2.12, we
show that this result is much more general than simply a way to measure areas. It can be
used to illustrate one of the primary conceptual principles of economics—the distinction
between “stocks” and “flows.”

EXAMPLE 2.12 Stocks and Flows

The definite integral provides a useful way for summing up any function that is providing a
continuous flow over time. For example, suppose that net population increase (births minus
deaths) for a country can be approximated by the function f ðtÞ ¼ 1,000e0:02t . Hence, the net
population change is growing at the rate of 2 percent per year—it is 1,000 new people in
year 0, 1,020 new people in the first year, 1,041 in the second year, and so forth. Suppose we
wish to know how much in total the population will increase within 50 years. This might be a
tedious calculation without calculus, but using the fundamental theorem of calculus provides
an easy answer:

FIGURE 2.5 Definite Integrals Show the Areas under the Graph of a Function

Definite integrals measure the area under a curve by summing rectangular areas as shown in the
graph. The dimension of each rectangle is f xð Þdx.

f(x)

f(x)

a b x
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increase in population ¼ ∫
t¼50

t¼0

f ðt Þ dt ¼ ∫
t¼50

t¼0

1,000e0:02t dt ¼ Fðt Þ
����50
0

¼ 1,000e0:02t

0:02

����50
0
¼ 1,000e

0:02
� 50,000 ¼ 85,914 (2:141)

[where the notation jba indicates that the expression is to be evaluated as F ðbÞ � F ðaÞ].
Hence, the conclusion is that the population will grow by nearly 86,000 people over the
next 50 years. Notice how the fundamental theorem of calculus ties together a “flow”
concept, net population increase (which is measured as an amount per year), with a “stock”
concept, total population (which is measured at a specific date and does not have a time
dimension). Note also that the 86,000 calculation refers only to the total increase between
year zero and year fifty. In order to know the actual total population at any date we would
have to add the number of people in the population at year zero. That would be similar to
choosing a constant of integration in this specific problem.

Now consider an application with more economic content. Suppose that total costs for a
particular firm are given by CðqÞ ¼ 0:1q2 þ 500 (where q represents output during some
period). Here the term 0:1q2 represents variable costs (costs that vary with output) whereas
the 500 figure represents fixed costs. Marginal costs for this production process can be found
through differentiation—MC ¼ dCðqÞ=dq ¼ 0:2q—hence, marginal costs are increasing
with q and fixed costs drop out upon differentiation. What are the total costs associated
with producing, say, q ¼ 100? One way to answer this question is to use the total cost
function directly: Cð100Þ ¼ 0:1ð100Þ2 þ 500 ¼ 1,500. An alternative way would be to
integrate marginal cost over the range 0 to 100 to get total variable cost:

variable cost ¼ ∫
q¼100

q¼0

0:2q dq ¼ 0:1q2
����100
0

¼ 1,000� 0 ¼ 1,000, (2.142)

to which we would have to add fixed costs of 500 (the constant of integration in this
problem) to get total costs. Of course, this method of arriving at total cost is much more
cumbersome than just using the equation for total cost directly. But the derivation does
show that total variable cost between any two output levels can be found through integration
as the area below the marginal cost curve—a conclusion that we will find useful in some
graphical applications.

QUERY: How would you calculate the total variable cost associated with expanding output
from 100 to 110? Explain why fixed costs do not enter into this calculation.

Differentiating a definite integral
Occasionally we will wish to differentiate a definite integral—usually in the context of seeking
to maximize the value of this integral. Although performing such differentiations can some-
times be rather complex, there are a few rules that should make the process easier.

1. Differentiation with respect to the variable of integration. This is a trick question,
but instructive nonetheless. A definite integral has a constant value; hence its derivative is
zero. That is:

d∫ba f ðxÞ dx
dx

¼ 0: (2.143)

The summing process required for integration has already been accomplished once we write
down a definite integral. It does not matter whether the variable of integration is x or t or
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anything else. The value of this integrated sum will not change when the variable x changes,
no matter what x is (but see rule 3 below).

2. Differentiation with respect to the upper bound of integration. Changing the upper
bound of integration will obviously change the value of a definite integral. In this case, we
must make a distinction between the variable determining the upper bound of integration
(say, x) and the variable of integration (say, t). The result then is a simple application of the
fundamental theorem of calculus. For example:

d∫xa f ðt Þdt
dx

¼ d ½FðxÞ � FðaÞ�
dx

¼ f ðxÞ � 0 ¼ f ðxÞ, (2.144)

where F ðxÞ is the antiderivative of f ðxÞ. By referring back to Figure 2.5 we can see why this
conclusion makes sense—we are asking how the value of the definite integral changes if x
increases slightly. Obviously, the answer is that the value of the integral increases by the
height of f ðxÞ (notice that this value will ultimately depend on the specified value of x).

If the upper bound of integration is a function of x, this result can be generalized using
the chain rule:

d∫gðxÞa f ðt Þ dt
dðxÞ ¼ d ½FðgðxÞÞ � FðaÞ�

dx
¼ d ½Fð gðxÞÞ�

dx
¼ f

dgðxÞ
dx

¼ fg 0ðxÞ, (2.145)

where, again, the specific value for this derivative would depend on the value of x assumed.
Finally, notice that differentiation with respect to a lower bound of integration just

changes the sign of this expression:

d∫bgðxÞ f ðt Þ dt
dx

¼ d ½FðbÞ � FðgðxÞÞ�
dx

¼ � dFðgðxÞÞ
dx

¼ �fg 0ðxÞ: (2.146)

3.Differentiation with respect to another relevant variable. In some cases we may wish
to integrate an expression that is a function of several variables. In general, this can involve
multiple integrals and differentiation can become quite complicated. But there is one simple
case that should be mentioned. Suppose that we have a function of two variables, f ðx, yÞ, and
that we wish to integrate this function with respect to the variable x. The specific value for this
integral will obviously depend on the value of y and we might even ask how that value
changes when y changes. In this case, it is possible to “differentiate through the integral sign”
to obtain a result. That is:

d∫ba f ðx, yÞ dx
dy

¼ ∫
b

a

fyðx, yÞ dx: (2.147)

This expression shows that we can first partially differentiate f ðx, yÞ with respect to y before
proceeding to compute the value of the definite integral. Of course, the resulting value may
still depend on the specific value that is assigned to y, but often it will yield more economic
insights than the original problem does. Some further examples of using definite integrals
are found in Problem 2.8.

DYNAMIC OPTIMIZATION

Some optimization problems that arise in microeconomics involve multiple periods.18 We are
interested in finding the optimal time path for a variable or set of variables that succeeds in
optimizing some goal. For example, an individual may wish to choose a path of lifetime

18Throughout this section we treat dynamic optimization problems as occurring over time. In other contexts, the same
techniques can be used to solve optimization problems that occur across a continuum of firms or individuals when the
optimal choices for one agent affect what is optimal for others.
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consumptions that maximizes his or her utility. Or a firm may seek a path for input and
output choices that maximizes the present value of all future profits. The particular feature of
such problems that makes them difficult is that decisions made in one period affect outcomes
in later periods. Hence, one must explicitly take account of this interrelationship in choosing
optimal paths. If decisions in one period did not affect later periods, the problem would not
have a “dynamic” structure—one could just proceed to optimize decisions in each period
without regard for what comes next. Here, however, we wish to explicitly allow for dynamic
considerations.

The optimal control problem
Mathematicians and economists have developed many techniques for solving problems in
dynamic optimization. The references at the end of this chapter provide broad introductions
to these methods. Here, however, we will be concerned with only one such method that has
many similarities to the optimization techniques discussed earlier in this chapter—the optimal
control problem. The framework of the problem is relatively simple. A decision maker wishes
to find the optimal time path for some variable xðtÞ over a specified time interval ½t0, t1�.
Changes in x are governed by a differential equation:

dxðt Þ
dt

¼ g ½xðt Þ, cðt Þ, t �, (2.148)

where the variable cðtÞ is used to “control” the change in xðtÞ. In each period of time, the
decision maker derives value from x and c according to the function f ½xðtÞ, cðtÞ, t � and his
or her goal to optimize ∫t1t0 f ½xðtÞ, cðtÞ, t � dt . Often this problem will also be subject to
“endpoint” constraints on the variable x. These might be written as xðt0Þ ¼ x0 and
xðt1Þ ¼ x1.

Notice how this problem is “dynamic.” Any decision about how much to change x this
period will affect not only the future value of x, it will also affect future values of the outcome
function f . The problem then is how to keep xðtÞ on its optimal path.

Economic intuition can help to solve this problem. Suppose that we just focused on the
function f and chose x and c to maximize it at each instant of time. There are two difficulties
with this “myopic” approach. First, we are not really free to “choose” x at any time. Rather,
the value of x will be determined by its initial value x0 and by its history of changes as given by
Equation 2.148. A second problem with this myopic approach is that it disregards the
dynamic nature of the problem by not asking how this period’s decisions affect the future.
We need some way to reflect the dynamics of this problem in a single period’s decisions.
Assigning the correct value (price) to x at each instant of time will do just that. Because
this implicit price will have many similarities to the Lagrangian multipliers studied earlier in
this chapter, we will call it λðtÞ. The value of x is treated as a function of time because the
importance of x can obviously change over time.

The maximum principle
Now let’s look at the decision maker’s problem at a single point in time. He or she must be
concerned with both the current value of the objective function f ½xðtÞ, cðtÞ, t � and with the
implied change in the value of xðtÞ . Because the current value of xðtÞ is given by λðtÞxðtÞ, the
instantaneous rate of change of this value is given by:

d ½λðt Þxðt Þ�
dt

¼ λðt Þ dxðt Þ
dt

þ xðt Þ dλðt Þ
dt

, (2.149)
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and so at any time t a comprehensive measure of the value of concern19 to the decision
maker is

H ¼ f ½xðt Þ, cðt Þ, t � þ λðt Þg ½xðt Þ, cðt Þ, t � þ xðt Þ dλðt Þ
dt

: (2.150)

This comprehensive value represents both the current benefits being received and the
instantaneous change in the value of x. Now we can ask what conditions must hold for xðtÞ
and cðtÞ to optimize this expression.20 That is:

∂H
∂c

¼ fc þ λgc ¼ 0 or fc ¼ �λgc ;

∂H
∂x

¼ fx þ λgx þ
∂λðt Þ
dt

¼ 0 or fx þ λgx ¼ � ∂λðt Þ
∂t

:

(2.151)

These are then the two optimality conditions for this dynamic problem. They are usually
referred to as the “maximum principle.” This solution to the optimal control problem was
first proposed by the Russian mathematician L. S. Pontryagin and his colleagues in the early
1960s.

Although the logic of the maximum principle can best be illustrated by the economic
applications we will encounter later in this book, a brief summary of the intuition behind
them may be helpful. The first condition asks about the optimal choice of c. It suggests that,
at the margin, the gain from c in terms of the function f must be balanced by the losses from c
in terms of the value of its ability to change x. That is, present gains must be weighed against
future costs.

The second condition relates to the characteristics that an optimal time path of xðtÞ
should have. It implies that, at the margin, any net gains from more current x (either in terms
of f or in terms of the accompanying value of changes in x) must be balanced by changes in
the implied value of x itself. That is, the net current gain from more x must be weighed
against the declining future value of x.

EXAMPLE 2.13 Allocating a Fixed Supply

As an extremely simple illustration of the maximum principle, assume that someone has
inherited 1,000 bottles of wine from a rich uncle. He or she intends to drink these bottles
over the next 20 years. How should this be done to maximize the utility from doing so?

Suppose that this person’s utility function for wine is given by u½cðtÞ� ¼ ln cðtÞ. Hence the
utility from wine drinking exhibits diminishing marginal utility ðu0 > 0,u00 < 0Þ. This per-
son’s goal is to maximize

∫
20

0

u½cðt Þ� dt ¼ ∫
20

0

ln cðt Þ dt : (2.152)

Let xðtÞ represent the number of bottles of wine remaining at time t . This series is con-
strained by xð0Þ ¼ 1,000 and xð20Þ ¼ 0. The differential equation determining the evolu-
tion of xðtÞ takes the simple form:21

19We denote this current value expression by H to suggest its similarity to the Hamiltonian expression used in formal
dynamic optimization theory. Usually the Hamiltonian does not have the final term in Equation 2.150, however.
20Notice that the variable x is not really a choice variable here—its value is determined by history. Differentiation with
respect to x can be regarded as implicitly asking the question: “If xðtÞ were optimal, what characteristics would it have?”
21The simple form of this differential equation (where dx=dt depends only on the value of the control variable, c) means
that this problem is identical to one explored using the “calculus of variations” approach to dynamic optimization. In such
a case, one can substitute dx=dt into the function f and the first-order conditions for a maximum can be compressed into
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dxðt Þ
dt

¼ �cðt Þ: (2.153)

That is, each instant’s consumption just reduces the stock of remaining bottles. The current
value Hamiltonian expression for this problem is

H ¼ ln cðt Þ þ λ½�cðt Þ� þ xðt Þ dλ
dt

, (2.154)

and the first-order conditions for a maximum are

∂H
∂c

¼ 1
c
� λ ¼ 0,

∂H
∂x

¼ dλ
dt

¼ 0:
(2.155)

The second of these conditions requires that λ (the implicit value of wine) be constant over
time. This makes intuitive sense: because consuming a bottle of wine always reduces
the available stock by one bottle, any solution where the value of wine differed over time
would provide an incentive to change behavior by drinking more wine when it is cheap and
less when it is expensive. Combining this second condition for a maximum with the first
condition implies that cðtÞ itself must be constant over time. If cðtÞ ¼ k, the number of
bottles remaining at any time will be xðtÞ ¼ 1,000� kt . If k ¼ 50, the system will obey the
end point constraints xð0Þ ¼ 1000 and xð20Þ ¼ 0. Of course, in this problem you could
probably guess that the optimum plan would be to drink the wine at the rate of 50 bottles
per year for 20 years because diminishing marginal utility suggests one does not want to
drink excessively in any period. The maximum principle confirms this intuition.

More complicated utility. Now let’s take a more complicated utility function that may yield
more interesting results. Suppose that the utility of consuming wine at any date, t , is given by

u½cðt Þ� ¼ ½cðt Þ�γ=γ if γ 6¼ 0, γ < 1;
ln cðt Þ if γ ¼ 0:



(2.156)

Assume also that the consumer discounts future consumption at the rate δ. Hence this
person’s goal is to maximize

∫
20

0

u½cðt Þ� dt ¼ ∫
20

0

e�δt ½cðt Þ�γ
γ

dt (2.157)

subject to the following constraints:

dxðt Þ
dt

¼ �cðt Þ,
xð0Þ ¼ 1,000,

xð20Þ ¼ 0:

(2.158)

Setting up the current value Hamiltonian expression yields

H ¼ e�δt ½cðt Þ�γ
γ

þ λð�cÞ þ xðt Þ dλðt Þ
dt

, (2.159)

and the maximum principle requires that

(continued)

the single equation fx ¼ dfdx=dt=dt , which is termed the “Euler equation.” In Chapter 17 we will encounter many Euler
equations.
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EXAMPLE 2.13 CONTINUED

∂H
∂c

¼ e�δt ½cðt Þ�γ�1 � λ ¼ 0 and

∂H
∂x

¼ 0þ 0þ dλ
dt

¼ 0:
(2.160)

Hence, we can again conclude that the implicit value of the wine stock (λ) should be
constant over time (call this constant k) and that

e�δt ½cðt Þ�γ�1 ¼ k or cðt Þ ¼ k1=ðγ�1Þeδt=ðγ�1Þ: (2.161)

So, optimal wine consumption should fall over time in order to compensate for the fact that
future consumption is being discounted in the consumer’s mind. If, for example, we let
δ ¼ 0:1 and γ ¼ �1 (“reasonable” values, as we will show in later chapters), then

cðt Þ ¼ k�0:5e�0:05t (2.162)

Now we must do a bit more work in choosing k to satisfy the endpoint constraints. We want

∫
20

0

cðt Þ dt ¼ ∫
20

0

k�0:5e�0:05t dt ¼ �20k�0:5e�0:05t
����20
0

¼ �20k�0:5ðe�1 � 1Þ ¼ 12:64k�0:5 ¼ 1,000:

(2.163)

Finally, then, we have the optimal consumption plan as

cðt Þ � 79e�0:05t : (2.164)

This consumption plan requires that wine consumption start out fairly high and decline at a
continuous rate of 5 percent per year. Because consumption is continuously declining, we
must use integration to calculate wine consumption in any particular year ðxÞ as follows:

consumption in year x � ∫
x

x�1

cðt Þ dt ¼ ∫
x

x�1

79e�0:05t dt ¼ �1,580e�0:05t
����x
x�1

¼ 1,580ðe�0:05ðx�1Þ � e�0:05xÞ:
(2.165)

If x ¼ 1, consumption is about 77 bottles in this first year. Consumption then declines
smoothly, ending with about 30 bottles being consumed in the 20th year.

QUERY: Our first illustration was just an example of the second in which δ ¼ γ ¼ 0. Explain
how alternative values of these parameters will affect the path of optimal wine consumption.
Explain your results intuitively (for more on optimal consumption over time, see Chapter 17).

MATHEMATICAL STATISTICS

In recent years microeconomic theory has increasingly focused on issues raised by uncertainty
and imperfect information. To understand much of this literature, it is important to have a
good background in mathematical statistics. The purpose of this section is, therefore, to
summarize a few of the statistical principles that we will encounter at various places in this
book.
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Random variables and probability density functions
A random variable describes (in numerical form) the outcomes from an experiment that is
subject to chance. For example, we might flip a coin and observe whether it lands heads or
tails. If we call this random variable x, we can denote the possible outcomes (“realizations”)
of the variable as:

x ¼ 1 if coin is heads,
0 if coin is tails:



Notice that, prior to the flip of the coin, x can be either 1 or 0. Only after the uncertainty is
resolved (that is, after the coin is flipped) do we know what the value of x is.22

Discrete and continuous random variables
The outcomes from a random experiment may be either a finite number of possibilities or a
continuum of possibilities. For example, recording the number that comes up on a single die
is a random variable with six outcomes. With two dice, we could either record the sum of
the faces (in which case there are 12 outcomes, some of which are more likely than others) or
we could record a two-digit number, one for the value of each die (in which case there would
be 36 equally likely outcomes). These are examples of discrete random variables.

Alternatively, a continuous random variable may take on any value in a given range of real
numbers. For example, we could view the outdoor temperature tomorrow as a continuous
variable (assuming temperatures can be measured very finely) ranging from, say, �50°C to
+50°C.Of course, someof these temperatureswould be very unlikely to occur, but in principle
the precisely measured temperature could be anywhere between these two bounds. Similarly,
we could view tomorrow’s percentage change in the value of a particular stock index as taking
on all values between�100% and, say,+1,000%. Again, of course, percentage changes around
0% would be considerably more likely to occur than would be the extreme values.

Probability density functions
For any random variable, its probability density function (PDF) shows the probability that
each specific outcome will occur. For a discrete random variable, defining such a function
poses no particular difficulties. In the coin flip case, for example, the PDF [denoted by f ðxÞ]
would be given by

f ðx ¼ 1Þ ¼ 0:5,
f ðx ¼ 0Þ ¼ 0:5:

(2.166)

For the roll of a single die, the PDF would be:

f ðx ¼ 1Þ ¼ 1=6,

f ðx ¼ 2Þ ¼ 1=6,

f ðx ¼ 3Þ ¼ 1=6,

f ðx ¼ 4Þ ¼ 1=6,

f ðx ¼ 5Þ ¼ 1=6,

f ðx ¼ 6Þ ¼ 1=6:

(2.167)

22Sometimes random variables are denoted by xe to make a distinction between variables whose outcome is subject
to random chance and (nonrandom) algebraic variables. This notational device can be useful for keeping track of what is
random and what is not in a particular problem and we will use it in some cases. When there is no ambiguity, however, we
will not employ this special notation.
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Notice that in both of these cases the probabilities specified by the PDF sum to 1.0. This is
because, by definition, one of the outcomes of the random experiment must occur. More
generally, if we denote all of the outcomes for a discrete random variable by xi for i ¼ 1,…,n,
then we must have: Xn

i¼1

f ðxiÞ ¼ 1: (2.168)

For a continuous random variable we must be careful in defining the PDF concept.
Because such a random variable takes on a continuum of values, if we were to assign any non-
zero value as the probability for a specific outcome (i.e., a temperature of+25.53470°C), we
could quickly have sums of probabilities that are infinitely large. Hence, for a continuous
random variable we define the PDF f ðxÞ as a function with the property that the probability
that x falls in a particular small interval dx is given by the area of f ðxÞdx. Using this
convention, the property that the probabilities from a random experiment must sum to 1.0
is stated as follows:

∫
þ∞

�∞

f ðxÞ dx ¼ 1:0: (2.169)

A few important PDFs
Most any function will do as a probability density function provided that f ðxÞ 	 0 and the
function sums (or integrates) to 1.0. The trick, of course, is to find functions that mirror
random experiments that occur in the real world. Here we look at four such functions that we
will find useful in various places in this book. Graphs for all four of these functions are shown
in Figure 2.6.

1. Binomial distribution. This is the most basic discrete distribution. Usually x is
assumed to take on only two values, 1 and 0. The PDF for the binomial is given by:

f ðx ¼ 1Þ ¼ p,
f ðx ¼ 0Þ ¼ 1� p,
where 0 < p < 1:

(2.170)

The coin flip example is obviously a special case of the binomial where p ¼ 0:5.
2. Uniform distribution. This is the simplest continuous PDF. It assumes that the

possible values of the variable x occur in a defined interval and that each value is equally likely.
That is:

f ðxÞ ¼ 1
b � a

for a � x � b;

f ðxÞ ¼ 0 for x < a or x > b:
(2.171)

Notice that here the probabilities integrate to 1.0:

∫
þ∞

�∞

f ðxÞ dx ¼ ∫
b

a

1
b � a

dx ¼ x
b � a

����b
a
¼ b

b � a
� a
b � a

¼ b � a
b � a

¼ 1:0: (2.172)

3. Exponential distribution. This is a continuous distribution for which the probabilities
decline at a smooth exponential rate as x increases. Formally:

f ðxÞ ¼ λe�λx if x > 0,
0 if x � 0,



(2.173)
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where λ is a positive constant. Again, it is easy to show that this function integrates to 1.0:

∫
þ∞

�∞

f ðxÞ dx ¼ ∫
∞

0

λe�λx dx ¼ �e�λx
���∞
0
¼ 0� ð�1Þ ¼ 1:0: (2.174)

4.Normal distribution. The Normal (or Gaussian) distribution is the most important in
mathematical statistics. It’s importance stems largely from the central limit theorem, which
states that the distribution of any sum of independent random variables will increasingly

FIGURE 2.6 Four Common Probability Density Functions

Random variables that have these PDFs are widely used. Each graph indicates the expected value of
the PDF shown.
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approximate the Normal distribution as the number of such variables increase. Because
sample averages can be regarded as sums of independent random variables, this theorem
says that any sample average will have a Normal distribution no matter what the distribution
of the population from which the sample is selected. Hence, it may often be appropriate to
assume a random variable has a Normal distribution if it can be thought of as some sort of
average.

The mathematical form for the Normal PDF is

f ðxÞ ¼ 1ffiffiffiffiffiffiffi
2π

p e�x2=2, (2.175)

and this is defined for all real values of x. Although the function may look complicated, a few
of its properties can be easily described. First, the function is symmetric around zero
(because of the x2 term). Second, the function is asymptotic to zero as x becomes very large
or very small. Third, the function reaches its maximal value at x ¼ 0. This value is
1=

ffiffiffiffiffiffi
2π

p � 0:4. Finally, the graph of this function has a general “bell shape”—a shape used
throughout the study of statistics. Integration of this function is relatively tricky (though
easy in polar coordinates). The presence of the constant 1=

ffiffiffiffiffiffi
2π

p
is needed if the function is

to integrate to 1.0.

Expected value
The expected value of a random variable is the numerical value that the random variable might
be expected to have, on average.23 It is the “center of gravity” of the probability density
function. For a discrete random variable that takes on the values x1, x2,…, xn, the expected
value is defined as

EðxÞ ¼
Xn
i¼1

xi f ðxiÞ: (2.176)

That is, each outcome is weighted by the probability that it will occur and the result is
summed over all possible outcomes. For a continuous random variable, Equation 2.176 is
readily generalized as

EðxÞ ¼ ∫
þ∞

�∞

x f ðxÞ dx: (2.177)

Again, in this integration, each value of x is weighted by the probability that this value will
occur.

The concept of expected value can be generalized to include the expected value of any
function of a random variable [say, gðxÞ]. In the continuous case, for example, we would write

E½ gðxÞ� ¼ ∫
þ∞

�∞

gðxÞf ðxÞ dx: (2.178)

23The expected value of a random variable is sometimes referred to as the mean of that variable. In the study of sampling
this can sometimes lead to confusion between the expected value of a random variable and the separate concept of the
sample arithmetic average.
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As a special case, consider a linear function y ¼ ax þ b. Then

EðyÞ ¼ Eðax þ bÞ ¼ ∫
þ∞

�∞

ðax þ bÞf ðxÞ dx

¼ a∫
þ∞

�∞

xf ðxÞ dx þ b∫
þ∞

�∞

f ðxÞ dx ¼ aEðxÞ þ b: (2:179)

Sometimes expected values are phrased in terms of the cumulative distribution function
(CDF) F ðxÞ, defined as

FðxÞ ¼ ∫
x

�∞

f ðt Þ dt : (2.180)

That is, F ðxÞ represents the probability that the random variable t is less than or equal to x.
With this notation, the expected value of gðxÞ is defined as

E½ gðxÞ� ¼ ∫
þ∞

�∞

gðxÞ dF ðxÞ: (2.181)

Because of the fundamental theorem of calculus, Equation 2.181 and Equation 2.178 mean
exactly the same thing.

EXAMPLE 2.14 Expected Values of a Few Random Variables

The expected values of each of the random variables with the simple PDFs introduced earlier
are easy to calculate. All of these expected values are indicated on the graphs of the functions’
PDFs in Figure 2.6.

1. Binomial. In this case:

EðxÞ ¼ 1 ⋅ f ðx ¼ 1Þ þ 0 ⋅ f ðx ¼ 0Þ ¼ 1 ⋅ p þ 0 ⋅ ð1� pÞ ¼ p: (2.182)

For the coin flip case (where p ¼ 0:5), this says that EðxÞ ¼ p ¼ 0:5—the expected value of
this random variable is, as you might have guessed, one half.

2. Uniform. For this continuous random variable,

EðxÞ ¼ ∫
b

a

x
b � a

dx ¼ x2

2ðb � aÞ

�����
b

a

¼ b2

2ðb � aÞ �
a2

2ðb � aÞ ¼
b þ a
2

: (2.183)

Again, as you might have guessed, the expected value of the uniform distribution is precisely
halfway between a and b.

3. Exponential. For this case of declining probabilities:

EðxÞ ¼ ∫
∞

0

xλe�λx dx ¼ �xe�λx � 1
λ
e�λx

���∞
0
¼ 1

λ
, (2.184)

where the integration follows from the integration by parts example shown earlier in this
chapter (Equation 2.137). Notice here that the faster the probabilities decline, the lower is
the expected value of x. For example, if λ ¼ 0:5 then EðxÞ ¼ 2, whereas if λ ¼ 0:05 then
EðxÞ ¼ 20.

(continued)
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EXAMPLE 2.14 CONTINUED

4. Normal. Because the Normal PDF is symmetric around zero, it seems clear that
EðxÞ ¼ 0. A formal proof uses a change of variable integration by letting u ¼ x2=2 ðdu ¼ xdxÞ:

∫
þ∞

�∞

1ffiffiffiffiffiffiffi
2π

p xe�x2=2 dx ¼ 1ffiffiffiffiffiffiffi
2π

p ∫
þ∞

�∞

e�u du ¼ 1ffiffiffiffiffiffiffi
2π

p ½�e�x2=2�
���þ∞

�∞
¼ 1ffiffiffiffiffiffiffi

2π
p ½0� 0� ¼ 0: (2.185)

Of course, the expected value of a normally distributed random variable (or of any random
variable) may be altered by a linear transformation, as shown in Equation 2.179.

QUERY: A linear transformation changes a random variable’s expected value in a very
predictable way—if y ¼ ax þ b, then EðyÞ ¼ aEðxÞ þ b. Hence, for this transformation
[say, hðxÞ] we have E½hðxÞ� ¼ h½EðxÞ�. Suppose instead that x were transformed by a concave
function, say gðxÞ with g 0 > 0 and g 00 < 0. How would E½ gðxÞ� compare to g ½EðxÞ�?

Note: This is an illustration of Jensen’s inequality, a concept we will pursue in detail in
Chapter 7. See also Problem 2.13.

Variance and standard deviation
The expected value of a random variable is a measure of central tendency. On the other hand,
the variance of a random variable [denoted by σ2

x or VarðxÞ] is a measure of dispersion.
Specifically, the variance is defined as the “expected squared deviation” of a random variable
from its expected value. Formally:

VarðxÞ ¼ σ2
x ¼ E½ðx � EðxÞÞ2� ¼ ∫

þ∞

�∞

ðx � EðxÞÞ2f ðxÞ dx: (2.186)

Somewhat imprecisely, the variance measures the “typical” squared deviation from the
central value of a random variable. In making the calculation, deviations from the expected
value are squared so that positive and negative deviations from the expected value will both
contribute to this measure of dispersion. After the calculation is made, the squaring process
can be reversed to yield a measure of dispersion that is in the original units in which the
random variable was measured. This square root of the variance is called the “standard
deviation” and is denoted as σx ð¼

ffiffiffiffiffi
σ2
x

p Þ. The wording of the term effectively conveys its
meaning: σx is indeed the typical (“standard”) deviation of a random variable from its
expected value.

When a random variable is subject to a linear transformation, its variance and standard
deviation will be changed in a fairly obvious way. If y ¼ ax þ b, then

σ2
y ¼ ∫

þ∞

�∞

½ax þ b � Eðax þ bÞ�2f ðxÞ dx ¼ ∫
þ∞

�∞

a2½x � EðxÞ�2f ðxÞ dx ¼ a2σ2
x : (2.187)

Hence, addition of a constant to a random variable does not change its variance, whereas
multiplication by a constant multiplies the variance by the square of the constant. It is clear
therefore that multiplying a variable by a constant multiplies its standard deviation by that
constant: σax ¼ aσx .
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EXAMPLE 2.15 Variances and Standard Deviations for Simple Random Variables

Knowing the variances and standard deviations of the four simple random variables we have
been looking at can sometimes be quite useful in economic applications.

1. Binomial. The variance of the binomial can be calculated by applying the definition in
its discrete analog:

σ2
x ¼
Xn
i¼1

ðxi � EðxÞÞ2f ðxiÞ ¼ ð1� pÞ2 ⋅ p þ ð0� pÞ2ð1� pÞ

¼ ð1� pÞðp � p2 þ p2Þ ¼ pð1� pÞ: (2:188)

Hence, σx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞp

. One implication of this result is that a binomial variable has the
largest variance and standard deviation when p ¼ 0:5, in which case σ2

x ¼ 0:25 and σx ¼ 0:5.
Because of the relativelyflat parabolic shape of pð1� pÞ,modest deviations of p from0.5donot
change this variance substantially.

2. Uniform. Calculating the variance of the uniform distribution yields a mildly interest-
ing result:

σ2
x ¼ ∫

b

a

x � a þ b
2

� �2 1
b � a

dx ¼ x � a þ b
2

� �3

� 1
3ðb � aÞ

����b
a

¼ 1
3ðb � aÞ

ðb � aÞ3
8

� ða � bÞ3
8

" #
¼ ðb � aÞ2

12
: (2:189)

This is one of the few places where the number 12 has any use in mathematics other than in
measuring quantities of oranges or doughnuts.

3. Exponential. Integrating the variance formula for the exponential is relatively laborious.
Fortunately, the result is quite simple; for the exponential, it turns out that σ2

x ¼ 1=λ2 and
σx ¼ 1=λ. Hence, the mean and standard deviation are the same for the exponential distribu-
tion—it is a “one-parameter distribution.”

4. Normal. In this case also, the integration can be burdensome. But again the result is
simple: for the Normal distribution, σ2

x ¼ σx ¼ 1. Areas below the Normal curve can be
readily calculated and tables of these are available in any statistics text. Two useful facts about
the Normal PDF are:

∫
þ1

�1

f ðxÞ dx � 0:68 and ∫
þ2

�2

f ðxÞ dx � 0:95: (2.190)

That is, the probability is about two thirds that a Normal variable will be within 
1 standard
deviation of the expected value and “most of the time” (i.e., with probability 0.95) it will be
within 
2 standard deviations.

Standardizing the Normal. If the random variable x has a standard Normal PDF, it will
have an expected value of 0 and a standard deviation of 1. However, a simple linear
transformation can be used to give this random variable any desired expected value (μ) and
standard deviation (σ). Consider the transformation y ¼ σx þ μ. Now

EðyÞ ¼ σEðxÞ þ μ ¼ μ and VarðyÞ ¼ σ2
y ¼ σ2 VarðxÞ ¼ σ2: (2.191)

Reversing this process can be used to “standardize” anyNormally distributed random variable
(y) with an arbitrary expected value (μ) and standard deviation (σ) (this is sometimes denoted

(continued)

Chapter 2 Mathematics for Microeconomics 71



EXAMPLE 2.15 CONTINUED

as y ∼N ðμ, σÞ) by using z ¼ ðy � μÞ=σ. For example, SAT scores (y) are distributed
Normally with an expected value of 500 points and a standard deviation of 100 points (that
is, y ∼N ð500, 100Þ). Hence, z ¼ ðy � 500Þ=100 has a standard Normal distribution with
expected value 0 and standard deviation 1. Equation 2.190 shows that approximately
68 percent of all scores lie between 400 and 600 points and 95 percent of all scores lie between
300 and 700 points.

QUERY: Suppose that the random variable x is distributed uniformly along the interval
[0, 12]. What are the mean and standard deviation of x? What fraction of the x distribution
is within 
1 standard deviation of the mean? What fraction of the distribution is within 
2
standard deviations of the expected value? Explain why this differs from the fractions com-
puted for the Normal distribution.

Covariance
Some economic problems involve two or more random variables. For example, an investor
may consider allocating his or her wealth among several assets the returns on which are taken
to be random. Although the concepts of expected value, variance, and so forth carry over
more or less directly when looking at a single random variable in such cases, it is also necessary
to consider the relationship between the variables to get a complete picture. The concept of
covariance is used to quantify this relationship. Before providing a definition, however, we
will need to develop some background.

Consider a case with two continuous random variables, x and y. The probability density
function for these two variables, denoted by f ðx, yÞ, has the property that the probability
associated with a set of outcomes in a small area (with dimensions dxdy) is given by
f ðx, yÞdxdy. To be a proper PDF, it must be the case that:

f ðx, yÞ 	 0 and ∫
þ∞

�∞
∫
þ∞

�∞

f ðx, yÞ dx dy ¼ 1: (2.192)

The single-variable measures we have already introduced can be developed in this two-
variable context by “integrating out” the other variable. That is,

EðxÞ ¼ ∫
þ∞

�∞
∫
þ∞

�∞

xf ðx, yÞ dy dx and

VarðxÞ ¼ ∫
þ∞

�∞
∫
þ∞

�∞

½x � EðxÞ�2f ðx, yÞ dy dx:

(2.193)

In this way, the parameters describing the random variable x are measured over all possible
outcomes for y after taking into account the likelihood of those various outcomes.

In this context, the covariance between x and y seeks to measure the direction of
association between the variables. Specifically the covariance between x and y [denoted as
Covðx, yÞ] is defined as

Covðx, yÞ ¼ ∫
þ∞

�∞
∫
þ∞

�∞

�
x � EðxÞ��y � EðyÞ�f ðx , yÞ dx dy: (2.194)
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The covariance between two random variablesmay be positive, negative, or zero. If values of x
that are greater than EðxÞ tend to occur relatively frequently with values of y that are greater
than EðyÞ (and similarly, if low values of x tend to occur together with low values of y ), then
the covariance will be positive. In this case, values of x and y tend to move in the same
direction. Alternatively, if high values of x tend to be associated with low values for y (and vice
versa), the covariance will be negative.

Two random variables are defined to be independent if the probability of any particular
value of, say, x is not affected by the particular value of y that might occur (and vice versa).24

In mathematical terms, this means that the PDF must have the property that f ðx, yÞ ¼
gðxÞhðyÞ—that is, the joint probability density function can be expressed as the product of
two single-variable PDFs. If x and y are independent, their covariance will be zero:

Covðx, yÞ ¼ ∫
þ∞

�∞
∫
þ∞

�∞

½x � EðxÞ�½y � EðyÞ�gðxÞhðyÞ dx dy

¼ ∫
þ∞

�∞

½x � EðxÞ�gðxÞ dx ⋅ ∫
þ∞

�∞

½y � EðyÞ�hðyÞ dy ¼ 0 ⋅0 ¼ 0: (2.195)

The converse of this statement is not necessarily true, however. A zero covariance does not
necessarily imply statistical independence.

Finally, the covariance concept is crucial for understanding the variance of sums or
differences of random variables. Although the expected value of a sum of two random
variables is (as one might guess) the sum of their expected values:

Eðx þ yÞ ¼ ∫
þ∞

�∞
∫
þ∞

�∞

ðx þ yÞf ðx, yÞ dx dy

¼ ∫
þ∞

�∞

xf ðx, yÞ dy dx þ ∫
þ∞

�∞

yf ðx, yÞ dx dy ¼ EðxÞ þ EðyÞ, (2.196)

the relationship for the variance of such a sum is more complicated. Using the definitions we
have developed yields

Varðxþ yÞ ¼ ∫
þ∞

�∞
∫
þ∞

�∞

½xþ y�Eðxþ yÞ�2f ðx,yÞdx dy

¼ ∫
þ∞

�∞
∫
þ∞

�∞

½x�EðxÞþ y�EðyÞ�2f ðx,yÞdx dy

¼ ∫
þ∞

�∞
∫
þ∞

�∞

½x�EðxÞ�2þ ½y�EðyÞ�2þ2½x�EðxÞ�½y�EðyÞ� f ðx,yÞdx dy

¼ VarðxÞþVarðyÞþ2Covðx,yÞ: (2.197)

Hence, if x and y are independent then Varðxþ yÞ ¼VarðxÞþVarðyÞ. The variance of the sum
will be greater than the sum of the variances if the two random variables have a positive
covariance and will be less than the sum of the variances if they have a negative covariance.
Problems 2.13 and 2.14 provide further details on statistical issues that arise inmicroeconomic
theory.

24A formal definition relies on the concept of conditional probability. The conditional probability of an event B given that
A has occurred (written PðBjAÞ is defined as PðBjAÞ ¼ PðA and BÞ=PðAÞ; B and A are defined to be independent if
PðBjAÞ ¼ PðBÞ. In this case, PðA and BÞ ¼ PðAÞ ⋅PðBÞ.
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SUMMARY

Despite the formidable appearance of some parts of this
chapter, this is not a book on mathematics. Rather, the
intention here was to gather together a variety of tools that
will be used to develop economic models throughout the
remainder of the text. Material in this chapter will then be
useful as a handy reference.

One way to summarize the mathematical tools intro-
duced in this chapter is by stressing again the economic
lessons that these tools illustrate:

• Using mathematics provides a convenient, shorthand
way for economists to develop their models. Implica-
tions of various economic assumptions can be studied
in a simplified setting through the use of such mathe-
matical tools.

• The mathematical concept of the derivatives of a func-
tion is widely used in economic models because econo-
mists are often interested in how marginal changes in
one variable affect another variable. Partial derivatives
are especially useful for this purpose because they are
defined to represent such marginal changes when all
other factors are held constant.

• Themathematics of optimization is an important tool for
the development of models that assume that economic
agents rationally pursue some goal. In the unconstrained
case, the first-order conditions state that any activity that
contributes to the agent’s goal should be expanded up to
the point at which the marginal contribution of further
expansion is zero. In mathematical terms, the first-order
condition for an optimum requires that all partial deriva-
tives be zero.

• Most economic optimization problems involve constraints
on the choices agents canmake. In this case the first-order
conditions for a maximum suggest that each activity be
operated at a level at which the ratio of the marginal
benefit–of the activity to its marginal cost is the same for
all activities actually used. This commonmarginal benefit–
marginal cost ratio is also equal to the Lagrangian multi-
plier, which is often introduced to help solve constrained
optimization problems. The Lagrangian multiplier can
also be interpreted as the implicit value (or shadow price)
of the constraint.

• The implicit function theorem is a useful mathematical
device for illustrating the dependence of the choices that
result from an optimization problem on the parameters

of that problem (for example, market prices). The enve-
lope theorem is useful for examining how these optimal
choices change when the problem’s parameters (prices)
change.

• Some optimization problems may involve constraints that
are inequalities rather than equalities. Solutions to these
problems often illustrate “complementary slackness.”
That is, either the constraints hold with equality and
their related Lagrangian multipliers are nonzero, or the
constraints are strict inequalities and their relatedLagrang-
ian multipliers are zero. Again this illustrates how the
Lagrangian multiplier implies something about the “im-
portance” of constraints.

• The first-order conditions shown in this chapter are only
the necessary conditions for a local maximum or mini-
mum. One must also check second-order conditions that
require that certain curvature conditions be met.

• Certain types of functions occur in many economic prob-
lems. Quasi-concave functions (those functions for
which the level curves form convex sets) obey the second-
order conditions of constrained maximum or minimum
problems when the constraints are linear. Homothetic
functions have the useful property that implicit trade-offs
among the variables of the function depend only on the
ratios of these variables.

• Integral calculus is often used in economics both as a way
of describing areas below graphs and as a way of sum-
ming results over time. Techniques that involve various
ways of differentiating integrals play an important role in
the theory of optimizing behavior.

• Many economic problems are dynamic in that decisions
at one date affect decisions and outcomes at later dates.
The mathematics for solving such dynamic optimization
problems is often a straightforward generalization of
Lagrangian methods.

• Concepts from mathematical statistics are often used in
studying the economics of uncertainty and information.
The most fundamental concept is the notion of a ran-
dom variable and its associated probability density func-
tion. Parameters of this distribution, such as its expected
value or its variance, also play important roles in many
economic models.
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PROBLEMS

2.1
Suppose U ðx, yÞ ¼ 4x2 þ 3y2.

a. Calculate ∂U =∂x, ∂U =∂y.

b. Evaluate these partial derivatives at x ¼ 1, y ¼ 2.

c. Write the total differential for U .

d. Calculate dy=dx for dU ¼ 0—that is, what is the implied trade-off between x and y holding U
constant?

e. Show U ¼ 16 when x ¼ 1, y ¼ 2.

f. In what ratio must x and y change to hold U constant at 16 for movements away from x ¼ 1,
y ¼ 2?

g. More generally, what is the shape of the U ¼ 16 contour line for this function? What is the
slope of that line?

2.2
Suppose a firm’s total revenues depend on the amount produced ðqÞ according to the function

R ¼ 70q � q2:

Total costs also depend on q:

C ¼ q2 þ 30q þ 100:

a. What level of output should the firm produce in order to maximize profits (R � C)? What will
profits be?

b. Show that the second-order conditions for a maximum are satisfied at the output level found in
part (a).

c. Does the solution calculated here obey the “marginal revenue equals marginal cost” rule?
Explain.

2.3
Suppose that f ðx, yÞ ¼ xy. Find the maximum value for f if x and y are constrained to sum to 1. Solve
this problem in two ways: by substitution and by using the Lagrangian multiplier method.

2.4
The dual problem to the one described in Problem 2.3 is

minimize x þ y
subject to xy ¼ 0:25:

Solve this problem using the Lagrangian technique. Then compare the value you get for the Lagrangian
multiplier to the value you got in Problem 2.3. Explain the relationship between the two solutions.

2.5
The height of a ball that is thrown straight up with a certain force is a function of the time (t) fromwhich
it is released given by f ðtÞ ¼ �0:5gt2 þ 40t (where g is a constant determined by gravity).
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a. How does the value of t at which the height of the ball is at a maximum depend on the
parameter g?

b. Use your answer to part (a) to describe how maximum height changes as the parameter g
changes.

c. Use the envelope theorem to answer part (b) directly.

d. On the Earth g ¼ 32, but this value varies somewhat around the globe. If two locations had
gravitational constants that differed by 0.1, what would be the difference in the maximum
height of a ball tossed in the two places?

2.6
A simple way to model the construction of an oil tanker is to start with a large rectangular sheet of steel
that is x feet wide and 3x feet long. Now cut a smaller square that is t feet on a side out of each corner of
the larger sheet and fold up and weld the sides of the steel sheet to make a traylike structure with no top.

a. Show that the volume of oil that can be held by this tray is given by

V ¼ t ðx � 2t Þð3x � 2t Þ ¼ 3tx2 � 8t2x þ 4t3:

b. How should t be chosen so as to maximize V for any given value of x?

c. Is there a value of x that maximizes the volume of oil that can be carried?

d. Suppose that a shipbuilder is constrained to use only 1,000,000 square feet of steel sheet to
construct an oil tanker. This constraint can be represented by the equation 3x2 � 4t2 ¼
1,000,000 (because the builder can return the cut-out squares for credit). How does the
solution to this constrained maximum problem compare to the solutions described in parts
(b) and (c)?

2.7
Consider the following constrained maximization problem:

maximize y ¼ x1 þ 5 ln x2
subject to k � x1 � x2 ¼ 0,

where k is a constant that can be assigned any specific value.

a. Show that if k ¼ 10, this problem can be solved as one involving only equality constraints.

b. Show that solving this problem for k ¼ 4 requires that x1 ¼ �1.

c. If the x’s in this problem must be nonnegative, what is the optimal solution when k ¼ 4?

d. What is the solution for this problem when k ¼ 20? What do you conclude by comparing this
solution to the solution for part (a)?

Note: This problem involves what is called a “quasi-linear function.” Such functions provide important
examples of some types of behavior in consumer theory—as we shall see.

2.8
Suppose that a firm has a marginal cost function given by MCðqÞ ¼ q þ 1.

a. What is this firm’s total cost function? Explain why total costs are known only up to a constant of
integration, which represents fixed costs.

b. As you may know from an earlier economics course, if a firm takes price (p) as given in its
decisions then it will produce that output for which p ¼ MCðqÞ. If the firm follows this profit-
maximizing rule, how much will it produce when p ¼ 15? Assuming that the firm is just
breaking even at this price, what are fixed costs?
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c. How much will profits for this firm increase if price increases to 20?

d. Show that, if we continue to assume profit maximization, then this firm’s profits can be
expressed solely as a function of the price it receives for its output.

e. Show that the increase in profits from p ¼ 15 to p ¼ 20 can be calculated in two ways: (i)
directly from the equation derived in part (d); and (ii) by integrating the inverse marginal cost
function ½MC�1ðpÞ ¼ p � 1� from p ¼ 15 to p ¼ 20. Explain this result intuitively using the
envelope theorem.

Analytical Problems

2.9 Concave and quasi-concave functions
Show that if f ðx1, x2Þ is a concave function then it is also a quasi-concave function. Do this by
comparing Equation 2.114 (defining quasi-concavity) to Equation 2.98 (defining concavity). Can
you give an intuitive reason for this result? Is the converse of the statement true? Are quasi-concave
functions necessarily concave? If not, give a counterexample.

2.10 The Cobb-Douglas function
One of the most important functions we will encounter in this book is the Cobb-Douglas function:

y ¼ ðx1Þαðx2Þβ,
where α and β are positive constants that are each less than 1.

a. Show that this function is quasi-concave using a “brute force” method by applying Equa-
tion 2.114.

b. Show that the Cobb-Douglas function is quasi-concave by showing that any contour line of the
form y ¼ c (where c is any positive constant) is convex and therefore that the set of points for
which y > c is a convex set.

c. Show that if αþ β > 1 then the Cobb-Douglas function is not concave (thereby illustrating
again that not all quasi-concave functions are concave).

Note: The Cobb-Douglas function is discussed further in the Extensions to this chapter.

2.11 The power function
Another function we will encounter often in this book is the “power function”:

y ¼ xδ,

where 0 � δ � 1 (at times we will also examine this function for cases where δ can be negative, too, in
which case we will use the form y ¼ xδ=δ to ensure that the derivatives have the proper sign).

a. Show that this function is concave (and therefore also, by the result ofProblem2.9, quasi-concave).
Notice that the δ ¼ 1 is a special case and that the function is “strictly” concave only for δ < 1.

b. Show that the multivariate form of the power function

y ¼ f ðx1, x2Þ ¼ ðx1Þδ þ ðx2Þδ

is also concave (and quasi-concave). Explain why, in this case, the fact that f12 ¼ f21 ¼ 0 makes
the determination of concavity especially simple.

c. One way to incorporate “scale” effects into the function described in part (b) is to use the
monotonic transformation

gðx1, x2Þ ¼ yγ ¼ ½ðx1Þδ þ ðx2Þδ�γ,
where γ is a positive constant. Does this transformation preserve the concavity of the function?
Is g quasi-concave?
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2.12 Taylor approximations
Taylor’s theorem shows that any function can be approximated in the vicinity of any convenient point
by a series of terms involving the function and its derivatives. Here we look at some applications of the
theorem for functions of one and two variables.

a. Any continuous and differentiable function of a single variable, f ðxÞ, can be approximated near
the point a by the formula

f ðxÞ ¼ f ðaÞ þ f 0ðaÞðx � aÞ þ 0:5f 00ðaÞðx � aÞ2 þ terms in f 000, f 0000,…:

Using only the first three of these terms results in a quadratic Taylor approximation. Use this
approximation together with the definition of concavity given in Equation 2.85 to show that
any concave function must lie on or below the tangent to the function at point a.

b. The quadratic Taylor approximation for any function of two variables, f ðx, yÞ, near the point
ða, bÞ is given by

f ðx, yÞ ¼ f ða, bÞ þ f1ða, bÞðx � aÞ þ f2ða, bÞðy � bÞ
þ 0:5½ f11ða,bÞðx � aÞ2 þ 2f12ða, bÞðx � aÞðy � bÞ þ f22ðy � bÞ2�:

Use this approximation to show that any concave function (as defined by Equation 2.98) must
lie on or below its tangent plane at (a, b).

2.13 More on expected value
Because the expected value concept plays an important role in many economic theories, it may be useful
to summarize a few more properties of this statistical measure. Throughout this problem, x is assumed
to be a continuous random variable with probability density function f ðxÞ.

a. (Jensen’s inequality) Suppose that gðxÞ is a concave function. Show that E½ gðxÞ� � g ½EðxÞ�.
Hint: Construct the tangent to gðxÞ at the point EðxÞ. This tangent will have the form
c þ dx 	 gðxÞ for all values of x and c þ dEðxÞ ¼ g ½EðxÞ� where c and d are constants.

b. Use the procedure from part (a) to show that if gðxÞ is a convex function then E½ gðxÞ� 	
g½EðxÞ�.

c. Suppose x takes on only nonnegative values—that is, 0� x� ∞. Use integration by parts to
show that

EðxÞ ¼ ∫
∞

0

½1� FðxÞ� dx,

where F ðxÞ is the cumulative distribution function for x [that is, F ðxÞ ¼ ∫x0 f ðtÞ dt].
d. (Markov’s inequality) Show that if x takes on only positive values then the following inequality

holds:

P ðx 	 t Þ � EðxÞ
t

:

Hint: EðxÞ ¼ ∫∞0 xf ðxÞ dx ¼ ∫t0 xf ðxÞ dx þ ∫∞t xf ðxÞ dx:
e. Consider the probability density function f ðxÞ ¼ 2x�3 for x 	 1.

(1) Show that this is a proper PDF.

(2) Calculate F ðxÞ for this PDF.

(3) Use the results of part (c) to calculate EðxÞ for this PDF.

(4) Show that Markov’s inequality holds for this function.

f. The concept of conditional expected value is useful in some economic problems. We denote the
expected value of x conditional on the occurrence of some event,A, as EðxjAÞ. To compute this
value we need to know the PDF for x given thatA has occurred [denoted by f ðxjAÞ]. With this
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notation, EðxjAÞ ¼ ∫þ∞
�∞ xf ðxjAÞ dx. Perhaps the easiest way to understand these relationships

is with an example. Let

f ðxÞ ¼ x2

3
for �1 � x � 2:

(1) Show that this is a proper PDF.

(2) Calculate EðxÞ.
(3) Calculate the probability that �1 � x � 0.

(4) Consider the event 0 � x � 2, and call this event A. What is f ðxjAÞ?
(5) Calculate EðxjAÞ.
(6) Explain your results intuitively.

2.14 More on variances and covariances
This problem presents a few useful mathematical facts about variances and covariances.

a. Show that VarðxÞ ¼ Eðx2Þ � ½EðxÞ�2.
b. Show that the result in part (a) can be generalized as Covðx, yÞ ¼ EðxyÞ � EðxÞEðyÞ. Note: If

Covðx, yÞ ¼ 0, then EðxyÞ ¼ EðxÞEðyÞ.
c. Show that Varðax 
 byÞ ¼ a2 VarðxÞ þ b2 VarðyÞ 
 2ab Covðx, yÞ.
d. Assume that two independent random variables, x and y, are characterized by EðxÞ ¼ EðyÞ

and VarðxÞ ¼ VarðyÞ . Show that Eð0:5x þ 0:5yÞ ¼ EðxÞ. Then use part (c) to show that
Varð0:5x þ 0:5yÞ ¼ 0:5 VarðxÞ. Describe why this fact provides the rationale for diversification
of assets.
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Mathematical Manual, 3rd ed. Berlin: Springer-Verlag,
2000.

An indispensable tool for mathematical review. Contains 32 chapters
covering most of the mathematical tools that economists use.
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Discussions are very brief, so this is not the place to encounter new
concepts for the first time.

Taylor, Angus E., and W. Robert Mann. Advanced
Calculus, 3rd ed. New York: John Wiley, 1983, pp. 183–95.

A comprehensive calculus text with a good discussion of the Lagrang-
ian technique.

Thomas, George B., and Ross L. Finney. Calculus and
Analytic Geometry, 8th ed. Reading, MA: Addison-Wesley,
1992.

Basic calculus text with excellent coverage of differentiation

techniques.

80 Part 1 Introduction



E X T E N S I O N S

Second-Order Conditions and Matrix Algebra

The second-order conditions described in Chapter 2
can be written in very compact ways by using matrix
algebra. In this extension, we look briefly at that nota-
tion. We return to this notation at a few other places in
the extensions and problems for later chapters.

Matrix algebra background

The extensions presented here assume some general
familiarity with matrix algebra. A succinct reminder of
these principles might include:

1. An n � k matrix, A, is a rectangular array of
terms of the form

A ¼ aij
h i

¼

a11 a12 … a1k
a21 a22 … a2k
..
.

an1 an2 … ank

26664
37775:

Here i ¼ 1, n; j ¼ 1, k. Matrices can be added,
subtracted, or multiplied providing their dimen-
sions are conformable.

2. If n ¼ k, then A is a square matrix. A square
matrix is symmetric if aij ¼ aji. The identity ma-
trix, In, is an n þ n square matrix where aij ¼ 1
if i ¼ j and aij ¼ 0 if i 6¼ j .

3. The determinant of a square matrix (denoted
by jAj) is a scalar (i.e., a single term) found by
suitably multiplying together all of the terms in
the matrix. If A is 2 � 2,

jAj ¼ a11a22 � a21a12:

Example: If A ¼ 1 3
5 2

	 

then

jAj ¼ 2� 15 ¼ �13:

4. The inverse of an n � n square matrix, A, is
another n � n matrix, A�1, such that

A � A�1 ¼ In:

Not every square matrix has an inverse. A
necessary and sufficient condition for the
existence of A�1 is that jAj 6¼ 0.

5. The leading principal minors of an n � n square
matrix A are the series of determinants of the
first p rows and columns of A, where p ¼ 1, n. If

A is 2 � 2, then the first leading principal minor
is a11 and the second is a11a22 � a21a12.

6. An n � n square matrix, A, is positive definite if
all of its leading principal minors are positive.
The matrix is negative definite if its principal
minors alternate in sign starting with a minus.1

7. A particularly useful symmetric matrix is the
Hessian matrix formed by all of the second-
order partial derivatives of a function. If f is a
continuous and twice differentiable function of
n variables, then its Hessian is given by

Hð f Þ ¼

f11 f12 … f1n
f21 f22 … f2n
..
.

fn1 fn2 … fnn

26664
37775:

Using these notational ideas, we can now exam-
ine again some of the second-order conditions
derived in Chapter 2.

E2.1 Concave and convex functions

A concave function is one that is always below (or on)
any tangent to it. Alternatively, a convex function is
always above (or on) any tangent. The concavity or
convexity of any function is determined by its second
derivative(s). For a function of a single variable, f ðxÞ,
the requirement is straightforward. Using the Taylor
approximation at any point (x0)

f ðx0 þ dxÞ ¼ f ðx0Þ þ f 0ðx0Þdx þ f 00ðx0Þ
dx2

2þ higher-order terms:

Assuming that the higher-order terms are 0, we have

f ðx0 þ dxÞ � f ðx0Þ þ f 0ðx0Þdx
if f 00ðx0Þ � 0 and

f ðx0 þ dxÞ 	 f ðx0Þ þ f 0ðx0Þdx
if f 00ðx0Þ 	 0. Because the expressions on the right of
these inequalities are in fact the equation of the
tangent to the function at x0, it is clear that the

1If some of the determinants in this definition are 0 then the matrix is
said to be positive semidefinite or negative semidefinite.
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function is (locally) concave if f 00ðx0Þ � 0 and
(locally) convex if f 00ðx0Þ 	 0.

Extending this intuitive idea to many dimensions is
cumbersome in terms of functional notation, but rela-
tively simple when matrix algebra is used. Concavity
requires that the Hessian matrix be negative definite
whereas convexity requires that this matrix be positive
definite. As in the single variable case, these conditions
amount to requiring that the function move consis-
tently away from any tangent to it no matter what
direction is taken.2

If f ðx1, x2Þ is a function of two variables, the Hes-
sian is given by

H ¼ f11 f12
f21 f22

	 

:

This is negative definite if

f11 < 0 and f11f22 � f21f12 > 0,

which is precisely the condition described in Equa-
tion 2.98. Generalizations to functions of three or
more variables follow the same matrix pattern.

Example 1
For the health status function in Chapter 2 (Equa-
tion 2.20), the Hessian is given by

H ¼ �2 0
0 �2

	 

,

and the first and second leading principal minors are

H1 ¼ �2 < 0 and
H2 ¼ ð�2Þð�2Þ � 0 ¼ 4 > 0:

Hence, the function is concave.

Example 2
The Cobb-Douglas function xayb where a, b 2 ð0, 1Þ
is used to illustrate utility functions and production
functions in many places in this text. The first- and
second-order derivatives of the function are

fx ¼ axa�1yb ,
fy ¼ bxayb�1,

fxx ¼ aða � 1Þxa�2yb ,
fyy ¼ bðb � 1Þxayb�2:

Hence, the Hessian for this function is

H ¼ aða � 1Þxa�2yb abxa�1yb�1

abxa�1yb�1 bðb � 1Þxayb�2

	 

:

The first leading principal minor of this Hessian is

H1 ¼ aða � 1Þxa�2yb < 0

and so the function will be concave, providing

H2¼ aða�1ÞðbÞðb�1Þx2a�2y2b�2�a2b2x2a�2y2b�2

¼abð1�a�bÞx2a�2y2b�2 > 0:

This condition clearly holds if aþ b < 1. That is, in
production function terminology, the function must
exhibit diminishing returns to scale to be concave.
Geometrically, the function must turn downward as
both inputs are increased together.

E2.2 Maximization

As we saw in Chapter 2, the first-order conditions for
an unconstrained maximum of a function of many
variables requires finding a point at which the partial
derivatives are zero. If the function is concave it will be
below its tangent plane at this point and therefore the
point will be a true maximum.3 Because the health
status function is concave, for example, the first-
order conditions for a maximum are also sufficient.

E2.3 Constrained maxima

When the x’s in a maximization or minimization prob-
lem are subject to constraints, these constraints have to
be taken into account in stating second-order condi-
tions. Again, matrix algebra provides a compact (if not
very intuitive) way of denoting these conditions. The
notation involves adding rows and columns of the
Hessian matrix for the unconstrained problem and
then checking the properties of this augmentedmatrix.

Specifically, we wish to maximize

f ðx1,…, xnÞ
subject to the constraint4

gðx1,…, xnÞ ¼ 0:

2A proof using the multivariable version of Taylor’s approximation is
provided in Simon and Blume (1994), chap. 21.

3This will be a “local” maximum if the function is concave only in a
region, or “global” if the function is concave everywhere.
4Here we look only at the case of a single constraint. Generalization to
many constraints is conceptually straightforward but notationally com-
plex. For a concise statement see Sydsaeter, Strom, and Berck (2000),
p. 93.
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We saw in Chapter 2 that the first-order conditions
for a maximum are of the form

fi þ λgi ¼ 0,

where λ is the Lagrangian multiplier for this problem.
Second-order conditions for a maximum are based on
the augmented (“bordered”) Hessian5

Hb ¼

0 g1 g2 … gn
g1 f11 f12 f1n
g2 f21 f22 f2n
..
.

gn fn1 fn2 … fnn

2666664

3777775:
For a maximum, (�1)Hb must be negative definite—
that is, the leading principal minors ofHb must follow
the pattern � + � + � and so forth, starting with the
second such minor.6

The second-order conditions for minimum require
that (�1)Hbbepositive definite—that is, all of the lead-
ing principal minors ofHb (except the first) should be
negative.

Example
The Lagrangian for the constrained health status prob-
lem (Example 2.6) is

ℒ ¼ �x2
1 þ 2x1 � x2

2 þ 4x2 þ 5þ λð1� x1 � x2Þ,
and the bordered Hessian for this problem is

Hb ¼
0 �1 �1

�1 �2 0
�1 0 �2

24 35:
The second leading principal minor here is

Hb2 ¼ 0 �1
�1 �2

	 

¼ �1,

and the third is

Hb3 ¼
0 �1 �1

�1 �2 0
�1 0 �2

264
375

¼ 0þ 0þ 0� ð�2Þ � 0� ð�2Þ ¼ 4,

so the leading principal minors of the Hb have the
required pattern and the point

x2 ¼ 1, x1 ¼ 0,

is a constrained maximum.

Example
In the optimal fence problem (Example 2.7), the bor-
dered Hessian is

Hb ¼
0 �2 �2

�2 0 1
�2 1 0

24 35
and

Hb2 ¼ �4,
Hb3 ¼ 8,

so again the leading principal minors have the sign
pattern required for a maximum.

E2.4 Quasi-concavity

If the constraint g is linear, then the second-order
conditions explored in Extension 2.3 can be related
solely to the shape of the function to be optimized, f .
In this case the constraint can be written as

gðx1,…, xnÞ ¼ c � b1x1 � b2x2 �…� bnxn ¼ 0,

and the first-order conditions for a maximum are

fi ¼ λbi, i ¼ 1,…,n:

Using the conditions, it is clear that the bordered
Hessian Hb and the matrix

H0 ¼
0 f1 f2 … fn
f1 f11 f12 f1n
f2 f21 f22 f2n
fn fn1 fn2 … fnn

2664
3775

have the same leading principal minors except for a
(positive) constant of proportionality.7 The condi-
tions for a maximum of f subject to a linear constraint
will be satisfied provided H0 follows the same sign
conventions as Hb—that is, (�1)H0 must be negative
definite. A function f for which H0 does follow this
pattern is called quasi-concave. As we shall see, f
has the property that the set of points x for which
f ðxÞ 	 c (where c is any constant) is convex. For such
a function, the necessary conditions for a maximum
are also sufficient.

Example
For the fences problem, f ðx, yÞ ¼ xy and H0 is given
by

5Notice that, if gij ¼ 0 for all i and j , then Hb can be regarded as the
simple Hessian associated with the Lagrangian expression given in
Equation 2.50, which is a function of the n þ 1 variables λ, x1,…, xn .
6Notice that the first leading principal minor of Hb is 0.

7This can be shown by noting that multiplying a row (or a column) of a
matrix by a constant multiplies the determinant by that constant.
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H0 ¼
0 y x
y 0 1
x 1 0

24 35:
So

H0
2 ¼� y2 < 0,

H0
3 ¼ 2xy > 0,

and the function is quasi-concave.8

Example
More generally, if f is a function of only two variables,
then quasi-concavity requires that

H0
2 ¼ �ðf1Þ2 < 0 and

H0
3 ¼�f11 f

2
2 � f22 f

2
1 þ 2f1 f2 f12 > 0,

which is precisely the condition stated in Equa-
tion 2.114. Hence, we have a fairly simple way of
determining quasi-concavity.

References
Simon, C. P., and L. Blume. Mathematics for Economists.

New York: W.W. Norton, 1994.

Sydsaeter, R., A. Strom, and P. Berck. Economists’ Math-
ematical Manual, 3rd ed. Berlin: Springer-Verlag, 2000.

8Since f ðx, yÞ ¼ xy is a form of a Cobb-Douglas function that is not
concave, this shows that not every quasi-concave function is concave.
Notice that a monotonic function of f (such as f 1=3) would be concave,
however.
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P A R T 2
Choice and Demand
CHAPTER 3 Preferences and Utility

CHAPTER 4 Utility Maximization and Choice

CHAPTER 5 Income and Substitution Effects

CHAPTER 6 Demand Relationships among Goods

CHAPTER 7 Uncertainty and Information

CHAPTER 8 Strategy and Game Theory

In Part 2 we will investigate the economic theory of choice. One goal of this examination is to develop the
notion of demand in a formal way so that it can be used in later sections of the text when we turn to the
study of markets. A more general goal of this part is to illustrate the theory economists use to explain how
individuals make choices in a wide variety of contexts.

Part 2 begins with a description of the way economists model individual preferences, which are usually
referred to by the formal term utility. Chapter 3 shows how economists are able to conceptualize utility in
a mathematical way. This permits the development of “indifference curves,” which show the various ex-
changes that individuals are willing to make voluntarily.

The utility concept is used in Chapter 4 to illustrate the theory of choice. The fundamental hypothesis of
the chapter is that people faced with limited incomes will make economic choices in such a way as to
achieve as much utility as possible. Chapter 4 uses mathematical and intuitive analyses to indicate the
insights that this hypothesis provides about economic behavior.

Chapters 5 and 6 use the model of utility maximization to investigate how individuals will respond to
changes in their circumstances. Chapter 5 is primarily concerned with responses to changes in the price of a
commodity, an analysis that leads directly to the demand curve notion. Chapter 6 applies this type of
analysis to developing an understanding of demand relationships among different goods.

The final two chapters in this part look at individual behavior in uncertain situations. In Chapter 7 we
describe why people generally dislike risks and are willing to pay something to avoid taking them. Chapter 8
then looks at uncertainties that arise when two or more people find themselves in a “game” in which they
must make strategic choices. The equilibrium notions we develop in studying such games are widely used
throughout economics.
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C H A P T E R

3

Preferences and Utility

In this chapter we look at the way in which economists characterize individuals’ preferences. We begin with a
fairly abstract discussion of the “preference relation,” but quickly turn to the economists’ primary tool for
studying individual choices—the utility function. We look at some general characteristics of that function
and a few simple examples of specific utility functions we will encounter throughout this book.

AXIOMS OF RATIONAL CHOICE

One way to begin an analysis of individuals’ choices is to state a basic set of postulates, or
axioms, that characterize “rational” behavior. These begin with the concept of “preference”:
An individual who reports that “A is preferred to B” is taken to mean that all things con-
sidered, he or she feels better off under situation A than under situation B. The preference
relation is assumed to have three basic properties as follows.

I. Completeness. If A and B are any two situations, the individual can always specify exactly
one of the following three possibilities:
1. “A is preferred to B,”
2. “B is preferred to A,” or
3. “A and B are equally attractive.”
Consequently, people are assumed not to be paralyzed by indecision: They completely
understand and can always make up their minds about the desirability of any two
alternatives. The assumption also rules out the possibility that an individual can report
both that A is preferred to B and that B is preferred to A.

II. Transitivity. If an individual reports that “A is preferred to B” and “B is preferred to C,”
then he or she must also report that “A is preferred to C.”

This assumption states that the individual’s choices are internally consistent. Such an
assumption can be subjected to empirical study. Generally, such studies conclude that a
person’s choices are indeed transitive, but this conclusionmust bemodified in cases where
the individual may not fully understand the consequences of the choices he or she is
making. Because, for the most part, we will assume choices are fully informed (but see the
discussion of uncertainty inChapter 7 and elsewhere), the transitivity property seems to be
an appropriate assumption to make about preferences.

III. Continuity. If an individual reports “A is preferred to B,” then situations suitably “close
to” A must also be preferred to B.

This rather technical assumption is required if we wish to analyze individuals’ responses
to relatively small changes in income and prices. The purpose of the assumption is
to rule out certain kinds of discontinuous, knife-edge preferences that pose problems
for a mathematical development of the theory of choice. Assuming continuity does
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not seem to risk missing types of economic behavior that are important in the real
world.

UTILITY

Given the assumptions of completeness, transitivity, and continuity, it is possible to show
formally that people are able to rank all possible situations from the least desirable to the
most.1 Following the terminology introduced by the nineteenth-century political theorist
Jeremy Bentham, economists call this ranking utility.2 We also will follow Bentham by saying
that more desirable situations offer more utility than do less desirable ones. That is, if a person
prefers situationA to situation B, we would say that the utility assigned to option A, denoted
by U ðAÞ, exceeds the utility assigned to B, U ðBÞ.

Nonuniqueness of utility measures
We might even attach numbers to these utility rankings; however, these numbers will not be
unique. Any set of numbers we arbitrarily assign that accurately reflects the original prefer-
ence ordering will imply the same set of choices. It makes no difference whether we say that
U ðAÞ ¼ 5 and U ðBÞ ¼ 4, or that U ðAÞ ¼ 1,000,000 and U ðBÞ ¼ 0:5. In both cases the
numbers imply that A is preferred to B. In technical terms, our notion of utility is defined
only up to an order-preserving (“monotonic”) transformation.3 Any set of numbers that
accurately reflects a person’s preference ordering will do. Consequently, it makes no sense to
ask “how much more is A preferred than B?” since that question has no unique answer.
Surveys that ask people to rank their “happiness” on a scale of 1 to 10 could just as well use a
scale of 7 to 1,000,000. We can only hope that a person who reports he or she is a “6” on the
scale one day and a “7” on the next day is indeed happier on the second day. Utility rankings
are therefore like the ordinal rankings of restaurants or movies using one, two, three, or four
stars. They simply record the relative desirability of commodity bundles.

This lack of uniqueness in the assignment of utility numbers also implies that it is not
possible to compare utilities of different people. If one person reports that a steak dinner
provides a utility of “5” and another reports that the same dinner offers a utility of “100,” we
cannot say which individual values the dinner more because they could be using very different
scales. Similarly, we have no way of measuring whether a move from situation A to situation
B provides more utility to one person or another. Nonetheless, as we will see, economists can
say quite a bit about utility rankings by examining what people voluntarily choose to do.

The ceteris paribus assumption
Because utility refers to overall satisfaction, such a measure clearly is affected by a variety of
factors. A person’s utility is affected not only by his or her consumption of physical commod-
ities, but also by psychological attitudes, peer group pressures, personal experiences, and the

1These properties and their connection to representation of preferences by a utility function are discussed in detail in
Andreu Mas-Colell, Michael D. Whinston, and Jerry R. Green, Microeconomic Theory (New York: Oxford University Press,
1995).
2J. Bentham, Introduction to the Principles of Morals and Legislation (London: Hafner, 1848).
3We can denote this idea mathematically by saying that any numerical utility ranking ðU Þ can be transformed into another
set of numbers by the function F providing that F ðU Þ is order preserving. This can be ensured if F 0ðU Þ > 0. For example,
the transformation F ðU Þ ¼ U 2 is order preserving as is the transformation F ðU Þ ¼ ln U . At some places in the text and
problems we will find it convenient to make such transformations in order to make a particular utility ranking easier to
analyze.
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general cultural environment. Although economists do have a general interest in examining
such influences, a narrowing of focus is usually necessary. Consequently, a common practice
is to devote attention exclusively to choices among quantifiable options (for example, the
relative quantities of food and shelter bought, the number of hours worked per week, or the
votes among specific taxing formulas) while holding constant the other things that affect
behavior. This ceteris paribus (other things being equal) assumption is invoked in all eco-
nomic analyses of utility-maximizing choices so as to make the analysis of choices manageable
within a simplified setting.

Utility from consumption of goods
As an important example of the ceteris paribus assumption, consider an individual’s problem
of choosing, at a single point in time, among n consumption goods x1, x2,…, xn: We shall
assume that the individual’s ranking of these goods can be represented by a utility function of
the form

utility ¼ U ðx1, x2,…, xn; other thingsÞ, (3.1)

where the x’s refer to the quantities of the goods that might be chosen and the “other
things” notation is used as a reminder that many aspects of individual welfare are being held
constant in the analysis.

Quite often it is easier to write Equation 3.1 as

utility ¼ U ðx1, x2,…, xnÞ (3.2)

or, if only two goods are being considered, as

utility ¼ U ðx, yÞ, (3.20)

where it is clear that everything is being held constant (that is, outside the frame of analysis)
except the goods actually referred to in the utility function. It would be tedious to remind
you at each step what is being held constant in the analysis, but it should be remembered
that some form of the ceteris paribus assumption will always be in effect.

Arguments of utility functions
The utility function notation is used to indicate how an individual ranks the particular arguments
of the function being considered. In the most common case, the utility function (Equation 3.2)
will be used to represent how an individual ranks certain bundles of goods that might be
purchased at one point in time. On occasion we will use other arguments in the utility function,
and it is best to clear up certain conventions at the outset. For example, it may be useful to talk
about the utility an individual receives from real wealth ðW Þ. Therefore, we shall use the notation

utility ¼ U ðW Þ. (3.3)

Unless the individual is a rather peculiar, Scrooge-type person, wealth in its own right gives no
direct utility. Rather, it is only when wealth is spent on consumption goods that any utility
results. For this reason, Equation 3.3 will be taken tomean that the utility fromwealth is in fact
derived by spending that wealth in such a way as to yield as much utility as possible.

Two other arguments of utility functions will be used in later chapters. In Chapter 16 we
will be concerned with the individual’s labor-leisure choice and will therefore have to con-
sider the presence of leisure in the utility function. A function of the form

utility ¼ U ðc, hÞ (3.4)

will be used. Here, c represents consumption and h represents hours of nonwork time (that
is, leisure) during a particular time period.
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In Chapter 17 we will be interested in the individual’s consumption decisions in different
time periods. In that chapter we will use a utility function of the form

utility ¼ U ðc1, c2Þ, (3.5)

where c1 is consumption in this period and c2 is consumption in the next period. By
changing the arguments of the utility function, therefore, we will be able to focus on specific
aspects of an individual’s choices in a variety of simplified settings.

In summary then, we start our examination of individual behavior with the following
definition.

D E F I N I T I O N
Utility. Individuals’ preferences are assumed to be represented by a utility function of the form

U ðx1, x2,…, xnÞ, (3.6)

where x1, x2,…, xn are the quantities of each of n goods that might be consumed in a
period. This function is unique only up to an order-preserving transformation.

Economic goods
In this representation the variables are taken to be “goods”; that is, whatever economic quan-
tities they represent, we assume that more of any particular xi during some period is preferred
to less. We assume this is true of every good, be it a simple consumption item such as a hot
dog or a complex aggregate such as wealth or leisure. We have pictured this convention for a
two-good utility function in Figure 3.1. There, all consumption bundles in the shaded area are

FIGURE 3.1 More of a Good Is Preferred to Less

The shaded area represents those combinations of x and y that are unambiguously preferred to the
combination x�, y�. Ceteris paribus, individuals prefer more of any good rather than less. Combina-
tions identified by “?” involve ambiguous changes in welfare because they contain more of one good
and less of the other.

Quantity of x

Quantity
of y

?

?

Preferred
to

x*, y*

Worse
than
x*, y*

y*

x*
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preferred to the bundle x�, y� because any bundle in the shaded area provides more of at least
one of the goods. By our definition of “goods,” then, bundles of goods in the shaded area are
ranked higher than x�, y�. Similarly, bundles in the area marked “worse” are clearly inferior to
x�, y�, since they contain less of at least one of the goods and nomore of the other. Bundles in
the two areas indicated by question marks are difficult to compare to x�, y� because they
contain more of one of the goods and less of the other. Movements into these areas involve
trade-offs between the two goods.

TRADES AND SUBSTITUTION

Most economic activity involves voluntary trading between individuals. When someone buys,
say, a loaf of bread, he or she is voluntarily giving up one thing (money) for something else
(bread) that is of greater value to that individual. To examine this kind of voluntary transaction,
we need to develop a formal apparatus for illustrating trades in the utility function context.

Indifference curves and the marginal rate of substitution
To discuss such voluntary trades, we develop the idea of an indifference curve. In Figure 3.2,
the curve U1 represents all the alternative combinations of x and y for which an individual is
equally well off (remember again that all other arguments of the utility function are being

FIGURE 3.2 A Single Indifference Curve

The curve U1 represents those combinations of x and y from which the individual derives the same
utility. The slope of this curve represents the rate at which the individual is willing to trade x for y
while remaining equally well off. This slope (or, more properly, the negative of the slope) is termed
themarginal rate of substitution. In the figure, the indifference curve is drawn on the assumption of a
diminishing marginal rate of substitution.

Quantity of x

Quantity
of y

x2x1

y1

U1

U1
y2

Chapter 3 Preferences and Utility 91



held constant). This person is equally happy consuming, for example, either the combination
of goods x1, y1 or the combination x2, y2. This curve representing all the consumption
bundles that the individual ranks equally is called an indifference curve.

D E F I N I T I O N
Indifference curve. An indifference curve (or, in many dimensions, an indifference surface)
shows a set of consumption bundles about which the individual is indifferent. That is, the
bundles all provide the same level of utility.

The slope of the indifference curve in Figure 3.2 is negative, showing that if the individual is
forced to give up some y, he or she must be compensated by an additional amount of x to
remain indifferent between the two bundles of goods. The curve is also drawn so that the
slope increases as x increases (that is, the slope starts at negative infinity and increases toward
zero). This is a graphical representation of the assumption that people become progressively
less willing to trade away y to get more x. In mathematical terms, the absolute value of this
slope diminishes as x increases. Hence, we have the following definition.

D E F I N I T I O N
Marginal rate of substitution. The negative of the slope of an indifference curve ðU1Þ at
some point is termed the marginal rate of substitution (MRS) at that point. That is,

MRS ¼ � dy
dx

����
U¼U1

, (3.7)

where the notation indicates that the slope is to be calculated along the U1 indifference curve.

The slope of U1 and the MRS therefore tell us something about the trades this person will
voluntarily make. At a point such as x1, y1, the person has quite a lot of y and is willing to trade
away a significant amount to get onemore x. The indifference curve at x1, y1 is therefore rather
steep. This is a situation where the person has, say, many hamburgers ðyÞ and little to drink
with them (x). This person would gladly give up a few burgers (say, 5) to quench his or her
thirst with one more drink.

At x2, y2, on the other hand, the indifference curve is flatter. Here, this person has quite a
few drinks and is willing to give up relatively few burgers (say, 1) to get another soft drink.
Consequently, the MRS diminishes between x1, y1 and x2, y2. The changing slope of U1
shows how the particular consumption bundle available influences the trades this person will
freely make.

Indifference curve map
In Figure 3.2 only one indifference curve was drawn. The x, y quadrant, however, is densely
packedwith such curves, each corresponding to a different level of utility. Because every bundle
of goods can be ranked and yields some level of utility, each point in Figure 3.2 must have an
indifference curve passing through it. Indifference curves are similar to contour lines on a map
in that they represent lines of equal “altitude” of utility. In Figure 3.3 several indifference curves
are shown to indicate that there are infinitely many in the plane. The level of utility represented
by these curves increases as we move in a northeast direction; the utility of curveU1 is less than
that ofU2, which is less than that ofU3. This is because of the assumption made in Figure 3.1:
More of a good is preferred to less. As was discussed earlier, there is no unique way to assign
numbers to these utility levels. The curves only show that the combinations of goods onU3 are
preferred to those onU2, which are preferred to those onU1.

92 Part 2 Choice and Demand

drmouracosta
Realce

drmouracosta
Realce



Indifference curves and transitivity
As an exercise in examining the relationship between consistent preferences and the representa-
tion of preferences by utility functions, consider the following question: Can any two of an
individual’s indifference curves intersect? Two such intersecting curves are shown in Figure 3.4.
We wish to know if they violate our basic axioms of rationality. Using our map analogy, there
would seem to be something wrong at point E, where “altitude” is equal to two different
numbers,U1 and U2. But no point can be both 100 and 200 feet above sea level.

To proceed formally, let us analyze the bundles of goods represented by points A, B, C,
and D. By the assumption of nonsatiation (i.e., more of a good always increases utility), “A is
preferred to B” and “C is preferred toD.” But this person is equally satisfied with B andC (they
lie on the same indifference curve), so the axiomof transitivity implies thatAmust be preferred to
D. But that cannot be true, because A and D are on the same indifference curve and are by
definition regarded as equally desirable. This contradiction shows that indifference curves cannot
intersect. Therefore we should always draw indifference curve maps as they appear in Figure 3.3.

Convexity of indifference curves
An alternative way of stating the principle of a diminishingmarginal rate of substitution uses the
mathematical notion of a convex set. A set of points is said to be convex if any two points within
the set can be joined by a straight line that is contained completely within the set. The as-
sumption of a diminishingMRS is equivalent to the assumption that all combinations of x and y

FIGURE 3.3 There Are Infinitely Many Indifference Curves in the x–y Plane

There is an indifference curve passing through each point in the x–y plane. Each of these curves
records combinations of x and y from which the individual receives a certain level of satisfaction.
Movements in a northeast direction represent movements to higher levels of satisfaction.

Quantity of x

Quantity
of y

Increasing utility

U1

U1
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that are preferred or indifferent to a particular combination x�, y� form a convex set.4 This is
illustrated in Figure 3.5a, where all combinations preferred or indifferent to x�, y� are in the
shaded area. Any two of these combinations—say, x1, y1 and x2, y2—can be joined by a straight
line also contained in the shaded area. In Figure 3.5b this is not true. A line joining x1, y1
and x2, y2 passes outside the shaded area. Therefore, the indifference curve through x�, y�
in Figure 3.5b does not obey the assumption of a diminishing MRS, because the set of
points preferred or indifferent to x�, y� is not convex.

Convexity and balance in consumption
By using the notion of convexity, we can show that individuals prefer some balance in their
consumption. Suppose that an individual is indifferent between the combinations x1, y1 and x2,
y2. If the indifference curve is strictly convex, then the combination ðx1 þ x2Þ=2, ðy1 þ y2Þ=2
will be preferred to either of the initial combinations.5 Intuitively, “well-balanced” bundles of
commodities are preferred to bundles that are heavily weighted toward one commodity. This is
illustrated in Figure 3.6. Because the indifference curve is assumed to be convex, all points on
the straight line joining ðx1, y1Þ and ðx2, y2Þ are preferred to these initial points. This therefore
will be true of the point ðx1 þ x2Þ=2, ðy1 þ y2Þ=2, which lies at the midpoint of such a line.

FIGURE 3.4 Intersecting Indifference Curves Imply Inconsistent Preferences

CombinationsA andD lie on the same indifference curve and therefore are equally desirable. But the
axiom of transitivity can be used to show that A is preferred to D. Hence, intersecting indifference
curves are not consistent with rational preferences.
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4This definition is equivalent to assuming that the utility function is quasi-concave. Such functions were discussed
in Chapter 2, and we shall return to examine them in the next section. Sometimes the term strict quasi-concavity is used to
rule out the possibility of indifference curves having linear segments. We generally will assume strict quasi-concavity, but in
a few places we will illustrate the complications posed by linear portions of indifference curves.
5In the case in which the indifference curve has a linear segment, the individual will be indifferent among all three
combinations.
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FIGURE 3.5 The Notion of Convexity as an Alternative Definition of a Diminishing MRS

In (a) the indifference curve is convex (any line joining two points aboveU1 is also aboveU1). In (b)
this is not the case, and the curve shown here does not everywhere have a diminishing MRS.
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FIGURE 3.6 Balanced Bundles of Goods Are Preferred to Extreme Bundles

If indifference curves are convex (if they obey the assumption of a diminishing MRS), then the line
joining any two points that are indifferent will contain points preferred to either of the initial
combinations. Intuitively, balanced bundles are preferred to unbalanced ones.
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Indeed, any proportional combination of the two indifferent bundles of goods will be preferred
to the initial bundles, because it will represent a more balanced combination. Thus, strict
convexity is equivalent to the assumption of a diminishingMRS. Both assumptions rule out the
possibility of an indifference curve being straight over any portion of its length.

EXAMPLE 3.1 Utility and the MRS

Suppose a person’s ranking of hamburgers ðyÞ and soft drinks ðxÞ could be represented by the
utility function

utility ¼ ffiffiffiffiffiffiffiffiffi
x ⋅ y

p
. (3.8)

An indifference curve for this function is found by identifying that set of combinations of x
and y for which utility has the same value. Suppose we arbitrarily set utility equal to 10. Then
the equation for this indifference curve is

utility ¼ 10 ¼ ffiffiffiffiffiffiffiffiffi
x ⋅ y

p
. (3.9)

Because squaring this function is order preserving, the indifference curve is also repre-
sented by

100 ¼ x ⋅ y, (3.10)

which is easier to graph. In Figure 3.7 we show this indifference curve; it is a familiar
rectangular hyperbola. One way to calculate the MRS is to solve Equation 3.10 for y,

y ¼ 100=x, (3.11)

FIGURE 3.7 Indifference Curve for Utility ¼ ffiffiffiffiffiffiffiffiffi
x ⋅ y

p

This indifference curve illustrates the function 10 ¼ U ¼ ffiffiffiffiffiffiffiffiffix ⋅ y
p

. At point A (5, 20), the MRS is 4,
implying that this person is willing to trade 4y for an additional x. At point B (20, 5), however, the
MRS is 0.25, implying a greatly reduced willingness to trade.

Quantity of x

Quantity
of y

20

12.5

5

200 5 12.5

A

C

B

U = 10

96 Part 2 Choice and Demand



and then use the definition (Equation 3.7):

MRS ¼ �dy=dx ðalongU1Þ ¼ 100=x2. (3.12)

Clearly thisMRS declines as x increases. At a point such as A on the indifference curve with a
lot of hamburgers (say, x ¼ 5, y ¼ 20), the slope is steep so the MRS is high:

MRS at ð5,20Þ ¼ 100=x2 ¼ 100=25 ¼ 4. (3.13)

Here the person is willing to give up 4 hamburgers to get 1 more soft drink. On the other
hand, at B where there are relatively few hamburgers (here x ¼ 20, y ¼ 5), the slope is flat
and the MRS is low:

MRS at ð20,5Þ ¼ 100=x2 ¼ 100=400 ¼ 0:25. (3.14)

Now he or she will only give up one quarter of a hamburger for another soft drink. Notice
also how convexity of the indifference curve U1 is illustrated by this numerical example.
Point C is midway between points A and B; at C this person has 12.5 hamburgers and 12.5
soft drinks. Here utility is given by

utility ¼ ffiffiffiffiffiffiffiffiffi
x ⋅ y

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð12:5Þ2

q
¼ 12:5, (3.15)

which clearly exceeds the utility along U1 (which was assumed to be 10).

QUERY: From our derivation here, it appears that the MRS depends only on the quantity
of x consumed. Why is this misleading? How does the quantity of y implicitly enter into
Equations 3.13 and 3.14?

A MATHEMATICAL DERIVATION

A mathematical derivation provides additional insights about the shape of indifference curves
and the nature of preferences. In this section we provide such a derivation for the case of a
utility function involving only two goods. This will allow us to compare the mathematics to
the two-dimensional indifference curve map. The case of many goods will be taken up at the
end of the chapter, but it will turn out that this more complicated case really adds very little.

The MRS and marginal utility
If the utility a person receives from two goods is represented by U ðx, yÞ, we can write the
total differential of this function as

dU ¼ ∂U
∂x ⋅ dx þ ∂U

∂y ⋅ dy. (3.16)

Along any particular indifference curve dU ¼ 0, a simplemanipulation of Equation 3.16 yields

MRS ¼ � dy
dx

����U¼constant
¼ ∂U =∂x

∂U =∂y
. (3.17)

In words, theMRS of x for y is equal to the ratio of the marginal utility of x (that is, ∂U =∂x) to
the marginal utility of y ð∂U =∂yÞ. This result makes intuitive sense. Suppose that a person’s
utility were actually measurable in, say, units called “utils.” Assume also that this person
consumes only two goods, food ðxÞ and clothing (y), and that each extra unit of food provides
6 utils whereas each extra unit of clothing provides 2 utils. ThenEquation 3.17wouldmean that
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MRS ¼ dy
dx

����U¼constant
¼ 6utils

2 utils
¼ 3,

so this person is willing to trade away 3 units of clothing to get 1 more unit of food. This
trade would result in no net change in utility because the gains and losses would be precisely
offsetting. Notice that the units in which utility is measured (what we have, for lack of a
better word, called “utils”) cancel out in making this calculation. Although marginal utility
is obviously affected by the units in which utility is measured, the MRS is independent of
that choice.6

The convexity of indifference curves
In Chapter 1 we described how the assumption of diminishing marginal utility was used by
Marshall to solve the water-diamond paradox. Marshall theorized that it is the marginal
valuation that an individual places on a good that determines its value: It is the amount that
an individual is willing to pay for one more pint of water that determines the price of water.
Because it might be thought that this marginal value declines as the quantity of water that is
consumed increases, Marshall showed why water has a low exchange value. Intuitively, it
seems that the assumption of a decreasing marginal utility of a good is related to the assump-
tion of a decreasing MRS; both concepts seem to refer to the same commonsense idea of an
individual becoming relatively satiated with a good as more of it is consumed. Unfortunately,
the two concepts are quite different. (See Problem 3.3.) Technically, the assumption of a
diminishing MRS is equivalent to requiring that the utility function be quasi-concave. This
requirement is related in a rather complex way to the assumption that each good encounters
diminishing marginal utility (that is, that fii is negative for each good).7 But that is to be
expected because the concept of diminishing marginal utility is not independent of how

6More formally, let F ðU Þ be any arbitrary order-preserving transformation of U (that is, F
0ðU Þ > 0). Then, for the

transformed utility function,

MRS ¼ ∂F=∂x
∂F=∂y

¼ F
0 ðU Þ∂U =∂x

F 0 ðU Þ∂U =∂y

¼ ∂U =∂x
∂U =∂y

,

which is the MRS for the original function U . That the F
0 ðU Þ terms cancel out shows that theMRS is independent of how

utility is measured.
7We have shown that if utility is given by U ¼ f ðx, yÞ, then

MRS ¼ fx
fy

¼ f1
f2

¼ � dy
dx

.

The assumption of a diminishing MRS means that dMRS=dx < 0, but

dMRS
dx

¼ f2ð f11 þ f12 ⋅ dy=dxÞ � f1ð f21 þ f22 ⋅ dy=dxÞ
f 22

:

Using the fact that f1=f2 ¼ �dy=dx, we have

dMRS
dx

¼ f2½ f11 � f12ð f1=f2Þ� � f1½ f21 � f22ð f1=f2Þ�
f 22

:

Combining terms and recognizing that f12 ¼ f21 yields

dMRS
dx

¼ f2 f11 � 2f1f12 þ ð f22 f 21Þ=f2
f 22

or, multiplying numerator and denominator by f2,

dMRS
dx

¼ f 22 f11 � 2f1 f2 f12 þ f 21 f22
f 32

.
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utility itself is measured, whereas the convexity of indifference curves is indeed independent
of such measurement.

EXAMPLE 3.2 Showing Convexity of Indifference Curves

Calculation of theMRS for specific utility functions is frequently a good shortcut for showing
convexity of indifference curves. In particular, the process can be much simpler than applying
the definition of quasi-concavity, though it is more difficult to generalize to more than two
goods. Here we look at how Equation 3.17 can be used for three different utility functions
(for more practice, see Problem 3.1).

1. U ðx, yÞ ¼ ffiffiffiffiffiffiffiffiffi
x ⋅ y

p
.

This example just repeats the case illustrated in Example 3.1. One shortcut to
applying Equation 3.17 that can simplify the algebra is to take the logarithm of this
utility function. Because taking logs is order preserving, this will not alter theMRS to
be calculated. So, let

U �ðx, yÞ ¼ ln½U ðx, yÞ� ¼ 0:5 ln x þ 0:5 ln y. (3.18)

Applying Equation 3.17 yields

MRS ¼ ∂U �=∂x
∂U �=∂y ¼ 0:5=x

0:5=y
¼ y

x
, (3.19)

which seems to be a much simpler approach than we used previously.8 Clearly this
MRS is diminishing as x increases and y decreases. The indifference curves are
therefore convex.

2. U ðx, yÞ ¼ x þ xy þ y.

In this case there is no advantage to transforming this utility function. Applying
Equation 3.17 yields

MRS ¼ ∂U =∂x
∂U =∂y

¼ 1þ y
1þ x

. (3.20)

Again, this ratio clearly decreases as x increases and y decreases, so the indifference
curves for this function are convex.

3. U ðx, yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
.

For this example it is easier to use the transformation

U �ðx, yÞ ¼ ½U ðx, yÞ�2 ¼ x2 þ y2. (3.21)

Because this is the equation for a quarter-circle, we should begin to suspect that there

(continued)

If we assume that f2 > 0 (that marginal utility is positive), then the MRS will diminish as long as

f 22 f11 � 2f1 f2 f12 þ f 21 f22 < 0.

Notice that diminishing marginal utility ( f11 < 0 and f22 < 0) will not ensure this inequality. One must also be concerned
with the f12 term. That is, one must know how decreases in y affect the marginal utility of x. In general it is not possible to
predict the sign of that term.

The condition required for a diminishing MRS is precisely that discussed in Chapter 2 to ensure that the function f is
strictly quasi-concave. The condition shows that the necessary conditions for a maximum of f subject to a linear constraint
are also sufficient. We will use this result in Chapter 4 and elsewhere.
8In Example 3.1 we looked at the U ¼ 10 indifference curve. So, for that curve, y ¼ 100=x and theMRS in Equation 3.19
would be MRS ¼ 100=x2 as calculated before.
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EXAMPLE 3.2 CONTINUED

might be some problems with the indifference curves for this utility function. These
suspicions are confirmed by again applying the definition of the MRS to yield

MRS ¼ ∂U �=∂x
∂U �=∂y ¼ 2x

2y
¼ x

y
. (3.22)

For this function, it is clear that, as x increases and y decreases, the MRS increases !
Hence the indifference curves are concave, not convex, and this is clearly not a quasi-
concave function.

QUERY: Does a doubling of x and y change the MRS in each of these three examples? That
is, does the MRS depend only on the ratio of x to y, not on the absolute scale of purchases?
(See also Example 3.3.)

UTILITY FUNCTIONS FOR SPECIFIC PREFERENCES

Individuals’ rankings of commodity bundles and the utility functions implied by these rankings
are unobservable. All we can learn about people’s preferencesmust come from the behavior we
observe when they respond to changes in income, prices, and other factors. It is nevertheless
useful to examine a few of the forms particular utility functions might take, because such an
examinationmay offer insights into observed behavior and (more to the point) understanding
the properties of such functions can be of some help in solving problems.Here wewill examine
four specific examples of utility functions for two goods. Indifference curve maps for these
functions are illustrated in the four panels of Figure 3.8. As should be visually apparent, these
cover quite a few possible shapes. Even greater variety is possible oncewemove to functions for
three or more goods, and some of these possibilities are mentioned in later chapters.

Cobb-Douglas utility
Figure 3.8a shows the familiar shape of an indifference curve. One commonly used utility
function that generates such curves has the form

utility ¼ U ðx, yÞ ¼ xαyβ, (3.23)

where α and β are positive constants.
In Examples 3.1 and 3.2, we studied a particular case of this function for which

α ¼ β ¼ 0:5. The more general case presented in Equation 3.23 is termed a Cobb-Douglas
utility function, after two researchers who used such a function for their detailed study of
production relationships in the U.S. economy (see Chapter 7). In general, the relative sizes of
α and β indicate the relative importance of the two goods to this individual. Since utility is
unique only up to a monotonic transformation, it is often convenient to normalize these
parameters so that αþ β ¼ 1.

Perfect substitutes
The linear indifference curves in Figure 3.8b are generated by a utility function of the form

utility ¼ U ðx, yÞ ¼ αx þ βy, (3.24)

100 Part 2 Choice and Demand



where, again, α and β are positive constants. That the indifference curves for this function
are straight lines should be readily apparent: Any particular level curve can be calculated
by setting U ðx, yÞ equal to a constant that, given the linear form of the function, clearly
specifies a straight line. The linear nature of these indifference curves gave rise to the term
perfect substitutes to describe the implied relationship between x and y. Because the MRS
is constant (and equal to α=β) along the entire indifference curve, our previous notions of
a diminishing MRS do not apply in this case. A person with these preferences would
be willing to give up the same amount of y to get one more x no matter how much x was
being consumed. Such a situation might describe the relationship between different brands
of what is essentially the same product. For example, many people (including the author) do
not care where they buy gasoline. A gallon of gas is a gallon of gas in spite of the best efforts

FIGURE 3.8 Examples of Utility Functions

The four indifference curve maps illustrate alternative degrees of substitutability of x for y. The
Cobb-Douglas and CES functions (drawn here for relatively low substitutability) fall between the
extremes of perfect substitution (panel b) and no substitution (panel c).
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of the Exxon and Shell advertising departments to convince me otherwise. Given this fact, I
am always willing to give up 10 gallons of Exxon in exchange for 10 gallons of Shell because
it does not matter to me which I use or where I got my last tankful. Indeed, as we will see in
the next chapter, one implication of such a relationship is that I will buy all my gas from the
least expensive seller. Because I do not experience a diminishing MRS of Exxon for Shell, I
have no reason to seek a balance among the gasoline types I use.

Perfect complements
A situation directly opposite to the case of perfect substitutes is illustrated by the L-shaped
indifference curves in Figure 3.8c. These preferences would apply to goods that “go to-
gether”—coffee and cream, peanut butter and jelly, and cream cheese and lox are familiar
examples. The indifference curves shown in Figure 3.8c imply that these pairs of goods will be
used in the fixed proportional relationship represented by the vertices of the curves. A person
who prefers 1 ounce of cream with 8 ounces of coffee will want 2 ounces of cream with
16 ounces of coffee. Extra coffee without cream is of no value to this person, just as extra cream
would be of no value without coffee. Only by choosing the goods together can utility be
increased.

These concepts can be formalized by examining the mathematical form of the utility
function that generates these L-shaped indifference curves:

utility ¼ U ðx, yÞ ¼ minðαx,βyÞ. (3.25)

Here α and β are positive parameters, and the operator “min” means that utility is given
by the smaller of the two terms in the parentheses. In the coffee-cream example, if we let
ounces of coffee be represented by x and ounces of cream by y, utility would be given by

utility ¼ U ðx, yÞ ¼ minðx,8yÞ. (3.26)

Now 8 ounces of coffee and 1 ounce of cream provide 8 units of utility. But 16 ounces of
coffee and 1 ounce of cream still provide only 8 units of utility because min(16, 8) ¼ 8. The
extra coffee without cream is of no value, as shown by the horizontal section of the
indifference curves for movement away from a vertex; utility does not increase when only x
increases (with y constant). Only if coffee and cream are both doubled (to 16 and 2,
respectively) will utility increase to 16.

More generally, neither of the two goods will be in excess only if

αx ¼ βy. (3.27)

Hence

y=x ¼ α=β, (3.28)

which shows the fixed proportional relationship between the two goods that must occur if
choices are to be at the vertices of the indifference curves.

CES utility
The three specific utility functions illustrated so far are special cases of the more general
constant elasticity of substitution function (CES), which takes the form

utility ¼ U ðx, yÞ ¼ xδ

δ
þ yδ

δ
, (3.29)

where δ � 1, δ 6¼ 0, and

utility ¼ U ðx, yÞ ¼ ln x þ ln y (3.30)
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when δ ¼ 0. It is obvious that the case of perfect substitutes corresponds to the limiting
case, δ ¼ 1, in Equation 3.29 and that the Cobb-Douglas9 case corresponds to δ ¼ 0 in
Equation 3.30. Less obvious is that the case of fixed proportions corresponds to δ ¼ �∞ in
Equation 3.29, but that result can also be shown using a limits argument.

The use of the term “elasticity of substitution” for this function derives from the notion
that the possibilities illustrated in Figure 3.8 correspond to various values for the substitution
parameter, σ, which for this function is given by σ ¼ 1=ð1� δÞ. For perfect substitutes, then,
σ ¼ ∞, and the fixed proportions case has σ ¼ 0.10 Because the CES function allows us to
explore all of these cases, and many cases in between, it will prove quite useful for illustrating
the degree of substitutability present in various economic relationships.

The specific shape of the CES function illustrated in Figure 3.8a is for the case δ ¼ �1.
That is,

utility ¼ �x�1 � y�1 ¼ �1
x

� 1
y
. (3.31)

For this situation, σ ¼ 1=ð1� δÞ ¼ 1=2 and, as the graph shows, these sharply curved in-
difference curves apparently fall between the Cobb-Douglas and fixed proportion cases. The
negative signs in this utility function may seem strange, but the marginal utilities of both x
and y are positive and diminishing, as would be expected. This explains why δmust appear in
the denominators in Equation 3.29. In the particular case of Equation 3.31, utility increases
from �∞ (when x ¼ y ¼ 0) toward 0 as x and y increase. This is an odd utility scale, perhaps,
but perfectly acceptable.

EXAMPLE 3.3 Homothetic Preferences

All of the utility functions described in Figure 3.8 are homothetic (see Chapter 2). That is, the
marginal rate of substitution for these functions depends only on the ratio of the amounts of
the two goods, not on the total quantities of the goods. This fact is obvious for the case of
the perfect substitutes (when the MRS is the same at every point) and the case of perfect
complements (where the MRS is infinite for y=x > α=β, undefined when y=x ¼ α=β,
and zero when y=x < α=β). For the general Cobb-Douglas function, the MRS can be
found as

MRS ¼ ∂U =∂x
∂U =∂y

¼ αxα�1yβ

βxαyβ�1 ¼ α

β
⋅
y
x
, (3.32)

which clearly depends only on the ratio y=x. Showing that the CES function is also homo-
thetic is left as an exercise (see Problem 3.12).

The importance of homothetic functions is that one indifference curve is much like
another. Slopes of the curves depend only on the ratio y=x, not on how far the curve is
from the origin. Indifference curves for higher utility are simple copies of those for lower
utility. Hence, we can study the behavior of an individual who has homothetic preferences by
looking only at one indifference curve or at a few nearby curves without fearing that our
results would change dramatically at very different levels of utility.

(continued)

9The CES function could easily be generalized to allow for differing weights to be attached to the two goods. Since the
main use of the function is to examine substitution questions, we usually will not make that generalization. In some of the
applications of the CES function, we will also omit the denominators of the function because these constitute only a scale
factor when δ is positive. For negative values of δ, however, the denominator is needed to ensure that marginal utility is
positive.
10The elasticity of substitution concept is discussed in more detail in connection with production functions in Chapter 9.
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EXAMPLE 3.3 CONTINUED

QUERY: How might you define homothetic functions geometrically? What would the locus
of all points with a particular MRS look like on an individual’s indifference curve map?

EXAMPLE 3.4 Nonhomothetic Preferences

Although all of the indifference curve maps in Figure 3.8 exhibit homothetic preferences, this
need not always be true. Consider the quasi-linear utility function

utility ¼ U ðx, yÞ ¼ x þ ln y. (3.33)

For this function, good y exhibits diminishing marginal utility, but good x does not. The
MRS can be computed as

MRS ¼ ∂U =∂x
∂U =∂y

¼ 1
1=y

¼ y. (3.34)

The MRS diminishes as the chosen quantity of y decreases, but it is independent of the
quantity of x consumed. Because x has a constant marginal utility, a person’s willingness to
give up y to get one more unit of x depends only on how much y he or she has. Contrary to
the homothetic case, then, a doubling of both x and y doubles the MRS rather than leaving
it unchanged.

QUERY: What does the indifference curve map for the utility function in Equation 3.33 look
like? Why might this approximate a situation where y is a specific good and x represents
everything else?

THE MANY-GOOD CASE

All of the concepts we have studied so far for the case of two goods can be generalized to
situations where utility is a function of arbitrarily many goods. In this section, we will briefly
explore those generalizations. Although this examination will not add much to what we have
already shown, considering peoples’ preferences for many goods can be quite important in
applied economics, as we will see in later chapters.

The MRS with many goods
Suppose utility is a function of n goods given by

utility ¼ U ðx1, x2,…, xnÞ. (3.35)

The total differential of this expression is

dU ¼ ∂U
∂x1

dx1 þ
∂U
∂x2

dx2 þ…þ ∂U
∂xn

dxn (3.36)

and, as before, we can find the MRS between any two goods by setting dU ¼ 0. In this
derivation, we also hold constant quantities of all of the goods other than those two. Hence
we have
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dU ¼ 0 ¼ ∂U
∂xi

dxi þ
∂U
∂xj

dxj ; (3.37)

after some algebraic manipulation, we get

MRSðxi for xj Þ ¼ � dxj
dxi

¼ ∂U =∂xi
∂U =∂xj

, (3.38)

which is precisely what we got in Equation 3.17. Whether this concept is as useful as it is in
two dimensions is open to question, however. With only two goods, asking how a person
would trade one for the other is an interesting question—a transaction we might actually
observe. With many goods, however, it seems unlikely that a person would simply trade one
good for another while holding all other goods constant. Rather, it seems more likely that an
event (such as a price increase) that caused a person to want to reduce, say, the quantity of
cornflakes ðxiÞ consumed would also cause him or her to change the quantities consumed of
many other goods such as milk, sugar, Cheerios, spoons, and so forth. As we shall see in
Chapter 6, this entire reallocation process can best be studied by looking at the entire utility
function as represented in Equation 3.35. Still, the notion of making trade-offs between
only two goods will prove useful as a way of conceptualizing the utility maximization process
that we will take up next.

Multigood indifference surfaces
Generalizing the concept of indifference curves tomultiple dimensions poses nomajormathe-
matical difficulties. We simply define an indifference surface as being the set of points in n
dimensions that satisfy the equation

U ðx1, x2,…, xnÞ ¼ k, (3.39)

where k is any preassigned constant. If the utility function is quasi-concave, the set of points
for which U 	 k will be convex; that is, all of the points on a line joining any two points on
the U ¼ k indifference surface will also have U 	 k. It is this property that we will find most
useful in later applications. Unfortunately, however, the mathematical conditions that ensure
quasi-concavity in many dimensions are not especially intuitive (see the Extensions to
Chapter 2), and visualizing many dimensions is virtually impossible. Hence, when intuition
is required, we will usually revert to two-good examples.

SUMMARY

In this chapter we have described the way in which econo-
mists formalize individuals’ preferences about the goods they
choose. We drew several conclusions about such preferences
that will play a central role in our analysis of the theory of
choice in the following chapters:

• If individuals obey certain basic behavioral postulates in
their preferences among goods, theywill be able to rank all
commodity bundles, and that ranking can be represented
by a utility function. In making choices, individuals will
behave as if they were maximizing this function.

• Utility functions for two goods can be illustrated by an
indifference curve map. Each indifference curve contour

on this map shows all the commodity bundles that yield a
given level of utility.

• The negative of the slope of an indifference curve is
defined to be the marginal rate of substitution (MRS).
This shows the rate at which an individual would will-
ingly give up an amount of one good (y) if he or she were
compensated by receiving one more unit of another
good (x).

• The assumption that the MRS decreases as x is substi-
tuted for y in consumption is consistent with the notion
that individuals prefer some balance in their consump-
tion choices. If theMRS is always decreasing, individuals
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PROBLEMS

3.1
Graph a typical indifference curve for the following utility functions and determine whether they have
convex indifference curves (that is, whether the MRS declines as x increases).

a. U ðx, yÞ ¼ 3x þ y.

b. U ðx, yÞ ¼ ffiffiffiffiffiffiffiffiffi
x ⋅ y

p
:

c. U ðx, yÞ ¼ ffiffiffi
x

p þ y:

d. U ðx, yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � y2

q
:

e. U x, yð Þ ¼ xy
x þ y

.

3.2
In footnote 7 we showed that, in order for a utility function for two goods to have a strictly diminishing
MRS (that is, to be strictly quasi-concave), the following condition must hold:

f 2
2f11 � 2f1f2 f12 þ f 21f22 < 0:

Use this condition to check the convexity of the indifference curves for each of the utility functions in
Problem 3.1. Describe any shortcuts you discover in this process.

3.3
Consider the following utility functions:

a. U ðx, yÞ ¼ xy.

b. U ðx, yÞ ¼ x2y2.

c. U ðx, yÞ ¼ ln x þ ln y.

Show that each of these has a diminishing MRS but that they exhibit constant, increasing, and
decreasing marginal utility, respectively. What do you conclude?

3.4
As we saw in Figure 3.5, one way to show convexity of indifference curves is to show that, for any two
points ðx1, y1Þ and ðx2, y2Þ on an indifference curve that promises U ¼ k, the utility associated with the

point x1þx2
2 , y1þy2

2

� �
is at least as great as k. Use this approach to discuss the convexity of the indifference

curves for the following three functions. Be sure to graph your results.

a. U ðx, yÞ ¼ minðx, yÞ.
b. U ðx, yÞ ¼ maxðx, yÞ.
c. U ðx, yÞ ¼ x þ y.

will have strictly convex indifference curves. That is, their
utility function will be strictly quasi-concave.

• A few simple functional forms can capture important
differences in individuals’ preferences for two (or more)
goods. Here we examined the Cobb-Douglas function,
the linear function (perfect substitutes), the fixed pro-
portions function (perfect complements), and the CES
function (which includes the other three as special cases).

• It is a simple matter mathematically to generalize from
two-good examples to many goods. And, as we shall see,
studying peoples’ choices among many goods can yield
many insights. But the mathematics of many goods is
not especially intuitive, so we will primarily rely on two-
good cases to build such intuition.
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3.5
The Phillie Phanatic always eats his ballpark franks in a special way; he uses a foot-long hot dog together
with precisely half a bun, 1 ounce of mustard, and 2 ounces of pickle relish. His utility is a function only
of these four items and any extra amount of a single item without the other constituents is worthless.

a. What form does PP’s utility function for these four goods have?

b. How might we simplify matters by considering PP’s utility to be a function of only one good?
What is that good?

c. Suppose foot-long hot dogs cost $1.00 each, buns cost $0.50 each, mustard costs $0.05 per
ounce, and pickle relish costs $0.15 per ounce.Howmuch does the good defined in part (b) cost?

d. If the price of foot-long hot dogs increases by 50 percent (to $1.50 each), what is the
percentage increase in the price of the good?

e. How would a 50 percent increase in the price of a bun affect the price of the good? Why is your
answer different from part (d)?

f. If the government wanted to raise $1.00 by taxing the goods that PP buys, how should it spread
this tax over the four goods so as to minimize the utility cost to PP?

3.6
Many advertising slogans seem to be asserting something about people’s preferences. How would you
capture the following slogans with a mathematical utility function?

a. Promise margarine is just as good as butter.

b. Things go better with Coke.

c. You can’t eat just one Pringle’s potato chip.

d. Krispy Kreme glazed doughnuts are just better than Dunkin’.

e. Miller Brewing advises us to drink (beer) “responsibly.” [What would “irresponsible” drinking be?]

3.7
a. A consumer is willing to trade 3 units of x for 1 unit of y when she has 6 units of x and 5 units of

y. She is also willing to trade in 6 units of x for 2 units of y when she has 12 units of x and 3 units
of y. She is indifferent between bundle (6, 5) and bundle (12, 3). What is the utility function for
goods x and y? Hint: What is the shape of the indifference curve?

b. A consumer is willing to trade 4 units of x for 1 unit of y when she is consuming bundle (8, 1).
She is also willing to trade in 1 unit of x for 2 units of y when she is consuming bundle (4, 4). She
is indifferent between these two bundles. Assuming that the utility function is Cobb-Douglas of
the form U ðx, yÞ ¼ xαyβ, where α and β are positive constants, what is the utility function for
this consumer?

c. Was there a redundancy of information in part (b)? If yes, howmuch is the minimum amount of
information required in that question to derive the utility function?

3.8
Find utility functions given each of the following indifference curves [defined by U (⋅) ¼ C]:

a. z ¼ C1=δ

x α=δyβ=δ
.

b. y ¼ 0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 4ðx2 � CÞ

q
� 0:5x:

c. z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y 4 � 4xðx2y � CÞ

p
2x

� y2

2x
:
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Analytical Problems
3.9 Initial endowments
Suppose that a person has initial amounts of the two goods that provide utility to him or her. These
initial amounts are given by

_
x and

_
y .

a. Graph these initial amounts on this person’s indifference curve map.

b. If this person can trade x for y (or vice versa) with other people, what kinds of trades would he or
she voluntarily make? What kinds would not be made? How do these trades relate to this
person’s MRS at the point (

_
x ,

_
y )?

c. Suppose this person is relatively happy with the initial amounts in his or her possession and will
only consider trades that increase utility by at least amount k. How would you illustrate this on
the indifference curve map?

3.10 Cobb-Douglas utility
Example 3.3 shows that the MRS for the Cobb-Douglas function

U ðx, yÞ ¼ xαyβ

is given by

MRS ¼ α

β

y
x

� �
.

a. Does this result depend on whether αþ β ¼ 1? Does this sum have any relevance to the theory
of choice?

b. For commodity bundles for which y ¼ x, how does the MRS depend on the values of α and β?
Develop an intuitive explanation ofwhy, ifα > β,MRS > 1. Illustrate your argumentwith a graph.

c. Suppose an individual obtains utility only from amounts of x and y that exceed minimal sub-
sistence levels given by x0, y0. In this case,

U ðx, yÞ ¼ ðx � x0Þαðy � y0Þβ.
Is this function homothetic? (For a further discussion, see the Extensions to Chapter 4.)

3.11 Independent marginal utilities
Two goods have independent marginal utilities if

∂2U
∂y∂x

¼ ∂2U
∂x∂y

¼ 0.

Show that if we assume diminishing marginal utility for each good, then any utility function with
independent marginal utilities will have a diminishing MRS. Provide an example to show that the
converse of this statement is not true.

3.12 CES utility

a. Show that the CES function

α
xδ

δ
þ β

yδ

δ

is homothetic. How does the MRS depend on the ratio y=x?

b. Show that your results from part (a) agree with our discussion of the cases δ ¼ 1 (perfect
substitutes) and δ ¼ 0 (Cobb-Douglas).

c. Show that the MRS is strictly diminishing for all values of δ < 1.

d. Show that if x ¼ y, the MRS for this function depends only on the relative sizes of α and β.
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e. Calculate the MRS for this function when y=x ¼ 0:9 and y=x ¼ 1:1 for the two cases δ ¼ 0:5
and δ ¼ �1. What do you conclude about the extent to which the MRS changes in the vicinity
of x ¼ y? How would you interpret this geometrically?

3.13 The quasi-linear function
Consider the function U ðx, yÞ ¼ x þ ln y. This is a function that is used relatively frequently in eco-
nomic modeling as it has some useful properties.

a. Find the MRS of the function. Now, interpret the result.

b. Confirm that the function is quasi-concave.

c. Find the equation for an indifference curve for this function.

d. Compare the marginal utility of x and y. How do you interpret these functions? How might
consumers choose between x and y as they try to increase their utility by, for example, consum-
ing more when their income increases? (We will look at this “income effect” in detail in the
Chapter 5 problems.)

e. Considering how the utility changes as the quantities of the two goods increase, describe some
situations where this function might be useful.

3.14 Utility functions and preferences
Imagine two goods that, when consumed individually, give increasing utility with increasing amounts
consumed (they are individually monotonic) but that, when consumed together, detract from the utility
that the other one gives. (One could think of milk and orange juice, which are fine individually but
which, when consumed together, yield considerable disutility.)

a. Propose a functional form for the utility function for the two goods just described.

b. Find the MRS between the two goods with your functional form.

c. Which (if any) of the general assumptions that we make regarding preferences and utility
functions does your functional form violate?
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E X T E N S I O N S

Special Preferences

The utility function concept is a quite general one that
can be adapted to a large number of special circum-
stances. Discovery of ingenious functional forms that
reflect the essential aspects of some problem can pro-
vide a number of insights that would not be readily
apparent with a more literary approach. Here we look
at four aspects of preferences that economists have
tried to model: (1) threshold effects; (2) quality; (3)
habits and addiction; and (4) second-party preferences.
In Chapters 7 and 17, we illustrate a number of addi-
tional ways of capturing aspects of preferences.

E3.1 Threshold effects

The model of utility that we developed in this chapter
implies an individual will always prefer commodity bun-
dleA to bundleB, providedU ðAÞ > U ðBÞ. Theremay
be events that will cause people to shift quickly from
consuming bundle A to consuming B. In many cases,
however, sucha lightning-quick response seemsunlikely.
Peoplemay in fact be “set in their ways” andmay require
a rather large change in circumstances to change what
they do. For example, individualsmay not have especially
strong opinions about what precise brand of toothpaste
they choose andmay stickwithwhat they knowdespite a
proliferation of new (and perhaps better) brands. Simi-
larly, peoplemay stick with an old favorite TV show even
though it has declined in quality. One way to capture
suchbehavior is to assume individualsmakedecisions as if
they faced thresholds of preference. In such a situation,
commodity bundleAmight be chosen overB only when

U ðAÞ > U ðBÞ þ ε, (i)

whereε is the threshold thatmustbeovercome.With this
specification, then, indifference curves may be rather
thick and even fuzzy, rather than the distinct contour
lines shown in this chapter.Thresholdmodels of this type
are used extensively in marketing. The theory behind
such models is presented in detail in Aleskerov and
Monjardet (2002). There, the authors consider a num-
ber of ways of specifying the threshold so that it might
depend on the characteristics of the bundles being con-
sidered or on other contextual variables.

Alternative fuels
Vedenov, Duffield, and Wetzstein (2006) use the
threshold idea to examine the conditions under which
individuals will shift from gasoline to other fuels

(primarily ethanol) for powering their cars. The authors
point out that the main disadvantage of using gasoline
in recent years has been the excessive price volatility of
the product relative to other fuels. They conclude that
switching to ethanol blends is efficient (especially dur-
ing periods of increased gasoline price volatility), pro-
vided that the blends do not decrease fuel efficiency.

E3.2 Quality

Becausemany consumption items differ widely in qual-
ity, economists have an interest in incorporating such
differences into models of choice. One approach is
simply to regard items of different quality as totally
separate goods that are relatively close substitutes.
But this approach can be unwieldy because of the
large number of goods involved. An alternative ap-
proach focuses on quality as a direct item of choice.
Utility might in this case be reflected by

utility ¼ U ðq,Q Þ, (ii)

where q is the quantity consumed andQ is the quality of
that consumption. Although this approach permits some
examination of quality-quantity trade-offs, it encounters
difficulty when the quantity consumed of a commodity
(e.g.,wine) consists of a variety of qualities.Qualitymight
then be defined as an average (see Theil,1 1952), but that
approachmaynotbe appropriatewhen thequality of new
goods is changing rapidly (as in the case of personal
computers, for example). A more general approach
(originally suggested by Lancaster, 1971) focuses on a
well-defined set of attributes of goods and assumes that
those attributes provide utility. If a good q provides two
such attributes,a1 anda2, then utilitymight bewritten as

utility ¼ U ½q, a1ðqÞ, a2ðqÞ�, (iii)

and utility improvements might arise either because
this individual chooses a larger quantity of the good
or because a given quantity yields a higher level of
valuable attributes.

Personal computers
This is the practice followed by economists who study
demand in such rapidly changing industries as personal

1Theil also suggests measuring quality by looking at correlations be-
tween changes in consumption and the income elasticities of various
goods.
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computers. In this case it would clearly be incorrect to
focus only on the quantity of personal computers pur-
chased each year, since new machines are much better
than old ones (and, presumably, provide more utility).
For example, Berndt, Griliches, and Rappaport (1995)
find that personal computer quality has been rising about
30 percent per year over a relatively long period of time,
primarily because of improved attributes such as faster
processors or better hard drives. A person who spends,
say, $2,000 for a personal computer today buys much
more utility than did a similar consumer 5 years ago.

E3.3 Habits and addiction

Because consumption occurs over time, there is the
possibility that decisions made in one period will affect
utility in later periods. Habits are formed when individ-
uals discover they enjoy using a commodity in one
period and this increases their consumption in subse-
quent periods. An extreme case is addiction (be it to
drugs, cigarettes, orMarx Brothers movies), where past
consumption significantly increases the utility of pres-
ent consumption.Oneway to portray these ideasmath-
ematically is to assume that utility in period t depends
on consumption in period t and the total of all prior
consumption of the habit-forming good (say, X ):

utility ¼ Ut ðxt , yt , st Þ, (iv)

where

st ¼
X∞
i¼1

xt�i.

In empirical applications, however, data on all past
levels of consumption usually do not exist. It is there-
fore common to model habits using only data on
current consumption (xt ) and on consumption in the
previous period (xt � 1). A common way to proceed is
to assume that utility is given by

utility ¼ Ut ðx�t , yt Þ, (v)

where x�t is some simple function of xt and xt�1, such
as x�t ¼ xt � xt�1 or x�t ¼ xt=xt�1. Such functions
imply that, ceteris paribus, the higher is xt�1, the
more xt will be chosen in the current period.

Modeling habits
These approaches to modeling habits have been ap-
plied to a wide variety of topics. Stigler and Becker
(1977) use such models to explain why people develop
a “taste” for going to operas or playing golf. Becker,
Grossman, and Murphy (1994) adapt the models to

studying cigarette smoking and other addictive behav-
ior. They show that reductions in smoking early in life
can have very large effects on eventual cigarette con-
sumption because of the dynamics in individuals’ util-
ity functions. Whether addictive behavior is “rational”
has been extensively studied by economists. For exam-
ple, Gruber and Koszegi (2001) show that smoking
can be approached as a rational, though time-incon-
sistent,2 choice.

E3.4 Second-party preferences

Individuals clearly care about the well-being of other
individuals. Phenomena such asmaking charitable con-
tributions or making bequests to children cannot be
understood without recognizing the interdependence
that exists among people. Second-party preferences
can be incorporated into the utility function of person
i, say, by

utility ¼ Uiðxi, yi,Uj Þ, (vi)

where Uj is the utility of someone else.
If ∂Ui=∂Uj > 0 then this person will engage in

altruistic behavior, whereas if ∂Ui=∂Uj < 0 then he
or she will demonstrate the malevolent behavior asso-
ciated with envy. The usual case of ∂Ui=∂Uj ¼ 0 is
then simply a middle ground between these alternative
preference types. Gary Becker has been a pioneer in
the study of these possibilities and has written on a
variety of topics, including the general theory of social
interactions (1976) and the importance of altruism in
the theory of the family (1981).

Evolutionary biology and genetics
Biologists have suggested a particular form for the
utility function in Equation iv, drawn from the theory
of genetics. In this case

utility ¼ Uiðxi, yiÞ þ
X
j

rjUj , (vii)

where rj measures closeness of the genetic relation-
ship between person i and person j . For parents and
children, for example, rj ¼ 0:5, whereas for cousins
rj ¼ 0:125. Bergstrom (1996) describes a few of the
conclusions about evolutionary behavior that biolo-
gists have drawn from this particular functional form.

2For more on time inconsistency, see Chapter 17.
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C H A P T E R

4

Utility Maximization and Choice

In this chapter we examine the basic model of choice that economists use to explain individuals’ behavior.
That model assumes that individuals who are constrained by limited incomes will behave as if they are using
their purchasing power in such a way as to achieve the highest utility possible. That is, individuals are as-
sumed to behave as if they maximize utility subject to a budget constraint. Although the specific applications
of this model are quite varied, as we will show, all of them are based on the same fundamental mathematical
model, and all arrive at the same general conclusion: To maximize utility, individuals will choose bundles of
commodities for which the rate of trade-off between any two goods (the MRS) is equal to the ratio of the
goods’ market prices. Market prices convey information about opportunity costs to individuals, and this in-
formation plays an important role in affecting the choices actually made.

Utility maximization and lightning calculations
Before starting a formal study of the theory of choice, it may be appropriate to dispose of two
complaints noneconomists often make about the approach we will take. First is the charge
that no real person can make the kinds of “lightning calculations” required for utility
maximization. According to this complaint, when moving down a supermarket aisle, people
just grab what is available with no real pattern or purpose to their actions. Economists are not
persuaded by this complaint. They doubt that people behave randomly (everyone, after all, is
bound by some sort of budget constraint), and they view the lightning calculation charge as
misplaced. Recall, again, Friedman’s pool player from Chapter 1. The pool player also cannot
make the lightning calculations required to plan a shot according to the laws of physics, but
those laws still predict the player’s behavior. So too, as we shall see, the utility-maximization
model predicts many aspects of behavior even though no one carries around a computer with
his or her utility function programmed into it. To be precise, economists assume that people
behave as if they made such calculations, so the complaint that the calculations cannot
possibly be made is largely irrelevant.

Altruism and selfishness
A second complaint against our model of choice is that it appears to be extremely selfish; no
one, according to this complaint, has such solely self-centered goals. Although economists
are probably more ready to accept self-interest as a motivating force than are other, more
Utopian thinkers (Adam Smith observed, “We are not ready to suspect any person of being
deficient in selfishness”1), this charge is also misplaced. Nothing in the utility-maximization
model prevents individuals from deriving satisfaction from philanthropy or generally “doing
good.” These activities also can be assumed to provide utility. Indeed, economists have used
the utility-maximization model extensively to study such issues as donating time and money

1Adam Smith, The Theory of Moral Sentiments (1759; reprint, New Rochelle, NY: Arlington House, 1969), p. 446.
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to charity, leaving bequests to children, or even giving blood. One need not take a position
on whether such activities are selfish or selfless since economists doubt people would under-
take them if they were against their own best interests, broadly conceived.

AN INITIAL SURVEY

The general results of our examination of utility maximization can be stated succinctly as
follows.

O P T I M I Z A T I O N

P R I N C I P L E

Utility maximization To maximize utility, given a fixed amount of income to spend, an
individual will buy those quantities of goods that exhaust his or her total income and for
which the psychic rate of trade-off between any two goods (the MRS) is equal to the rate at
which the goods can be traded one for the other in the marketplace.

That spending all one’s income is required for utility maximization is obvious. Because extra
goods provide extra utility (there is no satiation) and because there is no other use for income,
to leave any unspent would be to fail to maximize utility. Throwing money away is not a
utility-maximizing activity.

The condition specifying equality of trade-off rates requires a bit more explanation.
Because the rate at which one good can be traded for another in the market is given by the
ratio of their prices, this result can be restated to say that the individual will equate the MRS
(of x for y) to the ratio of the price of x to the price of y ðpx=pyÞ. This equating of a personal
trade-off rate to a market-determined trade-off rate is a result common to all individual
utility-maximization problems (and to many other types of maximization problems). It will
occur again and again throughout this text.

A numerical illustration
To see the intuitive reasoning behind this result, assume that it were not true that an in-
dividual had equated the MRS to the ratio of the prices of goods. Specifically, suppose that
the individual’sMRS is equal to 1 and that he or she is willing to trade 1 unit of x for 1 unit of
y and remain equally well off. Assume also that the price of x is $2 per unit and of y is $1 per
unit. It is easy to show that this person can be made better off. Suppose this person reduces x
consumption by 1 unit and trades it in the market for 2 units of y. Only 1 extra unit of y was
needed to keep this person as happy as before the trade—the second unit of y is a net addition
to well-being. Therefore, the individual’s spending could not have been allocated optimally
in the first place. A similar method of reasoning can be used whenever theMRS and the price
ratio px=py differ. The condition for maximum utility must be the equality of these two
magnitudes.

THE TWO-GOOD CASE: A GRAPHICAL ANALYSIS

This discussion seems eminently reasonable, but it can hardly be called a proof. Rather, we
must now show the result in a rigorous manner and, at the same time, illustrate several other
important attributes of the maximization process. First we take a graphic analysis; then we
take a more mathematical approach.

Budget constraint
Assume that the individual has I dollars to allocate between good x and good y. If px is the
price of good x and py is the price of good y, then the individual is constrained by
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pxx þ pyy � I . (4.1)

That is, no more than I can be spent on the two goods in question. This budget constraint is
shown graphically in Figure 4.1. This person can afford to choose only combinations of x
and y in the shaded triangle of the figure. If all of I is spent on good x, it will buy I=px units
of x. Similarly, if all is spent on y, it will buy I=py units of y. The slope of the constraint is
easily seen to be �px=py . This slope shows how y can be traded for x in the market. If px ¼ 2
and py ¼ 1, then 2 units of y will trade for 1 unit of x.

First-order conditions for a maximum
This budget constraint can be imposed on this person’s indifference curve map to show the
utility-maximization process. Figure 4.2 illustrates this procedure. The individual would be
irrational to choose a point such as A; he or she can get to a higher utility level just by
spending more of his or her income. The assumption of nonsatiation implies that a person
should spend all of his or her income in order to receive maximum utility. Similarly, by
reallocating expenditures, the individual can do better than point B. Point D is out of the
question because income is not large enough to purchase D. It is clear that the position of
maximum utility is at point C, where the combination x�, y� is chosen. This is the only point
on indifference curve U2 that can be bought with I dollars; no higher utility level can be

FIGURE 4.1 The Individual’s Budget Constraint for Two Goods

Those combinations of x and y that the individual can afford are shown in the shaded triangle. If, as
we usually assume, the individual prefers more rather than less of every good, the outer boundary of
this triangle is the relevant constraint where all of the available funds are spent either on x or on y.
The slope of this straight-line boundary is given by �px=py .

Quantity of x0

Quantity
of y

py

I

px

I

I = pxx + pyy
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bought. C is a point of tangency between the budget constraint and the indifference curve.
Therefore, at C we have

slope of budget constraint ¼ �px
py

¼ slope of indifference curve

¼ dy
dx

����
U¼ constant

(4.2)

or

px
py

¼ � dy
dx

����
U¼ constant

¼ MRS ðof x for yÞ. (4.3)

Our intuitive result is proved: for a utility maximum, all income should be spent and the
MRS should equal the ratio of the prices of the goods. It is obvious from the diagram that if
this condition is not fulfilled, the individual could be made better off by reallocating
expenditures.

Second-order conditions for a maximum
The tangency rule is only a necessary condition for a maximum. To see that it is not a
sufficient condition, consider the indifference curve map shown in Figure 4.3. Here, a point

FIGURE 4.2 A Graphical Demonstration of Utility Maximization

Point C represents the highest utility level that can be reached by the individual, given the budget
constraint. The combination x�, y� is therefore the rational way for the individual to allocate
purchasing power. Only for this combination of goods will two conditions hold: All available funds
will be spent, and the individual’s psychic rate of trade-off (MRS) will be equal to the rate at which
the goods can be traded in the market ðpx=pyÞ.

Quantity of x

Quantity 
of y

U1

U1 U2

U3

U2 U3

0

I = pxx + pyy

B
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116 Part 2 Choice and Demand



of tangency ðCÞ is inferior to a point of nontangency ðBÞ. Indeed, the true maximum is at
another point of tangency ðAÞ. The failure of the tangency condition to produce an unam-
biguous maximum can be attributed to the shape of the indifference curves in Figure 4.3. If
the indifference curves are shaped like those in Figure 4.2, no such problem can arise. But we
have already shown that “normally” shaped indifference curves result from the assumption of
a diminishing MRS. Therefore, if the MRS is assumed to be diminishing, the condition of
tangency is both a necessary and sufficient condition for a maximum.2 Without this assump-
tion, one would have to be careful in applying the tangency rule.

Corner solutions
The utility-maximization problem illustrated in Figure 4.2 resulted in an “interior” maxi-
mum, in which positive amounts of both goods were consumed. In some situations individ-
uals’ preferences may be such that they can obtain maximum utility by choosing to consume

FIGURE 4.3 Example of an Indifference Curve Map for Which the Tangency Condition
Does Not Ensure a Maximum

If indifference curves do not obey the assumption of a diminishing MRS, not all points of tangency
(points for which MRS � px=pyÞ may truly be points of maximum utility. In this example, tangency
point C is inferior to many other points that can also be purchased with the available funds. In order
that the necessary conditions for a maximum (that is, the tangency conditions) also be sufficient, one
usually assumes that the MRS is diminishing; that is, the utility function is strictly quasi-concave.
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U3
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U2 U3
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C
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I = pxx + pyy

2In mathematical terms, because the assumption of a diminishing MRS is equivalent to assuming quasi-concavity, the
necessary conditions for a maximum subject to a linear constraint are also sufficient, as we showed in Chapter 2.
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no amount of one of the goods. If someone does not like hamburgers very much, there is no
reason to allocate any income to their purchase. This possibility is reflected in Figure 4.4.
There, utility is maximized at E, where x ¼ x� and y ¼ 0, so any point on the budget
constraint where positive amounts of y are consumed yields a lower utility than does point E.
Notice that at E the budget constraint is not precisely tangent to the indifference curve U2.
Instead, at the optimal point the budget constraint is flatter than U2, indicating that the rate
at which x can be traded for y in the market is lower than the individual’s psychic trade-off
rate (theMRS). At prevailing market prices the individual is more than willing to trade away y
to get extra x. Because it is impossible in this problem to consume negative amounts of y,
however, the physical limit for this process is the X-axis, along which purchases of y are 0.
Hence, as this discussion makes clear, it is necessary to amend the first-order conditions for a
utility maximum a bit to allow for corner solutions of the type shown in Figure 4.4. Following
our discussion of the general n-good case, we will use the mathematics from Chapter 2 to
show how this can be accomplished.

THE n-GOOD CASE

The results derived graphically in the case of two goods carry over directly to the case of n
goods. Again it can be shown that for an interior utility maximum, theMRS between any two
goods must equal the ratio of the prices of these goods. To study this more general case,
however, it is best to use some mathematics.

FIGURE 4.4 Corner Solution for Utility Maximization

With the preferences represented by this set of indifference curves, utility maximization occurs at E,
where 0 amounts of good y are consumed. The first-order conditions for a maximum must be
modified somewhat to accommodate this possibility.
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First-order conditions
With n goods, the individual’s objective is to maximize utility from these n goods:

utility ¼ U ðx1, x2,…, xnÞ, (4.4)

subject to the budget constraint3

I ¼ p1x1 þ p2x2 þ…þ pnxn (4.5)

or

I � p1x1 � p2x2 �…� pnxn ¼ 0. (4.6)

Following the techniques developed in Chapter 2 for maximizing a function subject to a
constraint, we set up the Lagrangian expression

ℒ ¼ U ðx1, x2,…, xnÞ þ λðI � p1x1 � p2x2 �…� pnxnÞ. (4.7)

Setting the partial derivatives of ℒ (with respect to x1, x2,…, xn and λ) equal to 0 yields
n þ 1 equations representing the necessary conditions for an interior maximum:

∂ℒ
∂x1

¼ ∂U
∂x1

� λp1 ¼ 0,

∂ℒ
∂x2

¼ ∂U
∂x2

� λp2 ¼ 0,

..

.

∂ℒ
∂xn

¼ ∂U
∂xn

� λpn ¼ 0,

∂ℒ
∂λ

¼ I � p1x1 � p2x2 �…� pnxn ¼ 0.

(4.8)

These n þ 1 equations can, in principle, be solved for the optimal x1, x2,…, xn and for λ (see
Examples 4.1 and 4.2 to be convinced that such a solution is possible).

Equations 4.8 are necessary but not sufficient for a maximum. The second-order condi-
tions that ensure a maximum are relatively complex and must be stated in matrix terms (see
the Extensions to Chapter 2). However, the assumption of strict quasi-concavity (a dimin-
ishingMRS in the two-good case) is sufficient to ensure that any point obeying Equations 4.8
is in fact a true maximum.

Implications of first-order conditions
The first-order conditions represented by Equations 4.8 can be rewritten in a variety of
interesting ways. For example, for any two goods, xi and xj , we have

∂U =∂xi
∂U =∂xj

¼ pi
pj
. (4.9)

In Chapter 3 we showed that the ratio of the marginal utilities of two goods is equal to the
marginal rate of substitution between them. Therefore, the conditions for an optimal allo-
cation of income become

MRSðxi for xj Þ ¼
pi
pj
. (4.10)

This is exactly the result derived graphically earlier in this chapter; to maximize utility, the
individual should equate the psychic rate of trade-off to the market trade-off rate.

3Again, the budget constraint has been written as an equality because, given the assumption of nonsatiation, it is clear that
the individual will spend all available income.
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Interpreting the Lagrangian multiplier
Another result can be derived by solving Equations 4.8 for λ:

λ ¼ ∂U =∂x1
p1

¼ ∂U =∂x2
p2

¼ … ¼ ∂U =∂xn
pn

(4.11)

or

λ ¼
MUx1

p1
¼

MUx2

p2
¼ … ¼

MUxn

pn
.

These equations state that, at the utility-maximizing point, each good purchased should
yield the same marginal utility per dollar spent on that good. Each good therefore should
have an identical (marginal) benefit-to-(marginal)-cost ratio. If this were not true, one good
would promise more “marginal enjoyment per dollar” than some other good, and funds
would not be optimally allocated.

Although the reader is again warned against talking very confidently about marginal
utility, what Equation 4.11 says is that an extra dollar should yield the same “additional
utility” no matter which good it is spent on. The common value for this extra utility is given
by the Lagrangian multiplier for the consumer’s budget constraint (that is, by λ). Conse-
quently, λ can be regarded as the marginal utility of an extra dollar of consumption expendi-
ture (the marginal utility of “income”).

One final way to rewrite the necessary conditions for a maximum is

pi ¼
MUxi

λ
(4.12)

for every good i that is bought. To interpret this equation, consider a situation where a
person’s marginal utility of income (λ) is constant over some range. Then variations in the
price he or she must pay for good i ðpiÞ are directly proportional to the extra utility derived
from that good. At the margin, therefore, the price of a good reflects an individual’s
willingness to pay for one more unit. This is a result of considerable importance in applied
welfare economics because willingness to pay can be inferred from market reactions to
prices. In Chapter 5 we will see how this insight can be used to evaluate the welfare effects of
price changes and, in later chapters, we will use this idea to discuss a variety of questions
about the efficiency of resource allocation.

Corner solutions
The first-order conditions of Equations 4.8 hold exactly only for interior maxima for which
some positive amount of each good is purchased. As discussed in Chapter 2, when corner
solutions (such as those illustrated in Figure 4.4) arise, the conditions must be modified
slightly.4 In this case, Equations 4.8 become

∂ℒ
∂xi

¼ ∂U
∂xi

� λpi � 0 ði ¼ 1,…,nÞ (4.13)

and, if
∂ℒ
∂xi

¼ ∂U
∂xi

� λpi < 0, (4.14)

then

xi ¼ 0. (4.15)

4Formally, these conditions are called the “Kuhn-Tucker” conditions for nonlinear programming.

120 Part 2 Choice and Demand



To interpret these conditions, we can rewrite Equation 4.14 as

pi >
∂U =∂xi

λ
¼

MUxi

λ
. (4.16)

Hence, the optimal conditions are as before, except that any good whose price ðpiÞ exceeds
its marginal value to the consumer (MUxi

=λ) will not be purchased (xi ¼ 0). Thus, the
mathematical results conform to the commonsense idea that individuals will not purchase
goods that they believe are not worth the money. Although corner solutions do not provide
a major focus for our analysis in this book, the reader should keep in mind the possibilities
for such solutions arising and the economic interpretation that can be attached to the
optimal conditions in such cases.

EXAMPLE 4.1 Cobb-Douglas Demand Functions

As we showed in Chapter 3, the Cobb-Douglas utility function is given by

U ðx, yÞ ¼ xαyβ, (4.17)

where, for convenience,5 we assume αþ β ¼ 1. We can now solve for the utility-maximizing
values of x and y for any prices (px , py) and income (I ). Setting up the Lagrangian expression

ℒ ¼ xαyβ þ λðI � pxx � pyyÞ (4.18)

yields the first-order conditions

∂ℒ
∂x

¼ αxα�1yβ � λpx ¼ 0,

∂ℒ
∂y

¼ βxαyβ�1 � λpy ¼ 0,

∂ℒ
∂λ

¼ I � pxx � pyy ¼ 0.

(4.19)

Taking the ratio of the first two terms shows that
αy
βx

¼ px
py

, (4.20)

or

pyy ¼ β

α
pxx ¼ 1� α

α
pxx, (4.21)

where the final equation follows because αþ β ¼ 1. Substitution of this first-order
condition in Equation 4.21 into the budget constraint gives

I ¼ pxx þ pyy ¼ pxx þ 1� α

α
pxx ¼ pxx 1þ 1� α

α

� �
¼ 1

α
pxx; (4.22)

solving for x yields

x� ¼ αI
px

, (4.23)

(continued)

5Notice that the exponents in the Cobb-Douglas utility function can always be normalized to sum to 1 because U 1=ðαþβÞ is
a monotonic transformation.
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EXAMPLE 4.1 CONTINUED

and a similar set of manipulations would give

y� ¼ βI
py

. (4.24)

These results show that an individual whose utility function is given by Equation 4.17 will
always choose to allocate α proportion of his or her income to buying good x (i.e.,
pxx=I ¼ α) and β proportion to buying good y ðpyy=I ¼ βÞ. Although this feature of the
Cobb-Douglas function often makes it very easy to work out simple problems, it does
suggest that the function has limits in its ability to explain actual consumption behavior.
Because the share of income devoted to particular goods often changes significantly in
response to changing economic conditions, a more general functional form may provide
insights not provided by the Cobb-Douglas function. We illustrate a few possibilities in
Example 4.2, and the general topic of budget shares is taken up in more detail in the
Extensions to this chapter.

Numerical example. First, however, let’s look at a specific numerical example for the Cobb-
Douglas case. Suppose that x sells for $1 and y sells for $4 and that total income is $8.
Succinctly then, assume that px ¼ 1, py ¼ 4, I ¼ 8. Suppose also that α ¼ β ¼ 0:5 so that
this individual splits his or her income equally between these two goods. Now the demand
Equations 4.23 and 4.24 imply

x�¼ αI=px ¼ 0:5I=px ¼ 0:5ð8Þ=1 ¼ 4,
y� ¼ βI=py ¼ 0:5I=py ¼ 0:5ð8Þ=4 ¼ 1,

(4.25)

and, at these optimal choices,

utility ¼ x0:5y0:5 ¼ ð4Þ0:5ð1Þ0:5 ¼ 2. (4.26)

Notice also that we can compute the value for the Lagrangian multiplier associated with this
income allocation by using Equation 4.19:

λ ¼ αxα�1yβ=px ¼ 0:5ð4Þ�0:5ð1Þ0:5=1 ¼ 0:25. (4.27)

This value implies that each small change in income will increase utility by about one-fourth
of that amount. Suppose, for example, that this person had 1 percent more income ($8.08).
In this case he or she would choose x ¼ 4:04 and y ¼ 1:01, and utility would be
4:040:5 ⋅ 1:010:5 ¼ 2:02. Hence, a $0.08 increase in income increases utility by 0.02, as
predicted by the fact that λ ¼ 0:25.

QUERY: Would a change in py affect the quantity of x demanded in Equation 4.23? Explain
your answer mathematically. Also develop an intuitive explanation based on the notion that
the share of income devoted to good y is given by the parameter of the utility function, β.

EXAMPLE 4.2 CES Demand

To illustrate cases in which budget shares are responsive to economic circumstances, let’s
look at three specific examples of the CES function.

Case 1: δ ¼ 0:5. In this case, utility is

U ðx, yÞ ¼ x0:5 þ y0:5. (4.28)
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Setting up the Lagrangian expression

ℒ ¼ x0:5 þ y0:5 þ λðI � pxx � pyyÞ (4.29)

yields the following first-order conditions for a maximum:

∂ℒ=∂x ¼ 0:5x�0:5 � λpx ¼ 0,
∂ℒ=∂y ¼ 0:5y�0:5 � λpy ¼ 0,
∂ℒ=∂λ ¼ I � pxx � pyy ¼ 0.

(4.30)

Division of the first two of these shows that

ðy=xÞ0:5 ¼ px=py . (4.31)

By substituting this into the budget constraint and doing some messy algebraic manipulation,
we can derive the demand functions associated with this utility function:

x� ¼ I=px ½1þ ðpx=pyÞ�, (4.32)

y� ¼ I=py ½1þ ðpy=pxÞ�. (4.33)

Price responsiveness. In these demand functions notice that the share of income spent on,
say, good x—that is, pxx=I ¼ 1=½1þ ðpx=pyÞ�—is not a constant; it depends on the price ratio
px=py . The higher is the relative price of x, the smaller will be the share of income spent on
that good. In other words, the demand for x is so responsive to its own price that a rise in the
price reduces total spending on x. That the demand for x is very price responsive can also be
illustrated by comparing the implied exponent on px in the demand function given by
Equation 4.32 (�2) to that from Equation 4.23 (�1). In Chapter 5 we will discuss this
observation more fully when we examine the elasticity concept in detail.

Case 2: δ ¼ �1. Alternatively, let’s look at a demand function with less substitutability6 than
the Cobb-Douglas. If δ ¼ �1, the utility function is given by

U ðx, yÞ ¼ �x�1 � y�1, (4.34)

and it is easy to show that the first-order conditions for a maximum require

y=x ¼ ðpx=pyÞ0:5. (4.35)

Again, substitution of this condition into the budget constraint, together with some messy
algebra, yields the demand functions

x�¼ I=px ½1þ ðpy=pxÞ0:5�,
y� ¼ I=py ½1þ ðpx=pyÞ0:5�.

(4.36)

That these demand functions are less price responsive can be seen in two ways. First, now the
share of income spent on good x—that is, pxx=I ¼ 1=½1þ ðpy=pxÞ0:5�—responds positively to
increases in px . As the price of x rises, this individual cuts back onlymodestly on good x, so total
spending on that good rises. That the demand functions in Equations 4.36 are less price
responsive than the Cobb-Douglas is also illustrated by the relatively small exponents of each
good’s own price ð�0:5Þ.

(continued)

6One way to measure substitutability is by the elasticity of substitution, which for the CES function is given by
σ ¼ 1=ð1 � δÞ. Here δ ¼ 0:5 implies σ ¼ 2, δ ¼ 0 (the Cobb-Douglas) implies σ ¼ 1, and δ ¼ �1 implies σ ¼ 0:5. See
also the discussion of the CES function in connection with the theory of production in Chapter 9.
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EXAMPLE 4.2 CONTINUED

Case 3: δ ¼ �∞. This is the important case in which x and y must be consumed in fixed
proportions. Suppose, for example, that each unit of y must be consumed together with
exactly 4 units of x. The utility function that represents this situation is

U ðx, yÞ ¼ minðx,4yÞ. (4.37)

In this situation, a utility-maximizing person will choose only combinations of the two
goods for which x ¼ 4y; that is, utility maximization implies that this person will choose to
be at a vertex of his or her L-shaped indifference curves. Substituting this condition into the
budget constraint yields

I ¼ pxx þ pyy ¼ pxx þ py
x
4
¼ ðpx þ 0:25pyÞx. (4.38)

Hence

x� ¼ I
px þ 0:25py

, (4.39)

and similar substitutions yield

y� ¼ I
4px þ py

. (4.40)

In this case, the share of a person’s budget devoted to, say, good x rises rapidly as the price of x
increases because x and y must be consumed in fixed proportions. For example, if we use the
values assumed inExample 4.1 (px ¼ 1, py ¼ 4, I ¼ 8), Equations 4.39 and 4.40would predict
x� ¼ 4, y� ¼ 1, and, as before, half of the individual’s incomewould be spent on each good. If
we instead use px ¼ 2, py ¼ 4, and I ¼ 8 then x� ¼ 8=3, y� ¼ 2=3, and this person spends two
thirds ½pxx=I ¼ ð2 ⋅ 8=3Þ=8 ¼ 2=3�of his or her incomeongood x. Trying a fewothernumbers
suggests that the share of income devoted to good x approaches 1 as the price of x increases.7

QUERY: Do changes in income affect expenditure shares in any of the CES functions
discussed here? How is the behavior of expenditure shares related to the homothetic nature
of this function?

INDIRECT UTILITY FUNCTION

Examples 4.1 and 4.2 illustrate the principle that it is often possible to manipulate the first-
order conditions for a constrained utility-maximization problem to solve for the optimal
values of x1, x2,…, xn. These optimal values in general will depend on the prices of all the
goods and on the individual’s income. That is,

x�1 ¼ x1ðp1, p2,…, pn , I Þ,
x�2 ¼ x2ðp1, p2,…, pn , I Þ,

..

.

x�n ¼ xnðp1, p2,…, pn, I Þ.

(4.41)

In the next chapter we will analyze in more detail this set of demand functions, which show
the dependence of the quantity of each xi demanded on p1, p2,…, pn and I . Here we use

7These relationships for the CES function are pursued in more detail in Problem 4.9 and in Extension E4.3.
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the optimal values of the x’s from Equations 4.42 to substitute in the original utility function
to yield

maximum utility ¼ U ðx�1 , x�2 ,…, x�n Þ (4.42)

¼ V ðp1, p2,…, pn, I Þ . (4.43)

In words: because of the individual’s desire to maximize utility given a budget constraint, the
optimal level of utility obtainable will depend indirectly on the prices of the goods being
bought and the individual’s income. This dependence is reflected by the indirect utility
function V . If either prices or income were to change, the level of utility that could be
attained would also be affected. Sometimes, in both consumer theory and many other
contexts, it is possible to use this indirect approach to study how changes in economic
circumstances affect various kinds of outcomes, such as utility or (later in this book) firms’
costs.

THE LUMP SUM PRINCIPLE

Many economic insights stem from the recognition that utility ultimately depends on the
income of individuals and on the prices they face. One of the most important of these is the
so-called lump sum principle that illustrates the superiority of taxes on a person’s general
purchasing power to taxes on specific goods. A related insight is that general income
grants to low-income people will raise utility more than will a similar amount of money
spent subsidizing specific goods. The intuition behind this result derives directly from
the utility-maximization hypothesis; an income tax or subsidy leaves the individual free to
decide how to allocate whatever final income he or she has. On the other hand, taxes or
subsidies on specific goods both change a person’s purchasing power and distort his or her
choices because of the artificial prices incorporated in such schemes. Hence, general in-
come taxes and subsidies are to be preferred if efficiency is an important criterion in social
policy.

The lump sum principle as it applies to taxation is illustrated in Figure 4.5. Initially this
person has an income of I and is choosing to consume the combination x�, y�. A tax on good x
would raise its price, and the utility-maximizing choice would shift to combination x1, y1. Tax
collectionswould be t ⋅ x1 (where t is the tax rate imposed on good x). Alternatively, an income
tax that shifted the budget constraint inward to I 0 would also collect this same amount of
revenue.8 But the utility provided by the income tax ðU2Þ exceeds that provided by the tax on x
alone ðU1Þ. Hence, we have shown that the utility burden of the income tax is smaller. A similar
argument can be used to illustrate the superiority of income grants to subsidies on specific
goods.

EXAMPLE 4.3 Indirect Utility and the Lump Sum Principle

In this example we use the notion of an indirect utility function to illustrate the lump sum
principle as it applies to taxation. First we have to derive indirect utility functions for two
illustrative cases.

(continued)

8Because I ¼ ðpx þ tÞx1 þ py y1, we have I 0 ¼ I � tx1 ¼ pxx1 þ pyy1, which shows that the budget constraint with an
equal-size income tax also passes through the point x1, y1.

Chapter 4 Utility Maximization and Choice 125



EXAMPLE 4.3 CONTINUED

Case 1: Cobb-Douglas. In Example 4.1 we showed that, for the Cobb-Douglas utility
function with α ¼ β ¼ 0:5, optimal purchases are

x� ¼ I
2px

,

y� ¼ I
2py

⋅
(4.44)

So the indirect utility function in this case is

V ðpx , py , I Þ ¼ U ðx�, y�Þ ¼ ðx�Þ0:5ðy�Þ0:5 ¼ I
2p0:5x p0:5y

.

Notice that when px ¼ 1, py ¼ 4, and I ¼ 8 we have V ¼ 8=ð2 ⋅ 1 ⋅ 2Þ ¼ 2, which is the
utility that we calculated before for this situation.
Case 2: Fixed proportions. In the third case of Example 4.2 we found that

x� ¼ I
px þ 0:25py

,

y� ¼ I
4px þ py

⋅
(4.46)

So, in this case indirect utility is given by

V ðpx , py , I Þ ¼ minðx�,4y�Þ ¼ x� ¼ I
px þ 0:25py

¼ 4y� ¼ 4
4px þ py

¼ I
px þ 0:25py

; (4.47)

with px ¼ 1, py ¼ 4, and I ¼ 8, indirect utility is given by V ¼ 4, which is what we calcu-
lated before.
The lump sum principle. Consider first using the Cobb-Douglas case to illustrate the lump
sum principle. Suppose that a tax of $1 were imposed on good x. Equation 4.45 shows that
indirect utility in this case would fall from 2 to 1:41 ½¼ 8=ð2 ⋅ 20:5 ⋅ 2Þ�. Because this person
chooses x� ¼ 2 with the tax, total tax collections will be $2. An equal-revenue income tax would
therefore reduce net income to $6, and indirect utility would be 1:5 ½¼ 6=ð2 ⋅ 1 ⋅ 2Þ�. So the in-
come tax is a clear improvement over the case where x alone is taxed. The tax on good x reduces
utility for two reasons: it reduces a person’s purchasing power and it biases his or her choices away
from good x. With income taxation, only the first effect is felt and so the tax is more efficient.9

The fixed-proportions case supports this intuition. In that case, a $1 tax on good x would
reduce indirect utility from 4 to 8=3 ½¼ 8=ð2þ 1Þ�. In this case x� ¼ 8=3 and tax collections
would be $8=3. An income tax that collected $8=3 would leave this consumer with $16=3 in
net income, and that income would yield an indirect utility of V ¼ 8=3 ½¼ ð16=3Þ=ð1þ 1Þ�.
Hence after-tax utility is the same under both the excise and income taxes. The reason the
lump sum result does not hold in this case is that with fixed-proportions utility, the excise tax
does not distort choices because preferences are so rigid.

QUERY: Both of the indirect utility functions illustrated here show that a doubling of income
and all prices would leave indirect utility unchanged. Explain why you would expect this to be a
property of all indirect utility functions.

9This discussion assumes that there are no incentive effects of income taxation—probably not a very good assumption.
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EXPENDITURE MINIMIZATION

In Chapter 2 we pointed out that many constrained maximum problems have associated
“dual” constrained minimum problems. For the case of utility maximization, the associated
dual minimization problem concerns allocating income in such a way as to achieve a given
utility level with the minimal expenditure. This problem is clearly analogous to the primary
utility-maximization problem, but the goals and constraints of the problems have been
reversed. Figure 4.6 illustrates this dual expenditure-minimization problem. There, the
individual must attain utility level U2; this is now the constraint in the problem. Three
possible expenditure amounts (E1, E2, and E3) are shown as three “budget constraint”
lines in the figure. Expenditure level E1 is clearly too small to achieve U2, hence it cannot
solve the dual problem. With expenditures given by E3, the individual can reachU2 (at either
of the two points B or C), but this is not the minimal expenditure level required. Rather, E2
clearly provides just enough total expenditures to reachU2 (at point A), and this is in fact the
solution to the dual problem. By comparing Figures 4.2 and 4.6, it is obvious that both the
primary utility-maximization approach and the dual expenditure-minimization approach
yield the same solution ðx�, y�Þ; they are simply alternative ways of viewing the same process.
Often the expenditure-minimization approach is more useful, however, because expenditures
are directly observable, whereas utility is not.

FIGURE 4.5 The Lump Sum Principle of Taxation

A tax on good x would shift the utility-maximizing choice from x�, y� to x1, y1. An income tax that
collected the same amount would shift the budget constraint to I 0. Utility would be higher ðU2Þ
with the income tax than with the tax on x alone ðU1Þ.
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A mathematical statement
More formally, the individual’s dual expenditure-minimization problem is to choose x1,
x2,…, xn so as to minimize

total expenditures ¼ E ¼ p1x1 þ p2x2 þ…þ pnxn, (4.48)

subject to the constraint

utility ¼
_
U ¼ U ðx1, x2,…, xnÞ. (4.49)

The optimal amounts of x1, x2,…, xn chosen in this problem will depend on the prices
of the various goods ðp1, p2,…, pnÞ and on the required utility level

_
U2. If any of the

prices were to change or if the individual had a different utility “target,” then another
commodity bundle would be optimal. This dependence can be summarized by an ex-
penditure function.

D E F I N I T I O N
Expenditure function. The individual’s expenditure function shows the minimal expendi-
tures necessary to achieve a given utility level for a particular set of prices. That is,

minimal expenditures ¼ Eðp1, p2,…, pn,U Þ. (4.50)

This definition shows that the expenditure function and the indirect utility function are
inverse functions of one another (compare Equations 4.43 and 4.50). Both depend on

FIGURE 4.6 The Dual Expenditure-Minimization Problem

The dual of the utility-maximization problem is to attain a given utility level ðU2Þ with minimal
expenditures. An expenditure level of E1 does not permit U2 to be reached, whereas E3 provides
more spending power than is strictly necessary. With expenditure E2, this person can just reachU2 by
consuming x� and y�.
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market prices but involve different constraints (income or utility). In the next chapter we
will see how this relationship is quite useful in allowing us to examine the theory of
how individuals respond to price changes. First, however, let’s look at two expenditure
functions.

EXAMPLE 4.4 Two Expenditure Functions

There are two ways one might compute an expenditure function. The first, most straight-
forward method would be to state the expenditure-minimization problem directly and
apply the Lagrangian technique. Some of the problems at the end of this chapter ask you
to do precisely that. Here, however, we will adopt a more streamlined procedure by taking
advantage of the relationship between expenditure functions and indirect utility func-
tions. Because these two functions are inverses of each other, calculation of one greatly faci-
litates the calculation of the other. We have already calculated indirect utility functions
for two important cases in Example 4.3. Retrieving the related expenditure functions is
simple algebra.

Case 1: Cobb-Douglas utility. Equation 4.45 shows that the indirect utility function in the
two-good, Cobb-Douglas case is

V ðpx , py , I Þ ¼
I

2p0:5x p0:5y
. (4.51)

If we now interchange the role of utility (which we will now treat as a constant denoted by
U ) and income (which we will now term “expenditures,” E, and treat as a function of the
parameters of this problem), then we have the expenditure function

Eðpx , py ,U Þ ¼ 2p0:5x p0:5y U . (4.52)

Checking this against our former results, now we use a utility target of U ¼ 2 with, again,
px ¼ 1 and py ¼ 4. With these parameters, Equation 4.52 predicts that the required
minimal expenditures are $8 ð¼ 2 ⋅ 10:5 ⋅ 40:5 ⋅ 2Þ. Not surprisingly, both the primal utility-
maximization problem and the dual expenditure-minimization problem are formally identical.

Case 2: Fixed proportions. For the fixed-proportions case, Equation 4.47 gave the indirect
utility function as

V ðpx , py , I Þ ¼
I

px þ 0:25py
. (4.53)

If we again switch the role of utility and expenditures, we quickly derive the expenditure
function:

Eðpx , py ,U Þ ¼ ðpx þ 0:25pyÞU . (4.54)

A check of the hypothetical values used in Example 4.3 ðpx ¼ 1, py ¼ 4,U ¼ 4Þ again shows
that it would cost $8 ½¼ ð1þ 0:25 ⋅ 4Þ ⋅ 4� to reach the utility target of 4.

Compensating for a price change. These expenditure functions allow us to investigate
how a person might be compensated for a price change. Specifically, suppose that the price of
good y were to rise from $4 to $5. This would clearly reduce a person’s utility, so we might
ask what amount of monetary compensation would mitigate the harm. Because the expendi-
ture function allows utility to be held constant, it provides a direct estimate of this amount.
Specifically, in the Cobb-Douglas case, expenditures would have to be increased from $8 to

(continued)
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EXAMPLE 4.4 CONTINUED

$8:94 ð¼ 2 ⋅ 1 ⋅ 50:5 ⋅ 2Þ in order to provide enough extra purchasing power to precisely
compensate for this price rise. With fixed proportions, expenditures would have to be
increased from $8 to $9 to compensate for the price increase. Hence, the compensations
are about the same in these simple cases.

There is one important difference between the two examples, however. In the fixed-
proportions case, the $1 of extra compensation simply permits this person to return to his
or her prior consumption bundle ðx ¼ 4, y ¼ 1Þ. That is the only way to restore utility to
U ¼ 4 for this rigid person. In the Cobb-Douglas case, however, this person will not use the
extra compensation to revert to his or her prior consumption bundle. Instead, utility
maximization will require that the $8.94 be allocated so that x ¼ 4:47 and y ¼ 0:894. This
will still provide a utility level of U ¼ 2, but this person will economize on the now more
expensive good y.

QUERY: How should a person be compensated for a price decline? What sort of compensa-
tion would be required if the price of good y fell from $4 to $3?

PROPERTIES OF EXPENDITURE FUNCTIONS

Because expenditure functions are widely used in applied economics, it is useful to under-
stand a few of the properties shared by all such functions. Here we look at three such
properties. All of these follow directly from the fact that expenditure functions are based
on individual utility maximization.

1. Homogeneity. For both of the functions illustrated in Example 4.4, a doubling of all
prices will precisely double the value of required expenditures. Technically, these
expenditure functions are “homogeneous of degree one” in all prices.10 This is a
quite general property of expenditure functions. Because the individual’s budget
constraint is linear in prices, any proportional increase in both prices and purchasing
power will permit the person to buy the same utility-maximizing commodity bundle
that was chosen before the price rise. In Chapter 5 we will see that, for this reason,
demand functions are homogenous of degree 0 in all prices and income.

2. Expenditure functions are nondecreasing in prices. This property can be succinctly
summarized by the mathematical statement

∂E
∂pi

	 0 for every good i. (4.55)

This seems intuitively obvious. Because the expenditure function reports the mini-
mum expenditure necessary to reach a given utility level, an increase in any price
must increase this minimum. More formally, suppose p1 takes on two values: pa1 and
pb1 with pb1 > pa1, where all other prices are unchanged between states a and b. Also,
let x be the bundle of goods purchased in state a and y the bundle purchased in state
b. By the definition of the expenditure function, both of these bundles of goods must

10As described in Chapter 2, the function f ðx1, x2,…, xnÞ is said to be homogeneous of degree k if f ðtx1, tx2,…, txnÞ ¼
t kf ðx1, x2,…, xnÞ. In this case, k ¼ 1.
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yield the same target utility. Clearly bundle y costs more with state-b prices than it
would with state-a prices. But we know that bundle x is the lowest-cost way to
achieve the target utility level with state-a prices. Hence, expenditures on bundle y
must be greater than or equal to those on bundle x. Similarly, a decline in a price
must not increase expenditures.

3. Expenditure functions are concave in prices. In Chapter 2 we discussed concave
functions as functions that always lie below tangents to them. Although the technical
mathematical conditions that describe such functions are complicated, it is relatively
simple to show how the concept applies to expenditure functions by considering the
variation in a single price. Figure 4.7 shows an individual’s expenditures as a function
of the single price, p1. At the initial price, p

�
1 , this person’s expenditures are given by

Eðp�1 ,…Þ. Now consider prices higher or lower than p�1 . If this person continued to
buy the same bundle of goods, expenditures would increase or decrease linearly as this
price changed. This would give rise to the pseudo expenditure function Epseudo in the
figure. This line shows a level of expenditures that would allow this person to buy
the original bundle of goods despite the changing value of p1. If, as seems more likely,
this person adjusted his or her purchases as p1 changed, we know (because of
expenditure minimization) that actual expenditures would be less than these pseudo

FIGURE 4.7 Expenditure Functions Are Concave in Prices

At p�1 this person spends Eðp�1,…Þ. If he or she continues to buy the same set of goods as p1 changes,
then expenditures would be given by Epseudo. Because his or her consumption patterns will likely
change as p1 changes, actual expenditures will be less than this.
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E(p1, . . .)

p1
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amounts. Hence, the actual expenditure function, E, will lie everywhere below Epseudo

and the function will be concave.11 The concavity of the expenditure function is a
useful property for a number of applications, especially those related to the construc-
tion of index numbers (see the Extensions to Chapter 5).

PROBLEMS

4.1
Each day Paul, who is in third grade, eats lunch at school. He likes only Twinkies (t) and soda (s), and
these provide him a utility of

utility ¼ U ðt , sÞ ¼ ffiffiffiffi
ts

p
.

a. If Twinkies cost $0.10 each and soda costs $0.25 per cup, how should Paul spend the $1 his
mother gives him in order to maximize his utility?

b. If the school tries to discourage Twinkie consumption by raising the price to $0.40, by how
much will Paul’s mother have to increase his lunch allowance to provide him with the same level
of utility he received in part (a)?

4.2
a. A young connoisseur has $600 to spend to build a small wine cellar. She enjoys two vintages in

particular: a 2001 French Bordeaux (wF ) at $40 per bottle and a less expensive 2005 California
varietal wine (wC) priced at $8. If her utility is

11One result of concavity is that fii ¼ ∂2E=∂p2i � 0. This is precisely what Figure 4.7 shows.

SUMMARY

In this chapter we explored the basic economic model of
utilitymaximization subject to a budget constraint. Although
we approached this problem in a variety of ways, all of these
approaches lead to the same basic result.

• To reach a constrained maximum, an individual should
spend all available income and should choose a com-
modity bundle such that the MRS between any two
goods is equal to the ratio of those goods’market prices.
This basic tangency will result in the individual equating
the ratios of the marginal utility to market price for every
good that is actually consumed. Such a result is common
to most constrained optimization problems.

• The tangency conditions are only the first-order condi-
tions for a unique constrained maximum, however. To
ensure that these conditions are also sufficient, the indi-
vidual’s indifference curve map must exhibit a diminish-
ing MRS. In formal terms, the utility function must be
strictly quasi-concave.

• The tangency conditions must also be modified to allow
for corner solutions in which the optimal level of con-

sumption of some goods is zero. In this case, the ratio of
marginal utility to price for such a good will be below the
common marginal benefit–marginal cost ratio for goods
actually bought.

• A consequence of the assumption of constrained utility
maximization is that the individual’s optimal choices will
depend implicitly on the parameters of his or her budget
constraint. That is, the choices observed will be implicit
functions of all prices and income. Utility will therefore
also be an indirect function of these parameters.

• The dual to the constrained utility-maximization prob-
lem is to minimize the expenditure required to reach a
given utility target. Although this dual approach yields
the same optimal solution as the primal constrained max-
imum problem, it also yields additional insight into the
theory of choice. Specifically, this approach leads to ex-
penditure functions in which the spending required to
reach a given utility target depends on goods’ market
prices. Expenditure functions are therefore, in principle,
measurable.
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U ðwF ,wC Þ ¼ w2=3
F w1=3

C ,

then how much of each wine should she purchase?

b. When she arrived at the wine store, our young oenologist discovered that the price of the
French Bordeaux had fallen to $20 a bottle because of a decline in the value of the franc. If the
price of the California wine remains stable at $8 per bottle, how much of each wine should our
friend purchase to maximize utility under these altered conditions?

c. Explain why this wine fancier is better off in part (b) than in part (a). How would you put a
monetary value on this utility increase?

4.3
a. On a given evening, J. P. enjoys the consumption of cigars (c) and brandy (b) according to the

function

U ðc, bÞ ¼ 20c � c2 þ 18b � 3b2.

How many cigars and glasses of brandy does he consume during an evening? (Cost is no object
to J. P.)

b. Lately, however, J. P. has been advised by his doctors that he should limit the sum of glasses of
brandy and cigars consumed to 5. How many glasses of brandy and cigars will he consume
under these circumstances?

4.4
a. Mr. Odde Ball enjoys commodities x and y according to the utility function

U ðx, yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q
:

Maximize Mr. Ball’s utility if px ¼ $3, py ¼ $4, and he has $50 to spend.Hint: It may be easier
here to maximize U 2 rather than U . Why won’t this alter your results?

b. Graph Mr. Ball’s indifference curve and its point of tangency with his budget constraint. What
does the graph say about Mr. Ball’s behavior? Have you found a true maximum?

4.5
Mr. A derives utility from martinis (m) in proportion to the number he drinks:

U ðmÞ ¼ m.

Mr. A is very particular about his martinis, however: He only enjoys them made in the exact proportion
of two parts gin (g) to one part vermouth (v). Hence, we can rewrite Mr. A’s utility function as

U ðmÞ ¼ U ð g , vÞ ¼ min
g
2
, v

� �
.

a. Graph Mr. A’s indifference curve in terms of g and v for various levels of utility. Show that,
regardless of the prices of the two ingredients, Mr. A will never alter the way he mixes martinis.

b. Calculate the demand functions for g and v.

c. Using the results from part (b), what is Mr. A’s indirect utility function?

d. Calculate Mr. A’s expenditure function; for each level of utility, show spending as a function of
pg and pv. Hint: Because this problem involves a fixed-proportions utility function, you cannot
solve for utility-maximizing decisions by using calculus.

4.6
Suppose that a fast-food junkie derives utility from three goods—soft drinks (x), hamburgers (y), and
ice cream sundaes (z)—according to the Cobb-Douglas utility function
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U ðx, y, zÞ ¼ x0:5y0:5ð1þ zÞ0:5.
Suppose also that the prices for these goods are given by px ¼ 0:25, py ¼ 1, and pz ¼ 2 and that this
consumer’s income is given by I ¼ 2.

a. Show that, for z ¼ 0,maximization of utility results in the sameoptimal choices as inExample 4.1.
Show also that any choice that results in z > 0 (even for a fractional z) reduces utility from this
optimum.

b. How do you explain the fact that z ¼ 0 is optimal here?

c. How high would this individual’s income have to be in order for any z to be purchased?

4.7
The lump sum principle illustrated in Figure 4.5 applies to transfer policy as well as taxation. This
problem examines this application of the principle.

a. Use a graph similar to Figure 4.5 to show that an income grant to a person provides more utility
than does a subsidy on good x that costs the same amount to the government.

b. Use the Cobb-Douglas expenditure function presented in Equation 4.52 to calculate the extra
purchasing power needed to raise this person’s utility from U ¼ 2 to U ¼ 3.

c. Use Equation 4.52 again to estimate the degree to which good x must be subsidized in order
to raise this person’s utility from U ¼ 2 to U ¼ 3. How much would this subsidy cost the
government? How would this cost compare to the cost calculated in part (b)?

d. Problem 4.10 asks you to compute an expenditure function for a more general Cobb-Douglas
utility function than the one used in Example 4.4. Use that expenditure function to re-solve
parts (b) and (c) here for the case α ¼ 0:3, a figure close to the fraction of income that low-
income people spend on food.

e. How would your calculations in this problem have changed if we had used the expenditure
function for the fixed proportions case (Equation 4.54) instead?

4.8
Mr. Carr derives a lot of pleasure from driving under the wide blue skies. For the number of miles x that
he drives, he receives utility U ðxÞ ¼ 500x � x2. (Once he drives beyond a certain number of miles,
weariness kicks in and the ride becomes less and less enjoyable.) Now, his car gives him a decent highway
mileage of 25 miles to the gallon. But paying for gas, represented by y, induces disutility for Mr. Carr,
shown by U ðyÞ ¼ �1, 000y. Mr. Carr is willing to spend up to $25 for leisurely driving every week.

a. Find the optimum number of miles driven by Mr. Carr every week, given that the price of gas is
$2.50 per gallon.

b. How does that value change when the price of gas rises to $5.00 per gallon?

c. Now, further assume that there is a probability of 0.001 that Mr. Carr will get a flat tire every
mile he drives. The disutility from a flat tire is given by U ðzÞ ¼ �50,000z (where z is the
number of flat tires incurred), and each flat tire costs $50 to replace. Find the distance driven
that maximizes Mr. Carr’s utility after taking into account the expected likelihood of flat tires
(assume that the price of gas is $2.50 per gallon).

4.9
Suppose that we have a utility function involving two goods that is linear of the formU ðx, yÞ ¼ ax þ by.
Calculate the expenditure function for this utility function. Hint: The expenditure function will have
kinks at various price ratios.
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Analytical Problems

4.10 Cobb-Douglas utility
In Example 4.1 we looked at the Cobb-Douglas utility function U ðx, yÞ ¼ xαy1�α, where 0 � α � 1.
This problem illustrates a few more attributes of that function.

a. Calculate the indirect utility function for this Cobb-Douglas case.

b. Calculate the expenditure function for this case.

c. Show explicitly how the compensation required to offset the effect of a rise in the price of x is
related to the size of the exponent α.

4.11 CES utility
The CES utility function we have used in this chapter is given by

U ðx, yÞ ¼ xδ

δ
þ yδ

δ
.

a. Show that the first-order conditions for a constrained utility maximum with this function
require individuals to choose goods in the proportion

x
y
¼ px

py

 !1=ðδ�1Þ
.

b. Show that the result in part (a) implies that individuals will allocate their funds equally between
x and y for the Cobb-Douglas case (δ ¼ 0), as we have shown before in several problems.

c. How does the ratio pxx=pyy depend on the value of δ? Explain your results intuitively. (For
further details on this function, see Extension E4.3.)

d. Derive the indirect utility and expenditure functions for this case and check your results by
describing the homogeneity properties of the functions you calculated.

4.12 Stone-Geary utility
Suppose individuals require a certain level of food (x) to remain alive. Let this amount be given by x0.
Once x0 is purchased, individuals obtain utility from food and other goods (y) of the form

U ðx, yÞ ¼ ðx � x0Þαyβ,
where αþ β ¼ 1:

a. Show that if I > pxx0 then the individual will maximize utility by spending αðI � pxx0Þ þ pxx0
on good x and βðI � pxx0Þ on good y. Interpret this result.

b. How do the ratios pxx=I and pyy=I change as income increases in this problem? (See also
Extension E4.2 for more on this utility function.)

4.13 CES indirect utility and expenditure functions
In this problem, we will use a more standard form of the CES utility function to derive indirect utility
and expenditure functions. Suppose utility is given by

U ðx, yÞ ¼ ðxδ þ yδÞ1=δ

[in this function the elasticity of substitution σ ¼ 1=ð1� δÞ].
a. Show that the indirect utility function for the utility function just given is

V ¼ I ðprx þ pry Þ�1=r ,

where r ¼ δ=ðδ� 1Þ ¼ 1� σ.
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b. Show that the function derived in part (a) is homogeneous of degree 0 in prices and income.

c. Show that this function is strictly increasing in income.

d. Show that this function is strictly decreasing in any price.

e. Show that the expenditure function for this case of CES utility is given by

E ¼ V ðprx þ pry Þ1=r .
f. Show that the function derived in part (e) is homogeneous of degree 1 in the goods’ prices.

g. Show that this expenditure function is increasing in each of the prices.

h. Show that the function is concave in each price.
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E X T E N S I O N S

Budget Shares

Thenineteenth-centuryeconomistErnstEngelwasone
of the first social scientists to intensively study people’s
actual spending patterns. He focused specifically on
food consumption. His finding that the fraction of
income spent on food declines as income increases
has come to be known as Engel’s law and has been
confirmed in many studies. Engel’s law is such an
empirical regularity that some economists have sug-
gested measuring poverty by the fraction of income
spent on food. Two other interesting applications are:
(1) the study byHayashi (1995) showing that the share
of income devoted to foods favored by the elderly is
much higher in two-generation households than in
one-generation households; and (2) findings by Behr-
man (1989) from less-developed countries showing
that people’s desires for a more varied diet as their
incomes rise may in fact result in reducing the fraction
of income spent on particular nutrients. In the remain-
der of this extension we look at some evidence on
budget shares (denoted by si ¼ pixi=I ) together with
a bit more theory on the topic.

E4.1 The variability of budget shares

Table E4.1 shows some recent budget share data from
the United States. Engel’s law is clearly visible in the
table: as income rises families spend a smaller propor-
tion of their funds on food. Other important variations
in the table include the declining share of income spent
on health-care needs and the much larger share of
income devoted to retirement plans by higher-income
people. Interestingly, the shares of income devoted to
shelter and transportation are relatively constant over
the range of income shown in the table; apparently,
high-income people buy bigger houses and cars.

The variable income shares in Table E4.1 illustrate
why the Cobb-Douglas utility function is not useful
for detailed empirical studies of household behavior.
When utility is given by U ðx, yÞ ¼ xαyβ, the implied
demand equations are x ¼ αI=px and y ¼ βI=py .
Therefore,

sx ¼ pxx=I ¼ α and
sy ¼ pyy=I ¼ β,

(i)

and budget shares are constant for all observed in-
come levels and relative prices. Because of this short-
coming, economists have investigated a number of

other possible forms for the utility function that
permit more flexibility.

E4.2 Linear expenditure system

A generalization of the Cobb-Douglas function that
incorporates the idea that certain minimal amounts of
each good must be bought by an individual ðx0, y0Þ is
the utility function

U ðx, yÞ ¼ ðx � x0Þαðy � y0Þβ (ii)

for x 	 x0 and y 	 y0, where again αþ β ¼ 1.
Demand functions can be derived from this utility

function in a way analogous to the Cobb-Douglas
case by introducing the concept of supernumerary in-
come ðI�Þ, which represents the amount of purchas-
ing power remaining after purchasing the minimum
bundle

I� ¼ I � pxx0 � pyy0. (iii)

Using this notation, the demand functions are

x ¼ ðpxx0 þ αI�Þ=px ,
y ¼ ðpyy0 þ βI�Þ=py .

(iv)

In this case, then, the individual spends a constant
fraction of supernumerary income on each good once
the minimum bundle has been purchased. Manipula-
tion of Equation iv yields the share equations

sx ¼ αþ ðβpxx0 � αpyy0Þ=I ,
sy ¼ βþ ðαpyy0 � βpxx0Þ=I ,

(v)

which show that this demand system is not homothetic.
Inspection of Equation v shows the unsurprising result
that the budget share of a good is positively related to
the minimal amount of that good needed and neg-
atively related to theminimal amount of the other good
required. Because the notion of necessary purchases
seems to accord well with real-world observation, this
linear expenditure system (LES), which was first devel-
oped by Stone (1954), is widely used in empirical stud-
ies. The utility function in Equation ii is also called a
Stone-Geary utility function.

Traditional purchases
One of the most interesting uses of the LES is to
examine how its notion of necessary purchases changes
as conditions change. For example, Oczkowski and
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Philip (1994) study how access to modern consumer
goods may affect the share of income that individuals
in transitional economies devote to traditional local
items. They show that villagers of Papua, NewGuinea,
reduce such shares significantly as outside goods be-
come increasingly accessible. Hence, such improve-
ments as better roads for moving goods provide one
of the primary routes by which traditional cultural
practices are undermined.

E4.3 CES utility

In Chapter 3 we introduced the CES utility function

U ðx, yÞ ¼ xδ

δ
þ yδ

δ
(vi)

for δ � 1, δ 6¼ 0. The primary use of this function is
to illustrate alternative substitution possibilities (as
reflected in the value of the parameter δ). Budget
shares implied by this utility function provide a

number of such insights. Manipulation of the first-
order conditions for a constrained utility maximum
with the CES function yields the share equations

sx ¼ 1=½1þ ðpy=pxÞK �,
sy ¼ 1=½1þ ðpx=pyÞK �,

(vii)

where K ¼ δ=ðδ� 1Þ.
The homothetic nature of the CES function is

shown by the fact that these share expressions depend
only on the price ratio, px=py . Behavior of the shares in
response to changes in relative prices depends on the
value of the parameterK . For the Cobb-Douglas case,
δ ¼ 0 and so K ¼ 0 and sx ¼ sy ¼ 1=2. When δ > 0;
substitution possibilities are great and K < 0. In this
case, Equation vii shows that sx and px=py move in
opposite directions. If px=py rises, the individual sub-
stitutes y for x to such an extent that sx falls. Alterna-
tively, if δ < 0, then substitution possibilities are
limited, K > 0, and sx and px=py move in the same

TABLE E4.1 Budget Shares of U.S. Households, 2004

Annual Income

$10,000–$14,999 $40,000–$49,999 Over $70,000

Expenditure Item

Food 15.3 14.3 11.8

Shelter 21.8 18.5 17.6

Utilities, fuel, and
public services

10.2 7.7 5.4

Transportation 15.4 18.4 17.6

Health insurance 4.9 3.8 2.3

Other health-care
expenses

4.4 2.9 2.4

Entertainment
(including alcohol)

4.4 4.6 5.4

Tobacco 1.2 0.9 0.4

Education 2.5 1.1 2.6

Insurance and
pensions

2.7 9.6 14.7

Other (apparel,
personal care, other
housing expenses,
and misc.)

17.2 18.2 19.8

SOURCE: Consumer Expenditure Report, 2004, Bureau of Labor Statistics website: http://www.bls.gov.
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direction. In this case, an increase in px=py causes only
minor substitution of y for x, and sx actually rises be-
cause of the relatively higher price of good x.

North American free trade
CES demand functions are most often used in large-
scale computer models of general equilibrium (see
Chapter 13) that economists use to evaluate the impact
of major economic changes. Because the CES model
stresses that shares respond to changes in relative
prices, it is particularly appropriate for looking at inno-
vations such as changes in tax policy or in international
trade restrictions, where changes in relative prices are
quite likely. One important recent area of such research
has been on the impact of the North American Free
Trade Agreement for Canada, Mexico, and the United
States. In general, these models find that all of the
countries involved might be expected to gain from
the agreement, but that Mexico’s gains may be the
greatest because it is experiencing the greatest change
in relative prices. Kehoe and Kehoe (1995) present a
number of computable equilibrium models that econ-
omists have used in these examinations.1

E4.4 The almost ideal demand
system

An alternativeway to study budget shares is to start from
a specific expenditure function. This approach is espe-
cially convenient because the envelope theorem shows
that budget shares can be derived directly from expen-
diture functions through logarithmic differentiation:

∂ lnEðpx ,py ,V Þ
∂ ln px

¼ 1
Eðpx ,py ,V Þ ⋅

∂E
∂px

⋅
∂px

∂ lnpx

¼ xpx
E

¼ sx . (viii)

Deaton and Muellbauer (1980) make extensive use of
this relationship to study the characteristics of a par-
ticular class of expenditure functions that they term an
almost ideal demand system (AIDS). Their expendi-
ture function takes the form

ln Eðpx , py ,V Þ ¼ a0 þ a1 ln px þ a2 ln py

þ 0:5b1ðln pxÞ2 þ b2 ln px ln py

þ 0:5b3ðln pyÞ2 þ Vc0p
c1
x p

c2
y .

(ix)

This form approximates any expenditure function. For
the function to be homogeneous of degree 1 in the
prices, the parameters of the function must obey the
constraints a1 þ a2 ¼ 1, b1 þ b2 ¼ 0, b2 þ b3 ¼ 0, and
c1 þ c2 ¼ 0. Using the results of Equation viii shows
that, for this function,

sx ¼ a1þb1 lnpx þb2 lnpy þ c1Vc0p
c1
x p

c2
y ,

sy ¼ a2þb2 lnpx þb3 lnpy þ c2Vc0p
c1
x p

c2
y ⋅

(x)

Notice that, given theparameter restrictions, sxþ sy ¼ 1.
Making use of the inverse relationship between indirect
utility and expenditure functions and some additional
algebraic manipulation will put these budget share
equations into a simple form suitable for econometric
estimation:

sx ¼ a1 þ b1 ln px þ b2 ln py þ c1ðE=pÞ,
sy ¼ a2 þ b2 ln px þ b3 ln py þ c2ðE=pÞ,

(xi)

where p is an index of prices defined by

ln p ¼ a0 þ a1 ln px þ a2 ln py þ 0:5b1ðln pxÞ2

þ b2 ln px ln py þ 0:5b3ðln pyÞ2.
(xii)

In other words, the AIDS share equations state that
budget shares are linear in the logarithms of prices
and in total real expenditures. In practice, simpler
price indices are often substituted for the rather com-
plex index given by Equation xii, although there is
some controversy about this practice (see the Exten-
sions to Chapter 5).

British expenditure patterns
Deaton and Muellbauer apply this demand system to
the study of British expenditure patterns between
1954 and 1974. They find that both food and housing
have negative coefficients of real expenditures, imply-
ing that the share of income devoted to these items
falls (at least in Britain) as people get richer. The
authors also find significant relative price effects in
many of their share equations, and prices have espe-
cially large effects in explaining the share of expendi-
tures devoted to transportation and communication.
In applying the AIDS model to real-world data, the
authors also encounter a variety of econometric diffi-
culties, the most important of which is that many of
the equations do not appear to obey the restrictions
necessary for homogeneity. Addressing such issues has
been a major topic for further research on this demand
system.

1The research on the North American Free Trade Agreement is discussed
in more detail in the Extensions to Chapter 13
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C H A P T E R

5

Income and Substitution Effects

In this chapter we will use the utility-maximization model to study how the quantity of a good that an
individual chooses is affected by a change in that good’s price. This examination allows us to construct the
individual’s demand curve for the good. In the process we will provide a number of insights into the nature
of this price response and into the kinds of assumptions that lie behind most analyses of demand.

DEMAND FUNCTIONS

As we pointed out in Chapter 4, in principle it will usually be possible to solve the necessary
conditions of a utility maximum for the optimal levels of x1, x2,…, xn (and λ, the Lagrangian
multiplier) as functions of all prices and income. Mathematically, this can be expressed as n
demand functions of the form

x�1 ¼ x1ðp1, p2,…, pn , I Þ,
x�2 ¼ x2ðp1, p2,…, pn , I Þ,

..

.

x�n ¼ xnðp1, p2,…, pn, I Þ.

(5.1)

If there are only two goods, x and y (the case we will usually be concerned with), this
notation can be simplified a bit as

x� ¼ xðpx , py , I Þ,
y� ¼ yðpx , py , I Þ.

(5.2)

Once we know the form of these demand functions and the values of all prices and income,
we can “predict” how much of each good this person will choose to buy. The notation
stresses that prices and income are “exogenous” to this process; that is, these are parameters
over which the individual has no control at this stage of the analysis. Changes in the pa-
rameters will, of course, shift the budget constraint and cause this person to make different
choices. That question is the focus of this chapter and the next. Specifically, in this chapter
we will be looking at the partial derivatives ∂x=∂I and ∂x=∂px for any arbitrary good x.
Chapter 6 will carry the discussion further by looking at “cross-price” effects of the form
∂x=∂py for any arbitrary pair of goods x and y.

Homogeneity
A first property of demand functions requires little mathematics. If we were to double all
prices and income (indeed, if we were to multiply them all by any positive constant), then
the optimal quantities demanded would remain unchanged. Doubling all prices and income
changes only the units by which we count, not the “real” quantity of goods demanded. This
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result can be seen in a number of ways, although perhaps the easiest is through a graphic
approach. Referring back to Figures 4.1 and 4.2, it is clear that doubling px , py , and I does
not affect the graph of the budget constraint. Hence, x�, y� will still be the combination that
is chosen. Further, pxx þ pyy ¼ I is the same constraint as 2pxx þ 2pyy ¼ 2I . Somewhat
more technically, we can write this result as saying that, for any good xi ,

x�i ¼ xiðp1, p2,…, pn, I Þ ¼ xiðtp1, tp2,…, tpn, tI Þ (5.3)

for any t > 0. Functions that obey the property illustrated in Equation 5.3 are said to be
homogeneous of degree 0.1 Hence, we have shown that individual demand functions are
homogeneous of degree 0 in all prices and income. Changing all prices and income in the same
proportions will not affect the physical quantities of goods demanded. This result shows that
(in theory) individuals’ demands will not be affected by a “pure” inflation during which all
prices and incomes rise proportionally. They will continue to demand the same bundle of
goods. Of course, if an inflation were not pure (that is, if some prices rose more rapidly than
others), this would not be the case.

EXAMPLE 5.1 Homogeneity

Homogeneity of demand is a direct result of the utility-maximization assumption. Demand
functions derived from utility maximization will be homogeneous and, conversely, demand
functions that are not homogeneous cannot reflect utility maximization (unless prices enter
directly into the utility function itself, as they might for goods with snob appeal). If, for
example, an individual’s utility for food ðxÞ and housing ðyÞ is given by

utility ¼ U ðx, yÞ ¼ x0:3y0:7, (5.4)

then it is a simple matter (following the procedure used in Example 4.1) to derive the
demand functions

x� ¼ 0:3I
px

,

y� ¼ 0:7I
py

.
(5.5)

These functions obviously exhibit homogeneity, since a doubling of all prices and income
would leave x� and y� unaffected.

If the individual’s preferences for x and y were reflected instead by the CES function

U ðx, yÞ ¼ x0:5 þ y0:5, (5.6)

then (as shown in Example 4.2) the demand functions are given by

x� ¼ 1
1þ px=py

 !
⋅
I
px
,

y� ¼ 1
1þ py=px

 !
⋅
I
py
.

(5.7)

As before, both of these demand functions are homogeneous of degree 0; a doubling of
px , py , and I would leave x� and y� unaffected.

1More generally, as we saw in Chapters 2 and 4, a function f ðx1, x2,…, xnÞ is said to be homogeneous of degree k if
f ðtx1, tx2,…, txnÞ ¼ t kf ðx1, x2,…, xnÞ for any t > 0. The most common cases of homogeneous functions are k ¼ 0 and
k ¼ 1. If f is homogeneous of degree 0, then doubling all of its arguments leaves f unchanged in value. If f is
homogeneous of degree 1, then doubling all of its arguments will double the value of f .

142 Part 2 Choice and Demand



QUERY: Do the demand functions derived in this example ensure that total spending on x
and y will exhaust the individual’s income for any combination of px , py , and I ? Can you prove
that this is the case?

CHANGES IN INCOME

As a person’s purchasing power rises, it is natural to expect that the quantity of each good
purchased will also increase. This situation is illustrated in Figure 5.1. As expenditures
increase from I1 to I2 to I3, the quantity of x demanded increases from x1 to x2 to x3.
Also, the quantity of y increases from y1 to y2 to y3. Notice that the budget lines I1, I2, and I3
are all parallel, reflecting that only income is changing, not the relative prices of x and y.
Because the ratio px=py stays constant, the utility-maximizing conditions also require that the
MRS stay constant as the individual moves to higher levels of satisfaction. The MRS is
therefore the same at point (x3, y3) as at (x1, y1).

Normal and inferior goods
In Figure 5.1, both x and y increase as income increases—both ∂x=∂I and ∂y=∂I are positive.
This might be considered the usual situation, and goods that have this property are called
normal goods over the range of income change being observed.

FIGURE 5.1 Effect of an Increase in Income on the Quantities of x and y Chosen

As income increases from I1 to I2 to I3, the optimal (utility-maximizing) choices of x and y are
shown by the successively higher points of tangency. Observe that the budget constraint shifts in a
parallel way because its slope (given by −px=py) does not change.
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U2

U3
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I3

U2I2

U1

I1

y2

y1

x1 x2 x3
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For some goods, however, the quantity chosen may decrease as income increases in some
ranges. Examples of such goods are rotgut whiskey, potatoes, and secondhand clothing. A
good z for which ∂z=∂I is negative is called an inferior good. This phenomenon is illustrated
in Figure 5.2. In this diagram, the good z is inferior because, for increases in income in the
range shown, less of z is actually chosen. Notice that indifference curves do not have to be
“oddly” shaped in order to exhibit inferiority; the curves corresponding to goods y and z in
Figure 5.2 continue to obey the assumption of a diminishingMRS. Good z is inferior because
of the way it relates to the other goods available (good y here), not because of a peculiarity
unique to it. Hence, we have developed the following definitions.

D E F I N I T I O N
Inferior and normal goods. A good xi for which ∂xi=∂I < 0 over some range of income
changes is an inferior good in that range. If ∂xi=∂I 	 0 over some range of income variation
then the good is a normal (or “noninferior”) good in that range.

CHANGES IN A GOOD’S PRICE

The effect of a price change on the quantity of a good demanded is more complex to analyze
than is the effect of a change in income. Geometrically, this is because changing a price
involves changing not only the intercepts of the budget constraint but also its slope. Con-
sequently, moving to the new utility-maximizing choice entails not only moving to another
indifference curve but also changing the MRS. Therefore, when a price changes, two
analytically different effects come into play. One of these is a substitution effect : even if

FIGURE 5.2 An Indifference Curve Map Exhibiting Inferiority

In this diagram, good z is inferior because the quantity purchased actually declines as income
increases. Here, y is a normal good (as it must be if there are only two goods available), and purchases
of y increase as total expenditures increase.

Quantity of z

Quantity
of y

y3
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144 Part 2 Choice and Demand



the individual were to stay on the same indifference curve, consumption patterns would be
allocated so as to equate the MRS to the new price ratio. A second effect, the income effect,
arises because a price change necessarily changes an individual’s “real” income. The individ-
ual cannot stay on the initial indifference curve and must move to a new one. We begin by
analyzing these effects graphically. Then we will provide a mathematical development.

Graphical analysis of a fall in price
Income and substitution effects are illustrated in Figure 5.3. This individual is initially
maximizing utility (subject to total expenditures, I ) by consuming the combination x�, y�.

FIGURE 5.3 Demonstration of the Income and Substitution Effects
of a Fall in the Price of x

When the price of x falls from p1x to p2x , the utility-maximizing choice shifts from x�, y� to x��, y��.
This movement can be broken down into two analytically different effects: first, the substitution
effect, involving a movement along the initial indifference curve to point B, where the MRS is equal
to the new price ratio; and second, the income effect, entailing a movement to a higher level of utility
because real income has increased. In the diagram, both the substitution and income effects cause
more x to be bought when its price declines. Notice that point I=py is the same as before the price
change; this is because py has not changed. Point I=py therefore appears on both the old and new
budget constraints.
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The initial budget constraint is I ¼ p1xx þ pyy. Now suppose that the price of x falls to p2x . The
new budget constraint is given by the equation I ¼ p2xx þ pyy in Figure 5.3.

It is clear that the new position of maximum utility is at x��, y��, where the new budget
line is tangent to the indifference curveU2. The movement to this new point can be viewed as
being composed of two effects. First, the change in the slope of the budget constraint would
have motivated a move to point B, even if choices had been confined to those on the original
indifference curve U1. The dashed line in Figure 5.3 has the same slope as the new budget
constraint (I ¼ p2xx þ pyy) but is drawn to be tangent to U1 because we are conceptually
holding “real” income (that is, utility) constant. A relatively lower price for x causes a move
from x�, y� to B if we do not allow this individual to be made better off as a result of the lower
price. This movement is a graphic demonstration of the substitution effect. The further
move from B to the optimal point x��, y�� is analytically identical to the kind of change
exhibited earlier for changes in income. Because the price of x has fallen, this person has a
greater “real” income and can afford a utility level (U2) that is greater than that which could
previously be attained. If x is a normal good, more of it will be chosen in response to this
increase in purchasing power. This observation explains the origin of the term income effect
for the movement. Overall then, the result of the price decline is to cause more x to be
demanded.

It is important to recognize that this person does not actually make a series of choices
from x�, y� to B and then to x��, y��. We never observe point B; only the two optimal
positions are reflected in observed behavior. However, the notion of income and substitution
effects is analytically valuable because it shows that a price change affects the quantity of x that
is demanded in two conceptually different ways. We will see how this separation offers major
insights in the theory of demand.

Graphical analysis of an increase in price
If the price of good x were to increase, a similar analysis would be used. In Figure 5.4, the
budget line has been shifted inward because of an increase in the price of x from p1x to p2x . The
movement from the initial point of utility maximization (x�, y�) to the new point (x��, y��)
can be decomposed into two effects. First, even if this person could stay on the initial in-
difference curve (U2), there would still be an incentive to substitute y for x and move along
U2 to point B. However, because purchasing power has been reduced by the rise in the price
of x, he or she must move to a lower level of utility. This movement is again called the income
effect. Notice in Figure 5.4 that both the income and substitution effects work in the same
direction and cause the quantity of x demanded to be reduced in response to an increase in
its price.

Effects of price changes for inferior goods
So far we have shown that substitution and income effects tend to reinforce one another. For
a price decline, both cause more of the good to be demanded, whereas for a price increase,
both cause less to be demanded. Although this analysis is accurate for the case of normal
(noninferior) goods, the possibility of inferior goods complicates the story. In this case,
income and substitution effects work in opposite directions, and the combined result of a
price change is indeterminate. A fall in price, for example, will always cause an individual to
tend to consume more of a good because of the substitution effect. But if the good is inferior,
the increase in purchasing power caused by the price decline may cause less of the good to be
bought. The result is therefore indeterminate: the substitution effect tends to increase the
quantity of the inferior good bought, whereas the (perverse) income effect tends to reduce
this quantity. Unlike the situation for normal goods, it is not possible here to predict even the
direction of the effect of a change in px on the quantity of x consumed.
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Giffen’s paradox
If the income effect of a price change is strong enough, the change in price and the resulting
change in the quantity demanded could actually move in the same direction. Legend has it
that the English economist Robert Giffen observed this paradox in nineteenth-century Ire-
land: when the price of potatoes rose, people reportedly consumed more of them. This
peculiar result can be explained by looking at the size of the income effect of a change in the
price of potatoes. Potatoes were not only inferior goods, they also used up a large portion of
the Irish people’s income. An increase in the price of potatoes therefore reduced real income
substantially. The Irish were forced to cut back on other luxury food consumption in order to
buy more potatoes. Even though this rendering of events is historically implausible, the

FIGURE 5.4 Demonstration of the Income and Substitution Effects
of an Increase in the Price of x

When the price of x increases, the budget constraint shifts inward. The movement from the initial
utility-maximizing point (x�, y�) to the new point (x��, y��) can be analyzed as two separate effects.
The substitution effect would be depicted as a movement to point B on the initial indifference curve
(U2). The price increase, however, would create a loss of purchasing power and a consequent
movement to a lower indifference curve. This is the income effect. In the diagram, both the income
and substitution effects cause the quantity of x to fall as a result of the increase in its price. Again, the
point I=py is not affected by the change in the price of x.
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possibility of an increase in the quantity demanded in response to an increase in the price of a
good has come to be known as Giffen’s paradox.2 Later we will provide a mathematical
analysis of how Giffen’s paradox can occur.

A summary
Hence, our graphical analysis leads to the following conclusions.

O P T I M I Z A T I O N

P R I N C I P L E

Substitution and income effects. The utility-maximization hypothesis suggests that, for
normal goods, a fall in the price of a good leads to an increase in quantity purchased because:
(1) the substitution effect causes more to be purchased as the individual moves along an
indifference curve; and (2) the income effect causes more to be purchased because the price
decline has increased purchasing power, thereby permitting movement to a higher indiffer-
ence curve. When the price of a normal good rises, similar reasoning predicts a decline in the
quantity purchased. For inferior goods, substitution and income effects work in opposite
directions, and no definite predictions can be made.

THE INDIVIDUAL’S DEMAND CURVE

Economists frequently wish to graph demand functions. It will come as no surprise to you
that these graphs are called “demand curves.” Understanding how such widely used curves
relate to underlying demand functions provides additional insights to even the most funda-
mental of economic arguments. To simplify the development, assume there are only two
goods and that, as before, the demand function for good x is given by

x� ¼ xðpx , py , I Þ.
The demand curve derived from this function looks at the relationship between x and px
while holding py ,

_
I , and preferences constant. That is, it shows the relationship

x� ¼ xðpx ,
_
py ,

_
I Þ, (5.8)

where the bars over py and I indicate that these determinants of demand are being held
constant. This construction is shown in Figure 5.5. The graph shows utility-maximizing
choices of x and y as this individual is presented with successively lower prices of good x
(while holding py and I constant). We assume that the quantities of x chosen increase from x 0

to x 00 to x 000 as that good’s price falls from p 0
x to p 00

x to p 000
x . Such an assumption is in accord

with our general conclusion that, except in the unusual case of Giffen’s paradox, ∂x=∂px is
negative.

In Figure 5.5b, information about the utility-maximizing choices of good x is trans-
ferred to a demand curve with px on the vertical axis and sharing the same horizontal axis as
Figure 5.5a. The negative slope of the curve again reflects the assumption that ∂x=∂px is
negative. Hence, we may define an individual demand curve as follows.

D E F I N I T I O N
Individual demand curve. An individual demand curve shows the relationship between the
price of a good and the quantity of that good purchased by an individual, assuming that all
other determinants of demand are held constant.

2A major problem with this explanation is that it disregards Marshall’s observation that both supply and demand factors
must be taken into account when analyzing price changes. If potato prices increased because of the potato blight in Ireland,
then supply should have become smaller, so how could more potatoes possibly have been consumed? Also, since many Irish
people were potato farmers, the potato price increase should have increased real income for them. For a detailed discussion
of these and other fascinating bits of potato lore, see G. P. Dwyer and C. M. Lindsey, “Robert Giffen and the Irish Potato,”
American Economic Review (March 1984): 188–92.
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FIGURE 5.5 Construction of an Individual’s Demand Curve

In (a), the individual’s utility-maximizing choices of x and y are shown for three different prices of
x (p 0

x , p
00
x , and p 000

x ). In (b), this relationship between px and x is used to construct the demand curve
for x. The demand curve is drawn on the assumption that py , I , and preferences remain constant as
px varies.

Quantity of x per period

Quantity
of y per
period

I = px′ x + pyy

I = px″ x + pyy

I = px″‴ x + pyy

x‴x ″x ′

U2

U3

U1

I /py

(a) Individual’s indifference curve map

Quantity of x per period

px

x( px, py, I)

(b) Demand curve

x‴x ″x′

px′

 px″

px‴



The demand curve illustrated in Figure 5.5 stays in a fixed position only so long as all other
determinants of demand remain unchanged. If one of these other factors were to change then
the curve might shift to a new position, as we now describe.

Shifts in the demand curve
Three factors were held constant in deriving this demand curve: (1) income; (2) prices of
other goods (say, py); and (3) the individual’s preferences. If any of these were to change, the
entire demand curve might shift to a new position. For example, if I were to increase, the
curve would shift outward (provided that ∂x=∂I > 0, that is, provided the good is a “normal”
good over this income range). More x would be demanded at each price. If another price
(say, py) were to change then the curve would shift inward or outward, depending precisely
on how x and y are related. In the next chapter we will examine that relationship in detail.
Finally, the curve would shift if the individual’s preferences for good x were to change. A
sudden advertising blitz by the McDonald’s Corporation might shift the demand for ham-
burgers outward, for example.

As this discussion makes clear, one must remember that the demand curve is only a two-
dimensional representation of the true demand function (Equation 5.8) and that it is stable
only if other things do stay constant. It is important to keep clearly in mind the difference
between a movement along a given demand curve caused by a change in px and a shift in the
entire curve caused by a change in income, in one of the other prices, or in preferences.
Traditionally, the term an increase in demand is reserved for an outward shift in the demand
curve, whereas the term an increase in the quantity demanded refers to a movement along a
given curve caused by a change in px .

EXAMPLE 5.2 Demand Functions and Demand Curves

To be able to graph a demand curve from a given demand function, we must assume that the
preferences that generated the function remain stable and that we know the values of income
and other relevant prices. In the first case studied in Example 5.1, we found that

x ¼ 0:3I
px

(5.9)

and

y ¼ 0:7I
py

.

If preferences do not change and if this individual’s income is $100, these functions become

x ¼ 30
px

,

y ¼ 70
py

,
(5.10)

or

pxx ¼ 30,
pyy ¼ 70,

which makes clear that the demand curves for these two goods are simple hyperbolas. A rise
in income would shift both of the demand curves outward. Notice also, in this case, that the
demand curve for x is not shifted by changes in py and vice versa.
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For the second case examined in Example 5.1, the analysis is more complex. For good x,
we know that

x ¼ 1
1þ px=py

 !
⋅
I
px

, (5.11)

so to graph this in the px–x plane we must know both I and py . If we again assume I ¼ 100
and let py ¼ 1, then Equation 5.11 becomes

x ¼ 100
p2x þ px

, (5.12)

which, when graphed, would also show a general hyperbolic relationship between price and
quantity consumed. In this case the curve would be relatively flatter because substitution
effects are larger than in the Cobb-Douglas case. From Equation 5.11, we also know that

∂x
∂I

¼ 1
1þ px=py

 !
⋅
1
px

> 0 (5.13)

and
∂x
∂py

¼ I

ðpx þ pyÞ2
> 0,

so increases in I or py would shift the demand curve for good x outward.

QUERY: How would the demand functions in Equations 5.10 change if this person spent
half of his or her income on each good? Show that these demand functions predict the same x
consumption at the point px ¼ 1, py ¼ 1, I ¼ 100 as does Equation 5.11. Use a numerical
example to show that the CES demand function is more responsive to an increase in px than is
the Cobb-Douglas demand function.

COMPENSATED DEMAND CURVES

In Figure 5.5, the level of utility this person gets varies along the demand curve. As px falls, he
or she is made increasingly better-off, as shown by the increase in utility fromU1 toU2 toU3.
The reason this happens is that the demand curve is drawn on the assumption that nominal
income and other prices are held constant; hence, a decline in px makes this person better off
by increasing his or her real purchasing power. Although this is the most common way to
impose the ceteris paribus assumption in developing a demand curve, it is not the only way.
An alternative approach holds real income (or utility) constant while examining reactions to
changes in px . The derivation is illustrated in Figure 5.6, where we hold utility constant (at
U2) while successively reducing px . As px falls, the individual’s nominal income is effectively
reduced, thus preventing any increase in utility. In other words, the effects of the price change
on purchasing power are “compensated” so as to constrain the individual to remain on U2.
Reactions to changing prices include only substitution effects. If we were instead to examine
effects of increases in px , income compensation would be positive: This individual’s income
would have to be increased to permit him or her to stay on the U2 indifference curve in
response to the price rises. We can summarize these results as follows.

D E F I N I T I O N
Compensated demand curve. A compensated demand curve shows the relationship be-
tween the price of a good and the quantity purchased on the assumption that other prices and
utility are held constant. The curve (which is sometimes termed a “Hicksian” demand curve
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after the British economist John Hicks) therefore illustrates only substitution effects. Mathe-
matically, the curve is a two-dimensional representation of the compensated demand function

x ¼ xcðpx , py ,U Þ. (5.14)

Relationship between compensated and uncompensated
demand curves
This relationship between the two demand curve concepts is illustrated in Figure 5.7. At p 00

x
the curves intersect, because at that price the individual’s income is just sufficient to attain

FIGURE 5.6 Construction of a Compensated Demand Curve

The curve xc shows how the quantity of x demanded changes when px changes, holding py and utility
constant. That is, the individual’s income is “compensated” so as to keep utility constant. Hence, xc
reflects only substitution effects of changing prices.

px′

px″

x‴x ″x* Quantity of x

Quantity of x

Quantity
of y

py
Slope = – 

py
Slope = – 

px‴
py

Slope = – 

U2

px

xc( px,py,U)

(a) Individual’s indifference curve map

(b) Compensated demand curve

x ″x* x**

px′

 px″

px‴
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utility level U2 (compare Figures 5.5 and Figure 5.6). Hence, x 00 is demanded under either
demand concept. For prices below p 00

x , however, the individual suffers a compensating
reduction in income on the curve xc that prevents an increase in utility from the lower
price. Hence, assuming x is a normal good, it follows that less x is demanded at p 000

x along
xc than along the uncompensated curve x. Alternatively, for a price above p 00

x (such as p 0
x ),

income compensation is positive because the individual needs some help to remain on U2.
Hence, again assuming x is a normal good, at p 0

x more x is demanded along xc than along x. In
general, then, for a normal good the compensated demand curve is somewhat less responsive
to price changes than is the uncompensated curve. This is because the latter reflects both
substitution and income effects of price changes, whereas the compensated curve reflects only
substitution effects.

The choice between using compensated or uncompensated demand curves in economic
analysis is largely a matter of convenience. In most empirical work, uncompensated curves
(which are sometimes called “Marshallian demand curves”) are used because the data on
prices and nominal incomes needed to estimate them are readily available. In the Extensions
to Chapter 12 we will describe some of these estimates and show how they might be em-
ployed for practical policy purposes. For some theoretical purposes, however, compensated
demand curves are a more appropriate concept because the ability to hold utility constant
offers some advantages. Our discussion of “consumer surplus” later in this chapter offers one
illustration of these advantages.

FIGURE 5.7 Comparison of Compensated and Uncompensated Demand Curves

The compensated (xc) and uncompensated (x) demand curves intersect at p 00
x because x 00 is

demanded under each concept. For prices above p 00
x , the individual’s income is increased with the

compensated demand curve, so more x is demanded than with the uncompensated curve. For prices
below p 00

x , income is reduced for the compensated curve, so less x is demanded than with the
uncompensated curve. The standard demand curve is flatter because it incorporates both substitu-
tion and income effects whereas the curve xc reflects only substitution effects.

Quantity of xx* x**

px

x( px,py,I)

xc( px,py,U)

x′ x ″ x‴

px′

 px″

px‴
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EXAMPLE 5.3 Compensated Demand Functions

In Example 3.1 we assumed that the utility function for hamburgers (y) and soft drinks (x)
was given by

utility ¼ U ðx, yÞ ¼ x0:5y0:5, (5.15)

and in Example 4.1 we showed that we can calculate the Marshallian demand functions for
such utility functions as

x ¼ αI
px

¼ I
2px

,

y ¼ βI
py

¼ I
2py

.
(5.16)

Also, in Example 4.3 we calculated the indirect utility function by combining Equations 5.15
and 5.16 as

utility ¼ V ðI , px , pyÞ ¼
I

2p0:5x p0:5y
. (5.17)

To obtain the compensated demand functions for x and y, we simply use Equation 5.17 to
solve for I and then substitute this expression involving V into Equations 5.16. This permits
us to interchange income and utility so we may hold the latter constant, as is required for the
compensated demand concept. Making these substitutions yields

x ¼ Vp0:5y

p0:5x
,

y ¼ Vp0:5x

p0:5y
.

(5.18)

These are the compensateddemand functions for x and y.Notice that nowdemanddependson
utility (V ) rather than on income.Holding utility constant, it is clear that increases in px reduce
the demand for x, and this now reflects only the substitution effect (see also Example 5.4).

Although py did not enter into the uncompensated demand function for good x, it does
enter into the compensated function: increases in py shift the compensated demand curve for
x outward. The two demand concepts agree at the assumed initial point px ¼ 1, py ¼ 4,
I ¼ 8, and V ¼ 2; Equations 5.16 predict x ¼ 4, y ¼ 1 at this point, as do Equations 5.18.
For px > 1 or px < 1, the demands differ under the two concepts, however. If, say, px ¼ 4,
then the uncompensated functions (Equations 5.16) predict x ¼ 1, y ¼ 1, whereas the
compensated functions (Equations 5.18) predict x ¼ 2, y ¼ 2. The reduction in x resulting
from the rise in its price is smaller with the compensated demand function than it is with the
uncompensated function because the former concept adjusts for the negative effect on
purchasing power that comes about from the price rise.

This example makes clear the different ceteris paribus assumptions inherent in the two
demand concepts.With uncompensated demand, expenditures are held constant at I ¼ 2 and
so the rise in px from 1 to 4 results in a loss of utility; in this case, utility falls from 2 to 1. In the
compensated demand case, utility is held constant at V ¼ 2. To keep utility constant,
expenditures must rise to E ¼ 1ð2Þ þ 1ð2Þ ¼ 4 in order to offset the effects of the price
rise (see Equation 5.17).

QUERY: Are the compensated demand functions given in Equations 5.18 homogeneous of
degree 0 in px and py if utility is held constant? Would you expect that to be true for all
compensated demand functions?
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A MATHEMATICAL DEVELOPMENT OF RESPONSE
TO PRICE CHANGES

Up to this point we have largely relied on graphical devices to describe how individuals
respond to price changes. Additional insights are provided by a more mathematical approach.
Our basic goal is to examine the partial derivative ∂x=∂px—that is, how a change in the price
of a good affects its purchase, ceteris paribus. In the next chapter, we take up the question of
how changes in the price of one commodity affect purchases of another commodity.

Direct approach
Our goal is to use the utility-maximization model to learn something about how the demand
for good x changes when px changes; that is, we wish to calculate ∂x=∂px . The direct
approach to this problem makes use of the first-order conditions for utility maximization
(Equations 4.8). Differentiation of these n þ 1 equations yields a new system of n þ 1
equations, which eventually can be solved for the derivative we seek.3 Unfortunately, obtain-
ing this solution is quite cumbersome and the steps required yield little in the way of economic
insights. Hence, we will instead adopt an indirect approach that relies on the concept of
duality. In the end, both approaches yield the same conclusion, but the indirect approach is
much richer in terms of the economics it contains.

Indirect approach
To begin our indirect approach,4 we will assume (as before) there are only two goods
(x and y) and focus on the compensated demand function, xcðpx , py ,U Þ, introduced in
Equation 5.14. We now wish to illustrate the connection between this demand function
and the ordinary demand function, xðpx , py , I Þ. In Chapter 4 we introduced the expenditure
function, which records the minimal expenditure necessary to attain a given utility level. If we
denote this function by

minimum expenditure ¼ Eðpx , py ,U Þ (5.19)

then, by definition,

xcðpx , py ,U Þ ¼ x½px , py ,Eðpx , py ,U Þ�. (5.20)

This conclusion was already introduced in connection with Figure 5.7, which showed that the
quantity demanded is identical for the compensated and uncompensated demand functions
when income is exactly what is needed to attain the required utility level. Equation 5.20 is
obtained by inserting that expenditure level into the demand function, xðpx , py , I Þ. Now we
can proceed by partially differentiating Equation 5.20 with respect to px and recognizing that
this variable enters into the ordinary demand function in two places. Hence

∂xc

∂px
¼ ∂x

∂px
þ ∂x
∂E ⋅

∂E
∂px

, (5.21)

and rearranging terms yields
∂x
∂px

¼ ∂xc

∂px
� ∂x
∂E ⋅

∂E
∂px

. (5.22)

3See, for example, Paul A. Samuelson, Foundations of Economic Analysis (Cambridge, MA: Harvard University Press,
1947), pp. 101–3.
4The following proof is adapted from Phillip J. Cook, “A ‘One Line’ Proof of the Slutsky Equation,” American Economic
Review 62 (March 1972): 139.
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The substitution effect
Consequently, the derivative we seek has two terms. Interpretation of the first term is
straightforward: It is the slope of the compensated demand curve. But that slope represents
movement along a single indifference curve; it is, in fact, what we called the “substitution
effect” earlier. The first term on the right of Equation 5.22 is a mathematical representation
of that effect.

The income effect
The second term in Equation 5.22 reflects the way in which changes in px affect the demand
for x through changes in necessary expenditure levels (that is, changes in purchasing power).
This term therefore reflects the income effect. The negative sign in Equation 5.22 shows the
direction of the effect. For example, an increase in px increases the expenditure level that
would have been needed to keep utility constant (mathematically, ∂E=∂px > 0). But because
nominal income is held constant in Marshallian demand, these extra expenditures are not
available. Hence x (and y) must be reduced to meet this shortfall. The extent of the re-
duction in x is given by ∂x=∂E. On the other hand, if px falls, the expenditure level required to
attain a given utility also falls. The decline in x that would normally accompany such a fall
in expenditures is precisely the amount that must be added back through the income effect.
Notice that in this case the income effect works to increase x.

The Slutsky equation
The relationships embodied in Equation 5.22 were first discovered by the Russian economist
Eugen Slutsky in the late nineteenth century. A slight change in notation is required to state
the result the way Slutsky did. First, we write the substitution effect as

substitution effect ¼ ∂xc

∂px
¼ ∂x

∂px

����
U¼constant

(5.23)

to indicate movement along a single indifference curve. For the income effect, we have

income effect ¼ � ∂x
∂E ⋅

∂E
∂px

¼ � ∂x
∂I ⋅

∂E
∂px

, (5.24)

because changes in income or expenditures amount to the same thing in the function
xðpx , py , I ).

The second term in the income effect can be studied most directly by using the envelope
theorem. Remember that expenditure functions represent a minimization problem in which
the expenditure required to reach a minimum level of utility is minimized. The Lagrangian
expression for this minimization is ℒ ¼ pxx þ pyy þ λ½

_
U �U ðx, yÞ�. Applying the envelope

theorem to this problem yields
∂E
∂px

¼ ∂ℒ
∂px

¼ x. (5.25)

In words, the envelope theorem shows that partial differentiation of the expenditure func-
tion with respect to a good’s price yields the demand function for that good. Because utility
is held constant in the expenditure function, this demand function will be a compensated
one. This result, and a similar one in the theory of the firm, is usually called Shephard’s
lemma after the economist who first studied this approach to demand theory in detail.
The result is extremely useful in both theoretical and applied microeconomics; partial dif-
ferentiation of maximized or minimized functions is often the easiest way to derive demand

156 Part 2 Choice and Demand



functions.5 Notice also that the result makes intuitive sense. If we ask how much extra
expenditure is necessary to compensate for a rise in the price of good x, a simple appro-
ximation would be given by the number of units of x currently being consumed.

By combining Equations 5.23–5.25, we can arrive at the following complete statement of
the response to a price change.

O P T I M I Z A T I O N

P R I N C I P L E

Slutsky equation. The utility-maximization hypothesis shows that the substitution and
income effects arising from a price change can be represented by

∂x
∂px

¼ substitution effect þ income effect, (5.26)

or

∂x
∂px

¼ ∂x
∂px

����
U¼constant

� x
∂x
∂I

. (5.27)

The Slutsky equation allows a more definitive treatment of the direction and size of substitu-
tion and income effects than was possible with a graphic analysis. First, the substitution effect
ð∂x=∂px jU¼constantÞ is always negative as long as the MRS is diminishing. A fall (rise) in px
reduces (increases) px=py , and utility maximization requires that the MRS fall (rise) too. But
this can occur along an indifference curve only if x increases (or, in the case of a rise in px , if x
decreases). Hence, insofar as the substitution effect is concerned, price and quantity always
move in opposite directions. Equivalently, the slope of the compensated demand curve must
be negative.6 We will show this result in a somewhat different way in the final section of this
chapter.

The sign of the income effect (� x∂x=∂I ) depends on the sign of ∂x=∂I . If x is a normal
good, then ∂x=∂I is positive and the entire income effect, like the substitution effect, is
negative. Thus, for normal goods, price and quantity always move in opposite directions. For
example, a fall in px raises real income and, because x is a normal good, purchases of x rise.
Similarly, a rise in px reduces real income and so purchases of x fall. Overall, then, as we
described previously using a graphic analysis, substitution and income effects work in the
same direction to yield a negatively sloped demand curve. In the case of an inferior good,
∂x=∂I < 0 and the two terms in Equation 5.27 would have different signs. It is at least
theoretically possible that, in this case, the second term could dominate the first, leading to
Giffen’s paradox (∂x=∂px > 0).

EXAMPLE 5.4 A Slutsky Decomposition

The decomposition of a price effect that was first discovered by Slutsky can be nicely illus-
trated with the Cobb-Douglas example studied previously. In Example 5.3, we found that
the Marshallian demand function for good x was

xðpx , py , I Þ ¼
0:5I
px

(5.28)

(continued)

5For instance, in Example 4.4, for expenditure we found a simple Cobb-Douglas utility function of the form
Eðpx , py ,V Þ ¼ 2Vp0:5x p0:5y . Hence, from Shephard’s lemma we know that x ¼ ∂E=∂px ¼ Vp�0:5

x p0:5y , which is the same
result we obtained in Example 5.3.
6It is possible that substitution effects would be zero if indifference curves have an L-shape (implying that x and y are used
in fixed proportions). Some examples are provided in the Chapter 5 problems.
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EXAMPLE 5.4 CONTINUED

and that the Hicksian (compensated) demand function was

xcðpx , py ,V Þ ¼ Vp0:5y

p0:5x
. (5.29)

The overall effect of a price change on the demand for good x can be found by differentiating
the Marshallian demand function:

∂x
∂px

¼ �0:5I
p2x

. (5.30)

Nowwewish to show that this effect is the sum of the two effects that Slutsky identified. As
before, the substitution effect is found by differentiating the compensated demand function:

substitution effect ¼ ∂xc

∂px
¼ �0:5Vp0:5y

p1:5x
. (5.31)

We can eliminate indirect utility, V , by substitution from Equation 5.17:

substitution effect ¼ �0:5ð0:5Ip�0:5
x p�0:5

y Þp0:5y

p1:5x
¼ �0:25I

p2x
. (5.32)

Calculation of the income effect in this example is considerably easier. Applying the results
from Equation 5.27, we have

income effect ¼ �x
∂x
∂I

¼ � 0:5I
px

	 

⋅
0:5
px

¼ �0:25I
p2x

. (5.33)

A comparison of Equation 5.30 with Equations 5.32 and 5.33 shows that we have indeed
decomposed the price derivative of this demand function into substitution and income
components. Interestingly, the substitution and income effects are of precisely the same size.
This, as we will see in later examples, is one of the reasons that the Cobb-Douglas is a very
special case.

The well-worn numerical example we have been using also demonstrates this decomposi-
tion. When the price of x rises from $1 to $4, the (uncompensated) demand for x falls from
x ¼ 4 to x ¼ 1 but the compensated demand for x falls only from x ¼ 4 to x ¼ 2. That decline
of 50 percent is the substitution effect. The further 50 percent fall from x ¼ 2 to x ¼ 1 rep-
resents reactions to the decline in purchasing power incorporated in the Marshallian demand
function. This income effect does not occur when the compensated demand notion is used.

QUERY: In this example, the individual spends half of his or her income on good x and half
on good y. How would the relative sizes of the substitution and income effects be altered if
the exponents of the Cobb-Douglas utility function were not equal?

DEMAND ELASTICITIES

So far in this chapter we have been examining how individuals respond to changes in prices
and income by looking at the derivatives of the demand function. For many analytical
questions this is a good way to proceed because calculus methods can be directly applied.
However, as we pointed out in Chapter 2, focusing on derivatives has one major disadvantage
for empirical work: the sizes of derivatives depend directly on how variables are measured.
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That can make comparisons among goods or across countries and time periods very difficult.
For this reason, most empirical work in microeconomics uses some form of elasticity measure.
In this section we introduce the three most common types of demand elasticities and explore
some of the mathematical relations among them. Again, for simplicity we will look at a
situation where the individual chooses between only two goods, though these ideas can be
easily generalized.

Marshallian demand elasticities
Most of the commonly used demand elasticities are derived from the Marshallian demand
function xðpx , py , I Þ. Specifically, the following definitions are used.

D E F I N I T I O N
1. Price elasticity of demand ðex, px Þ. This measures the proportionate change in quantity

demanded in response to a proportionate change in a good’s own price. Math-
ematically,

ex, px ¼
∆x=x
∆px=px

¼ ∆x
∆px

⋅
px
x

¼ ∂x
∂px

⋅
px
x

. (5.34)

2. Income elasticity of demand ðex, I Þ. This measures the proportionate change in quan-
tity demanded in response to a proportionate change in income. In mathematical
terms,

ex, I ¼ ∆x=x
∆I=I

¼ ∆x
∆I ⋅

I
x
¼ ∂x

∂I ⋅
I
x
. (5.35)

3. Cross-price elasticity of demand ðex, py Þ. This measures the proportionate change in the
quantity of x demanded in response to a proportionate change in the price of some
other good (y):

ex, py ¼
∆x=x
∆py=py

¼ ∆x
∆py

⋅
py
x

¼ ∂x
∂py

⋅
py
x
. (5.36)

Notice that all of these definitions use partial derivatives, which signifies that all other
determinants of demand are to be held constant when examining the impact of a specific
variable. In the remainder of this section we will explore the own-price elasticity definition in
some detail. Examining the cross-price elasticity of demand is the primary topic of Chapter 6.

Price elasticity of demand
The (own-) price elasticity of demand is probably the most important elasticity concept in all
of microeconomics. Not only does it provide a convenient way of summarizing how people
respond to price changes for a wide variety of economic goods, but it is also a central concept
in the theory of how firms react to the demand curves facing them. As you probably already
learned in earlier economics courses, a distinction is usually made between cases of elastic
demand (where price affects quantity significantly) and inelastic demand (where the effect of
price is small). One mathematical complication in making these ideas precise is that the price
elasticity of demand itself is negative7 because, except in the unlikely case of Giffen’s para-
dox, ∂x=∂px is negative. The dividing line between large and small responses is generally set

7Sometimes economists use the absolute value of the price elasticity of demand in their discussions. Although this is
mathematically incorrect, such usage is quite common. For example, a study that finds that ex, px ¼ �1:2 may sometimes
report the price elasticity of demand as “1.2.” We will not do so here, however.

Chapter 5 Income and Substitution Effects 159



at �1. If ex, px ¼ �1, changes in x and px are of the same proportionate size. That is, a
1 percent increase in price leads to a fall of 1 percent in quantity demanded. In this case,
demand is said to be “unit-elastic.” Alternatively, if ex, px < �1, then quantity changes
are proportionately larger than price changes and we say that demand is “elastic.” For
example, if ex, px ¼ �3, each 1 percent rise in price leads to a fall of 3 percent in quantity
demanded. Finally, if ex, px > �1 then demand is inelastic and quantity changes are propor-
tionately smaller than price changes. A value of ex, px ¼ �0:3, for example, means that a
1 percent increase in price leads to a fall in quantity demanded of 0.3 percent. In Chapter 12
we will see how aggregate data are used to estimate the typical individual’s price elasticity of
demand for a good and how such estimates are used in a variety of questions in applied
microeconomics.

Price elasticity and total spending
The price elasticity of demand determines how a change in price, ceteris paribus, affects total
spending on a good. The connection is most easily shown with calculus:

∂ðpx ⋅ xÞ
∂px

¼ px ⋅
∂x
∂px

þ x ¼ xðex, px þ 1Þ. (5.37)

So, the sign of this derivative depends on whether ex, px is larger or smaller than �1. If
demand is inelastic (0 > ex, px > �1), the derivative is positive and price and total spending
move in the same direction. Intuitively, if price does not affect quantity demanded very
much, then quantity stays relatively constant as price changes and total spending reflects
mainly those price movements. This is the case, for example, with the demand for most
agricultural products. Weather-induced changes in price for specific crops usually cause total
spending on those crops to move in the same direction. On the other hand, if demand is
elastic (ex, px < �1), reactions to a price change are so large that the effect on total spending
is reversed: a rise in price causes total spending to fall (because quantity falls a lot) and a fall
in price causes total spending to rise (quantity increases significantly). For the unit-elastic
case (ex, px ¼ �1), total spending is constant no matter how price changes.

Compensated price elasticities
Because some microeconomic analyses focus on the compensated demand function, it is also
useful to define elasticities based on that concept. Such definitions follow directly from their
Marshallian counterparts.

D E F I N I T I O N
Let the compensated demand function be given by xcðpx , py ,U Þ. Then we have the following
definitions.

1. Compensated own-price elasticity of demand (exc , px ). This elasticity measures the pro-
portionate compensated change in quantity demanded in response to a proportionate
change in a good’s own price:

exc , px
¼ ∆xc=xc

∆px=px
¼ ∆xc

∆px
⋅
px
xc ¼ ∂xc

∂px
⋅
px
xc . (5.38)

2. Compensated cross-price elasticity of demand (exc , px ). This measures the proportionate
compensated change in quantity demanded in response to a proportionate change in
the price of another good:

exc , py
¼ ∆xc=xc

∆py=py
¼ ∆xc

∆py
⋅
py
xc ¼ ∂xc

∂py
⋅
py
xc . (5.39)
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Whether these price elasticities differ much from their Marshallian counterparts depends on
the importance of income effects in the overall demand for good x. The precise connection
between the two can be shown by multiplying the Slutsky result from Equation 5.27 by the
factor px=x:

px
x ⋅

∂x
∂px

¼ ex, px ¼
px
x ⋅

∂xc

∂px
� px

x ⋅ x ⋅
∂x
∂I

¼ exc , px � sxex, I , (5.40)

where sx ¼ pxx=I is the share of total income devoted to the purchase of good x.
Equation 5.40 shows that compensated and uncompensated own-price elasticities of

demand will be similar if either of two conditions hold: (1) The share of income devoted
to good x ð sxÞ is small; or (2) the income elasticity of demand for good x ðex, I Þ is small. Either
of these conditions serves to reduce the importance of the income compensation employed in
the construction of the compensated demand function. If good x is unimportant in a person’s
budget, then the amount of income compensation required to offset a price change will be
small. Even if a good has a large budget share, if demand does not react strongly to changes in
income then the results of either demand concept will be similar. Hence, there will be many
circumstances where one can use the two price elasticity concepts more or less interchange-
ably. Put another way, there are many economic circumstances in which substitution effects
constitute the most important component of price responses.

Relationships among demand elasticities
There are a number of relationships among the elasticity concepts that have been developed
in this section. All of these are derived from the underlying model of utility maximization.
Here we look at three such relationships that provide further insight on the nature of in-
dividual demand.

Homogeneity. The homogeneity of demand functions can also be expressed in elasticity
terms. Because any proportional increase in all prices and income leaves quantity demanded
unchanged, the net sum of all price elasticities together with the income elasticity for a
particular good must sum to zero. A formal proof of this property relies on Euler’s theorem
(see Chapter 2). Applying that theorem to the demand function xðpx , py , I Þ and remember-
ing that this function is homogeneous of degree 0 yields

0 ¼ px ⋅
∂x
∂px

þ py ⋅
∂x
∂py

þ I ⋅
∂x
∂I

. (5.41)

If we divide Equation 5.41 by x then we obtain

0 ¼ ex, px þ ex, py þ ex, I , (5.42)

as intuition suggests. This result shows that the elasticities of demand for any good cannot
follow a completely flexible pattern. They must exhibit a sort of internal consistency that
reflects the basic utility-maximizing approach on which the theory of demand is based.

Engel aggregation. In the Extensions to Chapter 4 we discussed the empirical analysis of
market shares and took special note of Engel’s law that the share of income devoted to food
declines as income increases. From an elasticity perspective, Engel’s law is a statement of the
empirical regularity that the income elasticity of demand for food is generally found to be
considerably less than 1. Because of this, it must be the case that the income elasticity of all
nonfood items must be greater than 1. If an individual experiences an increase in his or her
income then we would expect food expenditures to increase by a smaller proportional
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amount, but the income must be spent somewhere. In the aggregate, these other expendi-
tures must increase proportionally faster than income.

A formal statement of this property of income elasticities can be derived by differentiating
the individual’s budget constraint (I ¼ pxx þ pyy) with respect to income while treating the
prices as constants:

1 ¼ px ⋅
∂x
∂I

þ py ⋅
∂y
∂I

. (5.43)

A bit of algebraic manipulation of this expression yields

1 ¼ px ⋅
∂x
∂I ⋅

xI
xI

þ py ⋅
∂y
∂I ⋅

yI
yI

¼ sxex, I þ syey, I ; (5.44)

here, as before, si represents the share of income spent on good i. Equation 5.44 shows that
the weighted average on income elasticities for all goods that a person buys must be 1. If we
knew, say, that a person spent a fourth of his or her income on food and the income
elasticity of demand for food were 0.5, then the income elasticity of demand for everything
else must be approximately 1:17 ½¼ ð1� 0:25 ⋅ 0:5Þ=0:75�. Because food is an important
“necessity,” everything else is in some sense a “luxury.”

Cournot aggregation. The eighteenth-century French economist Antoine Cournot pro-
vided one of the first mathematical analyses of price changes using calculus. His most
important discovery was the concept of marginal revenue, a concept central to the profit-
maximization hypothesis for firms. Cournot was also concerned with how the change in a
single price might affect the demand for all goods. Our final relationship shows that there are
indeed connections among all of the reactions to the change in a single price. We begin by
differentiating the budget constraint again, this time with respect to px :

∂I
∂px

¼ 0 ¼ px ⋅
∂x
∂px

þ x þ py ⋅
∂y
∂px

.

Multiplication of this equation by px=I yields

0 ¼ px ⋅
∂x
∂px

⋅
px
I ⋅

x
x
þ x ⋅

px
I

þ py ⋅
∂y
∂px

⋅
px
I ⋅

y
y
,

0 ¼ sxex, px þ sx þ syey, px ,
(5.45)

so the final Cournot result is

sxex, px þ syey, px ¼ �sx . (5.46)

This equation shows that the size of the cross-price effect of a change in the price of x on the
quantity of y consumed is restricted because of the budget constraint. Direct, own-price
effects cannot be totally overwhelmed by cross-price effects. This is the first of many con-
nections among the demands for goods that we will study more intensively in the next
chapter.

Generalizations. Although we have shown these aggregation results only for the case of
two goods, they are actually easily generalized to the case of many goods. You are asked to
do just that in Problem 5.11. A more difficult issue is whether these results should be
expected to hold for typical economic data in which the demands of many people are
combined. Often economists treat aggregate demand relationships as describing the behav-
ior of a “typical person,” and these relationships should in fact hold for such a person. But
the situation may not be quite that simple, as we will show when discussing aggregation later
in the book.
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EXAMPLE 5.5 Demand Elasticities: The Importance of Substitution Effects

In this example we calculate the demand elasticities implied by three of the utility functions
we have been using. Although the possibilities incorporated in these functions are too simple
to reflect how economists actually study demand empirically, they do show how elasticities
ultimately reflect people’s preferences. One especially important lesson is to show why most
of the variation in demand elasticities among goods probably arises because of differences in
the size of substitution effects.

Case 1: Cobb-Douglas ðσ ¼ 1Þ. U ðx, yÞ ¼ xαyβ, where αþ β ¼ 1.
The demand functions derived from this utility function are

xðpx , py , I Þ ¼
αI
px

,

yðpx , py , I Þ ¼
βI
py

¼ ð1� αÞI
py

.

Application of the elasticity definitions shows that

ex, px¼
∂x
∂px

⋅
px
x

¼ �αI
p2x

⋅
px

αI=px
¼ �1,

ex, py¼
∂x
∂py

⋅
py
x

¼ 0 ⋅
py
x

¼ 0,

ex, I ¼
∂x
∂I ⋅

I
x
¼ α

px
⋅

I
αI=px

¼ 1.

(5.47)

The elasticities for good y take on analogous values. Hence, the elasticities associated
with the Cobb-Douglas utility function are constant over all ranges of prices and income and
take on especially simple values. That these obey the three relationships shown in the
previous section can be easily demonstrated using the fact that here sx ¼ α and sy ¼ β:

Homogeneity: ex, px þ ex, py þ ex, I ¼ �1þ 0þ 1 ¼ 0.

Engel aggregation: sxex, I þ syey, I ¼ α ⋅ 1þ β ⋅ 1 ¼ αþ β ¼ 1.

Cournot aggregation: sxex, px þ syey, px ¼ αð�1Þ þ β ⋅ 0 ¼ �α ¼ �sx .

We can also use the Slutsky equation in elasticity form (Equation 5.40) to derive
the compensated price elasticity in this example:

exc , px
¼ ex, px þ sxex, I ¼ �1þ αð1Þ ¼ α� 1 ¼ �β. (5.48)

Here, then, the compensated price elasticity for x depends on how important other goods
(y) are in the utility function.

Case 2: CES ðσ ¼ 2; δ ¼ 0:5Þ. U ðx, yÞ ¼ x0:5 þ y0:5.
In Example 4.2 we showed that the demand functions that can be derived from this utility

function are

xðpx , py , I Þ ¼ I
pxð1þ pxp�1

y Þ,

yðpx , py , I Þ ¼ I
pyð1þ p�1

x pyÞ
.

(continued)
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EXAMPLE 5.5 CONTINUED

As you might imagine, calculating elasticities directly from these functions can take some
time. Here we focus only on the own-price elasticity and make use of the result (from
Problem 5.6) that the “share elasticity” of any good is given by

esx , px ¼
∂sx
∂px

⋅
px
sx

¼ 1þ ex, px . (5.49)

In this case,

sx ¼ pxx
I

¼ 1
1þ pxp�1

y
,

so the share elasticity is more easily calculated and is given by

esx , px ¼
∂sx
∂px

⋅
px
sx

¼ �p�1
y

ð1þ pxp�1
y Þ2 ⋅

px
ð1þ pxp�1

y Þ�1 ¼ �pxp
�1
y

1þ pxp�1
y

. (5.50)

Because the units in which goods are measured are rather arbitrary in utility theory, we
might as well define them so that initially px ¼ py , in which case8 we get

ex, px ¼ esx , px � 1 ¼ �1
1þ 1

� 1 ¼ �1.5. (5.51)

Hence, demand is more elastic in this case than in the Cobb-Douglas example. The reason for
this is that the substitution effect is larger for this version of theCESutility function.This can be
shown by again applying the Slutsky equation (and using the facts that ex, I ¼ 1 and sx ¼ 0:5):

exc , px ¼ ex, px þ sxex, I ¼ �1.5þ 0.5ð1Þ ¼ �1, (5.52)

which is twice the size of the substitution effect for the Cobb-Douglas.

Case 3. CES ðσ ¼ 0:5; δ ¼ �1Þ: U ðx, yÞ ¼ �x�1 � y�1.
Referring back to Example 4.2, we can see that the share of good x implied by this utility

function is given by

sx ¼
1

1þ p0:5y p�0:5
x

,

so the share elasticity is given by

esx , px ¼
∂sx
∂px

⋅
px
sx

¼ 0:5p0:5y p�1:5
x

ð1þ p0:5y p�0:5
x Þ2 ⋅

px
ð1þ p0:5y p�0:5

x Þ�1 ¼ 0:5p0:5y p�0:5
x

1þ p0:5y p�0:5
x

. .(5.53)

If we again adopt the simplification of equal prices, we can compute the own-price elas-
ticity as

ex, px ¼ esx , px � 1 ¼ 0:5
2

� 1 ¼ �0:75 (5.54)

and the compensated price elasticity as

exc , px
¼ ex, px þ sxex, I ¼ �0:75þ 0:5ð1Þ ¼ �0:25. (5.55)

So, for this version of the CES utility function, the own-price elasticity is smaller than in
Case 1 and Case 2 because the substitution effect is smaller. Hence, the main variation
among the cases is indeed caused by differences in the size of the substitution effect.

8Notice that this substitution must be made after differentiation because the definition of elasticity requires that we change
only px while holding py constant.
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If you never want to work out this kind of elasticity again, it may be helpful to make use of
the quite general result that

exc , px ¼ �ð1� sxÞσ. (5.56)

You may wish to check out that this formula works in these three examples (with sx ¼ 0:5
and σ ¼ 1, 2, 0.5, respectively), and Problem 5.9 asks you to show that this result is gen-
erally true. Because all of these cases based on the CES utility function have a unitary income
elasticity, the own-price elasticity can be computed from the compensated price elasticity by
simply adding �sx to the figure computed in Equation 5.56.

QUERY: Why is it that the budget share for goods other than x ð1� sxÞ enters into the
compensated own-price elasticities in this example?

CONSUMER SURPLUS

An important problem in applied welfare economics is to devise a monetary measure of the
gains and losses that individuals experience when prices change. One use for such a measure is
to place a dollar value on the welfare loss that people experience when a market is monopo-
lized with prices exceeding marginal costs. Another application concerns measuring the
welfare gains that people experience when technical progress reduces the prices they pay
for goods. Related applications occur in environmental economics (measuring the welfare
costs of incorrectly priced resources), law and economics (evaluating the welfare costs of
excess protections taken in fear of lawsuits), and public economics (measuring the excess
burden of a tax). In order to make such calculations, economists use empirical data from
studies of market demand in combination with the theory that underlies that demand. In this
section we will examine the primary tools used in that process.

Consumer welfare and the expenditure function
The expenditure function provides the first component for the study of the price/welfare
connection. Suppose that we wished to measure the change in welfare that an individual
experiences if the price of good x rises from p0x to p1x . Initially this person requires expendi-
tures of Eðp0x , py ,U0Þ to reach a utility of U0. To achieve the same utility once the price of x
rises, he or she would require spending of at least Eðp1x , py ,U0Þ. In order to compensate for
the price rise, therefore, this person would require a compensation (formally called a compen-
sating variation or CV) of

CV ¼ Eðp1x , py ,U0Þ � Eðp0x , py ,U0Þ. (5.57)

This situation is shown graphically in the top panel of Figure 5.8. Initially, this person
consumes the combination x0, y0 and obtains utility of U0. When the price of x rises, he or
she would be forced to move to combination x2, y2 and suffer a loss in utility. If he or she
were compensated with extra purchasing power of amount CV, he or she could afford to
remain on the U0 indifference curve despite the price rise by choosing combination x1, y1.
The distance CV, therefore, provides a monetary measure of how much this person needs in
order to be compensated for the price rise.

Using the compensated demand curve to show CV
Unfortunately, individuals’ utility functions and their associated indifference curve maps are
not directly observable. But we can make some headway on empirical measurement by
determining how the CV amount can be shown on the compensated demand curve in the
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FIGURE 5.8 Showing Compensating Variation

If the price of x rises from p0x to p1x , this person needs extra expenditures of CV to remain on the U0
indifference curve. Integration shows that CV can also be represented by the shaded area below the
compensated demand curve in panel (b).
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bottom panel of Figure 5.8. Shephard’s lemma shows that the compensated demand func-
tion for a good can be found directly from the expenditure function by differentiation:

xcðpx , py ,U Þ ¼ ∂Eðpx , py ,U Þ
∂px

. (5.58)

Hence, the compensation described in Equation 5.57 can be found by integrating across a
sequence of small increments to price from p0x to p1x :

CV ¼ ∫
p1x

p0x

dE ¼ ∫
p1x

p0x

xcðpx , py ,U0Þ dpx (5.59)

while holding py and utility constant. The integral defined in Equation 5.59 has a geometric
interpretation, which is shown in the lower panel of Figure 5.9: it is the shaded area to the
left of the compensated demand curve and bounded by p0x and p1x . So the welfare cost of this
price increase can also be illustrated using changes in the area below the compensated de-
mand curve.

The consumer surplus concept
There is another way to look at this issue. We can ask how much this person would be willing
to pay for the right to consume all of this good that he or she wanted at the market price of p0x
rather than doing without the good completely. The compensated demand curve in the
bottom panel of Figure 5.8 shows that if the price of x rose to p2x , this person’s consumption
would fall to zero and he or she would require an amount of compensation equal to area
p2xAp

0
x in order to accept the change voluntarily. The right to consume x0 at a price of p0x is

therefore worth this amount to this individual. It is the extra benefit that this person receives
by being able to make market transactions at the prevailing market price. This value, given by
the area below the compensated demand curve and above the market price, is termed
consumer surplus. Looked at in this way, the welfare problem caused by a rise in the price
of x can be described as a loss in consumer surplus. When the price rises from p0x to p1x the
consumer surplus “triangle” decreases in size from p2xAp0x to p2xBp

1
x . As the figure makes clear,

that is simply another way of describing the welfare loss represented in Equation 5.59.

Welfare changes and the Marshallian demand curve
So far our analysis of the welfare effects of price changes has focused on the compensated
demand curve. This is in some ways unfortunate because most empirical work on demand
actually estimates ordinary (Marshallian) demand curves. In this section we will show that
studying changes in the area below a Marshallian demand curve may in fact be quite a good
way to measure welfare losses.

Consider the Marshallian demand curve xðpx ,…Þ illustrated in Figure 5.9. Initially this
consumer faces the price p0x and chooses to consume x0. This consumption yields a utility
level of U0, and the initial compensated demand curve for x [that is, xcðpx , py ,U0Þ] also
passes through the point x0, p

0
x (which we have labeled point A). When price rises to p1x , the

Marshallian demand for good x falls to x1 (point C on the demand curve) and this person’s
utility also falls to, say, U1. There is another compensated demand curve associated with this
lower level of utility, and it also is shown in Figure 5.9. Both the Marshallian demand curve
and this new compensated demand curve pass through point C .

The presence of a second compensated demand curve in Figure 5.9 raises an intriguing
conceptual question. Should we measure the welfare loss from the price rise as we did in
Figure 5.8 using the compensating variation (CV) associated with the initial compensated
demand curve (area p1xBAp

0
x) or should we, perhaps, use this new compensated demand curve
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and measure the welfare loss as area p1xCDp0x? A potential rationale for using the area under
the second curve would be to focus on the individual’s situation after the price rise (with
utility level U1). We might ask how much he or she would now be willing to pay to see the
price return to its old, lower levels.9 The answer to this would be given by area p1xCDp0x . The
choice between which compensated demand curve to use therefore boils down to choosing
which level of utility one regards as the appropriate target for the analysis.

Luckily, the Marshallian demand curve provides a convenient compromise between these
two measures. Because the size of the area between the two prices and below the Marshallian
curve (area p1xCAp

0
x) is smaller than that below the compensated demand curve based on U0

but larger than that below the curve based on U1, it does seem an attractive middle ground.
Hence, this is the measure of welfare losses we will primarily use throughout this book.

D E F I N I T I O N
Consumer surplus. Consumer surplus is the area below the Marshallian demand curve and
above market price. It shows what an individual would pay for the right to make voluntary
transactions at this price. Changes in consumer surplus can be used to measure the welfare
effects of price changes.

We should point out that some economists use either CV or EV to compute the welfare
effects of price changes. Indeed, economists are often not very clear about which measure of
welfare change they are using. Our discussion in the previous section shows that if income
effects are small, it really does not make much difference in any case.

FIGURE 5.9 Welfare Effects of Price Changes and the Marshallian Demand Curve

The usual Marshallian (nominal income constant) demand curve for good x is xðpx ,…Þ. Further,
xcð…,U0Þ and xcð…,U1Þ denote the compensated demand curves associated with the utility levels
experienced when p0x and p1x , respectively, prevail. The area to the left of xðpx ,…Þ between p0xand p

1
x is

bounded by the similar areas to the left of the compensated demand curves. Hence, for small changes
in price, the area to the left of the Marshallian demand curve is a good measure of welfare loss.

px

px
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px
1
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9This alternative measure of compensation is sometimes termed the “equivalent variation” (EV).
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EXAMPLE 5.6 Welfare Loss from a Price Increase

These ideas can be illustrated numerically by returning to our old hamburger/soft drink
example. Let’s look at the welfare consequences of an unconscionable price rise for soft drinks
(good x) from $1 to $4. In Example 5.3, we found that the compensated demand for good x
was given by

xcðpx , py ,V Þ ¼ Vp0:5y

p0:5x
. (5.60)

Hence, the welfare cost of the price increase is given by

CV ¼ ∫
4

1

xcðpx , py ,V Þ dpx ¼ ∫
4

1

Vp0:5y p�0:5
x dpx ¼ 2Vp0:5y p0:5x

�����
px¼4

px¼1

. (5.61)

If we use the values we have been assuming throughout this gastronomic feast (V ¼ 2,
py ¼ 4), then

CV ¼ 2 ⋅2 ⋅2 ⋅ ð4Þ0:5 � 2 ⋅2 ⋅2 ⋅ ð1Þ0:5 ¼ 8. (5.62)

This figure would be cut in half (to 4) if we believed that the utility level after the price rise
(V ¼ 1) were the more appropriate utility target for measuring compensation. If instead we
had used the Marshallian demand function

xðpx , py , I Þ ¼ 0:5Ip�1
x ,

the loss would be calculated as

loss ¼ ∫
4

1

xðpx , py , I Þ dpx ¼ ∫
4

1

0:5Ip�1
x dpx ¼ 0:5I ln px

�����
4

1

. (5.63)

So, with I ¼ 8, this loss is

loss ¼ 4 lnð4Þ � 4 lnð1Þ ¼ 4 lnð4Þ ¼ 4ð1:39Þ ¼ 5:55, (5.64)

which seems a reasonable compromise between the two alternative measures based on the
compensated demand functions.

QUERY: In this problem, none of the demand curves has a finite price at which demand goes
to precisely zero. How does this affect the computation of total consumer surplus? Does this
affect the types of welfare calculations made here?

REVEALED PREFERENCE AND THE SUBSTITUTION EFFECT

The principal unambiguous prediction that can be derived from the utility-maximation
model is that the slope (or price elasticity) of the compensated demand curve is negative.
The proof of this assertion relies on the assumption of a diminishing MRS and the related
observation that, with a diminishing MRS, the necessary conditions for a utility maximum
are also sufficient. To some economists, the reliance on a hypothesis about an unobservable
utility function represented a weak foundation indeed on which to base a theory of demand.
An alternative approach, which leads to the same result, was first proposed by Paul
Samuelson in the late 1940s.10 This approach, which Samuelson termed the theory of
revealed preference, defines a principle of rationality that is based on observed behavior and

10Paul A. Samuelson, Foundations of Economic Analysis (Cambridge, MA: Harvard University Press, 1947).
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then uses this principle to approximate an individual’s utility function. In this sense, a person
who follows Samuelson’s principle of rationality behaves as if he or she were maximizing a
proper utility function and exhibits a negative substitution effect. Because Samuelson’s
approach provides additional insights into our model of consumer choice, we will briefly
examine it here.

Graphical approach
The principle of rationality in the theory of revealed preference is as follows: Consider two
bundles of goods,A and B. If, at some prices and income level, the individual can afford both
A and B but chooses A, we say that A has been “revealed preferred” to B. The principle of
rationality states that under any different price-income arrangement, B can never be revealed
preferred to A. If B is in fact chosen at another price-income configuration, it must be
because the individual could not affordA. The principle is illustrated in Figure 5.10. Suppose
that, when the budget constraint is given by I1, point A is chosen even though B also could
have been purchased. Then A has been revealed preferred to B. If, for some other budget
constraint, B is in fact chosen, then it must be a case such as that represented by I2, where A
could not have been bought. If B were chosen when the budget constraint is I3, this would be
a violation of the principle of rationality because, with I3, both A and B can be bought. With
budget constraint I3, it is likely that some point other than either A or B (say, C) will be
bought. Notice how this principle uses observable reactions to alternative budget constraints
to rank commodities rather than assuming the existence of a utility function itself. Also notice

FIGURE 5.10 Demonstration of the Principle of Rationality in the Theory of Revealed Preference

With income I1 the individual can afford both points A and B. If A is selected then A is revealed
preferred to B. It would be irrational for B to be revealed preferred to A in some other price-income
configuration.
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how the principle offers a glimpse of why indifference curves are convex. Now we turn to a
formal proof.

Negativity of the substitution effect
Suppose that an individual is indifferent between two bundles, C (composed of xC and yC)
and D (composed of xD and yD). Let p

C
x , p

C
y be the prices at which bundle C is chosen and

pDx , p
D
y the prices at which bundle D is chosen.

Because the individual is indifferent between C and D, it must be the case that when C
was chosen, D cost at least as much as C :

pCx xC þ pCy yC � pCx xD þ pCy yD . (5.65)

A similar statement holds when D is chosen:

pDx xD þ pDy yD � pDx xC þ pDy yC . (5.66)

Rewriting these equations gives

pCx ðxC � xDÞ þ pCy ðyC � yDÞ � 0, (5.67)

pDx ðxD � xC Þ þ pDy ðyD � yC Þ � 0. (5.68)

Adding these together yields

ðpCx � pDx ÞðxC � xDÞ þ ðpCy � pDy ÞðyC � yDÞ � 0. (5.69)

Now suppose that only the price of x changes; assume that pCy ¼ pDy . Then

ðpCx � pDx ÞðxC � xDÞ � 0. (5.70)

But Equation 5.70 says that price and quantity move in the opposite direction when utility is
held constant (remember, bundles C and D are equally attractive). This is precisely a
statement about the nonpositive nature of the substitution effect:

∂xcðpx , py ,V Þ
∂px

¼ ∂x
∂px

����
U¼constant

� 0. (5.71)

We have arrived at the result by an approach that requires neither the existence of a utility
function nor the assumption of a diminishing MRS.

Mathematical generalization
Generalizing the revealed preference idea to n goods is straightforward. If at prices p0i , bundle
x0i is chosen instead of x1i and if bundle x1i is also affordable, thenXn

i¼1

p0i x
0
i 	

Xn
i¼1

p0i x
1
i ; (5.72)

that is, bundle 0 has been “revealed preferred” to bundle 1. Consequently, at the prices that
prevail when bundle 1 is bought (say, p1i ), it must be the case that x0i is more expensive:Xn

i¼1

p1i x
0
i >

Xn
i¼1

p1i x
1
i . (5.73)

Although this initial definition of revealed preference focuses on the relationship between
two bundles of goods, the most often used version of the basic principle requires a degree of
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transitivity for preferences among an arbitrarily large number of bundles. This is summarized
by the following “strong” axiom.

D E F I N I T I O N
Strong axiom of revealed preference. The strong axiom of revealed preference states that if
commodity bundle 0 is revealed preferred to bundle 1, and if bundle 1 is revealed preferred to
bundle 2, and if bundle 2 is revealed preferred to bundle 3, … , and if bundle K � 1 is
revealed preferred to bundle K , then bundle K cannot be revealed preferred to bundle 0
(where K is any arbitrary number of commodity bundles).

Most other properties that we have developed using the concept of utility can be proved
using this revealed preference axiom instead. For example, it is an easy matter to show that
demand functions are homogeneous of degree 0 in all prices and income. It therefore is
apparent that the revealed preference axiom and the existence of “well-behaved” utility
functions are somehow equivalent conditions. That this is in fact the case was first shown
byH. S. Houthakker in 1950. Houthakker showed that a set of indifference curves can always
be derived for an individual who obeys the strong axiom of revealed preference.11 Hence, this
axiom provides a quite general and believable foundation for utility theory based on simple
comparisons among alternative budget constraints. This approach is widely used in the
construction of price indices and for a variety of other applied purposes.

11H. S. Houthakker, “Revealed Preference and the Utility Function,” Economica 17 (May 1950): 159–74.

SUMMARY

In this chapter, we used the utility-maximization model to
study how the quantity of a good that an individual chooses
responds to changes in income or to changes in that good’s
price. The final result of this examination is the derivation of
the familiar downward-sloping demand curve. In arriving at
that result, however, we have drawn a wide variety of insights
from the general economic theory of choice.

• Proportional changes in all prices and income do not
shift the individual’s budget constraint and therefore do
not change the quantities of goods chosen. In formal
terms, demand functions are homogeneous of degree 0
in all prices and income.

• When purchasing power changes (that is, when income
increases with prices remaining unchanged), budget con-
straints shift and individuals will choose new commodity
bundles. For normal goods, an increase in purchasing
power causes more to be chosen. In the case of inferior
goods, however, an increase in purchasing power causes
less to be purchased. Hence the sign of ∂xi=∂I could be
either positive or negative, although ∂xi=∂I 	 0 is the
most common case.

• A fall in the price of a good causes substitution and
income effects that, for a normal good, cause more of
the good to be purchased. For inferior goods, however,
substitution and income effects work in opposite direc-
tions and no unambiguous prediction is possible.

• Similarly, a rise in price induces both substitution and
income effects that, in the normal case, cause less to be
demanded. For inferior goods the net result is again
ambiguous.

• The Marshallian demand curve summarizes the total
quantity of a good demanded at each possible price.
Changes in price induce both substitution and income
effects that prompt movements along the curve. For a
normal good, ∂xi=∂pi � 0 along this curve. If income,
prices of other goods, or preferences change, then the
curve may shift to a new location.

• Compensated demand curves illustratemovements along
a given indifference curve for alternative prices. They are
constructed by holding utility constant and exhibit only
the substitution effects from a price change. Hence, their
slope is unambiguously negative.

• Demand elasticities are often used in empirical work
to summarize how individuals react to changes in prices
and income. The most important such elasticity is
the (own-) price elasticity of demand, ex, px . This mea-
sures the proportionate change in quantity in response
to a 1 percent change in price. A similar elasticity can
be defined for movements along the compensated de-
mand curve.

• There are many relationships among demand elasticities.
Some of the more important ones are: (1) own-price
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PROBLEMS

5.1
ThirstyEddrinks only pure springwater, but he can purchase it in twodifferent-sized containers: 0.75 liter
and 2 liter. Because the water itself is identical, he regards these two “goods” as perfect substitutes.

a. Assuming Ed’s utility depends only on the quantity of water consumed and that the containers
themselves yield no utility, express this utility function in terms of quantities of 0.75L contain-
ers (x) and 2L containers (y).

b. State Ed’s demand function for x in terms of px , py , and I .

c. Graph the demand curve for x, holding I and py constant.

d. How do changes in I and py shift the demand curve for x?

e. What would the compensated demand curve for x look like in this situation?

5.2
David N. gets $3 per week as an allowance to spend any way he pleases. Because he likes only peanut
butter and jelly sandwiches, he spends the entire amount on peanut butter (at $0.05 per ounce) and jelly
(at $0.10 per ounce). Bread is provided free of charge by a concerned neighbor. David is a particular
eater and makes his sandwiches with exactly 1 ounce of jelly and 2 ounces of peanut butter. He is set in
his ways and will never change these proportions.

a. How much peanut butter and jelly will David buy with his $3 allowance in a week?

b. Suppose the price of jelly were to rise to $0.15 an ounce. How much of each commodity would
be bought?

c. By how much should David’s allowance be increased to compensate for the rise in the price of
jelly in part (b)?

d. Graph your results in parts (a) to (c).

e. In what sense does this problem involve only a single commodity, peanut butter and jelly
sandwiches? Graph the demand curve for this single commodity.

f. Discuss the results of this problem in terms of the income and substitution effects involved in
the demand for jelly.

5.3
As defined in Chapter 3, a utility function is homothetic if any straight line through the origin cuts all
indifference curves at points of equal slope: The MRS depends on the ratio y=x.

a. Prove that, in this case, ∂x=∂I is constant.

b. Prove that if an individual’s tastes can be represented by a homothetic indifference map then
price and quantity must move in opposite directions; that is, prove that Giffen’s paradox cannot
occur.

elasticities determine how a price change affects total
spending on a good; (2) substitution and income effects
can be summarized by the Slutsky equation in elasticity
form; and (3) various aggregation relations hold among
elasticities—these show how the demands for different
goods are related.

• Welfare effects of price changes can be measured by
changing areas below either compensated or ordinary

demand curves. Such changes affect the size of the con-
sumer surplus that individuals receive from being able to
make market transactions.

• The negativity of the substitution effect is the most basic
conclusion from demand theory. This result can be
shown using revealed preference theory and so does
not require assuming the existence of a utility function.
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5.4
As in Example 5.1, assume that utility is given by

utility ¼ U ðx, yÞ ¼ x0:3y0:7.

a. Use the uncompensated demand functions given in Example 5.1 to compute the indirect utility
function and the expenditure function for this case.

b. Use the expenditure function calculated in part (a) together with Shephard’s lemma to compute
the compensated demand function for good x.

c. Use the results from part (b) together with the uncompensated demand function for good x to
show that the Slutsky equation holds for this case.

5.5
Suppose the utility function for goods x and y is given by

utility ¼ U ðx, yÞ ¼ xy þ y.

a. Calculate the uncompensated (Marshallian) demand functions for x and y and describe how the
demand curves for x and y are shifted by changes in I or the price of the other good.

b. Calculate the expenditure function for x and y.

c. Use the expenditure function calculated in part (b) to compute the compensated demand
functions for goods x and y. Describe how the compensated demand curves for x and y are
shifted by changes in income or by changes in the price of the other good.

5.6
Over a three-year period, an individual exhibits the following consumption behavior:

Is this behavior consistent with the strong axiom of revealed preference?

5.7
Suppose that a person regards ham and cheese as pure complements—he or she will always use one slice
of ham in combination with one slice of cheese to make a ham and cheese sandwich. Suppose also that
ham and cheese are the only goods that this person buys and that bread is free.

a. If the price of ham is equal to the price of cheese, show that the own-price elasticity of demand
for ham is�0.5 and that the cross-price elasticity of demand for ham with respect to the price of
cheese is also �0.5.

b. Explain why the results from part (a) reflect only income effects, not substitution effects. What
are the compensated price elasticities in this problem?

c. Use the results from part (b) to show how your answers to part (a) would change if a slice of ham
cost twice the price of a slice of cheese.

d. Explain how this problem could be solved intuitively by assuming this person consumes only
one good—a ham-and-cheese sandwich.

px py x y

Year 1 3 3 7 4

Year 2 4 2 6 6

Year 3 5 1 7 3

174 Part 2 Choice and Demand



5.8
Show that the share of income spent on a good x is sx ¼ d lnE

d ln px
, where E is total expenditure.

Analytical Problems
5.9 Share elasticities
In the Extensions to Chapter 4 we showed that most empirical work in demand theory focuses on
income shares. For any good, x, the income share is defined as sx ¼ pxx=I . In this problem we show that
most demand elasticities can be derived from corresponding share elasticities.

a. Show that the elasticity of a good’s budget share with respect to income ðesx , I ¼ ∂sx=∂I ⋅ I =sxÞ is
equal to ex, I � 1. Interpret this conclusion with a few numerical examples.

b. Show that the elasticity of a good’s budget share with respect to its own price ðesx, px ¼
∂sx=∂px ⋅ px=sxÞ is equal to ex, px þ 1. Again, interpret this finding with a few numerical examples.

c. Use your results from part (b) to show that the “expenditure elasticity” of good x with respect
to its own price ½ex⋅px , px ¼ ∂ðpx ⋅ xÞ=∂px ⋅ 1=x� is also equal to ex, px þ 1.

d. Show that the elasticity of a good’s budget share with respect to a change in the price of some
other good ðesx , py ¼ ∂sx=∂py ⋅ py=sxÞ is equal to ex, py .

e. In the Extensions to Chapter 4 we showed that with a CES utility function, the share of income
devoted to good x is given by sx ¼ 1=ð1þ pky p

�k
x Þ, where k ¼ δ=ðδ� 1Þ ¼ 1� σ. Use this share

equation to prove Equation 5.56: exc , px ¼ �ð1� sxÞσ. Hint: This problem can be simplified
by assuming px ¼ py , in which case sx ¼ 0:5.

5.10 More on elasticities
Part (e) of Problem 5.9 has a number of useful applications because it shows how price responses
depend ultimately on the underlying parameters of the utility function. Specifically, use that result
together with the Slutsky equation in elasticity terms to show:

a. In the Cobb-Douglas case ðσ ¼ 1Þ, the following relationship holds between the own-price
elasticities of x and y: ex, px þ ey, py ¼ �2.

b. If σ > 1 then ex, px þ ey, py < �2, and if σ < 1 then ex, px þ ey, py > �2. Provide an intuitive
explanation for this result.

c. How would you generalize this result to cases of more than two goods? Discuss whether such a
generalization would be especially meaningful.

5.11 Aggregation of elasticities for many goods
The three aggregation relationships presented in this chapter can be generalized to any number of
goods. This problem asks you to do so. We assume that there are n goods and that the share of income
devoted to good i is denoted by si . We also define the following elasticities:

ei, I ¼
∂xi
∂I ⋅

I
xi
,

ei, j ¼
∂xi
∂pj

⋅
I
xi
.

Use this notation to show:

a. Homogeneity:
Pn

j¼1 ei, j þ ei, I ¼ 0.

b. Engel aggregation:
Pn

i¼1 siei, I ¼ 1.

c. Cournot aggregation:
Pn

i¼1 siei, j ¼ �sj .
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5.12 Quasi-linear utility (revisited)
Consider a simple quasi-linear utility function of the form U ðx, yÞ ¼ x þ ln y.

a. Calculate the income effect for each good. Also calculate the income elasticity of demand for
each good.

b. Calculate the substitution effect for each good. Also calculate the compensated own-price
elasticity of demand for each good.

c. Show that the Slutsky equation applies to this function.

d. Show that the elasticity form of the Slutsky equation also applies to this function. Describe any
special features you observe.

5.13 The almost ideal demand system
The general form of the almost ideal demand system (AIDS) is given by

ln Eð!p ,U Þ ¼ a0 þ
Xn
i¼1

αi ln pi þ
1
2

Xn
i¼1

Xn
j¼1

γij ln pi ln pj þUβ0 ∏
k

i¼1
pβk
k ,

where!p is the vector of prices, E is the expenditure function, and U is the level of utility required. For
analytical ease, assume that the following restrictions apply:

γij ¼ γji ,
Xn
i¼1

αi ¼ 1, and
Xn
j¼1

γij ¼
Xn
k¼1

βk ¼ 0.

a. Derive the AIDS functional form for a two-goods case.

b. Given the previous restrictions, show that Eð!p,U Þ is homogeneous of degree 1 in all prices.
This, along with the fact that this function resembles closely the actual data, makes it an “ideal”
function.

c. Using the fact that sx ¼ d ln E
d ln px

(see Problem 5.8), calculate the income share of each of the two
goods.

5.14 Price indifference curves
Price indifference curves are iso-utility curves with the prices of two goods on the x- and y-axes,
respectively. Thus, they have the following general form: ðp1, p2Þj vðp1, p2, I Þ ¼ v0.

a. Derive the formula for the price indifference curves for the Cobb-Douglas case with
α ¼ β ¼ 0:5. Sketch one of them.

b. What does the slope of the curve show?

c. What is the direction of increasing utility in your graph?
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E X T E N S I O N S

Demand Concepts and the Evaluation of Price Indices

In Chapters 4 and 5 we introduced a number of related
demand concepts, all of which were derived from the
underlying model of utility maximization. Relation-
ships among these various concepts are summarized
in Figure E5.1. We have already looked at most of the
links in the table formally. We have not yet discussed
the mathematical relationship between indirect utility
functions and Marshallian demand functions (Roy’s
identity), and we will do that below. All of the entries
in the table make clear that there are many ways to
learn something about the relationship between in-
dividuals’ welfare and the prices they face. In this ex-
tension we will explore some of these approaches.
Specifically, we will look at how the concepts can
shed light on the accuracy of the consumer price
index (CPI), the primary measure of inflation in the
United States. We will also look at a few other price
index concepts.

The CPI is a “market basket” index of the cost of
living. Researchers measure the amounts that people

consume of a set of goods in some base period (in the
two-good case these base-period consumption levels
might be denoted by x0 and y0) and then use current
price data to compute the changing price of this mar-
ket basket. Using this procedure, the cost of the
market basket initially would be I0 ¼ p0xx0 þ p0y y0 and
the cost in period 1 would be I1 ¼ p1xx0 þ p1y y0. The
change in the cost of living between these two periods
would then be measured by I1=I0. Although this pro-
cedure is an intuitively plausible way of measuring in-
flation and market basket price indices are widely used,
such indices have many shortcomings.

E5.1 Expenditure functions
and substitution bias

Market-basket price indices suffer from “substitution
bias.” Because the indices do not permit individuals to
make substitutions in the market basket in response to
changes in relative prices, they will tend to overstate

FIGURE E5.1 Relationships among Demand Concepts

Primal Dual

Inverses

Shephard’s lemmaRoy’s identity

Maximize U(x, y)
s.t. I = Pxx + Pyy

Indirect utility function
U* = V(px, py, I)

Minimize E(x, y)
s.t. U = U(x, y)

x(px, py, I) = –

Marshallian demand

xc(px, py, U) = ∂E
∂px

Compensated demand

Expenditure function
E* = E(px, py, U)

∂px

∂I

∂V

∂V
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the welfare losses that people incur from rising prices.
This exaggeration is illustrated in Figure E5.2. To
achieve the utility level U0 initially requires expendi-
tures of E0, resulting in a purchase of the basket x0, y0.
If px=py falls, the initial utility level can now be ob-
tained with expenditures of E1 by altering the
consumption bundle to x1, y1. Computing the expen-
diture level needed to continue consuming x0, y0
exaggerates how much extra purchasing power this
person needs to restore his or her level of well-being.
Economists have extensively studied the extent of this
substitution bias. Aizcorbe and Jackman (1993), for
example, find that this difficulty with a market basket
index may exaggerate the level of inflation shown by
the CPI by about 0.2 percent per year.

E5.2 Roy’s identity and new
goods bias

When new goods are introduced, it takes some time
for them to be integrated into the CPI. For example,
Hausman (1999, 2003) states that it took more than
15 years for cell phones to appear in the index. The
problem with this delay is that market basket indices
will fail to reflect the welfare gains that people experi-
ence from using new goods. To measure these costs,
Hausman sought to measure a “virtual” price (p�) at
which the demand for, say, cell phones would be zero
and then argued that the introduction of the good at
its market price represented a change in consumer
surplus that could be measured. Hence, the author

FIGURE E5.2 Substitution Bias in the CPI

Initially expenditures are given by E0 and this individual buys x0, y0. If px=py falls, utility levelU0 can
be reached most cheaply by consuming x1, y1 and spending E1. Purchasing x0, y0 at the new prices
would cost more than E1. Hence, holding the consumption bundle constant imparts an upward bias
to CPI-type computations.

E0

U0

E1

x0

y0

x1 Quantity of x

Quantity
of y
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was faced with the problem of how to get from the
Marshallian demand function for cell phones (which
he estimated econometrically) to the expenditure
function. To do so he used Roy’s identity (see Roy,
1942). Remember that the consumer’s utility-maxi-
mizing problem can be represented by the Lagrangian
expression ℒ ¼ U ðx, yÞ þ λðI � pxx � pyyÞ. If we
apply the envelope theorem to this expression, we
know that

∂U �
∂px

¼ ∂ℒ
∂px

¼ �λxðpx , py , I Þ,

∂U �
∂I

¼ ∂ℒ
∂I

¼ λ.

(i)

Hence the Marshallian demand function is given by

xðpx , py , I Þ ¼
�∂U �=∂px
∂U �=∂I . (ii)

Using his estimates of the Marshallian demand
function, Hausman integrated Equation ii to obtain -
the implied indirect utility function and then calculat-
ed its inverse, the expenditure function (check Figure
E5.1 to see the logic of the process). Though this
certainly is a roundabout scheme, it did yield large
estimates for the gain in consumer welfare from cell
phones—a present value in 1999 of more than $100
billion. Delays in the inclusion of such goods into the
CPI can therefore result in a misleading measure of
consumer welfare.

E5.3 Other complaints about
the CPI

Researchers have found several other faults with the
CPI as currently constructed. Most of these focus on
the consequences of using incorrect prices to compute
the index. For example, when the quality of a good
improves, people are made better-off, though this may
not show up in the good’s price. Throughout the
1970s and 1980s the reliability of color television sets
improved dramatically, but the price of a set did not
change very much. A market basket that included
“one color television set” would miss this source of
improved welfare. Similarly, the opening of “big box”
retailers such as Costco and Home Depot during the
1990s undoubtedly reduced the prices that consumers
paid for various goods. But including these new retail
outlets into the sample scheme for the CPI took sev-
eral years, so the index misrepresented what people
were actually paying. Assessing the magnitude of error
introduced by these cases where incorrect prices are
used in the CPI can also be accomplished by using the

various demand concepts in Figure E5.1. For a sum-
mary of this research, see Moulton (1996).

E5.4 Exact price indices

In principle, it is possible that some of the shortcom-
ings of price indices such as the CPI might be amelio-
rated by more careful attention to demand theory. If
the expenditure function for the representative con-
sumer were known, for example, it would be possible
to construct an “exact” index for changes in purchas-
ing power that would take commodity substitution
into account. To illustrate this, suppose there are
only two goods and we wish to know how purchasing
power has changed between period 1 and period 2. If
the expenditure function is given by Eðpx , py ,U Þ then
the ratio

I1,2 ¼ Eðp2x , p2y ,
_
U Þ

Eðp1x , p1y ,
_
U Þ (iii)

shows how the cost of attaining the target utility level
U
_
has changed between the two periods. If, for

example, I1, 2 ¼ 1:04, then we would say that the cost
of attaining the utility target had increased by 4 per-
cent. Of course, this answer is only a conceptual one.
Without knowing the representative person’s utility
function, we would not know the specific form of the
expenditure function. But in some cases Equation iii
may suggest how to proceed in index construction.
Suppose, for example, that the typical person’s pref-
erences could be represented by the Cobb-Douglas
utility function U ðx, yÞ ¼ xαy1�α. In this case it is
easy to show that the expenditure function is a gen-
eralization of the one given in Example 4.4:
Eðpx , py ,U Þ ¼ pαx p

1�α
y U =ααð1� αÞ1�α ¼ kpαx p

1�α
y U .

Inserting this function into Equation iii yields

I1,2 ¼ kðp2x Þαðp2y Þ1�α
_
U

kðp1x Þαðp1y Þ1�α
_
U

¼ ðp2x Þαðp2y Þ1�α

ðp1x Þαðp1y Þ1�α
. (iv)

So, in this case, the exact price index is a relatively
simple function of the observed prices. The particularly
useful feature of this example is that the utility target
cancels out in the construction of the cost-of-living
index (as it will anytime the expenditure function is
homogeneous in utility). Notice also that the expendi-
ture shares (α and 1� α) play an important role in
the index—the larger a good’s share, the more impor-
tant will changes be in that good’s price in the final
index.
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E5.5 Development of exact
price indices

The Cobb-Douglas utility function is, of course, a very
simple one. Much recent research on price indices has
focused on more general types of utility functions and
on the discovery of the exact price indices they imply.
For example, Feenstra and Reinsdorf (2000) show
that the almost ideal demand system described in the
Extensions to Chapter 4 implies an exact price index
(I ) that takes a “Divisia” form:

lnðI Þ ¼
Xn
i¼1

wi∆ ln pi (v)

(here the wi are weights to be attached to the change
in the logarithm of each good’s price). Often the
weights in Equation v are taken to be the budget
shares of the goods. Interestingly, this is precisely the
price index implied by the Cobb-Douglas utility
function in Equation iv, since

lnðI1;2Þ¼ α ln p2x þ ð1 � αÞ ln p2y
� α ln p1x � ð1 � αÞ ln p1y

¼ α∆ ln px þ ð1−αÞ∆ ln py . (vi)

In actual applications, the weights would change from
period to period to reflect changing budget shares.
Similarly, changes over several periods would be
“chained” together from a number of single-period
price change indices.

Changing demands for food in China. China has
one of the fastest growing economies in the world: its
GDP per capita is currently growing at a rate of about
8 percent per year. Chinese consumers also spend a
large fraction of their incomes on food—approximately
38 percent of total expenditures in recent survey data.
One implication of the rapid growth in Chinese

incomes, however, is that patterns of food consump-
tion are changing rapidly. Purchases of staples, such as
rice or wheat, are declining in relative importance,
whereas purchases of poultry, fish, and processed
foods are growing rapidly. A recent paper by Gould
and Villarreal (2006) studies these patterns in detail
using the AIDS model. They identify a variety of sub-
stitution effects across specific food categories in re-
sponse to changing relative prices. Such changing
patterns imply that a fixed market basket price index
(such as the U.S. Consumer Price Index) would be
particularly inappropriate for measuring changes in
the cost of living in China and that some alternative
approaches should be examined.
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C H A P T E R

6

Demand Relationships among Goods

In Chapter 5 we examined how changes in the price of a particular good (say, good x) affect the quantity of
that good chosen. Throughout the discussion, we held the prices of all other goods constant. It should be
clear, however, that a change in one of these other prices could also affect the quantity of x chosen. For
example, if x were taken to represent the quantity of automobile miles that an individual drives, this quantity
might be expected to decline when the price of gasoline rises or increase when air and bus fares rise. In this
chapter we will use the utility-maximization model to study such relationships.

THE TWO-GOOD CASE

We begin our study of the demand relationship among goods with the two-good case.
Unfortunately, this case proves to be rather uninteresting because the types of relationships
that can occur when there are only two goods are quite limited. Still, the two-good case is
useful because it can be illustrated with two-dimensional graphs. Figure 6.1 starts our ex-
amination by showing two examples of how the quantity of x chosen might be affected by a
change in the price of y. In both panels of the figure, py has fallen. This has the result of
shifting the budget constraint outward from I0 to I1. In both cases, the quantity of good y
chosen has also increased from y0 to y1 as a result of the decline in py , as would be expected if y
is a normal good. For good x, however, the results shown in the two panels differ. In (a) the
indifference curves are nearly L-shaped, implying a fairly small substitution effect. A decline in
py does not induce a very large move along U0 as y is substituted for x. That is, x drops
relatively little as a result of the substitution. The income effect, however, reflects the greater
purchasing power now available, and this causes the total quantity of x chosen to increase.
Hence, ∂x=∂py is negative (x and py move in opposite directions).

In Figure 6.1b this situation is reversed: ∂x=∂py is positive. The relatively flat indifference
curves in Figure 6.1b result in a large substitution effect from the fall in py . The quantity of x
declines sharply as y is substituted for x alongU0. As in Figure 6.1a, the increased purchasing
power from the decline in py causes more x to be bought, but now the substitution effect
dominates and the quantity of x declines to x1. In this case, then, x and py move in the same
direction.

A mathematical treatment
The ambiguity in the effect of changes in py can be further illustrated by a Slutsky-type
equation. By using procedures similar to those in Chapter 5, it is fairly simple to show that

∂xðpx , py , I Þ
∂py

¼ substitution effectþ income effect

¼ ∂x
∂py

����
U¼constant

� y ⋅
∂x
∂I

, (6.1)
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or, in elasticity terms,

ex, py ¼ exc , py � syex, I . (6.2)

Notice that the size of the income effect is determined by the share of good y in this person’s
purchases. The impact of a change in py on purchasing power is determined by how im-
portant y is to this person.

For the two-good case, the terms on the right side of Equations 6.1 and 6.2 have different
signs. Assuming that indifference curves are convex, the substitution effect ∂x=∂py jU¼constant
is positive. If we confine ourselves to moves along one indifference curve, increases in py
increase x and decreases in py decrease the quantity of x chosen. But, assuming x is a normal
good, the income effect (� y∂x=∂I or �syex, I ) is clearly negative. Hence, the combined
effect is ambiguous; ∂x=∂py could be either positive or negative. Even in the two-good case,
the demand relationship between x and py is rather complex.

EXAMPLE 6.1 Another Slutsky Decomposition for Cross-Price Effects

In Example 5.4 we examined the Slutsky decomposition for the effect of a change in the price
of x. Now let’s look at the cross-price effect of a change in y prices on x purchases. Remember
that the uncompensated and compensated demand functions for x are given by

xðpx , py , I Þ ¼
0:5I
px

(6.3)

and
xcðpx , py ,V Þ ¼ Vp0:5y p�0:5

x . (6.4)

(continued)

FIGURE 6.1 Differing Directions of Cross-Price Effects

In both panels, the price of y has fallen. In (a), substitu-
tion effects are small so the quantity of x consumed
increases along with y. Because ∂x=∂py < 0, x and y are

gross complements. In (b), substitution effects are large so
the quantity of x chosen falls. Because ∂x=∂py > 0, x and
y would be termed gross substitutes.

Quantity
of x

Quantity
of x

Quantity of y Quantity of y

(a) Gross complements (b) Gross substitutes

x0

y0

y1

x1

y0

y1

x1 x0

I0 I0
I1 I1

U0

U1

U0

U1
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EXAMPLE 6.1 CONTINUED

As we have pointed out before, the Marshallian demand function in this case yields
∂x=∂py ¼ 0; that is, changes in the price of y do not affect x purchases. Now we show that
this occurs because the substitution and income effects of a price change are precisely
counterbalancing. The substitution effect in this case is given by

∂x
∂py

����
U ¼ constant

¼ ∂xc

∂py
¼ 0:5Vp�0:5

y p�0:5
x . (6.5)

Substituting for V from the indirect utility function (V ¼ 0:5Ip�0:5
y p�0:5

x ) gives a final state-
ment for the substitution effect:

∂x
∂py

����
U¼ constant

¼ 0:25Ip�1
y p�1

x . (6.6)

Returning to the Marshallian demand function for y ðy ¼ 0:5Ip�1
y ) to calculate the income

effect yields

�y
∂x
∂I

¼ �½0:5Ip�1
y � ⋅ ½0:5p�1

x � ¼ �0:25Ip�1
y p�1

x , (6.7)

and combining Equations 6.6 and 6.7 gives the total effect of the change in the price of y as

∂x
∂py

¼ 0:25Ip�1
y p�1

x � 0:25Ip�1
y p�1

x ¼ 0. (6.8)

This makes clear that the reason that changes in the price of y have no effect on x purchases
in the Cobb-Douglas case is that the substitution and income effects from such a change are
precisely offsetting; neither of the effects alone, however, is zero.

Returning to our numerical example (px ¼ 1, py ¼ 4, I ¼ 8,V ¼ 2), suppose now that py
falls to 2. This should have no effect on the Marshallian demand for good x. The compen-
sated demand function in Equation 6.4 shows that the price change would cause the quantity
of x demanded to decline from 4 to 2.83 (¼ 2

ffiffiffi
2

p
) as y is substituted for x with utility

unchanged. However, the increased purchasing power arising from the price decline precisely
reverses this effect.

QUERY: Why would it be incorrect to argue that if ∂x=∂py ¼ 0, then x and y have no
substitution possibilities—that is, they must be consumed in fixed proportions? Is there any
case in which such a conclusion could be drawn?

SUBSTITUTES AND COMPLEMENTS

With many goods, there is much more room for interesting relations among goods. It is
relatively easy to generalize the Slutsky equation for any two goods xi, xj as

∂xiðp1,…, pn, I Þ
∂pj

¼ ∂xi
∂pj

����
U¼constant

� xj
∂xi
∂I

, (6.9)

and again this can be readily translated into an elasticity relation:

ei, j ¼ eci, j � sj ei, I . (6.10)

This says that the change in the price of any good (here, good j) induces income and
substitution effects that may change the quantity of every good demanded. Equations 6.9 and
6.10 can be used to discuss the idea of substitutes and complements. Intuitively, these ideas are
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rather simple. Two goods are substitutes if one good may, as a result of changed conditions,
replace the other in use. Some examples are tea and coffee, hamburgers and hot dogs, and
butter and margarine.Complements, on the other hand, are goods that “go together,” such as
coffee and cream, fish and chips, or brandy and cigars. In some sense, “substitutes” substitute
for one another in the utility function whereas “complements” complement each other.

There are two different ways to make these intuitive ideas precise. One of these focuses on
the “gross” effects of price changes by including both income and substitution effects; the
other looks at substitution effects alone. Because both definitions are used, we will examine
each in detail.

Gross substitutes and complements
Whether two goods are substitutes or complements can be established by referring to
observed price reactions as follows.

D E F I N I T I O N
Gross substitutes and complements. Two goods, xi and xj , are said to be gross substi-
tutes if

∂xi
∂pj

> 0 (6.11)

and gross complements if
∂xi
∂pj

< 0. (6.12)

That is, two goods are gross substitutes if a rise in the price of one good causes more of the
other good to be bought. The goods are gross complements if a rise in the price of one good
causes less of the other good to be purchased. For example, if the price of coffee rises, the
demand for tea might be expected to increase (they are substitutes), whereas the demand for
cream might decrease (coffee and cream are complements). Equation 6.9 makes it clear that
this definition is a “gross” definition in that it includes both income and substitution effects
that arise from price changes. Because these effects are in fact combined in any real-world
observation we can make, it might be reasonable always to speak only of “gross” substitutes
and “gross” complements.

Asymmetry of the gross definitions
There are, however, several things that are undesirable about the gross definitions of sub-
stitutes and complements. The most important of these is that the definitions are not
symmetric. It is possible, by the definitions, for x1 to be a substitute for x2 and at the same
time for x2 to be a complement of x1. The presence of income effects can produce paradoxical
results. Let’s look at a specific example.

EXAMPLE 6.2 Asymmetry in Cross-Price Effects

Suppose the utility function for two goods (x and y) has the quasi-linear form
U ðx, yÞ ¼ ln x þ y. (6.13)

Setting up the Lagrangian expression

ℒ ¼ ln x þ y þ λðI � pxx � pyyÞ (6.14)

(continued)
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EXAMPLE 6.2 CONTINUED

yields the following first-order conditions:
∂ℒ
∂x

¼ 1
x

� λpx ¼ 0,

∂ℒ
∂y

¼ 1� λpy ¼ 0,

∂ℒ
∂λ

¼ I � pxx � pyy ¼ 0.

(6.15)

Moving the terms in λ to the right and dividing the first equation by the second yields
1
x
¼ px

py
, (6.16)

pxx ¼ py . (6.17)

Substitution into the budget constraint now permits us to solve for the Marshallian demand
function for y:

I ¼ pxx þ pyy ¼ py þ pyy. (6.18)

Hence,

y ¼ I � py
py

. (6.19)

This equation shows that an increase in py must decrease spending on good y (that is, pyy).
Therefore, since px and I are unchanged, spending on x must rise. So

∂x
∂py

> 0, (6.20)

and we would term x and y gross substitutes. On the other hand, Equation 6.19 shows that
spending on y is independent of px . Consequently,

∂y
∂px

¼ 0 (6.21)

and, looked at in this way, x and y would be said to be independent of each other; they are
neither gross substitutes nor gross complements. Relying on gross responses to price changes
to define the relationship between x and y would therefore run into ambiguity.

QUERY: InExample 3.4, we showed that a utility function of the formgiven byEquation 6.13
is not homothetic: theMRS does not depend only on the ratio of x to y. Can asymmetry arise in
the homothetic case?

NET SUBSTITUTES AND COMPLEMENTS

Because of the possible asymmetries involved in the definition of gross substitutes and
complements, an alternative definition that focuses only on substitution effects is often used.

D E F I N I T I O N
Net substitutes and complements. Goods xi and xj are said to be net substitutes if

∂xi
∂pj

����
U¼constant

> 0 (6.22)
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and net complements if

∂xi
∂pj

����
U¼constant

< 0. (6.23)

These definitions,1 then, look only at the substitution terms to determine whether two goods
are substitutes or complements. This definition is both intuitively appealing (because it looks
only at the shape of an indifference curve) and theoretically desirable (because it is unambig-
uous). Once xi and xj have been discovered to be substitutes, they stay substitutes, no matter
in which direction the definition is applied. As a matter of fact, the definitions are perfectly
symmetric:

∂xi
∂pj

����
U¼constant

¼ ∂xj
∂pi

����
U¼constant

. (6.24)

The substitution effect of a change in pi on good xj is identical to the substitution effect of a
change in pj on the quantity of xi chosen. This symmetry is important in both theoretical
and empirical work.2

The differences between the two definitions of substitutes and complements are easily
demonstrated in Figure 6.1a. In this figure, x and y are gross complements, but they are net
substitutes. The derivative ∂x=∂py turns out to be negative (x and y are gross complements)
because the (positive) substitution effect is outweighed by the (negative) income effect (a fall
in the price of y causes real income to increase greatly, and, consequently, actual purchases of
x increase). However, as the figure makes clear, if there are only two goods from which
to choose, they must be net substitutes, although they may be either gross substitutes or
gross complements. Because we have assumed a diminishing MRS, the own-price sub-
stitution effect must be negative and, consequently, the cross-price substitution effect must
be positive.

SUBSTITUTABILITY WITH MANY GOODS

Once the utility-maximizing model is extended to many goods, a wide variety of demand
patterns become possible. Whether a particular pair of goods are net substitutes or net
complements is basically a question of a person’s preferences, so one might observe all sorts
of odd relationships. A major theoretical question that has concerned economists is whether
substitutability or complementarity is more prevalent. In most discussions, we tend to regard
goods as substitutes (a price rise in one market tends to increase demand in most other
markets). It would be nice to know whether this intuition is justified.

1These are sometimes called “Hicksian” substitutes and complements, named after the British economist John Hicks, who
originally developed the definitions.
2This symmetry is easily shown using Shephard’s lemma. Compensated demand functions can be calculated from ex-
penditure functions by differentiation:

xc
iðp1,…, pn ,V Þ ¼ ∂Eðp1,…, pn ,V Þ

∂pi
.

Hence, the substitution effect is given by

∂xi
∂pj

����
U¼constant

¼ ∂xc
i

∂pj
¼ ∂2E

∂pj ∂pi
¼ Eij .

But now we can apply Young’s theorem to the expenditure function:

Eij ¼ Eji ¼
∂xc

j

∂pi
¼ ∂xj

∂pi

����
U¼constant

,

which proves the symmetry.
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The British economist John Hicks studied this issue in some detail about 50 years ago and
reached the conclusion that “most” goods must be substitutes. The result is summarized in
what has come to be called “Hicks’ second law of demand.”3 A modern proof starts with the
compensated demand function for a particular good: xci ðp1,…, pn,V Þ. This function is
homogeneous of degree 0 in all prices (if utility is held constant and prices double, quantities
demanded do not change because the utility-maximizing tangencies do not change). Apply-
ing Euler’s theorem to the function yields

p1 ⋅
∂xc

i

∂p1
þ p2 ⋅

∂xc
i

∂p2
þ…þ pn ⋅

∂xc
i

∂pn
¼ 0. (6.25)

We can put this result into elasticity terms by dividing Equation 6.25 by xi :
eci1 þ eci2 þ…þ ecin ¼ 0. (6.26)

But we know that ecii � 0 because of the negativity of the own-substitution effect. Hence it
must be the case that X

j≠i

ecij 	 0. (6.27)

In words, the sum of all the compensated cross-price elasticities for a particular good
must be positive (or zero). This is the sense that “most” goods are substitutes. Empirical
evidence seems generally consistent with this theoretical finding: instances of net com-
plementarity between goods are encountered relatively infrequently in empirical studies
of demand.

COMPOSITE COMMODITIES

Our discussion in the previous section showed that the demand relationships among goods
can be quite complicated. In the most general case, an individual who consumes n goods will
have demand functions that reflect nðn þ 1Þ=2 different substitution effects.4 When n is very
large (as it surely is for all the specific goods that individuals actually consume), this general
case can be unmanageable. It is often far more convenient to group goods into larger
aggregates such as food, clothing, shelter, and so forth. At the most extreme level of
aggregates, we might wish to examine one specific good (say, gasoline, which we might
call x) and its relationship to “all other goods,” which we might call y. This is the procedure
we have been using in some of our two-dimensional graphs, and we will continue to do so at
many other places in this book. In this section we show the conditions under which this
procedure can be defended. In the Extensions to this chapter, we explore more general issues
involved in aggregating goods into larger groupings.

Composite commodity theorem
Suppose consumers choose among n goods but that we are only interested specifically in
one of them—say, x1. In general, the demand for x1 will depend on the individual prices
of the other n � 1 commodities. But if all these prices move together, it may make sense to

3See John Hicks, Value and Capital (Oxford: Oxford University Press, 1939), mathematical appendices. There is some
debate about whether this result should be called Hicks’ “second” or “third” law. In fact, two other laws that we have already
seen are listed byHicks: (1) ∂xci=∂pi � 0 (negativity of the own-substitution effect); and (2) ∂xci=∂pj ¼ ∂xcj =∂pi (symmetry of
cross-substitution effects). But he refers explicitly only to two “properties” in his written summary of his results.
4To see this, notice that all substitution effects, sij , could be recorded in an n � n matrix. However, symmetry of the effects
(sij ¼ sji) implies that only those terms on and below the principal diagonal of this matrix may be distinctly different from
each other. This amounts to half the terms in the matrix (n2=2) plus the remaining half of the terms on the main diagonal
of the matrix (n=2).
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lump them into a single “composite commodity,” y. Formally, if we let p02,…, p0n represent
the initial prices of these goods, then we assume that these prices can only vary together.
They might all double, or all decline by 50 percent, but the relative prices of x2,…, xn would
not change. Now we define the composite commodity y to be total expenditures on
x2,…, xn, using the initial prices p02,…, p0n:

y ¼ p02x2 þ p03x3 þ…þ p0nxn . (6.28)

This person’s initial budget constraint is given by

I ¼ p1x1 þ p02x2 þ…þ p0nxn ¼ p1x1 þ y. (6.29)

By assumption, all of the prices p2,…, pn change in unison. Assume all of these prices change
by a factor of t ðt > 0Þ. Now the budget constraint is

I ¼ p1x1 þ tp02x2 þ…þ tp0nxn ¼ p1x1 þ ty. (6.30)

Consequently, the factor of proportionality, t , plays the same role in this person’s budget
constraint as did the price of yðpyÞ in our earlier two-good analysis. Changes in p1 or t
induce the same kinds of substitution effects we have been analyzing. So long as p2,…, pn
move together, we can therefore confine our examination of demand to choices between
buying x1 or buying “everything else.”5 Simplified graphs that show these two goods on
their axes can therefore be defended rigorously so long as the conditions of this “composite
commodity theorem” (that all other prices move together) are satisfied. Notice, however,
that the theorem makes no predictions about how choices of x2,…, xn behave; they need
not move in unison. The theorem focuses only on total spending on x2,…, xn, not on how
that spending is allocated among specific items (although this allocation is assumed to be
done in a utility-maximizing way).

Generalizations and limitations
The composite commodity theorem applies to any group of commodities whose relative
prices all move together. It is possible to have more than one such commodity if there are
several groupings that obey the theorem (i.e., expenditures on “food,” “clothing,” and so
forth). Hence, we have developed the following definition.

D E F I N I T I O N
Composite commodity. A composite commodity is a group of goods for which all prices
move together. These goods can be treated as a single “commodity” in that the individual
behaves as if he or she were choosing between other goods and total spending on the entire
composite group.

This definition and the related theorem are very powerful results. They help simplify many
problems that would otherwise be intractable. Still, one must be rather careful in applying
the theorem to the real world because its conditions are stringent. Finding a set of com-
modities whose prices move together is rare. Slight departures from strict proportionality
may negate the composite commodity theorem if cross-substitution effects are large. In
the Extensions to this chapter, we look at ways to simplify situations where prices move
independently.

5The idea of a “composite commodity” was also introduced by J. R. Hicks in Value and Capital, 2nd ed. (Oxford: Oxford
University Press, 1946), pp. 312–13. Proof of the theorem relies on the notion that to achieve maximum utility, the ratio of
the marginal utilities for x2,…, xn must remain unchanged when p2,…, pn all move together. Hence, the n-good problem
can be reduced to the two-dimensional problem of equating the ratio of the marginal utility from x to that from y to the
“price ratio” p1=t .
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EXAMPLE 6.3 Housing Costs as a Composite Commodity

Suppose that an individual receives utility from three goods: food (x), housing services (y)
measured in hundreds of square feet, and household operations (z) as measured by elec-
tricity use.

If the individual’s utility is given by the three-good CES function

utility ¼ U ðx, y, zÞ ¼ �1
x

� 1
y
� 1

z
, (6.31)

then the Lagrangian technique can be used to calculate Marshallian demand functions for
these goods as

x ¼ I
px þ

ffiffiffiffiffiffiffiffiffi
pxpy

p þ ffiffiffiffiffiffiffiffiffi
pxpz

p ,

y ¼ I
py þ

ffiffiffiffiffiffiffiffiffi
pypx

p þ ffiffiffiffiffiffiffiffiffi
pypz

p ,

z ¼ I
pz þ

ffiffiffiffiffiffiffiffiffi
pzpx

p þ ffiffiffiffiffiffiffiffiffi
pzpy

p .

(6.32)

If initially I ¼ 100, px ¼ 1, py ¼ 4, and pz ¼ 1, then the demand functions predict

x� ¼ 25,
y� ¼ 12:5,
z� ¼ 25:

(6.33)

Hence, 25 is spent on food and a total of 75 is spent on housing-related needs. If we assume
that housing service prices (py) and household operation prices (pz) always move together,
then we can use their initial prices to define the “composite commodity” housing (h) as

h ¼ 4y þ 1z. (6.34)

Here, we also (arbitrarily) define the initial price of housing (ph) to be 1. The initial quantity
of housing is simply total dollars spent on h:

h ¼ 4ð12:5Þ þ 1ð25Þ ¼ 75. (6.35)

Furthermore, because py and pz always move together, ph will always be related to these
prices by

ph ¼ pz ¼ 0:25py . (6.36)

Using this information, we can recalculate the demand function for x as a function of I , px ,
and ph:

x ¼ I
px þ

ffiffiffiffiffiffiffiffiffiffiffiffi
4pxph

p þ ffiffiffiffiffiffiffiffiffi
pxph

p

¼ I
py þ 3

ffiffiffiffiffiffiffiffiffi
pxph

p . (6.37)

As before, initially I ¼ 100, px ¼ 1, and ph ¼ 1, so x� ¼ 25. Spending on housing can be
most easily calculated from the budget constraint as h� ¼ 75, because spending on housing
represents “everything” other than food.

An increase in housing costs. If the prices of y and z were to rise proportionally to py ¼ 16,
pz ¼ 4 (with px remaining at 1), then ph would also rise to 4. Equation 6.37 now predicts that
the demand for x would fall to

x� ¼ 100
1þ 3

ffiffiffi
4

p ¼ 100
7

(6.38)
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and that housing purchases would be given by

phh
� ¼ 100� 100

7
¼ 600

7
, (6.39)

or, because ph ¼ 4,

h� ¼ 150
7

. (6.40)

Notice that this is precisely the level of housing purchases predicted by the original demand
functions for three goods in Equation 6.32. With I ¼ 100, px ¼ 1, py ¼ 16, and pz ¼ 4,
these equations can be solved as

x� ¼ 100
7

,

y� ¼ 100
28

,

z� ¼ 100
14

,

(6.41)

and so the total amount of the composite good “housing” consumed (according to Equa-
tion 6.34) is given by

h� ¼ 4y� þ 1z� ¼ 150
7

. (6.42)

Hence, we obtained the same responses to price changes regardless of whether we chose to
examine demands for the three goods x, y, and z or to look only at choices between x and
the composite good h.

QUERY: How do we know that the demand function for x in Equation 6.37 continues to
ensure utility maximization? Why is the Lagrangian constrained maximization problem
unchanged by making the substitutions represented by Equation 6.36?

HOME PRODUCTION, ATTRIBUTES OF GOODS,
AND IMPLICIT PRICES

So far in this chapter we have focused on what economists can learn about the relationships
among goods by observing individuals’ changing consumption of these goods in reaction to
changes in market prices. In some ways this analysis skirts the central question of why coffee
and cream go together orwhy fish and chickenmay substitute for each other in a person’s diet.
To develop a deeper understanding of such questions, economists have sought to explore
activities within individuals’ households. That is, they have devised models of nonmarket
types of activities such as parental child care, meal preparation, or do-it-yourself construction
to understand how such activities ultimately result in demands for goods in the market. In this
section we briefly review some of these models. Our primary goal is to illustrate some of the
implications of this approach for the traditional theory of choice.

Household production model
The starting point for most models of household production is to assume that individuals do
not receive utility directly from goods they purchase in the market (as we have been assuming
so far). Instead, it is only when market goods are combined with time inputs by the individual
that utility-providing outputs are produced. In this view, then, raw beef and uncooked
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potatoes yield no utility until they are cooked together to produce stew. Similarly, market
purchases of beef and potatoes can be understood only by examining the individual’s
preferences for stew and the underlying technology through which it is produced.

In formal terms, assume as before that there are three goods that a person might purchase
in the market: x, y, and z. Purchasing these goods provides no direct utility, but the goods
can be combined by the individual to produce either of two home-produced goods: a1 or a2.
The technology of this household production can be represented by the production func-
tions f1 and f2 (see Chapter 9 for a more complete discussion of the production function
concept). Therefore,

a1 ¼ f1ðx, y, zÞ,
a2 ¼ f2ðx, y, zÞ,

(6.43)

and

utility ¼ U ða1, a2Þ. (6.44)

The individual’s goal is to choose x, y, z so as to maximize utility subject to the production
constraints and to a financial budget constraint:6

pxx þ pyy þ pzz ¼ I . (6.45)

Although we will not examine in detail the results that can be derived from this general
model, two insights that can be drawn from it might be mentioned. First, the model may
help clarify the nature of market relationships among goods. Because the production func-
tions in Equations 6.43 are in principle measurable using detailed data on household
operations, households can be treated as “multi-product” firms and studied using many of
the techniques economists use to study production.

A second insight provided by the household production approach is the notion of the
“implicit” or “shadow” prices associated with the home-produced goods a1 and a2. Because
consuming more a1, say, requires the use of more of the “ingredients” x, y, and z, this activity
obviously has an opportunity cost in terms of the quantity of a2 that can be produced. To
produce more bread, say, a person must not only divert some flour, milk, and eggs from using
them to make cupcakes but may also have to alter the relative quantities of these goods
purchased because he or she is bound by an overall budget constraint. Hence, bread will have
an implicit price in terms of the number of cupcakes that must be forgone in order to be able
to consume one more loaf. That implicit price will reflect not only the market prices of bread
ingredients but also the available household production technology and, in more complex
models, the relative time inputs required to produce the two goods. As a starting point,
however, the notion of implicit prices can be best illustrated with a very simple model.

The linear attributes model
A particularly simple form of the household production model was first developed by
K. J. Lancaster to examine the underlying “attributes” of goods.7 In this model, it is the
attributes of goods that provide utility to individuals, and each specific good contains a fixed
set of attributes. If, for example, we focus only on the calories (a1) and vitamins (a2) that
various foods provide, Lancaster’s model assumes that utility is a function of these attributes
and that individuals purchase various foods only for the purpose of obtaining the calories and
vitamins they offer. In mathematical terms, the model assumes that the “production”

6Often household production theory also focuses on the individual’s allocation of time to producing a1 and a2 or to
working in the market. In Chapter 16 we look at a few simple models of this type.
7See K. J. Lancaster, “A New Approach to Consumer Theory,” Journal of Political Economy 74 (April 1966): 132–57.
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equations have the simple form

a1 ¼ a1
xx þ a1

y y þ a1
z z,

a2 ¼ a2
xx þ a2

y y þ a2
z z,

(6.46)

where a1
x represents the number of calories per unit of food x, a2

x represents the number of
vitamins per unit of food x, and so forth. In this form of the model, then, there is no actual
“production” in the home. Rather, the decision problem is how to choose a diet that
provides the optimal mix of calories and vitamins given the available food budget.

Illustrating the budget constraints
To begin our examination of the theory of choice under the attributes model, we first
illustrate the budget constraint. In Figure 6.2, the ray 0x records the various combinations
of a1 and a2 available from successively larger amounts of good x. Because of the linear
production technology assumed in the attributes model, these combinations of a1 and a2 lie
along such a straight line, though in more complex models of home production that might
not be the case. Similarly, rays of 0y and 0z show the quantities of the attributes a1 and a2
provided by various amounts of goods y and z that might be purchased.

If this person spends all of his or her income on good x, then the budget constraint
(Equation 6.45) allows the purchase of

x� ¼ I
px
, (6.47)

and that will yield

a�1 ¼ a1
xx

� ¼ a1
xI
px

,

a�2 ¼ a2
xx

� ¼ a2
xI
px

.
(6.48)

This point is recorded as point x� on the 0x ray in Figure 6.2. Similarly, the points y� and z�
represent the combinations of a1 and a2 that would be obtained if all income were spent on
good y or good z, respectively.

Bundles of a1 and a2 that are obtainable by purchasing both x and y (with a fixed budget)
are represented by the line joining x� and y� in Figure 6.2.8 Similarly, the line x�z� represents
the combinations of a1 and a2 available from x and z, and the line y�z� shows combinations
available from mixing y and z. All possible combinations from mixing the three market goods
are represented by the shaded triangular area x�y�z�.

Corner solutions
One fact is immediately apparent from Figure 6.2: A utility-maximizing individual would
never consume positive quantities of all three of these goods. Only the northeast perimeter of
the x�y�z� triangle represents the maximal amounts of a1 and a2 available to this person
given his or her income and the prices of the market goods. Individuals with a preference
toward a1 will have indifference curves similar to U0 and will maximize utility by choosing a
point such as E. The combination of a1 and a2 specified by that point can be obtained by

8Mathematically, suppose a fraction α of the budget is spent on x and (1� α) on y; then

a1 ¼ αa1
x x

� þ ð1� αÞa1
y y
�,

a2 ¼ αa2
x x

� þ ð1� αÞa2
y y
�.

The line x�y� is traced out by allowing α to vary between 0 and 1. The lines x�z� and y�z� are traced out in a similar way,
as is the triangular area x�y�z�.
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consuming only goods y and z. Similarly, a person with preferences represented by the
indifference curve U 0

0 will choose point E
0 and consume only goods x and y. The attributes

model therefore predicts that corner solutions at which individuals consume zero amounts of
some commodities will be relatively common, especially in cases where individuals attach
value to fewer attributes (here, two) than there are market goods to choose from (three). If
income, prices, or preferences change, then consumption patterns may also change abruptly.
Goods that were previously consumed may cease to be bought and goods previously ne-
glected may experience a significant increase in purchases. This is a direct result of the linear
assumptions inherent in the production functions assumed here. In household production
models with greater substitutability assumptions, such discontinuous reactions are less likely.

FIGURE 6.2 Utility Maximization in the Attributes Model

The points x�, y�, and z� show the amounts of attributes a1 and a2 that can be purchased by buying
only x, y, or z, respectively. The shaded area shows all combinations that can be bought with mixed
bundles. Some individuals may maximize utility at E, others at E 0.
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SUMMARY

In this chapter, we used the utility-maximizing model of
choice to examine relationships among consumer goods.
Although these relationships may be complex, the analysis
presented here provided a number of ways of categorizing
and simplifying them.

• When there are only two goods, the income and substi-
tution effects from the change in the price of one good
(say, py) on the demand for another good (x) usually
work in opposite directions. The sign of ∂x=∂py is there-
fore ambiguous: its substitution effect is positive but its
income effect is negative.

• In cases of more than two goods, demand relationships
can be specified in two ways. Two goods (xi and xj ) are
“gross substitutes” if ∂xi=∂pj > 0 and “gross comple-
ments” if ∂xi=∂pj < 0. Unfortunately, because these
price effects include income effects, they need not be sym-
metric. That is,∂xi=∂pj does notnecessarily equal ∂xj=∂pi .

• Focusing only on the substitution effects from price
changes eliminates this ambiguity because substitution
effects are symmetric; that is, ∂xci=∂pj ¼ ∂xcj =∂pi . Now
two goods are defined as net (or Hicksian) substitutes if
∂xci=∂pj > 0 and net complements if ∂xci=∂pj < 0. Hicks’
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PROBLEMS

6.1
Heidi receives utility from two goods, goat’s milk (m) and strudel (s), according to the utility function

U ðm, sÞ ¼ m ⋅ s .
a. Show that increases in the price of goat’s milk will not affect the quantity of strudel Heidi buys;

that is, show that ∂s=∂pm ¼ 0.

b. Show also that ∂m=∂ps ¼ 0.

c. Use the Slutsky equation and the symmetry of net substitution effects to prove that the income
effects involved with the derivatives in parts (a) and (b) are identical.

d. Prove part (c) explicitly using the Marshallian demand functions for m and s .

6.2
Hard Times Burt buys only rotgut whiskey and jelly donuts to sustain him. For Burt, rotgut whiskey is
an inferior good that exhibits Giffen’s paradox, although rotgut whiskey and jelly donuts are Hicksian
substitutes in the customary sense. Develop an intuitive explanation to suggest why a rise in the price of
rotgut must cause fewer jelly donuts to be bought. That is, the goods must also be gross complements.

6.3
Donald, a frugal graduate student, consumes only coffee (c) and buttered toast (bt). He buys these
items at the university cafeteria and always uses two pats of butter for each piece of toast. Donald spends
exactly half of his meager stipend on coffee and the other half on buttered toast.

a. In this problem, buttered toast can be treated as a composite commodity. What is its price in
terms of the prices of butter (pb) and toast (pt )?

b. Explain why ∂c=∂pbt ¼ 0.

c. Is it also true here that ∂c=∂pb and ∂c=∂pt are equal to 0?

6.4
Ms. Sarah Traveler does not own a car and travels only by bus, train, or plane. Her utility function is
given by

utility ¼ b ⋅ t ⋅ p,

where each letter stands for miles traveled by a specific mode. Suppose that the ratio of the price of
train travel to that of bus travel (pt=pb) never changes.

a. How might one define a composite commodity for ground transportation?

b. Phrase Sarah’s optimization problem as one of choosing between ground (g) and air (p)
transportation.

c. What are Sarah’s demand functions for g and p?

d. Once Sarah decides how much to spend on g , how will she allocate those expenditures between
b and t?

“second law of demand” shows that net substitutes are
more prevalent.

• If a group of goods has prices that always move in
unison, then expenditures on these goods can be treated
as a “composite commodity” whose “price” is given by
the size of the proportional change in the composite
goods’ prices.

• An alternative way to develop the theory of choice
among market goods is to focus on the ways in which
market goods are used in household production to yield
utility-providing attributes. This may provide additional
insights into relationships among goods.
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6.5
Suppose that an individual consumes three goods, x1, x2, and x3, and that x2 and x3 are similar
commodities (i.e., cheap and expensive restaurant meals) with p2 ¼ kp3, where k < 1—that is, the
goods’ prices have a constant relationship to one another.

a. Show that x2 and x3 can be treated as a composite commodity.

b. Suppose both x2 and x3 are subject to a transaction cost of t per unit (for some examples, see
Problem 6.6). How will this transaction cost affect the price of x2 relative to that of x3? How will
this effect vary with the value of t?

c. Can you predict how an income-compensated increase in t will affect expenditures on the
composite commodity x2 and x3? Does the composite commodity theorem strictly apply to
this case?

d. How will an income-compensated increase in t affect how total spending on the composite
commodity is allocated between x2 and x3?

6.6
Apply the results of Problem 6.5 to explain the following observations:

a. It is difficult to find high-quality apples to buy in Washington State or good fresh oranges in
Florida.

b. People with significant baby-sitting expenses are more likely to have meals out at expensive
(rather than cheap) restaurants than are those without such expenses.

c. Individuals with a high value of time are more likely to fly the Concorde than those with a lower
value of time.

d. Individuals are more likely to search for bargains for expensive items than for cheap ones.Note:
Observations (b) and (d) form the bases for perhaps the only two murder mysteries in which
an economist solves the crime; see Marshall Jevons, Murder at the Margin and The Fatal
Equilibrium.

6.7
In general, uncompensated cross-price effects are not equal. That is,

∂xi
∂pj

6¼ ∂xj
∂pi

.

Use the Slutsky equation to show that these effects are equal if the individual spends a constant fraction
of income on each good regardless of relative prices. (This is a generalization of Problem 6.1.)

6.8
Example 6.3 computes the demand functions implied by the three-good CES utility function

U ðx, y, zÞ ¼ −
1
x
−

1
y
−

1
z
.

a. Use the demand function for x in Equation 6.32 to determine whether x and y or x and z are
gross substitutes or gross complements.

b. How would you determine whether x and y or x and z are net substitutes or net complements?

Analytical Problems
6.9 Consumer surplus with many goods
In Chapter 5, we showed how the welfare costs of changes in a single price can be measured using
expenditure functions and compensated demand curves. This problem asks you to generalize this to
price changes in two (or many) goods.
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a. Suppose that an individual consumes n goods and that the prices of two of those goods (say, p1
and p2) rise. How would you use the expenditure function to measure the compensating
variation (CV) for this person of such a price rise?

b. A way to show these welfare costs graphically would be to use the compensated demand curves
for goods x1 and x2 by assuming that one price rose before the other. Illustrate this approach.

c. In your answer to part (b), would it matter in which order you considered the price changes?
Explain.

d. In general, would you think that the CV for a price rise of these two goods would be greater if
the goods were net substitutes or net complements? Or would the relationship between the
goods have no bearing on the welfare costs?

6.10 Separable utility
A utility function is called separable if it can be written as

U ðx, yÞ ¼ U1ðxÞ þU2ðyÞ,
where U 0

i > 0,U 00
i < 0, and U1, U2 need not be the same function.

a. What does separability assume about the cross-partial derivative Uxy? Give an intuitive discus-
sion of what word this condition means and in what situations it might be plausible.

b. Show that if utility is separable then neither good can be inferior.

c. Does the assumption of separability allow you to conclude definitively whether x and y are gross
substitutes or gross complements? Explain.

d. Use the Cobb-Douglas utility function to show that separability is not invariant with respect to
monotonic transformations.Note: Separable functions are examined in more detail in the Exten-
sions to this chapter.

6.11 Graphing complements
Graphing complements is complicated because a complementary relationship between goods (under
the Hicks definition) cannot occur with only two goods. Rather, complementarity necessarily involves
the demand relationships among three (or more) goods. In his review of complementarity, Samuelson
provides a way of illustrating the concept with a two-dimensional indifference curve diagram (see the
Suggested Readings). To examine this construction, assume there are three goods that a consumer
might choose. The quantities of these are denoted by x1, x2, x3. Now proceed as follows.

a. Draw an indifference curve for x2 and x3, holding the quantity of x1 constant at x01. This
indifference curve will have the customary convex shape.

b. Now draw a second (higher) indifference curve for x2, x3, holding x1 constant at x01 � h. For
this new indifference curve, show the amount of extra x2 that would compensate this person for
the loss of x1; call this amount j . Similarly, show that amount of extra x3 that would compensate
for the loss of x1 and call this amount k.

c. Suppose now that an individual is given both amounts j and k, thereby permitting him or her to
move to an even higher x2=x3 indifference curve. Show this move on your graph and draw this
new indifference curve.

d. Samuelson now suggests the following definitions:

• If the new indifference curve corresponds to the indifference curve when x1¼ x01 � 2h,
goods 2 and 3 are independent.

• If the new indifference curve provides more utility than when x1¼ x01 � 2h, goods 2 and 3
are complements.

• If the new indifference curve provides less utility than when x1¼ x01 � 2h, goods 2 and 3 are
substitutes.

Show that these graphical definitions are symmetric.
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e. Discuss how these graphical definitions correspond to Hicks’ more mathematical definitions
given in the text.

f. Looking at your final graph, do you think that this approach fully explains the types of relation-
ships that might exist between x2 and x3?

6.12 Shipping the good apples out
Details of the analysis suggested in Problems 6.5 and 6.6 were originally worked out by Borcherding
and Silberberg (see the Suggested Readings) based on a supposition first proposed by Alchian and
Allen. These authors look at how a transaction charge affects the relative demand for two closely
substitutable items. Assume that goods x2 and x3 are close substitutes and are subject to a transaction
charge of t per unit. Suppose also that good 2 is themore expensive of the two goods (i.e., “good apples”
as opposed to “cooking apples”). Hence the transaction charge lowers the relative price of the more
expensive good [that is, ðp2 þ tÞ=ðp3 þ tÞ falls as t increases]. This will increase the relative demand for
the expensive good if ∂ðxc2=xc3Þ=∂t > 0 (where we use compensated demand functions in order to
eliminate pesky income effects). Borcherding and Silberberg show this result will probably hold using
the following steps.

a. Use the derivative of a quotient rule to expand ∂ðxc2=xc3Þ=∂t .
b. Use your result from part (a) together with the fact that, in this problem, ∂xci=∂t ¼

∂xci=∂p2 þ ∂xci=∂p3 for i ¼ 2, 3, to show that the derivative we seek can be written as

∂ðxc
2=x

c
3Þ

∂t
¼ xc

2
xc
3

s22
x2

þ s23
x2

� s32
x3

� s33
x3

	 

,

where sij ¼ ∂xci=∂pj .

c. Rewrite the result from part (b) in terms of compensated price elasticities:

ecij ¼
∂xc

i

∂pj
⋅
pj
xc
i
.

d. Use Hicks’ third law (Equation 6.26) to show that the term in brackets in parts (b) and (c) can
now be written as ½ðe22 � e32Þð1=p2 � 1=p3Þ þ ðe21 � e31Þ=p3�.

e. Develop an intuitive argument about why the expression in part (d) is likely to be positive under
the conditions of this problem. Hints: Why is the first product in the brackets positive? Why is
the second term in brackets likely to be small?

f. Return to Problem 6.6 and provide more complete explanations for these various findings.
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E X T E N S I O N S

Simplifying Demand and Two-Stage Budgeting

In Chapter 6 we saw that the theory of utility maximi-
zation in its full generality imposes rather few restric-
tions on what might happen. Other than the fact that
net cross-substitution effects are symmetric, practically
any type of relationship among goods is consistent
with the underlying theory. This situation poses prob-
lems for economists who wish to study consumption
behavior in the real world—theory just does not pro-
vide very much guidance when there are many thou-
sands of goods potentially available for study.

There are two general ways in which simplifications
are made. The first uses the composite commodity
theorem from Chapter 6 to aggregate goods into cate-
gories within which relative prices move together. For
situations where economists are specifically interested
in changes in relative prices within a category of spend-
ing (such as changes in the relative prices of various
forms of energy), this process will not do, however. An
alternative is to assume that consumers engage in a
two-stage process in their consumption decisions.
First they allocate income to various broad groupings
of goods (food, clothing, and so forth) and then, given
these expenditure constraints, they maximize utility
within each of the subcategories of goods using only
information about those goods’ relative prices. In that
way, decisions can be studied in a simplified setting by
looking only at one category at a time. This process is
called “two-stage” budgeting. In these extensions, we
first look at the general theory of two-stage budgeting
and then turn to examine some empirical examples.

E6.1 Theory of two-stage
budgeting

The issue that arises in two-stage budgeting can be
stated succinctly: Does there exist a partition of goods
into m nonoverlapping groups (denoted by r ¼ 1,m)
and a separate budget (lr) devoted to each category
such that the demand functions for the goods within
any one category depend only on the prices of goods
within the category and on the category’s budget allo-
cation? That is, can we partition goods so that demand
is given by

xiðp1,…, pn, I Þ ¼ xi2rðpi2r , IrÞ (i)

for r ¼ 1,m, ? That it might be possible to do this is
suggested by comparing the following two-stage
maximization problem,

V �ðp1,…,pn ,I1,…,ImÞ
¼ max

x1,…,xn

h
U ðx1,…,xnÞ s:t:

X
i2r

pixi � Ir ,r¼1,m
i

(ii)
and

max
I1,…, Im

V � s. t.
Xm
r¼1

Ir ¼ I ,

to the utility-maximization problem we have been
studying,

max
xi

U ðx1,…, xnÞ s. t.
Xn
i¼1

pixi � I . (iii)

Without any further restrictions, these two maxi-
mization processes will yield the same result; that is,
Equation ii is just a more complicated way of stating
Equation iii. So, some restrictions have to be placed on
the utility function to ensure that the demand functions
that result from solving the two-stage process will be
of the form specified in Equation i. Intuitively, it seems
that such a categorization of goods should work
providing that changes in the price of a good in one
category do not affect the allocation of spending
for goods in any category other than its own. In
Problem 6.9 we showed a case where this is true for an
“additively separable” utility function. Unfortunately,
this proves to be a very special case. The more general
mathematical restrictions that must be placed on the
utility function to justify two-stage budgeting have
been derived (see Blackorby, Primont, and Russell,
1978), but these are not especially intuitive. Of course,
economists who wish to study decentralized decisions
by consumers (or, perhaps more importantly, by firms
that operate many divisions) must do something to
simplify matters. Now we look at a few applied
examples.

E6.2 Relation to the composition
commodity theorem

Unfortunately, neither of the two available theoretical
approaches to demand simplification is completely sat-
isfying. The composite commodity theorem requires
that the relative prices for goods within one group
remain constant over time, an assumption that has
been rejected during many different historical periods.
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On the other hand, the kind of separability and two-
stage budgeting indicated by the utility function in
Equation i also requires very strong assumptions
about how changes in prices for a good in one group
affect spending on goods in any other group. These
assumptions appear to be rejected by the data (see
Diewert and Wales, 1995).

Economists have tried to devise even more elabo-
rate, hybrid methods of aggregation among goods.
For example, Lewbel (1996) shows how the compos-
ite commodity theorem might be generalized to cases
where within-group relative prices exhibit considerable
variability. He uses this generalization for aggregating
U.S. consumer expenditures into six large groups
(food, clothing, household operation, medical care,
transportation, and recreation). Using these aggre-
gates, he concludes that his procedure is much more
accurate than assuming two-stage budgeting among
these expenditure categories.

E6.3 Homothetic functions and
energy demand

One way to simplify the study of demand when there
are many commodities is to assume that utility for
certain subcategories of goods is homothetic and
may be separated from the demand for other com-
modities. This procedure was followed by Jorgenson,
Slesnick, and Stoker (1997) in their study of energy

demand by U.S. consumers. By assuming that demand
functions for specific types of energy are proportional
to total spending on energy, the authors were able to
concentrate their empirical study on the topic that is of
most interest to them: estimating the price elasticities
of demand for various types of energy. They conclude
that most types of energy (that is, electricity, natural
gas, gasoline, and so forth) have fairly elastic demand
functions. Demand appears to be most responsive to
price for electricity.
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C H A P T E R

7

Uncertainty and Information

In this chapter we will explore some of the basic elements of the theory of individual behavior in uncertain
situations. Our general goal is to show why individuals do not like risk and how they may adopt strategies to
reduce it. More generally, the chapter is intended to provide a brief introduction to issues raised by the
possibility that information may be imperfect when individuals make utility-maximizing decisions. Some of
the themes developed here will recur throughout the remainder of the book.

MATHEMATICAL STATISTICS

Many of the formal tools for modeling uncertainty in economic situations were originally
developed in the field of mathematical statistics. Some of these tools were reviewed in
Chapter 2 and in this chapter we will be making a great deal of use of the concepts introduced
there. Specifically, four statistical ideas will recur throughout this chapter.

• Random variable: A random variable is a variable that records, in numerical form, the
possible outcomes from some random event.1

• Probability density function (PDF): A function that shows the probabilities associ-
ated with the possible outcomes from a random variable.

• Expected value of a random variable: The outcome of a random variable that will
occur “on average.” The expected value is denoted by EðxÞ. If x is a discrete random
variable with n outcomes then EðxÞ ¼Pn

i¼1 xi ¼ f ðxiÞ, where f ðxÞ is the PDF for
the random variable x. If x is a continuous random variable, then EðxÞ ¼
∫þ∞
�∞ xf ðxÞ dx.

• Variance and standard deviation of a random variable: These concepts mea-
sure the dispersion of a random variable about its expected value. In the discrete
case, VarðxÞ ¼ σ2

x ¼Pn
i¼1½xi � EðxÞ�2f ðxiÞ; in the continuous case, VarðxÞ ¼ σ2

x ¼
∫þ∞
�∞½x � EðxÞ�2f ðxÞ dx. The standard deviation is the square root of the variance.

As we shall see, all of these concepts will come into play when we begin looking at the
decision-making process of a person faced with a number of uncertain outcomes that can be
conceptually represented by a random variable.

1When it is necessary to differentiate between random variables and nonrandom variables, we will use the notation ∼x to
denote the fact that the variable x is random in that it takes on a number of potential randomly determined outcomes.
Often, however, it will not be necessary to make the distinction because randomness will be clear from the context of the
problem.
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FAIR GAMES AND THE EXPECTED UTILITY HYPOTHESIS

A “fair game” is a random game with a specified set of prizes and associated probabilities that
has an expected value of zero. For example, if you flip a coin with a friend for a dollar, the
expected value of this game is zero because

EðxÞ ¼ 0:5ðþ$1Þ þ 0:5ð�$1Þ ¼ 0, (7.1)

where wins are recorded with a plus sign and losses with a minus sign. Similarly, a game that
promised to pay you $10 if a coin came up heads but would cost you only $1 if it came up
tails would be “unfair” because

EðxÞ ¼ 0:5ðþ$10Þ þ 0:5ð�$1Þ ¼ $4:50. (7.2)

This game can easily be converted into a fair game, however, simply by charging you an
entry fee of $4.50 for the right to play.2

It has long been recognized that most people would prefer not to play fair games.
Although people may sometimes willingly flip a coin for a few dollars, they would generally
balk at playing a similar game whose outcome was +$1 million or �$1 million. One of the
first mathematicians to study the reasons for this unwillingness to engage in fair bets was
Daniel Bernoulli in the eighteenth century.3 His examination of the famous St. Petersburg
paradox provided the starting point for virtually all studies of the behavior of individuals in
uncertain situations.

St. Petersburg paradox
In the St. Petersburg paradox, the following game is proposed: A coin is flipped until a head
appears. If a head first appears on the nth flip, the player is paid $2n. This game has an infinite
number of outcomes (a coin might be flipped from now until doomsday and never come up a
head, although the likelihood of this is small), but the first few can easily be written down. If
xi represents the prize awarded when the first head appears on the ith trial, then

x1 ¼ $2, x2 ¼ $4, x3 ¼ $8, …, xn ¼ $2n. (7.3)

The probability of getting a head for the first time on the ith trial is 1
2

� �i ; it is the probability
of getting (i � 1) tails and then a head. Hence the probabilities of the prizes given in
Equation 7.3 are

π1 ¼ 1
2
, π2 ¼ 1

4
, π3 ¼ 1

8
, …, πn ¼ 1

2n . (7.4)

The expected value of the St. Petersburg paradox game is therefore infinite:

EðxÞ ¼
X∞
i¼1

πixi ¼
X∞
i¼1

2ið1=2iÞ

¼ 1þ 1þ 1þ…þ 1þ… ¼ ∞. (7.5)

Some introspection, however, should convince anyone that no player would pay very much
(much less than infinity) to play this game. If I charged $1 billion to play the game, I would
surely have no takers, despite the fact that $1 billion is still considerably less than the expected
value of the game. This, then, is the paradox: Bernoulli’s game is in some sense not worth its
(infinite) expected dollar value.

2The games discussed here are assumed to yield no utility in their play other than the prizes; hence, the observation that
many individuals gamble at “unfair” odds is not necessarily a refutation of this statement. Rather, such individuals can
reasonably be assumed to be deriving some utility from the circumstances associated with the play of the game. It is
therefore possible to differentiate the consumption aspect of gambling from the pure risk aspect.
3The original Bernoulli paper has been reprinted as D. Bernoulli, “Exposition of a New Theory on the Measurement of
Risk,” Econometrica 22 (January 1954): 23–36.
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Expected utility
Bernoulli’s solution to this paradox was to argue that individuals do not care directly about
the dollar prizes of a game; rather, they respond to the utility these dollars provide. If we
assume that the marginal utility of wealth declines as wealth increases, the St. Petersburg
game may converge to a finite expected utility value that players would be willing to pay for
the right to play. Bernoulli termed this expected utility value the moral value of the game
because it represents how much the game is worth to the individual. Because utility may rise
less rapidly than the dollar value of the prizes, it is possible that a game’s moral value will fall
short of its monetary expected value. Example 7.1 looks at some issues related to Bernoulli’s
solution.

EXAMPLE 7.1 Bernoulli’s Solution to the Paradox and Its Shortcomings

Suppose, as did Bernoulli, that the utility of each prize in the St. Petersburg paradox is given by

U ðxiÞ ¼ lnðxiÞ. (7.6)

This logarithmic utility function exhibits diminishing marginal utility (that is, U 0 > 0 but
U 00 < 0), and the expected utility value of this game converges to a finite number:

expected utility ¼
X∞
i¼1

πiU ðxÞi

¼
X∞
i¼1

1
2i lnð2iÞ. (7.7)

Some manipulation of this expression yields4 the result that the expected utility value of this
game is 1.39. An individual with this type of utility function might therefore be willing to
invest resources that otherwise yield up to 1.39 units of utility (a certain wealth of about $4
provides this utility) in purchasing the right to play this game. Assuming that the very large
prizes promised by the St. Petersburg paradox encounter diminishing marginal utility there-
fore permitted Bernoulli to offer a solution to the paradox.

Unbounded utility. Bernoulli’s solution to the St. Petersburg paradox, unfortunately, does
not completely solve the problem. So long as there is no upper bound to the utility function,
the paradox can be regenerated by redefining the game’s prizes. For example, with the
logarithmic utility function, prizes can be set as xi ¼ e2

i
, in which case

U ðxiÞ ¼ ln½e2i � ¼ 2i (7.8)

and the expected utility value of the game would again be infinite. Of course, the prizes in this
redefined game are very large. For example, if a head first appears on the fifth flip, a person
would win e2

5 ¼ e32 ¼ $7:9 ⋅ 1013, though the probability of winning this would be only
1=25 ¼ 0:031. The idea that people would pay a great deal (say, billions of dollars) to play
games with small probabilities of such large prizes seems, to many observers, to be unlikely.
Hence, in many respects the St. Petersburg game remains a paradox.

4Proof :

expected utility ¼
X∞
i¼1

i
2i ⋅ ln 2 ¼ ln 2

X∞
i¼1

i
2i :

But the value of this final infinite series can be shown to be 2.0. Hence, expected utility ¼ 2 ln 2 ¼ 1:39.
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QUERY: Here are two alternative solutions to the St. Petersburg paradox. For each, calculate
the expected value of the original game.

1. Suppose individuals assume that any probability less than 0.01 is in fact zero.
2. Suppose that the utility from the St. Petersburg prizes is given by

U ðxiÞ ¼
xi if xi � 1,000,000,
1,000,000 if xi > 1,000,000.




THE VON NEUMANN–MORGENSTERN THEOREM

In their book The Theory of Games and Economic Behavior, John von Neumann and Oscar
Morgenstern developed mathematical models for examining the economic behavior of in-
dividuals under conditions of uncertainty.5 To understand these interactions, it was necessary
first to investigate the motives of the participants in such “games.” Because the hypothesis
that individuals make choices in uncertain situations based on expected utility seemed
intuitively reasonable, the authors set out to show that this hypothesis could be derived
from more basic axioms of “rational” behavior. The axioms represent an attempt by the
authors to generalize the foundations of the theory of individual choice to cover uncertain
situations. Although most of these axioms seem eminently reasonable at first glance, many
important questions about their tenability have been raised. We will not pursue these
questions here, however.6

The von Neumann–Morgenstern utility index
To begin, suppose that there are n possible prizes that an individual might win by participat-
ing in a lottery. Let these prizes be denoted by x1, x2,…, xn and assume that these have been
arranged in order of ascending desirability. Therefore, x1 is the least preferred prize for the
individual and xn is the most preferred prize. Now assign arbitrary utility numbers to these
two extreme prizes. For example, it is convenient to assign

U ðx1Þ ¼ 0,
U ðxnÞ ¼ 1,

(7.9)

but any other pair of numbers would do equally well.7 Using these two values of utility, the
point of the von Neumann–Morgenstern theorem is to show that a reasonable way exists to
assign specific utility numbers to the other prizes available. Suppose that we choose any other
prize, say, xi. Consider the following experiment. Ask the individual to state the probability,
say, πi, at which he or she would be indifferent between xi with certainty, and a gamble
offering prizes of xn with probability πi and x1 with probability ð1� πiÞ. It seems reasonable
(although this is the most problematic assumption in the von Neumann–Morgenstern
approach) that such a probability will exist: The individual will always be indifferent between a
gamble and a sure thing, provided that a high enough probability of winning the best prize is
offered. It also seems likely that πi will be higher the more desirable xi is; the better xi is, the

5J. von Neumann and O. Morgenstern, The Theory of Games and Economic Behavior (Princeton, NJ: Princeton University
Press, 1944). The axioms of rationality in uncertain situations are discussed in the book’s appendix.
6For a discussion of some of the issues raised in the debate over the von Neumann–Morgenstern axioms, especially the
assumption of independence, see C. Gollier, The Economics of Risk and Time (Cambridge, MA: MIT Press, 2001), chap. 1.
7Technically, a von Neumann–Morgenstern utility index is unique only up to a choice of scale and origin—that is, only up to
a “linear transformation.” This requirement is more stringent than the requirement that a utility function be unique up to a
monotonic transformation.
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better the chance of winning xn must be to get the individual to gamble. The probability πi
therefore measures how desirable the prize xi is. In fact, the von Neumann–Morgenstern
technique is to define the utility of xi as the expected utility of the gamble that the individual
considers equally desirable to xi:

U ðxiÞ ¼ πi ⋅ U ðxnÞ þ ð1� πiÞ ⋅ U ðx1Þ. (7.10)

Because of our choice of scale in Equation 7.9, we have

U ðxiÞ ¼ πi ⋅ 1þ ð1� πiÞ ⋅ 0 ¼ πi. (7.11)

By judiciously choosing the utility numbers to be assigned to the best and worst prizes, we
have been able to devise a scale under which the utility number attached to any other prize
is simply the probability of winning the top prize in a gamble the individual regards as
equivalent to the prize in question. This choice of utility numbers is arbitrary. Any other
two numbers could have been used to construct this utility scale, but our initial choice
(Equation 7.9) is a particularly convenient one.

Expected utility maximization
In line with the choice of scale and origin represented by Equation 7.9, suppose that
probability πi has been assigned to represent the utility of every prize xi . Notice in particular
that π1 ¼ 0,πn ¼ 1, and that the other utility values range between these extremes. Using
these utility numbers, we can show that a “rational” individual will choose among gambles
based on their expected “utilities” (that is, based on the expected value of these von
Neumann–Morgenstern utility index numbers).

As an example, consider two gambles. One gamble offers x2, with probability q, and x3,
with probability (1� q). The other offers x5, with probability t , and x6, with probability
(1� t). We want to show that this person will choose gamble 1 if and only if the expected
utility of gamble 1 exceeds that of gamble 2. Now for the gambles:

expected utility ð1Þ ¼ q ⋅ U ðx2Þ þ ð1� qÞ ⋅ U ðx3Þ,
expected utility ð2Þ ¼ t ⋅ U ðx5Þ þ ð1� t Þ ⋅ U ðx6Þ.

(7.12)

Substituting the utility index numbers (that is, π2 is the “utility” of x2, and so forth) gives

expected utilityð1Þ ¼ q ⋅ π2 þ ð1� qÞ ⋅ π3,

expected utilityð2Þ ¼ t ⋅ π5 þ ð1� t Þ ⋅ π6.
(7.13)

We wish to show that the individual will prefer gamble 1 to gamble 2 if and only if

q ⋅ π2 þ ð1� qÞ ⋅ π3 > t ⋅ π5 þ ð1� t Þ ⋅ π6. (7.14)

To show this, recall the definitions of the utility index. The individual is indifferent between x2
and a gamble promising x1 with probability (1� π2) and xn with probability π2. We can use
this fact to substitute gambles involving only x1 and xn for all utilities in Equation 7.13 (even
though the individual is indifferent between these, the assumption that this substitution can
be made implicitly assumes that people can see through complex lottery combinations). After
a bit of messy algebra, we can conclude that gamble 1 is equivalent to a gamble promising
xn with probability qπ2 þ ð1� qÞπ3, and gamble 2 is equivalent to a gamble promising xn with
probability tπ5 þ ð1� tÞπ6. The individual will presumably prefer the gamble with the
higher probability of winning the best prize. Consequently, he or she will choose gamble 1 if
and only if

qπ2 þ ð1� qÞπ3 > tπ5 þ ð1� t Þπ6. (7.15)

But this is precisely what we wanted to show. Consequently, we have proved that an individ-
ual will choose the gamble that provides the highest level of expected (von Neumann–
Morgenstern) utility. We now make considerable use of this result, which can be summarized
as follows.
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O P T I M I Z A T I O N

P R I N C I P L E

Expected utility maximization. If individuals obey the von Neumann–Morgenstern
axioms of behavior in uncertain situations, they will act as if they choose the option that
maximizes the expected value of their von Neumann–Morgenstern utility index.

RISK AVERSION

Two lotteries may have the same expected monetary value but may differ in their riskiness.
For example, flipping a coin for $1 and flipping a coin for $1,000 are both fair games, and
both have the same expected value (0). However, the latter is in some sense more “risky”
than the former, and fewer people would participate in the game where the prize was winning
or losing $1,000. The purpose of this section is to discuss the meaning of the term risky and
explain the widespread aversion to risk.

The term risk refers to the variability of the outcomes of some uncertain activity.8 If
variability is low, the activity may be approximately a sure thing. With no more precise notion
of variability than this, it is possible to show why individuals, when faced with a choice
between two gambles with the same expected value, will usually choose the one with a
smaller variability of return. Intuitively, the reason behind this is that we usually assume that
the marginal utility from extra dollars of prize money (that is, wealth) declines as the prizes
get larger. A flip of a coin for $1,000 promises a relatively small gain of utility if you win but a
large loss of utility if you lose. A bet of only $1 is “inconsequential,” and the gain in utility
from a win approximately counterbalances the decline in utility from a loss.9

Risk aversion and fair bets
This argument is illustrated in Figure 7.1. HereW � represents an individual’s current wealth
and U ðW Þ is a von Neumann–Morgenstern utility index that reflects how he or she feels
about various levels of wealth.10 In the figure,U ðW Þ is drawn as a concave function ofW to
reflect the assumption of a diminishing marginal utility. It is assumed that obtaining an extra
dollar adds less to enjoyment as total wealth increases. Now suppose this person is offered two
fair gambles: a 50–50 chance of winning or losing $h or a 50–50 chance of winning or losing
$2h. The utility of present wealth is U ðW �Þ: The expected utility if he or she participates in
gamble 1 is given by UhðW �Þ:

UhðW �Þ ¼ 1
2
U ðW � þ hÞ þ 1

2
U ðW � � hÞ, (7.16)

and the expected utility of gamble 2 is given by U 2hðW �Þ:
U 2hðW �Þ ¼ 1

2
U ðW � þ 2hÞ þ 1

2
U ðW � � 2hÞ. (7.17)

It is geometrically clear from the figure that11

U ðW �Þ > UhðW �Þ > U 2hðW �Þ. (7.18)

8Often the statistical concepts of variance and standard deviation are used to measure risk. We will do so at several places
later in this chapter.
9Technically, this result is a direct consequence of Jensen’s inequality in mathematical statistics. The inequality states that if
x is a random variable and f ðxÞ is a concave function of that variable, then E½ f ðxÞ� � f ½EðxÞ�. In the utility context, this
means that if utility is concave in a random variable measuring wealth (i.e., if U 0ðW Þ > 0 and U 00ðW Þ < 0Þ, then the
expected utility of wealth will be less than the utility associated with the expected value of W .
10Technically, U ðW Þ is an indirect utility function because it is the consumption allowed by wealth that provides direct
utility. In Chapter 17 we will take up the relationship between consumption-based utility functions and their implied
indirect utility of wealth functions.
11To see why the expected utilities for bet h and bet 2h are those shown, notice that these expected utilities are the average
of the utilities from a favorable and an unfavorable outcome. Because W � is halfway between W � þ h and W � � h, U � is
also halfway between U ðW � þ hÞ and U ðW � � hÞ.
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This person therefore will prefer his or her current wealth to that wealth combined with a fair
gamble and will prefer a small gamble to a large one. The reason for this is that winning a fair
bet adds to enjoyment less than losing hurts. Although in this case the prizes are equal,
winning provides less than losing costs in utility terms.

Risk aversion and insurance
As a matter of fact, this person might be willing to pay some amount to avoid participating in
any gamble at all. Notice that a certain wealth of W provides the same utility as does
participating in gamble 1. This person would be willing to pay up to W � �W in order to
avoid participating in the gamble. This explains why people buy insurance. They are giving up
a small, certain amount (the insurance premium) to avoid the risky outcome they are being
insured against. The premium a person pays for automobile collision insurance, for example,
provides a policy that agrees to repair his or her car should an accident occur. The widespread
use of insurance would seem to imply that aversion to risk is quite prevalent. Hence, we
introduce the following definition.

D E F I N I T I O N
Risk aversion. An individual who always refuses fair bets is said to be risk averse. If
individuals exhibit a diminishing marginal utility of wealth, they will be risk averse. As a
consequence, they will be willing to pay something to avoid taking fair bets.

EXAMPLE 7.2 Willingness to Pay for Insurance

To illustrate the connection between risk aversion and insurance, consider a person with a
current wealth of $100,000 who faces the prospect of a 25 percent chance of losing his or her
$20,000 automobile through theft during the next year. Suppose also that this person’s von
Neumann–Morgenstern utility index is logarithmic; that is, U ðW Þ ¼ lnðW Þ:

FIGURE 7.1 Utility of Wealth from Two Fair Bets of Differing Variability

If the utility-of-wealth function is concave (i.e., exhibits a diminishing marginal utility of wealth),
then this person will refuse fair bets. A 50–50 bet of winning or losing h dollars, for example, yields
less utility ½UhðW �Þ� than does refusing the bet. The reason for this is that winning h dollars means
less to this individual than does losing h dollars.

Utility

U(W)
U(W*)
Uh(W*)
U2h(W*)

W* − 2h W* + 2h Wealth (W)W* − h W* +hW*W
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If this person faces next year without insurance, expected utility will be

expected utility ¼ 0.75U ð100,000Þ þ 0.25U ð80,000Þ
¼ 0.75 ln 100,000þ 0.25 ln 80,000
¼ 11.45714. (7.19)

In this situation, a fair insurance premium would be $5,000 (25 percent of $20,000,
assuming that the insurance company has only claim costs and that administrative costs are
$0). Consequently, if this person completely insures the car, his or her wealth will be
$95,000 regardless of whether the car is stolen. In this case, then,

expected utility ¼ U ð95,000Þ
¼ lnð95,000Þ
¼ 11.46163. (7.20)

This person is made better-off by purchasing fair insurance. Indeed, we can determine the
maximum amount that might be paid for this insurance protection (x) by setting

expected utility ¼ U ð100,000� xÞ
¼ lnð100,000� xÞ
¼ 11.45714. (7.21)

Solving this equation for x yields

100,000� x ¼ e11.45714. (7.22)

Therefore, the maximum premium is

x ¼ 5,426. (7.23)

This person would be willing to pay up to $426 in administrative costs to an insurance
company (in addition to the $5,000 premium to cover the expected value of the loss). Even
when these costs are paid, this person is as well-off as he or she would be when facing the
world uninsured.

QUERY: Suppose utility had been linear in wealth. Would this person be willing to pay
anything more than the actuarially fair amount for insurance? How about the case where
utility is a convex function of wealth?

MEASURING RISK AVERSION

In the study of economic choices in risky situations, it is sometimes convenient to have a
quantitative measure of how averse to risk a person is. The most commonly used measure of
risk aversion was initially developed by J. W. Pratt in the 1960s.12 This risk aversion measure,
rðW Þ, is defined as

rðW Þ ¼ �U
00ðW Þ

U 0ðW Þ . (7.24)

Because the distinguishing feature of risk-averse individuals is a diminishing marginal
utility of wealth ½U 00ðW Þ < 0�, Pratt’s measure is positive in such cases. The measure is
invariant with respect to linear transformations of the utility function, and therefore not
affected by which particular von Neumann–Morgenstern ordering is used.

12J. W. Pratt, “Risk Aversion in the Small and in the Large,” Econometrica (January/April 1964): 122–36.
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Risk aversion and insurance premiums
A useful feature of the Pratt measure of risk aversion is that it is proportional to the amount an
individual will pay for insurance against taking a fair bet. Suppose the winnings from such
a fair bet are denoted by the random variable h (this variable may be either positive or
negative). Because the bet is fair, EðhÞ ¼ 0. Now let p be the size of the insurance premium
that would make the individual exactly indifferent between taking the fair bet h and paying p
with certainty to avoid the gamble:

E½U ðW þ hÞ� ¼ U ðW � pÞ, (7.25)

where W is the individual’s current wealth. We now expand both sides of Equation 7.25
using Taylor’s series.13 Because p is a fixed amount, a linear approximation to the right-hand
side of the equation will suffice:

U ðW � pÞ ¼ U ðW Þ � pU 0ðW Þ þ higher-order terms. (7.26)

For the left-hand side, we need a quadratic approximation to allow for the variability in the
gamble, h:

E½U ðW þ hÞ� ¼ E
	
U ðW Þþ hU 0ðW Þþ h2

2
U 00ðW Þ

þ higher-order terms



(7.27)

¼ U ðW Þþ EðhÞU 0ðW Þþ Eðh2Þ
2

U 00ðW Þ

þ higher-order terms. (7.28)

If we recall that EðhÞ ¼ 0 and then drop the higher-order terms and use the constant k to
represent Eðh2Þ=2, we can equate Equations 7.26 and 7.28 as

U ðW Þ � pU 0ðW Þ≅U ðW Þ þ kU 00ðW Þ (7.29)

or

p ≅ � kU 00ðW Þ
U 0ðW Þ ¼ krðW Þ. (7.30)

That is, the amount that a risk-averse individual is willing to pay to avoid a fair bet is
approximately proportional to Pratt’s risk aversion measure.14 Because insurance premiums
paid are observable in the real world, these are often used to estimate individuals’ risk
aversion coefficients or to compare such coefficients among groups of individuals. It is
therefore possible to use market information to learn quite a bit about attitudes toward risky
situations.

Risk aversion and wealth
An important question is whether risk aversion increases or decreases with wealth. Intuitively,
one might think that the willingness to pay to avoid a given fair bet would decline as wealth
increases, because diminishing marginal utility would make potential losses less serious for
high-wealth individuals. This intuitive answer is not necessarily correct, however, because
diminishing marginal utility also makes the gains from winning gambles less attractive. So the

13Taylor’s series provides a way of approximating any differentiable function around some point. If f ðxÞ has derivatives of
all orders, it can be shown that

f ðx þ hÞ ¼ f ðxÞ þ hf 0ðxÞ þ ðh2=2Þf 00ðxÞ þ higher-order terms.

The point-slope formula in algebra is a simple example of Taylor’s series.
14In this case, the factor of proportionality is also proportional to the variance of h because VarðhÞ ¼ E½h � EðhÞ�2 ¼ Eðh2Þ.
For an illustration where this equation fits exactly, see Example 7.3.
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net result is indeterminate; it all depends on the precise shape of the utility function. Indeed,
if utility is quadratic in wealth,

U ðW Þ ¼ a þ bW þ cW 2, (7.31)

where b > 0 and c < 0, then Pratt’s risk aversion measure is

rðW Þ ¼ �U 00ðW Þ
U 0ðW Þ ¼ �2c

b þ 2cW
, (7.32)

which, contrary to intuition, increases as wealth increases.
On the other hand, if utility is logarithmic in wealth,

U ðW Þ ¼ lnðW Þ ðW > 0Þ, (7.33)

then we have

rðW Þ ¼ � U 00ðW Þ
U 0ðW Þ ¼ 1

W
, (7.34)

which does indeed decrease as wealth increases.
The exponential utility function

U ðW Þ ¼ �e�AW ¼ �expð�AW Þ (7.35)

(where A is a positive constant) exhibits constant absolute risk aversion over all ranges of
wealth, because now

rðW Þ ¼ �U 00ðW Þ
U 0ðW Þ ¼ A2e�AW

Ae�AW ¼ A. (7.36)

This feature of the exponential utility function15 can be used to provide some numerical
estimates of the willingness to pay to avoid gambles, as the next example shows.

EXAMPLE 7.3 Constant Risk Aversion

Suppose an individual whose initial wealth isW0 and whose utility function exhibits constant
absolute risk aversion is facing a 50–50 chance of winning or losing $1,000. How much ( f )
would he or she pay to avoid the risk? To find this value, we set the utility ofW0 � f equal to
the expected utility from the gamble:

�exp½�AðW0 � f Þ� ¼ �0.5exp½�AðW0 þ 1,000Þ�
�0.5exp½�AðW0 � 1,000Þ�. (7.37)

Because the factor �expð�AW0Þ is contained in all of the terms in Equation 7.37, this may
be divided out, thereby showing that (for the exponential utility function) the willingness to
pay to avoid a given gamble is independent of initial wealth. The remaining terms

expðAf Þ ¼ 0.5 expð�1,000AÞ þ 0.5 expð1,000AÞ (7.38)

can now be used to solve for f for various values of A. If A ¼ 0:0001, then f ¼ 49:9; a
person with this degree of risk aversion would pay about $50 to avoid a fair bet of $1,000.
Alternatively, if A ¼ 0:0003, this more risk-averse person would pay f ¼ 147:8 to avoid the
gamble. Because intuition suggests that these values are not unreasonable, values of the risk
aversion parameter A in these ranges are sometimes used for empirical investigations.

(continued)

15Because the exponential utility function exhibits constant (absolute) risk aversion, it is sometimes abbreviated by the term
CARA utility.
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EXAMPLE 7.3 CONTINUED

A normally distributed risk. The constant risk aversion utility function can be combined
with the assumption that a person faces a random threat to his or her wealth that follows a
normal distribution (see Chapter 2) to arrive at a particularly simple result. Specifically, if
a person’s risky wealth follows a normal distribution with mean μW and variance σ2

W , then
the probability density function for wealth is given by f ðW Þ ¼ ð1= ffiffiffiffiffiffi

2π
p Þe�z2=2, where z ¼

½ðW � μW Þ=σW �: If this person has a utility function for wealth given by U ðW Þ ¼ �e�AW ,
then expected utility from his or her risky wealth is given by

E½U ðW Þ� ¼ ∫
∞

�∞

U ðW Þf ðW Þ dW ¼ 1ffiffiffiffiffiffiffi
2π

p ∫�e�AWe�½ðW�μW Þ=σW �2=2 dW . (7.39)

Perhaps surprisingly, this integration is not too difficult to accomplish, though it does take
patience. Performing this integration and taking a variety of monotonic transformations of
the resulting expression yields the final result that

E½U ðW Þ�≅μW � A
2 ⋅ σ2

W . (7.40)

Hence, expected utility is a linear function of the two parameters of the wealth probability
density function, and the individual’s risk aversion parameter (A) determines the size of the
negative effect of variability on expected utility. For example, suppose a person has invested
his or her funds so that wealth has an expected value of $100,000 but a standard deviation
ðσW Þ of $10,000. With the Normal distribution, he or she might therefore expect wealth to
decline below $83,500 about 5 percent of the time and rise above $116,500 a similar
fraction of the time. With these parameters, expected utility is given by E½U ðW Þ� ¼
100,000� ðA=2Þð10,000Þ2: If A ¼ 0:0001 ¼ 10�4, expected utility is given by 100,0000�
0:5 ⋅ 10�4 ⋅ ð104Þ2 ¼ 95, 000:Hence, this person receives the same utility fromhis or her risky
wealth as would be obtained from a certain wealth of $95,000. A more risk-averse person
might haveA ¼ 0:0003 and in this case the “certainty equivalent” of his or her wealth would
be $85,000.

QUERY: Suppose this person had two ways to invest his or her wealth: Allocation 1,
μW ¼ 107,000 and σW ¼ 10,000; Allocation 2, μW ¼ 102,000 and σW ¼ 2,000: How
would this person’s attitude toward risk affect his or her choice between these allocations?16

Relative risk aversion
It seems unlikely that the willingness to pay to avoid a given gamble is independent of a
person’s wealth. A more appealing assumption may be that such willingness to pay is inversely
proportional to wealth and that the expression

rrðW Þ ¼ WrðW Þ ¼ �W U 00ðW Þ
U 0ðW Þ (7.41)

might be approximately constant. Following the terminology proposed by J. W. Pratt,17 the
rrðW ) function defined in Equation 7.41 is a measure of relative risk aversion. The power
utility function

16This numerical example (very roughly) approximates historical data on real returns of stocks and bonds, respectively,
though the calculations are illustrative only.
17Pratt, “Risk Aversion.”
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U ðW Þ ¼ WR

R
ðR < 1, R 6¼ 0Þ (7.42)

and

U ðW Þ ¼ lnW ðR ¼ 0Þ
exhibits diminishing absolute risk aversion,

rðW Þ ¼ �U 00ðW Þ
U 0ðW Þ ¼ � ðR � 1ÞWR�2

WR�1 ¼ � ðR � 1Þ
W

, (7.43)

but constant relative risk aversion:

rrðW Þ ¼ WrðW Þ ¼ �ðR � 1Þ ¼ 1�R. (7.44)

Empirical evidence18 is generally consistent with values of R in the range of –3 to –1.
Hence, individuals seem to be somewhat more risk averse than is implied by the logarithmic
utility function, though in many applications that function provides a reasonable approx-
imation. It is useful to note that the constant relative risk aversion utility function in
Equation 7.42 has the same form as the general CES utility function we first described in
Chapter 3. This provides some geometric intuition about the nature of risk aversion that we
will explore later in this chapter.

EXAMPLE 7.4 Constant Relative Risk Aversion

An individual whose behavior is characterized by a constant relative risk aversion utility
function will be concerned about proportional gains or loss of wealth. We can therefore ask
what fraction of initial wealth ( f ) such a person would be willing to give up to avoid a fair
gamble of, say, 10 percent of initial wealth. First, we assumeR ¼ 0, so the logarithmic utility
function is appropriate. Setting the utility of this individual’s certain remaining wealth equal
to the expected utility of the 10 percent gamble yields

ln½ð1� f ÞW0� ¼ 0:5 lnð1:1W0Þ þ 0:5 lnð0:9W0Þ. (7.45)

Because each term contains lnW0, initial wealth can be eliminated from this expression:

lnð1� f Þ ¼ 0:5½lnð1:1Þ þ lnð0:9Þ� ¼ lnð0:99Þ0:5;

hence

ð1� f Þ ¼ ð0:99Þ0:5 ¼ 0:995
and

f ¼ 0:005. (7.46)

This person will thus sacrifice up to 0.5 percent of wealth to avoid the 10 percent gamble. A
similar calculation can be used for the case R ¼ �2 to yield

f ¼ 0:015. (7.47)

Hence this more risk-averse person would be willing to give up 1.5 percent of his or her
initial wealth to avoid a 10 percent gamble.

QUERY: With the constant relative risk aversion function, how does this person’s willingness
to pay to avoid a given absolute gamble (say, of 1,000) depend on his or her initial wealth?

18Some authors write the utility function in Equation 7.42 as U ðW Þ ¼ W 1�a=ð1� aÞ and seek to measure a ¼ 1�R. In
this case, a is the relative risk aversion measure. The constant relative risk aversion function is sometimes abbreviated as
CRRA.
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THE PORTFOLIO PROBLEM

One of the classic problems in the theory of behavior under uncertainty is the issue of how
much of his or her wealth a risk-averse investor should invest in a risky asset. Intuitively, it
seems that the fraction invested in risky assets should be smaller for more risk-averse investors,
and one goal of our analysis will be to show that formally. To get started, assume that an
investor has a certain amount of wealth, W0, to invest in one of two assets. The first asset
yields a certain return of rf , whereas the second asset’s return is a random variable, er . If we let
the amount invested in the risky asset be denoted by k, then this person’s wealth at the end of
one period will be

W ¼ ðW0 � kÞð1þ rf Þ þ kð1þ er Þ ¼ W0ð1þ rf Þ þ kðer � rf Þ. (7.48)

Notice three things about this end-of-period wealth. First, W is a random variable because
its value depends on er . Second, k can be either positive or negative here depending on
whether this person buys the risky asset or sells it short. As we shall see, however, in the usual
case Eðer � rf Þ > 0 and this will imply k 	 0. Finally, notice also that Equation 7.48 allows
for a solution in which k >W0. In this case, this investor would leverage his or her investment
in the risky asset by borrowing at the risk-free rate rf .

If we let U ðW Þ represent this investor’s utility function, then the von Neumann–Mor-
genstern theorem states that he or she will choose k to maximize E½U ðW Þ�. The first-order
condition for such a maximum is19

∂E½U ðW Þ�
∂k

¼ ∂E½U ðW0ð1þ rf Þ þ kðer � rf ÞÞ�
∂k

¼ E½U 0 ⋅ ðer � rf Þ� ¼ 0. (7.49)

Because this first-order condition lies at the heart of many problems in the theory of uncer-
tainty, it may be worthwhile spending some time to understand it intuitively. Equation 7.49
is looking at the expected value of the product of marginal utility and the term er � rf . Both of
these terms are random. Whether er � rf is positive or negative will depend on how well
the risky assets perform over the next period. But the return on this risky asset will also affect
this investor’s end-of-period wealth and thus will affect his or her marginal utility. If the
investment does well, W will be large and marginal utility will be relatively low (because
of diminishing marginal utility). If the investment does poorly, wealth will be relatively
low and marginal utility will be relatively high. Hence, in the expected value calculation in
Equation 7.49, negative outcomes for er � rf will be weighted more heavily than positive
outcomes to take the utility consequences of these outcomes into account. If the expected
value in Equation 7.49 were positive, a person could increase his or her expected utility by
investing more in the risky asset. If the expected value were negative, he or she could increase
expected utility by reducing the amount of the risky asset held. Only when the first-order
condition holds will this person have an optimal portfolio.

Two other conclusions can be drawn from the optimality condition in Equation 7.49. First,
so long as Eðer � rf Þ > 0, an investor will choose positive amounts of the risky asset. To see
why, notice that meeting Equation 7.49will require that fairly large values ofU 0 be attached to
situations where er � rf turns out to be negative. That can only happen if the investor owns
positive amounts of the risky asset so that end-of-period wealth is low in such situations.

A second conclusion from the first-order condition in Equation 7.49 is that investors
who are more risk averse will hold smaller amounts of the risky asset than will investors
who are more tolerant of risk. Again, the reason relates to the shape of the U 0 function. For
very risk-averse investors, marginal utility rises rapidly as wealth falls. Hence, they need
relatively little exposure to potential negative outcomes from holding the risky asset to satisfy

19In calculating this first-order condition, we can differentiate through the expected value operator. See Chapter 2 for a
discussion of differentiating integrals.
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Equation 7.49. Investors who are more tolerant of risk will find thatU 0 rises less rapidly when
the risky asset performs poorly, so they will be willing to hold more of it.

In summary, then, a formal study of the portfolio problem confirms simple intuitions
about how people choose to invest. To make further progress on the question requires that
we make some specific assumptions about the investor’s utility function. In Example 7.5, we
look at a two examples.

EXAMPLE 7.5 The Portfolio Problem with Specific Utility Functions

In this problem we show the implications of assuming either CARA or CRRA utility for the
solution to the portfolio allocation problem.

1. CARA Utility. If U ðW Þ ¼ �expð�AW Þ then the marginal utility function is given by
U 0ðW Þ ¼ A expð�AW Þ; substituting for end-of-period wealth, we have

U 0ðW Þ ¼ A exp½�AðW0ð1þ rf Þ þ kðer � rf ÞÞ�
¼ A exp½�AW0ð1þ rf Þ� exp½�Akðer � rf Þ�. (7.50)

That is, themarginal utility function can be separated into a randompart and a nonrandompart
(both initial wealth and the risk-free rate are nonrandom). Hence, the optimality condition
from Equation 7.49 can be written as

E½U 0 ⋅ ðer �rf Þ�¼A exp½�AW0ð1þrf Þ�E½expð�Akðer �rf ÞÞ ⋅ ðer �rf Þ�¼0: (7.51)

Now we can divide by the exponential function of initial wealth, leaving an optimality
condition that involves only terms in k,A, and er �rf . Solving this condition for the optimal
level of k can in general be quite difficult (but see Problem 7.14). Regardless of the specific
solution, however, Equation 7.51 shows that this optimal investment amount will be a
constant regardless of the level of initial wealth. Hence, the CARA function implies that the
fraction of wealth that an investor holds in risky assets should decline as wealth increases—a
conclusion that seems precisely contrary to empirical data, which tend to show the fraction
of wealth held in risky assets rising with wealth.

2. CRRA Utility. IfU ðW Þ ¼ WR=R then the marginal utility function is given byU 0ðW Þ ¼
WR�1. Substituting the expression for final wealth into this equation yields

U 0ðW Þ ¼ ½W0ð1þ rf Þ þ kðer � rf Þ�R�1

¼ ½W0ð1þ rf Þ�R�1
	
1þ k

W0ð1þ rf Þ
⋅ ðer � rf Þ



. (7.52)

Inserting this expression into the optimality condition in Equation 7.49 shows that the term
½W0ð1þ rf Þ�R�1 can be canceled out, implying that the optimal solution will not involve the
absolute level of initial wealth but only the ratio k=W0ð1þ rf Þ. In words, the CRRA utility
function implies that all individuals with the same risk tolerance will hold the same fraction of
wealth in risky assets, regardless of their absolute levels of wealth. Though this conclusion is
slightly more in accord with the facts than is the conclusion from the CARA function, it still
falls short of explaining why the fraction of wealth held in risky assets tends to rise with wealth.

QUERY: Can you suggest a reason why investors might increase the proportion of their
portfolios invested in risky assets as wealth increases even though their preferences are
characterized by the CRRA utility function?
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THE STATE-PREFERENCE APPROACH TO
CHOICE UNDER UNCERTAINTY

Although our analysis in this chapter has offered insights on a number of issues, it seems
rather different from the approach we took in other chapters. The basic model of utility
maximization subject to a budget constraint seems to have been lost. In order to make
further progress in the study of behavior under uncertainty, we will therefore develop some
new techniques that will permit us to bring the discussion of such behavior back into the
standard choice-theoretic framework.

States of the world and contingent commodities
We start by assuming that the outcomes of any random event can be categorized into a
number of states of the world. We cannot predict exactly what will happen, say, tomorrow, but
we assume that it is possible to categorize all of the possible things that might happen into a
fixed number of well-defined states. For example, we might make the very crude approxima-
tion of saying that the world will be in only one of two possible states tomorrow: It will be
either “good times” or “bad times.” One could make a much finer gradation of states of the
world (involving even millions of possible states), but most of the essentials of the theory can
be developed using only two states.

A conceptual idea that can be developed concurrently with the notion of states of the
world is that of contingent commodities. These are goods delivered only if a particular state of
the world occurs. As an example, “$1 in good times” is a contingent commodity that promises
the individual $1 in good times but nothing should tomorrow turn out to be bad times. It is
even possible, by stretching one’s intuitive ability somewhat, to conceive of being able to
purchase this commodity: I might be able to buy from someone the promise of $1 if
tomorrow turns out to be good times. Because tomorrow could be bad, this good will
probably sell for less than $1. If someone were also willing to sell me the contingent
commodity “$1 in bad times,” then I could assure myself of having $1 tomorrow by buying
the two contingent commodities “$1 in good times” and “$1 in bad times.”

Utility analysis
Examining utility-maximizing choices among contingent commodities proceeds formally in
much the same way we analyzed choices previously. The principal difference is that, after the
fact, a person will have obtained only one contingent good (depending on whether it turns
out to be good or bad times). Before the uncertainty is resolved, however, the individual has
two contingent goods from which to choose and will probably buy some of each because he
or she does not know which state will occur. We denote these two contingent goods by Wg
(wealth in good times) and Wb (wealth in bad times). Assuming that utility is independent
of which state occurs20 and that this individual believes that good times will occur with
probability π, the expected utility associated with these two contingent goods is

V ðWg ,WbÞ ¼ πU ðWg Þ þ ð1� πÞU ðWbÞ. (7.53)

This is the magnitude this individual seeks to maximize given his or her initial wealth, W .

20This assumption is untenable in circumstances where utility of wealth depends on the state of the world. For example,
the utility provided by a given level of wealth may differ depending on whether an individual is “sick” or “healthy.”
We will not pursue such complications here, however. For most of our analysis, utility is assumed to be concave in wealth:
U 0ðW Þ > 0,U 00ðW Þ < 0.
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Prices of contingent commodities
Assuming that this person can purchase a dollar of wealth in good times for pg and a dollar of
wealth in bad times for pb , his or her budget constraint is then

W ¼ pgWg þ pbWb . (7.54)

The price ratio pg=pb shows how this person can trade dollars of wealth in good times for
dollars in bad times. If, for example, pg ¼ 0:80 and pb ¼ 0:20, the sacrifice of $1 of wealth in
good times would permit this person to buy contingent claims yielding $4 of wealth should
times turn out to be bad. Whether such a trade would improve utility will, of course, depend
on the specifics of the situation. But looking at problems involving uncertainty as situations
in which various contingent claims are traded is the key insight offered by the state-
preference model.

Fair markets for contingent goods
If markets for contingent wealth claims are well developed and there is general agreement
about the likelihood of good times (π), then prices for these claims will be actuarially fair—
that is, they will equal the underlying probabilities:

pg ¼ π,

pb ¼ ð1� πÞ: (7.55)

Hence, the price ratio pg=pb will simply reflect the odds in favor of good times:
pg
pb

¼ π

1� π
. (7.56)

In our previous example, if pg ¼ π ¼ 0:8 and pb ¼ ð1� πÞ ¼ 0:2 then π=ð1� πÞ ¼ 4.
In this case the odds in favor of good times would be stated as “4-to-1.” Fair markets for
contingent claims (such as insurance markets) will also reflect these odds. An analogy is
provided by the “odds” quoted in horse races. These odds are “fair” when they reflect the
true probabilities that various horses will win.

Risk aversion
We are now in a position to show how risk aversion is manifested in the state-preference
model. Specifically, we can show that, if contingent claims markets are fair, then a utility-
maximizing individual will opt for a situation in whichWg ¼ Wb ; that is, he or she will arrange
matters so that the wealth ultimately obtained is the same no matter what state occurs.

As in previous chapters, maximization of utility subject to a budget constraint requires
that this individual set the MRS of Wg for Wb equal to the ratio of these “goods” prices:

MRS ¼ ∂V =∂Wg

∂V =∂Wb
¼ πU 0ðWg Þ

ð1� πÞU 0ðWbÞ
¼ pg

pb
. (7.57)

In view of the assumption that markets for contingent claims are fair (Equation 7.56),
this first-order condition reduces to

U 0ðWg Þ
U 0ðWbÞ

¼ 1

or21

Wg ¼ Wb . (7.58)

21This step requires that utility be state independent and that U 0ðW Þ > 0.
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Hence this individual, when faced with fair markets in contingent claims on wealth, will be
risk averse and will choose to ensure that he or she has the same level of wealth regardless of
which state occurs.

A graphic analysis
Figure 7.2 illustrates risk aversion with a graph. This individual’s budget constraint (I ) is
shown to be tangent to theU1 indifference curve whereWg ¼ Wb—a point on the “certainty
line” where wealth ðW �Þ is independent of which state of the world occurs. AtW � the slope
of the indifference curve ½π=ð1� πÞ� is precisely equal to the price ratio pg=pb .

If the market for contingent wealth claims were not fair, utility maximization might not
occur on the certainty line. Suppose, for example, that π=ð1� πÞ ¼ 4 but that pg=pb ¼ 2
because ensuring wealth in bad times proves quite costly. In this case the budget constraint
would resemble line I 0 in Figure 7.2 and utility maximization would occur below the
certainty line.22 In this case this individual would gamble a bit by opting for Wg > Wb ,
because claims onWb are relatively costly. Example 7.6 shows the usefulness of this approach
in evaluating some of the alternatives that might be available.

FIGURE 7.2 Risk Aversions in the State-Preference Model

The line I represents the individual’s budget constraint for contingent wealth claims: W ¼ pgWgþ
pbWb . If the market for contingent claims is actuarially fair ½pg=pb ¼ π=ð1−πÞ�, then utility maxi-
mization will occur on the certainty line whereWg ¼ Wb ¼ W �. If prices are not actuarially fair, the
budget constraint may resemble I 0 and utility maximization will occur at a point where Wg > Wb .

Certainty
line

Wb

Wg

l′l

W*

W*

U1

22Because (as Equation 7.58 shows) the MRS on the certainty line is always π=ð1−πÞ, tangencies with a flatter slope than
this must occur below the line.
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EXAMPLE 7.6 Insurance in the State-Preference Model

We can illustrate the state-preference approach by recasting the auto insurance illustration
from Example 7.2 as a problem involving the two contingent commodities “wealth with no
theft” ðWgÞ and “wealth with a theft” ðWbÞ. If, as before, we assume logarithmic utility and
that the probability of a theft (that is, 1� π) is 0.25, then

expected utility ¼ 0.75U ðWgÞ þ 0:25U ðWbÞ
¼ 0.75 lnWg þ 0:25 lnWb . (7.59)

If the individual takes no action then utility is determined by the initial wealth endowment,
W �

g ¼ 100,000 andW �
b ¼ 80,000, so

expected utility ¼ 0:75 ln 100,000þ 0.25 ln 80,000
¼ 11.45714. (7.60)

To study trades away from these initial endowments, we write the budget constraint in
terms of the prices of the contingent commodities, pg and pb :

pgW
�
g þ pbW

�
b ¼ pgWg þ pbWb . (7.61)

Assuming that these prices equal the probabilities of the two states ðpg ¼ 0:75, pb ¼ 0:25Þ,
this constraint can be written

0:75ð100,000Þ þ 0:25ð80,000Þ ¼ 95,000 ¼ 0:75Wg þ 0:25Wb ; (7.62)

that is, the expected value of wealth is $95,000, and this person can allocate this amount
between Wg andWb . Now maximization of utility with respect to this budget constraint
yields Wg ¼ Wb ¼ 95,000. Consequently, the individual will move to the certainty line and
receive an expected utility of

expected utility ¼ ln 95,000 ¼ 11.46163, (7.63)

a clear improvement over doing nothing. To obtain this improvement, this person must be
able to transfer $5,000 of wealth in good times (no theft) into $15,000 of extra wealth in
bad times (theft). A fair insurance contract would allow this because it would cost $5,000
but return $20,000 should a theft occur (but nothing should no theft occur). Notice here
that the wealth changes promised by insurance—dWb=dWg ¼ 15,000=�5,000 ¼ �3—
exactly equal the negative of the odds ratio �π=ð1� πÞ ¼ �0:75=0:25 ¼ �3.

A policy with a deductible provision. A number of other insurance contracts might be
utility improving in this situation, though not all of them would lead to choices that lie on the
certainty line. For example, a policy that cost $5,200 and returned $20,000 in case of a theft
would permit this person to reach the certainty line with Wg ¼ Wb ¼ 94,800 and

expected utility ¼ ln 94, 800 ¼ 11.45953, (7.64)

which also exceeds the utility obtainable from the initial endowment. A policy that costs
$4,900 and requires the individual to incur the first $1,000 of a loss from theft would yield

Wg ¼ 100,000� 4,900 ¼ 95,100,
Wb ¼ 80,000� 4,900 þ 19,000 ¼ 94,100;

(7.65)

then

expected utility ¼ 0:75 ln 95,100þ 0:25 ln 94,100
¼ 11:46004: (7.66)

Although this policy does not permit this person to reach the certainty line, it is utility
improving. Insurance need not be complete in order to offer the promise of higher utility.

(continued)
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EXAMPLE 7.6 CONTINUED

QUERY: What is the maximum amount an individual would be willing to pay for an
insurance policy under which he or she had to absorb the first $1,000 of loss?

Risk aversion and risk premiums
The state-preference model is also especially useful for analyzing the relationship between
risk aversion and individuals’ willingness to pay for risk. Consider two people, each of whom
starts with a certain wealth, W �. Each person seeks to maximize an expected utility function
of the form

V ðWg ,WbÞ ¼ π
WR

g

R
þ ð1� πÞW

R
b

R
. (7.67)

Here the utility function exhibits constant relative risk aversion (see Example 7.4). Notice
also that the function closely resembles the CES utility function we examined in Chapter 3
and elsewhere. The parameter R determines both the degree of risk aversion and the degree
of curvature of indifference curves implied by the function. A very risk-averse individual will
have a large negative value for R and have sharply curved indifference curves, such as U1
shown in Figure 7.3. A person with more tolerance for risk will have a higher value of R and
flatter indifference curves (such as U2).

23

FIGURE 7.3 Risk Aversion and Risk Premiums

Indifference curveU1 represents the preferences of a very risk-averse person, whereas the person with
preferences represented by U2 is willing to assume more risk. When faced with the risk of losing h in
bad times, person 2 will require compensation of W2 −W � in good times whereas person 1 will
require a larger amount given by W1 −W �.

Certainty
line

Wb

Wg

W*

W* − h

W* W1W2

U1

U2

23Tangency of U1 and U2 at W � is ensured, because the MRS along the certainty line is given by π=ð1� πÞ regardless of
the value of R.
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Suppose now these individuals are faced with the prospect of losing h dollars of wealth
in bad times. Such a risk would be acceptable to individual 2 if wealth in good times were
to increase fromW � toW2. For the very risk-averse individual 1, however, wealth would have
to increase to W1 to make the risk acceptable. The difference between W1 and W2 therefore
indicates the effect of risk aversion on willingness to assume risk. Some of the problems in this
chapter make use of this graphic device for showing the connection between preferences (as
reflected by the utility function in Equation 7.67) and behavior in risky situations.

THE ECONOMICS OF INFORMATION

Information is a valuable economic resource. People who know where to buy high-quality
goods cheaply can make their budgets stretch further than those who don’t; farmers with
access to better weather forecasting may be able to avoid costly mistakes; and government
environmental regulation can be more efficient if it is based on good scientific knowledge.
Although these observations about the value of information have long been recognized,
formal economic modeling of information acquisition and its implications for resource
allocation are fairly recent.24 Despite its late start, the study of information economics has
become one of the major areas in current research. In this chapter we briefly survey some of
the issues raised by this research. Far more detail on the economics of information is provided
in Chapter 18.

PROPERTIES OF INFORMATION

One difficulty encountered by economists who wish to study the economics of information is
that “information” itself is not easy to define. Unlike the economic goods we have been
studying so far, the “quantity” of information obtainable from various actions is not well
defined, and what information is obtained is not homogeneous among its users. The forms of
economically useful information are simply too varied to permit the kinds of price-quantity
characterizations we have been using for basic consumer goods. Instead, economists who
wish to study information must take some care to specify what the informational environment
is in a particular decision problem (this is sometimes called the information set) and how that
environment might be changed through individual actions. As might be expected, this
approach has resulted in a vast number of models of specific situations with little overall
commonality among them.

A second complication involved in the study of information concerns some technical
properties of information itself. Most information is durable and retains value after it has been
used. Unlike a hot dog, which is consumed only once, knowledge of a special sale can be used
not only by the person who discovers it but also by any friends with whom the information is
shared. The friends then may gain from this information even though they don’t have to
spend anything to obtain it. Indeed, in a special case of this situation, information has the
characteristic of a pure public good (see Chapter 19). That is, the information is both nonrival
in that others may use it at zero cost and nonexclusive in that no individual can prevent others
from using the information. The classic example of these properties is a new scientific dis-
covery. When some prehistoric people invented the wheel, others could use it without
detracting from the value of the discovery, and everyone who saw the wheel could copy it
freely.

These technical properties of information imply that market mechanisms may often ope-
rate imperfectly in allocating resources to information provision and acquisition. Standard

24The formal modeling of information is sometimes dated from the path-breaking article by G. J. Stigler, “The Economics
of Information,” Journal of Political Economy (June 1961): 213–25.
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models of supply and demand may therefore be of relatively limited use in understanding
such activities. At a minimum, models have to be developed that accurately reflect the
properties being assumed about the informational environment. Throughout the latter
portions of this book, we will describe some of the situations in which such models are called
for. Here, however, we will pay relatively little attention to supply-demand equilibria and will
instead focus primarily on information issues that arise in the theory of individual choice.

THE VALUE OF INFORMATION

Developing models of information acquisition necessarily requires using tools from our study
of uncertainty earlier in this chapter. Lack of information clearly represents a problem in-
volving uncertainty for a decision maker. In the absence of perfect information, he or she may
not be able to know exactly what the consequences of a particular action will be. Better
information can reduce that uncertainty and therefore lead to better decisions that provide
increased utility.

Information and subjective possibilities
This relationship between uncertainty and information acquisition can be illustrated using the
state-preferencemodel. Earlier we assumed that an individual forms subjective opinions about
the probabilities of the two states of the world, “good times” and “bad times.” In this model,
information is valuable because it allows the individual to revise his or her estimates of these
probabilities and to take advantage of these revisions. For example, information that foretold
that tomorrow would definitely be “good times” would cause this person to revise his or her
probabilities to πg ¼ 1, πb ¼ 0 and to change his or her purchases accordingly. When the
information received is less definitive, the probabilities may be changed only slightly, but even
small revisions may be quite valuable. If you ask some friends about their experiences with a
few brands of DVD players you are thinking of buying, you may not want their opinions to
dictate your choice. The prices of the players and other types of information (say, obtained
from consultingConsumer Reports) will also affect your views. Ultimately, however, youmust
process all of these factors into a decision that reflects your assessment of the probabilities of
various “states of the world” (in this case, the quality obtained from buying different brands).

A formal model
To illustrate why information has value, assume that an individual faces an uncertain situation
involving “good” and “bad” times and that he or she can invest in a “message” that will yield
some information about the probabilities of these outcomes. This message can take on two
potential values, 1 or 2, with probabilities p and ð1� pÞ, respectively. If the message takes
the value 1, then this personwill believe that the probability of good times is givenbyπ1

g [and the
probability of bad times byπ1

b ¼ ð1� π1
gÞ]. If themessage takes the value 2, on the other hand,

the probabilities are π2
g and ð1� π2

gÞ. Once the message is received, this person has the oppor-
tunity to maximize expected utility on the basis of these probabilities. In general, it would be
expected that he or she will make different decisions depending on what the message is. Let V1
be the (indirect) maximal expected utility when the message takes the value 1 and V2 be this
maximal utility when the message takes the value 2. Hence, when this person is considering
purchasing the message (that is, before it is actually received), expected utility is given by:

Ewith m ¼ pV1 þ ð1� pÞV2. (7.68)

Now let’s consider the situation of this person when he or she decides not to purchase the
message. In this case, a single decision must be made that is based on the probabilities of
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good and bad times, π0
g and ð1� π0

gÞ. Because the individual knows the various probabilities
involved, consistency requires that π0

g ¼ pπ1
g þ ð1� pÞπ2

g . Now let V0 represent the maximal
expected utility this person can obtain with these probabilities. Hence, we can write
expected utility without the message as

Ewithout m ¼ V0 ¼ pV0 þ ð1� pÞV0. (7.69)

A comparison of Equations 7.68 and 7.69 shows that this person can always achieve
Ewithout m when he or she has the information provided by the message. That is, he or she can
just choose to disregard what the message says. But if he or she chooses to make new,
different decisions based on the information in the message, it must be the case that this
information has value. That is:

Ewith m 	 Ewithout m. (7.70)

Presumably, then, this person will be willing to pay something for the message because of
the better decision-making opportunities it provides.25 Example 7.7 provides a simple
illustration.

EXAMPLE 7.7 The Value of Information on Prices

To illustrate how new information may affect utility maximization, let’s return to one of the
first models we used in Chapter 4. There we showed that if an individual consumes two goods
and utility is given by U ðx, yÞ ¼ x0:5y0:5, then the indirect utility function is

V ðpx , py , I Þ ¼
I

2p0:5x p0:5y
. (7.71)

As a numerical example, we considered the case px ¼ 1, py ¼ 4, I ¼ 8, and calculated that
V ¼ I=2 ⋅ 1 ⋅ 2 ¼ 2. Now suppose that good y represents, say, a can of brand-name tennis
balls, and this consumer knows that these can be bought at a price of either $3 or $5 from
two stores but does not know which store charges which price. Because it is equally likely
that either store has the lower price, the expected value of the price is $4. But, because the
indirect utility function is convex in price, this person receives an expected value of greater
than V ¼ 2 from shopping because he or she can buy more if the low-priced store is
encountered. Before shopping, expected utility is

E½V ðpx , py , I Þ� ¼ 0:5 ⋅ V ð1, 3, 8Þ þ 0:5 ⋅ V ð1, 5, 8Þ
¼ 1:155þ 0:894 ¼ 2:049. (7.72)

If the consumer knew which store offered the lower price, utility would be even greater. If
this person could buy at py ¼ 3 with certainty, then indirect utility would be V ¼ 2:309 and
we can use this result to calculate what the value of this information is. That is, we can ask
what level of income, I�, would yield the same utility when py ¼ 3, as is obtained when this
person must choose which store to patronize by chance. Hence we need to solve the
equation

V ðpx , py , I�Þ ¼
I�

2p0:5x p0:5y
¼ I�

2 ⋅ 1 ⋅ 30:5 ¼ 2:049. (7.73)

Solving this yields a value of I� ¼ 7:098. Hence, this person would be willing to pay up to
0.902 ð¼ 8� 7.098Þ for the information. Notice that availability of the price information

(continued)

25A more general way to state this result is to consider the properties of the individual’s indirect expected utility function
(V ) as dependent on the probabilities in the problem. That is, V ðπg Þ ¼ max½πgU ðWg Þ þ ð1� πg ÞU ðWbÞ�. Compar-
ing Equations 7.68 and 7.69 amounts to comparing pV ðπ1

g Þ þ ð1� pÞV ðπ2
g Þ to V ðπ0

g Þ ¼ V ½pπ1
g þ ð1� pÞπ2

g �. Because the
V function is convex in πg , the inequality in Equation 7.70 necessarily holds.

Chapter 7 Uncertainty and Information 223



EXAMPLE 7.7 CONTINUED

helps this person in two ways: (1) it increases the probability he or she will patronize the
low-price store from 0.5 to 1.0; and (2) it permits this person to take advantage of the lower
price offered by buying more.

QUERY: It seems odd in this problem that expected utility with price uncertainty
(V ¼ 2.049) is greater than utility when price takes its expected value (V ¼ 2). Does this
violate the assumption of risk aversion?

FLEXIBILITY AND OPTION VALUE

The availability of new information allows individuals to make better decisions in situations
involving uncertainty. It may therefore be beneficial to try to postpone making decisions until
the information arrives. Of course, flexibility may sometimes involve costs of its own, so the
decision-making process can become complex. For example, someone planning a trip to the
Caribbean would obviously like to know whether he or she will have good weather. A
vacationer who could wait until the last minute in deciding when to go could use the latest
weather forecast to make that decision. But waiting may be costly (perhaps because last-
minute airfares are much higher), so the choice can be a difficult one. Clearly the option to
delay the decision is valuable, but whether this “option value” exceeds the costs involved in
delay is the crucial question.

Modeling the importance of flexibility in decision making has become a major topic in the
study of uncertainty and information. “Real option theory” has come to be an important
component of financial and management theory. Other applications are beginning to emerge
in such diverse fields as development economics, natural resource economics, and law and
economics. Because this book focuses on general theory, however, we cannot pursue these
interesting innovations here. Rather, our brief treatment will focus on how questions of
flexibility might be incorporated into some of the models we have already examined, followed
by a few concluding remarks.

Flexibility in the portfolio model
Some of the basic principles of real option theory can be illustrated by combining the
portfolio choice model that we introduced earlier in this chapter with the idea of information
messages introduced in the previous section. Suppose that an investor is considering putting
some portion of his or her wealth (k) into a risky asset. The return on the asset is random and
its characteristics will depend on whether there are “good times” or “bad times.” The returns
under these two situations are designated by er 1 and er 2, respectively. First, consider a situation
where this person will get a message telling him or her whether it is good or bad times, but
the message will arrive after the investment decision is made. The probability that the message
will indicate good times is given by p. In this case, this person can be viewed as investing in a
risky asset whose return is given by er 0 ¼ per 1 þ ð1� pÞer 2. Following the procedure outlined
earlier, associated with this asset will be an optimal investment, k0, and the expected utility
associated with this portfolio will be U0.

Suppose, alternatively, that this person has the flexibility to wait until after the message is
received to decide on how his or her portfolio will be allocated. If the message reveals good
times, then he or she will choose to invest k1 in the risky asset and expected utility will beU1.
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On the other hand, if the message reveals bad times, then he or she will choose to invest k2 in
the risky asset and expected utility will be U2. Hence, the expected utility provided by the
option of waiting before choosing k will be

U � ¼ pU1 þ ð1� pÞU2. (7.74)

As before, it is clear that U � 	 U0. The investor could always choose to invest k0 no matter
what the message says, but if he or she chooses differing k’s depending on the information
in the message, it must be because that strategy provides more expected utility. When
U � > U0, the option to wait has real value and this person will be willing to pay something
(say, in forgone interest receipts) for that possibility.

Financial options
In some cases option values can be observed in actual markets. For example, financial options
provide a buyer the right, but not the obligation, to conduct an economic transaction
(typically buying or selling a stock) at specified terms at a certain date in the future. An
option onMicrosoft Corporation shares, for instance, might give the buyer the right (but not
the obligation) to buy the stock in six months at a price of $30 per share. Or a foreign
exchange option might provide the buyer with the right to buy euros at a price of $1.30 per
euro in three months. All such options have value because they permit the owner to either
make or decline the specified transaction depending on what new information becomes
available over the option’s duration. Such built-in flexibility is useful in a wide variety of
investment strategies.

Options embedded in other transactions
Many other types of economic transactions have options embedded in them. For example,
the purchase of a good that comes with a “money-back guarantee” gives the buyer an option
to reverse the transaction should his or her experience with the good be unfavorable.
Similarly, many mortgages provide the homeowner with the option to pay off the loan
without penalty should conditions change. All such options are clearly valuable. A car
buyer is not required to return his or her purchase if the car runs well and the homeowner
need not pay off the mortgage if interest rates rise. Hence, embedding a buyer’s option in a
transaction can only increase the value of that transaction to the buyer. Contracts with such
options would be expected to have higher prices. On the other hand, transactions with
embedded seller options (for example, the right to repurchase a house at a stated price) will
have lower prices. Examining price differences can therefore be one way to infer the value of
some embedded options.

ASYMMETRY OF INFORMATION

One obvious implication of the study of information acquisition is that the level of informa-
tion that an individual buys will depend on the per-unit price of information messages. Unlike
the market price for most goods (which we usually assume to be the same for everyone), there
are many reasons to believe that information costs may differ significantly among individuals.
Some individuals may possess specific skills relevant to information acquisition (they may be
trained mechanics, for example) whereas others may not possess such skills. Some individuals
may have other types of experience that yield valuable information, whereas others may lack
that experience. For example, the seller of a product will usually know more about its
limitations than will a buyer, because the seller will know precisely how the good was made
and where possible problems might arise. Similarly, large-scale repeat buyers of a good may
have greater access to information about it than would first-time buyers. Finally, some
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individuals may have invested in some types of information services (for example, by having a
computer link to a brokerage firm or by subscribing to Consumer Reports) that make the
marginal cost of obtaining additional information lower than for someone without such an
investment.

All of these factors suggest that the level of information will sometimes differ among the
participants in market transactions. Of course, in many instances, information costs may be
low and such differences may be minor. Most people can appraise the quality of fresh
vegetables fairly well just by looking at them, for example. But when information costs are
high and variable across individuals, we would expect them to find it advantageous to acquire
different amounts of information. We will postpone a detailed study of such situations until
Chapter 18.

PROBLEMS

7.1
George is seen to place an even-money $100,000 bet on the Bulls to win the NBA Finals. If George has
a logarithmic utility-of-wealth function and if his current wealth is $1,000,000, what must he believe is
the minimum probability that the Bulls will win?

7.2
Show that if an individual’s utility-of-wealth function is convex then he or she will prefer fair gambles to
income certainty and may even be willing to accept somewhat unfair gambles. Do you believe this sort
of risk-taking behavior is common? What factors might tend to limit its occurrence?

7.3
An individual purchases a dozen eggs and must take them home. Although making trips home is
costless, there is a 50 percent chance that all of the eggs carried on any one trip will be broken during the
trip. The individual considers two strategies: (1) take all 12 eggs in one trip; or (2) take two trips with
6 eggs in each trip.

SUMMARY

The goal of this chapter was to provide some basic material
for the study of individual behavior in uncertain situations.
The key concepts covered may be listed as follows.

• The most common way to model behavior under uncer-
tainty is to assume that individuals seek to maximize the
expected utility of their actions.

• Individuals who exhibit a diminishing marginal utility of
wealth are risk averse. That is, they generally refuse fair bets.

• Risk-averse individuals will wish to insure themselves
completely against uncertain events if insurance pre-
miums are actuarially fair. They may be willing to pay
more than actuarially fair premiums in order to avoid
taking risks.

• Two utility functions have been extensively used in the
study of behavior under uncertainty: the constant
absolute risk aversion (CARA) function and the con-

stant relative risk aversion (CRRA) function. Neither is
completely satisfactory on theoretical grounds.

• One of the most extensively studied issues in the eco-
nomics of uncertainty is the “portfolio problem,” which
asks how an investor will split his or her wealth between
risky and risk-free assets. In some cases it is possible to
obtain precise solutions to this problem, depending on
the nature of the risky assets that are available.

• The state-preference approach allows decision making
under uncertainty to be approached in a familiar choice-
theoretic framework. The approach is especially useful
for looking at issues that arise in the economics of
information.

• Information is valuable because it permits individuals to
make better decisions in uncertain situations. Informa-
tion can be most valuable when individuals have some
flexibility in their decision making.
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a. List the possible outcomes of each strategy and the probabilities of these outcomes. Show that,
on average, 6 eggs will remain unbroken after the trip home under either strategy.

b. Develop a graph to show the utility obtainable under each strategy. Which strategy will be
preferable?

c. Could utility be improved further by taking more than two trips? How would this possibility be
affected if additional trips were costly?

7.4
Suppose there is a 50–50 chance that a risk-averse individual with a current wealth of $20,000 will
contract a debilitating disease and suffer a loss of $10,000.

a. Calculate the cost of actuarially fair insurance in this situation and use a utility-of-wealth graph
(such as shown in Figure 7.1) to show that the individual will prefer fair insurance against this
loss to accepting the gamble uninsured.

b. Suppose two types of insurance policies were available:

(1) a fair policy covering the complete loss; and

(2) a fair policy covering only half of any loss incurred.

Calculate the cost of the second type of policy and show that the individual will generally
regard it as inferior to the first.

7.5
Ms. Fogg is planning an around-the-world trip on which she plans to spend $10,000. The utility from
the trip is a function of how much she actually spends on it ðY Þ, given by

U ðY Þ ¼ ln Y .
a. If there is a 25 percent probability that Ms. Fogg will lose $1,000 of her cash on the trip, what is

the trip’s expected utility?

b. Suppose that Ms. Fogg can buy insurance against losing the $1,000 (say, by purchasing
traveler’s checks) at an “actuarially fair” premium of $250. Show that her expected utility is
higher if she purchases this insurance than if she faces the chance of losing the $1,000 without
insurance.

c. What is the maximum amount that Ms. Fogg would be willing to pay to insure her $1,000?

7.6
In deciding to park in an illegal place, any individual knows that the probability of getting a ticket is p
and that the fine for receiving the ticket is f . Suppose that all individuals are risk averse (that is,
U 00ðW Þ < 0, where W is the individual’s wealth).

Will a proportional increase in the probability of being caught or a proportional increase in the fine
be a more effective deterrent to illegal parking?Hint:Use the Taylor series approximationU ðW � f Þ ¼
U ðW Þ � f U 0ðW Þ þ ð f 2=2ÞU 00ðW Þ.

7.7
A farmer believes there is a 50–50 chance that the next growing season will be abnormally rainy. His
expected utility function has the form

expected utility ¼ 1
2

ln YNR þ 1
2

ln YR ,

where YNR and YR represent the farmer’s income in the states of “normal rain” and “rainy,”
respectively.
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a. Suppose the farmer must choose between two crops that promise the following income
prospects:

Which of the crops will he plant?

b. Suppose the farmer can plant half his field with each crop. Would he choose to do so? Explain
your result.

c. What mix of wheat and corn would provide maximum expected utility to this farmer?

d. Would wheat crop insurance—which is available to farmers who grow only wheat and which
costs $4,000 and pays off $8,000 in the event of a rainy growing season—cause this farmer to
change what he plants?

7.8
In Equation 7.30 we showed that the amount an individual is willing to pay to avoid a fair gamble (h) is
given by p ¼ 0:5Eðh2ÞrðW Þ, where rðW Þ is the measure of absolute risk aversion at this person’s initial
level of wealth. In this problem we look at the size of this payment as a function of the size of the risk
faced and this person’s level of wealth.

a. Consider a fair gamble (v) of winning or losing $1. For this gamble, what is Eðv2Þ?
b. Now consider varying the gamble in part (a) by multiplying each prize by a positive constant k.

Let h ¼ kv. What is the value of Eðh2Þ?
c. Suppose this person has a logarithmic utility function U ðW Þ ¼ lnW . What is a general

expression for rðW Þ?
d. Compute the risk premium (p) for k ¼ 0:5, 1, and 2 and for W ¼ 10 and 100. What do you

conclude by comparing the six values?

Analytical Problems
7.9 HARA Utility
The CARA and CRRA utility functions are both members of a more general class of utility functions
called harmonic absolute risk aversion (HARA) functions. The general form for this function is
U ðW Þ ¼ θðμþW =γÞ1�γ, where the various parameters obey the following restrictions:

• γ � 1,

• μþW =γ > 0,

• θ½ð1� γÞ=γ� > 0.

The reasons for the first two restrictions are obvious; the third is required so that U 0 > 0.

a. Calculate rðW Þ for this function. Show that the reciprocal of this expression is linear inW . This
is the origin of the term “harmonic” in the function’s name.

b. Show that, when μ ¼ 0 and θ ¼ ½ð1� γÞ=γ�γ�1, this function reduces to the CRRA function
given in Chapter 7 (see footnote 17).

c. Use your result from part (a) to show that if γ!∞ then rðW Þ is a constant for this function.
d. Let the constant found in part (c) be represented by A. Show that the implied form for the

utility function in this case is the CARA function given in Equation 7.35.

e. Finally, show that a quadratic utility function can be generated from the HARA function simply
by setting γ ¼ � 1.

f. Despite the seeming generality of the HARA function, it still exhibits several limitations for the
study of behavior in uncertain situations. Describe some of these shortcomings.

Crop YNR YR

Wheat $28,000 $10,000
Corn 19,000 15,000
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7.10 The resolution of uncertainty
In some cases individuals may care about the date at which the uncertainty they face is resolved.
Suppose, for example, that an individual knows that his or her consumption will be 10 units today
(c1) but that tomorrow’s consumption (c2) will be either 10 or 2.5, depending on whether a coin comes
up heads or tails. Suppose also that the individual’s utility function has the simple Cobb-Douglas form

U ðc1, c2Þ ¼
ffiffiffiffiffiffiffiffiffi
c1c2

p
.

a. If an individual cares only about the expected value of utility, will it matter whether the coin is
flipped just before day 1 or just before day 2? Explain.

b. More generally, suppose that the individual’s expected utility depends on the timing of the coin
flip. Specifically, assume that

expected utility ¼ E1½fE2½U ðc1, c2Þ�gα�,
where E1 represents expectations taken at the start of day 1, E2 represents expectations at the
start of day 2, and α represents a parameter that indicates timing preferences. Show that if
α ¼ 1, the individual is indifferent about when the coin is flipped.

c. Show that if α ¼ 2, the individual will prefer early resolution of the uncertainty—that is, flipping
the coin at the start of day 1.

d. Show that if α ¼ 0.5, the individual will prefer later resolution of the uncertainty (flipping at the
start of day 2).

e. Explain your results intuitively and indicate their relevance for information theory. Note:
This problem is an illustration of “resolution seeking” and “resolution averse” behavior; see
D. M. Kreps and E. L. Porteus, “Temporal Resolution of Uncertainty and Dynamic Choice
Theory,” Econometrica (January 1978): 185–200.

7.11 More on the CRRA function
For the constant relative risk aversion utility function (Equation 7.42), we showed that the degree of
risk aversion is measured by ð1�RÞ. In Chapter 3 we showed that the elasticity of substitution for the
same function is given by 1=ð1�RÞ. Hence, the measures are reciprocals of each other. Using this
result, discuss the following questions.

a. Why is risk aversion related to an individual’s willingness to substitute wealth between states of
the world? What phenomenon is being captured by both concepts?

b. How would you interpret the polar cases R ¼ 1 and R ¼ �∞ in both the risk-aversion and
substitution frameworks?

c. A rise in the price of contingent claims in “bad” times ðPbÞ will induce substitution and income
effects into the demands for Wg and Wb . If the individual has a fixed budget to devote to these
two goods, how will choices among them be affected? Why might Wg rise or fall depending on
the degree of risk aversion exhibited by the individual?

d. Suppose that empirical data suggest an individual requires an average return of 0.5 percent
before being tempted to invest in an investment that has a 50–50 chance of gaining or losing
5 percent. That is, this person gets the same utility from W0 as from an even bet on 1.055W0
and 0.955W0.

(1) What value of R is consistent with this behavior?

(2) Howmuch average return would this person require to accept a 50–50 chance of gaining or
losing 10 percent?

Note: This part requires solving nonlinear equations, so approximate solutions will suffice. The
comparison of the risk-reward trade-off illustrates what is called the “equity premium puzzle”
in that risky investments seem actually to earn much more than is consistent with the degree of
risk aversion suggested by other data. See N. R. Kocherlakota, “The Equity Premium: It’s Still
a Puzzle,” Journal of Economic Literature (March 1996): 42–71.
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7.12 Graphing risky investments
Investment in risky assets can be examined in the state-preference framework by assuming that W �
dollars invested in an asset with a certain return r will yield W �ð1þ rÞ in both states of the world,
whereas investment in a risky asset will yield W �ð1þ rgÞ in good times and W �ð1þ rbÞ in bad times
(where rg > r > rb).

a. Graph the outcomes from the two investments.

b. Show how a “mixed portfolio” containing both risk-free and risky assets could be illustrated in
your graph. How would you show the fraction of wealth invested in the risky asset?

c. Show how individuals’ attitudes toward risk will determine the mix of risk-free and risky assets
they will hold. In what case would a person hold no risky assets?

d. If an individual’s utility takes the constant relative risk aversion form (Equation 7.42), explain
why this person will not change the fraction of risky assets held as his or her wealth increases.26

7.13 Taxing risks assets
Suppose the asset returns in Problem 7.12 are subject to taxation.

a. Show, under the conditions of Problem 7.12, why a proportional tax on wealth will not affect
the fraction of wealth allocated to risky assets.

b. Suppose that only the returns from the safe asset were subject to a proportional income tax.
How would this affect the fraction of wealth held in risky assets? Which investors would be most
affected by such a tax?

c. How would your answer to part (b) change if all asset returns were subject to a proportional
income tax?

Note: This problem asks you to compute the pre-tax allocation of wealth that will result in post-tax
utility maximization.

7.14 The portfolio problem with a Normally distributed risky asset
In Example 7.3 we showed that a person with a CARA utility function who faces a Normally distributed
risk will have expected utility of the form E½U ðW Þ� ¼ μW � ðA=2Þσ2

W , where μW is the expected value
of wealth and σ2

W is its variance. Use this fact to solve for the optimal portfolio allocation for a person
with a CARA utility function who must invest k of his or her wealth in a Normally distributed risky asset
whose expected return is μr and variance in return is σ2

r (your answer should depend on A). Explain
your results intuitively.

26This problem and the next are taken from J. E. Stiglitz, “The Effects of Income, Wealth, and Capital Gains Taxation in
Risk Taking,” Quarterly Journal of Economics (May 1969): 263–83.
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E X T E N S I O N S

Portfolios of Many Risky Assets

The portfolio problem we studied in Chapter 7 looked
at an investor’s decision to invest a portion of his or her
wealth in a single risky asset. In these Extensions we
will see how this model can be generalized to consider
portfolios with many such assets. Throughout our dis-
cussion we will assume that there are n risky assets.
The return on each asset is a random variable denoted
by ri ði ¼ 1,nÞ. The expected values and variances of
these assets’ returns are denoted by EðriÞ ¼ μi and
VarðriÞ ¼ σ2

i , respectively. An investor who invests a
portion of his or her wealth in a portfolio of these
assets will obtain a random return ðrP Þ given by

rP ¼
Xn
i¼1

αiri, (i)

where αi ð	 0Þ is the fraction of the risky portfolio
held in asset i and where

Pn
i¼1 αi ¼ 1. In this sit-

uation, the expected return on this portfolio will be

EðrP Þ ¼ μP ¼
Xn
i¼1

αiμi. (ii)

If the returns of each asset are independent, then the
variance of the portfolio’s return will be

VarðrP Þ ¼ σ2
P ¼

Xn
i¼1

α2
i σ

2
i . (iii)

If the returns are not independent, Equation iii would
have to be modified to take covariances among the
returns into account. Using this general notation, we
now proceed to look at some aspects of this portfolio
allocation problem.

E7.1 Diversification with two
risky assets

Equation iii provides the basic rationale for holding
many assets in a portfolio: so that diversification can
reduce risk. Suppose, for example, that there are only
two independent assets and that the expected returns
and variances of those returns for each of the assets are
identical. That is, assume μ1 ¼ μ2 and σ2

1 ¼ σ2
2. A

person who invests his or her risky portfolio in only
one of these seemingly identical assets will obtainμP ¼
μ1 ¼ μ2 and σ2

P ¼ σ2
1 ¼ σ2

2. By mixing the assets,
however, this investor can do better in the sense that
he or she can get the same expected yield with lower
variance. Notice that, no matter how this person

invests, the expected return on the portfolio will be
the same:

μP ¼ α1μ1 þ ð1� α1Þμ2 ¼ μ1 ¼ μ2. (iv)

But the variance will depend on the allocation be-
tween the two assets:

σ2
P ¼ α2

1σ
2
1 þ ð1� α1Þ2σ2

2 ¼ ð1� 2α1 þ 2α2
1Þσ2

1.
(v)

Choosing α1 to minimize this expression yields α1 ¼
0:5 and

σ2
P ¼ 0:5σ2

1. (vi)

Hence, holding half of one’s portfolio in each asset
yields the same expected return as holding only one
asset, but it promises a variance of return that is only
half as large. As we showed earlier in Chapter 7, this is
the primary benefit of diversification.

E7.2 Efficient portfolios

With many assets, the optimal diversification problem
is to choose asset weightings (the α’s) so as to mini-
mize the variance (or standard deviation) of the port-
folio for each potential expected return. The solution
to this problem yields an “efficiency frontier” for risky
asset portfolios such as that represented by the line EE
in Figure E7.1. Portfolios that lie below this frontier
are inferior to those on the frontier because they offer
lower expected returns for any degree of risk. Portfolio
returns above the frontier are unattainable. Sharpe
(1970) discusses the mathematics associated with con-
structing the EE frontier.

Mutual funds
The notion of portfolio efficiency has been widely
applied to the study of mutual funds. In general, mu-
tual funds are a good answer to small investors’ diver-
sification needs. Because such funds pool the funds of
many individuals, they are able to achieve economies
of scale in transactions and management costs. This
permits fund owners to share in the fortunes of a much
wider variety of equities than would be possible if each
acted alone. But mutual fund managers have incen-
tives of their own, so the portfolios they hold may not
always be perfect representations of the risk attitudes
of their clients. For example, Scharfstein and Stein
(1990) develop a model that shows why mutual fund
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managers have incentives to “follow the herd” in their
investmentpicks.Otherstudies, suchas theclassic inves-
tigation by Jensen (1968), find that mutual fund man-
agers are seldom able to attain extra returns large
enough to offset the expenses they charge investors.
In recent years this has led many mutual fund buyers
to favor “index” funds that seek simply to duplicate
the market average (as represented, say, by the Stan-
dard and Poor’s 500 stock index). Such funds have
very low expenses and therefore permit investors to
achieve diversification at minimal cost.

E7.3 Portfolio separation

If there exists a risk-free asset with expected return
μf and σf ¼ 0, then optimal portfolios will consist of
mixtures of this asset with risky ones. All such portfo-
lios will lie along the line PP in Figure 7.1, because this
shows the maximum return attainable for each value of
σ for various portfolio allocations. These allocations
will contain only one specific set of risky assets: the set
represented by pointM . In equilibrium this will be the
“market portfolio” consisting of all capital assets held
in proportion to their market valuations. This market
portfolio will provide an expected return of μM and a

standard deviation of that return of σM . The equation
for the line PP that represents any mixed portfolio is
given by the linear equation

μP ¼ μf þ
μM � μf

σM
⋅ σP . (vii)

This shows that themarket line PP permits individ-
ual investors to “purchase” returns in excess of the risk-
free return ðμM � μf Þ by taking on proportionally
more risk ðσP=σM Þ. For choices on PP to the left of
the market point M , σP=σM < 1 and μf < μP < μM .
High-risk points to the right of M—which can be
obtained by borrowing to produce a leveraged port-
folio—will have σP=σM > 1 and will promise an
expected return in excess of what is provided by the
market portfolio ðμP > μM Þ. Tobin (1958) was one of
the first economists to recognize the role that risk-free
assets play in identifying the market portfolio and in
setting the terms on which investors can obtain returns
above risk-free levels.

E7.4 Individual choices

Figure E7.2 illustrates the portfolio choices of various
investors facing the options offered by the line PP .

FIGURE E7.1 Efficient Portfolios

The frontier EE represents optimal mixtures of risky assets that minimize the standard deviation of the
portfolio, σP , for each expected return, μP . A risk-free asset with return μf offers investors the
opportunity to holdmixed portfolios alongPP thatmix this risk-free assetwith themarket portfolio,M .
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This figure illustrates the type of portfolio choice
model previously described in this chapter. Individuals
with low tolerance for risk (I ) will opt for portfolios
that are heavily weighted toward the risk-free asset.
Investors willing to assume a modest degree of risk
(II) will opt for portfolios close to the market portfo-
lio. High-risk investors (III) may opt for leveraged
portfolios. Notice that all investors face the same
“price” of risk ðμM � μf Þ with their expected returns
being determined by how much relative risk ðσP=σM Þ
they are willing to incur. Notice also that the risk as-
sociated with an investor’s portfolio depends only on
the fraction of the portfolio invested in the market
portfolio ðαÞ, since σ2

P ¼ α2σ2
M þ ð1�αÞ2 ⋅0. Hence,

σP=σM ¼ α and so the investor’s choice of portfolio is
equivalent to his or her choice of risk.

E7.5 Capital asset pricing model

Although the analysis of E7.4 shows how a portfolio
that mixes a risk-free asset with the market portfolio

will be priced, it does not describe the risk-return trade-
off for a single asset. Because (assuming transactions
are costless) an investor can always avoid risk unrelated
to the overall market by choosing to diversify with
a “market portfolio,” such “unsystematic” risk will
not warrant any excess return. An asset will, however,
earn an excess return to the extent that it contributes
to overall market risk. An asset that does not yield
such extra returns would not be held in the market
portfolio, so it would not be held at all. This is the
fundamental insight of the capital asset pricing
model (CAPM).

To examine these results formally, consider a port-
folio that combines a small amount ðαÞ of an asset with
a random return of x with the market portfolio (which
has a random return of M ). The return on this port-
folio (z) would be given by

z ¼ αx þ ð1� αÞM . (viii)

The expected return is
μz ¼ αμx þ ð1� αÞμM (ix)

FIGURE E7.2 Investor Behavior and Risk Aversion

Given the market options PP , investors can choose how much risk they wish to assume. Very risk-
averse investors (UI ) will hold mainly risk-free assets, whereas risk takers (UIII ) will opt for leveraged
portfolios.
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with variance

σ2
z ¼α2σ2

x þð1�αÞ2σ2
M þ 2αð1�αÞσx,M , (x)

where σx,M is the covariance between the return on x
and the return on the market.

But our previous analysis shows

μz ¼ μf þ ðμM � μf Þ ⋅
σz

σM
. (xi)

Setting Equation ix equal to xi and differentiating
with respect to α yields

∂μz

∂α
¼ μx � μM ¼ μM � μf

σM

∂σz

∂α
. (xii)

By calculating ∂σz=∂α from Equation x and taking the
limit as α approaches zero, we get

μx � μM ¼ μM � μf

σM

σx,M � σ2
M

σM

 !
, (xiii)

or, rearranging terms,

μx ¼ μf þ ðμM � μf Þ ⋅
σx,M

σ2
M

. (xiv)

Again, risk has a reward of μM � μf , but now the
quantity of risk is measured by σx,M=σ2

M . This ratio of
the covariance between the return x and the market
to the variance of the market return is referred to as
the beta coefficient for the asset. Estimated beta co-
efficients for financial assets are reported in many
publications.

Studies of the CAPM
This version of the capital asset pricing model carries
strong implications about the determinants of any

asset’s expected rate of return. Because of this simplic-
ity, the model has been subject to a large number of
empirical tests. In general these find that the model’s
measure of systemic risk (beta) is indeed correlated
with expected returns, while simpler measures of risk
(for example, the standard deviation of past returns)
are not. Perhaps the most influential early empirical
test that reached such a conclusion was Fama and
MacBeth (1973). But the CAPM itself explains only
a small fraction of differences in the returns of various
assets. And, contrary to the CAPM, a number of
authors have found that many other economic factors
significantly affect expected returns. Indeed, a promi-
nent challenge to the CAPM comes from one of its
original founders—see Fama and French (1992).
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C H A P T E R

8

Strategy and Game Theory

This chapter provides an introduction to noncooperative game theory, a tool used to understand the strategic
interactions among two or more agents. The range of applications of game theory has been growing
constantly, including all areas of economics (from labor economics to macroeconomics) and other fields
such as political science and biology. Game theory is particularly useful in understanding the interaction
between firms in an oligopoly, so the concepts learned here will be used extensively in Chapter 15. We begin
with the central concept of Nash equilibrium and study its application in simple games. We then go on to
study refinements of Nash equilibrium that are used in games withmore complicated timing and information
structures.

BASIC CONCEPTS

So far in Part II of this text, we have studied individual decisions made in isolation. In this
chapter we study decision making in a more complicated, strategic setting. In a strategic
setting, a person may no longer have an obvious choice that is best for him or her. What is best
for one decision maker may depend on what the other is doing and vice versa.

For example, consider the strategic interaction between drivers and the police. Whether
drivers prefer to speed may depend on whether the police set up speed traps. Whether the
police find speed traps valuable depends on howmuch drivers speed. This confusing circularity
would seem tomake it difficult tomakemuch headway in analyzing strategic behavior. In fact,
the tools of game theory will allow us to push the analysis nearly as far, for example, as our
analysis of consumer utility maximization in Chapter 4.

There are two major tasks involved when using game theory to analyze an economic
situation. The first is to distill the situation into a simple game. Because the analysis involved in
strategic settings quickly grows more complicated than in simple decision problems, it is
important to simplify the setting as much as possible by retaining only a few essential elements.
There is a certain art to distilling games from situations that is hard to teach. The examples in
the text and problems in this chapter can serve as models that may help in approaching new
situations.

The second task is to “solve” the given game, which results in a prediction about what
will happen. To solve a game, one takes an equilibrium concept (Nash equilibrium, for ex-
ample) and runs through the calculations required to apply it to the given game. Much of the
chapter will be devoted to learning the most widely used equilibrium concepts (including
Nash equilibrium) and to practicing the calculations necessary to apply them to particular
games.

A game is an abstract model of a strategic situation. Even the most basic games have three
essential elements: players, strategies, and payoffs. In complicated settings, it is sometimes also
necessary to specify additional elements such as the sequence of moves and the information
that players have when they move (who knows what when) to describe the game fully.
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Players
Each decision maker in a game is called a player. These players may be individuals (as in poker
games), firms (as inmarkets with few firms), or entire nations (as inmilitary conflicts). A player
is characterized as having the ability to choose from among a set of possible actions. Usually,
the number of players is fixed throughout the “play” of the game. Games are sometimes
characterized by the number of players involved (two-player, three-player, or n-player games).
As does much of the economic literature, this chapter often focuses on two-player games
because this is the simplest strategic setting.

We will label the players with numbers, so in a two-player game we will have players 1
and 2. In an n-player game we will have players 1, 2, ..., n, with the generic player labeled i.

Strategies
Each course of action open to a player during the game is called a strategy. Depending on the
game being examined, a strategy may be a simple action (drive over the speed limit or not) or
a complex plan of action that may be contingent on earlier play in the game (say, speeding
only if the driver has observed speed traps less than a quarter of the time in past drives). Many
aspects of game theory can be illustrated in games in which players choose between just two
possible actions.

Let S1 denote the set of strategies open to player 1, S2 the set open to player 2, and (more
generally) Si the set open to player i. Let s1 2 S1 be a particular strategy chosen by player 1
from the set of possibilities, s2 2 S2 the particular strategy chosen by player 2, and si 2 Si for
player i. A strategy profile will refer to a listing of particular strategies chosen by each of a
group of players.

Payoffs
The final returns to the players at the conclusion of a game are called payoffs. Payoffs are
measured in levels of utility obtained by the players. For simplicity, monetary payoffs (say,
profits for firms) are often used. More generally, payoffs can incorporate nonmonetary out-
comes such as prestige, emotion, risk preferences, and so forth. Players are assumed to prefer
higher payoffs than lower payoffs.

In a two-player game, u1ðs1, s2Þ denotes player 1’s payoff given that he or she chooses s1
and the other player chooses s2 and similarly u2ðs2, s1Þ denotes player 2’s payoff. The fact player
1’s payoff may depend on 2’s strategy (and vice versa) is where the strategic interdependence
shows up. In an n-player game, we can write the payoff of a generic player i as uiðsi, s�iÞ, which
depends on player i’s own strategy si and the profile s�i ¼ ðs1,…, si�1, siþ1,…, snÞ of the
strategies of all players other than i.

PRISONERS’ DILEMMA

The Prisoners’Dilemma, introduced by A.W. Tucker in the 1940s, is one of the most famous
games studied in game theory and will serve here as a nice example to illustrate all the
notation just introduced. The title stems from the following situation. Two suspects are ar-
rested for a crime. The district attorney has little evidence in the case and is eager to extract
a confession. She separates the suspects and tells each: “If you fink on your companion
but your companion doesn’t fink on you, I can promise you a reduced (one-year) sentence,
whereas your companion will get four years. If you both fink on each other, you will each get
a three-year sentence.” Each suspect also knows that if neither of them finks then the lack of
evidence will result in being tried for a lesser crime for which the punishment is a two-year
sentence.
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Boiled down to its essence, the Prisoners’Dilemma has two strategic players, the suspects,
labeled 1 and 2. (There is also a district attorney, but since her actions have already been fully
specified, there is no reason to complicate the game and include her in the specification.) Each
player has two possible strategies open to him: fink or remain silent. We therefore write their
strategy sets as S1 ¼ S2ffink, silentg. To avoid negative numbers we will specify payoffs as
the years of freedom over the next four years. For example, if suspect 1 finks and 2 does not,
suspect 1 will enjoy three years of freedom and 2 none, that is, u1ðfink, silentÞ ¼ 3 and
u2ðsilent, finkÞ ¼ 0.

Extensive form
There are 22 ¼ 4 combinations of strategies and two payoffs to specify for each combi-
nation. So instead of listing all the payoffs, it will be clearer to organize them in a game tree
or a matrix.

The game tree, also called the extensive form, is shown in Figure 8.1. The action proceeds
from left to right. Each node (shown as a dot on the tree) represents a decision point for the
player indicated there. The first move in this game belongs to player 1; he must choose
whether to fink or be silent. Then player 2 makes his decision. The dotted oval drawn around
the nodes at which player 2 moves indicates that the two nodes are in the same information
set, that is, player 2 does not know what player 1 has chosen when 2 moves. We put the two
nodes in the same information set because the district attorney approaches each suspect
separately and does not reveal what the other has chosen. We will later look at games in which
the second mover does have information about the first mover’s choice and so the two nodes
are in separate information sets. Payoffs are given at the end of the tree. The convention is for
player 1’s payoff to be listed first, then player 2’s.

FIGURE 8.1 Extensive Form for the Prisoners’ Dilemma

In this game, player 1 chooses to fink or be silent, and player 2 has the same choice. The oval
surrounding 2’s nodes indicates that they share the same (lack of) information: 2 does not know
what strategy 1 has chosen because the district attorney approaches each player in secret. Payoffs are
listed at the right.
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Normal form
Although the extensive form in Figure 8.1 offers a useful visual presentation of the complete
structure of the game, sometimes it is more convenient to represent games in matrix form,
called the normal form of the game; this is shown for the Prisoners’ Dilemma in Table 8.1.
Player 1 is the row player, and 2 is the column player. Each entry in the matrix lists the payoffs
first for player 1 and then for 2.

Thinking strategically about the Prisoners’ Dilemma
Although we have not discussed how to solve games yet, it is worth thinking about what we
might predict will happen in the Prisoners’ Dilemma. Studying Table 8.1, on first thought
one might predict that both will be silent. This gives the most total years of freedom for both
(four) compared to any other outcome. Thinking a bit deeper, this may not be the best
prediction in the game. Imagine ourselves in player 1’s position for a moment. We don’t
know what player 2 will do yet since we haven’t solved out the game, so let’s investigate each
possibility. Suppose 2 chose to fink. By finking ourselves we would earn one year of freedom
versus none if we remained silent, so finking is better for us. Suppose 2 chose to remain silent.
Finking is still better for us than remaining silent since we get three rather than two years of
freedom. Regardless of what the other player does, finking is better for us than being silent
since it results in an extra year of freedom. Since players are symmetric, the same reasoning
holds if we imagine ourselves in player 2’s position. Therefore, the best prediction in the
Prisoners’ Dilemma is that both will fink. When we formally introduce the main solution
concept—Nash equilibrium—we will indeed find that both finking is a Nash equilibrium.

The prediction has a paradoxical property: by both finking, the suspects only enjoy one
year of freedom, but if they were both silent they would both do better, enjoying two years of
freedom. The paradox should not be taken to imply that players are stupid or that our
prediction is wrong. Rather, it reveals a central insight from game theory that pitting players
against each other in strategic situations sometimes leads to outcomes that are inefficient for
the players. (When we say the outcome is inefficient, we are focusing just on the suspects’
utilities; if the focus were shifted to society at large, then both finking might be quite a good
outcome for the criminal justice system—presumably the motivation behind the district
attorney’s offer.) The suspects might try to avoid the extra prison time by coming to an
agreement beforehand to remain silent, perhaps reinforced by threats to retaliate afterwards if
one or the other finks. Introducing agreements and threats leads to a game that differs from
the basic Prisoners’ Dilemma, a game that should be analyzed on its own terms using the
tools we will develop shortly.

Solving the Prisoners’ Dilemma was easy because there were only two players and two
strategies and because the strategic calculations involved were fairly straightforward. It would
be useful to have a systematic way of solving this as well as more complicated games. Nash
equilibrium provides us with such a systematic solution.

TABLE 8.1 Normal Form for the Prisoners’ Dilemma

Suspect 2

Fink Silent
Su

sp
ec
t
1

Fink u1 ¼ 1, u2 ¼ 1 u1 ¼ 3, u2 ¼ 0

Silent u1 ¼ 0, u2 ¼ 3 u1 ¼ 2, u2 ¼ 2
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NASH EQUILIBRIUM

In the economic theory of markets, the concept of equilibrium is developed to indicate a
situation in which both suppliers and demanders are content with the market outcome. Given
the equilibrium price and quantity, no market participant has an incentive to change his or
her behavior. In the strategic setting of game theory, we will adopt a related notion of
equilibrium, formalized by John Nash in the 1950s, called Nash equilibrium.1 Nash equilib-
rium involves strategic choices that, once made, provide no incentives for the players to alter
their behavior further. A Nash equilibrium is a strategy for each player that is the best choice
for each player given the others’ equilibrium strategies.

Nash equilibrium can be defined very simply in terms of best responses. In an n-player
game, strategy si is a best response to rivals’ strategies s�i if player i cannot obtain a strictly
higher payoff with any other possible strategy s 0i 2 Si given that rivals are playing s�i .

D E F I N I T I O N
Best response. si is a best response for player i to rivals’ strategies s�i, denoted si 2 BRiðs�iÞ,
if

uiðsi, s�iÞ 	 uiðs 0i, s�iÞ for all s 0i 2 Si. (8.1)

A technicality embedded in the definition is that there may be a set of best responses rather
than a unique one; that is why we used the set inclusion notation si 2 BRiðs�iÞ. There may be
a tie for the best response, in which case the set BRiðs�iÞ will contain more than one element.
If there isn’t a tie, then there will be a single best response si and we can simply write
si ¼ BRiðs�iÞ.

We can now define a Nash equilibrium in an n-player game as follows.

D E F I N I T I O N
Nash equilibrium. ANash equilibrium is a strategy profile ðs�1 , s�2 ,…, s�n Þ such that, for each
player i ¼ 1, 2,…,n, s�i is a best response to the other players’ equilibrium strategies s��i. That
is, s�i 2 BRiðs��iÞ.

These definitions involve a lot of notation. The notation is a bit simpler in a two-player game.
In a two-player game, ðs�1 , s�2 Þ is a Nash equilibrium if s�1 and s�2 are mutual best responses
against each other:

u1ðs�1 , s�2 Þ 	 u1ðs1, s�2 Þ for all s1 2 S1 (8.2)

and

u2ðs�2 , s�1 Þ 	 u2ðs2, s�1 Þ for all s2 2 S2. (8.3)

ANash equilibrium is stable in that, even if all players revealed their strategies to each other,
no player would have an incentive to deviate from his or her equilibrium strategy and choose
something else. Nonequilibrium strategies are not stable in this way. If an outcome is not a
Nash equilibrium, then at least one player must benefit from deviating. Hyperrational players
could be expected to solve the inference problem and deduce that all would play a Nash
equilibrium (especially if there is a unique Nash equilibrium). Even if players are not hyper-
rational, over the long run we can expect their play to converge to a Nash equilibrium as they
abandon strategies that are not mutual best responses.

1John Nash, “Equilibrium Points in n-Person Games,” Proceedings of the National Academy of Sciences 36 (1950): 48–49.
Nash is the principal figure in the 2001 film A Beautiful Mind (see Problem 8.7 for a game-theory example from the film)
and co-winner of the 1994 Nobel Prize in economics.
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Besides this stability property, another reason Nash equilibrium is used so widely in
economics is that it is guaranteed to exist for all games we will study (allowing for mixed
strategies, to be defined below; Nash equilibria in pure strategies do not have to exist). Nash
equilibrium has some drawbacks. There may be multiple Nash equilibria, making it hard to
come up with a unique prediction. Also, the definition of Nash equilibrium leaves unclear
how a player can choose a best-response strategy before knowing how rivals will play.

Nash equilibrium in the Prisoners’ Dilemma
Let’s apply the concepts of best response and Nash equilibrium to the example of the
Prisoners’ Dilemma. Our educated guess was that both players will end up finking. We will
show that both finking is a Nash equilibrium of the game. To do this, we need to show that
finking is a best response to the other players’ finking. Refer to the payoff matrix in Table 8.1.
If player 2 finks, we are in the first column of the matrix. If player 1 also finks, his payoff is 1; if
he is silent, his payoff is 0. Since he earns the most from finking given player 2 finks, finking is
player 1’s best response to player 2’s finking. Since players are symmetric, the same logic
implies that player 2’s finking is a best response to player 1’s finking. Therefore, both finking
is indeed a Nash equilibrium.

We can show more: that both finking is the only Nash equilibrium. To do so, we need to
rule out the other three outcomes. Consider the outcome in which player 1 finks and 2 is
silent, abbreviated (fink, silent), the upper right corner of the matrix. This is not a Nash
equilibrium. Given that player 1 finks, as we have already said, player 2’s best response is to
fink, not to be silent. Symmetrically, the outcome in which player 1 is silent and 2 finks in the
lower left corner of the matrix is not a Nash equilibrium. That leaves the outcome in which
both are silent. Given that player 2 is silent, we focus our attention on the second column of
the matrix: the two rows in that column show that player 1’s payoff is 2 from being silent and
3 from finking. Therefore, silent is not a best response to fink and so both being silent cannot
be a Nash equilibrium.

To rule out a Nash equilibrium, it is enough to find just one player who is not playing a
best response and so would want to deviate to some other strategy. Considering the outcome
(fink, silent), although player 1 would not deviate from this outcome (he earns 3, which is the
most possible), player 2 would prefer to deviate from silent to fink. Symmetrically, consider-
ing the outcome (silent, fink), although player 2 does not want to deviate, player 1 prefers to
deviate from silent to fink, so this is not a Nash equilibrium. Considering the outcome (silent,
silent), both players prefer to deviate to another strategy. Having two players prefer to deviate
is more than enough to rule out a Nash equilibrium.

Underlining best-response payoffs
A quick way to find the Nash equilibria of a game is to underline best-response payoffs in the
matrix. The underlining procedure is demonstrated for the Prisoners’ Dilemma in Table 8.2.
The first step is to underline the payoffs corresponding to player 1’s best responses. Player 1’s

TABLE 8.2 Underlining Procedure in the Prisoners’ Dilemma

Suspect 2

Fink Silent

Su
sp
ec
t
1

Fink u1 ¼ 1, u2 ¼ 1 u1 ¼ 3, u2 ¼ 0

Silent u1 ¼ 0, u2 ¼ 3 u1 ¼ 2, u2 ¼ 2
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best response is to fink if player 2 finks, so we underline u1 ¼ 1 in the upper left box, and to
fink if player 2 is silent, so we underline u1 ¼ 3 in the upper left box. Next, we move to un-
derlining the payoffs corresponding to player 2’s best responses. Player 2’s best response is to
fink if player 1 finks, so we underline u2 ¼ 1 in the upper left box, and to fink if player 1 is
silent, so we underline u2 ¼ 3 in the lower left box.

Now that the best-response payoffs have been underlined, we look for boxes in which
every player’s payoff is underlined. These boxes correspond to Nash equilibria. (There may
be additional Nash equilibria involving mixed strategies, defined later in the chapter.) In
Table 8.2, only in the upper left box are both payoffs underlined, verifying that (fink, fink)—
and none of the other outcomes—is a Nash equilibrium.

Dominant Strategies
(Fink, fink) is a Nash equilibrium in the Prisoners’Dilemma because finking is a best response
to the other player’s finking. We can say more: finking is the best response to all of the other
player’s strategies, fink and silent. (This can be seen, among other ways, from the underlining
procedure shown in Table 8.2: all player 1’s payoffs are underlined in the row in which he
plays fink, and all player 2’s payoffs are underlined in the column in which he plays fink.)

A strategy that is a best response to any strategy the other players might choose is called a
dominant strategy. Players do not always have dominant strategies, but when they do there is
strong reason to believe they will play that way. Complicated strategic considerations do not
matter when a player has a dominant strategy because what is best for that player is indepen-
dent of what others are doing.

D E F I N I T I O N
Dominant strategy. A dominant strategy is a strategy s�i for player i that is a best response to
all strategy profiles of other players. That is, s�i 2 BRiðs�iÞ for all s�i.

Note the difference between a Nash equilibrium strategy and a dominant strategy. A strategy
that is part of a Nash equilibrium need only be a best response to one strategy profile of other
players—namely, their equilibrium strategies. A dominant strategy must be a best response
not just to the Nash equilibrium strategies of other players but to all the strategies of those
players.

If all players in a game have a dominant strategy, then we say the game has a dominant
strategy equilibrium. As well as being the Nash equilibrium of the Prisoners’ Dilemma, (fink,
fink) is a dominant strategy equilibrium. As is clear from the definitions, in any game with a
dominant strategy equilibrium, the dominant strategy equilibrium is a Nash equilibrium.
Problem 8.4 will show that when a dominant strategy exists, it is the uniqueNash equilibrium.

Battle of the Sexes
The famous Battle of the Sexes game is another example that illustrates the concepts of best
response and Nash equilibrium. The story goes that a wife (player 1) and husband (player 2)
would like to meet each other for an evening out. They can go either to the ballet or to a
boxing match. Both prefer to spend time together than apart. Conditional on being together,
the wife prefers to go to the ballet and the husband to boxing. The extensive form of the
game is presented in Figure 8.2 and the normal form in Table 8.3. For brevity we dispense
with the u1 and u2 labels on the payoffs and simply re-emphasize the convention that the first
payoff is player 1’s and the second player 2’s.

We will work with the normal form, examining each of the four boxes in Table 8.3 and
determining which are Nash equilibria and which are not. Start with the outcome in which
both players choose ballet, written (ballet, ballet), the upper left corner of the payoff matrix.
Given that the husband plays ballet, the wife’s best response is to play ballet (this gives her her
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highest payoff in the matrix of 2). Using notation, ballet ¼ BR1(ballet). [We don’t need the
fancy set-inclusion symbol as in “ballet 2 BR1ðballetÞ” because the husband has only one
best response to the wife’s choosing ballet.] Given that the wife plays ballet, the husband’s
best response is to play ballet. If he deviated to boxing then he would earn 0 rather than 1,
since they would end up not coordinating. Using notation, ballet ¼ BR2(ballet). So (ballet,
ballet) is indeed a Nash equilibrium. Symmetrically, (boxing, boxing) is a Nash equilibrium.

Consider the outcome (ballet, boxing) in the upper left corner of the matrix. Given the
husband chooses boxing, the wife earns 0 from choosing ballet but 1 from choosing boxing,
so ballet is not a best response for the wife to the husband’s choosing boxing. In notation,
ballet 62 BR1ðboxingÞ. Hence (ballet, boxing) cannot be a Nash equilibrium. [The husband’s
strategy of boxing is not a best response to the wife’s playing ballet either, so in fact both
players would prefer to deviate from (ballet, boxing), although we only need to find one
player who would want to deviate to rule out an outcome as a Nash equilibrium.] Symmetri-
cally, (boxing, ballet) is not a Nash equilibrium, either.

FIGURE 8.2 Extensive Form for the Battle of the Sexes

In this game, player 1 (wife) and player 2 (husband) choose to attend the ballet or a boxing match.
They prefer to coordinate but disagree on which event to coordinate. Because they choose simulta-
neously, the husband does not know the wife’s choice when he moves, so his decision nodes are
connected in the same information set.

1

2

2

Boxing

Ballet

Boxing
1, 2

0, 0

0, 0

2, 1

Boxing

Ballet

Ballet

TABLE 8.3 Normal Form for the Battle of the Sexes

Player 2 (Husband)

Ballet Boxing

Pl
ay
er

1
ðW

ife
Þ Ballet 2, 1 0, 0

Boxing 0, 0 1, 2
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The Battle of the Sexes is an example of a game with more than one Nash equilibrium (in
fact, it has three—a third in mixed strategies, as we will see). It is hard to say which of the two
we have found so far is more plausible, since they are symmetric. It is therefore difficult to
make a firm prediction in this game. The Battle of the Sexes is also an example of a game with
no dominant strategies. A player prefers to play ballet if the other plays ballet and boxing if the
other plays boxing.

Table 8.4 applies the underlining procedure, used to find Nash equilibria quickly, to the
Battle of the Sexes. The procedure verifies that the two outcomes in which the players succeed
in coordinating are Nash equilibria and the two outcomes in which they don’t coordinate
are not.

Examples 8.1, 8.2, and 8.3 provide additional practice in finding Nash equilibria in more
complicated settings (a game that hasmany ties for best responses in Example 8.1, a gamewith
three strategies for each player in Example 8.2, and a game with three players in Example 8.3).

EXAMPLE 8.1 The Prisoners’ Dilemma Redux

In this variation on the Prisoners’ Dilemma, a suspect is convicted and receives a sentence of
four years if he is finked on and goes free if not. The district attorney does not reward finking.
Table 8.5 presents the normal form for the game before and after applying the procedure for
underlining best responses. Payoffs are again restated in terms of years of freedom.

Ties for best responses are rife. For example, given player 2 finks, player 1’s payoff is 0
whether he finks or is silent. So there is a tie for 1’s best response to 2’s finking.This is an example
of the set of best responses containing more than one element: BR1ðfinkÞ ¼ ffink, silentg.

TABLE 8.5 The Prisoners’ Dilemma Redux

(a) Normal form

Suspect 2

Fink Silent

Su
sp
ec
t
1

Fink 0, 0 1, 0

Silent 0, 1 1, 1

(b) Underlining procedure

Suspect 2

Fink Silent

Su
sp
ec
t
1

Fink 0, 0 1, 0

Silent 0, 1 1, 1

TABLE 8.4 Underlining Procedure in the Battle of the Sexes

Player 2 (Husband)

Ballet Boxing

Pl
ay
er

1
ðW

ife
Þ Ballet 2, 1 0, 0

Boxing 0, 0 1, 2
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The underlining procedure shows that there is a Nash equilibrium in each of the four
boxes. Given that suspects receive no personal reward or penalty for finking, they are both
indifferent between finking and being silent; thus any outcome can be a Nash equilibrium.

QUERY: Does any player have a dominant strategy? Can you draw the extensive form for
the game?

EXAMPLE 8.2 Rock, Paper, Scissors

Rock, Paper, Scissors is a children’s game in which the two players simultaneously display one
of three hand symbols. Table 8.6 presents the normal form. The zero payoffs along the
diagonal show that if players adopt the same strategy then no payments are made. In other
cases, the payoffs indicate a $1 payment from loser to winner under the usual hierarchy (rock
breaks scissors, scissors cut paper, paper covers rock).

As anyone who has played this game knows, and as the underlining procedure reveals,
none of the nine boxes represents a Nash equilibrium. Any strategy pair is unstable because it
offers at least one of the players an incentive to deviate. For example, (scissors, scissors)
provides an incentive for either player 1 or 2 to choose rock; (paper, rock) provides an
incentive for 2 to choose scissors.

The game does have a Nash equilibrium—not any of the nine boxes in Table 8.6 but in
mixed strategies, defined in the next section.

QUERY: Does any player have a dominant strategy? Why isn’t (paper, scissors) a Nash
equilibrium?

(b) Underlying procedure

Player 2

Rock Paper Scissors

Pl
ay
er

1 Rock 0, 0 �1, 1 1, �1

Paper 1, �1 0, 0 �1, 1

Scissors �1, 1 1, �1 0, 0

TABLE 8.6 Rock, Paper, Scissors

(a) Normal form

Player 2

Rock Paper Scissors

Pl
ay
er

1 Rock 0, 0 �1, 1 1, �1

Paper 1, �1 0, 0 �1, 1

Scissors �1, 1 1, �1 0, 0
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EXAMPLE 8.3 Three’s Company

Three’s Company is a three-player version of the Battle of the Sexes based on a 1970s sitcom
of the same name about the misadventures of a man (Jack) and two women (Janet and
Chrissy) who shared an apartment to save rent.

Modify the payoffs from the Battle of the Sexes as follows. Players get one “util” from
attending their favorite event (Jack’s is boxing and Janet and Chrissy’s is ballet). Players get an
additional util for each of the other players who shows up at the event with them. Table 8.7
presents the normal form. For each of player 3’s strategies, there is a separate payoff matrix
with all combinations of player 1 and 2’s strategies. Each box lists the three players’ payoffs
in order.

For players 1 and 2, the underlining procedure is the same as in a two-player game except
that it must be repeated for the two payoff matrices. To underline player 3’s best-response
payoffs, compare the two boxes in the same position in the two different matrices. For
example, given Janet and Chrissy both play ballet, we compare the third payoff in the
upper-left box in both matrices: Jack’s payoff is 2 in the first matrix (in which he plays ballet)
and 1 in the second (in which he plays boxing). So we underline the 2.

As in the Battle of the Sexes, Three’s Company has two Nash equilibria, one in which all
go to ballet and one in which all go to boxing.

QUERY: What payoffs might make Three’s Company even closer in spirit to the Battle of
the Sexes? What would the normal form look like for Four’s Company? (Four’s Company is
similar to Three’s Company except with two men and two women.)

(b) Underlining Procedure

Player 3 (Jack) plays Ballet

Player 2 (Chrissy)

Ballet Boxing

Pl
ay
er

1
ðJa

ne
tÞ Ballet 3, 3, 2 2, 0, 1

Boxing 0, 2, 1 1, 1, 0

TABLE 8.7 Three’s Company

(a) Normal form

Player 3 (Jack) plays Ballet

Player 2 (Chrissy)

Ballet Boxing

Pl
ay
er

1
ðJa

ne
tÞ Ballet 3, 3, 2 2, 0, 1

Boxing 0, 2, 1 1, 1, 0

Player 3 (Jack) plays Boxing

Player 2 (Chrissy)

Ballet Boxing

Pl
ay
er

1
ðJa

ne
tÞ Ballet 2, 2, 1 1, 1, 2

Boxing 1, 1, 2 2, 2, 3

Player 3 (Jack) plays Boxing

Player 2 (Chrissy)

Ballet Boxing

Pl
ay
er

1
ðJa

ne
tÞ Ballet 2, 2, 1 1, 1, 2

Boxing 1, 1, 2 2, 2, 3
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MIXED STRATEGIES

Players’ strategies can be more complicated than simply choosing an action with certainty. In
this section we study mixed strategies, which have the player randomly select from several
possible actions. By contrast, the strategies considered in the examples so far have a player
choose one action or another with certainty; these are called pure strategies. For example, in
the Battle of the Sexes, we have considered the pure strategies of choosing either ballet or
boxing for sure. A possible mixed strategy in this game would be to flip a coin and then
attend the ballet if and only if the coin comes up heads, yielding a 50–50 chance of showing
up at either event.

Although at first glance it may seem bizarre to have players flipping coins to determine
how they will play, there are good reasons for studying mixed strategies. First, some games
(such as Rock, Paper, Scissors) have no Nash equilibria in pure strategies. As we will see in
the section on existence, such games will always have a Nash equilibrium in mixed strategies,
so allowing for mixed strategies will enable us to make predictions in such games where it
was impossible to do so otherwise. Second, strategies involving randomization are quite
natural and familiar in certain settings. Students are familiar with the setting of class exams.
Class time is usually too limited for the professor to examine students on every topic taught
in class, but it may be sufficient to test students on a subset of topics to induce them to study
all of the material. If students knew which topics were on the test then they might be
inclined to study only those and not the others, so the professor must choose the topics at
random in order to get the students to study everything. Random strategies are also familiar
in sports (the same soccer player sometimes shoots to the right of the net and sometimes to
the left on penalty kicks) and in card games (the poker player sometimes folds and some-
times bluffs with a similarly poor hand at different times). Third, it is possible to “purify”
mixed strategies by specifying a more complicated game in which one or the other action is
better for the player for privately known reasons and where that action is played with
certainty.2 For example, a history professor might decide to ask an exam question about
World War I because, unbeknownst to the students, she recently read an interesting journal
article about it.

To be more formal, suppose that player i has a set of M possible actions Ai ¼ fa1
i ,…,

am
i ,…, aM

i g, where the subscript refers to the player and the superscript to the different
choices. A mixed strategy is a probability distribution over the M actions, si ¼ ðσ1

i ,…,
σm
i ,…,σM

i Þ, where σm
i is a number between 0 and 1 that indicates the probability of player

i playing action am
i . The probabilities in si must sum to unity: σ1

i þ … þ σm
i þ… þ σM

i ¼ 1.
In the Battle of the Sexes, for example, both players have the same two actions of ballet

and boxing, so we can write A1 ¼ A2 ¼ fballet, boxingg. We can write a mixed strategy as
a pair of probabilities ðσ, 1� σÞ, where σ is the probability that the player chooses ballet.
The probabilities must sum to unity and so, with two actions, once the probability of one
action is specified, the probability of the other is determined. Mixed strategy (1=3, 2=3)
means that the player plays ballet with probability 1=3 and boxing with probability 2=3;
(1=2, 1=2) means that the player is equally likely to play ballet or boxing; (1, 0) means that
the player chooses ballet with certainty; and (0, 1) means that the player chooses boxing
with certainty.

In our terminology, a mixed strategy is a general category that includes the special case of
a pure strategy. A pure strategy is the special case in which only one action is played with

2John Harsanyi, “Games with Randomly Disturbed Payoffs: A New Rationale for Mixed-Strategy Equilibrium Points,”
International Journal of Game Theory 2 (1973): 1–23. Harsanyi was a co-winner (along with Nash) of the 1994 Nobel
Prize in economics.
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positive probability. Mixed strategies that involve two or more actions being played with pos-
itive probability are called strictly mixed strategies. Returning to the examples from the
previous paragraph of mixed strategies in the Battle of the Sexes, all four strategies (1=3,
2=3), (1=2, 1=2), (1, 0), and (0, 1) are mixed strategies. The first two are strictly mixed and
the second two are pure strategies.

With this notation for actions and mixed strategies behind us, we do not need new
definitions for best response, Nash equilibrium, and dominant strategy. The definitions
introduced when si was taken to be a pure strategy also apply to the case in which si is
taken to be a mixed strategy. The only change is that the payoff function uiðsi, s�iÞ, rather
than being a certain payoff, must be reinterpreted as the expected value of a random payoff,
with probabilities given by the strategies si and s�i. Example 8.4 provides some practice in
computing expected payoffs in the Battle of the Sexes.

EXAMPLE 8.4 Expected Payoffs in the Battle of the Sexes

Let’s compute players’ expected payoffs if the wife chooses the mixed strategy (1=9, 8=9) and
the husband (4=5, 1=5) in the Battle of the Sexes. The wife’s expected payoff is

U1
1
9
,
8
9

� �
,

4
5
,
1
5

� �� �
¼ 1

9

� �
4
5

� �
U1ðballet,balletÞ þ

1
9

� �
1
5

� �
U1ðballet,boxingÞ

þ 8
9

� �
4
5

� �
U1ðboxing,balletÞþ

8
9

� �
1
5

� �
U1ðboxing,boxingÞ

¼ 1
9

� �
4
5

� �
ð2Þþ 1

9

� �
1
5

� �
ð0Þþ 8

9

� �
4
5

� �
ð0Þþ 8

9

� �
1
5

� �
ð1Þ

¼ 16
45

. (8.4)

To understand Equation 8.4, it is helpful to review the concept of expected value from
Chapter 2. Equation (2.176) indicates that an expected value of a random variable equals
the sum over all outcomes of the probability of the outcome multiplied by the value of the
random variable in that outcome. In the Battle of the Sexes, there are four outcomes,
corresponding to the four boxes in Table 8.3. Since players randomize independently, the
probability of reaching a particular box equals the product of the probabilities that each
player plays the strategy leading to that box. So, for example, the probability of (boxing,
ballet)—that is, the wife plays boxing and the husband plays ballet—equals ð8=9Þ�ð4=5Þ.
The probabilities of the four outcomes are multiplied by the value of the relevant random
variable (in this case, player 1’s payoff) in each outcome.

Next we compute the wife’s expected payoff if she plays the pure strategy of going to
ballet [the same as the mixed strategy (1, 0)] and the husband continues to play the mixed
strategy ð4=5, 1=5Þ. Now there are only two relevant outcomes, given by the two boxes in the
row in which the wife plays ballet. The probabilities of the two outcomes are given by the
probabilities in the husband’s mixed strategy. Therefore,

U1 ballet,
4
5
,
1
5

� �� �
¼ 4

5

� �
U1ðballet,balletÞ þ

1
5

� �
U1ðballet,boxingÞ

¼ 4
5

� �
ð2Þ þ 1

5

� �
ð0Þ ¼ 8

5
. (8.5)

Finally, we will compute the general expression for the wife’s expected payoff when she
plays mixed strategy ðw, 1� wÞ and the husband plays ðh, 1� hÞ : if the wife plays ballet with
probability w and the husband with probability h, then
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u1ððw, 1� wÞ, ðh, 1� h ÞÞ ¼ ðwÞðhÞU1ðballet,balletÞ þ ðwÞð1� hÞU1ðballet,boxingÞ
þ ð1� wÞðhÞU1ðboxing,balletÞ
þ ð1� wÞð1� hÞU1ðboxing,boxingÞ

¼ ðwÞðhÞð2Þ þ ðwÞð1� hÞð0Þ þ ð1� wÞðhÞð0Þ
þ ð1� wÞð1� hÞð1Þ

¼ 1� h � w þ 3hw. (8.6)

QUERY: What is the husband’s expected payoff in each case? Show that his expected payoff
is 2� 2h � 2w þ 3hw in the general case. Given the husband plays the mixed strategy ð4=5,
1=5Þ, what strategy provides the wife with the highest payoff?

Computing Nash equilibrium of a game when strictly mixed strategies are involved is
quite a bit more complicated than when pure strategies are involved. Before wading in, we
can save a lot of work by asking whether the game even has a Nash equilibrium in strictly
mixed strategies. If it does not then, having found all the pure-strategy Nash equilibria, one
has finished analyzing the game. The key to guessing whether a game has a Nash equilibrium
in strictly mixed strategies is the surprising result that almost all games have an odd number of
Nash equilibria.3

Let’s apply this insight to some of the examples considered so far. We found an odd
number (one) of pure-strategy Nash equilibria in the Prisoners’Dilemma, suggesting we need
not look further for one in strictly mixed strategies. In the Battle of the Sexes, we found an
even number (two) of pure-strategy Nash equilibria, suggesting the existence of a third one in
strictly mixed strategies. Example 8.2—Rock, Paper, Scissors—has no pure-strategy Nash
equilibria. To arrive at an odd number of Nash equilibria, we would expect to find one Nash
equilibrium in strictly mixed strategies.

EXAMPLE 8.5 Mixed-Strategy Nash Equilibrium in the Battle of the Sexes

A general mixed strategy for the wife in the Battle of the Sexes is ðw, 1� wÞ and for the
husband is ðh, 1� hÞ; where w and h are the probabilities of playing ballet for the wife and
husband, respectively. We will compute values of w and h that make up Nash equilibria. Both
players have a continuum of possible strategies between 0 and 1. Therefore, we cannot write
these strategies in the rows and columns of a matrix and underline best-response payoffs
to find the Nash equilibria. Instead, we will use graphical methods to solve for the Nash
equilibria.

Given players’ general mixed strategies, we saw in Example 8.4 that the wife’s expected
payoff is

u1ððw, 1� wÞ, ðh, 1� hÞÞ ¼ 1� h � w þ 3hw. (8.7)

As Equation 8.7 shows, the wife’s best response depends on h. If h < 1=3, she wants to set
w as low as possible: w ¼ 0. If h > 1=3, her best response is to set w as high as possible:
w ¼ 1. When h ¼ 1=3, her expected payoff equals 2=3 regardless of what w she chooses. In
this case there is a tie for the best response, including any w from 0 to 1.

(continued)

3John Harsanyi, “Oddness of the Number of Equilibrium Points: A New Proof,” International Journal of Game Theory 2
(1973): 235–50. Games in which there are ties between payoffs may have an even or infinite number of Nash equilibria.
Example 8.1, the Prisoners’ Dilemma Redux, has several payoff ties. The game has four pure-strategy Nash equilibria and
an infinite number of different mixed strategy equilibria.
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EXAMPLE 8.5 CONTINUED

In Example 8.4, we stated that the husband’s expected payoff is

U2ððh, 1� hÞ, ðw, 1� wÞÞ ¼ 2� 2h � 2w þ 3hw. (8.8)

When w < 2=3, his expected payoff is maximized by h ¼ 0; when w > 2=3, his expected
payoff is maximized by h ¼ 1; and when w ¼ 2=3, he is indifferent among all values of h,
obtaining an expected payoff of 2=3 regardless.

The best responses are graphed in Figure 8.3. The Nash equilibria are given by the
intersection points between the best responses. At these intersection points, both players
are best responding to each other, which is what is required for the outcome to be a Nash
equilibrium. There are three Nash equilibria. The points E1 and E2 are the pure-strategy Nash
equilibria we found before, with E1 corresponding to the pure-strategy Nash equilibrium in
which both play boxing and E2 to that in which both play ballet. Point E3 is the strictly
mixed-strategy Nash equilibrium, which can can be spelled out as “the wife plays ballet with
probability 2=3 and boxing with probability 1=3 and the husband plays ballet with probability
1=3 and boxing with probability 2=3.” More succinctly, having defined w and h, we may
write the equilibruim as “w� ¼ 2=3 and h� ¼ 1=3.”

QUERY: What is a player’s expected payoff in the Nash equilibrium in strictly mixed strate-
gies? How does this payoff compare to those in the pure-strategy Nash equilibria? What
arguments might be offered that one or another of the three Nash equilibria might be the
best prediction in this game?

FIGURE 8.3 Nash Equilibria in Mixed Strategies in the Battle of the Sexes

Ballet is chosen by the wife with probability w and by the husband with probability h. Players’ best
responses are graphed on the same set of axes. The three intersection points E1, E2, and E3 are Nash
equilibria. The Nash equilibrium in strictly mixed strategies, E3, is w

� ¼ 2=3 and h� ¼ 1=3.
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Example 8.5 runs through the lengthy calculations involved in finding all the Nash equi-
libria of the Battle of the Sexes, those in pure strategies and those in strictly mixed strategies.
The steps involve finding players’ expected payoffs as functions of general mixed strategies,
using these to find players’ best responses, and then graphing players’ best responses to see
where they intersect. A shortcut to finding the Nash equilibrium in strictly mixed strategies is
based on the insight that a player will be willing to randomize between two actions in
equilibrium only if he or she gets the same expected payoff from playing either action or, in
other words, is indifferent between the two actions in equilibrium. Otherwise, one of the two
actions would provide a higher expected payoff, and the player would prefer to play that action
with certainty.

Suppose the husband is playing mixed strategy ðh, 1� hÞ; that is, playing ballet with
probability h and boxing with probability 1� h. The wife’s expected payoff from playing
ballet is

U1ðballet, ðh,1� hÞÞ ¼ ðhÞð2Þ þ ð1� hÞð0Þ ¼ 2h. (8.9)

Her expected payoff from playing boxing is

U1ðboxing, ðh,1� hÞÞ ¼ ðhÞð0Þ þ ð1� hÞð1Þ ¼ 1� h. (8.10)

For thewife tobe indifferent betweenballet andboxing in equilibrium,Equations 8.9 and8.10
must be equal: 2h ¼ 1� h, implying h� ¼ 1=3. Similar calculations based on the husband’s
indifference between playing ballet and boxing in equilibrium show that the wife’s probability
of playing ballet in the strictly mixed strategy Nash equilibrium is w� ¼ 2=3. (Work through
these calculations as an exercise.)

Notice that the wife’s indifference condition does not “pin down” her equilibrium mixed
strategy. The wife’s indifference condition cannot pin down her own equilibriummixed strat-
egy because, given that she is indifferent between the two actions in equilibrium, her overall
expected payoff is the same no matter what probability distribution she plays over the
two actions. Rather, the wife’s indifference condition pins down the other player’s—the
husband’s—mixed strategy. There is a unique probability distribution he can use to play ballet
and boxing that makes her indifferent between the two actions and thus makes her willing to
randomize. Given any probability of his playing ballet and boxing other than ð1=3, 2=3Þ, it
would not be a stable outcome for her to randomize.

Thus, two principles should be kept in mind when seeking Nash equilibria in strictly
mixed strategies. One is that a player randomizes over only those actions among which he or
she is indifferent, given other players’ equilibrium mixed strategies. The second is that one
player’s indifference condition pins down the other player’s mixed strategy.

EXISTENCE

One of the reasons Nash equilibrium is so widely used is that a Nash equilibrium is
guaranteed to exist in a wide class of games. This is not true for some other equilibrium
concepts. Consider the dominant strategy equilibrium concept. The Prisoners’ Dilemma has
a dominant strategy equilibrium (both suspects fink), but most games do not. Indeed, there
are many games—including, for example, the Battle of the Sexes—in which no player has a
dominant strategy, let alone all the players. In such games, we can’t make predictions using
dominant strategy equilibrium but we can using Nash equilibrium.

The Extensions section at the end of this chapter will provide the technical details behind
John Nash’s proof of the existence of his equilibrium in all finite games (games with a finite
number of players and a finite number of actions). The existence theorem does not guarantee
the existence of a pure-strategy Nash equilibrium. We already saw an example: Rock, Paper,
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Scissors in Example 8.2. However, if a finite game does not have a pure-strategy Nash
equilibrium, the theorem guarantees that it will have a mixed-strategy Nash equilibrium.
The proof of Nash’s theorem is similar to the proof in Chapter 13 of the existence of prices
leading to a general competitive equilibrium. The Extensions section includes an existence
proof for games with a continuum of actions, as studied in the next section.

CONTINUUM OF ACTIONS

Most of the insight from economic situations can often be gained by distilling the situation
down to a few or even two actions, as with all the games studied so far. Other times,
additional insight can be gained by allowing a continuum of actions. To be clear, we have
already encountered a continuum of strategies—in our discussion of mixed strategies—but
still the probability distributions in mixed strategies were over a finite number of actions. In
this section we focus on continuum of actions.

Some settings aremore realisticallymodeled via a continuous range of actions. InChapter 15,
for example, we will study competition between strategic firms. In one model (Bertrand), firms
set prices; in another (Cournot), firms set quantities. It is natural to allow firms to choose any
nonnegative price or quantity rather than artificially restricting them to just two prices (say, $2 or
$5) or two quantities (say, 100 or 1,000 units). Continuous actions have several other advan-
tages. With continuous actions, the familiar methods from calculus can often be used to solve for
Nash equilibria. It is also possible to analyze how the equilibrium actions vary with changes in
underlying parameters. With the Cournot model, for example, we might want to know how
equilibrium quantities change with a small increase in a firm’s marginal costs or a demand
parameter.

Tragedy of the Commons
Example 8.6 illustrates how to solve for the Nash equilibrium when the game (in this case,
the Tragedy of the Commons) involves a continuum of actions. The first step is to write down
the payoff for each player as a function of all players’ actions. The next step is to compute the
first-order condition associated with each player’s payoff maximum. This will give an equa-
tion that can be rearranged into the best response of each player as a function of all other
players’ actions. There will be one equation for each player. With n players, the system of n
equations for the n unknown equilibrium actions can be solved simultaneously by either
algebraic or graphical methods.

EXAMPLE 8.6 Tragedy of the Commons

The term “Tragedy of the Commons” has come to signify environmental problems of over-
use that arise when scarce resources are treated as common property.4 A game-theoretic
illustration of this issue can be developed by assuming that two herders decide how many
sheep to graze on the village commons. The problem is that the commons is quite small and
can rapidly succumb to overgrazing.

In order to add some mathematical structure to the problem, let qi be the number of
sheep that herder i ¼ 1, 2 grazes on the commons, and suppose that the per-sheep value of
grazing on the commons (in terms of wool and sheep-milk cheese) is

4This term was popularized by G. Hardin, “The Tragedy of the Commons,” Science 162 (1968): 1243–48.
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vðq1, q2Þ ¼ 120� ðq1 þ q2Þ: (8.11)

This function implies that the value of grazing a given number of sheep is lower the more
sheep are around competing for grass. We cannot use a matrix to represent the normal form
of this game of continuous actions. Instead, the normal form is simply a listing of the
herders’ payoff functions

u1ðq1, q2Þ ¼ q1vðq1, q2Þ ¼ q1ð120� q1 � q2Þ,
u2ðq1, q2Þ ¼ q2vðq1, q2Þ ¼ q2ð120� q1 � q2Þ:

(8.12)

To find the Nash equilibrium, we solve herder 1’s value-maximization problem:

max
q1

fq1ð120� q1 � q2Þg: (8.13)

The first-order condition for a maximum is

120� 2q1 � q2 ¼ 0 (8.14)

or, rearranging,

q1 ¼ 60� q2
2

¼ BR1ðq2Þ: (8.15)

Similar steps show that herder 2’s best response is

q2 ¼ 60� q1
2

¼ BR2ðq1Þ: (8.16)

The Nash equilibrium is given by the pair ðq�1 , q�2 Þ that satisfies Equations 8.15 and 8.16
simultaneously. Taking an algebraic approach to the simultaneous solution, Equation 8.16
can be substituted into Equation 8.15, which yields

q1 ¼ 60 � 1
2

60 � q1
2

� �
; (8.17)

upon rearranging, this implies q�1 ¼ 40. Substituting q�1 ¼ 40 into Equation 8.17 implies
q�2 ¼ 40 as well. Thus, each herder will graze 40 sheep on the common. Each earns a payoff of
1,600, as can be seen by substituting q�1 ¼ q�2 ¼ 40 into the payoff function in Equation 8.13.

Equations 8.15 and 8.16 can also be solved simultaneously using graphical methods.
Figure 8.4 plots the two best responses on a graph with player 1’s action on the horizontal
axis and player 2’s on the vertical axis. These best responses are simply lines and so are easy to
graph in this example. (To be consistent with the axis labels, the inverse of Equation 8.15 is
actually what is graphed.) The two best responses intersect at the Nash equilibrium E1.

The graphical method is useful for showing how the Nash equilibrium shifts with changes
in the parameters of the problem. Suppose the per-sheep value of grazing increases for the
first herder while the second remains as in Equation 8.11, perhaps because the first herder
starts raising merino sheep with more valuable wool. This change would shift the best
response out for herder 1 while leaving 2’s the same. The new intersection point (E2 in
Figure 8.4), which is the new Nash equilibrium, involves more sheep for 1 and fewer for 2.

The Nash equilibrium is not the best use of the commons. In the original problem, both
herders’ per-sheep value of grazing is given by Equation 8.11. If both grazed only 30 sheep
then each would earn a payoff of 1,800, as can be seen by substituting q1 ¼ q2 ¼ 30 into
Equation 8.13. Indeed, the “joint payoff maximization” problem

max
q1

fðq1 þ q2Þvðq1, q2Þg ¼ max
q1

fðq1 þ q2Þð120 � q1 � q2Þg (8.18)

is solved by q1 ¼ q2 ¼ 30 or, more generally, by any q1 and q2 that sum to 60.

(continued)
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EXAMPLE 8.6 CONTINUED

QUERY: How would the Nash equilibrium shift if both herders’ benefits increased by the
same amount? What about a decrease in (only) herder 2’s benefit from grazing?

As Example 8.6 shows, graphical methods are particularly convenient for quickly deter-
mining how the equilibrium shifts with changes in the underlying parameters. The example
shifted the benefit of grazing to one of herders. This exercise nicely illustrates the nature of
strategic interaction. Herder 2’s payoff function hasn’t changed (only herder 1’s has), yet his
equilibrium action changes. The second herder observes the first’s higher benefit, anticipates
that the first will increase the number of sheep he grazes, and reduces his own grazing in
response.

The Tragedy of the Commons shares with the Prisoners’ Dilemma the feature that the
Nash equilibrium is less efficient for all players than some other outcome. In the Prisoners’
Dilemma, both fink in equilibrium when it would be more efficient for both to be silent.
In the Tragedy of the Commons, the herders graze more sheep in equilibrium than is effi-
cient. This insight may explain why ocean fishing grounds and other common resources can
end up being overused even to the point of exhaustion if their use is left unregulated. More
detail on such problems—involving what we will call negative externalities—is provided in
Chapter 19.

FIGURE 8.4 Best-Response Diagram for the Tragedy of the Commons

The intersection, E1, between the two herders’ best responses is the Nash equilibrium. An increase in
the per-sheep value of grazing in the Tragedy of the Commons shifts out herder 1’s best response,
resulting in a Nash equilibrium E2 in which herder 1 grazes more sheep (and herder 2, fewer sheep)
than in the original Nash equilibrium.
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SEQUENTIAL GAMES

In some games, the order of moves matters. For example, in a bicycle race with a staggered
start, it may help to go last and thus know the time to beat. On the other hand, competition
to establish a new high-definition video format may be won by the first firm to market its
technology, thereby capturing an installed base of consumers.

Sequential games differ from the simultaneous games we have considered so far in that a
player that moves later in the game can observe how others have played up to that moment.
The player can use this information to form more sophisticated strategies than simply choos-
ing an action; the player’s strategy can be a contingent plan with the action played depending
on what the other players have done.

To illustrate the new concepts raised by sequential games—and, in particular, to make a
stark contrast between sequential and simultaneous games—we take a simultaneous game we
have discussed already, the Battle of the Sexes, and turn it into a sequential game.

Sequential Battle of the Sexes
Consider the Battle of the Sexes game analyzed previously with all the same actions and
payoffs, but now change the timing of moves. Rather than the wife and husband making a
simultaneous choice, the wife moves first, choosing ballet or boxing; the husband observes
this choice (say, the wife calls him from her chosen location) and then the husband makes his
choice. The wife’s possible strategies have not changed: she can choose the simple actions
ballet or boxing (or perhaps a mixed strategy involving both actions, although this will not be
a relevant consideration in the sequential game). The husband’s set of possible strategies has
expanded. For each of the wife’s two actions, he can choose one of two actions, so he has four
possible strategies, which are listed in Table 8.8. The vertical bar in the husband’s strategies
means “conditional on” and so, for example, “boxing | ballet” should be read as “the
husband chooses boxing conditional on the wife’s choosing ballet”.

Given that the husband has four pure strategies rather than just two, the normal form
(given in Table 8.9) must now be expanded to eight boxes. Roughly speaking, the normal
form is twice as complicated as that for the simultaneous version of the game in Table 8.3. By
contrast, the extensive form, given in Figure 8.5, is no more complicated than the extensive
form for the simultaneous version of the game in Figure 8.2. The only difference between the

TABLE 8.8 Husband's Contingent Strategies

Contingent strategy Written in conditional format
Always go to the ballet (ballet | ballet, ballet | boxing)

Follow his wife (ballet | ballet, boxing | boxing)

Do the opposite (boxing | ballet, ballet | boxing)

Always go to boxing (boxing | ballet, boxing | boxing)

TABLE 8.9 Normal Form for the Sequential Battle of the Sexes

Husband

(Ballet | Ballet
Ballet | Boxing)

(Ballet | Ballet
Boxing | Boxing)

(Boxing | Ballet
Ballet | Boxing)

(Boxing | Ballet
Boxing | Boxing)

W
ife

Ballet 2, 1 2, 1 0, 0 0, 0

Boxing 0, 0 1, 2 0, 0 1, 2
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extensive forms is that the oval around the husband’s decision nodes has been removed. In the
sequential version of the game, the husband’s decision nodes are not gathered together in the
same information set because the husband observes his wife’s action and so knows which node
he is on beforemoving.We can begin to see why the extensive form becomesmore useful than
the normal form for sequential games, especially in games with many rounds of moves.

To solve for the Nash equilibria, consider the normal form in Table 8.9. Applying the
method of underlining best-response payoffs—being careful to underline both payoffs in
cases of ties for the best response—reveals three pure-strategy Nash equilibria:

1. wife plays ballet, husband plays (ballet | ballet, ballet | boxing);

2. wife plays ballet, husband plays (ballet | ballet, boxing | boxing);

3. wife plays boxing, husband plays (boxing | ballet, boxing | boxing).

As with the simultaneous version of the Battle of the Sexes, here againwe havemultiple equi-
libria. Yet now game theory offers a good way to select among the equilibria. Consider the third
Nash equilibrium. The husband’s strategy (boxing | ballet, boxing | boxing) involves the implicit
threat thathewill choose boxing even if hiswife chooses ballet. This threat is sufficient todeter her
from choosing ballet. Given that she chooses boxing in equilibrium, his strategy earns him 2,
which is the best he can do in any outcome. So the outcome is a Nash equilibrium. But the hus-
band’s threat is not credible— that is, it is an empty threat. If the wife really were to choose ballet
first, then hewould be giving up a payoff of 1 by choosing boxing rather than ballet. It is clearwhy
he would want to threaten to choose boxing, but it is not clear that such a threat should be
believed. Similarly, the husband’s strategy (ballet | ballet, ballet | boxing) in the first Nash equilib-
rium also involves an empty threat: that hewill choose ballet if his wife chooses boxing. (This is an
odd threat to make since he does not gain frommaking it, but it is an empty threat nonetheless.)

Another way to understand empty versus credible threats is by using the concept of the
equilibrium path, the connected path through the game tree implied by equilibrium strategies.

FIGURE 8.5 Extensive Form for the Sequential Battle of the Sexes

In the sequential version of the Battle of the Sexes, the husband moves second after observing his
wife’s move. The husband’s decision nodes are not gathered in the same information set.
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Figure 8.6 uses a dashed line to illustrate the equilibrium path for the third of the listed Nash
equilibria in the sequential Battle of the Sexes. The third outcome is a Nash equilibrium
because the strategies are rational along the equilibrium path. However, following the wife’s
choosing ballet—an event that is off the equilibrium path—the husband’s strategy is irrational.
The concept of subgame-perfect equilibrium in the next section will rule out irrational play
both on and off the equilibrium path.

Subgame-perfect equilibrium
Game theory offers a formal way of selecting the reasonable Nash equilibria in sequential
games using the concept of subgame-perfect equilibrium. Subgame-perfect equilibrium is a
refinement that rules out empty threats by requiring strategies to be rational even for con-
tingencies that do not arise in equilibrium.

Before defining subgame-perfect equilibrium formally, we need a few preliminary defini-
tions. A subgame is a part of the extensive form beginning with a decision node and including
everything that branches out to the right of it. A proper subgame is a subgame that starts at a
decision node not connected to another in an information set. Conceptually, this means that
the player who moves first in a proper subgame knows the actions played by others that have
led up to that point. It is easier to see what a proper subgame is than to define it in words.
Figure 8.7 shows the extensive forms from the simultaneous and sequential versions of the
Battle of the Sexes with boxes drawn around the proper subgames in each. In the simultaneous
Battle of the Sexes, there is only one decision node—the topmostmode—that is not connected
to another in the same information set; hence there is only one proper subgame, the game
itself. In the sequential Battle of the Sexes, there are three proper subgames: the game itself
and two lower subgames starting with decision nodes where the husband gets to move.

FIGURE 8.6 Equilibrium Path

In the third of the Nash equilibria listed for the sequential Battle of the Sexes, the wife plays boxing
and the husband plays (boxing | ballet, boxing | boxing), tracing out the branches indicated with
thick lines (both solid and dashed). The dashed line is the equilibrium path; the rest of the tree is
referred to as being “off the equilibrium path.”
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D E F I N I T I O N
Subgame-perfect equilibrium. Asubgame-perfectequilibrium is a strategyprofile ðs�1 , s�2 ,…,
s�n Þ that constitutes a Nash equilibrium for every proper subgame.

A subgame-perfect equilibrium is always a Nash equilibrium. This is true because the whole
game is a proper subgame of itself and so a subgame-perfect equilibrium must be a Nash
equilibrium for the whole game. In the simultaneous version of the Battle of the Sexes, there
is nothing more to say because there are no subgames other than the whole game itself.

In the sequential version of the Battle of the Sexes, subgame-perfect equilibrium has more
bite. Strategies must not only form a Nash equilibrium on the whole game itself, they must also
formNash equilibria on the two proper subgames starting with the decision points at which the
husband moves. These subgames are simple decision problems, so it is easy to compute the
corresponding Nash equilibria. For subgame C , beginning with the husband’s decision node
following his wife’s choosing ballet, he has a simple decision between ballet (which earns him a
payoff of 1) and boxing (which earns him a payoff of 0). The Nash equilibrium in this simple
decision subgame is for the husband to choose ballet. For the other subgame,D, he has a simple
decision between ballet, which earns him 0, and boxing, which earns him 2. The Nash equi-
librium in this simple decision subgame is for him to choose boxing. The husband therefore has
only one strategy that can be part of a subgame-perfect equilibrium: (ballet | ballet, boxing |
boxing). Any other strategy has him playing something that is not a Nash equilibrium for some
proper subgame. Returning to the three enumerated Nash equilibria, only the second is sub-
game perfect; the first and the third are not. For example, the third equilibrium, in which the
husband always goes to boxing, is ruled out as a subgame-perfect equilibrium because the

FIGURE 8.7 Proper Subgames in the Battle of the Sexes

The simultaneous Battle of the Sexes in (a) has only one proper subgame: the whole game itself,
labeled A. The sequential Battle of the Sexes in (b) has three proper subgames, labeled B, C , and D.
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husband’s strategy (boxing | boxing) is not a Nash equilibrium in proper subgameC : Subgame-
perfect equilibrium thus rules out the empty threat (of always going to boxing) that we were
uncomfortable with earlier.

More generally, subgame-perfect equilibrium rules out any sort of empty threat in a
sequential game. In effect, Nash equilibrium requires behavior to be rational only on the
equilibrium path. Players can choose potentially irrational actions on other parts of the game
tree. In particular, one player can threaten to damage both in order to scare the other from
choosing certain actions. Subgame-perfect equilibrium requires rational behavior both on and
off the equilibrium path. Threats to play irrationally—that is, threats to choose something
other than one’s best response—are ruled out as being empty.

Subgame-perfect equilibrium is not a useful refinement for a simultaneous game. This
is because a simultaneous game has no proper subgames besides the game itself and so
subgame-perfect equilibrium would not reduce the set of Nash equilibria.

Backward induction
Our approach to solving for the equilibrium in the sequential Battle of the Sexeswas to find all the
Nash equilibria using the normal form and then to seek among those for the subgame-perfect
equilibrium. A shortcut for finding the subgame-perfect equilibrium directly is to use backward
induction, the process of solving for equilibriumbyworking backwards from the end of the game
to the beginning. Backward induction works as follows. Identify all of the subgames at the
bottom of the extensive form. Find the Nash equilibria on these subgames. Replace the
(potentially complicated) subgameswith the actions and payoffs resulting fromNash equilibrium
play on these subgames. Then move up to the next level of subgames and repeat the procedure.

Figure 8.8 illustrates the use of backward induction to solve for the subgame-perfect
equilibrium of the sequential Battle of the Sexes. First, we compute the Nash equilibria of

FIGURE 8.8 Applying Backward Induction

The last subgames (where player 2 moves) are replaced by the Nash equilibria on these subgames.
The simple game that results at right can be solved for player 1’s equilibrium action.
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the bottommost subgames at the husband’s decision nodes. In the subgame following his
wife’s choosing ballet, he would choose ballet, giving payoffs 2 for her and 1 for him. In the
subgame following his wife’s choosing boxing, he would choose boxing, giving payoffs 1 for
her and 2 for him. Next, substitute the husband’s equilibrium strategies for the subgames
themselves. The resulting game is a simple decision problem for the wife (drawn in the lower
panel of the figure): a choice between ballet, which would give her a payoff of 2, and boxing,
which would give her a payoff of 1. The Nash equilibrium of this game is for her to choose the
action with the higher payoff, ballet. In sum, backward induction allows us to jump straight to
the subgame-perfect equilibrium in which the wife chooses ballet and the husband chooses
(ballet | ballet, boxing | boxing), bypassing the other Nash equilibria.

Backward induction is particularly useful in games that feature multiple rounds of sequen-
tial play. As rounds are added, it quickly becomes too hard to solve for all the Nash equilibria
and then to sort through which are subgame-perfect. With backward induction, an additional
round is simply accommodated by adding another iteration of the procedure.

REPEATED GAMES

In the games examined so far, each player makes one choice and the game ends. In many
real-world settings, players play the same game over and over again. For example, the players
in the Prisoners’ Dilemma may anticipate committing future crimes and thus playing future
Prisoners’ Dilemmas together. Gasoline stations located across the street from each other,
when they set their prices each morning, effectively play a new pricing game every day. The
simple constituent game (e.g., the Prisoners’ Dilemma or the gasoline-pricing game) that is
played repeatedly is called the stage game. As we saw with the Prisoners’ Dilemma, the
equilibrium in one play of the stage game may be worse for all players than some other,
more cooperative, outcome. Repeated play of the stage game opens up the possibility of
cooperation in equilibrium. Players can adopt trigger strategies, whereby they continue to
cooperate as long as all have cooperated up to that point but revert to playing the Nash
equilibrium if anyone deviates from cooperation. We will investigate the conditions under
which trigger strategies work to increase players’ payoffs. As is standard in game theory, wewill
focus on subgame-perfect equilibria of the repeated games.

Finitely repeated games
For many stage games, repeating them a known, finite number of times does not increase the
possibility for cooperation. To see this point concretely, suppose the Prisoners’ Dilemma were
repeated for T periods. Use backward induction to solve for the subgame-perfect equilibrium.
The lowest subgame is the Prisoners’ Dilemma stage game played in period T : Regardless of
what happened before, the Nash equilibrium on this subgame is for both to fink. Folding the
game back to period T � 1, trigger strategies that condition period-T play on what happens in
period T � 1 are ruled out. Although a player might like to promise to play cooperatively in
period T and so reward the other for playing cooperatively in period T � 1, we have just seen
that nothing that happens in period T � 1 affects what happens subsequently because players
bothfink in periodT regardless. It is as if periodT � 1were the last, and theNash equilibriumof
this subgame is again for both to fink.Working backward in this way, we see that players will fink
each period; that is, players will simply repeat the Nash equilibrium of the stage game T times.

Reinhard Selten, winner of the Nobel Prize in economics for his contributions to game
theory, showed that the same logic applies more generally to any stage game with a unique
Nash equilibrium.5 This result is called Selten’s theorem:

If the stage game has a unique Nash equilibrium, then the unique subgame-perfect equilibrium
of the finitely repeated game is to play the Nash equilibrium every period.
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If the stage game has multiple Nash equilibria, it may be possible to achieve some
cooperation in a finitely repeated game. Players can use trigger strategies, sustaining coopera-
tion in early periods on an outcome that is not an equilibrium of the stage game, by threaten-
ing to play in later periods theNash equilibrium that yields a worse outcome for the player who
deviates from cooperation. Example 8.7 illustrates how such trigger strategies work to sustain
cooperation.

EXAMPLE 8.7 Cooperation in a Finitely Repeated Game

The stage game given in normal form in Table 8.10 has two pure-strategy Nash equilibria. In
the “bad” pure-strategy equilibrium, each plays B and earns a payoff of 1; in the “good”
equilibrium, each playsC and earns a payoff of 3. Players would earn still more (i.e., 4) if both
played A, but this is not a Nash equilibrium. If one plays A, then the other would prefer to
deviate to B and earn 5. There is a third, mixed-strategy Nash equilibrium in which each plays
B with probability 3=4 and C with probability 1=4. The payoffs are graphed as solid circles in
Figure 8.9.

If the stage game is repeated twice, a wealth of new possibilities arise in subgame-perfect
equilibria. The same per-period payoffs (1 or 3) from the stage game can be obtained simply by
repeating the pure-strategyNash equilibria from the stage game twice. Per-period average payoffs
of 2.5 can be obtained by alternating between the good and the bad stage-game equilibria.

A more cooperative outcome can be sustained with the following strategy: begin by
playingA in the first period; if no one deviates fromA, playC in the second period; if a player
deviates from A, then play B in the second period. Backward induction can be used to show
that these strategies form a subgame-perfect equilibrium. The strategies form a Nash equilib-
rium in second-period subgames by construction. It remains to check whether the strategies
form a Nash equilibrium on the game as a whole. In equilibrium with these strategies, players
earn 4þ 3 ¼ 7 in total across the two periods. By deviating to B in the first period, a player can
increase his or her first-period payoff from 4 to 5, but this leads to both playing B in the second
period, reducing the second-period payoff from 3 to 1. The total payoff across the two periods
from this deviation is 5þ 1 ¼ 6, less than the 7 earned in the proposed equilibrium. The
average per-period payoff in this subgame-perfect equilibrium is 7=2 ¼ 3.5 for each player.

Asymmetric equilibria are also possible. In one, player 1 begins by playingB and player 2 by
playing A; if no one deviates then both play the good stage-game Nash equilibrium (both
play C), and if someone deviates then both play the bad equilibrium (both play B). Player 2

(continued)

TABLE 8.10 Stage Game for Example 8.7

Player 2

A B C

Pl
ay
er

1

A 4, 4 0, 5 0, 0

B 5, 0 1, 1 0, 0

C 0, 0 0, 0 3, 3

5R. Selten, “A Simple Model of Imperfect Competition, Where 4 Are Few and 6 Are Many,” International Journal of
Game Theory 2 (1973): 141–201.
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EXAMPLE 8.7 CONTINUED

does not want to deviate to playing B in the first period because he or she earns 1 from this
deviation in the first period and 1 in the second when they play the bad equilibrium for a total
of 1þ 1 ¼ 2, whereas he or she earns more, 0þ 3 ¼ 3; in equilibrium. The average per-
period payoff in this subgame-perfect equilibrium is ð5þ 3Þ=2 ¼ 4 for player 1 and 3=2 ¼ 1.5
for player 2. The reverse payoffs can be obtained by reversing the strategies. The average per-
period payoffs from the additional subgame-perfect equilibria we computed for the twice-
repeated game are graphed as squares in Figure 8.9.

If the game is repeated three times (T ¼ 3), then additional payoff combinations are
possible in subgame-perfect equilibria. Players can cooperate on playing A for two periods
and C in the last, a strategy that is sustained by the threat of immediately moving to the bad
equilibrium (both play B) if anyone deviates in the first two periods. This subgame-perfect
equilibrium gives each a per-period average payoff of ð4þ 4þ 3Þ=2 � 3:7, more than the 3.5
that was the most both could earn in the T ¼ 2 game. Asymmetric equilibria in the T ¼ 3
game include the possibility that 1 plays B and 2 plays A for the first two periods and
then both play C, with the threat of immediately moving to the bad equilibrium if anyone
deviates. Player 1’s per-period average payoff in this subgame-perfect equilibrium is
ð5þ 5þ 3Þ=3 � 4:3, and player 2’s payoff is ð0þ 0þ 3Þ=3 ¼ 1: The reverse strategies and
payoffs also constitute a possible subgame-perfect equilibrium. The payoffs from the addi-
tional subgame-perfect equilibria of the T ¼ 3 game are graphed as triangles in Figure 8.9.

FIGURE 8.9 Per-Period Average Payoffs in Example 8.7

Solid circles indicate payoffs in Nash equilibria of the stage game. Squares (in addition to circles)
indicate per-period average payoffs in subgame-perfect equilibria for T ¼ 2 repetitions of the stage
game. Triangles (in addition to circles and squares) indicate per-period average payoffs for T ¼ 3.
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QUERY: There are many other subgame-perfect equilibrium payoffs for the repeated game
than are shown in Figure 8.9. For the T ¼ 2 game, can you find at least two other combina-
tions of average per-period payoffs that can be attained in a subgame-perfect equilibrium?

For cooperation to be sustained in a subgame-perfect equilibrium, the stage game must
be repeated often enough that the punishment for deviation (repeatedly playing the less-
preferred Nash equilibrium) is severe enough to deter deviation. The more repetitions of the
stage game T , the more severe the possible punishment and thus the greater the level of
cooperation and the higher the payoffs that can be sustained in a subgame-perfect equilib-
rium. In Example 8.7, the most both players can earn in a subgame-perfect equilibrium
increases from 3 to 3.5 to about 3.7 as T increases from 1 to 2 to 3.

Example 8.7 suggests that the range of sustinable payoffs in a subgame-perfect equilib-
rium expands as the number of repetitions T increases. In fact, the associated Figure 8.9
understates the expansion because it does not graph all subgame-perfect equilibrium payoffs
for T ¼ 2 and T ¼ 3 (the Query in Example 8.7 asks you to find two more, for example).
We are left to wonder how much the set of possibilities might expand for yet higher T : Jean
Pierre Benoit and Vijay Krishna answer this question with their folk theorem for finitely
repeated games :6

Suppose that the stage game has multiple Nash equilibria and no player earns a constant payoff
across all equilibria. Any feasible payoff in the stage game greater than the player’s pure-strategy
minmax value can be approached arbitrarily closely by the player’s per-period average payoff
in some subgame-perfect equilibrium of the finitely repeated game for large enough T :7

We will encounter other folk theorems in later sections of this chapter. Generally speak-
ing, a folk theorem is a result that “anything is possible” in the limit with repeated games.
Such results are called “folk” theorems because they were understood informally and thus
were part of the “folk wisdom” of game theory well before anyone wrote down formal proofs.

To understand the folk theorem fully, we need to understand what feasible payoffs and
minmax values are. A feasible payoff is one that can be achieved by somemixed-strategy profile
in the stage game. Graphically, the feasible payoff set appears as the convex hull of the pure-
strategy stage-game payoffs. The convex hull of a set of points is the border and interior of the
largest polygon that can be formed by connecting the points with line segments. For example,
Figure 8.10 graphs the feasible payoff set for the stage game from Example 8.7 as the upward-
hatched region. To derive this set, one first graphs the pure-strategy payoffs from the stage
game. Referring to the normal form in Table 8.10, the distinct pure-strategy payoffs are (4, 4),
(0, 5), (0, 0), (5, 0), (1, 1), and (3, 3). The convex hull is the polygon formed by line segments
going from (0, 0) to (0, 5) to (4, 4) to (5, 0), and back to (0, 0). Each point in the convex hull
corresponds to the expected payoffs from some combination of mixed strategies for players 1
and 2 over actionsA, B, andC : For example, the point (3, 0) on the boundary of the convex
hull corresponds to players’ expected payoffs if 1 plays the mixed strategy (0, 3=5, 2=5) and 2
plays A:

A minmax value is the least that player i can be forced to earn.

6J. P. Benoit and V. Krishna, “Finitely Repeated Games,” Econometrica 53 (1985): 890–904.
7An additional, technical condition is that the dimension of the feasible set of payoffs must equal the number of players. In
the two-player game in Example 8.7, this condition would require the feasible payoff set to be a region (which is the case, as
shown in Figure 8.12) rather than a line or a point.
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D E F I N I T I O N
Minmax value. The minmax value is the following payoff for player i:

min
s�i

h
max

si
uiðsi, s�iÞ

i
, (8.19)

that is, the lowest payoff player i can be held to if all other players work against him or her
but player i is allowed to choose a best response to them.

InExample 8.7, if 2 plays themixed strategy (0, 3=4, 1=4) then themost player 1 can earn in the
stage game is 3=4 (by playing any mixed strategy involving only actions B andC). A little work
shows that 3=4 is indeed player 1’s minmax value: any other strategy for 2 besides (0, 3=4, 1=4)
would allow 1 to earn a higher payoff than 3=4. The folk theorem for finitely repeated games
involves the pure-strategy minmax value—that is, the minmax value when players are restricted
to using only pure strategies. The pure-strategy minmax value is easier to compute than the
general minmax value. The lowest that player 2 can hold 1 to in Example 8.7 is a payoff of 1;
player 2 does this by playing B and then 1 responds by playing B: Figure 8.10 graphs the payoffs
exceeding both players’ pure-strategy minmax values as the downward-hatched region.

The folk theorem for finitely repeated games assures us that any payoffs in the cross-
hatched region of Figure 8.10—payoffs that are feasible and above both players’ pure strategy

FIGURE 8.10 Folk Theorem for Finitely Repeated Games in Example 8.7

The feasible payoffs for the stage game in Example 8.7 are in the upward-hatched region; payoffs
greater than each player’s minmax values are in the downward-hatched region. Their intersection
(the cross-hatched region) constitutes the per-period average payoffs that can be approached by
some subgame-perfect equilibrium of the repeated game, according to the folk theorem for finitely
repeated games. Regions are superimposed on the equilibrium payoffs from Figure 8.9.

5

4

3

2

1

10 2 3 4 5
u1

u2

264 Part 2 Choice and Demand



minmax values—can be approached as the per-period average payoffs in a subgame-perfect
equilibrium if the stage game in Example 8.7 is repeated often enough. Payoffs (4, 4) can be
approached by having players cooperate on playing A for hundreds of periods and then
playing C in the last period (threatening the bad equilibrium in which both play B if anyone
deviates from cooperation). The average of hundreds of payoffs of 4 with one payoff of 3
comes arbitrarily close to 4. Therefore, a considerable amount of cooperation is possible if the
game is repeated often enough.

Figure 8.10 also shows that many outcomes other than full cooperation are possible if the
number of repetitions, T , is large. Although subgame-perfect equilibrium was selective in the
sequential version of the Battle of the Sexes, allowing us to select one of three Nash equilibria,
we see that subgame perfection may not be selective in repeated games. The folk theorem
states that if the stage game has multiple Nash equilibria then almost anything can happen in
the repeated game for T large enough.8

Infinitely repeated games
With finitely repeated games, the folk theorem applies only if the stage game has multiple
equilibria. If, like the Prisoners’Dilemma, the stage game has only oneNash equilibrium, then
Selten’s theorem tells us that the finitely repeated game has only one subgame-perfect
equilibrium: repeating the stage-game Nash equilibrium each period. Backward induction
starting from the last period T unravels any other outcomes.

With infinitely repeated games, however, there is no definite ending period T from which
to start backward induction. A folk theorem will apply to infinitely repeated games even if the
underlying stage game has only one Nash equilibrium. Therefore, while both players fink
every period in the unique subgame-perfect equilibrium of the finitely repeated Prisoners’
Dilemma, players may end up cooperating (being silent) in the infinitely repeated version.

One difficulty with infinitely repeated games involves adding up payoffs across periods.
With finitely repeated games, we could focus on average payoffs. With infinitely repeated
games, the average is not well-defined because it involves an infinite sum of payoffs divided by
an infinite number of periods. We will circumvent this problem with the aid of discounting.
Let δ be the discount factor (discussed in the Chapter 17 Appendix) measuring how much a
payoff unit is worth if received one period in the future rather than today. In Chapter 17 we
show that δ is inversely related to the interest rate. If the interest rate is high then a person
wouldmuch rather receive payment today than next period because investing today’s payment
would provide a return of principal plus a large interest payment next period. Besides the
interest rate, δ can also incorporate uncertainty about whether the game continues in future
periods. The higher the probability that the game ends after the current period, the lower the
expected return from stage games that might not actually be played.

Factoring in a probability that the repeated game ends after each period makes the setting
of an infinitely repeated game more believable. The crucial issue with an infinitely repeated
game is not that it goes on forever but that its end is indeterminate. Interpreted in this way,
there is a sense in which infinitely repeated games are more realistic than finitely repeated
games with large T : Suppose we expect two neighboring gasoline stations to play a pricing
game each day until electric cars replace gasoline-powered ones. It is unlikely the gasoline
stations would know that electric cars were coming in exactly T ¼ 2,000 days. More realisti-
cally, the gasoline stations will be uncertain about the end of gasoline-powered cars and so the
end of their pricing game is indeterminate.

8The folk theorem for finitely repeated games does not necessarily capture all subgame-perfect equilibria. In Figure 8.12,
the point (3=4, 3=4) lies outside the cross-hatched region; nonetheless, it can be achieved in a subgame-perfect equilibrium
in which, each period, both players play the Nash equilibrium of the stage game in strictly mixed strategies. Payoffs (3=4,
3=4) are in a “gray area” between player’s pure-strategy and mixed-strategy minmax values.
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Players can sustain cooperation in infinitely repeated games by using trigger strategies :
players continue cooperating unless someone has deviated from cooperation, and this devia-
tion triggers some sort of punishment. In order for trigger strategies to form an equilibrium,
the punishment must be severe enough to deter deviation.

Suppose both players use the following trigger strategy in the Prisoners’ Dilemma: con-
tinue being silent if no one has deviated by playing fink; fink forever afterward if anyone has
deviated to fink in the past. To show that this trigger strategy forms a subgame-perfect
equilibrium, we need to check that a player cannot gain from deviating. Along the equilibrium
path, both players are silent every period; this provides each with a payoff of 2 every period for a
present discounted value of

V eq ¼ 2þ 2δþ 2δ2 þ 2δ3 þ…

þ 2ð1þ δþ δ2 þ δ3 þ…Þ

¼ 2
1� δ

: (8.20)

A player who deviates by finking earns 3 in that period, but then both players fink every
period from then on—each earning 1 per period for a total presented discounted payoff of

V dev ¼ 3þ ð1ÞðδÞ þ ð1Þðδ2Þ þ ð1Þðδ3Þ þ…

þ 3þ δð1þ δþ δ2 þ…Þ
¼ 3þ δ

1� δ
: (8.20)

The trigger strategies form a subgame-perfect equilibrium if V eq 	 V dev; implying that

2
1� δ

	 3þ δ

1� δ
; (8.22)

after multiplying through by 1� δ and rearranging, we obtain δ 	 1=2: In other words,
players will find continued cooperative play desirable provided they do not discount future
gains from such cooperation too highly. If δ < 1=2, then no cooperation is possible in the
infinitely repeated Prisoners’ Dilemma; the only subgame-perfect equilibrium involves fink-
ing every period.

The trigger strategy we considered has players revert to the stage-game Nash equilibrium
of finking each period forever. This strategy, which involves the harshest possible punishment
for deviation, is called the grim strategy. Less harsh punishments include the so-called tit-for-
tat strategy, which involves only one round of punishment for cheating. Since it involves the
harshest punishment possible, the grim strategy elicits cooperation for the largest range of
cases (the lowest value of δ) of any strategy. Harsh punishments work well because, if players
succeed in cooperating, they never experience the losses from the punishment in equilibrium.9

The discount factor δ is crucial in determining whether trigger strategies can sustain
cooperation in the Prisoners’ Dilemma or, indeed, in any stage game. As δ approaches 1,
grim-strategy punishments become infinitely harsh because they involve an unending stream
of undiscounted losses. Infinite punishments can be used to sustain a wide range of possible
outcomes. This is the logic behind the folk theorem for infinitely repeated games :10

9Nobel Prize–winning economist Gary Becker introduced a related point, the maximal punishment principle for crime. The
principle says that even minor crimes should receive draconian punishments, which can deter crime with minimal
expenditure on policing. The punishments are costless to society because no crimes are committed in equilibrum, so
punishments never have to be carried out. See G. Becker, “Crime and Punishment: An Economic Approach,” Journal of
Political Economy 76 (1968): 169–217. Less harsh punishments may be suitable in settings involving uncertainty. For
example, citizens may not be certain about the penal code; police may not be certain they have arrested the guilty party.
10This folk theorem is due to D. Fudenberg and E. Maskin, “The Folk Theorem in Repeated Games with Discounting or
with Incomplete Information,” Econometrica 54 (1986): 533–56.
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Any feasible payoff in the stage game greater than the player’s minmax value can be obtained as
the player’s normalized payoff (normalized by multiplying by 1� δ:) in some subgame-perfect
equilibrium of the infinitely repeated game for δ close enough to 1.11

A few differences with the folk theorem for finitely repeated games are worth emphasizing.
First, the limit involves increases in δ rather than in the number of periods T : The two limits
are related. Interpreting δ as capturing the probability that the game continues into the next
period, an increase in δ increases the expected number of periods the game is played in total—
similar to an increase in T with the difference that now the end of the game is indefinite.
Another difference between the two folk theorems is that the one for infinitely repeated games
holds even if the stage game has just a single Nash equilibriumwhereas the theorem for finitely
repeated games requires the stage game to have multiple Nash equilibria.

A final technicality is that comparing stage-game payoffs with the present discounted value
of a stream of payoffs from the infinitely repeated game is like comparing apples with oranges.
Tomake the two comparable, we “normalize” the payoff from the infinitely repeated game via
multiplying by 1� δ: This normalization allows us to think of all payoffs in per-period terms
for easy comparison.12

FIGURE 8.11 Folk-Theorem Payoffs in the Infinitely Repeated Prisoners' Dilemma

Feasible payoffs are in the upward-hatched region; payoffs greater than each player’s minmax values
are in the downward-hatched region. Their intersection (the cross-hatched region) constitutes the
achievable payoffs according to the folk theorem for infinitely repeated games.
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11As in footnote 9, an additional technical condition on the dimension of the feasible payoff set is also required.
12For example, suppose a player earns $1 at the beginning of each period. The present discounted value of the stream of
these $1 payoffs for an infinite number of periods is

$1þ $1 � δþ $1 � δ2 þ $1 � δ3 þ… ¼ $1
1� δ

:

Multiplying through by 1� δ converts this stream of payments back into the per-period payoff of $1. The Chapter 17
Appendix provides more detail on the calculation of present discounted values of annuity streams (though beware the
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Figure 8.11 illustrates the folk theorem for infinitely repeated games in the case of the
Prisoners’ Dilemma. The figure shows the range of normalized payoffs that are possible in
some subgame-perfect equilibrium of the infinitely repeated Prisoners’ Dilemma. Again we
see that subgame perfection may not be particularly selective in certain repeated games.

INCOMPLETE INFORMATION

In the games studied so far, players knew everything there was to know about the setup of the
game, including each others’ strategy sets and payoffs. Matters become more complicated,
and potentially more interesting, if some players have information about the game that others
do not. Poker would be quite different if all hands were played face up. The fun of playing
poker comes from knowing what is in your hand but not others’. Incomplete information
arises in many other real-world contexts besides parlor games. A sports team may try to hide
the injury of a star player from future opponents to prevent them from exploiting this
weakness. Firms’ production technologies may be trade secrets, and thus firms may not
know whether they face efficient or weak competitors. This section (and the next two) will
introduce the tools needed to analyze games of incomplete information. The analysis inte-
grates the material on game theory developed so far in this chapter with the material on
uncertainty and information from the previous chapter.

Games of incomplete information can quickly become very complicated. Players that lack
full information about the game will try to use what they do know to make inferences about
what they do not. The inference process can be quite involved. In poker, for example,
knowing what is in your hand can tell you something about what is in others’. A player
that holds two aces knows that others are less likely to hold aces because two of the four aces
are not available. Information on others’ hands can also come from the size of their bets or
from their facial expressions (of course, a big bet may be a bluff and a facial expression may be
faked). Probability theory provides a formula, called Bayes’ rule, for making inferences about
hidden information. We will encounter Bayes’ rule in a later section. The relevance of Bayes’
rule in games of incomplete information has led them to be called Bayesian games.

To limit the complexity of the analysis, we will focus on the simplest possible setting
throughout. We will focus on two-player games in which one of the players (player 1) has
private information and the other (player 2) does not. The analysis of games of incomplete
information is divided into two sections. The next section begins with the simple case in
which the players move simultaneously. The subsequent section then analyzes games in
which the informed player 1 moves first. Such games, called signaling games, are more com-
plicated than simultaneous games because player 1’s action may signal something about his
private information to the uninformed player 2. We will introduce Bayes’ rule at that point to
help analyze player 2’s inference about player 1’s hidden information based on observations
of player 1’s action.

SIMULTANEOUS BAYESIAN GAMES

In this section we study a two-player, simultaneous-move game in which player 1 has private
information but player 2 does not. (We will use “he” for player 1 and “she” for player 2 in
order to facilitate the exposition.) We begin by studying how to model private information.

subtle difference that in Chapter 17 the annuity payments come at the end of each period rather than at the beginning as
assumed here).
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Player types and beliefs
John Harsanyi, who received the Nobel Prize in economics for his work on games with
incomplete information, provided a simple way to model private information by introducing
player characteristics or types.13 Player 1 can be one of a number of possible such types,
denoted t : Player 1 knows his own type. Player 2 is uncertain about t and must decide on her
strategy based on beliefs about t :

Formally, the game begins at an initial node, called a chance node, at which a particular
value tk is randomly drawn for player 1’s type t from a set of possible types T ¼ ft1,…,
tk,…, tKg: Let PrðtkÞ be the probability of drawing the particular type tk: Player 1 sees which
type is drawn. Player 2 does not see the draw and only knows the probabilities, using them to
form her beliefs about player 1’s type. Thus the probability that player 2 places on player 1’s
being of type tk is PrðtkÞ:

Since player 1 observes his type t before moving, his strategy can be conditioned on t :
Conditioning on this information may be a big benefit to a player. In poker, for example, the
stronger a player’s hand, the more likely the player is to win the pot and the more aggressively
the player may want to bid. Let s1ðtÞ be 1’s strategy contingent on his type. Since player 2
does not observe t , her strategy is simply the unconditional one, s2: As with games of
complete information, players’ payoffs depend on strategies. In Bayesian games, payoffs
may also depend on types. We therefore write player 1’s payoff as u1ðs1ðtÞ, s2, tÞ and 2’s as
u2ðs2, s1ðtÞ, tÞ: Note that t appears in two places in 2’s payoff function. Player 1’s type may
have a direct effect on 2’s payoffs. Player 1’s type also has an indirect effect through its effect
on 1’s strategy s1ðtÞ, which in turn affects 2’s payoffs. Since 2’s payoffs depend on t in these
two ways, her beliefs about t will be crucial in the calculation of her optimal strategy.

Table 8.11 provides a simple example of a simultaneous Bayesian game. Each player
chooses one of two actions. All payoffs are known except for 1’s payoff when 1 chooses U
and 2 chooses L: Player 1’s payoff in outcome ðU ,LÞ is identified as his type, t : There are two
possible values for player 1’s type, t ¼ 6 and t ¼ 0; each occurring with equal probability.
Player 1 knows his type before moving. Player 2’s beliefs are that each type has probability
1=2. The extensive form is drawn in Figure 8.12.

Bayesian-Nash equilibrium
Extending Nash equilibrium to Bayesian games requires two small matters of interpretation.
First, recall that player 1 may play a different action for each of his types. Equilibrium requires
that 1’s strategy be a best response for each and every one of his types. Second, recall that
player 2 is uncertain about player 1’s type. Equilibrium requires that 2’s strategy maximize an
expected payoff, where the expectation is taken with respect to her beliefs about 1’s type. We
encountered expected payoffs in our discussion of mixed strategies. The calculations involved
in computing the best response to the pure strategies of different types of rivals in a game of

TABLE 8.11 Simple Game of Incomplete Information

Player 2

L R
Pl
ay
er

1 U t, 2 0, 0

D 2, 0 2, 4

Note: t ¼ 6 with probability 1=2 and t ¼ 0 with probability 1=2.

13J. Harsanyi, “Games with Incomplete Information Played by Bayesian Players,” Management Science 14 (1967∕68):
159–82, 320–34, 486–502.
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incomplete information are similar to the calculations involved in computing the best re-
sponse to a rival’s mixed strategy in a game of complete information.

Interpreted in this way, Nash equilibrium in the setting of a Bayesian game is called
Bayesian-Nash equilibrium.

D E F I N I T I O N
Bayesian-Nash equilibrium. In a two-player, simultaneous-move game in which player 1
has private information, a Bayesian-Nash equilibrium is a strategy profile ðs�1 ðtÞ, s�2 Þ such that
s�1 ðtÞ is a best response to s�2 for each type t 2 T of player 1,

U1ðs�1 ðt Þ, s�2 , t Þ 	 U1ðs 01, s�2 , t Þ for all s 01 2 S1, (8.23)

and such that s�2 is a best response to s�1 ðtÞ given player 2’s beliefs PrðtkÞ about player 1’s
types:X

tk2T
PrðtkÞU2ðs�2 , s�1 ðtkÞ, tkÞ 	

X
tk2T

PrðtkÞU2ðs 02, s�1 ðtkÞ, tkÞ for all s 02 2 S2. (8.24)

Since the difference between Nash equilibrium and Bayesian-Nash equilibrium is only a
matter of interpretation, all our previous results for Nash equilibrium (including the existence
proof) apply to Bayesian-Nash equilibrium as well.

FIGURE 8.12 Extensive Form for Simple Game of Incomplete Information

This figure translates Table 8.11 into an extensive-form game. The initial chance node is indicated by
an open circle. Player 2’s decision nodes are in the same information set because she does not observe
1’s type or action prior to moving.
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EXAMPLE 8.8 Bayesian-Nash Equilibrium of Game in Figure 8.12

To solve for the Bayesian-Nash equilibrium of the game in Figure 8.12, first solve for the
informed player’s (player 1’s) best responses for each of his types. If player 1 is of type t ¼ 0
then he would choose D rather than U because he earns 0 by playing U and 2 by playing D
regardless of what 2 does. If player 1 is of type t ¼ 6, then his best response isU to 2’s playing
L andD to her playing R. This leaves only two possible candidates for an equilibrium in pure
strategies:

1 plays ðU jt ¼ 6, Djt ¼ 0Þ and 2 plays L;
1 plays ðDjt ¼ 6, Djt ¼ 0Þ and 2 playsR.

Thefirst candidatecannotbeanequilibriumbecause,given that1plays ðU jt ¼ 6, Djt ¼ 0Þ,
2 earns an expected payoff of 1 from playing L: Player 2 would gain by deviating toR, earning
an expected payoff of 2.

The second candidate is a Bayesian-Nash equilibrium.Given that 2 playsR, 1’s best response
is to playD, providing a payoff of 2 rather than 0 regardless of his type. Given that both types of
player 1 playD, player 2’s best response is to play R, providing a payoff of 4 rather than 0.

QUERY: If the probability that player 1 is of type t ¼ 6 is high enough, can the first candidate
be a Bayesian-Nash equilibrium? If so, compute the threshold probability.

EXAMPLE 8.9 Tragedy of the Commons as a Bayesian Game

For an example of a Bayesian game with continuous actions, consider the Tragedy of the
Commons in Example 8.6 but now suppose that herder 1 has private information regarding
his value of grazing per sheep:

v1ðq1, q2, t Þ ¼ t � ðq1 þ q2Þ, (8.25)

where 1’s type is t ¼ 130 (the “high” type) with probability 2=3 and t ¼ 100 (the “low”
type) with probability 1=3. Herder 2’s value remains the same as in Equation 8.11.

To solve for the Bayesian-Nash equilibrium, we first solve for the informed player’s
(herder 1’s) best responses for each of his types. For any type t and rival’s strategy q2, herder
1’s value-maximization problem is

max
q1

fq1v1ðq1, q2, t Þg ¼ max
q1

fq1ðt � q1 � q2Þg. (8.26)

The first-order condition for a maximum is

t � 2q1 � q2 ¼ 0. (8.27)

Rearranging and then substituting the values t ¼ 130 and t ¼ 100, we obtain

q1H ¼ 65� q2
2

and q1L ¼ 50� q2
2
, (8.28)

where q1H is the quantity for the “high” type of herder 1 (that is, the t ¼ 130 type) and q1L
for the “low” type (the t ¼ 130 type).

Next we solve for 2’s best response. Herder 2’s expected payoff is

2
3
½q2ð120� q1H � q2Þ� þ

1
3
½q2ð120� q1L � q2Þ� ¼ q2ð120� _

q1 � q2Þ, (8.29)

(continued)
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EXAMPLE 8.9 CONTINUED

where
_
q1 ¼ 2

3
q1H þ 1

3
q1L . (8.30)

Rearranging the first-order condition from the maximization of Equation 8.29 with respect
to q2 gives

q2 ¼ 60�
_
q1

2
. (8.31)

Substituting for q1H and q1L from Equation 8.28 into Equation 8.30 and then substituting
the resulting expression for

_
q1 into Equation 8.31 yields

q2 ¼ 30þ q2
4
, (8.32)

implying that q�2 ¼ 40: Substituting q�2 ¼ 40 back into Equation 8.28 implies q�1H ¼ 45 and
q�1L ¼ 30:

Figure 8.13 depicts the Bayesian-Nash equilibrium graphically. Herder 2 imagines playing
against an average type of herder 1, whose average best response is given by the thick dashed
line. The intersection of this best response and herder 2’s at pointB determines 2’s equilibrium
quantity, q�2 ¼ 40: The best response of the low (resp. high) type of herder 1 to q�2 ¼ 40 is
given by point A (resp. point C). For comparison, the full-information Nash equilibria are
drawn when herder 1 is known to be the low type (point A0) or the high type (point C 0).

QUERY: Suppose herder 1 is the high type. How does the number of sheep each herder
grazes change as the game moves from incomplete to full information (moving from pointC 0

FIGURE 8.13 Equilibrium of the Bayesian Tragedy of the Commons

Best responses for herder 2 and both types of herder 1 are drawn as thick solid lines; the expected best
response as perceived by 2 is drawn as the thick dashed line. The Bayesian-Nash equilibrium of the
incomplete-information game is given by points A and C ; Nash equilibria of the corresponding full-
information games are given by points A0 and C 0.
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to C)? What if herder 1 is the low type? Which type prefers full information and thus would
like to signal its type? Which type prefers incomplete information and thus would like to hide
its type? We will study the possibility player 1 can signal his type in the next section.

SIGNALING GAMES

In this section we move from simultaneous-move games of private information to sequential
games in which the informed player, 1, takes an action that is observable to 2 before 2 moves.
Player 1’s action provides information, a signal, that 2 can use to update her beliefs about 1’s
type, perhaps altering the way 2 would play in the absence of such information. In poker, for
instance, player 2 may take a big raise by player 1 as a signal that he has a good hand, perhaps
leading 2 to fold. A firm considering whether to enter a market may take the incumbent firm’s
low price as a signal that the incumbent is a low-cost producer and thus a tough competitor,
perhaps keeping the entrant out of the market. A prestigious college degree may signal that a
job applicant is highly skilled.

The analysis of signaling games is more complicated than simultaneous games because we
need to model how player 2 processes the information in 1’s signal and then updates her
beliefs about 1’s type. To fix ideas, we will focus on a concrete application: a version of
Michael Spence’s model of job-market signaling, for which he won the 2001 Nobel Prize in
economics.14

Job-market signaling
Player 1 is a worker who can be one of two types, high-skilled ðt ¼ H Þ or low-skilled
ðt ¼ LÞ: Player 2 is a firm that considers hiring the applicant. A low-skilled worker is
completely unproductive and generates no revenue for the firm; a high-skilled worker
generates revenue π: If the applicant is hired, the firm must pay the worker w (think of
this wage as being fixed by government regulation). Assume π > w > 0: Therefore, the firm
wishes to hire the applicant if and only if he or she is high-skilled. But the firm cannot
observe the applicant’s skill; it can observe only the applicant’s prior education. Let cH be the
high type’s cost of obtaining an education and cL the low type’s. Assume cH < cL , implying
that education requires less effort for the high-skilled applicant than the low-skilled one. We
make the extreme assumption that education does not increase the worker’s productivity
directly. The applicant may still decide to obtain an education because of its value as a signal
of ability to future employers.

Figure 8.14 shows the extensive form. Player 1 observes his or her type at the start; player 2
observes only 1’s action (education signal) before moving. Let PrðH Þ and PrðLÞ be 2’s beliefs
prior to observing 1’s education signal that 1 is high- or low-skilled, respectively. These are
called 1’s prior beliefs. Observing 1’s action will lead 2 to revise its beliefs to form what are
called posterior beliefs. For example, the probability that the worker is high-skilled is, condi-
tional on the worker’s having obtained an education, PrðH jEÞ and, conditional on no edu-
cation, PrðH jNEÞ:

Player 2’s posterior beliefs are used to compute its best response to 1’s education decision.
Suppose 2 sees 1 choose E: Then 2’s expected payoff from playing J is

PrðH jEÞðπ� wÞ þ PrðLjEÞð�wÞ ¼ PrðH jEÞπ� w, (8.33)

where the left-hand side of this equation follows from the fact that, since L and H are the
only types, PrðLjEÞ ¼ 1� PrðH jEÞ: Player 2’s payoff from playingNJ is 0. To determine its

14M. Spence, “Job-Market Signaling,” Quarterly Journal of Economics 87 (1973): 355–74.
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best response to E, player 2 compares the expected payoff in Equation 8.33 to 0. Player 2’s
best response is J if and only if PrðH jEÞ 	 w=π:

The question remains of how to compute posterior beliefs such as PrðH jEÞ: Rational
players use a statistical formula, called Bayes’ rule, to revise their prior beliefs to form posterior
beliefs based on the observation of a signal.

Bayes’ rule
Bayes’ rule gives the following formula for computing player 2’s posterior belief PrðH jEÞ:15

FIGURE 8.14 Job-Market Signaling

Player 1 (worker) observes his or her own type. Then 1 chooses to become educated (E) or not
(NE). After observing 1’s action, player 2 (firm) decides to make him or her a job offer (J ) or not
(NJ ). The nodes in 2’s information sets are labeled n1,…,n4 for reference.
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15Equation 8.34 can be derived from the definition of conditional probability in footnote 24 of Chapter 2. (Equation 8.35
can be derived similarly.) By definition,

PrðH jEÞ ¼ PrðH and EÞ
PrðEÞ .

Reversing the order of the two events in the conditional probability yields

PrðEjH Þ ¼ PrðH and EÞ
PrðH Þ

or, after rearranging,

PrðH and EÞ ¼ PrðEjH Þ PrðH Þ.
Substituting the preceding equation into the first displayed equation of this footnote gives the numerator of Equation 8.34.
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PrðH jEÞ ¼ PrðEjH Þ PrðH Þ
PrðEjH Þ PrðH Þ þ PrðEjLÞ PrðLÞ. (8.34)

Similarly, PrðH jEÞ is given by

PrðH jNEÞ ¼ PrðNEjH Þ PrðH Þ
PrðNEjH Þ PrðH Þ þ PrðNEjLÞ PrðLÞ. (8.35)

Two sorts of probabilities appear on the left-hand side of Equations 8.34 and 8.35:

• the prior beliefs PrðH Þ and PrðLÞ;
• the conditional probabilities PrðEjH Þ, PrðNEjLÞ, and so forth.

The prior beliefs are given in the specification of the game by the probabilities of the different
branches from the initial chance node. The conditional probabilities PrðEjH Þ, PrðNEjLÞ,
and so forth are given by player 1’s equilibrium strategy. For example, PrðEjH Þ is the
probability that 1 plays E if he or she is of type H , PrðNEjLÞ is the probability that 1 plays
NE if he or she is of type L, and so forth. As the schematic diagram in Figure 8.15
summarizes, Bayes’ rule can be thought of as a “black box” that takes prior beliefs and
strategies as inputs and gives as outputs the beliefs we must know in order to solve for an
equilibrium of the game: player 2’s posterior beliefs.

When 1 plays a pure strategy, Bayes’ rule often gives a simple result. Suppose, for example,
that PrðEjH Þ ¼ 1 and PrðEjLÞ ¼ 0 or, in other words, that player 1 obtains an education if
and only if he or she is high-skilled. Then Equation 8.34 implies

PrðH jEÞ ¼ 1 ⋅ PrðH Þ
1 ⋅ PrðH Þ þ 0 ⋅ PrðLÞ ¼ 1. (8.36)

That is, player 2 believes that 1 must be high-skilled if it sees 1 choose E:On the other hand,
suppose that PrðEjH Þ ¼ PrðEjLÞ ¼ 1—that is, suppose player 1 obtains an education re-
gardless of his or her type. Then Equation 8.34 implies

FIGURE 8.15 Bayes’ Rule as a Black Box

Bayes’ rule is a formula for computing player 2’s posterior beliefs from other pieces of information in
the game.
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The denominator follows because the events of player 1’s being of type H or L are mutually exclusive and jointly
exhaustive, so

PrðEÞ ¼ PrðE and H Þ þ PrðE and LÞ
¼ PrðEjH Þ PrðH Þ þ PrðEjLÞ PrðLÞ.
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PrðH jEÞ ¼ 1 ⋅ PrðH Þ
1 ⋅ PrðH Þ þ 1 ⋅ PrðLÞ ¼ PrðH Þ, (8.37)

since PrðH Þ þ PrðLÞ ¼ 1: That is, seeing 1 play E provides no information about 1’s type, so
2’s posterior belief is the same as its prior. More generally, if 2 plays the mixed strategy
PrðEjH Þ ¼ p and PrðEjLÞ ¼ q, then Bayes’ rule implies that

PrðH jEÞ ¼ p PrðH Þ
p PrðH Þ þ q PrðLÞ. (8.38)

Perfect Bayesian equilibrium
With games of complete information, we moved from Nash equilibrium to the refinement of
subgame-perfect equilibrium in order to rule out noncredible threats in sequential games.
For the same reason, with games of incomplete information we move from Bayesian-Nash
equilibrium to the refinement of perfect Bayesian equilibrium.

D E F I N I T I O N
Perfect Bayesian equilibrium. A perfect Bayesian equilibrium consists of a strategy profile
and a set of beliefs such that

• at each information set, the strategy of the player moving there maximizes his or her
expected payoff, where the expectation is taken with respect to his or her beliefs; and

• at each information set, where possible, the beliefs of the player moving there are
formed using Bayes’ rule (based on prior beliefs and other players’ strategies).

The requirement that players play rationally at each information set is similar to the require-
ment from subgame-perfect equilibrium that play on every subgame form a Nash equilib-
rium. The requirement that players use Bayes’ rule to update beliefs ensures that players
incorporate the information from observing others’ play in a rational way.

The remaining wrinkle in the definition of perfect Bayesian equilibrium is that Bayes’ rule
need only be used “where possible.” Bayes’ rule is useless following a completely unexpected
event—in the context of a signaling model, an action that is not played in equilibrium by any
type of player 1. For example, if neither H nor L type chooses E in the job-market signaling
game, then the denominators of Equations 8.34 and 8.35 equal zero and the fraction is
undefined. If Bayes’ rule gives an undefined answer, then perfect Bayesian equilibrium puts
no restrictions on player 2’s posterior beliefs and so we can assume any beliefs we like.

As we saw with games of complete information, signaling games may have multiple
equilibria. The freedom to specify any beliefs when Bayes’ rule gives an undefined answer
may support additional perfect Bayesian equilibria. A systematic analysis of multiple equilibria
starts by dividing the equilibria into three classes—separating, pooling, and hybrid. Then we
look for perfect Bayesian equilibria within each class.

In a separating equilibrium, each type of player 1 chooses a different action. Therefore,
player 2 learns 1’s type with certainty after observing 1’s action. The posterior beliefs that
come from Bayes’ rule are all zeros and ones. In a pooling equilibrium, different types of
player 1 choose the same action. Observing 1’s action provides 2 with no information about
1’s type. Pooling equilibria arise when one of player 1’s types chooses an action that would
otherwise be suboptimal in order to hide his or her private information. In a hybrid equilib-
rium, one type of player 1 plays a strictly mixed strategy; it is called a hybrid equilibrium
because the mixed strategy sometimes results in the types being separated and sometimes
pooled. Player 2 learns a little about 1’s type (Bayes’ rule refines 2’s beliefs a bit) but doesn’t
learn 1’s type with certainty. Player 2 may respond to the uncertainty by playing a mixed
strategy itself. The next three examples solve for the three different classes of equilibrium in
the job-market signaling game.
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EXAMPLE 8.10 Separating Equilibrium in the Job-Market Signaling Game

A good guess for a separating equilibrium is that the high-skilled worker signals his or her
type by getting an education and the low-skilled worker does not. Given these strategies,
player 2’s beliefs must be PrðH jEÞ ¼ PrðLjNEÞ ¼ 1 and PrðH jNEÞ ¼ PrðLjEÞ ¼ 0 accord-
ing to Bayes’ rule. Conditional on these beliefs, if player 2 observes that player 1 obtains an
education then 2 knows it must be at node n1 rather than n2 in Figure 8.14. Its best response
is to offer a job ( J ), given the payoff of π � w > 0: If player 2 observes that player 1 does not
obtain an eduation then 2 knows it must be at node n4 rather than n3, and its best response is
not to offer a job (NJ ) because 0 > �w:

The last step is to go back and check that player 1 would not want to deviate from the
separating strategy ðEjH ,NEjLÞ given that 2 plays ðJ jE,NJ jNEÞ: Type H of player 1 earns
w � cH by obtaining an education in equilibrium. If typeH deviates and does not obtain an
education, then he or she earns 0 because player 2 believes that 1 is type L and does not offer
a job. For typeH not to prefer to deviate, it must be that w � cH 	 0:Next turn to type L of
player 1. Type L earns 0 by not obtaining an education in equilibrium. If type L deviates and
obtains an education, then he or she earns w � cL because player 2 believes that 1 is type H
and offers a job. For type L not to prefer to deviate, we must have w � cL � 0: Putting these
conditions together, there is separating equilibrium in which the worker obtains an education
if and only if he or she is high-skilled and in which the firm offers a job only to applicants with
an education if and only if cH � w � cL :

Another possible separating equilibrium is for player 1 to obtain an education if and only if
he or she is low-skilled. This is a bizarre outcome—since we expect education to be a signal of
high rather than low skill—and fortunately we can rule it out as a perfect Bayesian equilib-
rium. Player 2’s best response would be to offer a job if and only if 1 did not obtain an
education. Type L would earn �cL from playing E and w from playing NE, so it would
deviate to NE:

QUERY: Why does the worker sometimes obtain an education even though it does not raise
his or her skill level? Would the separating equilibrium exist if a low-skilled worker could
obtain an education more easily than a high-skilled one?

EXAMPLE 8.11 Pooling Equilibria in the Job-Market Signaling Game

Let’s investigate a possible pooling equilibrium in which both types of player 1 choose E: For
player 1 not to deviate from choosing E, player 2’s strategy must be to offer a job if and only
if the worker is educated—that is, ðJ jE, NJ jNEÞ: If 2 doesn’t offer jobs to educated workers,
then 1might as well save the cost of obtaining an education and chooseNE: If 2 offers jobs to
uneducated workers, then 1 will again choose NE because he or she saves the cost of
obtaining an education and still earns the wage from the job offer.

Next, we investigate when ðJ jE, NJ jNEÞ is a best response for 2. Player 2’s posterior
beliefs after seeing E are the same as its prior beliefs in this pooling equilibrium. Player 2’s
expected payoff from choosing J is

PrðH jEÞðπ� wÞ þ PrðLjEÞð�wÞ ¼ PrðH Þðπ� wÞ þ PrðLÞð�wÞ
¼ PrðH Þπ� w. (8.39)

For J to be a best response to E, Equation 8.39 must exceed 2’s zero payoff from
choosingNJ , which upon rearranging implies that PrðH Þ 	 w=π: Player 2’s posterior beliefs
at nodes n3 and n4 are not pinned down by Bayes’ rule, because NE is never played in

(continued)

Chapter 8 Strategy and Game Theory 277



EXAMPLE 8.11 CONTINUED

equilibrium and so seeing 1 play NE is a completely unexpected event. Perfect Bayesian
equilibrium allows us to specify any probability distribution we like for the posterior beliefs
PrðH jNEÞ at node n3 and PrðLjNEÞ at node n4: Player 2’s payoff from choosingNJ is 0. For
NJ to be a best response to NE, 0 must exceed 2’s expected payoff from playing J :

0 > PrðH jNEÞðπ�wÞ þ PrðLjNEÞð�wÞ ¼ PrðH jNEÞπ�w, (8.40)

where the right-hand side follows because PrðH jNEÞ þ PrðLjNEÞ ¼ 1: Rearranging yields
PrðH jNEÞ � w=π:

In sum, in order for there to be a pooling equilibrium in which both types of player 1
obtain an education, we need PrðH jNEÞ � w=π � PrðH Þ: The firm has to be optimistic
about the proportion of skilled workers in the population—PrðH Þmust be sufficiently high—
and pessimistic about the skill level of uneducated workers—PrðH jNEÞ must be sufficiently
low. In this equilibrium, type L pools with typeH in order to prevent player 2 from learning
anything about the worker’s skill from the education signal.

The other possibility for a pooling equilibrium is for both types of player 1 to chooseNE:
There are a number of such equilibria depending on what is assumed about player 2’s
posterior beliefs out of equilibrium (that is, 2’s beliefs after it observes 1 choosing E). Perfect
Bayesian equilibrium does not place any restrictions on these posterior beliefs. Problem 8.12
asks you to search for various of these equilibria and introduces a further refinement of per-
fect Bayesian equilibrium (the intuitive criterion) that helps rule out unreasonable out-of-
equilibrium beliefs and thus implausible equilibria.

QUERY: Return to the pooling outcome in which both types of player 1 obtain an education.
Consider 2’s posterior beliefs following the unexpected event that a worker shows up with no
education. Perfect Bayesian equilibrium leaves us free to assume anything we want about
these posterior beliefs. Suppose we assume that the firm obtains no information from the “no
education” signal and so maintains its prior beliefs. Is the proposed pooling outcome an
equilibrium? What if we assume that the firm takes “no education” as a bad signal of skill,
believing that 1’s type is L for certain?

EXAMPLE 8.12 Hybrid Equilibria in the Job-Market Signaling Game

One possible hybrid equilibrium is for typeH always to obtain an education and for type L to
randomize, sometimes pretending to be a high type by obtaining an education. Type L
randomizes between playing E andNE with probabilities e and 1� e: Player 2’s strategy is to
offer a job to an educated applicant with probability j and not to offer a job to an uneducated
applicant.

We need to solve for the equilibrium values of the mixed strategies e� and j� and the
posterior beliefs PrðH jEÞ and PrðH jNEÞ that are consistent with perfect Bayesian equilib-
rium. The posterior beliefs are computed using Bayes’ rule:

PrðH jEÞ ¼ PrðH Þ
PrðH Þ þ ePrðLÞ ¼ PrðH Þ

PrðH Þ þ e½1� PrðH Þ� (8.41)

and PrðH jNEÞ ¼ 0:
For type L of player 1 to be willing to play a strictly mixed strategy, he or she must get the

same expected payoff from playing E—which equals jw � cL , given 2’s mixed strategy—as
from playing NE—which equals 0 given that player 2 does not offer a job to uneducated
applicants. Hence jw � cL ¼ 0 or, solving for j , j� ¼ cL=w:
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Player 2 will play a strictly mixed strategy (conditional on observing E) only if it gets the
same expected payoff from playing J , which equals

PrðH jEÞðπ� wÞ þ PrðLjEÞð�wÞ ¼ PrðH jEÞπ� w, (8.42)

as from playing NJ , which equals 0. Setting Equation 8.42 equal to 0, substituting for
PrðH jEÞ from Equation 8.41, and then solving for e gives

e� ¼ ðπ� wÞPrðH Þ
w½1� PrðH Þ� . (8.43)

QUERY: To complete our analysis: in this equilibrium, type H of player 1 cannot prefer to
deviate from E: Is this true? If so, can you show it? How does the probability of type L trying
to “pool” with the high type by obtaining an education vary with player 2’s prior belief that
player 1 is the high type?

Cheap Talk
Education is nothing more than a costly display in the job-market signaling game. The display
must be costly—indeed, it must be more costly to the low-skilled worker—or else the skill
levels could not be separated in equilibrium. While we do see some information communi-
cated through costly displays in the real world, most information is communicated simply by
having one party talk to another at low or no cost (“cheap talk”). Game theory can help
explain why cheap talk is prevalent but also why cheap talk sometimes fails, forcing parties to
resort to costly displays.

We will model cheap talk as a two-player signaling game in which player 1’s strategy space
consists of messages sent costlessly to player 2. The timing is otherwise the same as before:
player 1 first learns his type (“state of the world” might be a better label than “type” here
because player 1’s private information will enter both players’ payoff functions directly),
player 1 communicates to 2, and 2 takes some action affecting both players’ payoffs. The
space of messages is potentially limitless: player 1 can use a more or less sophisticated
vocabulary, can write a more or less detailed message, can speak in any of the thousands of
languages in the world, and so forth. So the set of equilibria is even larger than would
normally be the case in signaling games. We will analyze the range of possible equilibria from
the least to the most informative perfect Bayesian equilibrium.

The maximum amount of information that can be contained in player 1’s message will
depend on how well-aligned the players’ payoff functions are. Player 2 would like to know the
state of the world because she might have different actions that are suitable in different
situations. If player 1 has the same preferences as 2 over which of 2’s actions are best in each
state of the world, then 1 has every incentive to tell 2 precisely what the state of the world is,
and 2 has every reason to believe 1’s report. On the other hand, if their preferences diverge,
then 1would have an incentive to lie about the state of the world to induce 2 to take the action
that 1 prefers.Of course, 2would anticipate 1’s lying andwould refuse to believe the report. As
preferences diverge, messages become less and less informative. In the limit, 1’s messages are
completely uninformative (“babble”); to communicate real information, player 1 would have
to resort to costly displays. In the job-market signaling game, for example, the preferences of
the worker and firm diverge when the worker is low-skilled. The worker would like to be hired
and the firm would like not to hire the worker. The high-skilled worker must resort to the
costly display (education) in order to signal his or her type.

The reason we see relatively more cheap talk than costly displays in the real world is
probably because people try to associate with others with whom they share common interests
and avoid those with whom they don’t. Members of a family, players on a team, or co-
workers within a firm tend to have the same goals and usually have little reason to lie to each
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other. Even in these examples, players’ interests may not be completely aligned and so cheap
talk may not be completely informative (think about teenagers talking to parents).

EXAMPLE 8.13 Simple Cheap Talk Game

Consider a game with three states of the world: A, B, and C: First player 1 privately observes
the state, then 1 sends a message to player 2, and then 2 chooses an action, L or R: The
interests of players 1 and 2 are aligned in states A and B: both agree that 2 should play L in
state A and R in state B: Their interests diverge in state C : 1 prefers 2 to play L and 2 prefers
to play R: Assume that states A and B are equally likely. Let d be the probability of state C :
Here, d measures the divergence between players’ preferences. Instead of the extensive form,
which is complicated by having three states and an ill-defined message space for player 1, the
game is represented schematically by the matrices in Table 8.12.

If d ¼ 0 then players’ incentives are completely aligned. Themost informative equilibrium
results in perfect communication: 1 announces the state truthfully; 2 plays L if 1 announces
“A” and R if 1 announces “B”.16 For d > 0; there cannot be perfect communication. If
communication were perfect, then whatever message 1 sends when the state is A perfectly
reveals the state and so leads 2 to play L: But then 1 would have an incentive to lie when the
true state is C and would thus send the same message as when the state is A: Player 1’s
messages can be nomore refined than issuing one of the twomessages “the state is eitherA or
C” or “the state is B”; any attempt to distinguish between A and C would not be believed.

If there is not too much divergence between players’ interests—in particular, if d � 1=3—
then there is an equilibrium with imperfect but still informative communication. In this
equilibrium, player 1 sends one of two truthful messages: “A or C” or “B.” Then player 2
plays L conditional on the message “A or C” and R conditional on “B.” Player 2’s expected
payoff from playing L following the message “A or C” equals

PrðAj“A orC”Þð1Þ þ PrðC j “A orC”Þð0Þ ¼ PrðAj “A orC”Þ. (8.44)
By Bayes’ rule,

PrðAj “A orC”Þ ¼ Prð“A orC” jAÞ PrðAÞ
Prð“A orC” jAÞ PrðAÞ þ Prð“A orC” jCÞ PrðCÞ ¼

1� d
1þ d

.

(8.45)

TABLE 8.12 Simple Cheap Talk Game

Player 2

Player 1

L R State A

1, 1 0, 0 PrðAÞ ¼ ð1� dÞ=2

Player 2

Player 1

L R State B

0, 0 1, 1 PrðBÞ ¼ ð1� dÞ=2

Player 2

Player 1

L R State C

0, 1 1, 0 PrðCÞ ¼ d

16At the other extreme, for d ¼ 0 and indeed for all parameters, there is always an uninformative “babbling” equilibrium in
which 1’s messages contain no information and 2 pays no attention to what 1 says.
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The second equality in Equation 8.45 holds upon substituting Prð“A orC” jAÞ ¼
Prð“A orC” jCÞ ¼ 1 (if the state is A or C , player 1’s strategy is to announce “A or C”

with certainty) and substituting the values of PrðAÞ and PrðCÞ in terms of d from Table 8.12.
Player 2’s expected payoff from deviating to U can be shown (using calculations similar to
Equations 8.44 and 8.45) to equal

PrðC j “A orC”Þ ¼ 2d
1þ d

. (8.46)

In equilibrium, Equation 8.45 must exceed Equation 8.46, implying that d � 1=3:
If players’ interests are yet more divergent—in particular, if d > 1=3—then there are only

uninformative “babbling” equilibria.

QUERY: Are players better-off in more informative equilibria? What difference would it make
if player 1 announced “purple” instead of “A or C” and “yellow” instead of “B”? What
features of a language would make it more or less efficient in a cheap-talk setting?

EXPERIMENTAL GAMES

Experimental economics is a recent branch of research that explores how well economic
theory matches the behavior of experimental subjects in laboratory settings. The methods are
similar to those used in experimental psychology—often conducted on campus using under-
graduates as subjects—although experiments in economics tend to involve incentives in the
form of explicit monetary payments paid to subjects. The importance of experimental eco-
nomics was highlighted in 2002, when Vernon Smith received the Nobel Prize in economics
for his pioneering work in the field. An important area in this field is the use of experimental
methods to test game theory.

Experiments with the Prisoners’ Dilemma
There have been hundreds of tests of whether players fink in the Prisoners’ Dilemma as
predicted by Nash equilibrium or whether they play the cooperative outcome of Silent. In
one experiment, subjects played the game 20 times with each player being matched with a
different, anonymous opponent to avoid repeated-game effects. Play converged to the Nash
equilibrium as subjects gained experience with the game. Players played the cooperative
action 43 percent of the time in the first five rounds, falling to only 20 percent of the time in
the last five rounds.17

As is typical with experiments, subjects’ behavior tended to be noisy. Although 80 percent
of the decisions were consistent with Nash-equilibrium play by the end of the experiment,
still 20 percent of them were anomalous. Even when experimental play is roughly consistent
with the predictions of theory, it is rarely entirely consistent.

Experiments with the Ultimatum Game
Experimental economics has also tested to see whether subgame-perfect equilibrium is a
good predictor of behavior in sequential games. In one widely studied sequential game, the
Ultimatum Game, the experimenter provides a pot of money to two players. The first mover
(Proposer) proposes a split of this pot to the second mover. The second mover (Responder)
then decides whether to accept the offer, in which case players are given the amount of money
indicated, or reject the offer, in which case both players get nothing. In the subgame-perfect

17R. Cooper, D. V. DeJong, R. Forsythe, and T. W. Ross, “Cooperation Without Reputation: Experimental Evidence
from Prisoner’s Dilemma Games,” Games and Economic Behavior (February 1996): 187–218.

Chapter 8 Strategy and Game Theory 281



equilibrium, the Proposer offers a minimal share of the pot and this is accepted by the
Responder. One can see this by applying backward induction: the Responder should accept
any positive division no matter how small; knowing this, the Proposer should offer the
Responder only a minimal share.

In experiments, the division tends to be much more even than in the subgame-perfect
equilibrium.18 The most common offer is a 50–50 split. Responders tend to reject offers
giving them less than 30 percent of the pot. This result is observed even when the pot is as
high as $100, so that rejecting a 30 percent offer means turning down $30. Some economists
have suggested that the money players receive may not be a true measure of their payoffs.
They may care about other factors such as fairness and so obtain a benefit from a more equal
division of the pot. Even if a Proposer does not care directly about fairness, the fear that the
Responder may care about fairness and thus might reject an uneven offer out of spite may
lead the Proposer to propose an even split.

The departure of experimental behavior from the predictions of game theory was too
systematic in the Ultimatum Game to be attributed to noisy play, leading some game
theorists to rethink the theory and add an explicit consideration for fairness.19

Experiments with the Dictator Game
To test whether players care directly about fairness or act out of fear of the other player’s
spite, researchers experimented with a related game, the Dictator Game. In the Dictator
Game, the Proposer chooses a split of the pot, and this split is implemented without input
from the Responder. Proposers tend to offer a less even split than in the UltimatumGame but
still offer the Responder some of the pot, suggesting that Responders have some residual
concern for fairness. The details of the experimental design are crucial, however, as one
ingenious experiment showed.20 The experiment was designed so that the experimenter
would never learn which Proposers had made which offers. With this element of anonymity,
Proposers almost never gave an equal split to Responders and indeed took the whole pot for
themselves two thirds of the time. Proposers seem to care more about appearing fair to the
experimenter than truly being fair.

EVOLUTIONARY GAMES AND LEARNING

The frontier of game-theory research regards whether and how players come to play a Nash
equilibrium. Hyperrational players may deduce each others’ strategies and instantly settle
upon the Nash equilibrium. How can they instantly coordinate on a single outcome when
there are multiple Nash equilibria? What outcome would real-world players, for whom hyper-
rational deductions may be too complex, settle on?

Game theorists have tried to model the dynamic process by which an equilibrium emerges
over the long run from the play of a large population of agents who meet others at random
and play a pairwise game. Game theorists analyze whether play converges to Nash equilib-
rium or some other outcome, which Nash equilibrium (if any) is converged to if there are
multiple equilibria, and how long such convergence takes. Two models, which make varying
assumptions about the level of players’ rationality, have been most widely studied: an
evolutionary model and a learning model.

18For a review of Ultimatum Game experiments and a textbook treatment of experimental economics more generally, see
D. D. Davis and C. A. Holt, Experimental Economics (Princeton, NJ: Princeton University Press, 1993).
19See, for example, M. Rabin, “Incorporating Fairness into Game Theory and Economics,” American Economic Review
(December 1993): 1281–1302.
20E. Hoffman, K. McCabe, K. Shachat, and V. Smith, “Preferences, Property Rights, and Anonymity in Bargaining
Games,” Games and Economic Behavior (November 1994): 346–80.
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In the evolutionary model, players do not make rational decisions; instead, they play the
way they are genetically programmed. The more successful a player’s strategy in the popu-
lation, themore fit is the player and themore likely will the player survive to pass its genes on to
future generations and so the more likely the strategy spreads in the population.

Evolutionary models were initially developed by John Maynard Smith and other biolo-
gists to explain the evolution of such animal behavior as how hard a lion fights to win a mate
or an ant fights to defend its colony. While it may be more of a stretch to apply evolutionary
models to humans, evolutionary models provide a convenient way of analyzing population
dynamics and may have some direct bearing on how social conventions are passed down,
perhaps through culture.

In a learning model, players are again matched at random with others from a large
population. Players use their experiences of payoffs from past play to teach them how others
are playing and how they themselves can best respond. Players usually are assumed to have a
degree of rationality in that they can choose a static best response given their beliefs, may do
some experimenting, and will update their beliefs according to some reasonable rule. Players
are not fully rational in that they do not distort their strategies in order to affect others’
learning and thus future play.

Game theorists have investigated whether more-or less-sophisticated learning strategies
converge more or less quickly to a Nash equilibrium. Current research seeks to integrate
theory with experimental study, trying to identify the specific algorithms that real-world
subjects use when they learn to play games.

SUMMARY

This chapter provided a structured way to think about stra-
tegic situations. We focused on the most important solution
concept used in game theory, Nash equilibrium. We then
progressed to several more-refined solution concepts that are
in standard use in game theory in more complicated settings
(with sequential moves and incomplete information). Some
of the principal results are as follows.

• All games have the same basic components: players, strat-
egies, payoffs, and an information structure.

• Games can be written down in normal form (providing a
payoff matrix or payoff functions) or extensive form
(providing a game tree).

• Strategies can be simple actions, more complicated plans
contingent on others’ actions, or even probability dis-
tributions over simple actions (mixed strategies).

• A Nash equilibrium is a set of strategies, one for each
player, that are mutual best responses. In other words, a
player’s strategy in a Nash equilibrium is optimal given
that all others play their equilibrium strategies.

• A Nash equilibrium always exists in finite games (in
mixed if not pure strategies).

• Subgame-perfect equilibrium is a refinement of Nash
equilibrium that helps to rule out equilibria in sequential
games involving noncredible threats.

• Repeating a stage game a large number of times intro-
duces the possibility of using punishment strategies to
attain higher payoffs than if the stage game is played once.
If a finite game with multiple stages is repeated often
enough or if players are sufficiently patient in an infinitely
repeated game, then a folk theorem holds implying that
essentially any payoffs are possible in the repeated game.

• In games of private information, one player knows more
about his or her “type” than another. Players maximize
their expected payoffs given knowledge of their own
type and beliefs about the others’.

• In a perfect Bayesian equilibrium of a signaling game,
the second mover uses Bayes’ rule to update his or her
beliefs about the first mover’s type after observing the
first mover’s action.

• The frontier of game-theory research combines theory
with experiments to determine whether players who may
not be hyperrational come to play a Nash equilibrium,
which particular equilibrium (if there are more than
one), and what path leads to the equilibrium.
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PROBLEMS

8.1
Consider the following game:

a. Find the pure-strategy Nash equilibria (if any).

b. Find the mixed-strategy Nash equilibrium in which each player randomizes over just the first
two actions.

c. Compute players’ expected payoffs in the equilibria found in parts (a) and (b).

d. Draw the extensive form for this game.

8.2
The mixed-strategy Nash equilibrium in the Battle of the Sexes in Table 8.3 may depend on the
numerical values for the payoffs. To generalize this solution, assume that the payoff matrix for the
game is given by

where K 	 1: Show how the mixed-strategy Nash equilibrium depends on the value of K :

8.3
The game of Chicken is played by two macho teens who speed toward each other on a single-lane road.
The first to veer off is branded the chicken, whereas the one who doesn’t veer gains peer-group esteem.
Of course, if neither veers, both die in the resulting crash. Payoffs to the Chicken game are provided in
the following table.

Player 2

D E F
Pl
ay
er

1 A 7, 6 5, 8 0, 0

B 5, 8 7, 6 1, 1

C 0, 0 1, 1 4, 4

Player 2 (Husband)

Ballet Boxing

Pl
ay
er

1
ðW

ife
Þ Ballet K, 1 0, 0

Boxing 0, 0 1, K

Teen 2

Veer Don’t veer

T
ee
n
1 Veer 2, 2 1, 3

Don’t veer 3, 1 0, 0
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a. Draw the extensive form.

b. Find the pure-strategy Nash equilibrium or equilibria.

c. Compute the mixed-strategy Nash equilibrium. As part of your answer, draw the best-response
function diagram for the mixed strategies.

d. Suppose the game is played sequentially, with teenA moving first and committing to this action
by throwing away the steering wheel. What are teen B’s contingent strategies? Write down the
normal and extensive forms for the sequential version of the game.

e. Using the normal form for the sequential version of the game, solve for the Nash equilibria.

f. Identify the proper subgames in the extensive form for the sequential version of the game. Use
backward induction to solve for the subgame-perfect equilibrium. Explain why the other Nash
equilibria of the sequential game are “unreasonable.”

8.4
Two neighboring homeowners, i ¼ 1, 2, simultaneously choose how many hours li to spend main-
taining a beautiful lawn. The average benefit per hour is

10� li þ
lj
2
,

and the (opportunity) cost per hour for each is 4. Homeowner i ’s average benefit is increasing in the
hours neighbor j spends on his own lawn, since the appearance of one’s property depends in part on the
beauty of the surrounding neighborhood.

a. Compute the Nash equilibrium.

b. Graph the best-response functions and indicate the Nash equilibrium on the graph.

c. On the graph, show how the equilibrium would change if the intercept of one of the neighbor’s
average benefit functions fell from 6 to some smaller number.

8.5
The Academy Award–winning movie A Beautiful Mind about the life of John Nash dramatizes Nash’s
scholarly contribution in a single scene: his equilibrium concept dawns on him while in a bar bantering
with his fellow male graduate students. They notice several women, one blond and the rest brunette,
and agree that the blond is more desirable than the brunettes. The Nash character views the situation as
a game among the male graduate students, along the following lines. Suppose there are n males who
simultaneously approach either the blond or one of the brunettes. If male i alone approaches the blond,
then he is successful in getting a date with her and earns payoff a: If one or more other males approach
the blond along with i, the competition causes them all to lose her, and i (as well as the others who
approached her) earns a payoff of zero. On the other hand, male i earns a payoff of b > 0 from
approaching a brunette, since there are more brunettes than males, so i is certain to get a date with a
brunette. The desirability of the blond implies a > b:

a. Argue that this game does not have a symmetric pure-strategy Nash equilibrium.

b. Solve for the symmetric mixed-strategy equilibrium. That is, letting p be the probability that a
male approaches the blond, find p�.

c. Show that the more males there are, the less likely it is in the equilibrium from part (b) that
the blond is approached by at least one of them. Note: This paradoxical result was noted by
S. Anderson and M. Engers in “Participation Games: Market Entry, Coordination, and the
Beautiful Blond,” Journal of Economic Behavior & Organization 63 (2007): 120–37.
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8.6
Consider the following stage game.

a. Compute a player’s minmax value if the rival is restricted to pure strategies. Is this minmax value
different than if the rival is allowed to use mixed strategies?

b. Suppose the stage game is played twice. Characterize the subgame-perfect equilibrium provid-
ing the highest total payoffs.

c. Draw a graph of the set of feasible per-period payoffs in the limit in a finitely repeated game
according to the folk theorem.

8.7
Return to the game with two neighbors in Problem 8.5. Continue to suppose that player i ’s average
benefit per hour of work on landscaping is

10� li þ
lj
2
.

Continue to suppose that player 2’s opportunity cost of an hour of landscaping work is 4. Suppose that
1’s opportunity cost is either 3 or 5 with equal probability and that this cost is 1’s private information.

a. Solve for the Bayesian-Nash equilibrium.

b. Indicate the Bayesian-Nash equilibrium on a best-response function diagram.

c. Which type of player 1 would like to send a truthful signal to 2 if it could? Which type would like
to hide its private information?

8.8
In Blind Texan Poker, player 2 draws a card from a standard deck and places it against her forehead
without looking at it but so player 1 can see it. Player 1 moves first, deciding whether to stay or fold. If
player 1 folds, he must pay player 2 $50. If player 1 stays, the action goes to player 2. Player 2 can fold or
call. If player 2 folds, she must pay player 1 $50. If 2 calls, the card is examined. If it is a low card
(2 through 8), player 2 pays player 1 $100. If it is a high card (9, 10, jack, queen, king, or ace), player 1
pays player 2 $100.

a. Draw the extensive form for the game.

b. Solve for the hybrid equilibrium.

c. Compute the players’ expected payoffs.

Player 2

A B C

Pl
ay
er

1 A 10, 10 �1, 15 �1, �12
B 15, �1 0, 0 �1, �1
C �12, �1 �1, �1 8, 8
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Analytical Problems
8.9 Dominant strategies
Prove that an equilibrium in dominant strategies is the unique Nash equilibrium.

8.10 Rotten Kid Theorem
In A Treatise on the Family (Cambridge, MA: Harvard University Press, 1981), Nobel laureate Gary
Becker proposes his famous Rotten Kid Theorem as a sequential game between the potentially rotten
child (player 1) and the child’s parent (player 2). The child moves first, choosing an action r that affects
his own income Y1ðrÞ ½Y 0

1ðrÞ > 0� and the income of the parent Y2ðrÞ ½Y 0
2ðrÞ < 0�: Later, the parent

moves, leaving a monetary bequest L to the child. The child cares only for his own utility, U1ðY1 þ LÞ,
but the parent maximizes U2ðY2 � LÞ þ αU1, where α > 0 reflects the parent’s altruism toward the
child. Prove that, in a subgame-perfect equilibrium, the child will opt for the value of r that maximizes
Y1 þ Y2 even though he has no altruistic intentions. Hint: Apply backward induction to the parent’s
problem first, which will give a first-order condition that implicitly determines L�; although an explicit
solution for L� cannot be found, the derivative of L� with respect to r—required in the child’s first-
stage optimization problem—can be found using the implicit function rule.

8.11 Alternatives to Grim Strategy
Suppose that the Prisoners’Dilemma stage game (see Table 8.1) is repeated for infinitely many periods.

a. Can players support the cooperative outcome by using tit-for-tat strategies, punishing deviation
in a past period by reverting to the stage-game Nash equilibrium for just one period and then
returning to cooperation? Are two periods of punishment enough?

b. Suppose players use strategies that punish deviation from cooperation by reverting to the stage-
gameNash equilibrium for ten periods before returning to cooperation. Compute the threshold
discount factor above which cooperation is possible on the outcome that maximizes the joint
payoffs.

8.12 Refinements of perfect Bayesian equilibrium
Recall the job-market signaling game in Example 8.11.

a. Find the conditions under which there is a pooling equilibrium where both types of worker
choose not to obtain an education (NE) and where the firm offers an uneducated worker a job.
Be sure to specify beliefs as well as strategies.

b. Find the conditions under which there is a pooling equilibrium where both types of worker
choose not to obtain an education (NE) and where the firm does not offer an uneducated
worker a job. What is the lowest posterior belief that the worker is low-skilled conditional on
obtaining an education consistent with this pooling equilibrium? Why is it more natural to think
that a low-skilled worker would never deviate to E and so an educated worker must be high-
skilled? Cho and Kreps’s intuitive criterion is one of a series of complicated refinements of
perfect Bayesian equilibrium that rule out equilibria based on unreasonable posterior beliefs as
identified in this part; see I. K. Cho and D. M. Kreps, “Signalling Games and Stable Equilibria,”
Quarterly Journal of Economics 102 (1987): 179–221.

SUGGESTIONS FOR FURTHER READING
Fudenberg, D., and J. Tirole. Game Theory. Cambridge,
MA: MIT Press, 1991.

A comprehensive survey of game theory at the graduate-student level,
though selected sections are accessible to advanced undergraduates.

Holt, C. A. Markets, Games, & Strategic Behavior. Boston:
Pearson, 2007.

An undergraduate text with emphasis on experimental games.

Rasmusen, E. Games and Information, 4th ed. Malden,
MA: Blackwell, 2007.

An advanced undergraduate text with many real-world applications.
Watson, Joel. Strategy: An Introduction to Game Theory.
New York: Norton, 2002.

An undergraduate text that balances rigor with simple examples (often

2�2 games). Emphasis on bargaining and contracting examples.
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E X T E N S I O N S

Existence of Nash Equilibrium

This section will sketch John Nash’s original proof that
all finite games have at least one Nash equilibrium (in
mixed if not in pure strategies).Wewill provide some of
the details of the proof here; the original proof is in
Nash (1950), and a clear textbook presentation of the
full proof is provided in Fudenberg and Tirole (1991).
The section concludes by mentioning a related exis-
tence theorem for games with continuous actions.

Nash’s proof is similar to the proof of the existence
of a general competitive equilibrium in Chapter 13.
Both proofs rely on a fixed point theorem. The proof
of the existence of Nash equilibrium requires a slightly
more powerful theorem. Instead of Brouwer’s fixed

point theorem, which applies to functions, Nash’s
proof relies on Kakutani’s fixed point theorem, which
applies to correspondences—more general mappings
than functions.

E8.1 Correspondences versus
functions

A function maps each point in a first set to a single
point in a second set. A correspondence maps a single
point in the first set to possibly many points in the
second set. Figure E8.1 illustrates the difference.

FIGURE E8.1 Comparision of Functions and Correspondences

The function graphed in (a) looks like a familiar curve. Each value of x is mapped into a single value of
y. With the correspondence graphed in (b), each value of x may be mapped into many values of y.
Correspondences can thus have bulges as shown by the gray regions in (b).

(a) Function

(b) Correspondence

y

x

y

x
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An example of a correspondence that we have
already seen is the best response, BRiðs�iÞ: The best
response need not map other players’ strategies s�i
into a single strategy that is a best response for player
i: There may be ties among several best responses. As
shown in Figure 8.3, in the Battle of the Sexes, the
husband’s best response to the wife’s playing the
mixed strategy of going to ballet with probability 2=3
and boxing with probability 1=3 (or just w ¼ 2=3 for
short) is not just a single point but the whole interval of
possible mixed strategies. Both the husband’s and the
wife’s best responses in this figure are correspon-
dences, not functions.

The reason Nash needed a fixed point theorem in-
volving correspondences rather than just functions is
precisely because his proof works with players’ best
responses to prove existence.

E8.2 Kakutani’s fixed point
theorem

Here is the statement of Kakutani’s fixed point
theorem:

Any convex, upper-semicontinuous corrrespondence
½ f ðxÞ� from a closed, bounded, convex set into itself
has at least one fixed point ðx�Þ such that x� 2 f ðx�Þ:

Comparing the statement of Kakutani’s fixed point
theoremwithBrouwer’s inChapter 13, they are similar
except for the substitution of “correspondence” for
“function” and for the conditions on the correspon-
dence. Brouwer’s theorem requires the function to be
continuous; Kakutani’s theorem requires the corre-
spondence to be convex and upper semicontinuous.

These properties, which are related to continuity,
are less familiar and worth spending a moment to
understand. Figure E8.2 provides examples of corre-
spondences violating (a) convexity and (b) upper semi-
continuity. The figure shows why the two properties
are needed to guarantee a fixed point. Without both
properties, the correspondence can “jump” across the
45° line and so fail to have a fixed point—that is, a
point for which x ¼ f ðxÞ:

E8.3 Nash’s proof

WeuseRðsÞ to denote the correspondence that under-
lies Nash’s existence proof. This correspondence takes
any profile of players’ strategies s ¼ ðs1, s2,…, snÞ (pos-
sibly mixed) and maps it into another mixed strategy

profile, the profile of best responses:

RðsÞ ¼ ðBR1ðs�1Þ,BR2ðs�2Þ,…,BRnðs�nÞÞ. (i)

A fixed point of the correspondence is a strategy for
which s� 2 Rðs�Þ; this is a Nash equilibrium because
each player’s strategy is a best response to others’
strategies.

The proof checks that all the conditions involved
in Kakutani’s fixed point theorem are satisfied by the
best-response correspondence RðsÞ: First, we need to
show that the set of mixed-strategy profiles is closed,
bounded, and convex. Since a strategy profile is just a
list of individual strategies, the set of strategy profiles
will be closed, bounded, and convex if each player’s
strategy set Si has these properties individually. As
Figure E8.3 shows for the case of two and three
actions, the set of mixed strategies over actions has a
simple shape.1 The set is closed (contains its bound-
ary), bounded (does not go off to infinity in any direc-
tion), and convex (the segment between any two points
in the set is also in the set).

We then need to check that the best-response
correspondence RðsÞ is convex. Individual best re-
sponses cannot look like (a) in Figure E8.2, because
if any two mixed strategies such as A and B are best
responses to others’ strategies then mixed strategies
between them must also be best responses. For exam-
ple, in the Battle of the Sexes, if (1=3, 2=3) and (2=3,
1=3) are best responses for the husband against his
wife’s playing (2=3, 1=3) (where, in each pair, the first
number is the probability of playing ballet and the
second of playing boxing), then mixed strategies be-
tween the two such as (1=2, 1=2) must also be best
responses for him. Figure 8.3 showed that in fact all
possible mixed strategies for the husband are best
responses to the wife’s playing (2=3, 1=3).

Finally, we need to check that RðsÞ is upper semi-
continuous. Individual best responses cannot look
like (b) in Figure E8.2. They cannot have holes like
point D punched out of them because payoff func-
tions uiðsi, s�iÞ are continuous. Recall that payoffs,
when written as functions of mixed strategies, are
actually expected values with probabilities given by
the strategies si and s�i: As Equation 2.176 showed,
expected values are linear functions of the underlying
probabilities. Linear functions are of course continuous.

1Mathematicians study them so frequently that they have a special name
for such a set: a simplex.
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FIGURE E8.2 Kakutani’s Conditions on Correspondences

The correspondence in (a) is not convex because the dashed vertical segment betweenA and B is not
inside the correspondence. The correspondence in (b) is not upper semicontinuous because there is a
path (C) inside the correspondence leading to a point (D) that, as indicated by the open circle, is not
inside the correspondence. Both (a) and (b) fail to have fixed points.

(b) Correspondence that is not upper semicontinuous

1

D

45°

(a) Correspondence that is not convex

f(x)

1

1
x

f(x)

x

B

A

45°

C
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E8.4 Games with continuous
actions

Nash’s existence theorem applies to finite games—
that is, games with a finite number of players and
actions per player. Nash’s theorem does not apply to
games, such as the Tragedy of the Commons in Ex-
ample 8.6, that feature continuous actions. Is a Nash
equilibrium guaranteed to exist for these games, too?
Glicksberg (1952) proved that the answer is “yes” as
long as payoff functions are continuous.
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FIGURE E8.3 Set of Mixed Strategies for an Individual

Player 1’s set of possible mixed strategies over two actions is given by the diagonal line segment in
(a). The set for three actions is given by the shaded triangle on the three-dimensional graph in (b).
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P A R T 3
Production and Supply
CHAPTER 9 Production Functions

CHAPTER 10 Cost Functions

CHAPTER 11 Profit Maximization

In this part we examine the production and supply of economic goods. Institutions that coordinate the
transformation of inputs into outputs are called firms. They may be large institutions (such as Microsoft, Sony,
or the U.S. Department of Defense) or small ones (such as “Mom and Pop” stores or self-employed
individuals). Although they may pursue different goals (Microsoft may seek maximum profits, whereas an
Israeli kibbutz may try to make members of the kibbutz as well off as possible), all firms must make certain
basic choices in the production process. The purpose of Part 3 is to develop some tools for analyzing those
choices.

In Chapter 9 we examine ways of modeling the physical relationship between inputs and outputs. We
introduce the concept of a production function, a useful abstraction from the complexities of real-world
production processes. Two measurable aspects of the production function are stressed: its returns to scale
(that is, how output expands when all inputs are increased) and its elasticity of substitution (that is, how easily
one input may be replaced by another while maintaining the same level of output). We also briefly describe
how technical improvements are reflected in production functions.

The production function concept is then used in Chapter 10 to discuss costs of production. We assume
that all firms seek to produce their output at the lowest possible cost, an assumption that permits the devel-
opment of cost functions for the firm. Chapter 10 also focuses on how costs may differ between the short run
and the long run.

In Chapter 11 we investigate the firm’s supply decision. To do so, we assume that the firm’s manager
will make input and output choices so as to maximize profits. The chapter concludes with the fundamental
model of supply behavior by profit-maximizing firms that we will use in many subsequent chapters.
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C H A P T E R

9

Production Functions

The principal activity of any firm is to turn inputs into outputs. Because economists are interested in the
choices the firm makes in accomplishing this goal, but wish to avoid discussing many of the engineering
intricacies involved, they have chosen to construct an abstract model of production. In this model the
relationship between inputs and outputs is formalized by a production function of the form

q ¼ f ðk, l ,m,…Þ, (9.1)

where q represents the firm’s output of a particular good during a period,1 k represents the machine (that
is, capital) usage during the period, l represents hours of labor input, m represents raw materials used,2 and
the notation indicates the possibility of other variables affecting the production process. Equation 9.1 is
assumed to provide, for any conceivable set of inputs, the engineer’s solution to the problem of how best
to combine those inputs to get output.

MARGINAL PRODUCTIVITY

In this section we look at the change in output brought about by a change in one of the
productive inputs. For the purposes of this examination (and indeed for most of the purposes
of this book), it will be more convenient to use a simplified production function defined as
follows.

D E F I N I T I O N
Production function. The firm’s production function for a particular good, q,

q ¼ f ðk, lÞ, (9.2)

shows the maximum amount of the good that can be produced using alternative com-
binations of capital ðkÞ and labor ðlÞ.

Of course, most of our analysis will hold for any two inputs to the production process we
might wish to examine. The terms capital and labor are used only for convenience. Similarly,
it would be a simple matter to generalize our discussion to cases involving more than two
inputs; occasionally, we will do so. For the most part, however, limiting the discussion to two
inputs will be quite helpful because we can show these inputs on two-dimensional graphs.

Marginal physical product
To study variation in a single input, we define marginal physical product as follows.

1Here we use a lowercase q to represent one firm’s output. We reserve the uppercase Q to represent total output in a
market. Generally, we assume that a firm produces only one output. Issues that arise in multiproduct firms are discussed in a
few footnotes and problems.
2In empirical work raw material inputs often are disregarded and output, q, is measured in terms of “value added.”
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D E F I N I T I O N
Marginal physical product. The marginal physical product of an input is the additional
output that can be produced by employing one more unit of that input while holding all
other inputs constant. Mathematically,

marginal physical product of capital ¼ MPk ¼
∂q
∂k

¼ fk,

marginal physical product of labor ¼ MPl ¼
∂q
∂l

¼ fl .
(9.3)

Notice that the mathematical definitions of marginal product use partial derivatives, thereby
properly reflecting the fact that all other input usage is held constant while the input of
interest is being varied. For an example, consider a farmer hiring one more laborer to harvest
the crop but holding all other inputs constant. The extra output this laborer produces is that
farmhand’s marginal physical product, measured in physical quantities, such as bushels of
wheat, crates of oranges, or heads of lettuce. We might observe, for example, that 50 workers
on a farm are able to produce 100 bushels of wheat per year, whereas 51 workers, with the
same land and equipment, can produce 102 bushels. The marginal physical product of the
51st worker is then 2 bushels per year.

Diminishing marginal productivity
We might expect that the marginal physical product of an input depends on how much of
that input is used. Labor, for example, cannot be added indefinitely to a given field (while
keeping the amount of equipment, fertilizer, and so forth fixed) without eventually exhibiting
some deterioration in its productivity. Mathematically, the assumption of diminishing mar-
ginal physical productivity is an assumption about the second-order partial derivatives of the
production function:

∂MPk

∂k
¼ ∂2f

∂k2
¼ fkk ¼ f11 < 0,

∂MPl

∂l
¼ ∂2f

∂l2
¼ fll ¼ f22 < 0:

(9.4)

The assumption of diminishing marginal productivity was originally proposed by the
nineteenth-century economist Thomas Malthus, who worried that rapid increases in
population would result in lower labor productivity. His gloomy predictions for the future
of humanity led economics to be called the “dismal science.” But the mathematics of the
production function suggests that such gloom may be misplaced. Changes in the marginal
productivity of labor over time depend not only on how labor input is growing, but also on
changes in other inputs, such as capital. That is, wemust also be concernedwith ∂MPl=∂k ¼ flk.
In most cases, flk > 0, so declining labor productivity as both l and k increase is not a foregone
conclusion. Indeed, it appears that labor productivity has risen significantly since Malthus’
time, primarily because increases in capital inputs (along with technical improvements) have
offset the impact of diminishing marginal productivity alone.

Average physical productivity
In common usage, the term labor productivity often means average productivity. When it is
said that a certain industry has experienced productivity increases, this is taken to mean that
output per unit of labor input has increased. Although the concept of average productivity
is not nearly as important in theoretical economic discussions as marginal productivity is, it
receives a great deal of attention in empirical discussions. Because average productivity is
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easily measured (say, as so many bushels of wheat per labor-hour input), it is often used as a
measure of efficiency. We define the average product of labor (APl ) to be

APl ¼
output

labor input
¼ q

l
¼ f ðk, lÞ

l
. (9.5)

Notice that APl also depends on the level of capital employed. This observation will prove to
be quite important when we examine the measurement of technical change at the end of this
chapter.

EXAMPLE 9.1 A Two-Input Production Function

Suppose the production function for flyswatters during a particular period canbe represented by
q ¼ f ðk, lÞ ¼ 600k2l2 � k3l3. (9.6)

To construct the marginal and average productivity functions of labor (l) for this function, we
must assume a particular value for the other input, capital (k). Suppose k ¼ 10. Then the
production function is given by

q ¼ 60,000l2 � 1,000l3. (9.7)

Marginal product. The marginal productivity function (when k ¼ 10) is given by

MPl ¼
∂q
∂l

¼ 120,000l � 3,000l2, (9.8)

which diminishes as l increases, eventually becoming negative. This implies that q reaches a
maximum value. Setting MPl equal to 0,

120,000l � 3,000l2 ¼ 0 (9.9)

yields

40l ¼ l2 (9.10)

or

l ¼ 40 (9.11)

as the point at which q reaches its maximum value. Labor input beyond 40 units per period
actually reduces total output. For example, when l ¼ 40, Equation 9.7 shows that q ¼ 32
millionflyswatters, whereaswhen l ¼ 50, production offlyswatters amounts to only 25million.

Average product. To find the average productivity of labor in flyswatter production, we
divide q by l , still holding k ¼ 10:

APl ¼
q
l
¼ 60,000l � 1,000l2. (9.12)

Again, this is an inverted parabola that reaches its maximum value when

∂APl

∂l
¼ 60,000 � 2,000l ¼ 0, (9.13)

which occurs when l ¼ 30. At this value for labor input, Equation 9.12 shows that
APl ¼ 900,000, and Equation 9.8 shows that MPl is also 900,000. When APl is at a
maximum, average and marginal productivities of labor are equal.3

(continued)

3This result is quite general. Because
∂APl

∂l
¼ l ⋅MPl � q

l2
,

at a maximum l �MPl ¼ q or MPl ¼ APl .
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EXAMPLE 9.1 CONTINUED

Notice the relationship between total output and average productivity that is illustrated
by this example. Even though total production of flyswatters is greater with 40 workers
(32 million) than with 30 workers (27 million), output per worker is higher in the second
case. With 40 workers, each worker produces 800,000 flyswatters per period, whereas with
30 workers each worker produces 900,000. Because capital input (flyswatter presses) is held
constant in this definition of productivity, the diminishing marginal productivity of labor
eventually results in a declining level of output per worker.

QUERY: How would an increase in k from 10 to 11 affect the MPl and APl functions here?
Explain your results intuitively.

ISOQUANT MAPS AND THE RATE OF
TECHNICAL SUBSTITUTION

To illustrate possible substitution of one input for another in a production function, we use its
isoquant map. Again, we study a production function of the form q ¼ f ðk, lÞ, with the
understanding that “capital” and “labor” are simply convenient examples of any two inputs
that might happen to be of interest. An isoquant (from iso, meaning “equal”) records those
combinations of k and l that are able to produce a given quantity of output. For example, all
those combinations of k and l that fall on the curve labeled “q ¼ 10” in Figure 9.1 are capable
of producing 10 units of output per period. This isoquant then records the fact that there are
many alternative ways of producing 10 units of output. One way might be represented by
pointA:Wewould use lA and kA to produce 10 units of output. Alternatively, wemight prefer

FIGURE 9.1 An Isoquant Map

Isoquants record the alternative combinations of inputs that can be used to produce a given level of
output. The slope of these curves shows the rate at which l can be substituted for k while keeping
output constant. The negative of this slope is called the (marginal) rate of technical substitution
(RTS). In the figure, the RTS is positive and diminishing for increasing inputs of labor.

k per period

l per period

kA

lA lB

kB

A

B

q = 30
q = 20

q = 10

298 Part 3 Production and Supply



to use relatively less capital and more labor and therefore would choose a point such as B.
Hence, we may define an isoquant as follows.

D E F I N I T I O N
Isoquant. An isoquant shows those combinations of k and l that can produce a given level of
output (say, q0). Mathematically, an isoquant records the set of k and l that satisfies

f ðk, lÞ ¼ q0. (9.14)

As was the case for indifference curves, there are infinitely many isoquants in the k–l plane.
Each isoquant represents a different level of output. Isoquants record successively higher
levels of output as we move in a northeasterly direction. Presumably, using more of each of
the inputs will permit output to increase. Two other isoquants (for q ¼ 20 and q ¼ 30) are
shown in Figure 9.1. You will notice the similarity between an isoquant map and the
individual’s indifference curve map discussed in Part 2. They are indeed similar concepts,
because both represent “contour”maps of a particular function. For isoquants, however, the
labeling of the curves is measurable—an output of 10 units per period has a quantifiable
meaning. Economists are therefore more interested in studying the shape of production
functions than in examining the exact shape of utility functions.

The marginal rate of technical substitution (RTS)
The slope of an isoquant shows how one input can be traded for another while holding
output constant. Examining the slope provides information about the technical possibility of
substituting labor for capital. A formal definition follows.

D E F I N I T I O N
Marginal rate of technical substitution. Themarginal rate of technical substitution (RTS)
shows the rate at which labor can be substituted for capital while holding output constant
along an isoquant. In mathematical terms,

RTS ðl for kÞ ¼ �dk
dl

����q¼q0
. (9.15)

In this definition, the notation is intended as a reminder that output is to be held constant as l
is substituted for k. The particular value of this trade-off rate will depend not only on the level
of output but also on the quantities of capital and labor being used. Its value depends on the
point on the isoquant map at which the slope is to be measured.

RTS and marginal productivities
To examine the shape of production function isoquants, it is useful to prove the following
result: the RTS (of l for k) is equal to the ratio of the marginal physical productivity of labor
(MPl ) to the marginal physical productivity of capital (MPk). We begin by setting up the total
differential of the production function:

dq ¼ ∂f
∂l ⋅ dl þ ∂f

∂k ⋅ dk ¼ MPl ⋅ dl þMPk ⋅ dk, (9.16)

which records how small changes in l and k affect output. Along an isoquant, dq ¼ 0 (output
is constant), so

MPl ⋅ dl ¼ �MPk ⋅ dk. (9.17)

This says that along an isoquant, the gain in output from increasing l slightly is exactly
balanced by the loss in output from suitably decreasing k. Rearranging terms a bit gives

� dk
dl

����q¼q0
¼ RTS ðl for kÞ ¼ MPl

MPk
. (9.18)

Hence the RTS is given by the ratio of the inputs’ marginal productivities.
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Equation 9.18 shows that those isoquants that we actually observe must be negatively
sloped. Because bothMPl andMPk will be nonnegative (no firm would choose to use a costly
input that reduced output), theRTS also will be positive (or perhaps zero). Because the slope
of an isoquant is the negative of the RTS, any firm we observe will not be operating on
the positively sloped portion of an isoquant. Although it is mathematically possible to devise
production functions whose isoquants have positive slopes at some points, it would not make
economic sense for a firm to opt for such input choices.

Reasons for a diminishing RTS
The isoquants in Figure 9.1 are drawn not only with a negative slope (as they should be) but
also as convex curves. Along any one of the curves, the RTS is diminishing. For high ratios of
k to l , the RTS is a large positive number, indicating that a great deal of capital can be given
up if one more unit of labor becomes available. On the other hand, when a lot of labor is
already being used, the RTS is low, signifying that only a small amount of capital can be
traded for an additional unit of labor if output is to be held constant. This assumption would
seem to have some relationship to the assumption of diminishing marginal productivity. A
hasty use of Equation 9.18 might lead one to conclude that a rise in l accompanied by a fall in
k would result in a fall in MPl , a rise in MPk, and, therefore, a fall in the RTS. The problem
with this quick “proof” is that the marginal productivity of an input depends on the level of
both inputs—changes in l affect MPk and vice versa. It is not possible to derive a diminishing
RTS from the assumption of diminishing marginal productivity alone.

To see why this is so mathematically, assume that q ¼ f ðk, lÞ and that fk and fl are positive
(that is, the marginal productivities are positive). Assume also that fkk < 0 and fll < 0 (that
the marginal productivities are diminishing). To show that isoquants are convex, we would
like to show that dðRTSÞ=dl < 0. Since RTS ¼ fl=fk, we have

dRTS
dl

¼ dð fl=fkÞ
dl

. (9.19)

Because fl and fk are functions of both k and l , we must be careful in taking the derivative of
this expression:

dRTS
dl

¼ fkð fll þ flk ⋅ dk=dlÞ � flð fkl þ fkk ⋅ dk=dlÞ
ð fkÞ2

. (9.20)

Using the fact that dk=dl ¼ �fl=fk along an isoquant and Young’s theorem (fkl ¼ flk), we have

dRTS
dl

¼ f 2k fll � 2fk fl fkl þ f 2
l fkk

ð fkÞ3
. (9.21)

Because we have assumed fk > 0, the denominator of this function is positive. Hence the
whole fraction will be negative if the numerator is negative. Because fll and fkk are both
assumed to be negative, the numerator definitely will be negative if fkl is positive. If we can
assume this, we have shown that dRTS=dl < 0 (that the isoquants are convex)4.

Importance of cross-productivity effects
Intuitively, it seems reasonable that the cross-partial derivative fkl ¼ flk should be positive. If
workers had more capital, they would have higher marginal productivities. But, although this
is probably the most prevalent case, it does not necessarily have to be so. Some production
functions have fkl < 0, at least for a range of input values. When we assume a diminishing

4As we pointed out in Chapter 2, functions for which the numerator in Equation 9.21 is negative are called (strictly) quasi-
concave functions.
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RTS (as we will throughout most of our discussion), we are therefore making a stronger
assumption than simply diminishing marginal productivities for each input—specifically, we
are assuming that marginal productivities diminish “rapidly enough” to compensate for any
possible negative cross-productivity effects. Of course, as we shall see later, with three or
more inputs, things become even more complicated.

EXAMPLE 9.2 A Diminishing RTS

In Example 9.1, the production function for flyswatters was given by

q ¼ f ðk, lÞ ¼ 600k2l2 � k3l3. (9.22)

General marginal productivity functions for this production function are

MPl ¼ fl ¼
∂q
∂l

¼ 1,200k2l � 3k3l2,

MPk ¼ fk ¼
∂q
∂k

¼ 1,200kl2 � 3k2l3.
(9.23)

Notice that each of these depends on the values of both inputs. Simple factoring shows that
these marginal productivities will be positive for values of k and l for which kl < 400.

Because

fll ¼ 1,200k2 � 6k3l

and

fkk ¼ 1,200l2 � 6kl3, (9.24)

it is clear that this function exhibits diminishing marginal productivities for sufficiently large
values of k and l . Indeed, again by factoring each expression, it is easy to show that fll , fkk < 0 if
kl > 200. However, even within the range 200 < kl < 400 where the marginal productivity
relations for this function behave “normally,” this production function may not necessarily have
a diminishing RTS. Cross-differentiation of either of the marginal productivity functions
(Equation 9.23) yields

fkl ¼ flk ¼ 2,400kl � 9k2l2, (9.25)

which is positive only for kl < 266.
The numerator of Equation 9.21 will therefore definitely be negative for 200 < kl < 266,

but for larger-scale flyswatter factories the case is not so clear, because fkl is negative. When fkl
is negative, increases in labor input reduce the marginal productivity of capital. Hence, the
intuitive argument that the assumption of diminishing marginal productivities yields an
unambiguous prediction about what will happen to the RTS ð¼ fl=fkÞ as l increases and k
falls is incorrect. It all depends on the relative effects on marginal productivities of diminishing
marginal productivities (which tend to reduce fl and increase fk) and the contrary effects of
cross-marginal productivities (which tend to increase fl and reduce fk). Still, for this flyswatter
case, it is true that the RTS is diminishing throughout the range of k and l , where marginal
productivities are positive. For cases where 266 < kl < 400, the diminishing marginal pro-
ductivities exhibited by the function are sufficient to overcome the influence of a negative
value for fkl on the convexity of isoquants.

QUERY: For cases where k ¼ l , what can be said about the marginal productivities of this
production function? How would this simplify the numerator for Equation 9.21? How does
this permit you to more easily evaluate this expression for some larger values of k and l?
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RETURNS TO SCALE

We now proceed to characterize production functions. A first question that might be asked
about them is how output responds to increases in all inputs together. For example, suppose
that all inputs were doubled: Would output double or would the relationship not be quite so
simple? This is a question of the returns to scale exhibited by the production function that has
been of interest to economists ever since Adam Smith intensively studied the production of
pins. Smith identified two forces that came into operation when the conceptual experiment of
doubling all inputs was performed. First, a doubling of scale permits a greater division of labor
and specialization of function. Hence, there is some presumption that efficiency might
increase—production might more than double. Second, doubling of the inputs also entails
some loss in efficiency because managerial overseeing may become more difficult given the
larger scale of the firm. Which of these two tendencies will have a greater effect is an
important empirical question.

Presenting a technical definition of these concepts is misleadingly simple.

D E F I N I T I O N
Returns to scale. If the production function is given by q ¼ f ðk, lÞ and if all inputs are
multiplied by the same positive constant t (where t > 1), then we classify the returns to scale
of the production function by

In intuitive terms, if a proportionate increase in inputs increases output by the same propor-
tion, the production function exhibits constant returns to scale. If output increases less than
proportionately, the function exhibits diminishing returns to scale. And if output increases
more than proportionately, there are increasing returns to scale. As we shall see, it is theo-
retically possible for a function to exhibit constant returns to scale for some levels of input
usage and increasing or decreasing returns for other levels.5 Often, however, economists refer
to the degree of returns to scale of a production function with the implicit notion that only a
fairly narrow range of variation in input usage and the related level of output is being
considered.

Constant returns to scale
There are economic reasons why a firm’s production function might exhibit constant
returns to scale. If the firm operates many identical plants, it may increase or decrease
production simply by varying the number of them in current operation. That is, the firm
can double output by doubling the number of plants it operates, and that will require it to
employ precisely twice as many inputs. Alternatively, if one were modeling the behavior of
an entire industry composed of many firms, the constant returns-to-scale assumption might

Effect on Output Returns to Scale

I. f ðtk, tlÞ ¼ tf ðk, lÞ ¼ tq Constant

II. f ðtk, tlÞ < tf ðk, lÞ ¼ tq Decreasing

III. f ðtk, tlÞ > tf ðk, lÞ ¼ tq Increasing

5A local measure of returns to scale is provided by the scale elasticity, defined as

eq, t ¼
∂f ðtk, tlÞ

∂t ⋅
t

f ðtk, tlÞ ,

where this expression is to be evaluated at t ¼ 1. This parameter can, in principle, take on different values depending on the
level of input usage. For some examples using this concept, see Problem 9.9.
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make sense because the industry can expand or contract by adding or dropping an arbitrary
number of identical firms (see Chapter 12). Finally, studies of the entire U.S. economy
have found that constant returns to scale is a reasonably good approximation to use for an
“aggregate” production function. For all of these reasons, then, the constant returns-to-
scale case seems worth examining in somewhat more detail.

When a production function exhibits constant returns to scale, it meets the definition of
“homogeneity” that we introduced in Chapter 2. That is, the production is homogeneous of
degree 1 in its inputs because

f ðtk, tlÞ ¼ t 1f ðk, lÞ ¼ tq. (9.26)

In Chapter 2 we showed that, if a function is homogeneous of degree k, its derivatives are
homogeneous of degree k � 1. In this context this implies that the marginal productivity
functions derived from a constant returns-to-scale production function are homogeneous of
degree 0. That is,

MPk ¼ ∂f ðk, lÞ
∂k

¼ ∂f ðtk, tlÞ
∂k

,

MPl ¼
∂f ðk, lÞ

∂l
¼ ∂f ðtk, tlÞ

∂l

(9.27)

for any t > 0. In particular, we can let t ¼ 1=l in Equations 9.27 and get

MPk ¼ ∂f ðk=l ,1Þ
∂k

,

MPl ¼
∂f ðk=l ,1Þ

∂l
.

(9.28)

That is, the marginal productivity of any input depends only on the ratio of capital to labor
input, not on the absolute levels of these inputs. This fact is especially important, for
example, in explaining differences in productivity among industries or across countries.

Homothetic production functions
One consequence of Equations 9.28 is that the RTS ð¼ MPl=MPkÞ for any constant returns-
to-scale production function will depend only on the ratio of the inputs, not on their
absolute levels. That is, such a function will be homothetic (see Chapter 2)—its isoquants
will be radial expansions of one another. This situation is shown in Figure 9.2. Along any ray
through the origin (where the ratio k=l does not change), the slopes of successively higher
isoquants are identical. This property of the isoquant map will be very useful to us on several
occasions.

A simple numerical example may provide some intuition about this result. Suppose a roof
can be installed in one day by three workers with one hammer each or by two workers with
two hammers each (these workers are ambidextrous). The RTS of hammers for workers is
therefore one for one—one extra hammer can be substituted for one worker. If this produc-
tion process exhibits constant returns to scale, two roofs can be installed in one day either by
six workers with six hammers or by four workers with eight hammers. In the latter case, two
hammers are substituted for two workers, so again the RTS is one for one. In constant
returns-to-scale cases, expanding the level of production does not alter trade-offs among
inputs, so production functions are homothetic.

A production function can have a homothetic indifference curve map even if it does not
exhibit constant returns to scale. As we showed in Chapter 2, this property of homotheticity is
retained by any monotonic transformation of a homogeneous function. Hence, increasing or
decreasing returns to scale can be incorporated into a constant returns-to-scale function

Chapter 9 Production Functions 303



through an appropriate transformation. Perhaps the most common such transformation is
exponential. So, if f ðk, lÞ is a constant returns-to-scale producton function, we can let

Fðk, lÞ ¼ ½ f ðk, lÞ�γ, (9.29)

where γ is any positive exponent. If γ > 1 then

Fðtk, tlÞ ¼ ½ f ðtk, tlÞ�γ ¼ ½tf ðk, lÞ�γ ¼ t γ½ f ðk, lÞ�γ ¼ t γFðk, lÞ > tF ðk, lÞ (9.30)

for any t > 1. Hence, this transformed production function exhibits increasing returns to
scale. An identical proof shows that the function F exhibits decreasing returns to scale for
γ < 1 . Because this function remains homothetic through all such transformations, we have
shown that there are important cases where the issue of returns to scale can be separated
from issues involving the shape of an isoquant. In the next section, we will look at how
shapes of isoquants can be described.

The n-input case
The definition of returns to scale can be easily generalized to a production function with n
inputs. If that production function is given by

q ¼ f ðx1, x2,…, xnÞ (9.31)

and if all inputs are multiplied by t > 1, we have

f ðtx1, tx2,…, txnÞ ¼ t kf ðx1, x2,…, xnÞ ¼ t kq (9.32)

for someconstant k. If k ¼ 1, theproduction function exhibits constant returns to scale.Dimin-
ishing and increasing returns to scale correspond to the cases k < 1 and k > 1, respectively.

The crucial part of this mathematical definition is the requirement that all inputs be
increased by the same proportion, t . In many real-world production processes, this provision
may make little economic sense. For example, a firm may have only one “boss,” and that

FIGURE 9.2 Isoquant Map for a Constant Returns-to-Scale Production Function

For a constant returns-to-scale production function, the RTS depends only on the ratio of k to l , not
on the scale of production. Consequently, each isoquant will be a radial blowup of the unit isoquant.
Along any ray through the origin (a ray of constant k=l), the RTS will be the same on all isoquants.

l per period

k per period

q = 3

q = 2

q = 1
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number would not necessarily be doubled even if all other inputs were. Or the output of a
farm may depend on the fertility of the soil. It may not be literally possible to double the acres
planted while maintaining fertility, because the new land may not be as good as that already
under cultivation. Hence, some inputs may have to be fixed (or at least imperfectly variable)
for most practical purposes. In such cases, some degree of diminishing productivity (a result
of increasing employment of variable inputs) seems likely, although this cannot properly be
called “diminishing returns to scale” because of the presence of inputs that are held fixed.

THE ELASTICITY OF SUBSTITUTION

Another important characteristic of the production function is how “easy” it is to substitute
one input for another. This is a question about the shape of a single isoquant rather than
about the whole isoquant map. Along one isoquant, the rate of technical substitution will
decrease as the capital-labor ratio decreases (that is, as k=l decreases); now we wish to define
some parameter that measures this degree of responsiveness. If theRTS does not change at all
for changes in k=l , we might say that substitution is easy because the ratio of the marginal
productivities of the two inputs does not change as the input mix changes. Alternatively, if the
RTS changes rapidly for small changes in k=l , we would say that substitution is difficult
because minor variations in the input mix will have a substantial effect on the inputs’ relative
productivities. A scale-free measure of this responsiveness is provided by the elasticity of
substitution, a concept we encountered in Part 2. Now we can provide a formal definition.

D E F I N I T I O N
Elasticity of substitution. For the production function q ¼ f ðk, lÞ, the elasticity of substi-
tution ðσÞ measures the proportionate change in k=l relative to the proportionate change in
the RTS along an isoquant. That is,

σ ¼ percent ∆ðk=lÞ
percent ∆RTS

¼ dðk=lÞ
dRTS ⋅

RTS
k=l

¼ ∂ ln k=l
∂ lnRTS

¼ ∂ ln k=l
∂ ln fl=fk

. (9.33)

Because along an isoquant, k=l and RTS move in the same direction, the value of σ is always
positive. Graphically, this concept is illustrated in Figure 9.3 as a movement from point A to
point B on an isoquant. In this movement, both theRTS and the ratio k=l will change; we are
interested in the relativemagnitude of these changes. Ifσ is high, then theRTSwill not change
much relative to k=l and the isoquant will be relatively flat. On the other hand, a low value of σ
implies a rather sharply curved isoquant; the RTS will change by a substantial amount as k=l
changes. In general, it is possible that the elasticity of substitution will vary as one moves along
an isoquant and as the scale of production changes. Often, however, it is convenient to assume
that σ is constant along an isoquant. If the production function is also homothetic, then—
because all the isoquants aremerely radial blowups—σwill be the same along all isoquants.We
will encounter such functions later in this chapter and in many of its problems.6

The n-input case
Generalizing the elasticity of substitution to the many-input case raises several complications.
One approach is to adopt a definition analogous to Equation 9.33; that is, to define the
elasticity of substitution between two inputs to be the proportionate change in the ratio of

6The elasticity of substitution can be phrased directly in terms of the production function and its derivatives in the constant
returns-to-scale case as

σ ¼ fk ⋅ fl
f ⋅ fk, l

.

But this form is quite cumbersome. Hence usually the logarithmic definition in Equation 9.33 is easiest to apply. For a
compact summary, see P. Berck and K. Sydsaeter, Economist’s Mathematical Manual (Berlin: Springer-Verlag, 1999),
chap. 5.
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the two inputs to the proportionate change in the RTS between them while holding output
constant.7 To make this definition complete, it is necessary to require that all inputs other
than the two being examined be held constant. However, this latter requirement (which is
not relevant when there are only two inputs) restricts the value of this potential definition. In
real-world production processes, it is likely that any change in the ratio of two inputs will also
be accompanied by changes in the levels of other inputs. Some of these other inputs may be
complementary with the ones being changed, whereas others may be substitutes, and to hold
them constant creates a rather artificial restriction. For this reason, an alternative definition of
the elasticity of substitution that permits such complementarity and substitutability in the
firm’s cost function is generally used in the n-good case. Because this concept is usually
measured using cost functions, we will describe it in the next chapter.

FOUR SIMPLE PRODUCTION FUNCTIONS

In this section we illustrate four simple production functions, each characterized by a
different elasticity of substitution. These are shown only for the case of two inputs, but
generalization to many inputs is easily accomplished (see the Extensions for this chapter).

FIGURE 9.3 Graphic Description of the Elasticity of Substitution

In moving from pointA to point B on the q ¼ q0 isoquant, both the capital-labor ratio (k=l) and the
RTS will change. The elasticity of substitution (σ) is defined to be the ratio of these proportional
changes; it is a measure of how curved the isoquant is.

k per
period

l per period

q = q0

A

B

(k /l ) A

(k /l ) B

RTSA

RTSB

7That is, the elasticity of substitution between input i and input j might be defined as

σij ¼
∂ lnðxi=xj Þ
∂ lnð fj =fiÞ

for movements along f ðx1, x2,…, xnÞ ¼ c. Notice that the use of partial derivatives in this definition effectively requires that
all inputs other than i and j be held constant when considering movements along the c isoquant.
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Case 1: Linear (σ ¼ ∞)
Suppose that the production function is given by

q ¼ f ðk, lÞ ¼ ak þ bl . (9.34)

It is easy to show that this production function exhibits constant returns to scale: For
any t > 1,

f ðtk, tlÞ ¼ atk þ btl ¼ t ðak þ blÞ ¼ tf ðk, lÞ. (9.35)

All isoquants for this production function are parallel straight lines with slope �b=a. Such an
isoquant map is pictured in panel (a) of Figure 9.4. Because the RTS is constant along any
straight-line isoquant, the denominator in the definition of σ (Equation 9.33) is equal to 0
and hence σ is infinite. Although this linear production function is a useful example, it is

FIGURE 9.4 Isoquant Maps for Simple Production Functions with Various Values for σ

Three possible values for the elasticity of substitution are illustrated in these figures. In (a), capital
and labor are perfect substitutes. In this case, the RTS will not change as the capital-labor ratio
changes. In (b), the fixed-proportions case, no substitution is possible. The capital-labor ratio is fixed
at b=a. A case of limited substitutability is illustrated in (c).
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rarely encountered in practice because few production processes are characterized by such
ease of substitution. Indeed, in this case, capital and labor can be thought of as perfect
substitutes for each other. An industry characterized by such a production function could
use only capital or only labor, depending on these inputs’ prices. It is hard to envision such a
production process: Every machine needs someone to press its buttons, and every laborer
requires some capital equipment, however modest.

Case 2: Fixed proportions (σ ¼ 0)
The production function characterized by σ ¼ 0 is the important case of a fixed-proportions
production function. Capital and labor must always be used in a fixed ratio. The isoquants for
this production function are L-shaped and are pictured in panel (b) of Figure 9.4. A firm
characterized by this production function will always operate along the ray where the ratio k=l
is constant. To operate at some point other than at the vertex of the isoquants would be
inefficient, because the same output could be produced with fewer inputs by moving along
the isoquant toward the vertex. Because k=l is a constant, it is easy to see from the definition of
the elasticity of substitution that σ must equal 0.

The mathematical form of the fixed-proportions production function is given by

q ¼ minðak, blÞ, a, b > 0, (9.36)

where the operator “min”means that q is given by the smaller of the two values in parentheses.
For example, suppose that ak < bl ; then q ¼ ak, and we would say that capital is the binding
constraint in this production process. The employment of more labor would not raise output,
and hence the marginal product of labor is zero; additional labor is superfluous in this case.
Similarly, if ak > bl , then labor is the binding constraint on output and additional capital is
superfluous. When ak ¼ bl , both inputs are fully utilized. When this happens, k=l ¼ b=a, and
production takes place at a vertex on the isoquantmap. If both inputs are costly, this is the only
cost-minimizing place to operate. The locus of all such vertices is a straight line through the
origin with a slope given by b=a.

The fixed-proportions production function has a wide range of applications.8 Many
machines, for example, require a certain number of people to run them, but any excess
labor is superfluous. Consider combining capital (a lawn mower) and labor to mow a lawn. It
will always take one person to run the mower, and either input without the other is not able
to produce any output at all. It may be that many machines are of this type and require a fixed
complement of workers per machine.9

Case 3: Cobb-Douglas (σ ¼ 1)
The production function for which σ ¼ 1, called a Cobb-Douglas production function,10

provides a middle ground between the two polar cases previously discussed. Isoquants for

8With the form reflected by Equation 9.35, the fixed-proportions production function exhibits constant returns to scale
because

f ðtk, tlÞ ¼ minðatk, btlÞ ¼ t �minðak, blÞ ¼ tf ðk, lÞ
for any t > 1. As before, increasing or decreasing returns can be easily incorporated into the functions by using a nonlinear
transformation of this functional form—such as ½ f ðk, lÞ�γ, where γ may be greater than or less than 1.
9The lawn mower example points up another possibility, however. Presumably there is some leeway in choosing what size
of lawn mower to buy. Hence, prior to the actual purchase, the capital-labor ratio in lawn mowing can be considered
variable: Any device, from a pair of clippers to a gang mower, might be chosen. Once the mower is purchased, however, the
capital-labor ratio becomes fixed.
10Named after C. W. Cobb and P. H. Douglas. See P. H. Douglas, The Theory of Wages (New York: Macmillan Co.,
1934), pp. 132–f35.
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the Cobb-Douglas case have the “normal” convex shape and are shown in panel (c) of
Figure 9.4. The mathematical form of the Cobb-Douglas production function is given by

q ¼ f ðk, lÞ ¼ Akalb , (9.37)

where A, a, and b are all positive constants.
The Cobb-Douglas function can exhibit any degree of returns to scale, depending on the

values of a and b. Suppose all inputs were increased by a factor of t . Then

f ðtk, tlÞ ¼ AðtkÞaðtlÞb ¼ Ataþbkalb

¼ t aþbf ðk, lÞ. (9.38)

Hence, if a þ b ¼ 1, the Cobb-Douglas function exhibits constant returns to scale because
output also increases by a factor of t . If a þ b > 1 then the function exhibits increasing
returns to scale, whereas a þ b < 1 corresponds to the decreasing returns-to-scale case. It
is a simple matter to show that the elasticity of substitution is 1 for the Cobb-Douglas
function.11 This fact has led researchers to use the constant returns-to-scale version of
the function for a general description of aggregate production relationships in many
countries.

The Cobb-Douglas function has also proved to be quite useful in many applications
because it is linear in logarithms:

ln q ¼ lnA þ a ln k þ b ln l. (9.39)

The constant a is then the elasticity of output with respect to capital input, and b is the
elasticity of output with respect to labor input.12 These constants can sometimes be
estimated from actual data, and such estimates may be used to measure returns to scale (by
examining the sum a þ b) and for other purposes.

Case 4: CES production function
A functional form that incorporates all of the three previous cases and allows σ to take on
other values as well is the constant elasticity of substitution (CES) production function first
introduced by Arrow et al. in 1961.13 This function is given by

q ¼ f ðk, lÞ ¼ ½kρ þ lρ�γ=ρ (9.40)

for ρ � 1, ρ 6¼ 0, and γ > 0. This function closely resembles the CES utility function
discussed in Chapter 3, though now we have added the exponent γ=ρ to permit explicit
introduction of returns-to-scale factors. For γ > 1 the function exhibits increasing returns to
scale, whereas for γ < 1 it exhibits diminishing returns.

11For the Cobb-Douglas function,

RTS ¼ fl
fk

¼ bAkalb�1

aAka�1lb
¼ b

a
k
l

or

ln RTS ¼ lnðb=aÞ þ lnðk=lÞ.
Hence

σ ¼ ∂ ln k=l
∂ ln RTS

¼ 1.
12See Problem 9.5.
13K. J. Arrow, H. B. Chenery, B. S. Minhas, and R. M. Solow, “Capital-Labor Substitution and Economic Efficiency,”
Review of Economics and Statistics (August 1961): 225–50.
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Direct application of the definition of σ to this function14 gives the important result that

σ ¼ 1
1� ρ

. (9.41)

Hence the linear, fixed-proportions, and Cobb-Douglas cases correspond to ρ ¼ 1,
ρ ¼ �∞, and ρ ¼ 0, respectively. Proof of this result for the fixed proportions and Cobb-
Douglas cases requires a limit argument.

Often the CES function is used with a distributional weight, β ð0 � β � 1Þ, to indicate
the relative significance of the inputs:

q ¼ f ðk, lÞ ¼ ½βkρ þ ð1� βÞlρ�γ=ρ: (9.42)

With constant returns to scale and ρ ¼ 0, this function converges to the Cobb-Douglas form

q ¼ f ðk, lÞ ¼ kβl1�β. (9.43)

EXAMPLE 9.3 A Generalized Leontief Production Function

Suppose that the production function for a good is given by

q ¼ f ðk, lÞ ¼ k þ l þ 2
ffiffiffiffiffiffiffiffi
k ⋅ l

p
. (9.44)

This function is a special case of a class of functions named for the Russian-American
economist Wassily Leontief.15 The function clearly exhibits constant returns to scale because

f ðtk, tlÞ ¼ tk þ tl þ 2t
ffiffiffiffiffi
kl

p
¼ tf ðk, lÞ. (9.45)

Marginal productivities for the Leontief function are

fk ¼ 1þ ðk=lÞ�0:5,

fl ¼ 1þ ðk=lÞ0:5.
(9.46)

Hence, marginal productivities are positive and diminishing. As would be expected (because
this function exhibits constant returns to scale), the RTS here depends only on the ratio of
the two inputs

RTS ¼ fl
fk

¼ 1þ ðk=lÞ0:5
1þ ðk=lÞ�0:5. (9.47)

This RTS diminishes as k=l falls, so the isoquants have the usual convex shape.

14For the CES function we have

RTS ¼ fl
fk

¼ ðγ=ρÞ ⋅ qðγ�ρÞ=γ ⋅ ρlρ�1

ðγ=ρÞ ⋅ qðγ�ρÞ=γ ⋅ ρk ρ�1 ¼ l
k

� �ρ�1

¼ k
l

� �1�ρ

.

Applying the definition of the elasticity of substitution then yields

σ ¼ ∂ lnðk=lÞ
∂ ln RTS

¼ 1
1� ρ

.

Notice in this computation that the factor ρ cancels out of the marginal productivity functions, thereby ensuring that these
marginal productivities are positive even when ρ is negative (as it is in many cases). This explains why ρ appears in two
different places in the definition of the CES function.
15Lenotief was a pioneer in the development of input-output analysis. In input-output analysis, production is assumed to
take place with a fixed-proportions technology. The Leontief production function generalizes the fixed-proportions case.
For more details see the discussion of Leontief production functions in the Extensions to this chapter.
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There are two ways you might calculate the elasticity of substitution for this production
function. First, you might notice that in this special case the function can be factored as

q ¼ k þ l þ 2
ffiffiffiffiffi
kl

p
¼ ð

ffiffiffi
k

p
þ

ffiffi
l

p
Þ2 ¼ ðk0:5 þ l0:5Þ2, (9.48)

which makes clear that this function has a CES form with ρ ¼ 0:5 and γ ¼ 1. Hence the
elasticity of substitution here is σ ¼ 1=ð1� ρÞ ¼ 2.

Of course, in most cases it is not possible to do such a simple factorization. A more ex-
haustive approach is to apply the definition of the elasticity of substitution given in footnote 6
of this chapter:

σ ¼ fk fl
f ⋅ fkl

¼ ½1þ ðk=lÞ0:5�½1þ ðk=lÞ�0:5�
q ⋅ ð0:5=

ffiffiffiffiffi
kl

p Þ

¼ 2þ ðk=lÞ0:5 þ ðk=lÞ�0:5

1þ 0:5ðk=lÞ0:5 þ 0:5ðk=lÞ�0:5 ¼ 2: (9.49)

Notice that in this calculation the input ratio ðk=lÞ drops out, leaving a very simple result. In
other applications, one might doubt that such a fortuitous result would occur and hence
doubt that the elasticity of substitution is constant along an isoquant (see Problem 9.7). But
here the result that σ ¼ 2 is intuitively reasonable, because that value represents a
compromise between the elasticity of substitution for this production function’s linear part
ðq ¼ k þ l ,σ ¼ ∞Þ and its Cobb-Douglas part ðq ¼ 2k0:5l0:5,σ ¼ 1Þ.

QUERY: What can you learn about this production function by graphing the q ¼ 4 isoquant?
Why does this function generalize the fixed proportions case?

TECHNICAL PROGRESS

Methods of production improve over time, and it is important to be able to capture these
improvements with the production function concept. A simplified view of such progress is
provided by Figure 9.5. Initially, isoquant q0 records those combinations of capital and labor
that can be used to produce an output level of q0. Following the development of superior
production techniques, this isoquant shifts to q 00. Now the same level of output can be
produced with fewer inputs. One way to measure this improvement is by noting that with
a level of capital input of, say, k1, it previously took l2 units of labor to produce q0, whereas
now it takes only l1. Output per worker has risen from q0=l2 to q0=l1. But one must be careful
in this type of calculation. An increase in capital input to k2 would also have permitted a
reduction in labor input to l1 along the original q0 isoquant. In this case, output per worker
would also rise, although there would have been no true technical progress. Use of the
production function concept can help to differentiate between these two concepts and
therefore allow economists to obtain an accurate estimate of the rate of technical change.

Measuring technical progress
The first observation to be made about technical progress is that historically the rate of
growth of output over time has exceeded the growth rate that can be attributed to the growth
in conventionally defined inputs. Suppose that we let

q ¼ Aðt Þf ðk, lÞ (9.50)

be the production function for some good (or perhaps for society’s output as a whole). The
term AðtÞ in the function represents all the influences that go into determining q other than
k (machine-hours) and l (labor-hours). Changes in A over time represent technical progress.
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For this reason, A is shown as a function of time. Presumably dA=dt > 0; particular levels of
input of labor and capital become more productive over time.

Differentiating Equation 9.50 with respect to time gives

dq
dt

¼ dA
dt ⋅ f k, lð Þ þA ⋅

df ðk, lÞ
dt

¼ dA
dt ⋅

q
A

þ q
f ðk, lÞ

∂f
∂k ⋅

dk
dt

þ ∂f
∂l ⋅

dl
dt

	 

. (9.51)

Dividing by q gives

dq=dt
q

¼ dA=dt
A

þ ∂f =∂k
f ðk, lÞ ⋅

dk
dt

þ ∂f =∂l
f ðk, lÞ ⋅

dl
dt

(9.52)

or

dq=dt
q

¼ dA=dt
A

þ ∂f
∂k ⋅

k
f ðk, lÞ ⋅

dk=dt
k

þ ∂f
∂l ⋅

l
f ðk, lÞ ⋅

dl=dt
l

. (9.53)

Now, for any variable x, (dx=dt)/x is the proportional rate of growth of x per unit of time.
We shall denote this byGx .

16 Hence, Equation 9.53 can be written in terms of growth rates as

FIGURE 9.5 Technical Progress

Technical progress shifts the q0 isoquant toward the origin. The new q0 isoquant, q 00, shows that a
given level of output can now be produced with less input. For example, with k1 units of capital it
now only takes l1 units of labor to produce q0, whereas before the technical advance it took l2 units of
labor.

k per
period

l per period

k1

k2

l2l1

q0

q′0

16Two useful features of this definition are: (1) Gx ⋅ y ¼ Gx þ Gy—that is, the growth rate of a product of two variables is
the sum of each one’s growth rate; and (2) Gx=y ¼ Gx � Gy .
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Gq ¼ GA þ ∂f
∂k ⋅

k
f ðk, lÞ ⋅Gk þ ∂f

∂l ⋅
l

f ðk, lÞ ⋅Gl , (9.54)

but

∂f
∂k ⋅

k
f ðk, lÞ ¼ ∂q

∂k ⋅
k
q

¼ elasticity of output with respect to capital input

¼ eq, k

and

∂f
∂l ⋅

l
f ðk, lÞ ¼ ∂q

∂l ⋅
l
q

¼ elasticity of output with respect to labor input

¼ eq;l .

Growth accounting
Therefore, our growth equation finally becomes

Gq ¼ GA þ eq, kGk þ eq, lGl . (9.55)

This shows that the rate of growth in output can be broken down into the sum of two
components: growth attributed to changes in inputs (k and l) and other “residual” growth
(that is, changes in A) that represents technical progress.

Equation 9.55 provides a way of estimating the relative importance of technical progress
(GA) in determining the growth of output. For example, in a pioneering study of the entire
U.S. economy between the years 1909 and 1949, R. M. Solow recorded the following values
for the terms in the equation:17

Gq ¼ 2:75 percent per year,
Gl ¼ 1:00 percent per year,
Gk ¼ 1:75 percent per year,
eq, l ¼ 0:65,
eq, k ¼ 0:35.

Consequently,

GA ¼ Gq � eq, lGl � eq, kGk

¼ 2:75� 0:65ð1:00Þ � 0:35ð1:75Þ
¼ 2:75� 0:65� 0:60

¼ 1:50. (9.56)

The conclusion Solow reached, then, was that technology advanced at a rate of 1.5 percent
per year from 1909 to 1949. More than half of the growth in real output could be attributed
to technical change rather than to growth in the physical quantities of the factors of produc-
tion. More recent evidence has tended to confirm Solow’s conclusions about the relative
importance of technical change. Considerable uncertainty remains, however, about the
precise causes of such change.

17R. M. Solow, “Technical Progress and the Aggregate Production Function,” Review of Economics and Statistics 39
(August 1957): 312–f20.
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EXAMPLE 9.4 Technical Progress in the Cobb-Douglas Production Function

The Cobb-Douglas production function provides an especially easy avenue for illustrating
technical progress. Assuming constant returns to scale, such a production function with
technical progress might be represented by

q ¼ Aðt Þf ðk, lÞ ¼ Aðt Þkαl1�α. (9.57)

If we also assume that technical progress occurs at a constant exponential (θ), then we can
write AðtÞ ¼ Aeθt and the production function becomes

q ¼ Aeθt kαl1�α. (9.58)

A particularly easy way to study the properties of this type of function over time is to use
“logarithmic differentiation”:

∂ ln q
∂t

¼ ∂ ln q
∂q ⋅

∂q
∂t

¼ ∂q=∂t
q

¼ Gq ¼ ∂½lnA þ θt þ α ln k þ ð1 � αÞ ln l �
∂t

¼ θ þ α ⋅
∂ ln k
∂t

þ ð1 � αÞ ⋅ ∂ ln l
∂t

¼ θþ αGk þ ð1 −αÞGl . (9.59)

So this derivation just repeats Equation 9.55 for the Cobb-Douglas case. Here the technical
change factor is explicitly modeled, and the output elasticities are given by the values of the
exponents in the Cobb-Douglas.

The importance of technical progress can be illustrated numerically with this function.
Suppose A ¼ 10, θ ¼ 0:03,α ¼ 0:5 and that a firm uses an input mix of k ¼ l ¼ 4. Then, at
t ¼ 0, output is 40ð¼ 10 ⋅ 40:5 ⋅ 40:5Þ. After 20 years ðt ¼ 20Þ, the production function
becomes

q ¼ 10e0:03⋅20k0:5l0:5 ¼ 10 ⋅ ð1:82Þk0:5l0:5 ¼ 18:2k0:5l0:5. (9.60)

In year 20 the original input mix now yields q ¼ 72:8. Of course, one could also have
produced q ¼ 72:8 in year 0, but it would have taken a lot more inputs. For example, with
k ¼ 13:25 and l ¼ 4, output is indeed 72.8 but much more capital is used. Output per unit of
labor input would rise from 10 (q=l ¼ 40=4) to 18:2 ð¼ 72:8=4) in either circumstance, but
only the first case would have been true technical progress.

Input-augmenting technical progress. It is tempting to attribute the increase in the
average productivity of labor in this example to, say, improved worker skills, but that
would be misleading in the Cobb-Douglas case. One might just as well have said that output
per unit of capital rose from 10 to 18.2 over the 20 years and attribute this rise to improved
machinery. A plausible approach to modeling improvements in labor and capital separately is
to assume that the production function is

q ¼ Aðeφt kÞαðeεt lÞ1�α, (9.61)

where φ represents the annual rate of improvement in capital input and ε represents the
annual rate of improvement in labor input. But, because of the exponential nature of the
Cobb-Douglas function, this would be indistinguishable from our original example:

q ¼ Ae½αφþð1�αÞε�t kαl1�α ¼ Aeθt kαl1�α, (9.62)

where θ ¼ αφþ ð1� αÞε. Hence, to study technical progress in individual inputs, it is
necessary either to adopt a more complex way of measuring inputs that allows for improving
quality or (what amounts to the same thing) to use a multi-input production function.
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QUERY: Actual studies of production using the Cobb-Douglas tend to find α� 0.3. Use this
finding together with Equation 9.62 to discuss the relative importance of improving capital
and labor quality to the overall rate of technical progress.

PROBLEMS

9.1
Power Goat Lawn Company uses two sizes of mowers to cut lawns. The smaller mowers have a 24-inch
blade and are used on lawns with many trees and obstacles. The larger mowers are exactly twice as big as
the smaller mowers and are used on open lawns where maneuverability is not so difficult. The two
production functions available to Power Goat are:

a. Graph the q ¼ 40,000 square feet isoquant for the first production function. Howmuch k and l
would be used if these factors were combined without waste?

Output per Hour
(square feet)

Capital Input
(# of 2400mowers) Labor Input

Large mowers 8000 2 1

Small mowers 5000 1 1

SUMMARY

In this chapter we illustrated the ways in which economists
conceptualize the production process of turning inputs into
outputs. The fundamental tool is the production function,
which—in its simplest form—assumes that output per period
(q) is a simple function of capital and labor inputs during that
period, q ¼ f ðk, lÞ. Using this starting point, we developed
several basic results for the theory of production.

• If all but one of the inputs are held constant, a relation-
ship between the single-variable input and output can be
derived. From this relationship, one can derive the mar-
ginal physical productivity (MP) of the input as the
change in output resulting from a one-unit increase in
the use of the input. The marginal physical productivity
of an input is assumed to decline as use of the input
increases.

• The entire production function can be illustrated by its
isoquant map. The (negative of the) slope of an isoquant
is termed the marginal rate of technical substitution
(RTS), because it shows how one input can be substi-
tuted for another while holding output constant. The
RTS is the ratio of the marginal physical productivities of
the two inputs.

• Isoquants are usually assumed to be convex—they obey
the assumption of a diminishing RTS. This assumption
cannot be derived exclusively from the assumption of
diminishing marginal physical productivities. One must
also be concerned with the effect of changes in one input
on the marginal productivity of other inputs.

• The returns to scale exhibited by a production function
record how output responds to proportionate increases
in all inputs. If output increases proportionately with
input use, there are constant returns to scale. If there
are greater than proportionate increases in output, there
are increasing returns to scale, whereas if there are less
than proportionate increases in output, there are de-
creasing returns to scale.

• The elasticity of substitution ðσÞ provides a measure of
how easy it is to substitute one input for another in pro-
duction. A highσ implies nearly linear isoquants, whereas
a low σ implies that isoquants are nearly L-shaped.

• Technical progress shifts the entire production function
and its related isoquant map. Technical improvements
may arise from the use of improved, more-productive
inputs or from better methods of economic organization.
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b. Answer part (a) for the second function.

c. Howmuch k and l would be used without waste if half of the 40,000-square-foot lawn were cut
by the method of the first production function and half by the method of the second? How
much k and l would be used if three fourths of the lawn were cut by the first method and one
fourth by the second? What does it mean to speak of fractions of k and l?

d. On the basis of your observations in part (c), draw a q ¼ 40,000 isoquant for the combined
production functions.

9.2
Suppose the production function for widgets is given by

q ¼ kl � 0:8k2 � 0:2l2,

where q represents the annual quantity of widgets produced, k represents annual capital input, and l
represents annual labor input.

a. Suppose k ¼ 10; graph the total and average productivity of labor curves. At what level of labor
input does this average productivity reach a maximum? How many widgets are produced at
that point?

b. Again assuming that k ¼ 10, graph the MPl curve. At what level of labor input does MPl ¼ 0?

c. Suppose capital inputs were increased to k ¼ 20. How would your answers to parts (a) and (b)
change?

d. Does the widget production function exhibit constant, increasing, or decreasing returns to
scale?

9.3
Sam Malone is considering renovating the bar stools at Cheers. The production function for new bar
stools is given by

q ¼ 0:1k0:2l0:8,

where q is the number of bar stools produced during the renovation week, k represents the number of
hours of bar stool lathes used during the week, and l represents the number of worker hours employed
during the period. Sam would like to provide 10 new bar stools, and he has allocated a budget of
$10,000 for the project.

a. Sam reasons that because bar stool lathes and skilled bar stool workers both cost the same
amount ($50 per hour), he might as well hire these two inputs in equal amounts. If Sam
proceeds in this way, how much of each input will he hire and how much will the renovation
project cost?

b. Norm (who knows something about bar stools) argues that once again Sam has forgotten his
microeconomics. He asserts that Sam should choose quantities of inputs so that their marginal
(not average) productivities are equal. If Sam opts for this plan instead, how much of each input
will he hire and how much will the renovation project cost?

c. Upon hearing that Norm’s plan will save money, Cliff argues that Sam should put the savings
into more bar stools in order to provide seating to more of his USPS colleagues. How many
more bar stools can Sam get for his budget if he follows Cliff’s plan?

d. Carla worries that Cliff’s suggestion will just mean more work for her in delivering food to bar
patrons. How might she convince Sam to stick to his original 10–bar stool plan?
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9.4

Suppose that the production of crayons ðqÞ is conducted at two locations and uses only labor as an input.
The production function in location 1 is given by q1 ¼ 10l0.51 and in location 2 by q2 ¼ 50l0.52 :

a. If a single firm produces crayons in both locations, then it will obviously want to get as large an
output as possible given the labor input it uses. How should it allocate labor between the
locations in order to do so? Explain precisely the relationship between l1 and l2:

b. Assuming that the firm operates in the efficient manner described in part (a), how does total
output ðqÞ depend on the total amount of labor hired ðlÞ?

9.5

As we have seen in many places, the general Cobb-Douglas production function for two inputs is
given by

q ¼ f ðk, lÞ ¼ Akαlβ,

where 0 < α < 1 and 0 < β < 1: For this production function:

a. Show that fk > 0, fl > 0, fkk < 0, fll < 0, and fkl ¼ flk > 0.

b. Show that eq, k ¼ α and ee, l ¼ β:

c. In footnote 5, we defined the scale elasticity as

eq, t ¼
∂f ðtk, tlÞ

∂t ⋅
t

f ðtk, tlÞ,

where the expression is to be evaluated at t ¼ 1: Show that, for this Cobb-Douglas function,
eq, t ¼ αþ β: Hence, in this case the scale elasticity and the returns to scale of the production
function agree (for more on this concept see Problem 9.9).

d. Show that this function is quasi-concave.

e. Show that the function is concave for αþ β � 1 but not concave for αþ β > 1:

9.6

Suppose we are given the constant returns-to-scale CES production function

q ¼ ½kρ þ lρ�1=ρ.
a. Show that MPk ¼ ðq=kÞ1�ρ andMPl ¼ ðq=lÞ1�ρ:

b. Show that RTS ¼ ðl=kÞ1�ρ; use this to show that σ ¼ 1=ð1� ρÞ:
c. Determine the output elasticities for k and l , and show that their sum equals 1.

d. Prove that

q
l
¼ ∂q

∂l

� �σ

and hence that

ln
q
l

� �
¼ σ ln

∂q
∂l

� �
.

Note: The latter equality is useful in empirical work, because we may approximate ∂q=∂l by
the competitively determined wage rate. Hence, σ can be estimated from a regression of
lnðq=lÞ on ln w:
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9.7
Consider a generalization of the production function in Example 9.3:

q ¼ β0 þ β1

ffiffiffiffiffi
kl

p
þ β2k þ β3l ,

where
0 � βi � 1, i ¼ 0,…,3.

a. If this function is to exhibit constant returns to scale, what restrictions should be placed on
the parameters β0, . . . ,β3?

b. Show that, in the constant returns-to-scale case, this function exhibits diminishing marginal
productivities and that the marginal productivity functions are homogeneous of degree 0.

c. Calculate σ in this case. Although σ is not in general constant, for what values of the β’s does
σ ¼ 0, 1, or ∞?

9.8
Show that Euler’s theorem implies that, for a constant returns-to-scale production function
½q ¼ f ðk, lÞ�,

q ¼ fk ⋅ k þ fl ⋅ l:

Use this result to show that, for such a production function, if MPl > APl thenMPk must be negative.
What does this imply about where production must take place? Can a firm ever produce at a point
where APl is increasing?

Analytical Problems
9.9 Local returns to scale
A local measure of the returns to scale incorporated in a production function is given by the scale
elasticity eq, t ¼ ∂f ðtk, tlÞ=∂t ⋅ t=q evaluated at t ¼ l :

a. Show that if the production function exhibits constant returns to scale then eq, t ¼ 1:

b. We can define the output elasticities of the inputs k and l as

eq, k ¼ ∂f ðk, lÞ
∂k ⋅

k
q
,

eq, l ¼ ∂f ðk, lÞ
∂l ⋅

l
q
.

Show that eq, t ¼ eq, k þ eq, l :

c. A function that exhibits variable scale elasticity is

q ¼ ð1þ k�1l�1Þ�1:

Show that, for this function, eq, t > 1 for q < 0.5 and that eq, t < 1 for q > 0.5:

d. Explain your results from part (c) intuitively. Hint: Does q have an upper bound for this
production function?
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9.10 Returns to scale and substitution
Although much of our discussion of measuring the elasticity of substitution for various production
functions has assumed constant returns to scale, often that assumption is not necessary. This problem
illustrates some of these cases.

a. In footnote 6 we showed that, in the constant returns-to-scale case, the elasticity of substitution
for a two-input production function is given by

σ ¼ fk fl
f ⋅ fkl

.

Suppose now that we define the homothetic production function F as

Fðk, lÞ ¼ ½ f ðk, lÞ�γ,
where f ðk, lÞ is a constant returns-to-scale production function and γ is a positive exponent.
Show that the elasticity of substitution for this production function is the same as the elasticity of
substitution for the function f :

b. Show how this result can be applied to both the Cobb-Douglas and CES production functions.

9.11 More on Euler’s theorem
Suppose that a production function f ðx1, x2,…, xnÞ is homogeneous of degree k: Euler’s theorem
shows that

X
i xi fi ¼ k f , and this fact can be used to show that the partial derivatives of f are

homogeneous of degree k � 1:

a. Prove that
Xn

i¼1
Xn

j¼1xixj fij ¼ kðk � 1Þf :
b. In the case of n ¼ 2 and k ¼ 1, what kind of restrictions does the result of part (a) impose on

the second-order partial derivative f12? How do your conclusions change when k > 1 or k < 1?

c. How would the results of part (b) be generalized to a production function with any number of
inputs?

d. What are the implications of this problem for the parameters of the multivariable Cobb-
Douglas production function f ðx1, x2,…, xnÞ ¼ ∏n

i¼1 x
αi
i for αi 	 0?
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E X T E N S I O N S

Many-Input Production Functions

Most of the production functions illustrated in Chap-
ter 9 can be easily generalized to many-input cases.
Here we show this for the Cobb-Douglas and CES
cases and then examine two quite flexible forms that
such production functions might take. In all of these
examples, the β’s are nonnegative parameters and the
n inputs are represented by x1,…, xn:

E9.1 Cobb-Douglas

The many-input Cobb-Douglas production function
is given by

q ¼
Yn
i¼1

xβi
i . (i)

a. This functionexhibits constant returns to scale ifXn
i¼1

βi ¼ 1. (ii)

b. In the constant-returns-to-scale Cobb-Douglas
function, βi is the elasticity of q with respect to
input xi: Because 0 � β < 1; each input ex-
hibits diminishing marginal productivity.

c. Any degree of increasing returns to scale can be
incorporated into this function, depending on

ε ¼
Xn
i¼1

βi. (iii)

d. The elasticity of substitution between any two
inputs in this production function is 1. This can
be shown by using the definition given in foot-
note 7 of this chapter:

σij ¼
∂ lnðxi=xj Þ
∂ lnð fj =fiÞ

.

Here

fj
fi

¼
βj x

βj�1
j ∏i 6¼j x

βi
i

βix
βi�1
i ∏j 6¼i x

βj

j

¼ βj

βi
⋅
xi
xj

.

Hence,

ln
fj
fi

� �
¼ ln

βj

βi

� �
þ ln

xi
xj

 !
and σij ¼ 1: Because this parameter is so con-
strained in the Cobb-Douglas function, the

function is generally not used in econometric
analyses of microeconomic data on firms. How-
ever, the function has a variety of general uses
in macroeconomics, as the next example illus-
trates.

The Solow growth model
The many-input Cobb-Douglas production function is
a primary feature of many models of economic growth.
For example, Solow’s (1956) pioneering model of
equilibrium growth can be most easily derived using a
two-input constant-returns-to-scale Cobb-Douglas
function of the form

Y ¼ AK αL1�α, (iv)

where A is a technical change factor that can be repre-
sented by exponential growth of the form

A ¼ eat . (v)

Dividing both sides of Equation iv by L yields

y ¼ eat kα, (vi)

where
y ¼ Y =L and k ¼ K=L.

Solow shows that economies will evolve toward an
equilibrium value of k (the capital-labor ratio).
Hence cross-country differences in growth rates can
be accounted for only by differences in the technical
change factor, a:

Two features of Equation vi argue for including
more inputs in the Solow model. First, the equation as
it stands is incapable of explaining the large differences
in per capita output ðyÞ that are observed around the
world. Assuming α ¼ 0:3, say (a figure consistent with
many empirical studies), it would take cross-country
differences in K=L of as much as 4,000,000-to-1 to
explain the 100-to-1 differences in per capita income
observed—a clearly unreasonable magnitude. By in-
troducing additional inputs, such as human capital,
these differences become more explainable.

A second shortcoming of the simple Cobb-Douglas
formulation of the Solow model is that it offers no
explanation of the technical change parameter, a—its
value is determined “exogenously.” By adding addi-
tional factors, it becomes easier to understand how
the parameter a may respond to economic incentives.
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This is the key insight of literature on “endogenous”
growth theory (for a summary, see Romer, 1996).

E9.2 CES

The many-input constant elasticity of substitution
(CES) production function is given by

q ¼
X

βix
ρ
i

h iε=ρ
, ρ � 1. (vii)

a. By substituting mxi for each output, it is easy
to show that this function exhibits constant
returns to scale for ε ¼ 1: For ε > 1, the func-
tion exhibits increasing returns to scale.

b. The production function exhibits diminishing
marginal productivities for each input because
ρ � 1:

c. As in the two-input case, the elasticity of sub-
stitution here is given by

σ ¼ 1
1� ρ

, (viii)

and this elasticity applies to substitution
between any two of the inputs.

Checking the Cobb-Douglas in the Soviet Union
One way in which themulti-input CES function is used
is to determine whether the estimated substitution
parameter ðρÞ is consistent with the value implied by
the Cobb-Douglas ðρ ¼ 0, σ ¼ 1Þ: For example, in a
study of five major industries in the former Soviet
Union, E. Bairam (1991) finds that the Cobb-Douglas
provides a relatively good explanation of changes in
output in most major manufacturing sectors. Only for
food processing does a lower value for σ seem
appropriate.

The next three examples illustrate flexible-form
production functions that may approximate any gen-
eral function of n inputs. In the Chapter 10 exten-
sions, we examine the cost function analogues to some
of these functions, which are more widely used than
the production functions themselves.

E9.3 Nested production functions

In some applications, Cobb-Douglas and CES pro-
duction functions are combined into a “nested” single
function. To accomplish this, the original n primary
inputs are categorized into, say, m general classes of
inputs. The specific inputs in each of these categories
are then aggregated into a single composite input, and

the final production function is a function of these m
composites. For example, assume there are three pri-
mary inputs, x1, x2, x3: Suppose, however, that x1 and
x2 are relatively closely related in their use by firms (for
example, capital and energy) whereas the third input
(labor) is relatively distinct. Then one might want to
use a CES aggregator function to construct a compos-
ite input for capital services of the form

x4 ¼ ½γxρ
1 þ ð1� γÞxρ

2�1=ρ: (ix)

Then the final production function might take a
Cobb-Douglas form:

q ¼ xα
3x

β
4: (x)

This structure allows the elasticity of substitution be-
tween x1 and x2 to take on any value ½σ ¼ 1=ð1� ρÞ�
but constrains the elasticity of substitution between x3
and x4 to be one. A variety of other options are avail-
able depending on how precisely the embedded func-
tions are specified.

The dynamics of capital/energy substitutability
Nested production functions have been widely used in
studies that seek to measure the precise nature of the
substitutability between capital and energy inputs. For
example, Atkeson and Kehoe (1999) use a model
rather close to the one specified in Equations ix and x
to try to reconcile two facts about the way in which
energy prices affect the economy: (1) Over time, use of
energy in production seems rather unresponsive to
price (at least in the short-run); and (2) across coun-
tries, energy prices seem to have a large influence over
how much energy is used. By using a capital service
equation of the form given in Equation ix with a low
degree of substitutability ðρ ¼ �2:3Þ—along with a
Cobb-Douglas production function that combines
labor with capital services—they are able to replicate
the facts about energy prices fairly well. They conclude,
however, that this model implies amuchmore negative
effect of higher energy prices on economic growth
than seems actually to have been the case. Hence they
ultimately opt for a more complex way of modeling
production that stresses differences in energy use
among capital investments made at different dates.

E9.4 Generalized Leontief

q ¼
Xn
i¼1

Xn
j¼1

βij
ffiffiffiffiffiffiffiffiffi
xixj

p
,

where βij ¼ βji.
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a. The function considered in Problem 9.7 is a
simple case of this function for the case n ¼ 2:
For n ¼ 3, the function would have linear
terms in the three inputs along with three radi-
cal terms representing all possible cross-pro-
ducts of the inputs.

b. The function exhibits constant returns to scale,
as can be shown by using mxi . Increasing
returns to scale can be incorporated into the
function by using the transformation

q0 ¼ qε, ε > 1.

c. Because each input appears both linearly and
under the radical, the function exhibits dimin-
ishing marginal productivities to all inputs.

d. The restriction βij ¼ βji is used to ensure sym-
metry of the second-order partial derivatives.

E9.5 Translog

lnq ¼ β0 þ
Xn
i¼1

βi ln xi þ 0:5
Xn
i¼1

Xn
j¼1

βij ln xi ln xj ;

βij ¼ βji:

a. Note that the Cobb-Douglas function is a spe-
cial case of this function where β0 ¼ βij ¼ 0 for
all i, j :

b. As for the Cobb-Douglas, this function may
assume any degree of returns to scale. If

Xn
i¼1

βi ¼ 1 and
Xn
j¼1

βij ¼ 0

for all i, then this function exhibits constant
returns to scale. The proof requires some care
in dealing with the double summation.

c. Again, the condition βij ¼ βji is required to
ensure equality of the cross-partial derivatives.

Immigration
Because the translog production function incorporates
a large number of substitution possibilities among var-
ious inputs, it has been widely used to study the ways in
which newly arrived workers may substitute for exist-
ing workers. Of particular interest is the way in which
the skill level of immigrants may lead to differing reac-
tions in the demand for skilled and unskilled workers in
the domestic economy. Studies of the United States
and many other countries (Canada, Germany, France,
and so forth) have suggested that the overall size of
such effects is modest, especially given relatively small
immigration flows. But there is some evidence that
unskilled immigrant workers may act as substitutes
for unskilled domestic workers but as complements to
skilled domestic workers. Hence increased immigra-
tion flows may exacerbate trends toward rising wage
differentials. For a summary, see Borjas (1994).
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C H A P T E R

10

Cost Functions

In this chapter we illustrate the costs that a firm incurs when it produces output. In Chapter 11, we will pursue
this topic further by showing how firms make profit-maximizing input and output decisions.

DEFINITIONS OF COSTS

Before we can discuss the theory of costs, some difficulties about the proper definition of
“costs” must be cleared up. Specifically, we must differentiate between (1) accounting cost
and (2) economic cost. The accountant’s view of cost stresses out-of-pocket expenses, historical
costs, depreciation, and other bookkeeping entries. The economist’s definition of cost (which in
obvious ways draws on the fundamental opportunity-cost notion) is that the cost of any input is
given by the size of the payment necessary to keep the resource in its present employment.
Alternatively, the economic cost of using an input is what that input would be paid in its next
best use. One way to distinguish between these two views is to consider how the costs of various
inputs (labor, capital, and entrepreneurial services) are defined under each system.

Labor costs
Economists and accountants regard labor costs in much the same way. To accountants,
expenditures on labor are current expenses and hence costs of production. For economists,
labor is an explicit cost. Labor services (labor-hours) are contracted at some hourly wage rate
ðwÞ, and it is usually assumed that this is also what the labor services would earn in their best
alternative employment. The hourly wage, of course, includes costs of fringe benefits provided
to employees.

Capital costs
In the case of capital services (machine-hours), the two concepts of cost differ. In calculating
capital costs, accountants use the historical price of the particular machine under investigation
and apply some more-or-less arbitrary depreciation rule to determine how much of that
machine’s original price to charge to current costs. Economists regard the historical price of a
machine as a “sunk cost,” which is irrelevant to output decisions. They instead regard the
implicit cost of the machine to be what someone else would be willing to pay for its use. Thus
the cost of one machine-hour is the rental rate for that machine in its best alternative use. By
continuing to use the machine itself, the firm is implicitly forgoing what someone else would
be willing to pay to use it. This rental rate for one machine-hour will be denoted by v.1

1Sometimes the symbol r is chosen to represent the rental rate on capital. Because this variable is often confused with the
related but distinct concept of the market interest rate, an alternative symbol was chosen here. The exact relationship
between v and the interest rate is examined in Chapter 17.
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Costs of entrepreneurial services
The owner of a firm is a residual claimant who is entitled to whatever extra revenues or losses
are left after paying other input costs. To an accountant, these would be called profits (which
might be either positive or negative). Economists, however, ask whether owners (or entre-
preneurs) also encounter opportunity costs by working at a particular firm or devoting some of
their funds to its operation. If so, these services should be considered an input, and some cost
should be imputed to them. For example, suppose a highly skilled computer programmer
starts a software firm with the idea of keeping any (accounting) profits that might be gener-
ated. The programmer’s time is clearly an input to the firm, and a cost should be inputted for it.
Perhaps the wage that the programmer might command if he or she worked for someone else
could be used for that purpose. Hence some part of the accounting profits generated by the
firm would be categorized as entrepreneurial costs by economists. Economic profits would be
smaller than accounting profits and might be negative if the programmer’s opportunity costs
exceeded the accounting profits being earned by the business. Similar arguments apply to the
capital that an entrepreneur provides to the firm.

Economic costs
In this book, not surprisingly, we use economists’ definition of cost.

D E F I N I T I O N
Economic cost. The economic cost of any input is the payment required to keep that input in
its present employment. Equivalently, the economic cost of an input is the remuneration the
input would receive in its best alternative employment.

Use of this definition is not meant to imply that accountants’ concepts are irrelevant to
economic behavior. Indeed, accounting procedures are integrally important to any manager’s
decision-making process because they can greatly affect the rate of taxation to be applied
against profits. Accounting data are also readily available, whereas data on economic costs
must often be developed separately. Economists’ definitions, however, do have the desirable
features of being broadly applicable to all firms and of forming a conceptually consistent
system. They therefore are best suited for a general theoretical analysis.

Two simplifying assumptions
As a start, we will make two simplifications about the inputs a firm uses. First, we assume that
there are only two inputs: homogeneous labor (l , measured in labor-hours) and homoge-
neous capital (k, measured in machine-hours). Entrepreneurial costs are included in capital
costs. That is, we assume that the primary opportunity costs faced by a firm’s owner are those
associated with the capital that the owner provides.

Second, we assume that inputs are hired in perfectly competitive markets. Firms can buy
(or sell) all the labor or capital services they want at the prevailing rental rates (w and v). In
graphic terms, the supply curve for these resources is horizontal at the prevailing factor prices.
Both w and v are treated as “parameters” in the firm’s decisions; there is nothing the firm can
do to affect them. These conditions will be relaxed in later chapters (notably Chapter 16), but
for the moment the price-taker assumption is a convenient and useful one to make.

Economic profits and cost minimization
Total costs for the firm during a period are therefore given by

total costs ¼ C ¼ wl þ vk, (10.1)

where, as before, l and k represent input usage during the period. Assuming the firm
produces only one output, its total revenues are given by the price of its product ðpÞ times its
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total output [q ¼ f ðk, lÞ, where f ðk, lÞ is the firm’s production function]. Economic profits
ðπÞ are then the difference between total revenues and total economic costs.

D E F I N I T I O N
Economic profits. Economic profits ðπÞ are the difference between a firm’s total revenues and
its total costs:

π ¼ total revenue � total cost ¼ pq � wl �vk
¼ pf ðk, lÞ � wl �vk. (10.2)

Equation 10.2 shows that the economic profits obtained by a firm are a function of the
amount of capital and labor employed. If, as we will assume in many places in this book, the
firm seeks maximum profits, then we might study its behavior by examining how k and l are
chosen so as to maximize Equation 10.2. This would, in turn, lead to a theory of supply and
to a theory of the “derived demand” for capital and labor inputs. In the next chapter we will
take up those subjects in detail. Here, however, we wish to develop a theory of costs that is
somewhat more general and might apply to firms that are not necessarily profit maximizers.
Hence, we begin the study of costs by finessing, for the moment, a discussion of output
choice. That is, we assume that for some reason the firm has decided to produce a particular
output level (say, q0). The firm’s revenues are therefore fixed at pq0. Now we wish to examine
how the firm can produce q0 at minimal costs.

COST-MINIMIZING INPUT CHOICES

Mathematically, this is a constrained minimization problem. But before proceeding with a
rigorous solution, it is useful to state the result to be derived with an intuitive argument. To
minimize the cost of producing a given level of output, a firm should choose that point on the q0
isoquant at which the rate of technical substitution of l for k is equal to the ratio w=v: It should
equate the rate atwhich k canbe traded for l in production to the rate atwhich they canbe traded
in the marketplace. Suppose that this were not true. In particular, suppose that the firm were
producing output level q0 using k ¼ 10, l ¼ 10, and assume that the RTS were 2 at this
point. Assume also that w ¼ $1, v ¼ $1, and hence that w=v ¼ 1 (which is unequal to 2). At
this input combination, the cost of producing q0 is $20. It is easy to show this is not theminimal
input cost. For example, q0 can also be produced using k ¼ 8 and l ¼ 11; we can give up two
units of k and keep output constant at q0 by adding one unit of l . But at this input combination,
the cost of producing q0 is $19 and hence the initial input combination was not optimal. A
contradiction similar to this one can be demonstrated whenever the RTS and the ratio of the
input costs differ.

Mathematical analysis
Mathematically, we seek to minimize total costs given q ¼ f ðk, lÞ ¼ q0. Setting up the
Lagrangian expression

ℒ ¼ wl þ vk þ λ½q0 � f ðk, lÞ�, (10.3)

the first-order conditions for a constrained minimum are
∂ℒ
∂l

¼ w � λ
∂f
∂l

¼ 0,

∂ℒ
∂k

¼ v � λ
∂f
∂k

¼ 0,

∂ℒ
∂λ

¼ q0 � f ðk, lÞ ¼ 0,

(10.4)

Chapter 10 Cost Functions 325



or, dividing the first two equations,

w
v
¼ ∂f =∂l

∂f =∂k
¼ RTS ðl for kÞ. (10.5)

This says that the cost-minimizing firm should equate the RTS for the two inputs to the
ratio of their prices.

Further interpretations
These first-order conditions for minimal costs can be manipulated in several different ways to
yield interesting results. For example, cross-multiplying Equation 10.5 gives

fk
v

¼ fl
w
. (10.6)

That is: for costs to be minimized, the marginal productivity per dollar spent should be the
same for all inputs. If increasing one input promised to increase output by a greater amount
per dollar spent than did another input, costs would not be minimal—the firm should hire
more of the input that promises a bigger “bang per buck” and less of the more costly (in
terms of productivity) input. Any input that cannot meet the common benefit-cost ratio
defined in Equation 10.6 should not be hired at all.

Equation 10.6 can, of course, also be derived from Equation 10.4, but it is more
instructive to derive its inverse:

w
fl

¼ v
fk

¼ λ. (10.7)

This equation reports the extra cost of obtaining an extra unit of output by hiring either added
labor or added capital input. Because of cost minimization, this marginal cost is the same no
matter which input is hired. This common marginal cost is also measured by the Lagrangian
multiplier from the cost-minimization problem. As is the case for all constrained optimization
problems, here the Lagrangianmultiplier shows howmuch in extra costs would be incurred by
increasing the output constraint slightly. Because marginal cost plays an important role in a
firm’s supply decisions, we will return to this feature of cost minimization frequently.

Graphical analysis
Cost minimization is shown graphically in Figure 10.1. Given the output isoquant q0, we wish
to find the least costly point on the isoquant. Lines showing equal cost are parallel straight lines
with slopes�w=v. Three lines of equal total cost are shown in Figure 10.1;C1 < C2 < C3. It is
clear from the figure that the minimum total cost for producing q0 is given by C1, where the
total cost curve is just tangent to the isoquant. The cost-minimizing input combination is
l�, k�. This combination will be a true minimum if the isoquant is convex (if the RTS
diminishes for decreases in k=l). The mathematical and graphic analyses arrive at the same
conclusion, as follows.

O P T I M I Z A T I O N

P R I N C I P L E

Cost minimization. In order to minimize the cost of any given level of input (q0), the firm
should produce at that point on the q0 isoquant for which the RTS (of l for k) is equal to the
ratio of the inputs’ rental prices ðw=vÞ.

Contingent demand for inputs
Figure 10.1 exhibits the formal similarity between the firm’s cost-minimization problem and
the individual’s expenditure-minimization problem studied in Chapter 4 (see Figure 4.6). In
both problems, the economic actor seeks to achieve his or her target (output or utility) at
minimal cost. In Chapter 5 we showed how this process is used to construct a theory of
compensated demand for a good. In the present case, cost minimization leads to a demand
for capital and labor input that is contingent on the level of output being produced. This is
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not, therefore, the complete story of a firm’s demand for the inputs it uses because it does not
address the issue of output choice. But studying the contingent demand for inputs provides
an important building block for analyzing the firm’s overall demand for inputs, and we will
take up this topic in more detail later in this chapter.

The firm’s expansion path
A firm can follow the cost-minimization process for each level of output: For each q, it finds
the input choice that minimizes the cost of producing it. If input costs (w and v) remain con-
stant for all amounts the firm may demand, we can easily trace this locus of cost-minimizing
choices. This procedure is shown in Figure 10.2. The line 0E records the cost-minimizing
tangencies for successively higher levels of output. For example, the minimum cost for
producing output level q1 is given by C1, and inputs k1 and l1 are used. Other tangencies in
the figure can be interpreted in a similar way. The locus of these tangencies is called the firm’s
expansion path, because it records how input expands as output expands while holding the
prices of the inputs constant.

As Figure 10.2 shows, the expansion path need not be a straight line. The use of some
inputs may increase faster than others as output expands. Which inputs expand more rapidly
will depend on the shape of the production isoquants. Because cost minimization requires that
the RTS always be set equal to the ratio w=v, and because the w=v ratio is assumed to be
constant, the shape of the expansion path will be determined by where a particularRTS occurs
on successively higher isoquants. If the production function exhibits constant returns to scale
(or, more generally, if it is homothetic), then the expansion path will be a straight line because
in that case the RTS depends only on the ratio of k to l . That ratio would be constant along
such a linear expansion path.

FIGURE 10.1 Minimization of Costs Given q ¼ q0

A firm is assumed to choose k and l to minimize total costs. The condition for this minimization is
that the rate at which k and l can be traded technically (while keeping q ¼ q0) should be equal to the
rate at which these inputs can be traded in the market. In other words, theRTS (of l for k) should be
set equal to the price ratio w=v. This tangency is shown in the figure; costs are minimized at C1 by
choosing inputs k� and l�.

C1

C2

C3

k per period

l per period

q0

k *

l*
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FIGURE 10.3 Input Inferiority

With this particular set of isoquants, labor is an inferior input, because less l is chosen as output
expands beyond q2.
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E

FIGURE 10.2 The Firm’s Expansion Path

The firm’s expansion path is the locus of cost-minimizing tangencies. Assuming fixed input prices,
the curve shows how inputs increase as output increases.
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It would seem reasonable to assume that the expansion path will be positively sloped; that
is, successively higher output levels will require more of both inputs. This need not be the
case, however, as Figure 10.3 illustrates. Increases of output beyond q2 actually cause the
quantity of labor used to decrease. In this range, labor would be said to be an inferior input.
The occurrence of inferior inputs is then a theoretical possibility that may happen, even when
isoquants have their usual convex shape.

Much theoretical discussion has centered on the analysis of factor inferiority. Whether in-
feriority is likely to occur in real-world production functions is a difficult empirical question to
answer. It seems unlikely that such comprehensive magnitudes as “capital” and “labor” could be
inferior, but a finer classification of inputs may bring inferiority to light. For example, the use of
shovels may decline as production of building foundations (and the use of backhoes) increases.
In this book we shall not be particularly concerned with the analytical issues raised by this
possibility, although complications raised by inferior inputs will be mentioned in a few places.

EXAMPLE 10.1 Cost Minimization

The cost-minimization process can be readily illustrated with two of the production functions
we encountered in the last chapter.

1. Cobb-Douglas: q ¼ f ðk, lÞ ¼ kαlβ. For this case the relevant Lagrangian expression for
minimizing the cost of producing, say, q0 is

ℒ ¼ vk þ wl þ λðq0 � kαlβÞ, (10.8)

and the first-order conditions for a minimum are
∂ℒ
∂k

¼ v � λαkα�1lβ ¼ 0,

∂ℒ
∂l

¼ w � λβkαlβ�1 ¼ 0,

∂ℒ
∂λ

¼ q0 � kαlβ ¼ 0.

(10.9)

Dividing the second of these by the first yields

w
v

¼ βkαlβ�1

αkα�1lβ
¼ β

α
⋅
k
l
, (10.10)

which again shows that costs are minimized when the ratio of the inputs’ prices is equal to
the RTS. Because the Cobb-Douglas function is homothetic, the RTS depends only on the
ratio of the two inputs. If the ratio of input costs does not change, the firms will use the same
input ratio no matter how much it produces—that is, the expansion path will be a straight
line through the origin.

As a numerical example, suppose α ¼ β ¼ 0.5,w ¼ 12, v ¼ 3, and that the firm wishes to
produce q0 ¼ 40. The first-order condition for a minimum requires that k ¼ 4l . Inserting that
into the production function (the final requirement in Equation 10.9), we have q0 ¼ 40 ¼
k0.5l0.5 ¼ 2l . So the cost-minimizing input combination is l ¼ 20 and k ¼ 80, and total costs
are given by vk þ wl ¼ 3ð80Þ þ 12ð20Þ ¼ 480. That this is a true cost minimum is suggested by
looking at a few other input combinations that also are capable of producing 40 units of output:

k ¼ 40, l ¼ 40,C ¼ 600,
k ¼ 10, l ¼ 160,C ¼ 2,220,
k ¼ 160, l ¼ 10,C ¼ 600.

(10.11)

Any other input combination able to produce 40 units of output will also cost more than 480.
Costminimization is also suggested by consideringmarginal productivities. At the optimal point

(continued)
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EXAMPLE 10.1 CONTINUED

MPk ¼ fk ¼ 0.5k�0.5l0.5 ¼ 0.5ð20=80Þ0.5 ¼ 0.25,

MPl ¼ fl ¼ 0.5k0.5l�0.5 ¼ 0.5ð80=20Þ0.5 ¼ 1.0;
(10.12)

hence, at the margin, labor is four times as productive as capital, and this extra productivity
precisely compensates for the higher unit price of labor input.

2. CES: q ¼ f ðk, lÞ ¼ ðk ρ þ lρÞγ=ρ. Again we set up the Lagrangian expression

ℒ ¼ vk þ wl þ λ½q0 � ðk ρ þ lρÞγ=ρ�, (10.13)

and the first-order conditions for a minimum are
∂ℒ
∂k

¼ v � λðγ=ρÞðk ρ þ lρÞðγ�ρÞ=ρðρÞk ρ�1 ¼ 0,

∂ℒ
∂l

¼ w � λðγ=ρÞðk ρ þ lρÞðγ�ρÞ=ρðρÞlρ�1 ¼ 0,

∂ℒ
∂λ

¼ q0 � ðk ρ þ lρÞðγ=ρÞ ¼ 0.

(10.14)

Dividing the first two of these equations causes a lot of this mass of symbols to drop out,
leaving

w
v

¼ l
k

� �ρ�1

¼ k
l

� �1�ρ

¼ k
l

� �1=σ

, or
k
l
¼ w

v

� �σ
: (10.15)

Because the CES function is also homothetic, the cost-minimizing input ratio is independent
of the absolute level of production. The result in Equation 10.15 is a simple generalization of
theCobb-Douglas result (whenσ ¼ 1).With theCobb-Douglas, the cost-minimizing capital-
labor ratio changes directly in proportion to changes in the ratio of wages to capital rental rates.
In cases with greater substitutability ðσ > 1Þ, changes in the ratio of wages to rental rates cause
a greater than proportional increase in the cost-minimizing capital-labor ratio. With less
substitutability ðσ < 1Þ, the response is proportionally smaller.

QUERY: In the Cobb-Douglas numerical example with w=v ¼ 4, we found that the cost-
minimizing input ratio for producing 40 units of output was k=l ¼ 80=20 ¼ 4. How would
this value change for σ ¼ 2 or σ ¼ 0.5? What actual input combinations would be used?
What would total costs be?

COST FUNCTIONS

We are now in a position to examine the firm’s overall cost structure. To do so, it will be
convenient to use the expansion path solutions to derive the total cost function.

D E F I N I T I O N
Total cost function. The total cost function shows that, for any set of input costs and for any
output level, the minimum total cost incurred by the firm is

C ¼ Cðv,w, qÞ. (10.16)

Figure 10.2 makes clear that total costs increase as output, q, increases. We will begin by
analyzing this relationship between total cost and output while holding input prices fixed.
Then we will consider how a change in an input price shifts the expansion path and its related
cost functions.
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Average and marginal cost functions
Although the total cost function provides complete information about the output-cost
relationship, it is often convenient to analyze costs on a per-unit-of-output basis because
that approach corresponds more closely to the analysis of demand, which focused on the price
per unit of a commodity. Two different unit cost measures are widely used in economics:
(1) average cost, which is the cost per unit of output; and (2) marginal cost, which is the cost
of one more unit of output. The relationship of these concepts to the total cost function is
described in the following definitions.

D E F I N I T I O N
Average and marginal cost functions. The average cost function (AC) is found by com-
puting total costs per unit of output:

average cost ¼ AC v,w, qð Þ ¼ Cðv,w, qÞ
q

. (10.17)

The marginal cost function (MC) is found by computing the change in total costs for a
change in output produced:

marginal cost ¼ MCðv,w, qÞ ¼ ∂Cðv,w, qÞ
∂q

: (10.18)

Notice that in these definitions, average andmarginal costs depend both on the level of output
being produced and on the prices of inputs. In many places throughout this book, we will
graph simple two-dimensional relationships between costs and output. As the definitions
make clear, all such graphs are drawn on the assumption that the prices of inputs remain
constant and that technology does not change. If input prices change or if technology ad-
vances, cost curves generally will shift to new positions. Later in this chapter, we will explore
the likely direction and size of such shifts when we study the entire cost function in detail.

Graphical analysis of total costs
Figures 10.4a and 10.5a illustrate two possible shapes for the relationship between total cost
and the level of the firm’s output. In Figure 10.4a, total cost is simply proportional to output.
Such a situation would arise if the underlying production function exhibits constant returns
to scale. In that case, suppose k1 units of capital input and l1 units of labor input are required
to produce one unit of output. Then

Cðq ¼ 1Þ ¼ vk1 þ wl1. (10.19)

To produce m units of output, then, requires mk1 units of capital and ml1 units of labor,
because of the constant returns-to-scale assumption.2 Hence

Cðq ¼ mÞ ¼ vmk1 þ wml1 ¼ mðvk1 þ wl1Þ
¼ m ⋅Cðq ¼ 1Þ, (10.20)

and the proportionality between output and cost is established.
The situation in Figure 10.5a is more complicated. There it is assumed that initially the

total cost curve is concave; although initially costs rise rapidly for increases in output, that rate
of increase slows as output expands into the midrange of output. Beyond this middle range,
however, the total cost curve becomes convex, and costs begin to rise progressively more
rapidly. One possible reason for such a shape for the total cost curve is that there is some third
factor of production (say, the services of an entrepreneur) that is fixed as capital and labor
usage expands. In this case, the initial concave section of the curve might be explained by the

2The input combination ml1, mk1 minimizes the cost of producing m units of output because the ratio of the inputs is still
k1=l1 and the RTS for a constant returns-to-scale production function depends only on that ratio.
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increasingly optimal usage of the entrepreneur’s services—he or she needs a moderate level of
production to utilize his or her skills fully. Beyond the point of inflection, however, the
entrepreneur becomes overworked in attempting to coordinate production, and diminishing
returns set in. Hence, total costs rise rapidly.

A variety of other explanations have been offered for the cubic-type total cost curve in
Figure 10.5a, but we will not examine them here. Ultimately, the shape of the total cost curve
is an empirical question that can be determined only by examining real-world data. In the
Extensions to this chapter, we illustrate some of the literature on cost functions.

Graphical analysis of average and marginal costs
Information from the total cost curves can be used to construct the average and marginal cost
curves shown in Figures 10.4b and10.5b. For the constant returns-to-scale case (Figure 10.4),
this is quite simple. Because total costs are proportional to output, average and marginal costs

FIGURE 10.4 Total, Average, and Marginal Cost Curves for the Constant Returns-to-Scale Case

In (a) total costs are proportional to output level. Average and marginal costs, as shown in (b), are
equal and constant for all output levels.

Total
costs

Average and
marginal costs

Output per
period

Output per
period

C

AC = MC

(a)

(b)
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are constant and equal for all levels of output.3 These costs are shown by the horizontal line
AC ¼ MC in Figure 10.4b.

For the cubic total cost curve case (Figure 10.5), computation of the average andmarginal
cost curves requires some geometric intuition. As the definition in Equation 10.18 makes
clear, marginal cost is simply the slope of the total cost curve. Hence, because of the assumed
shape of the curve, the MC curve is U-shaped, with MC falling over the concave portion of
the total cost curve and rising beyond the point of inflection. Because the slope is always
positive, however, MC is always greater than 0. Average costs (AC) start out being equal to

FIGURE 10.5 Total, Average, and Marginal Cost Curves for the Cubic Total Cost Curve Case

If the total cost curve has the cubic shape shown in (a), average and marginal cost curves will be
U-shaped. In (b) the marginal cost curve passes through the low point of the average cost curve at
output level q�.

Total
costs

Average and
marginal costs

Output per
period

Output per
period

C

AC

MC

(a)

(b)

q*

3Mathematically, because C ¼ aq (where a is the cost of one unit of output),

AC ¼ C
q
¼ a ¼ ∂C

∂q
¼ MC .
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marginal cost for the “first” unit of output.4 As output expands, however, AC exceeds MC ,
because AC reflects both the marginal cost of the last unit produced and the higher marginal
costs of the previously produced units. So long as AC > MC , average costs must be falling.
Because the lower costs of the newly produced units are below average cost, they continue to
pull average costs downward. Marginal costs rise, however, and eventually (at q�) equal
average cost. Beyond this point,MC > AC , and average costs will be rising because they are
being pulled upward by increasingly higher marginal costs. Consequently, we have shown
that theAC curve also has a U-shape and that it reaches a low point at q�, whereAC andMC
intersect.5 In empirical studies of cost functions, there is considerable interest in this point of
minimum average cost. It reflects the “minimum efficient scale” (MES) for the particular
production process being examined. The point is also theoretically important because of the
role it plays in perfectly competitive price determination in the long run (see Chapter 12).

COST FUNCTIONS AND SHIFTS IN COST CURVES

The cost curves illustrated in Figures 10.4 and 10.5 show the relationship between costs and
quantity produced on the assumption that all other factors are held constant. Specifically,
construction of the curves assumes that input prices and the level of technology do not change.6

If these factors do change, the cost curves will shift. In this section, we delve further into the
mathematics of cost functions as a way of studying these shifts. We begin with some examples.

EXAMPLE 10.2 Some Illustrative Cost Functions

In this example we calculate the cost functions associated with three different production
functions. Later we will use these examples to illustrate some of the general properties of cost
functions.

1. Fixed Proportions: q ¼ f ðk, lÞ ¼ minðak, blÞ. The calculation of cost functions from their
underlying production functions is one of the more frustrating tasks for economics students.

4Technically, AC ¼ MC at q ¼ 0. This can be shown by L’Hôpital’s rule, which states that if f ðaÞ ¼ gðaÞ ¼ 0 then

lim
x!a

f ðxÞ
gðxÞ ¼ lim

x!a

f 0ðxÞ
g 0ðxÞ.

In this case, C ¼ 0 at q ¼ 0, and so

lim
q!0

AC ¼ lim
q!0

C
q

¼ lim
q!0

∂C=∂q
1

¼ lim
q!0

MC

or

AC ¼ MC at q ¼ 0,

which was to be shown.
5Mathematically, we can find the minimum AC by setting its derivative equal to 0:

∂AC
∂q

¼ ∂ðC=qÞ
∂q

¼ q ⋅ ð∂C=∂qÞ � C ⋅1
q2

¼ q ⋅MC � C
q2

¼ 0,

or

q ⋅MC � C ¼ 0 or MC ¼ C=q ¼ AC .

6For multiproduct firms, an additional complication must be considered. For such firms it is possible that the costs
associated with producing one output (say, q1) are also affected by the amount of some other output being produced ðq2Þ.
In this case the firm is said to exhibit “economies of scope,” and the total cost function will be of the form Cðq1, q2,w, vÞ.
Hence, q2 must also be held constant in constructing the q1 cost curves. Presumably increases in q2 shift the q1 cost curves
downward.
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So, let’s start with a simple example. What we wish to do is show how total costs depend on
input costs and on quantity produced. In the fixed-proportions case, we know that produc-
tion will occur at a vertex of the L-shaped isoquants where q ¼ ak ¼ bl . Hence, total costs are

total costs ¼ C v,w, qð Þ ¼ vk þ wl ¼ v
q
a

� �
þ w

q
b

� �
¼ q

v
a
þ w

b

� �
. (10.21)

This is indeed the sort of function we want because it states total costs as a function of v, w,
and q only together with some parameters of the underlying production function. Because
of the constant returns-to-scale nature of this production function, it takes the special form

Cðv,w, qÞ ¼ qCðv,w,1Þ. (10.22)

That is, total costs are given by output times the cost of producing one unit. Increases in
input prices clearly increase total costs with this function, and technical improvements that
take the form of increasing the parameters a and b reduce costs.

2. Cobb-Douglas: q ¼ f ðk, lÞ ¼ kαlβ. This is our first example of burdensome computation,
but we can clarify the process by recognizing that the final goal is to use the results of cost
minimization to replace the inputs in the production function with costs. From Example 10.1
we know that cost minimization requires that

w
v

¼ β

α
⋅
k
l

and so k ¼ α

β
⋅
w
v ⋅ l .

Substitution into the production function permits a solution for labor input in terms of q, v,
and w as

q ¼ kαlβ ¼ α

β
⋅
w
v

� �α

lαþβ or l ¼ q1=ðαþβÞ β

α

� �α=ðαþβÞ
w�α=ðαþβÞvα=ðαþβÞ. (10.23)

A similar set of manipulations gives

k ¼ q1=ðαþβÞ α

β

� �β=ðαþβÞ
wβ=ðαþβÞv�β=ðαþβÞ. (10.24)

Now we are ready to derive total costs as

Cðv,w, qÞ ¼ vk þ wl ¼ q1=ðαþβÞBvα=ðαþβÞwβ=ðαþβÞ, (10.25)

where B ¼ ðαþ βÞα�α=ðαþβÞβ�β=ðαþβÞ—a constant that involves only the parameters α and β.
Although this derivation was a bit messy, several interesting aspects of this Cobb-Douglas
cost function are readily apparent. First, whether the function is a convex, linear, or concave
function of output depends on whether there are decreasing returns to scale ðαþ β < 1Þ,
constant returns to scale ðαþ β ¼ 1Þ, or increasing returns to scale ðαþ β > 1Þ. Second, an
increase in any input price increases costs, with the extent of the increase being determined by
the relative importance of the input as reflected by the size of its exponent in the production
function. Finally, the cost function is homogeneous of degree 1 in the input prices—a general
feature of all cost functions, as we shall show shortly.

3. CES: q ¼ f ðk, lÞ ¼ ðkρ þ lρÞγ=ρ. For this case, your author will mercifully spare you the
algebra. To derive the total cost function, we use the cost-minimization condition specified in
Equation 10.15, solve for each input individually, and eventually get

Cðv,w, qÞ ¼ vk þ wl ¼ q1=γðvρ=ðρ�1Þ þ wρ=ðρ�1ÞÞðρ�1Þ=ρ

¼ q1=γðv1�σ þ w1�σÞ1=ð1�σÞ, (10.26)
where the elasticity of substitution is given by σ ¼ 1=ð1� ρÞ. Once again the shape of the
total cost is determined by the scale parameter ðγÞ for this production function, and the cost
function is increasing in both of the input prices. The function is also homogeneous of
degree 1 in those prices. One limiting feature of this form of the CES function is that the

(continued)
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EXAMPLE 10.2 CONTINUED

inputs are given equal weights—hence their prices are equally important in the cost func-
tion. This feature of the CES is easily generalized, however (see Problem 10.7).

QUERY: How are the various substitution possibilities inherent in the CES function reflected
in the CES cost function in Equation 10.26?

Properties of cost functions
These examples illustrate some properties of total cost functions that are quite general.

1. Homogeneity. The total cost functions inExample10.3 are all homogeneous of degree 1
in the input prices. That is, a doubling of input prices will precisely double the cost of
producing any given output level (you might check this out for yourself). This is a
property of all proper cost functions. When all input prices double (or are increased by
any uniform proportion), the ratio of any two input prices will not change. Because
cost minimization requires that the ratio of input prices be set equal to theRTS along a
given isoquant, the cost-minimizing input combination also will not change. Hence,
the firmwill buy exactly the same set of inputs and pay precisely twice asmuch for them.
One implication of this result is that a pure, uniform inflation in all input costs will not
change a firm’s input decisions. Its cost curves will shift upward in precise correspon-
dence to the rate of inflation.

2. Total cost functions are nondecreasing in q, v, and w. This property seems obvious,
but it is worth dwelling on it a bit. Because cost functions are derived from a cost-
minimization process, any decline in costs from an increase in one of the function’s
arguments would lead to a contradiction. For example, if an increase in output from q1
to q2 caused total costs to decline, it must be the case that the firm was not minimizing
costs in the first place. It should have produced q2 and thrown away an output of
q2 � q1, thereby producing q1 at a lower cost. Similarly, if an increase in the price of an
input ever reduced total cost, the firm could not have been minimizing its costs in the
first place. To see this, suppose the firm was using the input combination k1, l1 and that
w increases. Clearly that will increase the cost of the initial input combination. But if
changes in input choices actually caused total costs to decline, thatmust imply that there
was a lower-cost input mix than k1, l1 initially. Hence we have a contradiction, and this
property of cost functions is established.7

3. Total cost functions are concave in input prices. It is probably easiest to illustrate this
property with a graph. Figure 10.6 shows total costs for various values of an input
price, say, w, holding q and v constant. Suppose that initially a wage rate of w1 prevails

7A formal proof could also be based on the envelope theorem as applied to constrained minimization problems. Consider
the Lagrangian expression in Equation 10.3. As was pointed out in Chapter 2, we can calculate the change in the objective
in such an expression (here, total cost) with respect to a change in a variable by differentiating the Lagrangian expression.
Performing this differentiation yields

∂C�
∂q

¼ ∂ℒ
∂q

¼ λ ð¼ MCÞ 	 0,

∂C�
∂v

¼ ∂ℒ
∂v

¼ k 	 0,

∂C�
∂w

¼ ∂ℒ
∂w

¼ l 	 0.

Not only do these envelope results prove this property of cost functions, they also are quite useful in their own right, as we
will show later in this chapter.
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and that the total costs associated with producing q1 are given by Cðv,w1, q1Þ. If the
firm did not change its input mix in response to changes in wages, then its total cost
curve would be linear as reflected by the line CPSEUDOð

_
v,w, q1Þ ¼

_
v
_
k1 þ w

_
l 1 in the

figure. But a cost-minimizing firm probably would change the input mix it uses to
produce q1 when wages change, and these actual costs ½Cðv,w, q1Þ� would fall below
the “pseudo” costs. Hence, the total cost function must have the concave shape
shown in Figure 10.6. One implication of this finding is that costs will be lower
when a firm faces input prices that fluctuate around a given level than when they
remain constant at that level. With fluctuating input prices, the firm can adapt its input
mix to take advantage of such fluctuations by using a lot of, say, labor when its price is
low and economizing on that input when its price is high.

4. Average and marginal costs. Some, but not all, of these properties of total cost
functions carry over to their related average andmarginal cost functions.Homogeneity
is one property that carries over directly. Because Cðtv, tw, qÞ ¼ tCðv,w, qÞ, we have

AC tv, tw, qð Þ ¼ Cðtv, tw, qÞ
q

¼ tCðv,w, qÞ
q

¼ tACðv,w, qÞ (10.27)

and8

MC tv, tw, qð Þ ¼ ∂Cðtv, tw, qÞ
∂q

¼ t∂Cðv,w, qÞ
∂q

¼ tMCðv,w, qÞ. (10.28)

FIGURE 10.6 Cost Functions Are Concave in Input Prices

With a wage rate of w1, total costs of producing q1 are Cðv,w1, q1Þ. If the firm does not change its
input mix, costs of producing q1 would follow the straight line CPSEUDO. With input substitution,
actual costs Cðv,w, q1Þ will fall below this line, and hence the cost function is concave in w.

Costs

C(v,w,q1)

C(v,w1,q1)

ww1

CPSEUDO

8This result does not violate the theorem that the derivative of a function that is homogeneous of degree k is homogeneous
of degree k−1, because we are differentiating with respect to q and total costs are homogeneous with respect to input
prices only.
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The effects of changes in q, v, and w on average and marginal costs are sometimes
ambiguous, however. We have already shown that average and marginal cost curves
may have negatively sloped segments, so neither AC nor MC is nondecreasing in q.
Because total costs must not decrease when an input price rises, it is clear that average
cost is increasing in w and v. But the case of marginal cost is more complex. The main
complication arises because of the possibility of input inferiority. In that (admittedly
rare) case, an increase in an inferior input’s price will actually cause marginal cost to
decline. Although the proof of this is relatively straightforward,9 an intuitive expla-
nation for it is elusive. Still, in most cases, it seems clear that the increase in the price
of an input will increase marginal cost as well.

Input substitution
A change in the price of an input will cause the firm to alter its input mix. Hence, a full study of
how cost curves shift when input prices changemust also include an examination of substitution
among inputs. To study this process, economists have developed a somewhat different measure
of the elasticity of substitution than the one we encountered in the theory of production.
Specifically, we wish to examine how the ratio of input usage (k=l) changes in response to a
change in w=v, while holding q constant. That is, we wish to examine the derivative

∂ðk=lÞ
∂ðw=vÞ (10.29)

along an isoquant.
Putting this in proportional terms as

s ¼ ∂ðk=lÞ
∂ðw=vÞ ⋅

w=v
k=l

¼ ∂ ln k=l
∂ lnw=v

(10.30)

gives an alternative and more intuitive definition of the elasticity of substitution.10 In the two-
input case, s must be nonnegative; an increase inw=vwill bemet by an increase in k=l (or, in the
limiting fixed-proportions case, k=l will stay constant). Large values of s indicate that firms
change their input proportions significantly in response to changes in relative input prices,
whereas low values indicate that changes in input prices have relatively little effect.

Substitution with many inputs
When there are only two inputs, the elasticity of substitution defined in Equation 10.30 is
identical to the concept we defined in Chapter 9 (see Equation 9.32). This can be shown by
remembering that cost minimization11 requires that the firm equate itsRTS (of l for k) to the
input price ratio w=v. The major advantage of the definition of the elasticity of substitution in
Equation 10.30 is that it is easier to generalize to many inputs than is the definition based on
the production function. Specifically, suppose there are many inputs to the production
process ðx1, x2,…, xnÞ that can be hired at competitive rental rates ðw1,w2,…,wnÞ. Then
the elasticity of substitution between any two inputs ðsij Þ is defined as follows.

9The proof follows the envelope theorem results presented in footnote 7. Because the MC function can be derived by
differentiation from the Lagrangian for cost minimization, we can use Young’s theorem to show

∂MC
∂v

¼ ∂ð∂ℒ=∂qÞ
∂v

¼ ∂2ℒ
∂v∂q

¼ ∂2ℒ
∂q∂v

¼ ∂k
∂q

.

Hence, if capital is a normal input, an increase in v will raise MC whereas, if capital is inferior, an increase in v will actually
reduce MC .
10This definition is usually attributed to R. G. D. Allen, who developed it in an alternative form in his Mathematical
Analysis for Economists (New York: St. Martin’s Press, 1938), pp. 504–9.
11InExample 10.1we found that, for theCESproduction function, costminimization requires that k=l ¼ ðw=vÞσ, so lnðk=lÞ ¼
σ lnðw=vÞ and therefore sk, l ¼ ∂ lnðk=lÞ=∂ lnðw=vÞ ¼ σ.
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D E F I N I T I O N
Elasticity of substitution. The elasticity of substitution12 between inputs xi and xj is
given by

si, j ¼ ∂ðxi=xj Þ
∂ðwj =wiÞ

⋅
wj =wi

xi=xj
¼ ∂ lnðxi=xj Þ

∂ lnðwj =wiÞ
, (10.31)

where output and all other input prices are held constant.

The major advantage of this definition in a multi-input context is that it provides the firm with
the flexibility to adjust inputs other than xi and xj (while holding output constant) when
input prices change. For example, a major topic in the theory of firms’ input choices is to
describe the relationship between capital and energy inputs. The definition in Equation 10.31
would permit a researcher to study how the ratio of energy to capital input changes when
relative energy prices rise while permitting the firm to make any adjustments to labor input
(whose price has not changed) that would be required for cost minimization. Hence this
would give a realistic picture of how firms actually behave with regard to whether energy and
capital are more like substitutes or complements. Later in this chapter we will look at this
definition in a bit more detail, because it is widely used in empirical studies of production.

Quantitative size of shifts in cost curves
We have already shown that increases in an input price will raise total, average, and (except in
the inferior input case) marginal costs. We are now in a position to judge the extent of such
increases. First, and most obviously, the increase in costs will be influenced importantly by the
relative significance of the input in the production process. If an input constitutes a large
fraction of total costs, an increase in its price will raise costs significantly. A rise in the wage
rate would sharply increase home-builders’ costs, because labor is a major input in construc-
tion. On the other hand, a price rise for a relatively minor input will have a small cost impact.
An increase in nail prices will not raise home costs very much.

A less obvious determinant of the extent of cost increases is input substitutability. If firms
can easily substitute another input for the one that has risen in price, there may be little
increase in costs. Increases in copper prices in the late 1960s, for example, had little impact on
electric utilities’ costs of distributing electricity, because they found they could easily substi-
tute aluminum for copper cables. Alternatively, if the firm finds it difficult or impossible to
substitute for the input that has become more costly, then costs may rise rapidly. The cost of
gold jewelry, along with the price of gold, rose rapidly during the early 1970s, because there
was simply no substitute for the raw input.

It is possible to give a precise mathematical statement of the quantitative sizes of all of
these effects by using the elasticity of substitution. To do so, however, would risk further
cluttering the book with symbols.13 For our purposes, it is sufficient to rely on the previous
intuitive discussion. This should serve as a reminder that changes in the price of an input will
have the effect of shifting firms’ cost curves, with the size of the shift depending on the
relative importance of the input and on the substitution possibilities that are available.

Technical change
Technical improvements allow the firm to produce a given output with fewer inputs. Such
improvements obviously shift total costs downward (if input prices stay constant). Although

12This definition is attributed to the Japanese economist M. Morishima, and these elasticities are sometimes referred to as
“Morishima elasticities.” In this version, the elasticity of substitution for substitute inputs is positive. Some authors reverse
the order of subscripts in the denominator of Equation 10.31, and in this usage the elasticity of substitution for substitute
inputs is negative.
13For a complete statement see Ferguson, Neoclassical Theory of Production and Distribution (Cambridge: Cambridge
University Press, 1969), pp. 154–60.
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the actual way in which technical change affects the mathematical form of the total cost curve
can be complex, there are cases where one may draw simple conclusions. Suppose, for
example, that the production function exhibits constant returns to scale and that technical
change enters that function as described in Chapter 9 (that is, q ¼ AðtÞf ðk, lÞ where
Að0Þ ¼ 1Þ. In this case, total costs in the initial period are given by

C0 ¼ C0ðv,w, qÞ ¼ qC0ðv,w,1Þ. (10.32)

Because the same inputs that produced one unit of output in period 0 will produce AðtÞ
units of output in period t , we know that

Ct ðv,w,Aðt ÞÞ ¼ Aðt ÞCt ðv,w,1Þ ¼ C0ðv,w,1Þ; (10.33)

therefore, we can compute the total cost function in period t as

Ct v,w, qð Þ ¼ qCt v,w,1ð Þ ¼ qC0ðv,w,1Þ
Aðt Þ ¼ C0ðv,w, qÞ

Aðt Þ . (10.34)

Hence, total costs fall over time at the rate of technical change. Note that in this case technical
change is “neutral” in that it does not affect the firm’s input choices (so long as input prices stay
constant). This neutrality result might not hold in cases where technical progress takes a more
complex form or where there are variable returns to scale. Even in these more complex cases,
however, technical improvements will cause total costs to fall.

EXAMPLE 10.3 Shifting the Cobb-Douglas Cost Function

In Example 10.2 we computed the Cobb-Douglas cost function as

Cðv,w, qÞ ¼ q1=ðαþβÞBvα=ðαþβÞwβ=ðαþβÞ, (10.35)

where B ¼ ðαþ βÞα�α=ðαþβÞβ�β=ðαþβÞ. As in the numerical illustration in Example 10.1, let’s
assume that α ¼ β ¼ 0.5, in which case the total cost function is greatly simplified:

Cðv,w, qÞ ¼ 2qv0.5w0.5. (10.36)

This function will yield a total cost curve relating total costs and output if we specify particular
values for the input prices. If, as before, we assume v ¼ 3 and w ¼ 12, then the relationship is

Cð3,12,qÞ ¼ 2q
ffiffiffiffiffiffi
36

p
¼ 12q, (10.37)

and, as in Example 10.1, it costs 480 to produce 40 units of output. Here average and
marginal costs are easily computed as

AC ¼ C
q

¼ 12,

MC ¼ ∂C
∂q

¼ 12.
(10.38)

As expected, average and marginal costs are constant and equal to each other for this constant
returns-to-scale production function.

Changes in input prices. If either input price were to change, all of these costs would change
also. For example, if wages were to increase to 27 (an easy number with which to work), costs
would become

Cð3,27, qÞ ¼ 2q
ffiffiffiffiffiffi
81

p ¼ 18q,

AC ¼ 18,

MC ¼ 18.

(10.39)

Notice that an increase in wages of 125 percent raised costs by only 50 percent here, both
because labor represents only 50 percent of all costs and because the change in input prices
encouraged the firm to substitute capital for labor. The total cost function, because it is
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derived from the cost-minimization assumption, accomplishes this substitution “behind the
scenes”—reporting only the final impact on total costs.

Technical progress. Let’s look now at the impact that technical progress can have on costs.
Specifically, assume that the Cobb-Douglas production function is

q ¼ Aðt Þk0.5l0.5 ¼ e.03t k0.5l0.5. (10.40)

That is, we assume that technical change takes an exponential form and that the rate of tech-
nical change is 3 percent per year. Using the results of the previous section (Equation 10.34)
yields

Ct v,w, qð Þ ¼ C0ðv,w, qÞ
Aðt Þ ¼ 2qv0.5w0.5e�.03t : (10.41)

So, if input prices remain the same then total costs fall at the rate of technical improvement—
that is, at 3 percent per year. After, say, 20 years, costs will be (with v ¼ 3, w ¼ 12)

C20ð3,12, qÞ ¼ 2q
ffiffiffiffiffiffi
36

p
⋅ e�.60 ¼ 12q ⋅ ð0.55Þ ¼ 6.6q,

AC20 ¼ 6.6,
MC20 ¼ 6.6.

(10.42)

Consequently, costs will have fallen by nearly 50 percent as a result of the technical change.
This would, for example, more than have offset the wage rise illustrated previously.

QUERY: In this example, what are the elasticities of total costs with respect to changes in
input costs? Is the size of these elasticities affected by technical change?

Contingent demand for inputs and Shephard’s lemma
Aswe described earlier, the process of costminimization creates an implicit demand for inputs.
Because that process holds quantity produced constant, this demand for inputs will also be
“contingent” on the quantity being produced. This relationship is fully reflected in the firm’s
total cost function and, perhaps surprisingly, contingent demand functions for all of the firm’s
inputs can be easily derived from that function. The process involves what has come to be
called Shephard’s lemma,14 which states that the contingent demand function for any input is
given by the partial derivative of the total cost function with respect to that input’s price.
Because Shephard’s lemma is widely used in many areas of economic research, we will provide
a relatively detailed examination of it.

The intuition behind Shephard’s lemma is straightforward. Suppose that the price of labor
(w) were to increase slightly.Howwould this affect total costs? If nothing else changed, it seems
that costswould rise by approximately the amount of labor ðlÞ that the firmwas currently hiring.
Roughly speaking, then, ∂C=∂w ¼ l , and that is what Shephard’s lemma claims. Figure 10.6
makes roughly the same point graphically. Along the “pseudo” cost function all inputs are held
constant, so an increase in the wage increases costs in direct proportion to the amount of
labor used. Because the true cost function is tangent to the pseudo-function at the current
wage, its slope (that is, its partial derivative) also will show the current amount of labor
input demanded.

Technically, Shephard’s lemma is one result of the envelope theorem that was first
discussed in Chapter 2. There we showed that the change in the optimal value in a constrained
optimization problem with respect to one of the parameters of the problem can be found by

14Named for R. W. Shephard, who highlighted the important relationship between cost functions and input demand
functions in his Cost and Production Functions (Princeton, NJ: Princeton University Press, 1970).
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differentiating the Lagrangian expression for that optimization problem with respect to this
changing parameter. In the cost-minimization case, the Lagrangian expression is

ℒ ¼ vk þ wl þ λ½ _q � f ðk, lÞ� (10.43)

and the envelope theorem applied to either input is

∂Cðv,w, qÞ
∂v

¼ ∂ℒðv,w, q, λÞ
∂v

¼ kcðv,w, qÞ,
∂Cðv,w, qÞ

∂w
¼ ∂ℒðv,w, q, λÞ

∂w
¼ l cðv,w, qÞ,

(10.44)

where the notation is intended to make clear that the resulting demand functions for capital
and labor input depend on v, w, and q. Because quantity produced enters these functions,
input demand is indeed contingent on that variable. This feature of the demand functions is
also reflected by the “c” in the notation.15 Hence, the demand relations in Equation 10.44
do not represent a complete picture of input demand because they still depend on a variable
that is under the firm’s control. In the next chapter, we will complete the study of input
demand by showing how the assumption of profit maximization allows us to effectively
replace q in the input demand relationships with the market price of the firm’s output, p.

EXAMPLE 10.4 Contingent Input Demand Functions

In this example, we will show how the total cost functions derived in Example 10.2 can be
used to derive contingent demand functions for the inputs capital and labor.

1. Fixed Proportions: Cðv,w, qÞ ¼ qðv=a þ w=bÞ. For this cost function, contingent de-
mand functions are quite simple:

kcðv,w, qÞ ¼ ∂Cðv,w, qÞ
∂v

¼ q
a
,

lcðv,w, qÞ ¼ ∂Cðv,w, qÞ
∂w

¼ q
b
.

(10.45)

In order to produce any particular output with a fixed proportions production function at
minimal cost, the firm must produce at the vertex of its isoquants no matter what the inputs’
prices are. Hence, the demand for inputs depends only on the level of output, and v and w do
not enter the contingent input demand functions. Input pricesmay, however, affect total input
demands in the fixed proportions case because they may affect how much the firm can sell.

2. Cobb-Douglas: Cðv,w, qÞ ¼ q1=ðαþβÞBvα=ðαþβÞwβ=ðαþβÞ. In this case, the derivation is
messier but also more instructive:

kcðv,w, qÞ ¼ ∂C
∂v

¼ α

αþ β
⋅ q1=ðαþβÞBv�β=ðαþβÞwβ=ðαþβÞ

¼ α

αþ β
⋅ q1=ðαþβÞB

w
v

� �β=ðαþβÞ
,

lcðv,w, qÞ ¼ ∂C
∂w

¼ β

αþ β
⋅ q1=ðαþβÞBvα=ðαþβÞw�α=ðαþβÞ

¼ β

αþ β
⋅ q1=ðαþβÞB

w
v

� ��α=ðαþβÞ
:

(10.46)

15The notation mirrors that used for compensated demand curves in Chapter 5 (which were derived from the expenditure
function). In that case, such demand functions were contingent on the utility target assumed.
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Consequently, the contingent demands for inputs depend on both inputs’ prices. If we
assume α ¼ β ¼ 0.5 (so B ¼ 2), these reduce to

kc v,w, qð Þ ¼ 0.5 ⋅ q ⋅2 ⋅
w
v

� �0.5
¼ q

w
v

� �0.5
,

l c v,w, qð Þ ¼ 0.5 ⋅ q ⋅2 ⋅
w
v

� ��0.5
¼ q

w
v

� ��0.5
.

(10.47)

With v ¼ 3,w ¼ 12, and q ¼ 40, Equations 10.47 yield the result we obtained previously: that
the firm should choose the input combination k ¼ 80, l ¼ 20 to minimize the cost of
producing 40 units of output. If the wage were to rise to, say, 27, the firm would choose the
input combination k ¼ 120, l ¼ 40=3 to produce 40 units of output. Total costs would rise
from 480 to 520, but the ability of the firm to substitute capital for the now more expensive
labor does save considerably. For example, the initial input combination would now cost 780.

3. CES: Cðv,w, qÞ ¼ q1=γðv1�σ þ w1�σÞ1=ð1�σÞ. The importance of input substitution is
shown even more clearly with the contingent demand functions derived from the CES
function. For that function,

kcðv,w, qÞ ¼ ∂C
∂v

¼ 1
1� σ

⋅ q1=γðv1�σ þ w1�σÞσ=ð1�σÞð1� σÞv�σ

¼ q1=γðv1�σ þ w1�σÞσ=ð1�σÞv�σ,

lcðv,w, qÞ ¼ ∂C
∂w

¼ 1
1� σ

⋅ q1=γðv1�σ þ w1�σÞσ=ð1�σÞð1� σÞw�σ

¼ q1=γðv1�σ þ w1�σÞσ=ð1�σÞw�σ.

(10.48)

These functions collapse when σ ¼ 1 (the Cobb-Douglas case), but we can study examples
with either more ðσ ¼ 2Þ or less ðσ ¼ 0.5Þ substitutability and use Cobb-Douglas as the
middle ground. If we assume constant returns to scale ðγ ¼ 1Þ and v ¼ 3,w ¼ 12, and q ¼
40, then contingent demands for the inputs when σ ¼ 2 are

kcð3, 12, 40Þ ¼ 40ð3�1 þ 12�1Þ�2 ⋅3�2 ¼ 25:6,

l cð3, 12, 40Þ ¼ 40ð3�1 þ 12�1Þ�2 ⋅12�2 ¼ 1:6:
(10.49)

That is, the level of capital input is 16 times the amount of labor input. With less sub-
stitutability ðσ ¼ 0.5Þ, contingent input demands are

kcð3, 12, 40Þ ¼ 40ð30:5 þ 120:5Þ1 ⋅3�0:5 ¼ 120,

lcð3, 12, 40Þ ¼ 40ð30:5 þ 120:5Þ1 ⋅12�0:5 ¼ 60.
(10.50)

So, in this case, capital input is only twice as large as labor input. Although these various cases
cannot be compared directly because different values forσ scale output differently,we can, as an
example, look at the consequence of a rise in w to 27 in the low-substitutability case. With
w ¼ 27, the firmwill choose k ¼ 160, l ¼ 53.3. In this case, the cost savings from substitution
can be calculated by comparing total costs when using the initial input combination
(¼ ð3Þ120þ 27ð60Þ ¼ 1980) to total costs with the optimal combination (¼ ð3Þ160þ
27ð53:3Þ ¼ 1919). Hence, moving to the optimal input combination reduces total costs by
only about 3 percent. In the Cobb-Douglas case, cost savings are over 20 percent.

QUERY: How would total costs change if w increased from 12 to 27 and the production
function took the simple linear form q ¼ k þ 4l? What light does this result shed on the other
cases in this example?
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SHEPHARD’S LEMMAAND THE ELASTICITY
OF SUBSTITUTION

One especially nice feature of Shephard’s lemma is that it can be used to show how to derive
information about input substitution directly from the total cost function through differenti-
ation. Using the definition in Equation 10.31 yields

si, j ¼
∂ lnðxi=xj Þ
∂ lnðwj =wiÞ

¼ ∂ lnðCi=Cj Þ
∂ lnðwj =wiÞ

, (10.51)

where Ci and Cj are the partial derivatives of the total cost function with respect to the input
prices. Once the total cost function is known (perhaps through econometric estimation),
information about substitutability among inputs can thus be readily obtained from it. In the
Extensions to this chapter, we describe some of the results that have been obtained in this
way. Problems 10.11 and 10.12 provide some additional details about ways in which sub-
stitutability among inputs can be measured.

SHORT-RUN, LONG-RUN DISTINCTION

It is traditional in economics to make a distinction between the “short run” and the “long
run.” Although no very precise temporal definition can be provided for these terms, the
general purpose of the distinction is to differentiate between a short period during which
economic actors have only limited flexibility in their actions and a longer period that provides
greater freedom. One area of study in which this distinction is quite important is in the theory
of the firm and its costs, because economists are interested in examining supply reactions over
differing time intervals. In the remainder of this chapter, we will examine the implications of
such differential response.

To illustrate why short-run and long-run reactions might differ, assume that capital input
is held fixed at a level of k1 and that (in the short run) the firm is free to vary only its labor
input.16 Implicitly, we are assuming that alterations in the level of capital input are infinitely
costly in the short run. As a result of this assumption, the short-run production function is

q ¼ f ðk1, lÞ, (10.52)

where this notation explicitly shows that capital inputs may not vary. Of course, the level of
output still may be changed if the firm alters its use of labor.

Short-run total costs
Total cost for the firm continues to be defined as

C ¼ vk þ wl (10.53)

for our short-run analysis, but now capital input is fixed at k1. To denote this fact, we will
write

SC ¼ vk1 þ wl , (10.54)

where the S indicates that we are analyzing short-run costs with the level of capital input
fixed. Throughout our analysis, we will use this method to indicate short-run costs, whereas
long-run costs will be denoted by C, AC , and MC . Usually we will not denote the level of
capital input explicitly, but it is understood that this input is fixed.

16Of course, this approach is for illustrative purposes only. In many actual situations, labor input may be less flexible in the
short run than is capital input.
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Fixed and variable costs
The two types of input costs in Equation 8.53 are given special names. The term vk1 is
referred to as (short-run) fixed costs ; because k1 is constant, these costs will not change in the
short run. The term wl is referred to as (short-run) variable costs—labor input can indeed be
varied in the short run. Hence we have the following definitions.

D E F I N I T I O N
Short-run fixed and variable costs. Short-run fixed costs are costs associated with inputs
that cannot be varied in the short run. Short-run variable costs are costs of those inputs that
can be varied so as to change the firm’s output level.

The importance of this distinction is to differentiate between variable costs that the firm can
avoid by producing nothing in the short run and costs that are fixed and must be paid
regardless of the output level chosen (even zero).

Nonoptimality of short-run costs
It is important to understand that total short-run costs are not the minimal costs for producing
the various output levels. Becausewe are holding capital fixed in the short run, the firmdoes not
have theflexibility of input choice that we assumedwhenwe discussed costminimization earlier
in this chapter. Rather, to vary its output level in the short run, the firm will be forced to use
“nonoptimal” input combinations: The RTS will not be equal to the ratio of the input prices.
This is shown in Figure 10.7. In the short run, the firm is constrained to use k1 units of capital.
To produce output level q0, it therefore will use l0 units of labor. Similarly, it will use l1 units of
labor to produce q1 and l2 units to produce q2. The total costs of these input combinations are
given by SC0, SC1, and SC2, respectively. Only for the input combination k1, l1 is output being
produced at minimal cost. Only at that point is the RTS equal to the ratio of the input prices.
FromFigure 10.7, it is clear that q0 is being produced with “toomuch” capital in this short-run
situation. Cost minimization should suggest a southeasterly movement along the q0 isoquant,
indicating a substitution of labor for capital in production. Similarly, q2 is being produced with
“too little” capital, and costs could be reduced by substituting capital for labor.Neither of these
substitutions is possible in the short run. Over a longer period, however, the firmwill be able to
change its level of capital input and will adjust its input usage to the cost-minimizing combina-
tions. We have already discussed this flexible case earlier in this chapter and shall return to it to
illustrate the connection between long-run and short-run cost curves.

Short-run marginal and average costs
Frequently, it is more useful to analyze short-run costs on a per-unit-of-output basis rather
than on a total basis. The two most important per-unit concepts that can be derived from the
short-run total cost function are the short-run average total cost function (SAC) and the short-
run marginal cost function (SMC). These concepts are defined as

SAC ¼ total costs
total output

¼ SC
q
,

SMC ¼ change in total costs
change in output

¼ ∂SC
∂q

,
(10.55)

where again these are defined for a specified level of capital input. These definitions for
average and marginal costs are identical to those developed previously for the long-run, fully
flexible case, and the derivation of cost curves from the total cost function proceeds in
exactly the same way. Because the short-run total cost curve has the same general type of
cubic shape as did the total cost curve in Figure 10.5, these short-run average and marginal
cost curves will also be U-shaped.

Chapter 10 Cost Functions 345



Relationship between short-run and long-run cost curves
It is easy to demonstrate the relationship between the short-run costs and the fully flexible
long-run costs that were derived previously in this chapter. Figure 10.8 shows this relation-
ship for both the constant returns-to-scale and cubic total cost curve cases. Short-run total
costs for three levels of capital input are shown, although of course it would be possible to
show many more such short-run curves. The figures show that long-run total costs ðCÞ are
always less than short-run total costs, except at that output level for which the assumed fixed
capital input is appropriate to long-run cost minimization. For example, as in Figure 10.7,
with capital input of k1 the firm can obtain full cost minimization when q1 is produced.
Hence, short-run and long-run total costs are equal at this point. For output levels other than
q1, however, SC > C, as was the case in Figure 10.7.

Technically, the long-run total cost curves in Figure 10.8 are said to be an “envelope” of
their respective short-run curves. These short-run total cost curves can be represented para-
metrically by

short-run total cost ¼ SCðv,w, q, kÞ, (10.56)

and the family of short-run total cost curves is generated by allowing k to vary while holding
v and w constant. The long-run total cost curve C must obey the short-run relationship in
Equation 10.56 and the further condition that k be cost minimizing for any level of output.
A first-order condition for this minimization is that

FIGURE 10.7 “Nonoptimal” Input Choices Must Be Made in the Short Run

Because capital input is fixed at k, in the short run the firm cannot bring itsRTS into equality with the
ratio of input prices. Given the input prices, q0 should be produced with more labor and less capital
than it will be in the short run, whereas q2 should be produced with more capital and less labor than it
will be.
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∂SCðv,w, q, kÞ
∂k

¼ 0. (10.57)

Solving Equations 10.56 and 10.57 simultaneously then generates the long-run total
cost function. Although this is a different approach to deriving the total cost function, it
should give precisely the same results derived earlier in this chapter—as the next example
illustrates.

FIGURE 10.8 Two Possible Shapes for Long-Run Total Cost Curves

By considering all possible levels of capital input, the long-run total cost curve (C) can be traced.
In (a), the underlying production function exhibits constant returns to scale: in the long run, though
not in the short run, total costs are proportional to output. In (b), the long-run total cost curve has a
cubic shape, as do the short-run curves. Diminishing returns set in more sharply for the short-run
curves, however, because of the assumed fixed level of capital input.
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EXAMPLE 10.5 Envelope Relations and Cobb-Douglas Cost Functions

Again we start with the Cobb-Douglas production function q ¼ kαlβ, but now we hold
capital input constant at k1. So, in the short run,

q ¼ kα1l
β or l ¼ q1=βk�α=β1 , (10.58)

and total costs are given by

SCðv,w, q, k1Þ ¼ vk1 þ wl ¼ vk1 þ wq1=βk�α=β1 . (10.59)

Notice that the fixed level of capital enters into this short-run total cost function in two
ways: (1) k1 determines fixed costs; and (2) k1 also in part determines variable costs because
it determines how much of the variable input (labor) is required to produce various levels of
output. To derive long-run costs, we require that k be chosen to minimize total costs:

∂SCðv,w, q, kÞ
∂k

¼ v þ �α

β
⋅wq1=βk�ðαþβÞ=β ¼ 0. (10.60)

Although the algebra is messy, this equation can be solved for k and substituted into
Equation 10.59 to return us to the Cobb-Douglas cost function:

Cðv,w, qÞ ¼ Bq1=ðαþβÞvα=ðαþβÞwβ=ðαþβÞ. (10.61)

Numerical example. If we again let α ¼ β ¼ 0.5, v ¼ 3, andw ¼ 12, then the short-run
cost function is

SCð3, 12, q, kÞ ¼ 3k1 þ 12q2k�11 . (10.62)

In Example 10.1 we found that the cost-minimizing level of capital input for q ¼ 40 was
k ¼ 80. Equation 10.62 shows that short-run total costs for producing 40 units of output
with k ¼ 80 is

SCð3, 12, q, 80Þ ¼ 3.80þ 12 ⋅ q2 ⋅
1
80

¼ 240þ 3q2

20
¼ 240þ 240 ¼ 480, (10.63)

which is just what we found before.We can also use Equation 10.62 to showhow costs differ in
the short and long run. Table 10.1 shows that, for output levels other than q ¼ 40, short-run
costs are larger than long-run costs and that this difference is proportionally larger the farther
one gets from the output level for which k ¼ 80 is optimal.

TABLE 10.1 Difference between Short-Run and Long-Run Total Cost, k ¼ 80

q C ¼12q SC ¼ 240þ 3q2=20

10 120 255

20 240 300

30 360 375

40 480 480

50 600 615

60 720 780

70 840 975

80 960 1200
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It is also instructive to study differences between the long-run and short-run per-unit costs
in this situation. Here AC ¼ MC ¼ 12. We can compute the short-run equivalents (when
k ¼ 80) as

SAC ¼ SC
q

¼ 240
q

þ 3q
20

,

SMC ¼ ∂SC
∂q

¼ 6q
20

.
(10.64)

Bothof these short-run unit costs are equal to 12when q ¼ 40.However, asTable 10.2 shows,
short-run unit costs can differ significantly from this figure, depending on the output level that
the firm produces. Notice in particular that short-runmarginal cost increases rapidly as output
expands beyond q ¼ 40 because of diminishing returns to the variable input (labor). This
conclusion plays an important role in the theory of short-run price determination.

QUERY: Explain why an increase in w will increase both short-run average cost and short-run
marginal cost in this illustration, but an increase in v affects only short-run average cost.

Graphs of per-unit cost curves
The envelope total cost curve relationships exhibited in Figure 10.8 can be used to show
geometric connections between short-run and long-run average and marginal cost curves.
These are presented in Figure 10.9 for the cubic total cost curve case. In the figure, short-run
and long-run average costs are equal at that output for which the (fixed) capital input is
appropriate. At q1, for example, SACðk1Þ ¼ AC because k1 is used in producing q1 at
minimal costs. For movements away from q1, short-run average costs exceed long-run av-
erage costs, thus reflecting the cost-minimizing nature of the long-run total cost curve.

Because the minimum point of the long-run average cost curve (AC) plays a major role in
the theory of long-run price determination, it is important to note the various curves that
pass through this point in Figure 10.9. First, as is always true for average and marginal cost
curves, theMC curve passes through the low point of the AC curve. At q1, long-run average
and marginal costs are equal. Associated with q1 is a certain level of capital input (say, k1); the
short-run average cost curve for this level of capital input is tangent to the AC curve at its
minimum point. The SAC curve also reaches its minimum at output level q1. For movements
away from q1, the AC curve is much flatter than the SAC curve, and this reflects the greater
flexibility open to firms in the long run. Short-run costs rise rapidly because capital inputs are
fixed. In the long run, such inputs are not fixed, and diminishing marginal productivities do

TABLE 10.2 Unit Costs in the Long Run and the Short Run, k ¼ 80

q AC MC SAC SMC

10 12 12 25.5 3

20 12 12 15.0 6

30 12 12 12.5 9

40 12 12 12.0 12

50 12 12 12.3 15

60 12 12 13.0 18

70 12 12 13.9 21

80 12 12 15.0 24
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not occur so abruptly. Finally, because the SAC curve reaches its minimum at q1, the short-
run marginal cost curve (SMC) also passes through this point. The minimum point of theAC
curve therefore brings together the four most important per-unit costs: at this point,

AC ¼ MC ¼ SAC ¼ SMC . (10.65)

For this reason, as we shall show in Chapter 12, the output level q1 is an important equi-
librium point for a competitive firm in the long run.

SUMMARY

In this chapter we examined the relationship between the
level of output a firm produces and the input costs associated
with that level of production. The resulting cost curves
should generally be familiar to you because they are widely
used in most courses in introductory economics. Here we
have shown how such curves reflect the firm’s underlying
production function and the firm’s desire to minimize costs.
By developing cost curves from these basic foundations, we
were able to illustrate a number of important findings.

• A firm that wishes tominimize the economic costs of pro-
ducing a particular level of output should choose that
input combination for which the rate of technical substi-
tution (RTS) is equal to the ratio of the inputs’ rental
prices.

• Repeated application of this minimization procedure
yields the firm’s expansion path. Because the expansion
path shows how input usage expands with the level of
output, it also shows the relationship between output
level and total cost. That relationship is summarized by
the total cost function, Cðq, v,wÞ, which shows produc-
tion costs as a function of output levels and input prices.

• The firm’s average cost ðAC ¼ C=qÞ and marginal cost
ðMC ¼ ∂C=∂qÞ functions can be derived directly from
the total cost function. If the total cost curve has a general
cubic shape then theAC andMC curveswill beU-shaped.

• All cost curves are drawn on the assumption that the
input prices are held constant.When input prices change,

FIGURE 10.9 Average and Marginal Cost Curves for the Cubic Cost Curve Case

This set of curves is derived from the total cost curves shown in Figure 10.8. TheAC andMC curves
have the usual U-shapes, as do the short-run curves. At q1, long-run average costs are minimized.
The configuration of curves at this minimum point is quite important.

Costs

Output per
period

q0 q1 q2

SMC (k0)

SMC (k1)

SMC (k2)

MC

SAC (k0)

SAC (k1)
AC

SAC (k2)
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PROBLEMS

10.1
In a famous article [J. Viner, “Cost Curves and Supply Curves,” Zeitschrift fur Nationalokonomie 3
(September 1931): 23–46], Viner criticized his draftsman who could not draw a family of SAC curves
whose points of tangency with the U-shaped AC curve were also the minimum points on each SAC
curve. The draftsman protested that such a drawing was impossible to construct. Whom would you
support in this debate?

10.2
Suppose that a firm produces two different outputs, the quantities of which are represented by q1 and q2.
In general, the firm’s total costs can be represented by Cðq1, q2Þ. This function exhibits economies of
scope if Cðq1, 0Þ þ Cð0, q2Þ > Cðq1, q2Þ for all output levels of either good.

a. Explain in words why this mathematical formulation implies that costs will be lower in this
multiproduct firm than in two single-product firms producing each good separately.

b. If the two outputs are actually the same good, we can define total output as q ¼ q1 þ q2.
Suppose that in this case average cost ð¼ C=qÞ falls as q increases. Show that this firm also enjoys
economies of scope under the definition provided here.

10.3
Professor Smith and Professor Jones are going to produce a new introductory textbook. As true
scientists, they have laid out the production function for the book as

q ¼ S1=2J 1=2,
where q ¼ the number of pages in the finished book, S ¼ the number of working hours spent by
Smith, and J ¼ the number of hours spent working by Jones.

Smith values his labor as $3 per working hour. He has spent 900 hours preparing the first draft.
Jones, whose labor is valued at $12 per working hour, will revise Smith’s draft to complete the book.

a. How many hours will Jones have to spend to produce a finished book of 150 pages? Of 300
pages? Of 450 pages?

b. What is the marginal cost of the 150th page of the finished book? Of the 300th page? Of the
450th page?

10.4
Suppose that a firm’s fixed proportion production function is given by

q ¼ minð5k, 10lÞ.
a. Calculate the firm’s long-run total, average, and marginal cost functions.

b. Suppose that k is fixed at 10 in the short run. Calculate the firm’s short-run total, average, and
marginal cost functions.

cost curves will shift to new positions. The extent of the
shifts will be determined by the overall importance of the
input whose price has changed and by the ease with
which the firm may substitute one input for another.
Technical progress will also shift cost curves.

• Input demand functions can be derived from the firm’s
total cost function through partial differentiation. These
input demand functions will depend on the quantity of

output that the firm chooses to produce and are there-
fore called “contingent” demand functions.

• In the short run, the firm may not be able to vary some
inputs. It can then alter its level of production only by
changing its employment of variable inputs. In so doing,
it may have to use nonoptimal, higher-cost input com-
binations than it would choose if it were possible to vary
all inputs.
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c. Suppose v ¼ 1 and w ¼ 3. Calculate this firm’s long-run and short-run average and marginal
cost curves.

10.5
A firm producing hockey sticks has a production function given by

q ¼ 2
ffiffiffiffiffiffiffiffi
k ⋅ l

p
.

In the short run, the firm’s amount of capital equipment is fixed at k ¼ 100. The rental rate for k is
v ¼ $1, and the wage rate for l is w ¼ $4.

a. Calculate the firm’s short-run total cost curve. Calculate the short-run average cost curve.

b. What is the firm’s short-run marginal cost function? What are the SC, SAC, and SMC for the
firm if it produces 25 hockey sticks? Fifty hockey sticks? One hundred hockey sticks? Two
hundred hockey sticks?

c. Graph the SAC and the SMC curves for the firm. Indicate the points found in part (b).

d. Where does the SMC curve intersect the SAC curve? Explain why the SMC curve will always
intersect the SAC curve at its lowest point.

Suppose now that capital used for producing hockey sticks is fixed at
_
k in the short run.

e. Calculate the firm’s total costs as a function of q, w, v, and
_
k.

f. Given q, w, and v, how should the capital stock be chosen to minimize total cost?

g. Use your results from part (f) to calculate the long-run total cost of hockey stick production.

h. For w ¼ $4, v ¼ $1, graph the long-run total cost curve for hockey stick production. Show that
this is an envelope for the short-run curves computed in part (a) by examining values of

_
k of

100, 200, and 400.

10.6
An enterprising entrepreneur purchases two firms to produce widgets. Each firm produces identical
products, and each has a production function given by

q ¼ ffiffiffiffiffiffiffiffi
kili

p
, i ¼ 1,2.

The firms differ, however, in the amount of capital equipment each has. In particular, firm 1 has
k1 ¼ 25 whereas firm 2 has k2 ¼ 100. Rental rates for k and l are given by w ¼ v ¼ $1.

a. If the entrepreneur wishes to minimize short-run total costs of widget production, how should
output be allocated between the two firms?

b. Given that output is optimally allocated between the two firms, calculate the short-run total,
average, and marginal cost curves. What is the marginal cost of the 100th widget? The 125th
widget? The 200th widget?

c. How should the entrepreneur allocate widget production between the two firms in the long
run? Calculate the long-run total, average, and marginal cost curves for widget production.

d. How would your answer to part (c) change if both firms exhibited diminishing returns to
scale?

10.7
Suppose the total-cost function for a firm is given by

C ¼ qw2=3v1=3.

a. Use Shephard’s lemma to compute the constant output demand functions for inputs l and k.

b. Use your results from part (a) to calculate the underlying production function for q.
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10.8
Suppose the total-cost function for a firm is given by

C ¼ qðv þ 2
ffiffiffiffiffiffi
vw

p þ wÞ.
a. Use Shephard’s lemma to compute the constant output demand function for each input,

k and l .

b. Use the results from part (a) to compute the underlying production function for q.

c. You can check the result by using results from Example 10.2 to show that the CES cost function
with σ ¼ 0:5, ρ ¼ �1 generates this total-cost function.

Analytical Problems
10.9 Generalizing the CES cost function
The CES production function can be generalized to permit weighting of the inputs. In the two-input
case, this function is

q ¼ f ðk, lÞ ¼ ½ðakÞρ þ ðblÞρ�γ=ρ.
a. What is the total-cost function for a firm with this production function? Hint: You can, of

course, work this out from scratch; easier perhaps is to use the results from Example 10.2 and
reason that the price for a unit of capital input in this production function is v=a and for a unit of
labor input is w=b.

b. If γ ¼ 1 and a þ b ¼ 1, it can be shown that this production function converges to the Cobb-
Douglas form q ¼ kalb as ρ! 0. What is the total cost function for this particular version of the
CES function?

c. The relative labor cost share for a two-input production function is given by wl=vk. Show that
this share is constant for the Cobb-Douglas function in part (b). How is the relative labor share
affected by the parameters a and b?

d. Calculate the relative labor cost share for the general CES function introduced above. How is
that share affected by changes in w=v? How is the direction of this effect determined by the
elasticity of substitution, σ? How is it affected by the sizes of the parameters a and b?

10.10 Input demand elasticities
The own-price elasticities of contingent input demand for labor and capital are defined as

elc ,w ¼ ∂lc

∂w ⋅
w
lc
, ekc , v ¼ ∂kc

∂v ⋅
v
kc
.

a. Calculate elc ,w and ekc , v for each of the cost functions shown in Example 10.2.

b. Show that, in general, elc ,w þ elc , v ¼ 0.

c. Show that the cross-price derivatives of contingent demand functions are equal—that is, show

that ∂l c=∂v ¼ ∂kc=∂w. Use this fact to show that sl elc , v ¼ skekc ,w where sl , sk are, respectively, the

share of labor in total cost ðwl=CÞ and of capital in total cost ðvk=CÞ.
d. Use the results from parts (b) and (c) to show that sl el c,w þ skekc,w ¼ 0.

e. Interpret these various elasticity relationships in words and discuss their overall relevance to a
general theory of input demand.

10.11 The elasticity of substitution and input demand elasticities
The definition of the (Morishima) elasticity of substitution (Equation 10.51) can also be described in
terms of input demand elasticities. This illustrates the basic asymmetry in the definition.
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a. Show that if only wj changes, si, j ¼ exci ,wj
� excj ,wj

.

b. Show that if only wi changes, sj , i ¼ excj ,wi
� exci ,wi

.

c. Show that if the production function takes the general CES form q ¼ ½Pn x
ρ
i �1=ρ for ρ 6¼ 0, then

all of the Morishima elasticities are the same: si, j ¼ 1=ð1� ρÞ ¼ σ. This is the only case in which
the Morishima definition is symmetric.

10.12 The Allen elasticity of substitution
Many empirical studies of costs report an alternative definition of the elasticity of substitution between
inputs. This alternative definition was first proposed by R. G. D. Allen in the 1930s and further clarified
by H. Uzawa in the 1960s. This definition builds directly on the production function–based elasticity of
substitution defined in footnote 6 of Chapter 9:Ai, j ¼ CijC=CiCj , where the subscripts indicate partial
differentiation with respect to various input prices. Clearly, the Allen definition is symmetric.

a. Show that Ai, j ¼ exci ,wj
=sj , where sj is the share of input j in total cost.

b. Show that the elasticity of si with respect to the price of input j is related to the Allen elasticity by
esi , pj ¼ sj ðAi, j � 1Þ.

c. Show that, with only two inputs, Ak, l ¼ 1 for the Cobb-Douglas case and Ak, l ¼ σ for the
CES case.

d. Read Blackorby and Russell (1989: “Will the Real Elasticity of Substitution Please Stand Up?”)
to see why the Morishima definition is preferred for most purposes.
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application of the Le Chatelier principle from physics.
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E X T E N S I O N S

The Translog Cost Function

The two cost functions studied in Chapter 10 (the
Cobb-Douglas and the CES) are very restrictive in
the substitution possibilities they permit. The Cobb-
Douglas implicitly assumes that σ ¼ 1 between any
two inputs. The CES permits σ to take any value, but
it requires that the elasticity of substitution be the same
between any two inputs. Because empirical economists
would prefer to let the data show what the actual
substitution possibilities among inputs are, they have
tried to find more flexible functional forms. One espe-
cially popular such form is the translog cost function,
first made popular by Fuss and McFadden (1978). In
this extension we will look at this function.

E10.1 The translog with two inputs

In Example 10.2, we calculated the Cobb-Douglas
cost function in the two-input case as Cðq, v,wÞ ¼
Bq1=ðαþβÞvα=ðαþβÞwβ=ðαþβÞ. If we take the natural loga-
rithm of this we have

lnCðq, v,wÞ ¼ ln B þ ½1=ðαþ βÞ� ln q
þ ½α=ðαþ βÞ� ln v
þ ½β=ðαþ βÞ� ln w. (i)

That is, the log of total costs is linear in the logs of
output and the input prices. The translog function
generalizes this by permitting second-order terms in
input prices:

lnCðq, v,wÞ¼ ln q þ β0 þ β1 ln v þ β2 lnw
þ β3ðln vÞ2 þ β4ðlnwÞ2
þ β5 ln v lnw, (ii)

where this function implicitly assumes constant returns
to scale (because the coefficient of ln q is 1.0)—
although that need not be the case.

Some of the properties of this function are:

• For the function tobehomogeneousof degree1 in
input prices, it must be the case that β1 þ β2 ¼ 1
and β3 þ β4 þ β5 ¼ 0.

• This function includes the Cobb-Douglas as the
special case β3 ¼ β4 ¼ β5 ¼ 0. Hence, the func-
tion can be used to test statistically whether the
Cobb-Douglas is appropriate.

• Input shares for the translog function are espe-
cially easy to compute using the result that si ¼
ð∂ lnCÞ=ð∂ lnwiÞ. In the two-inputcase, this yields

sk ¼ ∂ lnC
∂ ln v

¼ β1 þ 2β3 ln v þ β5 lnw,

sl ¼
∂ lnC
∂ lnw

¼ β2 þ 2β4 lnw þ β5 ln v.
(iii)

In the Cobb-Douglas case ðβ3 ¼ β4 ¼ β5 ¼ 0Þ
these shares are constant, but with the general
translog function they are not.

• Calculating the elasticity of substitution in the
translog case proceeds by using the result given
in Problem 10.11 that sk, l ¼ ekc ,w � elc ,w. Mak-
ing this calculation is straightforward (provided
one keeps track of how to use logarithms):

ekc ,w ¼ ∂ lnCv

∂ lnw
¼ ∂ ln C

v ⋅ ∂ ln C
∂ ln v

� �
∂ lnw

¼ ∂ lnC � ln v þ ln ∂ ln C
∂ ln v

� �� �
∂ lnw

¼ sl � 0þ ∂ ln sk
∂sk

⋅
∂2 lnC
∂v∂w

¼ sl þ
β5

sk
.

(iv)
Observe that, in the Cobb-Douglas case

ðβ5 ¼ 0Þ, the contingent price elasticity of de-
mand for k with respect to the wage has a simple
form: ekc ,w ¼ sl . A similar set of manipulations
yields elc ,w ¼ �sk þ 2β4=sl and, in the Cobb-
Douglas case, elc ,w ¼ �sk. Bringing these two
elasticities together yields

sk, l ¼ ekc ,w � elc ,w

¼ sl þ sk þ
β5

sk
� 2β4

sl

¼ 1þ slβ5 � 2skβ4

sksl
. (v)

Again, in the Cobb-Douglas case we have
sk, l ¼ 1, as should have been expected.

• The Allen elasticity of substitution (see Problem
10.12) for the translog function is Ak, l ¼
1þ β5=sksl . This function can also be used to
calculate that the (contingent) cross-price elas-
ticity of demand is ekc ,w ¼ slAk, l ¼ sl þ β5=sk, as
was shownpreviously.Here again,Ak, l ¼ 1 in the
Cobb-Douglas case. In general, however, the
Allen and Morishima definitions will differ even
with just two inputs.
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E10.2 The many-input translog
cost function

Most empirical studies include more than two inputs.
The translog cost function is especially easy to general-
ize to these situations. If we assume there are n inputs,
each with a price of wi ði ¼ 1,nÞ, then this function is

Cðq,w1,…,wnÞ ¼ ln q þ β0 þ
Xn
i¼1

βi lnwi

þ 0:5
Xn
i¼1

Xn
j¼1

βij lnwi lnwj ,

(vi)
where we have once again assumed constant returns
to scale. This function requires βij ¼ βji, so each term
for which i 6¼ j appears twice in the final double sum
(which explains the presence of the 0.5 in the ex-
pression). For this function to be homogeneous of
degree 1 in the input prices, it must be the case thatXn

i¼1βi ¼ 1 and
Xn

i¼1βij ¼ 0. Two useful properties
of this function are:

• Input shares take the linear form

si ¼ βi þ
Xn
j¼1

βij lnwj . (vii)

Again, this shows why the translog is usually
estimated in a share form. Sometimes a term in
ln q is also added to the share equations to allow
for scale effects on the shares (see Sydsæter,
Strøm, and Berck, 2000).

• The elasticity of substitution between any two
inputs in the translog function is given by

si, j ¼ 1þ sjβij � siβjj

sisj
. (viii)

Hence, substitutability can again be judged di-
rectly from the parameters estimated for the
translog function.

E10.3 Some applications

The translog cost function has become the main choice
for empirical studies of production. Two factors ac-
count for this popularity. First, the function allows a
fairly complete characterization of substitution patterns
among inputs—it does not require that the data fit any
prespecified pattern. Second, the function’s format
incorporates input prices in a flexible way so that one
can be reasonably sure that he or she has controlled for
such prices in regression analysis. When such control is

assured, measures of other aspects of the cost function
(such as its returns to scale) will be more reliable.

One example of using the translog function to
study input substitution is the study by Westbrook
and Buckley (1990) of the responses that shippers
made to changing relative prices of moving goods
that resulted from deregulation of the railroad and
trucking industries in the United States. The authors
look specifically at the shipping of fruits and vegetables
from the western states to Chicago and New York.
They find relatively high substitution elasticities
among shipping options and so conclude that deregu-
lation had significant welfare benefits. Doucouliagos
and Hone (2000) provide a similar analysis of deregu-
lation of dairy prices in Australia. They show that
changes in the price of rawmilk caused dairy processing
firms to undertake significant changes in input usage.
They also show that the industry adopted significant
new technologies in response to the price change.

An interesting study that uses the translog primarily
to judge returns to scale is Latzko’s (1999) analysis of
the U.S. mutual fund industry. He finds that the elastic-
ity of total costs with respect to the total assets managed
by the fund is less than 1 for all but the largest funds
(those with more than $4 billion in assets). Hence, the
author concludes that money management exhibits
substantial returns to scale. A number of other studies
that use the translog to estimate economies of scale focus
on municipal services. For example, Garcia and Thomas
(2001) look at water supply systems in local French
communities. They conclude that there are significant
operating economies of scale in such systems and that
some merging of systems would make sense. Yatchew
(2000) reaches a similar conclusion about electricity
distribution in small communities in Ontario, Canada.
He finds that there are economies of scale for electricity
distribution systems serving up to about 20,000 custo-
mers. Again, some efficiencies might be obtained from
merging systems that are much smaller than this size.
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C H A P T E R

11

Profit Maximization

In Chapter 10 we examined the way in which firms minimize costs for any level of output they choose. In this
chapter we focus on how the level of output is chosen by profit-maximizing firms. Before investigating that
decision, however, it is appropriate to discuss briefly the nature of firms and the ways in which their choices
should be analyzed.

THE NATURE AND BEHAVIOR OF FIRMS

As we pointed out at the beginning of our analysis of production, a firm is an association of
individuals who have organized themselves for the purpose of turning inputs into outputs.
Different individuals will provide different types of inputs, such as workers’ skills and varieties
of capital equipment, with the expectation of receiving some sort of reward for doing so.

Contractual relationships within firms
The nature of the contractual relationship between the providers of inputs to a firm may be
quite complicated. Each provider agrees to devote his or her input to production activities
under a set of understandings about how it is to be used and what benefit is to be expected
from that use. In some cases these contracts are explicit. Workers often negotiate contracts
that specify in considerable detail what hours are to be worked, what rules of work are to be
followed, and what rate of pay is to be expected. Similarly, capital owners invest in a firm
under a set of explicit legal principles about the ways in which that capital may be used, the
compensation the owner can expect to receive, and whether the owner retains any profits or
losses after all economic costs have been paid. Despite these formal arrangements, it is clear
that many of the understandings between the providers of inputs to a firm are implicit ;
relationships between managers and workers follow certain procedures about who has the
authority to do what in making production decisions. Among workers, numerous implicit
understandings exist about how work tasks are to be shared; and capital owners may delegate
much of their authority to managers and workers to make decisions on their behalf (General
Motors’ shareholders, for example, are never involved in how assembly-line equipment will
be used, though technically they own it). All of these explicit and implicit relationships
change in response to experiences and events external to the firm. Much as a basketball
team will try out new plays and defensive strategies, so too firms will alter the nature of their
internal organizations to achieve better long-term results.1

1The initial development of the theory of the firm from the notion of the contractual relationships involved can be found in
R. H. Coase, “The Nature of the Firm,” Economica (November 1937): 386–405.
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Modeling firms’ behavior
Although some economists have adopted a “behavioral” approach to studying firms’ deci-
sions, most have found that approach too cumbersome for general purposes. Rather, they
have adopted a “holistic” approach that treats the firm as a single decision-making unit and
sweeps away all the complicated behavioral issues about relationships among input providers.
Under this approach, it is often convenient to assume that a firm’s decisions are made by a
single dictatorial manager who rationally pursues some goal, usually profit maximization.
That is the approach we take here. In Chapter 18 we look at some of the informational issues
that arise in intrafirm contracts.

PROFIT MAXIMIZATION

Most models of supply assume that the firm and its manager pursue the goal of achieving the
largest economic profits possible. Hence we will use the following definition.

D E F I N I T I O N
Profit-maximizing firm. A profit-maximizing firm chooses both its inputs and its outputs
with the sole goal of achieving maximum economic profits. That is, the firm seeks to make the
difference between its total revenues and its total economic costs as large as possible.

This assumption—that firms seek maximum economic profits—has a long history in eco-
nomic literature. It has much to recommend it. It is plausible because firm owners may
indeed seek to make their asset as valuable as possible and because competitive markets may
punish firms that do not maximize profits. The assumption also yields interesting theoretical
results that can explain actual firms’ decisions.

Profit maximization and marginalism
If firms are strict profit maximizers, they will make decisions in a “marginal” way. The
entrepreneur will perform the conceptual experiment of adjusting those variables that can
be controlled until it is impossible to increase profits further. This involves, say, looking at the
incremental, or “marginal,” profit obtainable from producing one more unit of output, or at
the additional profit available from hiring one more laborer. As long as this incremental profit
is positive, the extra output will be produced or the extra laborer will be hired. When the
incremental profit of an activity becomes zero, the entrepreneur has pushed that activity far
enough, and it would not be profitable to go further. In this chapter, we will explore the
consequences of this assumption by using increasingly sophisticated mathematics.

Output choice
First we examine a topic that should be very familiar: what output level a firm will produce in
order to obtain maximum profits. A firm sells some level of output, q, at a market price of p
per unit. Total revenues ðRÞ are given by

RðqÞ ¼ pðqÞ ⋅ q, (11.1)

where we have allowed for the possibility that the selling price the firm receives might be
affected by how much it sells. In the production of q, certain economic costs are incurred
and, as in Chapter 10, we will denote these by CðqÞ.

The difference between revenues and costs is called economic profits ðπÞ. Because both
revenues and costs depend on the quantity produced, economic profits will also. That is,

πðqÞ ¼ pðqÞ ⋅ q � CðqÞ ¼ RðqÞ � CðqÞ. (11.2)
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The necessary condition for choosing the value of q that maximizes profits is found by
setting the derivative of Equation 11.2 with respect to q equal to 0:2

dπ
dq

¼ π0ðqÞ ¼ dR
dq

� dC
dq

¼ 0, (11.3)

so the first-order condition for a maximum is that

dR
dq

¼ dC
dq

. (11.4)

This is a mathematical statement of the “marginal revenue equals marginal cost” rule usually
studied in introductory economics courses. Hence we have the following.

O P T I M I Z A T I O N

P R I N C I P L E

Profit maximization. To maximize economic profits, the firm should choose that output
for which marginal revenue is equal to marginal cost. That is,

MR ¼ dR
dq

¼ dC
dq

¼ MC . (11.5)

Second-order conditions
Equation 11.4 or 11.5 is only a necessary condition for a profit maximum. For sufficiency, it is
also required that

d2π

dq2

����
q¼q�

¼ dπ0ðqÞ
dq

����
q¼q�

< 0, (11.6)

or that “marginal” profit must be decreasing at the optimal level of q. For q less than q� (the
optimal level of output), profit must be increasing ½π0ðqÞ > 0�; and for q greater than q�,
profit must be decreasing ½π0ðqÞ < 0�. Only if this condition holds has a true maximum been
achieved. Clearly the condition holds if marginal revenue is decreasing (or constant) in q and
marginal cost is increasing in q.

Graphical analysis
These relationships are illustrated in Figure 11.1, where the top panel depicts typical cost and
revenue functions. For low levels of output, costs exceed revenues and so economic profits are
negative. In the middle ranges of output, revenues exceed costs; this means that profits are
positive. Finally, at high levels of output, costs rise sharply and again exceed revenues. The
vertical distance between the revenue and cost curves (that is, profits) is shown in Figure 11.1b.
Here profits reach a maximum at q�. At this level of output it is also true that the slope of
the revenue curve (marginal revenue) is equal to the slope of the cost curve (marginal cost).
It is clear from the figure that the sufficient conditions for a maximum are also satisfied at
this point, because profits are increasing to the left of q� and decreasing to the right of q�.
Output level q� is therefore a true profit maximum. This is not so for output level q��.
Although marginal revenue is equal to marginal cost at this output, profits are in fact at a
minimum there.

2Notice that this is an unconstrained maximization problem; the constraints in the problem are implicit in the revenue and
cost functions. Specifically, the demand curve facing the firm determines the revenue function, and the firm’s production
function (together with input prices) determines its costs.
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MARGINAL REVENUE

It is the revenue obtained from selling one more unit of output that is relevant to the profit-
maximizing firm’s output decision. If the firm can sell all it wishes without having any effect
on market price, the market price will indeed be the extra revenue obtained from selling one
more unit. Phrased in another way: if a firm’s output decisions will not affect market price,
then marginal revenue is equal to the price at which a unit sells.

FIGURE 11.1 Marginal Revenue Must Equal Marginal Cost for Profit Maximization

Because profits are defined to be revenues ðRÞminus costs ðCÞ, it is clear that profits reach amaximum
when the slope of the revenue function (marginal revenue) is equal to the slope of the cost function
(marginal cost). This equality is only a necessary condition for a maximum, as may be seen by
comparing points q� (a truemaximum) and q�� (a trueminimum), points at whichmarginal revenue
equals marginal cost.

Revenues,
costs

Profits

Losses

Output per period

Output per period
(a)
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0
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A firm may not always be able to sell all it wants at the prevailing market price, however. If
it faces a downward-sloping demand curve for its product, then more output can be sold only
by reducing the good’s price. In this case the revenue obtained from selling one more unit
will be less than the price of that unit because, in order to get consumers to take the extra
unit, the price of all other units must be lowered. This result can be easily demonstrated. As
before, total revenue ðRÞ is the product of the quantity sold ðqÞ times the price at which it is
sold ðpÞ, which may also depend on q. Marginal revenue ðMRÞ is then defined to be the
change in R resulting from a change in q.

D E F I N I T I O N
Marginal revenue. We define

marginal revenue ¼ MRðqÞ ¼ dR
dq

¼ d ½pðqÞ ⋅ q�
dq

¼ p þ q ⋅
dp
dq

: (11.7)

Notice that the marginal revenue is a function of output. In general,MR will be different for
different levels of q. From Equation 11.7 it is easy to see that, if price does not change as
quantity increases ðdp=dq ¼ 0Þ, marginal revenue will be equal to price. In this case we say
that the firm is a price taker because its output decisions do not influence the price it receives.
On the other hand, if price falls as quantity increases ðdp=dq < 0Þ, marginal revenue will be
less than price. A profit-maximizing manager must know how increases in output will affect
the price received before making an optimal output decision. If increases in q cause market
price to fall, this must be taken into account.

EXAMPLE 11.1 Marginal Revenue from a Linear Demand Function

Suppose a shop selling sub sandwichs (also called grinders, torpedoes, or, in Philadelphia,
hoagies) faces a linear demand curve for its daily output over period ðqÞ of the form

q ¼ 100� 10p. (11.8)

Solving for the price the shop receives, we have

p ¼ �q
10

þ 10, (11.9)

and total revenues (as a function of q) are given by

R ¼ pq ¼ �q2

10
þ 10q. (11.10)

The sub firm’s marginal revenue function is

MR ¼ dR
dq

¼ �q
5

þ 10, (11.11)

and in this case MR < p for all values of q. If, for example, the firm produces 40 subs per
day, Equation 11.9 shows that it will receive a price of $6 per sandwich. But at this level of
output Equation 11.11 shows that MR is only $2. If the firm produces 40 subs per day then
total revenue will be $240 ð¼ $6� 40Þ, whereas if it produced 39 subs then total revenue
would be $238 ð¼ $6.1� 39Þ because price will rise slightly when less is produced. Hence
the marginal revenue from the 40th sub sold is considerably less than its price. Indeed, for
q ¼ 50, marginal revenue is zero (total revenues are a maximum at $250 ¼ $5� 50), and
any further expansion in daily sub output will actually result in a reduction in total revenue
to the firm.

To determine the profit-maximizing level of sub output, we must know the firm’s mar-
ginal costs. If subs can be produced at a constant average and marginal cost of $4, then
Equation 11.11 shows thatMR ¼ MC at a daily output of 30 subs. With this level of output,
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each sub will sell for $7 and profits are $90 ½¼ ð$7� $4Þ ⋅ 30�. Although price exceeds aver-
age and marginal cost here by a substantial margin, it would not be in the firm’s interest to
expand output. With q ¼ 35, for example, price will fall to $6.50 and profits will fall to
$87.50 ½¼ ð$6.50� $4.00Þ ⋅ 35�. Marginal revenue, not price, is the primary determinant of
profit-maximizing behavior.

QUERY: How would an increase in the marginal cost of sub production to $5 affect the
output decision of this firm? How would it affect the firm’s profits?

Marginal revenue and elasticity
The concept of marginal revenue is directly related to the elasticity of the demand curve
facing the firm. Remember that the elasticity of demand (eq, p) is defined as the percentage
change in quantity demanded that results from a 1 percent change in price:

eq, p ¼
dq=q
dp=p

¼ dq
dp ⋅

p
q
.

Now, this definition can be combined with Equation 11.7 to give

MR ¼ p þ qdp
dq

¼ p 1þ q
p ⋅

dp
dq

� �
¼ p 1þ 1

eq, p

 !
. (11.12)

If the demand curve facing the firm is negatively sloped, then eq, p < 0 and marginal revenue
will be less than price, as we have already shown. If demand is elastic ðeq, p < �1Þ, then mar-
ginal revenue will be positive. If demand is elastic, the sale of one more unit will not affect
price “very much” and hence more revenue will be yielded by the sale. In fact, if demand
facing the firm is infinitely elastic ðeq, p ¼ �∞Þ, marginal revenue will equal price. The firm is,
in this case, a price taker. However, if demand is inelastic ðeq, p > �1Þ, marginal revenue will be
negative. Increases in q can be obtained only through “large” declines in market price, and
these declines will actually cause total revenue to decrease.

The relationship between marginal revenue and elasticity is summarized by Table 11.1.

Price–marginal cost markup
If we assume the firm wishes to maximize profits, this analysis can be extended to illustrate the
connection between price and marginal cost. Setting MR ¼ MC yields

MC ¼ p 1þ 1
eq, p

 !
or

p
MC

¼ eq, p
1þ eq, p

. (11.13)

That is, the “markup” of price over marginal cost depends in a very specific way on the elastic-
ity of demand facing the firm. First, notice that this demand must be elastic ðeq, p < �1Þ.

TABLE 11.1 Relationship between Elasticity and Marginal Revenue

eq, p < �1 MR > 0

eq, p ¼ �1 MR ¼ 0

eq, p > �1 MR < 0
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If demandwere inelastic, the ratio inEquation11.13wouldbenegative and the equationwould
be nonsensical. This simply reflects that, when demand is inelastic, marginal revenue is negative
and cannot be equated to a positive marginal cost. It is important to stress that it is the demand
facing the firm that must be elastic. This may be consistent with an overall inelastic demand for
the product in question if thefirm faces competition fromotherfirms producing the samegood.

Equation 11.13 implies that the markup over marginal cost will be higher the closer eq, p is
to�1. If the demand facing the firm is infinitely elastic (perhaps because there are many other
firms producing the same good), then eq, p ¼ �∞ and there is no markup ðp=MC ¼ 1Þ. On
the other hand, with an elasticity of demand of (say) eq, p ¼ �2, the markup over marginal
cost will be 100 percent (i.e., p=MC ¼ 2).

Marginal revenue curve
Any demand curve has a marginal revenue curve associated with it. If, as we sometimes
assume, the firm must sell all its output at one price, it is convenient to think of the demand
curve facing the firm as an average revenue curve. That is, the demand curve shows the revenue
per unit (in other words, the price) yielded by alternative output choices. The marginal
revenue curve, on the other hand, shows the extra revenue provided by the last unit sold. In
the usual case of a downward-sloping demand curve, themarginal revenue curve will lie below
the demand curve because, according to Equation 11.7, MR < p. In Figure 11.2 we have
drawn such a curve together with the demand curve fromwhich it was derived. Notice that for
output levels greater than q1, marginal revenue is negative. As output increases from 0 to q1,
total revenues ðp ⋅ qÞ increase. However, at q1 total revenues ðp1 ⋅ q1Þ are as large as possible;
beyond this output level, price falls proportionately faster than output rises.

FIGURE 11.2 Market Demand Curve and Associated Marginal Revenue Curve

Because the demand curve is negatively sloped, themarginal revenue curve will fall below the demand
(“average revenue”) curve. For output levels beyond q1, MR is negative. At q1, total revenuesðp1 � q1Þ are a maximum; beyond this point additional increases in q actually cause total revenues
to fall because of the concomitant declines in price.

Price

Quantity per period

D (average revenue)p1
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0
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In Part 2 we talked in detail about the possibility of a demand curve’s shifting because of
changes in income, prices of other goods, or preferences. Whenever a demand curve does
shift, its associated marginal revenue curve shifts with it. This should be obvious, because a
marginal revenue curve cannot be calculated without referring to a specific demand curve.

EXAMPLE 11.2 The Constant Elasticity Case

In Chapter 5 we showed that a demand function of the form

q ¼ apb (11.14)

has a constant price elasticity of demand, and that this elasticity is given by the parameter b.
To compute the marginal revenue function for this function, first solve for p:

p ¼ 1
a

� �1=b

q1=b ¼ kq1=b , (11.15)

where k ¼ ð1=aÞ1=b . Hence

R ¼ pq ¼ kqð1þbÞ=b

and

MR ¼ dR=dq ¼ 1þ b
b

kq1=b ¼ 1þ b
b

p. (11.16)

For this particular function, then,MR is proportional to price. If, for example, eq, p ¼ b ¼ �2,
thenMR ¼ 0.5p. For a more elastic case, suppose b ¼ �10; thenMR ¼ 0.9p. TheMR curve
approaches the demand curve as demand becomes more elastic. Again, if b ¼ �∞; then
MR ¼ p; that is, in the case of infinitely elastic demand, the firm is a price taker. For inelastic
demand, on the other hand,MR is negative (and profit maximization would be impossible).

QUERY: Suppose demand depended on other factors in addition to p. How would this
change the analysis of this example? How would a change in one of these other factors shift
the demand curve and its marginal revenue curve?

SHORT-RUN SUPPLY BY A PRICE-TAKING FIRM

We are now ready to study the supply decision of a profit-maximizing firm. In this chapter we
will examine only the case in which the firm is a price taker. In Part 5 we will be looking at
other cases in considerably more detail. Also, we will focus only on supply decisions in the
short run here. Long-run questions concern entry and exit by firms and are the primary focus
of the next chapter. The firm’s set of short-run cost curves is therefore the appropriate model
for our analysis.

Profit-maximizing decision
Figure 11.3 shows the firm’s short-run decision. The market price3 is given by P�. The
demand curve facing the firm is therefore a horizontal line through P�. This line is labeled
P� ¼ MR as a reminder that an extra unit can always be sold by this price-taking firm without
affecting the price it receives. Output level q� provides maximum profits, because at q� price
is equal to short-runmarginal cost. The fact that profits are positive can be seen by noting that

3We will usually use an uppercase italic P to denote market price for a single good here and in later chapters. When notation
is complex, however, we will sometimes revert to using a lowercase p.
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price at q� exceeds average costs. The firm earns a profit on each unit sold. If price were below
average cost (as is the case for P���), the firm would have a loss on each unit sold. If price and
average cost were equal, profits would be zero. Notice that at q� the marginal cost curve has a
positive slope. This is required if profits are to be a true maximum. If P ¼ MC on a negatively
sloped section of the marginal cost curve then this would not be a point of maximum profits,
because increasing output would yield more in revenues (price times the amount produced)
than this production would cost (marginal cost would decline if theMC curve has a negative
slope). Consequently, profit maximization requires both that P ¼ MC and that marginal cost
be increasing at this point.4

The firm’s short-run supply curve
The positively sloped portion of the short-run marginal cost curve is the short-run supply
curve for this price-taking firm. That curve shows how much the firm will produce for every
possible market price. For example, as Figure 11.3 shows, at a higher price of P�� the firm
will produce q�� because it is in its interest to incur the higher marginal costs entailed by q��.
With a price of P���, on the other hand, the firm opts to produce less (q���) because only a

FIGURE 11.3 Short-Run Supply Curve for a Price-Taking Firm

In the short run, a price-taking firm will produce the level of output for which SMC ¼ P . At P�, for
example, the firm will produce q�. The SMC curve also shows what will be produced at other prices.
For prices below SAVC, however, the firm will choose to produce no output. The heavy lines in the
figure represent the firm’s short-run supply curve.

Market
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P * = MR
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4Mathematically: because

πðqÞ ¼ Pq � CðqÞ,
profit maximization requires (the first-order condition)

π0ðqÞ ¼ P �MCðqÞ ¼ 0

and (the second-order condition)

π00ðqÞ �MC 0ðqÞ < 0.

Hence it is required that MC 0ðqÞ > 0; marginal cost must be increasing.
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lower output level will result in lower marginal costs to meet this lower price. By considering
all possible prices the firm might face, we can see by the marginal cost curve how much
output the firm should supply at each price.

The shutdown decision. For very low prices we must be careful about this conclusion.
Should market price fall below P1, the profit-maximizing decision would be to produce
nothing. As Figure 11.3 shows, prices less than P1 do not cover average variable costs. There
will be a loss on each unit produced in addition to the loss of all fixed costs. By shutting down
production, the firm must still pay fixed costs but avoids the losses incurred on each unit
produced. Because, in the short run, the firm cannot close down and avoid all costs, its best
decision is to produce no output. On the other hand, a price only slightly above P1 means the
firm should produce some output. Although profits may be negative (which they will be if
price falls below short-run average total costs, the case at P���), the profit-maximizing
decision is to continue production as long as variable costs are covered. Fixed costs must
be paid in any case, and any price that covers variable costs will provide revenue as an offset to
the fixed costs.5 Hence we have a complete description of this firm’s supply decisions in
response to alternative prices for its output. These are summarized in the following definition.

D E F I N I T I O N
Short-run supply curve. The firm’s short-run supply curve shows how much it will produce
at various possible output prices. For a profit-maximizing firm that takes the price of its
output as given, this curve consists of the positively sloped segment of the firm’s short-run
marginal cost above the point of minimum average variable cost. For prices below this level,
the firm’s profit-maximizing decision is to shut down and produce no output.

Of course, any factor that shifts the firm’s short-run marginal cost curve (such as changes in
input prices or changes in the level of fixed inputs employed) will also shift the short-run
supply curve. In Chapter 12 we will make extensive use of this type of analysis to study the
operations of perfectly competitive markets.

EXAMPLE 11.3 Short-Run Supply

In Example 10.5 we calculated the short-run total-cost function for the Cobb-Douglas
production function as

SCðv,w, q, kÞ ¼ vk1 þ wq1=βk�α=β
1 , (11.17)

(continued)

5Some algebra may clarify matters. We know that total costs equal the sum of fixed and variable costs,

SC ¼ SFC þ SVC ,

and that profits are given by

π ¼ R � SC ¼ P ⋅ q � SFC � SVC .

If q ¼ 0, then variable costs and revenues are 0 and so

π ¼ �SFC .

The firm will produce something only if π > �SFC . But that means that

P ⋅ q > SVC or P > SVC=q.
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EXAMPLE 11.3 CONTINUED

where k1 is the level of capital input that is held constant in the short run.6 Short-run
marginal cost is easily computed as

SMCðv,w, q, k1Þ ¼
∂SC
∂q

¼ w
β
qð1�βÞ=βk�α=β

1 . (11.18)

Notice that short-run marginal cost is increasing in output for all values of q. Short-run
profit maximization for a price-taking firm requires that output be chosen so that market
price ðPÞ is equal to short-run marginal cost:

SMC ¼ w
β
qð1�βÞ=βk�α=β

1 ¼ P , (11.19)

and we can solve for quantity supplied as

q ¼ w
β

� ��β=ð1�βÞ
kα=ð1�βÞ
1 Pβ=ð1�βÞ. (11.20)

This supply function provides a number of insights that should be familiar from earlier
economics courses: (1) the supply curve is positively sloped—increases in P cause the firm to
produce more because it is willing to incur a higher marginal cost;7 (2) the supply curve is
shifted to the left by increases in the wage rate, w—that is, for any given output price, less is
supplied with a higher wage; (3) the supply curve is shifted outward by increases in capital
input, k—with more capital in the short run, the firm incurs a given level of short-run
marginal cost at a higher output level; and (4) the rental rate of capital, v, is irrelevant to
short-run supply decisions because it is only a component of fixed costs.

Numerical example. We can pursue once more the numerical example from Example 10.5,
where α ¼ β ¼ 0.5, v ¼ 3,w ¼ 12, and k1 ¼ 80. For these specific parameters, the supply
function is

q ¼ w
0.5

� ��1
⋅ ðk1Þ1 ⋅P1 ¼ 40 ⋅

P
w

¼ 40P
12

¼ 10P
3

. (11.21)

That this computation is correct can be checked by comparing the quantity supplied at
various prices with the computation of short-run marginal cost in Table 10.2. For example,
if P ¼ 12 then the supply function predicts that q ¼ 40 will be supplied, and Table 10.2
shows that this will agree with the P ¼ SMC rule. If price were to double to P ¼ 24, an
output level of 80 would be supplied and, again, Table 10.2 shows that when q ¼ 80,
SMC ¼ 24. A lower price (say P ¼ 6) would cause less to be produced ðq ¼ 20Þ.

Before adopting Equation 11.21 as the supply curve in this situation, we should also check
the firm’s shutdown decision. Is there a price where it would be more profitable to produce
q ¼ 0 than to follow the P ¼ SMC rule? From Equation 11.17 we know that short-run
variable costs are given by

SVC ¼ wq1=βk�α=β1 (11.22)

and so
SVC
q

¼ wqð1�βÞ=βk�α=β1 . (11.23)

6Because capital input is held constant, the short-run cost function exhibits increasing marginal cost and will therefore yield
a unique profit-maximizing output level. If we had used a constant returns-to-scale production function in the long run,
there would have been no such unique output level. We discuss this point later in this chapter and in Chapter 12.
7In fact, the short-run elasticity of supply can be read directly from Equation 11.20 as β=ð1� βÞ.
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A comparison of Equation 11.23 with Equation 11.18 shows that SVC=q < SMC for all
values of q provided that β < 1. So in this problem there is no price low enough such that,
by following the P ¼ SMC rule, the firm would lose more than if it produced nothing.

In our numerical example, consider the case P ¼ 3. With such a low price the firm would
opt for q ¼ 10. Total revenue would be R ¼ 30, and total short-run costs would be
SC ¼ 255 (see Table 10.1). Hence, profits would be π ¼ R � SC ¼ �225. Although the
situation is dismal for the firm, it is better than opting for q ¼ 0. If it produces nothing it
avoids all variable (labor) costs but still loses 240 in fixed costs of capital. By producing
10 units of output, its revenues cover variable costs ðR � SVC ¼ 30� 15 ¼ 15Þ and con-
tribute 15 to offset slightly the loss of fixed costs.

QUERY: How would you graph the short-run supply curve in Equation 11.21? How would
the curve be shifted if w rose to 15? How would it be shifted if capital input increased to
k1 ¼ 100? How would the short-run supply curve be shifted if v fell to 2? Would any of these
changes alter the firm’s determination to avoid shutting down in the short run?

PROFIT FUNCTIONS

Additional insights into the profit-maximization process for a price-taking firm8 can be ob-
tained by looking at the profit function. This function shows the firm’s (maximized) profits as
depending only on the prices that the firm faces. To understand the logic of its construction,
remember that economic profits are defined as

π ¼ Pq � C ¼ Pf ðk, lÞ � vk � wl . (11.24)

Only the variables k and l [and also q ¼ f ðk, lÞ] are under the firm’s control in this
expression. The firm chooses levels of these inputs in order to maximize profits, treating the
three prices P , v, and w as fixed parameters in its decision. Looked at in this way, the firm’s
maximum profits ultimately depend only on these three exogenous prices (together with the
form of the production function). We summarize this dependence by the profit function.

D E F I N I T I O N
Profit function. The firm’s profit function shows its maximal profits as a function of the
prices that the firm faces:

ΠðP , v,wÞ max
k, l

πðk, lÞ ¼ max
k, l

½Pf ðk, lÞ � vk � wl �. (11.25)

In this definition we use an upper case� to indicate that the value given by the function is the
maximum profits obtainable given the prices. This function implicitly incorporates the form
of the firm’s production function—a process we will illustrate in Example 11.4. The profit
function can refer to either long-run or short-run profit maximization, but in the latter case
we would need also to specify the levels of any inputs that are fixed in the short run.

Properties of the profit function
As for the other optimized functions we have already looked at, the profit function has a
number of properties that are useful for economic analysis.

8Much of the analysis here would also apply to a firm that had some market power over the price it received for its product,
but we will delay a discussion of that possibility until Part 5.
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1. Homogeneity. A doubling of all of the prices in the profit function will precisely double
profits—that is, the profit function is homogeneous of degree 1 in all prices. We have
already shown that marginal costs are homogeneous of degree 1 in input prices, hence
a doubling of input prices and a doubling of the market price of a firm’s output will
not change the profit-maximizing quantity it decides to produce. But, because both
revenues and costs have doubled, profits will double. This shows that with pure
inflation (where all prices rise together) firms will not change their production plans
and the levels of their profits will just keep up with that inflation.

2. Profit functions are nondecreasing in output price, P. This result seems obvious—a firm
could always respond to a rise in the price of its output by not changing its input or
output plans. Given the definition of profits, they must rise. Hence, if the firm changes
its plans, it must be doing so in order to make even more profits. If profits were to
decline, the firm would not be maximizing profits.

3. Profit functions are nonincreasing in input prices, v, and w. Again, this feature of the
profit function seems obvious. A proof is similar to that used above in our discussion of
output prices.

4. Profit functions are convex in output prices. This important feature of profit functions
says that the profits obtainable by averaging those available from two different output
prices will be at least as large as those obtainable from the average9 of the two prices.
Mathematically,

ΠðP1, v,wÞ þ ΠðP2, v,wÞ
2

	 Π
P1 þ P2

2
, v,w

	 

. (11.26)

The intuitive reason for this is that, when firms can freely adapt their decisions to two dif-
ferent prices, better results are possible than when they can make only one set of choices in
response to the single average price. More formally, let P3 ¼ ðP1 þ P2Þ=2 and let qi , ki, li
represent the profit-maximizing output and input choices for these various prices. Because of
the profit-maximization assumption implicit in the function �, we can write

ΠðP3, v,wÞ≡ P3q3 � vk3 � wl3 ¼ P1q3 � vk3 � wl3
2

þ P2q3 � vk3 � wl3
2

� P1q1 � vk1 � wl1
2

þ P2q2 � vk2 � wl2
2

≡ ΠðP1, v,wÞ þ ΠðP2, v,wÞ
2

, (11.27)

which proves Equation 11.26. The convexity of the profit function has many applications to
topics such as price stabilization. Some of these are discussed in the Extensions to this
chapter.

Envelope results
Because the profit function reflects an underlying process of unconstrained maximization, we
may also apply the envelope theorem to see how profits respond to changes in output and
input prices. This application of the theorem yields a variety of useful results. Specifically,

9Although we only discuss a simple averaging of prices here, it is clear that with convexity a condition similar to Equation
11.26 holds for any weighted average price

_
P ¼ tP1 þ ð1� tÞP2, where 0 � t � 1.
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using the definition of profits shows that

∂ΠðP , v,wÞ
∂P

¼ qðP , v,wÞ,
∂ΠðP , v,wÞ

∂v
¼ �kðP , v,wÞ,

∂ΠðP , v,wÞ
∂w

¼ �lðP , v,wÞ.

(11.28)

Again, these equations make intuitive sense: a small change in output price will increase
profits in proportion to how much the firm is producing, whereas a small increase in the
price of an input will reduce profits in proportion to the amount of that input being
employed. The first of these equations says that the firm’s supply function can be calculated
from its profit function by partial differentiation with respect to the output price.10 The
second and third equations show that input demand functions11 can also be derived from
the profit functions. Because the profit function itself is homogeneous of degree 1, all of the
functions described in Equations 11.28 are homogeneous of degree 0. That is, a doubling of
both output and input prices will not change the input levels that the firm chooses; nor will
this change the firm’s profit-maximizing output level. All these findings also have short-run
analogues, as will be shown later with a specific example.

Producer surplus in the short run
In Chapter 5 we discussed the concept of “consumer surplus” and showed how areas below
the demand curve can be used to measure the welfare costs to consumers of price changes.
We also showed how such changes in welfare could be captured in the individual’s expendi-
ture function. The process of measuring the welfare effects of price changes for firms is similar
in short-run analysis, and this is the topic we pursue here. However, as we show in the next
chapter, measuring the welfare impact of price changes for producers in the long run requires
a very different approach because most such long-term effects are felt not by firms themselves
but rather by their input suppliers. In general it is this long-run approach that will prove more
useful for our subsequent study of the welfare impacts of price changes.

Because the profit function is nondecreasing in output prices, we know that if P2 > P1
then

ΠðP2,…Þ 	 ΠðP1,…Þ,
and it would be natural to measure the welfare gain to the firm from the price change as

welfare gain ¼ ΠðP2,…Þ � ΠðP1,…Þ. (11.29)

Figure 11.4 shows how this value can be measured graphically as the area bounded by the
two prices and above the short-run supply curve. Intuitively, the supply curve shows the
minimum price that the firm will accept for producing its output. Hence, when market price
rises from P1 to P2, the firm is able to sell its prior output level ðq1Þ at a higher price and also
opts to sell additional output ðq2 � q1Þ for which, at the margin, it likewise earns added
profits on all but the final unit. Hence, the total gain in the firm’s profits is given by area
P2ABP1. Mathematically, we can make use of the envelope results from the previous section
to derive

10This relationship is sometimes referred to as “Hotelling’s lemma”—after the economist Harold Hotelling, who
discovered it in the 1930s.
11Unlike the input demand functions derived in Chapter 10, these input demand functions are not conditional on output
levels. Rather, the firm’s profit-maximizing output decision has already been taken into account in the functions. This
demand concept is therefore more general than the one we introduced in Chapter 10, and we will have much more to say
about it in the next section.
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welfare gain ¼ ∫
P2

P1

qðP ÞdP ¼∫
P2

P1

∂Π
∂P

dP ¼ ΠðP2,…Þ � ΠðP1,…Þ. (11.30)

Thus, the geometric and mathematical measures of the welfare change agree.
Using this approach, we can also measure how much the firm values the right to produce

at the prevailing market price relative to a situation where it would produce no output. If we
denote the short-run shutdown price as P0 (which may or may not be a price of zero), then
the extra profits available from facing a price of P1 are defined to be producer surplus:

producer surplus ¼ ΠðP1,…Þ � ΠðP0,…Þ ¼ ∫
P1

P0

qðPÞ dP . (11.31)

This is shown as area P1BP0 in Figure 11.4. Hence we have the following formal definition.

D E F I N I T I O N
Producer surplus. Producer surplus is the extra return that producers earn by making
transactions at the market price over and above what they would earn if nothing were
produced. It is illustrated by the size of the area below the market price and above the supply
curve.

In this definition we have made no distinction between the short run and the long run,
though our development so far has involved only short-run analysis. In the next chapter we
will see that the same definition can serve dual duty by describing producer surplus in the long

FIGURE 11.4 Changes in Short-Run Producer Surplus Measure Firm Profits

If price rises from P1 to P2 then the increase in the firm’s profits is given by area P2ABP1. At a price of
P1, the firm earns short-run producer surplus given by area P0BP1. Thismeasures the increase in short-
run profits for the firm when it produces q1 rather than shutting down when price is P0 or below.

Market
price

P2

qq1

SMC

q2

P1

P0

A

B
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run, so using this generic definition works for both concepts. Of course, as we will show, the
meaning of long-run producer surplus is quite different from what we have studied here.

One more aspect of short-run producer surplus should be pointed out. Because the firm
produces no output at its shutdown price, we know that �ðP0,…Þ ¼ �vk1; that is, profits at
the shutdown price are solely made up of losses of all fixed costs. Therefore,

producer surplus ¼ ΠðP1,…Þ � ΠðP0,…Þ
¼ ΠðP1,…Þ � ð�vk1Þ ¼ ΠðP1,…Þ þ vk1. (11.32)

That is, producer surplus is given by current profits being earned plus short-run fixed costs.
Further manipulation shows that magnitude can also be expressed as

producer surplus ¼ ΠðP1,…Þ � ΠðP0,…Þ
¼ P1q1 � vk1 � wl1 þ vk1 ¼ P1q1 � wl1. (11.33)

In words, a firm’s short-run producer surplus is given by the extent to which its revenues
exceed its variable costs—this is, indeed, what the firm gains by producing in the short run
rather than shutting down and producing nothing.

EXAMPLE 11.4 A Short-Run Profit Function

These various uses of the profit function can be illustrated with the Cobb-Douglas produc-
tion function we have been using. Since q ¼ kαlβ and since we treat capital as fixed at k1 in the
short run, it follows that profits are

π ¼ Pkα1l
β � vk1 � wl . (11.34)

To find the profit function we use the first-order conditions for a maximum to eliminate l
from this expression:

∂π
∂l

¼ βPkα1l
β�1 � w ¼ 0 so l ¼ w

βPkα1

� �1=ðβ�1Þ
. (11.35)

We can simplify the process of substituting this back into the profit equation by letting
A ¼ ðw=βPkα1Þ. Making use of this shortcut, we have

ΠðP , v,w, k1Þ ¼ Pkα1A
β=ðβ�1Þ � vk1 � wA1=ðβ�1Þ

¼ wA1=ðβ�1Þ Pkα1
A
w

� 1
� �

� vk1

¼ 1� β

ββ=ðβ�1Þw
β=ðβ�1ÞP1=ð1�βÞkα=ð1�βÞ

1 � vk1. (11.36)

Though admittedly messy, this solution is what was promised—the firm’s maximal profits
are expressed as a function of only the prices it faces and its technology. Notice that the
firm’s fixed costs ðvk1Þ enter this expression in a simple linear way. The prices the firm faces
determine the extent to which revenues exceed variable costs; then fixed costs are subtracted
to obtain the final profit number.

Because it is always wise to check that one’s algebra is correct, let’s try out the numerical
example we have been using. With α ¼ β ¼ 0.5, v ¼ 3, w ¼ 12, andk1 ¼ 80, we know that
at a price of P ¼ 12 the firm will produce 40 units of output and use labor input of l ¼ 20.
Hence profits will be π ¼ R � C ¼ 12 ⋅ 40� 3 ⋅ 80� 12 ⋅ 20 ¼ 0. The firm will just break
even at a price of P ¼ 12. Using the profit function yields

ΠðP , v,w, k1Þ ¼ Πð12,3,12,80Þ ¼ 0:25 ⋅12�1 ⋅122 ⋅80� 3 ⋅80 ¼ 0. (11.37)

Thus, at a price of 12, the firm earns 240 in profits on its variable costs, and these are
precisely offset by fixed costs in arriving at the final total. With a higher price for its output,

(continued)
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EXAMPLE 11.4 CONTINUED

the firm earns positive profits. If the price falls below 12, however, the firm incurs short-run
losses.12

Hotelling’s lemma. We can use the profit function in Equation 11.36 together with the
envelope theorem to derive this firm’s short-run supply function:

qðP , v,w, k1Þ ¼
∂Π
∂P

¼ w
β

� �β=ðβ�1Þ
kα=ð1�βÞ
1 Pβ=ð1�βÞ, (11.38)

which is precisely the short-run supply function that we calculated in Example 11.3 (see
Equation 11.20).

Producer surplus. We can also use the supply function to calculate the firm’s short-run
producer surplus. To do so, we again return to our numerical example: α ¼ β ¼ 0.5, v ¼ 3,
w ¼ 12, andk1 ¼ 80. With these parameters, the short-run supply relationship is q ¼ 10P=3
and the shutdown price is zero. Hence, at a price of P ¼ 12, producer surplus is

producer surplus ¼ ∫
12

0

10P
3

dP ¼ 10P2

6

�����
12

0

¼ 240. (11.39)

This precisely equals short-run profits at a price of 12 ðπ ¼ 0Þ plus short-run fixed costs
ð¼ vk1 ¼ 3 ⋅ 80 ¼ 240Þ. If price were to rise to (say) 15 then producer surplus would
increase to 375, which would still consist of 240 in fixed costs plus total profits at the higher
price ð� ¼ 135Þ.

QUERY: How is the amount of short-run producer surplus here affected by changes in the
rental rate for capital, v? How is it affected by changes in the wage, w?

PROFIT MAXIMIZATION AND INPUT DEMAND

Thus far, we have treated the firm’s decision problem as one of choosing a profit-maximizing
level of output. But our discussion throughout has made clear that the firm’s output is, in
fact, determined by the inputs it chooses to employ, a relationship that is summarized by the
production function q ¼ f ðk, lÞ. Consequently, the firm’s economic profits can also be
expressed as a function of only the inputs it employs:

πðk, lÞ ¼ Pq �CðqÞ ¼ Pf ðk, lÞ � ðvk þ wlÞ. (11.40)

Viewed in this way, the profit-maximizing firm’s decision problem becomes one of choos-
ing the appropriate levels of capital and labor input.13 The first-order conditions for a
maximum are

∂π
∂k

¼ P
∂f
∂k

� v ¼ 0,

∂π
∂l

¼ P
∂f
∂l

� w ¼ 0.
(11.41)

12In Table 10.2 we showed that if q ¼ 40 then SAC ¼ 12. Hence zero profits are also indicated by P ¼ 12 ¼ SAC.
13Throughout our discussion in this section, we assume that the firm is a price taker so the prices of its output and its inputs
can be treated as fixed parameters. Results can be generalized fairly easily in the case where prices depend on quantity.
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These conditions make the intuitively appealing point that a profit-maximizing firm should
hire any input up to the point at which the input’s marginal contribution to revenue is equal
to the marginal cost of hiring the input. Because the firm is assumed to be a price taker in its
hiring, the marginal cost of hiring any input is equal to its market price. The input’s marginal
contribution to revenue is given by the extra output it produces (the marginal product)
times that good’s market price. This demand concept is given a special name as follows.

D E F I N I T I O N
Marginal revenue product. The marginal revenue product is the extra revenue a firm
receives when it employs one more unit of an input. In the price-taking14 case, MRPl ¼
Pfl and MRPk ¼ Pfk.

Hence, profit maximization requires that the firm hire each input up to the point at which its
marginal revenue product is equal to its market price. Notice also that the profit-maximizing
Equations 11.41 also imply cost minimization because RTS ¼ fl=fk ¼ w=v.

Second-order conditions
Because the profit function in Equation 11.40 depends on two variables, k and l , the second-
order conditions for a profit maximum are somewhat more complex than in the single-
variable case we examined earlier. In Chapter 2 we showed that, to ensure a true maximum,
the profit function must be concave. That is,

πkk ¼ fkk < 0, πll ¼ fll < 0, (11.42)

and

πkkπll � π2
kl ¼ fkk fll � f 2

kl > 0.
Therefore, concavity of the profit relationship amounts to requiring that the production
function itself be concave. Notice that diminishing marginal productivity for each input is not
sufficient to ensure increasing marginal costs. Expanding output usually requires the firm to
use more capital and more labor. Thus we must also ensure that increases in capital input do
not raise the marginal productivity of labor (and thereby reduce marginal cost) by a large
enough amount to reverse the effect of diminishing marginal productivity of labor itself. The
second part of Equation 11.42 therefore requires that such cross-productivity effects be
relatively small—that they be dominated by diminishing marginal productivities of the inputs.
If these conditions are satisfied, thenmarginal costs will be increasing at the profit-maximizing
choices for k and l , and the first-order conditions will represent a local maximum.

Input demand functions
In principle, the first-order conditions for hiring inputs in a profit-maximizing way can be
manipulated to yield input demand functions that show how hiring depends on the prices
that the firm faces. We will denote these demand functions by

capital demand ¼ kðP , v,wÞ,
labor demand ¼ lðP , v,wÞ. (11.43)

Notice that, contrary to the input demand concepts discussed in Chapter 10, these demand
functions are “unconditional”—that is, they implicitly permit the firm to adjust its output to
changing prices. Hence, these demand functions provide a more complete picture of how
prices affect input demand than did the contingent demand functions introduced in
Chapter 10. We have already shown that these input demand functions can also be derived
from the profit function through differentiation; in Example 11.5, we show that process

14If the firm is not a price taker in the output market, then this definition is generalized by using marginal revenue in place
of price. That is, MRPl ¼ ∂R=∂l ¼ ∂R=∂q ⋅ ∂q=∂l ¼ MR ⋅MPl . A similiar derivation holds for capital input.
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explicitly. First, however, we will explore how changes in the price of an input might be
expected to affect the demand for it. To simplify matters we look only at labor demand, but
the analysis of the demand for any other input would be the same. In general, we conclude
that the direction of this effect is unambiguous in all cases—that is, ∂l=∂w � 0 no matter
how many inputs there are. To develop some intuition for this result, we begin with some
simple cases.

Single-input case
One reason for expecting ∂l=∂w to be negative is based on the presumption that the marginal
physical product of labor declines as the quantity of labor employed increases. A decrease in w
means that more labor must be hired to bring about the equality w ¼ P ⋅MPl : A fall in w
must be met by a fall inMPl (because P is fixed as required by the ceteris paribus assumption),
and this can be brought about by increasing l . That this argument is strictly correct for the
case of one input can be shown as follows. Write the total differential of the profit-maximizing
Equation 11.41 as

dw ¼ P ⋅
∂fl
∂l ⋅

∂l
∂w ⋅ dw

or
∂l
∂w

¼ 1
P ⋅ fll

� 0, (11.44)

where the final inequality holds because the marginal productivity of labor is assumed to be
diminishing ð fll � 0Þ. Hence we have shown that, at least in the single-input case, a ceteris
paribus increase in the wage will cause less labor to be hired.

Two-input case
For the case of two (or more) inputs, the story is more complex. The assumption of a
diminishing marginal physical product of labor can be misleading here. If w falls, there will
not only be a change in l but also a change in k as a new cost-minimizing combination of
inputs is chosen. When k changes, the entire fl function changes (labor now has a different
amount of capital to work with), and the simple argument used previously cannot be made.
First we will use a graphic approach to suggest why, even in the two-input case, ∂l=∂w must
be negative. A more precise, mathematical analysis is presented in the next section.

Substitution effect
In some ways, analyzing the two-input case is similar to the analysis of the individual’s
response to a change in the price of a good that was presented in Chapter 5. When w falls,
we can decompose the total effect on the quantity of l hired into two components. The first
of these components is called the substitution effect. If q is held constant at q1, then there
will be a tendency to substitute l for k in the production process. This effect is illustrated in
Figure 11.5a. Because the condition for minimizing the cost of producing q1 requires that
RTS ¼ w=v, a fall in w will necessitate a movement from input combination A to combina-
tion B. And because the isoquants exhibit a diminishingRTS, it is clear from the diagram that
this substitution effect must be negative. A decrease in w will cause an increase in labor hired if
output is held constant.

Output effect
It is not correct, however, to hold output constant. It is when we consider a change in q (the
output effect) that the analogy to the individual’s utility-maximization problem breaks down.
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Consumers have budget constraints, but firms do not. Firms produce as much as the available
demand allows. To investigate what happens to the quantity of output produced, we must
investigate the firm’s profit-maximizing output decision. A change in w, because it changes
relative input costs, will shift the firm’s expansion path. Consequently, all the firm’s cost curves
will be shifted, and probably some output level other than q1 will be chosen. Figure 11.5b
shows what might be considered the “normal” case. There the fall in w causes MC to shift
downward to MC 0. Consequently, the profit-maximizing level of output rises from q1 to q2.
The profit-maximizing condition (P ¼ MC) is now satisfied at a higher level of output.
Returning to Figure 11.5a, this increase in output will cause even more l to be demanded as
long as l is not an inferior input (see below). The result of both the substitution and output
effects will be to move the input choice to point C on the firm’s isoquant map. Both effects
work to increase the quantity of labor hired in response to a decrease in the real wage.

The analysis provided in Figure 11.5 assumed that the market price (or marginal revenue,
if this does not equal price) of the good being produced remained constant. This would be an
appropriate assumption if only one firm in an industry experienced a fall in unit labor costs.
However, if the decline were industrywide then a slightly different analysis would be re-
quired. In that case all firms’ marginal cost curves would shift outward, and hence the
industry supply curve would shift also. Assuming that output demand is downward sloping,
this will lead to a decline in product price. Output for the industry and for the typical firm will
still increase and (as before) more labor will be hired, but the precise cause of the output effect
is different (see Problem 11.11).

Cross-price effects
We have shown that, at least in simple cases, ∂l=∂w is unambiguously negative; substitution
and output effects cause more labor to be hired when the wage rate falls. From Figure 11.5 it
should be clear that no definite statement can be made about how capital usage responds to

FIGURE 11.5 The Substitution and Output Effects of a Decrease in the Price of a Factor

When the price of labor falls, two analytically different effects come into play. One of these, the
substitution effect, would cause more labor to be purchased if output were held constant. This is
shown as a movement from point A to point B in (a). At point B, the cost-minimizing condition
ðRTS ¼ w=vÞ is satisfied for the new, lower w. This change in w=v will also shift the firm’s expansion
path and its marginal cost curve. A normal situation might be for theMC curve to shift downward in
response to a decrease in w as shown in (b). With this new curve ðMC 0Þ a higher level of output ðq2Þ
will be chosen. Consequently, the hiring of labor will increase (to l2), also from this output effect.
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the wage change. That is, the sign of ∂k=∂w is indeterminate. In the simple two-input case,
a fall in the wage will cause a substitution away from capital; that is, less capital will be used
to produce a given output level. However, the output effect will cause more capital to be
demanded as part of the firm’s increased production plan. Thus substitution and output
effects in this case work in opposite directions, and no definite conclusion about the sign of
∂k=∂w is possible.

A summary of substitution and output effects
The results of this discussion can be summarized by the following principle.

O P T I M I Z A T I O N

P R I N C I P L E

Substitution and output effects in input demand. When the price of an input falls, two
effects cause the quantity demanded of that input to rise:

1. the substitution effect causes any given output level to be produced using more of the
input; and

2. the fall in costs causes more of the good to be sold, thereby creating an additional
output effect that increases demand for the input.

For a rise in input price, both substitution and output effects cause the quantity of an input
demanded to decline.

We now provide a more precise development of these concepts using a mathematical
approach to the analysis.

A mathematical development
Our mathematical development of the substitution and output effects that arise from the
change in an input price follows the method we used to study the effect of price changes in
consumer theory. The final result is a Slutsky-style equation that resembles the one we
derived in Chapter 5. However, the ambiguity stemming from Giffen’s paradox in the theory
of consumption demand does not occur here.

We start with a reminder that we have two concepts of demand for any input (say, labor):
(1) the conditional demand for labor, denoted by l cðv,w, qÞ; and (2) the unconditional
demand for labor, which is denoted by lðP , v,wÞ. At the profit-maximizing choice for labor
input, these two concepts agree about the amount of labor hired. The two concepts also
agree on the level of output produced (which is a function of all the prices):

lðP , v,wÞ ¼ lcðv,w, qÞ ¼ lcðv,w, qðP , v,wÞÞ. (11.45)

Differentiation of this expression with respect to the wage (and holding the other prices
constant) yields

∂lðP , v,wÞ
∂w

¼ ∂lcðv,w, qÞ
∂w

þ ∂lcðv,w, qÞ
∂q ⋅

∂qðP , v,wÞ
∂w

. (11.46)

So, the effect of a change in the wage on the demand for labor is the sum of two components: a
substitution effect in which output is held constant; and an output effect in which the wage
change has its effect through changing the quantity of output that the firm opts to produce.
The first of these effects is clearly negative—because the production function is quasi-concave
(i.e., it has convex isoquants), the output-contingent demand for labor must be negatively
sloped. Figure 11.5b provides an intuitive illustration of why the output effect in Equa-
tion 11.46 is negative, but it can hardly be called a proof. The particular complicating factor is
the possibility that the input under consideration (here, labor) may be inferior. Perhaps oddly,
inferior inputs also have negative output effects, but for rather arcane reasons that are best
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relegated to a footnote.15 The bottom line, however, is that Giffen’s paradox cannot occur
in the theory of the firm’s demand for inputs: input demand functions are unambiguously
downward sloping. In this case the theory of profit maximization imposesmore restrictions on
what might happen than does the theory of utility maximization. In Example 11.5 we show
how decomposing input demand into its substitution and output components can yield useful
insights into how changes in input prices actually affect firms.

EXAMPLE 11.5 Decomposing Input Demand into Substitution and Output Components

To study input demand we need to start with a production function that has two features:
(1) the function must permit capital-labor substitution (because substitution is an important
part of the story); and (2) the production function must exhibit increasing marginal costs (so
that the second-order conditions for profit maximization are satisfied). One function that
satisfies these conditions is a three-input Cobb-Douglas function when one of the inputs is
held fixed. So, let q ¼ f ðk, l , gÞ ¼ k0.25l0.25g0.5, where k and l are the familiar capital and
labor inputs and g is a third input (size of the factory) that is held fixed at g ¼ 16 (square
meters?) for all of our analysis. The short-run production function is therefore q ¼ 4k0.25l0.25.
We assume that the factory can be rented at a cost of r per square meter per period. To study
the demand for (say) labor input, we need both the total cost function and the profit function
implied by this production function. Mercifully, your author has computed these functions
for you as

C v,w, r , qð Þ ¼ q2v0.5w0.5

8
þ 16r (11.47)

and

ΠðP , v,w, rÞ ¼ 2P2v�0.5w�0.5 � 16r . (11.48)

As expected, the costs of the fixed input ð gÞ enter as a constant in these equations, and these
costs will play very little role in our analysis.

Envelope Results

Labor-demand relationships can be derived from both of these functions through
differentiation:

l cðv,w, r , qÞ ¼ ∂C
∂w

¼ q2v0.5w�0.5

16
(11.49)

and

lðP , v,w, rÞ ¼ � ∂Π
∂w

¼ P2v�0.5w�1.5. (11.50)

These functions already suggest that a change in the wage has a larger effect on total labor
demand than it does on contingent labor demand because the exponent of w is more
negative in the total demand equation. That is, the output effect must also be playing a role
here. To see that directly, we turn to some numbers.

(continued)

15In words, an increase in the price of an inferior reduces marginal cost and thereby increases output. But when output
increases, less of the inferior input is hired. Hence the end result is a decrease in quantity demanded in response to an
increase in price. A formal proof makes extensive use of envelope relationships:

output effect ¼ ∂l c

∂q ⋅
∂q
∂w

¼ ∂lc

∂q ⋅
�∂l
∂P

¼ � ∂lc

∂q

� �2

⋅
∂q
∂P

.

Because the second-order conditions for profit maximization require that ∂q=∂P > 0, the output effect is clearly negative.
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EXAMPLE 11.5 CONTINUED

Numerical example. Let’s start again with the assumed values that we have been using in
several previous examples: v ¼ 3, w ¼ 12, andP ¼ 60. Let’s first calculate what output the
firm will choose in this situation. To do so, we need its supply function:

qðP , v,w, rÞ ¼ ∂Π
∂P

¼ 4Pv�0.5w�0.5. (11.51)

With this function and the prices we have chosen, the firm’s profit-maximizing output level
is (surprise) q ¼ 40. With these prices and an output level of 40, both of the demand
functions predict that the firm will hire l ¼ 50. Because the RTS here is given by k=l , we also
know that k=l ¼ w=v, so at these prices k ¼ 200.

Suppose now that the wage rate rises to w ¼ 27 but that the other prices remain un-
changed. The firm’s supply function (Equation 11.51) shows that it will now produce
q ¼ 26.67. The rise in the wage shifts the firm’s marginal cost curve upward and, with a
constant output price, this causes the firm to produce less. To produce this output, either of
the labor-demand functions can be used to show that the firm will hire l ¼ 14.8. Hiring of
capital will also fall to k ¼ 133.3 because of the large reduction in output.

We can decompose the fall in labor hiring from l ¼ 50 to l ¼ 14.8 into substitution and
output effects by using the contingent demand function. If the firm had continued to
produce q ¼ 40 even though the wage rose, Equation 11.49 shows that it would have
used l ¼ 33.33. Capital input would have increased to k ¼ 300. Because we are holding
output constant at its initial level of q ¼ 40, these changes represent the firm’s substitution
effects in response to the higher wage.

The decline in output needed to restore profit maximization causes the firm to cut back
on its output. In doing so it substantially reduces its use of both inputs. Notice in particular
that, in this example, the rise in the wage not only caused labor usage to decline sharply but
also caused capital usage to fall because of the large output effect.

QUERY: How would the calculations in this problem be affected if all firms had experienced
the rise in wages? Would the decline in labor (and capital) demand be greater or smaller than
found here?

SUMMARY

In this chapter we studied the supply decision of a profit-
maximizing firm. Our general goal was to show how such a
firm responds to price signals from the marketplace. In ad-
dressing that question, we developed a number of analytical
results.

• In order to maximize profits, the firm should choose to
produce that output level for which marginal revenue
(the revenue from selling one more unit) is equal to
marginal cost (the cost of producing one more unit).

• If a firm is a price taker then its output decisions do not
affect the price of its output, so marginal revenue is given
by this price. If the firm faces a downward-sloping de-
mand for its output, however, then it can sell more only
at a lower price. In this case marginal revenue will be less
than price and may even be negative.

• Marginal revenue and the price elasticity of demand are
related by the formula

MR ¼ P 1þ 1
eq, p

 !
,

where P is the market price of the firm’s output and eq, p
is the price elasticity of demand for its product.

• The supply curve for a price-taking, profit-maximizing
firm is given by the positively sloped portion of its mar-
ginal cost curve above the point of minimum average
variable cost (AVC). If price falls below minimum AVC,
the firm’s profit-maximizing choice is to shut down and
produce nothing.

• The firm’s reactions to changes in the various prices it
faces can be studied through use of its profit function,
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PROBLEMS

11.1
John’s Lawn Moving Service is a small business that acts as a price taker (i.e., MR ¼ P). The prevailing
market price of lawn mowing is $20 per acre. John’s costs are given by

total cost ¼ 0.1q2 þ 10q þ 50,

where q ¼ the number of acres John chooses to cut a day.

a. How many acres should John choose to cut in order to maximize profit?

b. Calculate John’s maximum daily profit.

c. Graph these results and label John’s supply curve.

11.2
Would a lump-sum profits tax affect the profit-maximizing quantity of output? How about a propor-
tional tax on profits? How about a tax assessed on each unit of output? How about a tax on labor input?

11.3
This problem concerns the relationship between demand and marginal revenue curves for a few
functional forms.

a. Show that, for a linear demand curve, the marginal revenue curve bisects the distance between
the vertical axis and the demand curve for any price.

b. Show that, for any linear demand curve, the vertical distance between the demand and marginal
revenue curves is �1=b ⋅ q, where b ð< 0Þ is the slope of the demand curve.

c. Show that, for a constant elasticity demand curve of the form q ¼ aPb , the vertical distance
between the demand and marginal revenue curves is a constant ratio of the height of the
demand curve, with this constant depending on the price elasticity of demand.

d. Show that, for any downward-sloping demand curve, the vertical distance between the demand
and marginal revenue curves at any point can be found by using a linear approximation to the
demand curve at that point and applying the procedure described in part (b).

e. Graph the results of parts (a)–(d) of this problem.

�ðP , v,wÞ. That function shows the maximum profits
that the firm can achieve given the price for its output,
the prices of its input, and its production technology.
The profit function yields particularly useful envelope
results. Differentiation with respect to market price
yields the supply function while differentiation with re-
spect to any input price yields (the negative of) the
demand function for that input.

• Short-run changes in market price result in changes to
the firm’s short-run profitability. These can be measured
graphically by changes in the size of producer surplus.

The profit function can also be used to calculate changes
in producer surplus.

• Profit maximization provides a theory of the firm’s de-
rived demand for inputs. The firm will hire any input up
to the point at which its marginal revenue product is just
equal to its per-unit market price. Increases in the price
of an input will induce substitution and output effects
that cause the firm to reduce hiring of that input.

Chapter 11 Profit Maximization 381



11.4
Universal Widget produces high-quality widgets at its plant in Gulch, Nevada, for sale throughout the
world. The cost function for total widget production ðqÞ is given by

total cost ¼ 0.25q2.

Widgets are demanded only in Australia (where the demand curve is given by q ¼ 100� 2P) and
Lapland (where the demand curve is given by q ¼ 100� 4P). If Universal Widget can control the
quantities supplied to each market, how many should it sell in each location in order to maximize total
profits? What price will be charged in each location?

11.5
The production function for a firm in the business of calculator assembly is given by

q ¼ 2
ffiffi
l

p
,

where q denotes finished calculator output and l denotes hours of labor input. The firm is a price taker
both for calculators (which sell for P) and for workers (which can be hired at a wage rate of w
per hour).

a. What is the total cost function for this firm?

b. What is the profit function for this firm?

c. What is the supply function for assembled calculators ½qðP ,wÞ�?
d. What is this firm’s demand for labor function ½lðP ,wÞ�?
e. Describe intuitively why these functions have the form they do.

11.6
The market for high-quality caviar is dependent on the weather. If the weather is good, there are many
fancy parties and caviar sells for $30 per pound. In bad weather it sells for only $20 per pound. Caviar
produced one week will not keep until the next week. A small caviar producer has a cost function
given by

C ¼ 0:5q2 þ 5q þ 100,

where q is weekly caviar production. Production decisions must be made before the weather (and the
price of caviar) is known, but it is known that good weather and bad weather each occur with a
probability of 0.5.

a. How much caviar should this firm produce if it wishes to maximize the expected value of its
profits?

b. Suppose the owner of this firm has a utility function of the form

utility ¼ ffiffiffiffi
π

p
,

where π is weekly profits. What is the expected utility associated with the output strategy
defined in part (a)?

c. Can this firm owner obtain a higher utility of profits by producing some output other than that
specified in parts (a) and (b)? Explain.

d. Suppose this firm could predict next week’s price but could not influence that price. What
strategy would maximize expected profits in this case? What would expected profits be?
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11.7
The Acme Heavy Equipment School teaches students how to drive construction machinery. The
number of students that the school can educate per week is given by q ¼ 10 minðk, lÞr , where k is the
number of backhoes the firm rents per week, l is the number of instructors hired each week, and γ is a
parameter indicating the returns to scale in this production function.

a. Explain why development of a profit-maximizing model here requires 0 < γ < 1.

b. Suppposing γ ¼ 0.5, calculate the firm’s total cost function and profit function.

c. If v ¼ 1000, w ¼ 500, and P ¼ 600, how many students will Acme serve and what are its
profits?

d. If the price students are willing to pay rises to P ¼ 900, how much will profits change?

e. Graph Acme’s supply curve for student slots, and show that the increase in profits calculated in
part (d) can be plotted on that graph.

11.8
How would you expect an increase in output price, P , to affect the demand for capital and labor inputs?

a. Explain graphically why, if neither input is inferior, it seems clear that a rise in P must not reduce
the demand for either factor.

b. Show that the graphical presumption from part (a) is demonstrated by the input demand
functions that can be derived in the Cobb-Douglas case.

c. Use the profit function to show how the presence of inferior inputs would lead to ambiguity in
the effect of P on input demand.

Analytical Problems
11.9 A CES profit function
With aCES production function of the form q ¼ ðkρ þ lρÞγ=ρ a whole lot of algebra is needed to compute
the profit function as�ðP , v,wÞ ¼ KP1=ð1�γÞðv1�σ þ w1�σÞγ=ð1�σÞðγ�1Þ, where σ ¼ 1=ð1� ρÞ andK is a
constant.

a. If you are a glutton for punishment (or if your instructor is), prove that the profit function
takes this form. Perhaps the easiest way to do so is to start from the CES cost function in
Example 10.2.

b. Explain why this profit function provides a reasonable representation of a firm’s behavior only
for 0 < γ < 1.

c. Explain the role of the elasticity of substitution ðσÞ in this profit function.

d. What is the supply function in this case? How does σ determine the extent to which that
function shifts when input prices change?

e. Derive the input demand functions in this case. How are these functions affected by the size of σ?

11.10 Some envelope results
Young’s theorem can be used in combination with the envelope results in this chapter to derive some
useful results.

a. Show that ∂lðP , v,wÞ=∂v ¼ ∂kðP , v,wÞ=∂w. Interpret this result using subtitution and output
effects.

b. Use the result from part (a) to show how a unit tax on labor would be expected to affect capital
input.

c. Show that ∂q=∂w ¼ �∂l=∂P . Interpret this result.

d. Use the result from part (c) to discuss how a unit tax on labor input would affect quantity
supplied.
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11.11 More on the derived demand with two inputs
The demand for any input depends ultimately on the demand for the goods that input produces. This
can be shown most explicitly by deriving an entire industry’s demand for inputs. To do so, we assume
that an industry produces a homogeneous good, Q , under constant returns to scale using only capital
and labor. The demand function for Q is given by Q ¼ DðPÞ, where P is the market price of the good
being produced. Because of the constant returns-to-scale assumption, P ¼ MC ¼ AC . Throughout
this problem let Cðv,w, 1Þ be the firm’s unit cost function.

a. Explain why the total industry demands for capital and labor are given by K ¼ QCv and
L ¼ QCw.

b. Show that
∂K
∂v

¼ QCvv þD 0C2
v and

∂L
∂w

¼ QCww þD 0C2
w .

c. Prove that

Cvv ¼
�w
v

Cvw and Cww ¼ �v
w

Cvw .

d. Use the results from parts (b) and (c) together with the elasticity of substitution defined as
σ ¼ CCvw=CvCw to show that

∂K
∂v

¼ wL
Q ⋅

σK
vC

þ D 0K2

Q 2 and
∂L
∂w

¼ vK
Q ⋅

σL
wC

þ D 0L2

Q 2 .

e. Convert the derivatives in part (d) into elasticities to show that

eK , v ¼ �sLσþ sK eQ ,P and eL,w ¼ �sKσþ sLeQ ,P ,

where eQ ,P is the price elasticity of demand for the product being produced.

f. Discuss the importance of the results in part (e) using the notions of substitution and output
effects from Chapter 11.

Note: The notion that the elasticity of the derived demand for an input depends on the price elasticity of
demand for the output being produced was first suggested by Alfred Marshall. The proof given here
follows that in D. Hamermesh, Labor Demand (Princeton, NJ: Princeton University Press, 1993).

11.12 Cross-price effects in input demand
With two inputs, cross-price effects on input demand can be easily calculated using the procedure
outlined in Problem 11.11.

a. Use steps (b), (d), and (e) from Problem 11.11 to show that

eK ,w ¼ sLðσþ eQ ,P Þ and eL, v ¼ sK ðσþ eQ ,P Þ.

b. Describe intuitively why input shares appear somewhat differently in the demand elasticities in
part (e) of Problem 11.11 than they do in part (a) of this problem.

c. The expression computed in part (a) can be easily generalized to the many-input case as
exi ,wj

¼ sj ðAi, j þ eQ ,P Þ, where Ai, j is the Allen elasticity of substitution defined in Problem
10.12. For reasons described in Problems 10.11 and 10.12, this approach to input demand
in the multi-input case is generally inferior to using Morishima elasticities. One oddity
might be mentioned, however. For the case i ¼ j this expression seems to say that eL,w ¼
sLðAL,L þ eQ ,P Þ, and if we jumped to the conclusion that AL,L ¼ σ in the two-input case
then this would contradict the result from Problem 11.11. You can resolve this paradox
by using the definitions from Problem 10.12 to show that, with two inputs, AL,L ¼
ð�sK=sLÞ ⋅AK ,L ¼ ð�sK=sLÞ ⋅σ and so there is no disagreement.
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E X T E N S I O N S

Applications of the Profit Function

In Chapter 11 we introduced the profit function. That
function summarizes the firm’s “bottom line” as it
depends on the prices it faces for its outputs and
inputs. In these extensions we show how some of the
properties of the profit function have been used to
assess important empirical and theoretical questions.

E11.1 Convexity and price stabilization

Convexity of the profit function implies that a firm will
generally prefer a fluctuating output price to one that is
stabilized (say, through government intervention) at
itsmean value. The result runs contrary to the direction
of economic policy in many less developed countries,
which tends to stress the desirability of stabilization of
commodity prices. Several factors may account for this
seeming paradox. First, many plans to “stabilize” com-
modity prices are in reality plans to raise the average
level of these prices. Cartels of producers often have
this as their primary goal, for example. Second, the
convexity result applies for a single price-taking firm.
From the perspective of the entire market, total reven-
ues from stabilized or fluctuating prices will depend on
the nature of the demand for the product.1 A third
complication that must be addressed in assessing price
stabilization schemes is firms’ expectations of future
prices. When commodities can be stored, optimal pro-
duction decisions in the presence of price stabilization
schemes can be quite complex. Finally, the purpose of
price stabilization schemes may in some situations be
focused more on reducing risks for the consumers of
basic commodities (such as food) than on the welfare
of producers. Still, this fundamental property of the
profit function suggests caution in devising price stabi-
lization schemes that have desirable long-run effects on
producers. For an extended theoretical analysis of these
issues, see Newbury and Stiglitz (1981).

E11.2 Producer surplus and the
short-run costs of disease

Disease episodes can severely disrupt markets, leading
to short-run losses in producer and consumer surplus.

For firms, these losses can be computed as the short-
run losses of profits from temporarily lower prices for
their output or from the temporarily higher input
prices they must pay. A particular extensive set of
such calculations is provided byHarrington, Krupnick,
and Spofford (1991) in their detailed study of a giardi-
asis outbreak in Pennsylvania in 1983. Although con-
sumers suffered most of the losses associated with this
outbreak, the authors also calculate substantial losses
for restaurants and bars in the immediate area. Such
losses arose both from reduced business for these firms
and from the temporary need to use bottled water and
other high-cost inputs in their operations. Quantitative
calculations of these losses are based on profit functions
described by the authors.

E11.3 Profit functions and productivity
measurement

In Chapter 9 we showed that total factor productivity
growth is usually measured as

GA ¼ Gq � skGk � slGl ,

where

Gx ¼ dx=dt
x

¼ d ln x
dt

and where sk and sl are the shares of capital and labor in
total costs, respectively. One difficulty withmaking this
calculation is that it requires measuring changes in
input usage over time—a measurement that can be
especially difficult for capital. The profit function pro-
vides an alternative way of measuring the same phe-
nomenon without estimating input usage directly. To
understand the logic of this approach, consider the
production functionwewish to examine, q ¼ f ðk, l , tÞ.
We want to know how output would change over time
if input levels were held constant. That is, we wish to
measure ∂ðln qÞ=∂t ¼ ft=f . Notice the use of partial
differentiation in this expression—in words, wewant to
know the proportionate change in f over time when
other inputs are held constant. If the production func-
tion exhibits constant returns to scale and if the firm is a
price taker for both inputs and its output, it is fairly easy2

to show that this partial derivative is the measure of
1Specifically, for a constant elasticity demand function, total revenue will
be a concave function of price if demand is inelastic but convex if demand
is elastic. Hence, in the elastic case, producers will obtain higher total
revenues from a fluctuating price than from a price stabilized at its mean
value.

2The proof proceeds by differentiating the production function logarith-
mically with respect to time asGq ¼ dðln qÞ=dt ¼ eq, kGk þ eq, lGl þ ft=f
and then recognizing that, with constant returns to scale and price-taking
behavior, eq, k ¼ sk and eq, l ¼ sl .
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changing total factor productivity we want—that
is, GA ¼ ft=f . Now consider the profit function,
�ðP , v,w, tÞ. By definition, profits are given by

π ¼ Pq � vk � wl ¼ Pf � vk � wl ,
so

∂ lnΠ
∂t

¼ Pft
Π

and thus

GA ¼ ft
f
¼ Π

Pf ⋅
∂ lnΠ
∂t

¼ Π
Pq ⋅

∂ lnΠ
∂t

. (i)

So, in this special case, changes in total factor pro-
ductivity can be inferred from the share of profits in
total revenue and the time derivative of the log of the
profit function. But this conclusion can be readily
generalized to cases of nonconstant returns to scale
and even to firms that produce multiple outputs (see
e.g. Kumbhakar, 2002). Hence, for situations where
input and output prices are more readily available
than input quantities, using the profit function is an
attractive way to proceed.

Three examples of this use for the profit function
might be mentioned. Karagiannis and Mergos (2000)
reassess the major increases in total factor productivity
that have been experienced by U.S. agriculture during
the past 50 years using the profit function approach.
They find results that are broadly consistent with those
using more conventional measures. Huang (2000)
adopts the same approach in a study of Taiwanese

banking and finds significant increases in productivity
that could not be detected using other methods. Fi-
nally, Coelli and Perelman (2000) use a modified
profit function approach to measure the relative effi-
ciency of European railroads. Perhaps not surprisingly,
they find that Dutch railroads are the most efficient in
Europe whereas those in Italy are the least efficient.

References
Coelli, T., and S. Perelman. “Technical Efficiency of

European Railways: A Distance Function Approach.”
Applied Economics (December 2000): 1967–76.

Harrington, W. A., J. Krupnick, and W. O. Spofford.
Economics and Episodic Disease: The Benefits of Prevent-
ing a Giardiasis Outbreak. Baltimore: Johns Hopkins
University Press, 1991.

Huang, T. “Estimating X-Efficiency in Taiwanese Banking
Using a Translog Shadow Profit Function.” Journal of
Productivity Analysis (November 2000): 225–45.

Karagiannis, G., and G. J. Mergos. “Total Factor Produc-
tivity Growth and Technical Change in a Profit Function
Framework.” Journal of Productivity Analysis (July
2000): 31–51.

Kumbhakar, S. “Productivity Measurement: A Profit
Function Approach.” Applied Economics Letters (April
2002): 331–34.

Newbury, D. M. G., and J. E. Stiglitz. The Theory of
Commodity Price Stabilization. Oxford: Oxford Univer-
sity Press, 1981.

Chapter 11 Profit Maximization 387



This page intentionally left blank 



P A R T 4
Competitive Markets
CHAPTER 12 The Partial Equilibrium Competitive Model

CHAPTER 13 General Equilibrium and Welfare

In Parts 2 and 3 we developed models to explain the demand for goods by utility-maximizing individuals and
the supply of goods by profit-maximizing firms. In this part we will bring these two strands of analysis
together to describe the process by which prices are determined. We will focus on only one specific model
of price determination, the perfectly competitive model. That model assumes a large enough number of
demanders and suppliers of each good so that each must be a price taker. In Part 5 we will illustrate some of
the models that result from relaxing the strict price-taking assumptions of the competitive case, but in this
part we assume price-taking behavior throughout.

Chapter 12 develops the familiar partial equilibrium model of price determination in competitive
markets. The principal result is the Marshallian “cross” diagram of supply and demand that we first discussed
in Chapter 1. This model illustrates a “partial” equilibrium view of price determination because it focuses on
only a single market.

In the concluding sections of the chapter we show some of the ways in which such models are applied.
A specific focus is on illustrating how the competitive model can be used to judge the welfare consequences
for market participants of changes in market equilibria.

Although the partial equilibrium competitive model is useful for studying a single market in detail, it is
inappropriate for examining relationships among markets. To capture such cross-market effects requires the
development of “general” equilibrium models—a topic we take up in Chapter 13. There we show how an
entire economy can be viewed as a system of interconnected competitive markets that determine all prices
simultaneously. We also examine how welfare consequences of various economic questions can be studied
in this model.
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C H A P T E R

12

The Partial Equilibrium
Competitive Model

In this chapter we describe the familiar model of price determination under perfect competition that was
originally developed by Alfred Marshall in the late nineteenth century. That is, we provide a fairly complete
analysis of the supply-demand mechanism as it applies to a single market. This is perhaps the most widely
used model for the study of prices.

MARKET DEMAND

In Part 2 we showed how to construct individual demand functions that illustrate changes in
the quantity of a good that a utility-maximizing individual chooses as the market price and
other factors change. With only two goods (x and y) we concluded that an individual’s
(Marshallian) demand function can be summarized as

quantity of x demanded ¼ xðpx , py , I Þ. (12.1)

Now we wish to show how these demand functions can be added up to reflect the demand
of all individuals in a marketplace. Using a subscript i ði ¼ 1, nÞ to represent each person’s
demand function for good x, we can define the total demand in the market as

market demand forX ¼
Xn
i¼1

xiðpx , py , IiÞ. (12.2)

Notice three things about this summation. First, we assume that everyone in this marketplace
faces the same prices for both goods. That is, px and py enter Equation 12.2 without person-
specific subscripts. On the other hand, each person’s income enters into his or her own specific
demand function. Market demand depends not only on the total income of all market
participants but also on how that income is distributed among consumers. Finally, observe that
we have used an uppercase X to refer to market demand—a notation we will soon modify.

The market demand curve
Equation 12.2 makes clear that the total quantity of a good demanded depends not only on
its own price but also on the prices of other goods and on the income of each person. To
construct the market demand curve for good X , we allow px to vary while holding py and the
income of each person constant. Figure 12.1 shows this construction for the case where there
are only two consumers in the market. For each potential price of x, the point on the market
demand curve for X is found by adding up the quantities demanded by each person. For
example, at a price of p�x person 1 demands x�1 and person 2 demands x�2 . The total quantity
demanded in this two-person market is the sum of these two amounts ðX� ¼ x�1 þ x�2 Þ. The
point p�x ,X� is therefore one point on the market demand curve for X . Other points on the
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curve are derived in a similar way. The market demand curve is thus a “horizontal sum” of
each individual’s demand curve.1

Shifts in the market demand curve
The market demand curve, then, summarizes the ceteris paribus relationship between X and
px . It is important to keep in mind that the curve is in reality a two-dimensional representa-
tion of a many-variable function. Changes in px result in movements along this curve, but
changes in any of the other determinants of the demand for X cause the curve to shift to a
new position. A general rise in incomes would, for example, cause the demand curve to shift
outward (assuming X is a normal good) because each individual would choose to buy more
X at every price. Similarly, a rise in py would shift the demand curve to X outward if
individuals regarded X and Y as substitutes, but it would shift the demand curve for X
inward if the goods were regarded as complements. Accounting for all such shifts may
sometimes require returning to examine the individual demand functions that constitute
the market relationship, especially when examining situations in which the distribution of
income changes and thereby raises some incomes while reducing others. To keep matters
straight, economists usually reserve the term change in quantity demanded for a movement
along a fixed demand curve in response to a change in px . Alternatively, any shift in the
position of the demand curve is referred to as a change in demand.

EXAMPLE 12.1 Shifts in Market Demand

These ideas can be illustrated with a simple set of linear demand functions. Suppose individual
1’s demand for oranges (x, measured in dozens per year) is given by2

x1 ¼ 10� 2px þ 0:1I1 þ 0:5py , (12.3)

FIGURE 12.1 Construction of a Market Demand Curve from Individual Demand Curves

A market demand curve is the “horizontal sum” of each individual’s demand curve. At each price the
quantity demanded in the market is the sum of the amounts each individual demands. For example,
at p�x the demand in the market is x�1 þ x�2 ¼ x�.

pxpxpx

px*

x1

X

x1* x2x2* Xx*

(a) Individual 1 (b) Individual 2 (c) Market demand

x1 x2

1Compensated market demand curves can be constructed in exactly the same way by summing each individual’s com-
pensated demand. Such a compensated market demand curve would hold each person’s utility constant.
2This linear form is used to illustrate some issues in aggregation. It is difficult to defend this form theoretically, however.
For example, it is not homogeneous of degree 0 in all prices and income.
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where

px ¼ price of oranges ðdollars per dozenÞ,
I1 ¼ individual 1’s income ðin thousands of dollarsÞ,
py ¼ price of grapefruit ða gross substitute for oranges—dollars per dozenÞ.

Individual 2’s demand for oranges is given by

x2 ¼ 17� px þ 0:05I2 þ 0:5py . (12.4)

Hence the market demand function is

X ðpx , py , I1, I2Þ ¼ x1 þ x2 ¼ 27� 3px þ 0:1I1 þ 0:05I2 þ py . (12.5)

Here the coefficient for the price of oranges represents the sum of the two individuals’
coefficients, as does the coefficient for grapefruit prices. This reflects the assumption that
orange and grapefruit markets are characterized by the law of one price. Because the in-
dividuals have differing coefficients for income, however, the demand function depends on
each person’s income.

To graph Equation 12.5 as a market demand curve, we must assume values for
I1, I2, and py (because the demand curve reflects only the two-dimensional relationship
between x and px). If I1 ¼ 40, I2 ¼ 20, and py ¼ 4, then the market demand curve is
given by

X ¼ 27� 3px þ 4þ 1þ 4 ¼ 36� 3px , (12.6)

which is a simple linear demand curve. If the price of grapefruit were to rise to py ¼ 6 then
the curve would, assuming incomes remain unchanged, shift outward to

X ¼ 27� 3px þ 4þ 1þ 6 ¼ 38� 3px , (12.7)

whereas an income tax that took 10 (thousand dollars) from individual 1 and transferred it
to individual 2 would shift the demand curve inward to

X ¼ 27� 3px þ 3þ 1:5þ 4 ¼ 35:5� 3px (12.8)

because individual 1 has a larger marginal effect of income changes on orange purchases. All
of these changes shift the demand curve in a parallel way because, in this linear case, none of
them affects either individual’s coefficient for px . In all cases, a rise in px of 0.10 (ten cents)
would cause X to fall by 0.30 (dozen per year).

QUERY: For this linear case, when would it be possible to express market demand as a linear
function of total income ðI1 þ I2Þ? Alternatively, suppose the individuals had differing co-
efficients for py . Would that change the analysis in any fundamental way?

Generalizations
Although our construction concerns only two goods and two individuals, it is easily general-
ized. Suppose there are n goods (denoted by xi, i ¼ 1,n) with prices pi, i ¼ 1,n. Assume also
that there arem individuals in society. Then the j th individual’s demand for the ith good will
depend on all prices and on Ij , the income of this person. This can be denoted by

xi, j ¼ xi, j ðp1,…, pn , Ij Þ, (12.9)

where i ¼ 1, n and j ¼ 1, m.
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Using these individual demand functions, market demand concepts are provided by the
following definition.

D E F I N I T I O N
Market demand. Themarket demand function for a particular good ðXiÞ is the sum of each
individual’s demand for that good:

Xi ¼
Xm
j¼1

xi, j ðp1,…, pn , Ij Þ. (12.10)

The market demand curve for Xi is constructed from the demand function by varying pi,
while holding all other determinants of Xi constant. Assuming that each individual’s demand
curve is downward sloping, this market demand curve will also be downward sloping.

Of course, this definition is just a generalization of our prior discussion, but three features
warrant repetition. First, the functional representation of Equation 12.10 makes clear that
the demand for Xi depends not only on pi but also on the prices of all other goods. A change
in one of those other prices would therefore be expected to shift the demand curve to a
new position. Second, the functional notation indicates that the demand for Xi depends on
the entire distribution of individuals’ incomes. Although in many economic discussions it is
customary to refer to the effect of changes in aggregate total purchasing power on the
demand for a good, this approach may be a misleading simplification because the actual
effect of such a change on total demand will depend on precisely how the income changes are
distributed among individuals. Finally, although they are obscured somewhat by the notation
we have been using, the role of changes in preferences should be mentioned. We have
constructed individuals’ demand functions with the assumption that preferences (as repre-
sented by indifference curve maps) remain fixed. If preferences were to change, so would
individual and market demand functions. Hence, market demand curves can clearly be
shifted by changes in preferences. In many economic analyses, however, it is assumed that
these changes occur so slowly that they may be implicitly held constant without misrepre-
senting the situation.

A simplified notation
Often in this book we shall be looking at only one market. In order to simplify the notation,
in these cases we shall useQ D to refer to the quantity of the particular good demanded in this
market and P to denote its market price. As always, when we draw a demand curve in the
Q –P plane, the ceteris paribus assumption is in effect. If any of the factors mentioned in the
previous section (other prices, individuals’ incomes, or preferences) should change, the Q –P
demand curve will shift, and we should keep that possibility in mind. When we turn to
consider relationships among two or more goods, however, we will return to the notation we
have been using up until now (that is, denoting goods by x and y or by xi).

Elasticity of market demand
When we use this notation for market demand, we will also use a compact notation for the
price elasticity of the market demand function:

price elasticity of market demand ¼ eQ ,P ¼ ∂QDðP ,P 0, I Þ
∂P ⋅

P
QD

, (12.11)

where the notation is intended as a reminder that the demand for Q depends on many
factors other than its own price, such as the prices of other goods ðP 0Þ and the incomes of
all potential demanders (I ). These other factors are held constant when computing the
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own-price elasticity of market demand. As in Chapter 5, this elasticity measures the
proportionate response in quantity demanded to a 1 percent change in a good’s price.
Market demand is also characterized by whether demand is elastic ðeQ ,P < �1Þ or inelastic
ð0 > eQ ,P > �1Þ. Many of the other concepts examined in Chapter 5, such as the cross-
price elasticity of demand or the income elasticity of demand, also carry over directly into the
market context:3

cross price elasticity of market demand ¼ ∂QDðP ,P 0, I Þ
∂P 0 ⋅

P 0

QD
;

income elasticity of market demand ¼ ∂QDðP ,P 0, I Þ
∂I ⋅

I
QD

.
(12.12)

Given these conventions about market demand, we now turn to an extended examination of
supply and market equilibrium in the perfectly competitive model.

TIMING OF THE SUPPLY RESPONSE

In the analysis of competitive pricing, it is important to decide the length of time to be allowed
for a supply response to changing demand conditions. The establishment of equilibrium prices
will be different if we are talking about a very short period of time during which most inputs are
fixed than if we are envisioning a very long-run process in which it is possible for new firms to
enter an industry. For this reason, it has been traditional in economics to discuss pricing in three
different time periods: (1) very short run, (2) short run, and (3) long run. Although it is not
possible to give these terms an exact chronological definition, the essential distinction being
made concerns the nature of the supply response that is assumed to be possible. In the very short
run, there is no supply response: quantity supplied is fixed and does not respond to changes in
demand. In the short run, existing firmsmay change the quantity they are supplying, but no new
firms can enter the industry. In the long run, newfirmsmay enter an industry, therebyproducing
a very flexible supply response. In this chapter we will discuss each of these possibilities.

PRICING IN THE VERY SHORT RUN

In the very short run, or themarket period, there is no supply response. The goods are already “in”
the marketplace and must be sold for whatever the market will bear. In this situation, price acts
only as a device for rationing demand. Price will adjust to clear the market of the quantity that
must be sold during the period. Although the market price may act as a signal to producers in
future periods, it does not perform such a function in the current period because current-period
output is fixed. Figure 12.2 depicts this situation. Market demand is represented by the curveD.
Supply is fixed at Q �, and the price that clears the market is P1. At P1, individuals are willing to
take all that is offered in the market. Sellers want to dispose of Q � without regard to price
(suppose that the good in question is perishable and will be worthless if it is not sold in the
very short run). Hence P1,Q

� is an equilibrium price-quantity combination. If demand should
shift toD0, then the equilibrium price would increase to P2 butQ

� would stay fixed because no
supply response is possible. The supply curve in this situation, then, is a vertical straight line at
output Q �.

The analysis of the very short run is not particularly useful for many markets. Such a
theory may adequately represent some situations in which goods are perishable or must be

3In many applications, market demand is modeled in per capita terms and treated as referring to the “typical person.” In
such applications it is also common to use many of the relationships among elasticities discussed in Chapter 5. Whether
such aggregation across individuals is appropriate is discussed briefly in the Extensions to this chapter.
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sold on a given day, as is the case in auctions. Indeed, the study of auctions provides a number
of insights about the informational problems involved in arriving at equilibrium prices, which
we take up in Chapter 18. But auctions are unusual in that supply is fixed. The far more usual
case involves some degree of supply response to changing demand. It is presumed that a rise
in price will bring additional quantity into the market. In the remainder of this chapter, we
will examine this process.

Before beginning our analysis, we should note that increases in quantity supplied need not
come only from increased production. In a world in which some goods are durable (that is,
last longer than a single period), current owners of these goods may supply them in increasing
amounts to the market as price rises. For example, even though the supply of Rembrandts is
fixed, we would not want to draw the market supply curve for these paintings as a vertical line,
such as that shown in Figure 12.2. As the price of Rembrandts rises, individuals and museums
will become increasingly willing to part with them. From a market point of view, therefore,
the supply curve for Rembrandts will have an upward slope, even though no new production
takes place. A similar analysis would follow for many types of durable goods, such as antiques,
used cars, vintage baseball cards, or corporate shares, all of which are in nominally “fixed”
supply. Because we are more interested in examining how demand and production are
related, we will not be especially concerned with such cases here. Chapter 14 does, however,
contain a brief analysis of some issues related to durable goods.

SHORT-RUN PRICE DETERMINATION

In short-run analysis, the number of firms in an industry is fixed. These firms are able to adjust
the quantity they are producing in response to changing conditions. They will do this by
altering levels of usage for those inputs that can be varied in the short run, and we shall

FIGURE 12.2 Pricing in the Very Short Run

When quantity is fixed in the very short run, price acts only as a device to ration demand. With
quantity fixed at Q �, price P1 will prevail in the marketplace if D is the market demand curve; at this
price, individuals are willing to consume exactly that quantity available. If demand should shift
upward to D0, the equilibrium market price would rise to P2.
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investigate this supply decision here. Before beginning the analysis, we should perhaps state
explicitly the assumptions of this perfectly competitive model.

D E F I N I T I O N
Perfect competition. A perfectly competitive industry is one that obeys the following
assumptions.

1. There are a large number of firms, each producing the same homogeneous product.

2. Each firm attempts to maximize profits.

3. Each firm is a price taker: It assumes that its actions have no effect on market price.

4. Prices are assumed to be known by all market participants—information is perfect.

5. Transactions are costless: Buyers and sellers incur no costs in making exchanges (for
more on this and the previous assumption, see Chapter 18).

Now we will make use of these assumptions to study price determination in the short run.

Short-run market supply curve
In Chapter 11 we showed how to construct the short-run supply curve for a single profit-
maximizing firm. To construct a market supply curve, we start by recognizing that the
quantity of output supplied to the entire market in the short run is the sum of the quantities
supplied by each firm. Because each firm uses the same market price to determine how much
to produce, the total amount supplied to the market by all firms will obviously depend on
price. This relationship between price and quantity supplied is called a short-run market supply
curve. Figure 12.3 illustrates the construction of the curve. For simplicity assume there are
only two firms, A and B. The short-run supply (that is, marginal cost) curves for firms A and B
are shown in Figures 12.3a and 12.3b. The market supply curve shown in Figure 12.3c is the
horizontal sum of these two curves. For example, at a price of P1, firm A is willing to supply
qA1 and firm B is willing to supply qB1 . Therefore, at this price the total supply in the market is
given by Q 1, which is equal to qA1 þ qB1 . The other points on the curve are constructed in an
identical way. Because each firm’s supply curve has a positive slope, the market supply curve

FIGURE 12.3 Short-Run Market Supply Curve

The supply (marginal cost) curves of two firms are shown in (a) and (b). The market supply curve (c)
is the horizontal sum of these curves. For example, at P1 firm A supplies qA1 , firm B supplies qB1 , and
total market supply is given by Q 1 ¼ qA1 þ qB1 .

(a) Firm A (b) Firm B (c) The market
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will also have a positive slope. The positive slope reflects the fact that short-run marginal costs
increase as firms attempt to increase their outputs.

Short-run market supply
More generally, if we let qiðP , v,wÞ represent the short-run supply function for each of the n
firms in the industry, we can define the short-run market supply function as follows.

D E F I N I T I O N
Short-run market supply function. The short-run market supply function shows total
quantity supplied by each firm to a market:

Q SðP , v,wÞ ¼
Xn
i¼1

qiðP , v,wÞ. (12.13)

Notice that the firms in the industry are assumed to face the same market price and the same
prices for inputs.4 The short-run market supply curve shows the two-dimensional relationship
between Q and P , holding v and w (and each firm’s underlying technology) constant. The
notation makes clear that if v,w, or technology were to change, the supply curve would shift
to a new location.

Short-run supply elasticity
One way of summarizing the responsiveness of the output of firms in an industry to higher
prices is by the short-run supply elasticity. This measure shows how proportional changes in
market price are met by changes in total output. Consistent with the elasticity concepts
developed in Chapter 5, this is defined as follows.

D E F I N I T I O N
Short-run elasticity of supply (eS,P).

eS ,P ¼ percentage change inQ supplied
percentage change in P

¼ ∂QS

∂P ⋅
P
QS

. (12.14)

Because quantity supplied is an increasing function of price ð∂Q S=∂P > 0Þ, the supply
elasticity is positive. High values for eS,P imply that small increases in market price lead to a
relatively large supply response by firms, because marginal costs do not rise steeply and input
price interaction effects are small. Alternatively, a low value for eS,P implies that it takes
relatively large changes in price to induce firms to change their output levels, becausemarginal
costs rise rapidly. Notice that, as for all elasticity notions, computation of eS,P requires that
input prices and technology be held constant. To make sense as a market response, the
concept also requires that all firms face the same price for their output. If firms sold their
output at different prices, we would need to define a supply elasticity for each firm.

EXAMPLE 12.2 A Short-Run Supply Function

In Example 11.3 we calculated the general short-run supply function for any single firm with
a two-input Cobb-Douglas production function as

qiðP , v,wÞ ¼ w
β

� ��β=ð1�βÞ
kα=ð1�βÞ
1 Pβ=ð1�βÞ. (12.15)

4Later in this chapter we show how this assumption can be relaxed.
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If we let α ¼ β ¼ 0:5, v ¼ 3, w ¼ 12, and k1 ¼ 80, then this yields the simple, single-firm
supply function

qiðP , v,w ¼ 12Þ ¼ 10P
3

. (12.16)

Now assume that there are 100 identical such firms and that each firm faces the same
market prices for both its output and its input hiring. Given these assumptions, the short-run
market supply function is given by

QSðP , v,w ¼ 12Þ ¼
X100
i¼1

qi ¼
X100
i¼1

10P
3

¼ 1,000P
3

. (12.17)

So, at a price of (say) P ¼ 12, total market supply will be 4,000, with each of the 100 firms
supplying 40 units. We can compute the short-run elasticity of supply in this situation as

eS ,P ¼ ∂QSðP , v,wÞ
∂P ⋅

P
QS

¼ 1,000
3 ⋅

P
1,000P=3

¼ 1; (12.18)

this might have been expected, given the unitary exponent of P in the supply function.

Effect of an increase in w. If all of the firms in this marketplace experienced an increase in
the wage they must pay for their labor input, then the short-run supply curve would shift to a
new position. To calculate the shift, we must return to the single firm’s supply function
(Equation 12.15) and now use a new wage, say, w ¼ 15. If none of the other parameters of
the problem have changed (the firm’s production function and the level of capital input it has
in the short run), the supply function becomes

qiðP , v,w ¼ 15Þ ¼ 8P
3

(12.19)

and the market supply function is

QSðP , v,w ¼ 15Þ ¼
X100
i¼1

8P
3

¼ 800P
3

. (12.20)

So, at a price of P ¼ 12, now this industry will supply only Q S ¼ 3, 200, with each firm
producing qi ¼ 32. In other words, the supply curve has shifted upward because of the
increase in the wage. Notice, however, that the price elasticity of supply has not changed—it
remains eS,P ¼ 1.

QUERY: How would the results of this example change by assuming different values for the
weight of labor in the production function (that is, for α and β)?

Equilibrium price determination
We can now combine demand and supply curves to demonstrate the establishment of equilib-
rium prices in the market. Figure 12.4 shows this process. Looking first at Figure 12.4b, we
see the market demand curveD (ignoreD0 for the moment) and the short-run supply curve S.
The two curves intersect at a price of P1 and a quantity ofQ 1. This price-quantity combination
represents an equilibrium between the demands of individuals and the costs of firms. The
equilibrium price P1 serves two important functions. First, this price acts as a signal to pro-
ducers by providing them with information about howmuch should be produced: In order to
maximize profits, firms will produce that output level for which marginal costs are equal to P1.
In the aggregate, then, production will be Q 1. A second function of the price is to ration
demand. Given the market price P1, utility-maximizing individuals will decide how much of
their limited incomes to devote to buying the particular good. At a price of P1, total quantity
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demanded will beQ 1, and this is precisely the amount that will be produced. Hence we define
equilibrium price as follows.

D E F I N I T I O N
Equilibrium price. An equilibrium price is one at which quantity demanded is equal to
quantity supplied. At such a price, neither demanders nor suppliers have an incentive to alter
their economic decisions. Mathematically, an equilibrium price P� solves the equation

QDðP�,P 0, I Þ ¼ QSðP�, v,wÞ (12.21)

or, more compactly,

QDðP�Þ ¼ QSðP�Þ. (12.22)

The definition given in Equation 12.22 makes clear that an equilibrium price depends on the
values of many exogenous factors, such as incomes or prices of other goods and of firms’
inputs. As we will see in the next section, changes in any of these factors will likely result in a
change in the equilibrium price required to equate quantity supplied to quantity demanded.

The implications of the equilibrium price ðP1Þ for a typical firm and a typical individual are
shown in Figures 12.4a and 12.4c, respectively. For the typical firm the price P1 will cause an
output level of q1 to be produced. The firm earns a small profit at this particular price because
short-run average total costs are covered. The demand curve d (ignore d 0 for the moment) for
a typical individual is shown in Figure 12.4c. At a price of P1, this individual demands

_
q1. By

adding up the quantities that each individual demands at P1 and the quantities that each firm
supplies, we can see that the market is in equilibrium. The market supply and demand curves
provide a convenient way of making such a summation.

FIGURE 12.4 Interactions of Many Individuals and Firms Determine Market Price in the Short Run

Market demand curves and market supply curves are each the horizontal sum of numerous compo-
nents. These market curves are shown in (b). Once price is determined in the market, each firm and
each individual treat this price as a fixed parameter in their decisions. Although individual firms and
persons are important in determining price, their interaction as a whole is the sole determinant of
price. This is illustrated by a shift in an individual’s demand curve to d 0. If only one individual reacts in
this way, market price will not be affected. However, if everyone exhibits an increased demand,
market demand will shift to D0; in the short run, price will rise to P2.
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Market reaction to a shift in demand
The three panels in Figure 12.4 can be used to show two important facts about short-run
market equilibrium: the individual’s “impotence” in the market and the nature of short-run
supply response. First, suppose that a single individual’s demand curve were to shift outward
to d 0, as shown in Figure 12.4c. Because the competitive model assumes there are many
demanders, this shift will have practically no effect on the market demand curve. Conse-
quently, market price will be unaffected by the shift to d 0, that is, price will remain at P1. Of
course, at this price, the person for whom the demand curve has shifted will consume slightly
more (

_
q 0
1), as shown in Figure 12.4c. But this amount is a tiny part of the market.

If many individuals experience outward shifts in their demand curves, the entire market
demand curve may shift. Figure 12.4b shows the new demand curveD 0. The new equilibrium
point will be at P2,Q 2; at this point, supply-demand balance is reestablished. Price has
increased from P1 to P2 in response to the demand shift. Notice also that the quantity traded
in the market has increased from Q 1 toQ 2. The rise in price has served two functions. First,
as in our previous analysis of the very short run, it has acted to ration demand. Whereas at P1 a
typical individual demanded

_
q 0
1, at P2 only

_
q2 is demanded. The rise in price has also acted as

a signal to the typical firm to increase production. In Figure 12.4a the firm’s profit-maximiz-
ing output level has increased from q1 to q2 in response to the price rise. That is what we mean
by a short-run supply response: An increase in market price acts as an inducement to increase
production. Firms are willing to increase production (and to incur higher marginal costs)
because the price has risen. If market price had not been permitted to rise (suppose that
government price controls were in effect), then firms would not have increased their outputs.
At P1 there would now be an excess (unfilled) demand for the good in question. If market
price is allowed to rise, a supply-demand equilibrium can be reestablished so that what firms
produce is again equal to what individuals demand at the prevailing market price. Notice also
that, at the new price P2, the typical firm has increased its profits. This increasing profitability
in the short run will be important to our discussion of long-run pricing later in this chapter.

SHIFTS IN SUPPLY AND DEMAND CURVES:
A GRAPHICAL ANALYSIS

In previous chapters we established many reasons why either a demand curve or a supply
curve might shift. These reasons are briefly summarized in Table 12.1. Although most of
these merit little additional explanation, it is important to note that a change in the number of
firms will shift the short-run market supply curve (because the sum in Equation 12.13 will be
over a different number of firms). This observation allows us to tie together short-run and
long-run analysis.

It seems likely that the types of changes described in Table 12.1 are constantly occurring
in real-world markets. When either a supply curve or a demand curve does shift, equilibrium

TABLE 12.1 Reasons for Shifts in Demand or Supply Curves

Demand Curves Shift Because Supply Curves Shift Because

• Incomes change • Input prices change

• Technology changes

• Preferences change • Number of producers changes

• Prices of substitutes or complements change
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price and quantity will change. In this section we investigate graphically the relative magni-
tudes of such changes. In the next section we show the results mathematically.

Shifts in supply curves: importance of the shape
of the demand curve
Consider first a shift inward in the short-run supply curve for a good. As in Example 12.2,
such a shift might have resulted from an increase in the prices of inputs used by firms to
produce the good. Whatever the cause of the shift, it is important to recognize that the
effect of the shift on the equilibrium level of P andQ will depend on the shape of the demand
curve for the product. Figure 12.5 illustrates two possible situations. The demand curve in
Figure 12.5a is relatively price elastic; that is, a change in price substantially affects quantity
demanded. For this case, a shift in the supply curve from S to S 0 will cause equilibrium price to
rise only moderately (from P to P 0) while quantity declines sharply (from Q toQ 0). Rather
than being “passed on” in higher prices, the increase in the firms’ input costs is met primarily
by a decrease in quantity (a movement down each firm’s marginal cost curve) and only a
slight increase in price.

This situation is reversed when the market demand curve is inelastic. In Figure 12.5b a
shift in the supply curve causes equilibrium price to rise substantially while quantity is little
changed. The reason for this is that individuals do not reduce their demands very much if
prices rise. Consequently, the shift upward in the supply curve is almost entirely passed on to
demanders in the form of higher prices.

Shifts in demand curves: Importance of the shape
of the supply curve
Similarly, a shift in amarket demand curve will have different implications for P andQ , depend-
ing on the shape of the short-run supply curve. Two illustrations are shown in Figure 12.6.

FIGURE 12.5 Effect of a Shift in the Short-Run Supply Curve Depends on the Shape
of the Demand Curve

In (a) the shift upward in the supply curve causes price to increase only slightly while quantity declines
sharply. This results from the elastic shape of the demand curve. In (b) the demand curve is inelastic;
price increases substantially, with only a slight decrease in quantity.
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In Figure 12.6a the supply curve for the good in question is inelastic. In this situation, a shift
outward in themarketdemandcurvewill causeprice to increase substantially.Ontheotherhand,
the quantity traded increases only slightly. Intuitively, what has happened is that the increase in
demand (and inQ ) has caused firms to move up their steeply sloped marginal cost curves. The
concomitant large increase in price serves to ration demand.

Figure 12.6b shows a relatively elastic short-run supply curve. Such a curve would occur
for an industry in which marginal costs do not rise steeply in response to output increases. For
this case, an increase in demand produces a substantial increase in Q . However, because of
the nature of the supply curve, this increase is not met by great cost increases. Consequently,
price rises only moderately.

These examples again demonstrate Marshall’s observation that demand and supply simul-
taneously determine price and quantity. Recall his analogy from Chapter 1: Just as it is
impossible to say which blade of a scissors does the cutting, so too is it impossible to attribute
price solely to demand or to supply characteristics. Rather, the effect of shifts in either a
demand curve or a supply curve will depend on the shapes of both of the curves.

MATHEMATICAL MODEL OF MARKET EQUILIBRIUM

A general mathematical model of the supply-demand process can further illuminate the
comparative statics of changing equilibrium prices and quantities. Suppose that the demand
function is represented by

QD ¼ DðP ,αÞ, (12.23)

where α is a parameter that allows us to shift the demand curve. It might represent con-
sumer income, prices of other goods (this would permit the tying together of supply and
demand in several related markets), or changing preferences. In general we expect that

FIGURE 12.6 Effect of a Shift in the Demand Curve Depends on the Shape
of the Short-Run Supply Curve

In (a), supply is inelastic; a shift in demand causes price to increase greatly, with only a small con-
comitant increase in quantity. In (b), on the other hand, supply is elastic; price rises only slightly in
response to a demand shift.
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∂D=∂P ¼ DP < 0, but ∂D=∂α ¼ Dα may have any sign, depending precisely on what the
parameter α means. Using this same procedure, we can write the supply relationship as

QS ¼ SðP ,βÞ, (12.24)

where β is a parameter that shifts the supply curve and might include such factors as input
prices, technical changes, or (for a multiproduct firm) prices of other potential outputs.
Here ∂S=∂P ¼ SP > 0, but ∂S=∂β ¼ Sβ may have any sign. The model is closed by re-
quiring that, in equilibrium,5

QD ¼ QS . (12.25)

To analyze the comparative statics of this model of equilibrium, we write the total
differentials of the demand and supply functions as follows:

dQD ¼ DPdP þDαdα;
dQS ¼ SPdP þ Sβdβ.

(12.26)

Because maintenance of equilibrium requires that

dQD ¼ dQS , (12.27)

we can solve these equations for the change in equilibrium price for any combination of
shifts in demand ðαÞ or supply ðβÞ. For example, suppose the demand parameter α were to
change while β remains constant. Then, using the equilibrium condition, we have

DPdP þDαdα ¼ SPdP (12.28)

or, manipulating terms a bit,
∂P
∂α

¼ Dα

SP �DP
. (12.29)

Because the denominator of this expression is positive, the sign of ∂P=∂α will be the same as
the sign of Dα. If α represents consumer income (and if the good in question is normal),
then Dα would be positive, and a rise in income would shift demand outward. This, as
Equation 12.29 also indicates, would cause equilibrium price to rise—a result reflected
graphically in Figure 12.6.

An elasticity interpretation
Further algebraic manipulation of Equation 12.29 yields a more useful comparative statics
result. Multiplying both sides of that equation by α=P gives

eP ,α ¼ ∂P
∂α ⋅

α

P
¼ Dα

SP �DP
⋅
α

P

¼ Dαðα=Q Þ
ðSP �DP Þ ⋅ P=Q

¼ eQ ,α

eS ,P � eQ ,P
. (12.30)

Because all of the elasticities in this equation may be available from empirical studies, this
equation can be a convenient way to make rough estimates of the effects of various events on
equilibrium prices. As an example, suppose again that α represents consumer income and
that there is interest in predicting how an increase in income affects the equilibrium price of,
say, automobiles. Suppose empirical data suggest that eQ , I ¼ eQ ,α ¼ 3:0 and eQ ,P ¼ �1:2

5The model could be further modified to show how the equilibrium quantity supplied is to be allocated among the firms in
the industry. If, for example, the industry is composed of n identical firms, then the output of any one of them would be
given by

q ¼ Q
n
.

In the short run, with n fixed, this would add little to our analysis. In the long run, however, n must also be determined by
the model, as we show later in this chapter.
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(these figures are from Table 12.3), and assume that eS,P ¼ 1:0. Substituting these figures
into Equation 12.30 yields

eP ,α ¼ eQ ,α

eS,P � eQ ,P
¼ 3:0

1:0� ð�1:2Þ

¼ 3:0
2:2

¼ 1:36. (12.31)

The empirical elasticity estimates therefore suggest that each 1 percent rise in consumer
incomes results in a 1.36 percent rise in the equilibrium price of automobiles. Estimates of
other kinds of shifts in supply or demand can be similarly modeled by manipulating
Equations 12.26 and 12.27 and obtaining empirical estimates of the necessary parameters.

EXAMPLE 12.3 Equilibria with Constant Elasticity Functions

An even more complete analysis of supply-demand equilibrium can be provided if we use
specific functional forms. Constant elasticity functions are especially useful for this purpose.
Suppose the demand for automobiles is given by

QDðP , I Þ ¼ 0:1P�1:2I 3; (12.32)

here price (P) is measured in dollars, as is real family income (I ). The supply function for
automobiles is

QSðP ,wÞ ¼ 6,400Pw�0:5, (12.33)

where w is the hourly wage of automobile workers. Notice that the elasticities assumed here
are those used previously in the text ðeQ ,P ¼ �1:2, eQ , I ¼ 3:0, and eS,P ¼ 1Þ. If the values
for the “exogenous” variables I and w are $20,000 and $25, respectively, then demand-
supply equilibrium requires

QD ¼ 0:1P�1:2I3 ¼ ð8� 1011ÞP�1:2

¼ QS ¼ 6,400Pw�0:5 ¼ 1,280P (12.34)

or

P2:2 ¼ ð8� 1011Þ=1,280 ¼ 6:25� 108

or

P� ¼ 9,957,

Q � ¼ 1,280 ⋅ P� ¼ 12,745,000.
(12.35)

Hence, the initial equilibrium in the automobile market has a price of nearly $10,000 with
about 13 million cars being sold.

A shift in demand. A 10 percent increase in real family income, all other factors remaining
constant, would shift the demand function to

QD ¼ ð1:06� 1012ÞP�1:2 (12.36)

and, proceeding as before,

P2:2 ¼ ð1:06� 1012Þ=1,280 ¼ 8:32� 108 (12.37)

or

P� ¼ 11,339,

Q � ¼ 14,514,000.
(12.38)

(continued)
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EXAMPLE 12.3 CONTINUED

As we predicted earlier, the 10 percent rise in real income made car prices rise by nearly
14 percent. In the process, quantity sold increased by about 1.77 million automobiles.

A shift in supply. An exogenous shift in automobile supply as a result, say, of changing auto
workers’ wages would also affect market equilibrium. If wages were to rise from $25 to $30
per hour, the supply function would shift to

Q sðP ,wÞ ¼ 6,400Pð30Þ�0:5 ¼ 1,168P ; (12.39)

returning to our original demand function (with I ¼ $20, 000) then yields

P2:2 ¼ ð8� 1011Þ=1,168 ¼ 6:85� 108 (12.40)

or

P� ¼ 10,381,

Q � ¼ 12,125,000.
(12.41)

The 20 percent rise in wages, therefore, led to a 4.3 percent rise in auto prices and to a
decline in sales of more than 600,000 units. Changing equilibria in many types of markets
can be approximated by using this general approach together with empirical estimates of the
relevant elasticities.

QUERY: Do the results of changing auto workers’ wages agree with what might have been
predicted using an equation similar to Equation 12.30?

LONG-RUN ANALYSIS

We saw in Chapter 10 that, in the long run, a firm may adapt all of its inputs to fit market
conditions. For long-run analysis, then, we should use the firm’s long-run cost curves. A
profit-maximizing firm that is a price taker will produce the output level for which price is
equal to long-run marginal cost (MC). However, we must consider a second and ultimately
more important influence on price in the long run: the entry of entirely new firms into the
industry or the exit of existing firms from that industry. In mathematical terms, we must allow
the number of firms, n, to vary in response to economic incentives. The perfectly competitive
model assumes that there are no special costs of entering or exiting from an industry. Con-
sequently, new firms will be lured into any market in which (economic) profits are positive.
Similarly, firms will leave any industry in which profits are negative. The entry of new firms
will cause the short-run industry supply curve to shift outward, because there are now more
firms producing than there were previously. Such a shift will cause market price (and industry
profits) to fall. The process will continue until no firm contemplating entry would be able to
earn a profit in the industry.6 At that point, entry will cease and the industry will have an
equilibrium number of firms. A similar argument can be made for the case in which some of
the firms are suffering short-run losses. Some firms will choose to leave the industry, and this
will cause the supply curve to shift to the left. Market price will rise, thus restoring profitability
to those firms remaining in the industry.

6Remember that we are using the economists’ definition of profits here. These profits represent a return to the owner of a
business in excess of that which is strictly necessary to stay in the business.
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Equilibrium conditions
For the purpose of this chapter, we shall initially assume that all the firms in an industry have
identical cost curves; that is, no firm controls any special resources or technologies.7 Because
all firms are identical, the equilibrium long-run position requires that each firm earn exactly
zero economic profits. In graphic terms, the long-run equilibrium price must settle at the low
point of each firm’s long-run average total cost curve. Only at this point do the two
equilibrium conditions P ¼ MC (which is required for profit maximization) and P ¼ AC
(which is required for zero profit) hold. It is important to emphasize, however, that these two
equilibrium conditions have rather different origins. Profit maximization is a goal of firms.
The P ¼ MC rule therefore derives from the behavioral assumptions we have made about
firms and is similar to the output decision rule used in the short run. The zero-profit
condition is not a goal for firms; firms obviously would prefer to have large, positive profits.
The long-run operation of the market, however, forces all firms to accept a level of zero
economic profits (P ¼ AC) because of the willingness of firms to enter and to leave an
industry in response to the possibility of making supranormal returns. Although the firms in a
perfectly competitive industry may earn either positive or negative profits in the short run, in
the long run only a level of zero profits will prevail. Hence, we can summarize this analysis by
the following definition.

D E F I N I T I O N
Long-run competitive equilibrium. A perfectly competitive industry is in long-run equilib-
rium if there are no incentives for profit-maximizing firms to enter or to leave the industry.
This will occur when (a) the number of firms is such that P ¼ MC ¼ AC and (b) each firm
operates at the low point of its long-run average cost curve.

LONG-RUN EQUILIBRIUM: CONSTANT COST CASE

To discuss long-run pricing in detail, we must make an assumption about how the entry of
new firms into an industry affects the prices of firms’ inputs. The simplest assumption we
might make is that entry has no effect on the prices of those inputs—perhaps because the
industry is a relatively small hirer in its various input markets. Under this assumption, no
matter how many firms enter (or leave) an industry, each firm will retain the same set of cost
curves with which it started. This assumption of constant input prices may not be tenable in
many important cases, which we will look at in the next section. For the moment, however,
we wish to examine the equilibrium conditions for a constant cost industry.

Initial equilibrium
Figure 12.7 demonstrates long-run equilibrium for an industry. For the market as a whole
(Figure 12.7b), the demand curve is given by D and the short-run supply curve by SS. The
short-run equilibrium price is therefore P1. The typical firm (Figure 12.7a) will produce output
level q1 because, at this level of output, price is equal to short-run marginal cost (SMC). In
addition, with a market price of P1, output level q1 is also a long-run equilibrium position for
the firm. The firm is maximizing profits, because price is equal to long-run marginal costs
(MC). Figure 12.7a also implies our second long-run equilibrium property: Price is equal to
long-run average costs (AC). Consequently, economic profits are zero, and there is no incen-
tive for firms either to enter or to leave the industry. The market depicted in Figure 12.7
is therefore in both short-run and long-run equilibrium. Firms are in equilibrium because

7If firms have different costs then very low-cost firms can earn positive long-run profits, and such extra profits will be
reflected in the price of the resource that accounts for the firm’s low costs. In this sense the assumption of identical costs is
not very restrictive, because an active market for the firm’s inputs will ensure that average costs (which include opportunity
costs) are the same for all firms. See also the discussion of Ricardian rent later in this chapter.
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they are maximizing profits, and the number of firms is stable because economic profits are
zero. This equilibrium will tend to persist until either supply or demand conditions change.

Responses to an increase in demand
Suppose now that the market demand curve in Figure 12.7b shifts outward to D0. If SS is the
relevant short-run supply curve for the industry, then, in the short run, price will rise to P2. The
typical firm, in the short run, will choose to produce q2 and will earn profits on this level of
output. In the long run, these profits will attract new firms into the market. Because of the
constant cost assumption, this entry of new firms will have no effect on input prices. New firms
will continue to enter themarket until price is forced down to the level at which there are again
no pure economic profits. The entry of new firms will therefore shift the short-run supply curve
to SS 0, where the equilibrium price ðP1Þ is reestablished. At this new long-run equilibrium,
the price-quantity combination P1,Q 3 will prevail in the market. The typical firm will again
produce at output level q1, although now there will be more firms than in the initial situation.

Infinitely elastic supply
We have shown that the long-run supply curve for the constant cost industry will be a
horizontal straight line at price P1. This curve is labeled LS in Figure 12.7b. No matter
what happens to demand, the twin equilibrium conditions of zero long-run profits (because
free entry is assumed) and profit maximization will ensure that no price other than P1 can
prevail in the long run.8 For this reason, P1 might be regarded as the “normal” price for this

FIGURE 12.7 Long-Run Equilibrium for a Perfectly Competitive Industry: Constant Cost Case

An increase in demand from D to D 0 will cause price to rise from P1 to P2 in the short run. This
higher price will create profits in the industry, and new firms will be drawn into the market. If it is
assumed that the entry of these new firms has no effect on the cost curves of the firms in the industry,
then new firms will continue to enter until price is pushed back down to P1. At this price, economic
profits are zero. The long-run supply curve (LS) will therefore be a horizontal line at P1. Along LS,
output is increased by increasing the number of firms, each producing q1.
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8These equilibrium conditions also point out what seems to be, somewhat imprecisely, an “efficient” aspect of the long-run
equilibrium in perfectly competitive markets: The good under investigation will be produced at minimum average cost. We
will have much more to say about efficiency in the next chapter.
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commodity. If the constant cost assumption is abandoned, however, the long-run supply
curve need not have this infinitely elastic shape, as we show in the next section.

EXAMPLE 12.4 Infinitely Elastic Long-Run Supply

Handmade bicycle frames are produced by a number of identically sized firms. Total (long-
run) monthly costs for a typical firm are given by

CðqÞ ¼ q3 � 20q2 þ 100q þ 8,000, (12.42)

where q is the number of frames produced per month. Demand for handmade bicycle
frames is given by

QD ¼ 2,500� 3P , (12.43)

where Q D is the quantity demanded per month and P is the price per frame. To determine
the long-run equilibrium in this market, we must find the low point of the typical firm’s
average cost curve. Since

AC ¼ CðqÞ
q

¼ q2 � 20q þ 100þ 8,000
q

(12.44)

and

MC ¼ ∂CðqÞ
∂q

¼ 3q2 � 40q þ 100 (12.45)

and since we know this minimum occurs where AC ¼ MC we can solve for this output
level:

q2 � 20q þ 100þ 8,000
q

¼ 3q2 � 40q þ 100

or

2q2 � 20q ¼ 8,000
q

, (12.46)

which has a convenient solution of q ¼ 20. With a monthly output of 20 frames, each
producer has a long-run average and marginal cost of $500. This, then, is the long-run
equilibrium price of bicycle frames (handmade frames cost a bundle, as any cyclist can
attest). With P ¼ $500, Equation 12.43 shows Q D ¼ 1,000. The equilibrium number of
firms is therefore 50. When each of these 50 firms produces 20 frames per month, supply
will precisely balance what is demanded at a price of $500.

If demand in this problem were to increase to

QD ¼ 3,000� 3P , (12.47)

then we would expect long-run output and the number of frames to increase. Assuming that
entry into the frame market is free and that such entry does not alter costs for the typical
bicycle maker, the long-run equilibrium price will remain at $500 and a total of 1,500
frames per month will be demanded. That will require 75 frame makers, so 25 new firms will
enter the market in response to the increase in demand.

QUERY: Presumably, the entry of frame makers in the long run is motivated by the short-run
profitability of the industry in response to the increase in demand. Suppose each firm’s short-
run costs were given by SC ¼ 50q2 � 1,500q þ 20,000. Show that short-run profits are zero
when the industry is in long-term equilibrium. What are the industry’s short-run profits as a
result of the increase in demand when the number of firms stays at 50?
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SHAPE OF THE LONG-RUN SUPPLY CURVE

Contrary to the short-run situation, long-run analysis has very little to do with the shape of
the (long-run) marginal cost curve. Rather, the zero-profit condition centers attention on the
low point of the long-run average cost curve as the factor most relevant to long-run price
determination. In the constant cost case, the position of this low point does not change as
new firms enter the industry. Consequently, if input prices do not change then only one price
can prevail in the long run regardless of how demand shifts—the long-run supply curve is
horizontal at this price. Once the constant cost assumption is abandoned, this need not be
the case. If the entry of new firms causes average costs to rise, the long-run supply curve will
have an upward slope. On the other hand, if entry causes average costs to decline, it is even
possible for the long-run supply curve to be negatively sloped. We shall now discuss these
possibilities.

Increasing cost industry
The entry of new firms into an industrymay cause the average costs of all firms to rise for several
reasons. New and existing firms may compete for scarce inputs, thus driving up their prices.
New firmsmay impose “external costs” on existing firms (and on themselves) in the form of air
or water pollution. They may increase the demand for tax-financed services (police forces,
sewage treatment plants, and so forth), and the required taxes may show up as increased costs
for all firms. Figure 12.8 demonstrates twomarket equilibria in such an increasing cost industry.
The initial equilibrium price is P1. At this price the typical firm produces q1, and total industry
output isQ 1. Suppose now that the demand curve for the industry shifts outward toD0. In the
short run, price will rise to P2, since this is whereD

0 and the industry’s short-run supply curve
(SS) intersect. At this price the typical firmwill produce q2 andwill earn a substantial profit. This
profit then attracts new entrants into themarket and shifts the short-run supply curve outward.

FIGURE 12.8 An Increasing Cost Industry Has a Positively Sloped Long-Run Supply Curve

Initially, the market is in equilibrium at P1,Q 1. An increase in demand (to D0) causes price to rise to
P2 in the short run, and the typical firm produces q2 at a profit. This profit attracts new firms into the
industry. The entry of these new firms causes costs for a typical firm to rise to the levels shown in (b).
With this new set of curves, equilibrium is reestablished in the market at P3,Q 3. By considering many
possible demand shifts and connecting all the resulting equilibrium points, the long-run supply curve
(LS) is traced out.
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Suppose that this entry of new firms causes the cost curves of all firms to rise. The new firms
may compete for scarce inputs, thereby driving up the prices of these inputs. A typical firm’s
new (higher) set of cost curves is shown in Figure 12.8b. The new long-run equilibrium price
for the industry is P3 (here P3 ¼ MC ¼ AC), and at this priceQ 3 is demanded. We now have
two points ðP1,Q 1 and P3,Q 3Þ on the long-run supply curve. All other points on the curve can
be found in an analogous way by considering all possible shifts in the demand curve. These
shifts will trace out the long-run supply curve LS. Here LS has a positive slope because of the
increasing cost nature of the industry. Observe that the LS curve is flatter (more elastic) than
the short-run supply curves. This indicates the greater flexibility in supply response that is
possible in the long run. Still, the curve is upward sloping, so price rises with increasing
demand. This situation is probably quite common; we will have more to say about it in
later sections.

Decreasing cost industry
Not all industries exhibit constant or increasing costs. In some cases, the entry of new firms
may reduce the costs of firms in an industry. For example, the entry of new firmsmay provide a
larger pool of trained labor from which to draw than was previously available, thus reducing
the costs associated with the hiring of new workers. Similarly, the entry of new firms may
provide a “critical mass” of industrialization, which permits the development of more efficient
transportation and communications networks. Whatever the exact reason for the cost reduc-
tions, the final result is illustrated in the three panels of Figure 12.9. The initial market
equilibrium is shown by the price-quantity combination P1,Q 1 in Figure 12.9c. At this
price the typical firm produces q1 and earns exactly zero in economic profits. Now suppose
that market demand shifts outward to D0. In the short run, price will increase to P2 and the
typical firm will produce q2. At this price level, positive profits are being earned. These profits
cause new entrants to come into the market. If this entry causes costs to decline, a new set of
cost curves for the typical firm might resemble those shown in Figure 12.9b. Now the new

FIGURE 12.9 A Decreasing Cost Industry Has a Negatively Sloped Long-Run Supply Curve

In (c), the market is in equilibrium at P1,Q 1. An increase in demand toD0 causes price to rise to P2 in
the short run, and the typical firm produces q2 at a profit. This profit attracts new firms to the industry.
If the entry of these new firms causes costs for the typical firm to fall, a set of new cost curves might
look like those in (b). With this new set of curves, market equilibrium is reestablished at P3,Q 3. By
connecting such points of equilibrium, a negatively sloped long-run supply curve (LS) is traced out.
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equilibrium price is P3; at this price, Q 3 is demanded. By considering all possible shifts in
demand, the long-run supply curve, LS, can be traced out. This curve has a negative slope
because of the decreasing cost nature of the industry. Therefore, as output expands, price
falls. This possibility has been used as the justification for protective tariffs to shield new
industries from foreign competition. It is assumed (only occasionally correctly) that the
protection of the “infant industry” will permit it to grow and ultimately to compete at lower
world prices.

Classification of long-run supply curves
Thus we have shown that the long-run supply curve for a perfectly competitive industry may
assume a variety of shapes. The principal determinant of the shape is the way in which the
entry of firms into the industry affects all firms’ costs. The following definitions cover the
various possibilities.

D E F I N I T I O N
Constant, increasing, and decreasing cost industries. An industry supply curve exhibits
one of three shapes.

Constant cost: Entry does not affect input costs; the long-run supply curve is horizontal at
the long-run equilibrium price.

Increasing cost: Entry increases input costs; the long-run supply curve is positively sloped.

Decreasing cost: Entry reduces input costs; the long-run supply curve is negatively sloped.

Now we show how the shape of the long-run supply curve can be further quantified.

LONG-RUN ELASTICITY OF SUPPLY

The long-run supply curve for an industry incorporates information on internal firm adjust-
ments to changing prices and changes in the number of firms and input costs in response to
profit opportunities. All of these supply responses are summarized in the following elasticity
concept.

D E F I N I T I O N
Long-run elasticity of supply. The long-run elasticity of supply ðeLS,P Þ records the propor-
tionate change in long-run industry output in response to a proportionate change in product
price. Mathematically,

eLS,P ¼ percentage change inQ
percentage change in P

¼ ∂QLS

∂P ⋅
P

QLS
. (12.48)

Thevalueof this elasticitymaybepositiveornegative,dependingonwhether the industry exhibits
increasing or decreasing costs. As we have seen, eLS,P is infinite in the constant cost case, because
industry expansions or contractions can occur without having any effect on product prices.

Empirical estimates
It is obviously important to have good empirical estimates of long-run supply elasticities.
These indicate whether production can be expanded with only a slight increase in relative
price (that is, supply is price elastic) or whether expansions in output can occur only if relative
prices rise sharply (that is, supply is price inelastic). Such information can be used to assess the
likely effect of shifts in demand on long-run prices and to evaluate alternative policy proposals
intended to increase supply. Table 12.2 presents several long-run supply elasticity estimates.
These relate primarily (though not exclusively) to natural resources because economists have
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devoted considerable attention to the implications of increasing demand for the prices of such
resources. As the table makes clear, these estimates vary widely depending on the spatial and
geological properties of the particular resources involved. All of the estimates, however,
suggest that supply does respond positively to price.

COMPARATIVE STATICS ANALYSIS
OF LONG-RUN EQUILIBRIUM

Earlier in this chapter we showed how to develop a simple comparative statics analysis of
changing short-run equilibria in competitive markets. By using estimates of the long-run
elasticities of demand and supply, exactly the same sort of analysis can be conducted for the
long run as well.

For example, the hypothetical auto market model in Example 12.3 might serve equally
well for long-run analysis, though some differences in interpretation might be required.
Indeed, in applied models of supply and demand it is often not clear whether the author
intends his or her results to reflect the short run or the long run, and some care must be taken
to understand how the issue of entry is being handled.

Industry structure
One aspect of the changing long-run equilibria in a perfectly competitive market that is
obscured by using a simple supply-demand analysis is how the number of firms varies as
market equilibria change. Because—as we will see in Part 5—the functioning of markets may
in some cases be affected by the number of firms, and because there may be direct public

TABLE 12.2 Selected Estimates of Long-Run Supply Elasticities

Agricultural acreage

Corn 0.18

Cotton 0.67

Wheat 0.93

Aluminum Nearly infinite

Chromium 0–3.0

Coal (eastern reserves) 15.0–30.0

Natural gas (U.S. reserves) 0.20

Oil (U.S. reserves) 0.76

Urban housing

Density 5.3

Quality 3.8
SOURCES: Agricultural acreage—M. Nerlove, “Estimates of the Elasticities of Supply of Selected Agricultural Commodi-
ties,” Journal of Farm Economics 38 (May 1956): 496–509. Aluminum and chromium—estimated from U.S. Department
of Interior, Critical Materials Commodity Action Analysis (Washington, DC: U.S. Government Printing Office, 1975).
Coal—estimated from M. B. Zimmerman, “The Supply of Coal in the Long Run: The Case of Eastern Deep Coal,” MIT
Energy Laboratory Report No. MITEL 75–021 (September 1975). Natural gas—based on estimate for oil (see text) and
J. D. Khazzoom, “The FPC Staff ’s Econometric Model of Natural Gas Supply in the United States,” The Bell Journal
of Economics and Management Science (Spring 1971): 103–17. Oil—E. W. Erickson, S. W. Millsaps, and R. M. Spann, “Oil
Supply and Tax Incentives,” Brookings Papers on Economic Activity 2 (1974): 449–78. Urban housing—B. A. Smith, “The
Supply of Urban Housing,” Journal of Political Economy 40 (August 1976): 389–405.
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policy interest in entry and exit from an industry, some additional analysis is required. In this
section we will examine in detail determinants of the number of firms in the constant cost
case. Brief reference will also be made to the increasing cost case, and some of the problems
for this chapter examine that case in more detail.

Shifts in demand
Because the long-run supply curve for a constant cost industry is infinitely elastic, analyzing
shifts in market demand is particularly easy. If the initial equilibrium industry output is Q 0
and if q� represents the output level for which the typical firm’s long-run average cost is
minimized, then the initial equilibrium number of firms ðn0Þ is given by

n0 ¼ Q 0
q� . (12.49)

A shift in demand that changes equilibrium output to Q 1 will, in the long run, change the
equilibrium number of firms to

n1 ¼ Q1

q� , (12.50)

and the change in the number of firms is given by

n1 � n0 ¼ Q1 �Q 0

q� . (12.51)

That is, the change in the equilibrium number of firms is completely determined by the
extent of the demand shift and by the optimal output level for the typical firm.

Changes in input costs
Even in the simple constant cost industry case, analyzing the effect of an increase in an input
price (and hence an upward shift in the infinitely elastic long-run supply curve) is relatively
complicated. First, in order to calculate the decline in industry output, it is necessary to know
both the extent towhichminimumaverage cost is increasedby the input price rise andhow such
an increase in the long-run equilibrium price affects total quantity demanded. Knowledge of
the typical firm’s average cost function and of the price elasticity of demand permits such a
calculation to be made in a straightforward way. But an increase in an input price may also
change theminimumaverage cost output level for the typicalfirm.Such apossibility is illustrated
in Figure 12.10. Both the average and marginal costs have been shifted upward by the input
price increase, but because average cost has shifted up by a relatively greater extent than the
marginal cost, the typical firm’s optimal output level has increased from q�0 to q�1 . If the relative
sizes of the shifts in cost curves were reversed, however, the typical firm’s optimal output level
would have fallen.9 Taking account of this change in optimal scale, Equation 12.51 becomes

9A mathematical proof proceeds as follows. Optimal output q� is defined such that

ACðv,w, q�Þ ¼ MCðv,w, q�Þ.
Differentiating both sides of this expression by (say) v yields

∂AC
∂v

þ ∂AC
∂q� ⋅

∂q�
∂v

¼ ∂MC
∂v

þ ∂MC
∂q� ⋅

∂q�
∂v

;

but ∂AC=∂q� ¼ 0, because average costs are minimized. Manipulating terms, we obtain

∂q�
∂v

¼ ∂MC
∂q�

� ��1
⋅

∂AC
∂v

� ∂MC
∂v

� �
.

Since ∂MC=∂q > 0 at the minimum AC, it follows that ∂q�=∂v will be positive or negative depending on the sizes of the
relative shifts in theAC and MC curves.
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n1 � n0 ¼ Q1

q�1
� Q0

q�0
, (12.52)

and a number of possibilities arise.
If q�1 	 q�0 , the decline in quantity brought about by the rise in market price will definitely

cause the number of firms to fall. However, if q�1 < q�0 then the result will be indeterminate.
Industry output will fall, but optimal firm size also will fall, so the ultimate effect on the
number of firms depends on the relative magnitude of these changes. A decline in the number
of firms still seems the most likely outcome when an input price increase causes industry
output to fall, but an increase in n is at least a theoretical possibility.

EXAMPLE 12.5 Rising Input Costs and Industry Structure

A rise in costs for bicycle frame makers will alter the equilibrium described in Example 12.4,
but the precise effect on market structure will depend on how costs increase. The effects of an
increase in fixed costs are fairly clear: the long-run equilibrium price will rise and the size of
the typical firm will also increase. This latter effect occurs because a rise in fixed costs raises
AC but notMC. To ensure that the equilibrium condition forAC ¼ MC holds, output (and
MC) must also rise. For example, if a rise in shop rents causes the typical frame maker’s costs
to increase to

CðqÞ ¼ q3 � 20q2 þ 100q þ 11,616, (12.53)

it is an easy matter to show that MC ¼ AC when q ¼ 22. The rise in rent has therefore
increased the efficient scale of bicycle frame operations by 2 bicycle frames per month. At

(continued)

FIGURE 12.10 An Increase in an Input Price May Change Long-Run Equilibrium Output
for the Typical Firm

An increase in the price of an input will shift average and marginal cost curves upward. The precise
effect of these shifts on the typical firm’s optimal output level ðq�Þ will depend on the relative
magnitudes of the shifts.

Average and
marginal costs

Output per periodq0* *q1

MC1

AC1
MC0

AC0
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EXAMPLE 12.5 CONTINUED

q ¼ 22, the long-run average cost and the marginal cost are both 672, and that will be the
long-run equilibrium price for frames. At this price

QD ¼ 2,500� 3P ¼ 484, (12.54)

so there will be room in the market now for only 22 ð¼ 484÷ 22Þ firms. The rise in fixed
costs resulted not only in an increase in price but also in a significant reduction in the
number of frame makers (from 50 to 22).

Increases in other types of input costs may, however, have more complex effects. Al-
though a complete analysis would require an examination of frame makers’ production func-
tions and their related input choices, we can provide a simple illustration by assuming that a
rise in some variable input prices causes the typical firm’s total cost function to become

CðqÞ ¼ q3 � 8q2 þ 100q þ 4,950. (12.55)

Now

MC ¼ 3q2 � 16q þ 100 and

AC ¼ q2 � 8q þ 100þ 4,950
q

.
(12.56)

Setting MC ¼ AC yields

2q2 � 8q ¼ 4,950
q

, (12.57)

which has a solution of q ¼ 15. This particular change in the total cost function has
therefore significantly reduced the optimal size for frame shops. With q ¼ 15, Equations
12.56 show AC ¼ MC ¼ 535, and with this new long-run equilibrium price we have

QD ¼ 2,500� 3P ¼ 895. (12.58)

These 895 frames will, in equilibrium, be produced by about 60 firms (895÷ 15 ¼ 59:67—
problems don’t always work out evenly!). Even though the increase in costs results in a
higher price, the equilibrium number of frame makers expands from 50 to 60 because the
optimal size of each shop is now smaller.

QUERY: How do the total, marginal, and average functions derived from Equation 12.55
differ from those in Example 12.4? Are costs always greater (for all levels of q ) for the former
cost curve? Why is long-run equilibrium price higher with the former curves? (See footnote 9
for a formal discussion.)

PRODUCER SURPLUS IN THE LONG RUN

In Chapter 11 we described the concept of short-run producer surplus, which represents the
return to a firm’s owners in excess of what would be earned if output were zero. We showed
that this consisted of the sum of short-run profits plus short-run fixed costs. In long-run
equilibrium, profits are zero and there are no fixed costs, so all such short-run surplus is
eliminated. Owners of firms are indifferent about whether they are in a particular market,
because they could earn identical returns on their investments elsewhere. Suppliers of firms’
inputs may not be indifferent about the level of production in a particular industry, however.
In the constant cost case, of course, input prices are assumed to be independent of the level of
production on the presumption that inputs can earn the same amount in alternative occupa-
tions. But in the increasing cost case, entry will bid up some input prices and suppliers of these

416 Part 4 Competitive Markets



inputs will be made better off. Consideration of these price effects leads to the following
alternative notion of producer surplus.

D E F I N I T I O N
Producer surplus. Producer surplus is the extra return that producers make by making
transactions at themarket price over and abovewhat theywould earn if nothingwere produced.
It is illustrated by the size of the area below the market price and above the supply curve.

Although this is the same definition we introduced in Chapter 11, the context is now different.
Now the “extra returns that producers make” should be interpreted as meaning “the higher
prices that productive inputs receive.” For short-run producer surplus, the gainers from
market transactions are firms that are able to cover fixed costs and possibly earn profits over
their variable costs. For long-run producer surplus, we must penetrate back into the chain of
production in order to identify who the ultimate gainers from market transactions are.

It is perhaps surprising that long-run producer surplus can be shown graphically in much
the same way as short-run producer surplus. The former is given by the area above the long-
run supply curve and below equilibrium market price. In the constant cost case, long-run
supply is infinitely elastic and this area will be zero, showing that returns to inputs are
independent of the level of production. With increasing costs, however, long-run supply
will be positively sloped and input prices will be bid up as industry output expands. Because
this notion of long-run producer surplus is widely used in applied analysis (as we show later in
this chapter), we will provide a formal development.

Ricardian rent
Long-run producer surplus can be most easily illustrated with a situation first described by
David Ricardo in the early part of the nineteenth century.10 Assume there are many parcels of
land on which a particular crop might be grown. These range from very fertile land (low costs
of production) to very poor, dry land (high costs). The long-run supply curve for the crop is
constructed as follows. At low prices only the best land is used. As output increases, higher-
cost plots of land are brought into production because higher prices make it profitable to use
this land. The long-run supply curve is positively sloped because of the increasing costs
associated with using less fertile land.

Market equilibrium in this situation is illustrated in Figure 12.11. At an equilibrium price
of P�, owners of both the low-cost and the medium-cost firms earn (long-run) profits. The
“marginal firm” earns exactly zero economic profits. Firms with even higher costs stay out of
the market because they would incur losses at a price of P�. Profits earned by the intramar-
ginal firms can persist in the long run, however, because they reflect a return to a unique
resource—low-cost land. Free entry cannot erode these profits even over the long term. The
sum of these long-run profits constitutes long-run producer surplus, as given by area P�EB in
panel (d) of Figure 12.11. Equivalence of these areas can be shown by recognizing that each
point in the supply curve in panel (d) represents minimum average cost for some firm. For
each such firm, P � AC represents profits per unit of output. Total long-run profits can then
be computed by summing over all units of output.11

10See David Ricardo, The Principles of Political Economy and Taxation (1817; reprinted London: J. M. Dent and Son,
1965), chap. 2 and chap. 32.
11More formally, suppose that firms are indexed by i ði ¼ 1,…,nÞ from lowest to highest cost and that each firm produces
q�. In the long-run equilibrium, Q � ¼ n�q� (where n� is the equilibrium number of firms and Q � is total industry
output). Suppose also the inverse of the supply function (competitive price as a function of quantity supplied) is given by
P ¼ PðQ Þ. Because of the indexing of firms, price is determined by the highest cost firm in the market: P ¼
Pðiq�Þ ¼ ACi and P� ¼ PðQ �Þ ¼ Pðn�q�Þ. Now, in long-run equilibrium, profits for firm i are given by

πi ¼ ðP� �ACiÞq�,
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Capitalization of rents
The long-run profits for the low-cost firms in Figure 12.11 will often be reflected in prices for
the unique resources owned by those firms. In Ricardo’s initial analysis, for example, one
might expect fertile land to sell for more than an untillable rock pile. Because such prices will
reflect the present value of all future profits, these profits are said to be “capitalized” into
inputs’ prices. Examples of capitalization include such disparate phenomena as the higher

FIGURE 12.11 Ricardian Rent

Owners of low-cost and medium-cost land can earn long-run profits. Long-run producers’ surplus
represents the sum of all these rents—area P�EB in panel (d). Usually Ricardian rents will be
capitalized into input prices.
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and total profits are given by

π ¼ ∫
0

n�
πi di ¼ ∫

0

n�
ðP� �ACiÞq� di

¼ ∫
0

n�
P�q� di�∫

0

n�
ACiq

� di

¼ P�n�q� � ∫
0

n�
P ðiq�Þq�di

¼ P�Q � �∫
0

Q �
P ðQ Þ dQ ,

which is the shaded area in panel (d) of Figure 12.11.
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prices of nice houses with convenient access for commuters, the high value of rock and sport
stars’ contracts, and the lower value of land near toxic waste sites. Notice that in all of these
cases it is market demand that determines rents—these rents are not traditional input costs
that indicate forgone opportunities.

Input supply and long-run producer surplus
It is the scarcity of low-cost inputs that creates the possibility of Ricardian rent. If low-cost
farmland were available at infinitely elastic supply, there would be no such rent. More
generally, any input that is “scarce” (in the sense that it has a positively sloped supply curve
to a particular industry) will obtain rents in the form of earning a higher return than would be
obtained if industry output were zero. In such cases, increases in output not only raise firms’
costs (and thereby the price for which the output will sell) but also generate factor rents for
inputs. The sum of all such rents is again measured by the area above the long-run supply
curve and below equilibrium price. Changes in the size of this area of long-run producer
surplus indicate changing rents earned by inputs to the industry. Notice that, although long-
run producer surplus is measured using the market supply curve, it is inputs to the industry
that actually receive this surplus. Empirical measurements of changes in long-run producer
surplus are widely used in applied welfare analysis to indicate how suppliers of various inputs
fare as conditions change. The final sections of this chapter illustrate several such analyses.

ECONOMIC EFFICIENCY AND WELFARE ANALYSIS

Long-run competitive equilibria may have the desirable property of allocating resources
“efficiently.”Although we will have far more to say about this concept in a general equilibrium
context in Chapter 13, here we can offer a partial equilibrium description of why the result
might hold. Remember from Chapter 5 that the area below a demand curve and above market
price represents consumer surplus—the extra utility consumers receive from choosing to
purchase a good voluntarily rather than being forced to do without it. Similarly, as we saw in
the previous section, producer surplus ismeasured as the area belowmarket price and above the
long-run supply curve, which represents the extra return that productive inputs receive rather
than having no transactions in the good. Overall then, the area between the demand curve and
the supply curve represents the sum of consumer and producer surplus: it measures the total
additional value obtained by market participants by being able to make market transactions in
this good. It seems clear that this total area ismaximized at the competitivemarket equilibrium.

A graphic proof
Figure 12.12 shows a simplified proof. Given the demand curve (D) and the long-run supply
curve (S), the sum of consumer and producer surplus is given by distance AB for the first unit
produced. Total surplus continues to increase as additional output is produced—up to the
competitive equilibrium level, Q �. This level of production will be achieved when price is at
the competitive level, P�. Total consumer surplus is represented by the light shaded area in
the figure, total producer surplus by the darker shaded area. Clearly, for output levels less
than Q � (say, Q 1), total surplus would be reduced. One sign of this misallocation is that, at
Q 1, demanders would value an additional unit of output at P1 whereas average and margi-
nal costs would be given by P2. Because P1 > P2, total welfare would clearly increase by pro-
ducing one more unit of output. A transaction that involved trading this extra unit at any
price between P1 and P2 would be mutually beneficial: both parties would gain.

The total welfare loss that occurs at output levelQ 1 is given by area FEG. The distribution
of surplus at output level Q 1 will depend on the precise (nonequilibrium) price that prevails
in the market. At a price of P1, consumer surplus would be reduced substantially to area
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AFP1, whereas producers might actually gain because producer surplus is now P1FGB. At a
low price such as P2 the situation would be reversed, with producers being much worse off
than they were initially. Hence the distribution of the welfare losses from producing less than
Q � will depend on the price at which transactions are conducted. However, the size of the
total loss is given by FEG, regardless of the price settled upon.12

A mathematical proof
Mathematically, we choose Q to maximize

consumer surplus þ producer surplus ¼ ½U ðQ Þ � PQ � þ
"
PQ �∫

Q

0

PðQ Þ dQ
#

¼ U ðQ Þ � ∫
Q

0

PðQ Þ dQ , (12.59)

where U ðQ Þ is the utility function of the representative consumer and PðQ Þ is the long-run
supply relation. In long-run equilibria along the long-run supply curve, PðQ Þ ¼ AC ¼ MC .
Maximization of Equation 12.59 with respect to Q yields

U 0ðQ Þ ¼ P ðQ Þ ¼ AC ¼ MC , (12.60)

so maximization occurs where the marginal value of Q to the representative consumer is
equal to market price. But this is precisely the competitive supply-demand equilibrium,
because the demand curve represents consumers’ marginal valuations whereas the supply
curve reflects marginal (and, in long-term equilibrium, average) cost.

FIGURE 12.12 Competitive Equilibrium and Consumer/Producer Surplus

At the competitive equilibrium (Q �), the sum of consumer surplus (shaded lighter gray) and pro-
ducer surplus (shaded darker) is maximized. For an output levelQ 1 < Q �, there is a deadweight loss
of consumer and producer surplus that is given by area FEG.
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12Increases in output beyond Q � also clearly reduce welfare.
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Applied welfare analysis
The conclusion that the competitive equilibrium maximizes the sum of consumer and
producer surplus mirrors a series of more general economic efficiency “theorems” we will
examine in Chapter 13. Describing the major caveats that attach to these theorems is best
delayed until that more extended discussion. Here we are more interested in showing how
the competitive model is used to examine the consequences of changing economic condi-
tions on the welfare of market participants. Usually such welfare changes are measured by
looking at changes in consumer and producer surplus.

EXAMPLE 12.6 Welfare Loss Computations

Use of consumer and producer surplus notions makes possible the explicit calculation of
welfare losses from restrictions on voluntary transactions. In the case of linear demand and
supply curves, this computation is especially simple because the areas of loss are frequently
triangular. For example, if demand is given by

QD ¼ 10� P (12.61)

and supply by

QS ¼ P � 2, (12.62)

then market equilibrium occurs at the point P� ¼ 6,Q � ¼ 4. Restriction of output to
_
Q ¼ 3

would create a gap between what demanders are willing to pay ðPD ¼ 10� Q ¼ 7Þ and what
suppliers require ðPS ¼ 2þ

_
Q ¼ 5Þ. Thewelfare loss from restricting transactions is given by a

triangle with a base of 2 ð¼ PD � PS ¼ 7� 5Þ and a height of 1 (the difference between Q �
and

_
Q ). Hence the welfare loss is one dollar if P is measured in dollars per unit and Q is

measured in units. More generally, the loss will be measured in the units in which P ⋅Q is
measured.

Computations with constant elasticity curves. More realistic results can usually be ob-
tained by using constant elasticity demand and supply curves based on econometric studies.
In Example 12.3 we examined such a model of the U.S. automobile market. We can simplify
that example a bit by assuming that P is measured in thousands of dollars andQ in millions of
automobiles and that demand is given by

QD ¼ 200P�1:2 (12.63)

and supply by

QS ¼ 1:3P . (12.64)

Equilibrium in the market is given by P� ¼ 9:87,Q � ¼ 12:8. Suppose now that govern-
ment policy restricts automobile sales to 11 (million) in order to control emissions of
pollutants. An approximation to the direct welfare loss from such a policy can be found by the
triangular method used earlier.

With
_
Q ¼ 11, we have PD ¼ ð11=200Þ�0:83 ¼ 11:1 and PS ¼ 11=1:3 ¼ 8:46. Hence,

the welfare loss “triangle” is given by 0:5ðPD � PSÞðQ � �
_
Q Þ ¼ 0:5ð11:1� 8:46Þ ⋅

ð12:8� 11Þ ¼ 2:38. Here the units are those of P times Q : billions of dollars. The approxi-
mate13 value of the welfare loss is therefore $2.4 billion, which might be weighed against the
expected gain from emissions control.

(continued)

13A more precise estimate of the loss can be obtained by integrating PD � PS over the range Q ¼ 11 to Q ¼ 12:8. With
exponential demand and supply curves, this integration is often easy. In the present case, the technique yields an estimated
welfare loss of 2.28, showing that the triangular approximation is not too bad even for relatively large price changes. Hence
we will primarily use such approximations in later analysis.
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EXAMPLE 12.6 CONTINUED

Distribution of loss. In the automobile case, the welfare loss is shared about equally by con-
sumers and producers. An approximation for consumers’ losses is given by 0:5ðPD � P�Þ ⋅
ðQ � �

_
Q Þ ¼ 0:5ð11:1� 9:87Þð12:8� 11Þ ¼ 1:11 and for producers by 0:5ð9:87� 8:46Þ ⋅

ð12:8� 11Þ ¼ 1:27. Because the price elasticity of demand is somewhat greater (in absolute
value) than the price elasticity of supply, consumers incur less than half the loss and producers
somewhat more than half. With a more price elastic demand curve, consumers would incur a
smaller share of the loss.

QUERY: How does the size of the total welfare loss from a quantity restriction depend on the
elasticities of supply and demand? What determines how the loss will be shared?

PRICE CONTROLS AND SHORTAGES

Sometimes governments may seek to control prices at below equilibrium levels. Although
adoption of such policies may be based on noble motives, the controls deter long-run supply
responses and create welfare losses for both consumers and producers. A simple analysis of this
possibility is provided by Figure 12.13. Initially the market is in long-run equilibrium at P1,
Q 1(point E). An increase in demand fromD toD0 would cause the price to rise toP2 in the short
run and encourage entry by new firms. Assuming this market is characterized by increasing costs
(as reflected by the positively sloped long-run supply curve LS), price would fall somewhat as a
result of this entry, ultimately settling at P3. If these price changes were regarded as undesirable
then the government could, in principle, prevent them by imposing a legally enforceable ceiling
priceofP1. Thiswould causefirms to continue to supply their previous output ðQ 1Þ; but, because
at P1 demanders now want to purchaseQ 4, there will be a shortage given byQ 4 �Q 1.

Welfare evaluation
The welfare consequences of this price-control policy can be evaluated by comparing con-
sumer and producer surplus measures prevailing under this policy to those that would have
prevailed in the absence of controls. First, the buyers of Q 1 gain the consumer surplus given
by area P3CEP1 because they can buy this good at a lower price than would exist in an
uncontrolled market. This gain reflects a pure transfer from producers out of the amount of
producer surplus that would exist without controls. What current consumers have gained
from the lower price, producers have lost. Although this transfer does not represent a loss of
overall welfare, it does clearly affect the relative well-being of the market participants.

Second, the areaAE 0C represents the value of additional consumer surplus that would have
been attained without controls. Similarly, the area CE 0E reflects additional producer surplus
available in the uncontrolled situation. Together, these two areas (that is, areaAE 0E) represent
the total value of mutually beneficial transactions that are prevented by the government policy
of controlling price. This is, therefore, a measure of the pure welfare costs of that policy.

Disequilibrium behavior
The welfare analysis depicted in Figure 12.13 also suggests some of the types of behavior that
might be expected as a result of the price-control policy. Assuming that observed market
outcomes are generated by

Q ðP1Þ ¼ min½QDðP1Þ,QSðP1Þ�, (12.65)
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suppliers will be content with this outcome, but demanders will not because theywill be forced
to accept a situation of excess demand. They have an incentive to signal their dissatisfaction to
suppliers through increasing price offers. Such offers may not only tempt existing suppliers
to make illegal transactions at higher than allowed prices but may also encourage new entrants
to make such transactions. It is this kind of activity that leads to the prevalence of black
markets in most instances of price control. Modeling the resulting transactions is difficult for
two reasons. First, these may involve non–price-taking behavior because the price of each
transaction must be individually negotiated rather than set by “the market.” Second, non-
equilibrium transactions will often involve imperfect information. Any pair of market partici-
pants will usually not knowwhat other transactors are doing, although such actions may affect
their welfare by changing the options available. Some progress has been made in modeling
such disequilibriumbehavior using game theory techniques (seeChapter 18).However, other
than the obvious prediction that transactions will occur at prices above the price ceiling, no
general results have been obtained. The types of black-market transactions undertaken will
depend on the specific institutional details of the situation.

TAX INCIDENCE ANALYSIS

The partial equilibrium model of competitive markets has also been widely used to study the
impact of taxes. Although, as we will point out, these applications are necessarily limited by
their inability to analyze tax effects that spread through many markets, they do provide
important insights on a number of issues.

FIGURE 12.13 Price Controls and Shortages

A shift in demand from D to D0 would raise price to P2 in the short run. Entry over the long run
would yield a final equilibrium of P3,Q 3. Controlling the price at P1 would prevent these actions and
yield a shortage ofQ 4 �Q 1. Relative to the uncontrolled situation, the price control yields a transfer
from producers to consumers (area P3CEP1) and a deadweight loss of forgone transactions given by
the two areas AE 0C and CE 0E.
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A mathematical model
The effect of a per-unit tax can be most easily studied using the mathematical model of supply
and demand that was introduced previously. Now, however, we need to make a distinction
between the price paid by demanders ðPDÞ and the price received by suppliers ðPSÞ, because a
per-unit tax ðtÞ introduces a “wedge” between these two magnitudes:

PD � PS ¼ t ; (12.66)

or, in terms of the small price changes we wish to examine,

dPD � dPS ¼ dt . (12.67)

Maintenance of equilibrium in the market requires

dQD ¼ dQS

or

DPdPD ¼ SPdPS , (12.68)

where DP and SP are the price derivatives of the demand and supply functions, respectively.
We can use Equations 12.67 and 12.68 to solve for the effect of the tax on PD :

DPdPD ¼ SPdPS ¼ SP ðdPD � dt Þ. (12.69)

Hence
dPD

dt
¼ SP

SP �DP
¼ eS

eS � eD
, (12.70)

where eS and eD represent the price elasticities of supply and demand and where the final
equation is derived by multiplying both numerator and denominator by P=Q . A similar set
of manipulations for the change in supply price gives

dPS

dt
¼ eD

eS � eD
: (12.71)

Because eD � 0 and eS 	 0, these calculations provide the obvious results
dPD

dt
	 0,

dPS

dt
� 0.

(12.72)

If eD ¼ 0 (demand is perfectly inelastic), then dPD=dt ¼ 1 and the per-unit tax is completely
paid by demanders. Alternatively, if eD ¼ �∞, then dPS=dt ¼ �1 and the tax is wholly paid
by producers. More generally, dividing Equation 12.71 by Equation 12.70 yields

� dPS=dt
dPD=dt

¼ �eD
eS
, (12.73)

which shows that the actor with the less elastic responses (in absolute value) will experience
most of the price change occasioned by the tax.

A welfare analysis
Figure 12.14 permits a simplified welfare analysis of the tax incidence issue. Imposition of the
unit tax, t , creates a vertical wedge between the supply and demand curves, and the quantity
traded declines to Q ��. Demanders incur a loss of consumer surplus given by area PDFEP

�,
of which PDFHP� is transferred to the government as a portion of total tax revenues. The
balance of total tax revenues ðP�HGPSÞ is paid by producers, who incur a total loss of
producer surplus given by area P�EGPS . Notice that the reduction in combined consumer
and producer surplus exceeds total tax revenues collected by area FEG. This area represents a
“deadweight” loss that arises because some mutually beneficial transactions are discouraged

424 Part 4 Competitive Markets



by the tax. In general, the sizes of all of the various areas illustrated in Figure 12.14 will be
affected by the price elasticities involved. To determine the final incidence of the producers’
share of the tax would require an explicit analysis of input markets—the burden of the tax
would be reflected in reduced rents for those inputs characterized by relatively inelastic
supply. More generally, a complete analysis of the incidence question requires a general
equilibrium model that can treat many markets simultaneously. We discuss such models in
the next chapter.

Deadweight loss and elasticity
All non–lump-sum taxes involve deadweight losses because they alter the behavior of eco-
nomic actors. The size of such losses will depend in a rather complex way on the elasticities of
demand and supply in the market. A linear approximation to the deadweight loss accompa-
nying a small tax dt is given by

DW ¼ �0:5ðdt ÞðdQ Þ. (12.74)

But from the definition of elasticity, we know that

dQ ¼ eDdPD ⋅
Q 0

P0
, (12.75)

where Q 0 and P0 are the pretax values for quantity and price, respectively. Combining
Equations 12.75 and 12.70 yields

dQ ¼ eD
eS

eS � eD
dt

Q 0

P0
, (12.76)

FIGURE 12.14 Tax Incidence Analysis

Imposition of a specific tax of amount t per unit creates a “wedge” between the price consumers pay
PD

� �
and what suppliers receive PS

� �
. The extent to which consumers or producers pay the tax

depends on the price elasticities of demand and supply.
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and substitution into Equation 12.74 provides a final expression for the loss:

DW ¼ �0:5
dt
P0

� �2 eDeS
eS � eD

P0Q 0. (12.77)

Clearly, deadweight losses are zero in cases in which either eD or eS is zero because then the
tax does not alter the quantity of the good traded. More generally, deadweight losses are
smaller in situations where eD or eS is small. In principle, Equation 12.77 can be used to
evaluate the deadweight losses accompanying any complex tax system. This information
might provide some insights on how a tax system could be designed to minimize the overall
“excess burden” involved in collecting a needed amount of tax revenues (see Problems 12.9
and 12.10). Notice also that DW is proportional to the square of the tax rate—marginal
excess burden increases with the tax rate.

Transaction costs
Although we have developed this discussion in terms of tax incidence theory, models
incorporating a wedge between buyers’ and sellers’ prices have a number of other applica-
tions in economics. Perhaps the most important of these involve costs associated with making
market transactions. In some cases these costs may be explicit. Most real estate transactions,
for example, take place through a third-party broker, who charges a fee for the service of
bringing buyer and seller together. Similar explicit transaction fees occur in the trading of
stocks and bonds, boats and airplanes, and practically everything that is solid at auction. In all
of these instances, buyers and sellers are willing to pay an explicit fee to an agent or broker
who facilitates the transaction. In other cases, transaction costs may be largely implicit.
Individuals trying to purchase a used car, for example, will spend considerable time and
effort reading classified advertisements and examining vehicles, and these activities amount to
an implicit cost of making the transaction.

EXAMPLE 12.7 The Excess Burden of a Tax

In Example 12.6 we examined the loss of consumer and producer surplus that would occur if
automobile sales were cut from their equilibrium level of 12.8 (million) to 11 (million). An
auto tax of $2,640 (i.e., 2.64 thousand dollars) would accomplish this reduction because it
would introduce exactly the wedge between demand and supply price that was calculated
previously. Since we have assumed eD ¼ �1:2 and eS ¼ 1:0 in Example 12.6 and since initial
spending on automobiles is approximately $126 (billion), Equation 12.77 predicts that the
excess burden from the auto tax would be

DW ¼ 0:5
2:64
9:87

� �2 1:2
2:2

� �
126 ¼ 2:46: (12.78)

This loss of 2.46 billion dollars is approximately the same as the loss from emissions control
calculated in Example 12.6. It might be contrasted to total tax collections, which in this case
amount to $29 billion ($2,640 per automobile times 11 million automobiles in the post-tax
equilibrium). Here, the deadweight loss equals approximately 8 percent of total tax revenues
collected.

Marginal burden. An incremental increase in the auto tax would be relatively more costly in
terms of excess burden. Suppose the government decided to round the auto tax upward to a
flat $3,000 per car. In this case, car sales would drop to approximately 10.7 (million). Tax
collections would amount to $32.1 billion, an increase of $3.1 billion over what was com-
puted previously. Equation 12.78 can be used to show that deadweight losses now amount to
$3.17 billion—an increase of $0.71 billion above the losses experienced with the lower tax.
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At the margin, then, additional deadweight losses amount to about 23 percent (0.72/3.1) of
additional revenues collected. Hence marginal and average excess burden computations may
differ significantly.

QUERY: Can you explain intuitively why the marginal burden of a tax exceeds its average
burden? Under what conditions would the marginal excess burden of a tax exceed additional
tax revenues collected?

To the extent that transaction costs are on a per-unit basis (as they are in the real estate,
securities, and auction examples), our previous taxation example applies exactly. From the point
of view of the buyers and sellers, it makes little difference whether t represents a per-unit tax or a
per-unit transaction fee, because the analysis of the fee’s effect on the market will be the same.
That is, the fee will be shared between buyers and sellers depending on the specific elasticities
involved. Trading volumewill be lower than in the absence of such fees.14 A somewhat different
analysis would hold, however, if transaction costs were a lump-sum amount per transaction. In
that case, individuals would seek to reduce the number of transactions made, but the existence
of the charge would not affect the supply-demand equilibrium itself. For example, the cost of
driving to the supermarket ismainly a lump-sum transaction cost on shopping for groceries. The
existence of such a charge may not significantly affect the price of food items or the amount of
food consumed (unless it tempts people to grow their own), but the chargewill cause individuals
to shop less frequently, to buy larger quantities on each trip, and to hold larger inventories of
food in their homes than would be the case in the absence of such a cost.

Effects on the attributes of transactions
More generally, taxes or transaction costs may affect some attributes of transactions more than
others. In our formal model, we assumed that such costs were based only on the physical
quantity of goods sold. The desire of suppliers and demanders to minimize costs therefore led
them to reduce quantity traded. When transactions involve several dimensions (such as qual-
ity, risk, or timing), taxes or transaction costs may affect some or all of these dimensions—
depending on the precise basis on which the costs are assessed. For example, a tax on quantity
may cause firms to upgrade product quality, or information-based transaction costs may
encourage firms to produce less risky, standardized commodities. Similarly, a per-transaction
cost (travel costs of getting to the store) may cause individuals to make fewer but larger
transactions (and to hold larger inventories). The possibilities for these various substitutions
will obviously depend on the particular circumstances of the transaction. We will examine
several examples of cost-induced changes in attributes of transactions in later chapters.15

TRADE RESTRICTIONS

Restrictions on the flow of goods in international commerce have effects similar to those we
just examined for taxes. Impediments to free trade may reduce mutually beneficial transac-
tions and cause a variety of transfers among the various parties involved. Once again, the
competitive model of supply and demand is frequently used to study these effects.

14This analysis does not consider possible benefits obtained from brokers. To the extent that these services are valuable to
the parties in the transaction, demand and supply curves will shift outward to reflect this value. Hence trading volume may
actually expand with the availability of services that facilitate transactions, although the costs of such services will continue
to create a wedge between sellers’ and buyers’ prices.
15For the classic treatment of this topic, see Y. Barzel, “An Alternative Approach to the Analysis of Taxation,” Journal of
Political Economy (December 1976): 1177–97.
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Gains from international trade
Figure 12.15 illustrates the domestic demand and supply curves for a particular good, say,
shoes. In the absence of international trade, the domestic equilibrium price of shoes would
be P� and quantity would be Q �. Although this equilibrium would exhaust all mutually
beneficial transactions between domestic shoe producers and domestic demanders, opening
of international trade presents a number of additional options. If world shoe prices, PW , are
less than the prevailing domestic price, P�, then the opening of trade will cause prices to fall
to this world level.16 This drop in price will cause quantity demanded to increase to Q 1,
whereas quantity supplied by domestic producers will fall toQ 2. Imported shoes will amount
to Q 1 �Q 2. In short, what shoes domestic producers do not supply at the world price are
instead provided by foreign sources.

The shift in the market equilibrium from E0 to E1 causes a large increase in consumer
surplus, given by the area P�E0E1PW . Part of this gain reflects a transfer from domestic shoe
producers (area P�E0APW ), and part represents an unambiguous welfare gain (area E0E1A).
The source of consumer gains here is obvious: buyers get shoes at a lower price than was
previously available in the domestic market. As in our analysis of taxation, losses of producer
surplus are experienced by those inputs that give the long-run supply curve its upward slope.
If, for example, the domestic shoe industry experiences increasing costs because shoemaker

FIGURE 12.15 Opening of International Trade Increases Total Welfare

Opening of international trade lowers price from P� to PW , at which point domestic producers
supplyQ 2 and demanders buyQ 1. Imports amount toQ 1 �Q 2. The lower price results in a transfer
from domestic producers to consumers (shaded lighter gray) and a net gain of consumer surplus
(shaded darker gray).
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16Throughout our analysis we will assume that this country is a price taker in the world market and can purchase all of the
imports it wishes without affecting the price, PW . For an analysis of an upward sloping supply curve for imports, see
Problem 12.11.

428 Part 4 Competitive Markets



wages are driven up as industry output expands, then the decline in output fromQ � toQ 2 as
a result of trade will reverse this process, causing shoemaker wages to fall.

Tariff protection and the politics of trade
Shoemakers are unlikely to take wage losses arising from shoe imports lying down. Instead,
they will press the government for protection from the flood of imported footwear. Because
the loss of producer surplus is experienced by relatively few individuals whereas consumer
gains from trade are spread across many shoe buyers, shoemakers may have considerably
greater incentives to organize opposition to imports than consumers would have to organize
to keep trade open. The result may be the adoption of protectionist measures.

Historically, the most important type of protection employed has been a tariff: a tax on the
imported good. The effects of such a tax are shown in Figure 12.16. Now comparisons begin
from the free-trade equilibrium,E1. Imposition of a per-unit tariff on shoes for domestic buyers
of amount t raises the effective price to PW þ t ¼ PR. This price rise causes quantity demanded
to fall from Q 1 to Q 3, whereas domestic production expands from Q 2 to Q 4. The total
quantity of shoe imports falls fromQ 1 � Q 2 toQ 3 � Q 4. Because each imported pair of shoes
is now subject to a tariff, total tariff revenues are given by the area BE2DC, measured by
tðQ 3 � Q 4Þ.

Imposition of the tariff on imported shoes creates a variety ofwelfare effects. Total consumer
surplus is reduced by the area PRE2E1PW . Part of this, as we have seen, is transferred into tariff
revenues and part is transferred into increased domestic producers’ surplus (areaPRBAPW ). The
two triangles, BCA and E2E1D, represent losses of consumer surplus that are not transferred to
anyone; these are a deadweight loss from the tariff and are similar to the excess burden imposed

FIGURE 12.16 Effects of a Tariff

Imposition of a tariff of amount t raises price toPR ¼ PW þ t . This results in collection of tariff revenue
(area BE2DC), a transfer from consumers to producers (area PRBAPW ), and two triangles measuring
deadweight loss (shaded). A quota has similar effects, though in this case no revenues are collected.
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by any tax. All of these areas can bemeasured if good empirical estimates of the domestic supply
and demand elasticities for imported goods are available, as we now show.

Quantitative estimates of deadweight losses
Estimates of the sizes of the welfare loss triangle in Figure 12.16 can be readily calculated.
Because PR ¼ ð1þ tÞPW , the proportional change in quantity demanded brought about by
this price rise is given by

Q3 �Q1

Q1
¼ PR � PW

PW
⋅ eD ¼ teD , (12.79)

and the area of triangle E2E1D is given by

DW1 ¼ 0:5ðPR � PW ÞðQ1 �Q3Þ ¼ �0:5t2eDPWQ1. (12.80)

Similarly, the loss in consumer surplus represented by area BCA is given by

DW2 ¼ 0:5ðPR � PW ÞðQ4 �Q2Þ ¼ 0:5t 2eSPWQ2. (12.81)

Notice that the values of bothDW1 andDW2 are convex functions of the tariff rate ðtÞ and that
each depends on the initial value of total revenues. When imports initially represent a large
share of the domestic market and when eD and eS are of similar sizes (in absolute value), this
suggests thatDW1 will generally be the larger of the two deadweight losses. These losses may
be large relative to total transfers to producers (area PRBAPW ), thereby leading to rather large
estimates for the “costs” of some tariffs relative to the value of production benefits generated.

Other types of trade protection
Many other types of trade restrictions can be illustrated by adapting the tariff model we have
already developed in Figure 12.16. A quota that limits imports to Q 3 � Q 4 would have
effects that are very similar to those shown in the figure: market price would rise to PR; a
substantial transfer from consumers to domestic producers would occur (area PRBAPW ); and
there would be deadweight losses represented by the triangles BCA and E2E1D. With a
quota, however, no revenues are collected by the government, so the loss of consumer
surplus represented by area BE2DC must go elsewhere. It might be captured by owners of
import licenses or by foreign producers, depending on how quota rights are assigned.
Nonquantitative restrictions such as inspection or testing requirements also impose cost
and time delays that can be treated as an “implicit” tariff on imports. Figure 12.16 can easily
be adapted to illustrate the effects of these impediments to trade.

EXAMPLE 12.8 Trade and Tariffs

These various aspects of trade policy can be illustrated with our simplified model of the
automobile market. We have shown previously that, with a demand function given by

QD ¼ 200P�1:2 (12.82)

and supply by

QS ¼ 1:3P , (12.83)

the domestic market has a long-run equilibrium of

P� ¼ 9:87,
Q � ¼ 12:8:

(12.84)

If automobiles were available at a world price of 9 (thousand dollars), demand would
expand to Q D ¼ 14:3 and domestic supply would shrink to Q S ¼ 11:7. Imports would
amount to 2.6 (million) cars. As shown in Figure 12.15, consumers would gain significantly
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by the availability of imports (consumer surplus would expand by approximately 11.8 billion
dollars), although a significant portion of this gain (10.7 billion) would represent a transfer
from domestic producers to consumers.

Effects of a tariff. If pressure from domestic producers leads the government to adopt, say, a
$500 tariff, then the world price of cars will rise to 9.5 (thousand dollars), quantity demanded
will contract (to 13.4), and domestic supply will expand (to 12.4). Imports would contract to
1.0 (million) cars. The welfare effects of these changes can be calculated directly or can be
approximated by the expressions in Equations 12.80 and 12.81. A direct calculation of DW1
yields17

DW1 ¼ 0:5ð0:5Þð14:3� 13:4Þ ¼ 0:225, (12.85)

and for DW2 we have

DW2 ¼ 0:5ð0:5Þð12:4� 11:7Þ ¼ 0:175. (12.86)

Hence the total deadweight loss from the tariff (0.4 billion) is approximately equal to total
tariff revenue (0.5 billion).

Effects of a quota. An automobile import quota of 1 million cars would have identical
effects to that of a $500 tariff. Equilibrium price would rise by $500, and there would be a
large transfer from domestic consumers to domestic producers. Deadweight losses of $0.4
billion would also be the same as before. Now, however, there would be no tariff revenues.
The $0.5 billion loss in consumer surplus will instead be transferred to whoever can appro-
priate the rights to import cars. Because the right to import a car is worth $500, it seems likely
there will be active interest in acquiring such rights.

QUERY: What is the total transfer from consumers to producers as a result of the auto tariff
or quota in this problem? Who would ultimately receive this transfer?

SUMMARY

In this chapter we developed a detailed model of how the
equilibrium price is determined in a single competitive mar-
ket. This model is basically the one first fully articulated by
Alfred Marshall in the latter part of the nineteenth century.
It remains the single most important component of all of
microeconomics. Some of the properties of this model we
examined may be listed as follows.

• Short-run equilibrium prices are determined by the in-
teraction of what demanders are willing to pay (demand)
and what existing firms are willing to produce (supply).
Both demanders and suppliers act as price takers in
making their respective decisions.

• In the long run, the number of firms may vary in re-
sponse to profit opportunities. If free entry is assumed
then firms will earn zero economic profits over the long
run. Because firms also maximize profits, the long-run
equilibrium condition is therefore P ¼ MC ¼ AC .

• The shape of the long-run supply curve depends on how
the entry of new firms affects input prices. If entry has no
impact on input prices, the long-run supply curve will be
horizontal (infinitely elastic). If entry raises input prices,
the long-run supply curve will have a positive slope.

• If shifts in long-run equilibrium affect input prices, this
will also affect the welfare of input suppliers. Such wel-
fare changes can be measured by changes in long-run
producer surplus.

• The twin concepts of consumer and producer surplus pro-
vide usefulways ofmeasuring thewelfare impact onmarket
participants of various economic changes. Changes in con-
sumer surplus represent the monetary value of changes in
consumer utility. Changes in producer surplus represent
changes in the monetary returns that inputs receive.

• The competitive model can be used to study the impact
of various economic policies. For example, it can be used

17Because the tariff here is approximately t ¼ :055, Equation 12.80 yields an approximate DW1 value of 0.234, whereas
Equation 12.81 shows DW2 ¼ 0:159. The estimated total deadweight loss is approximately 0.4 billion.
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PROBLEMS
12.1
Suppose there are 100 identical firms in a perfectly competitive industry. Each firm has a short-run total
cost function of the form

CðqÞ ¼ 1
300

q3 þ 0:2q2 þ 4q þ 10.

a. Calculate the firm’s short-run supply curve with q as a function of market price (P).

b. On the assumption that there are no interaction effects among costs of the firms in the industry,
calculate the short-run industry supply curve.

c. Suppose market demand is given by Q ¼ �200P þ 8, 000. What will be the short-run equilib-
rium price-quantity combination?

12.2
Suppose there are 1,000 identical firms producing diamonds. Let the total cost function for each firm be
given by

Cðq,wÞ ¼ q2 þ wq,

where q is the firm’s output level and w is the wage rate of diamond cutters.

a. If w ¼ 10, what will be the firm’s (short-run) supply curve? What is the industry’s supply curve?
How many diamonds will be produced at a price of 20 each? How many more diamonds would
be produced at a price of 21?

b. Suppose the wages of diamond cutters depend on the total quantity of diamonds produced and
suppose the form of this relationship is given by

w ¼ 0:002Q ;

here Q represents total industry output, which is 1,000 times the output of the typical firm.

In this situation, show that the firm’s marginal cost (and short-run supply) curve depends
on Q . What is the industry supply curve? How much will be produced at a price of 20? How
much more will be produced at a price of 21? What do you conclude about the shape of the
short-run supply curve?

12.3
A perfectly competitive market has 1,000 firms. In the very short run, each of the firms has a fixed supply
of 100 units. The market demand is given by

Q ¼ 160,000� 10,000P .

a. Calculate the equilibrium price in the very short run.

b. Calculate the demand schedule facing any one firm in this industry.

to illustrate the transfers and welfare losses associated
with price controls.

• The competitive model can also be applied to study
taxation. The model illustrates both tax incidence (that
is, who bears the actual burden of a tax) and the welfare
losses associated with taxation (the excess burden). Sim-
ilar conclusions can be derived by using the competitive
model to study transactions costs.

• A final important application uses the competitive model
to study international trading relationships. The model
can help us identify those who win and those who lose
from the opening of trade. It can also be used to examine
the welfare impact of trade restrictions.
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c. Calculate what the equilibrium price would be if one of the sellers decided to sell nothing or if
one seller decided to sell 200 units.

d. At the original equilibrium point, calculate the elasticity of the industry demand curve and the
elasticity of the demand curve facing any one seller.

Suppose now that, in the short run, each firm has a supply curve that shows the quantity the firm
will supply ðqiÞ as a function of market price. The specific form of this supply curve is given by

qi ¼ �200þ 50P .
Using this short-run supply response, supply revised answers to (a)–(d).

12.4
A perfectly competitive industry has a large number of potential entrants. Each firm has an identical cost
structure such that long-run average cost is minimized at an output of 20 units ðqi ¼ 20Þ. The
minimum average cost is $10 per unit. Total market demand is given by

Q ¼ 1,500� 50P .

a. What is the industry’s long-run supply schedule?

b. What is the long-run equilibrium price ðP�Þ? The total industry output ðQ �Þ? The output of
each firm ðq�Þ? The number of firms? The profits of each firm?

c. The short-run total cost function associated with each firm’s long-run equilibrium output is
given by

CðqÞ ¼ 0:5q2 � 10q þ 200.

Calculate the short-run average and marginal cost function. At what output level does short-
run average cost reach a minimum?

d. Calculate the short-run supply function for each firm and the industry short-run supply
function.

e. Suppose now that the market demand function shifts upward to Q ¼ 2,000� 50P . Using this
new demand curve, answer part (b) for the very short run when firms cannot change their
outputs.

f. In the short run, use the industry short-run supply function to recalculate the answers to (b).

g. What is the new long-run equilibrium for the industry?

12.5
Suppose that the demand for stilts is given by

Q ¼ 1,500� 50P
and that the long-run total operating costs of each stilt-making firm in a competitive industry are
given by

CðqÞ ¼ 0:5q2 � 10q.
Entrepreneurial talent for stilt making is scarce. The supply curve for entrepreneurs is given by

QS ¼ 0:25w,

where w is the annual wage paid.
Suppose also that each stilt-making firm requires one (and only one) entrepreneur (hence, the

quantity of entrepreneurs hired is equal to the number of firms). Long-run total costs for each firm are
then given by

Cðq,wÞ ¼ 0:5q2 � 10q þ w.

a. What is the long-run equilibrium quantity of stilts produced? How many stilts are produced by
each firm? What is the long-run equilibrium price of stilts? How many firms will there be? How
many entrepreneurs will be hired, and what is their wage?
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b. Suppose that the demand for stilts shifts outward to

Q ¼ 2,428� 50P .
How would you now answer the questions posed in part (a)?

c. Because stilt-making entrepreneurs are the cause of the upward-sloping long-run supply curve
in this problem, they will receive all rents generated as industry output expands. Calculate the
increase in rents between parts (a) and (b). Show that this value is identical to the change in
long-run producer surplus as measured along the stilt supply curve.

12.6
The handmade snuffbox industry is composed of 100 identical firms, each having short-run total costs
given by

STC ¼ 0:5q2 þ 10q þ 5
and short-run marginal costs given by

SMC ¼ q þ 10,
where q is the output of snuffboxes per day.

a. What is the short-run supply curve for each snuffbox maker? What is the short-run supply curve
for the market as a whole?

b. Suppose the demand for total snuffbox production is given by

Q ¼ 1,100� 50P .
What will be the equilibrium in this marketplace?What will each firm’s total short-run profits be?

c. Graph the market equilibrium and compute total short-run producer surplus in this case.

d. Show that the total producer surplus you calculated in part (c) is equal to total industry profits
plus industry short-run fixed costs.

e. Suppose the government imposed a $3 tax on snuffboxes. How would this tax change the
market equilibrium?

f. How would the burden of this tax be shared between snuffbox buyers and sellers?

g. Calculate the total loss of producer surplus as a result of the taxation of snuffboxes. Show that
this loss equals the change in total short-run profits in the snuffbox industry. Why don’t fixed
costs enter into this computation of the change in short-run producer surplus?

12.7
The perfectly competitive videotape copying industry is composed of many firms that can copy five tapes
per day at an average cost of $10 per tape. Each firm must also pay a royalty to film studios, and the per-
film royalty rate (r) is an increasing function of total industry output (Q ):

r ¼ 0:002Q .
Demand is given by

Q ¼ 1,050� 50P .

a. Assuming the industry is in long-run equilibrium, what will be the equilibrium price and quantity
of copied tapes? How many tape firms will there be? What will the per-film royalty rate be?

b. Suppose that demand for copied tapes increases to

Q ¼ 1,600� 50P .
In this case, what is the long-run equilibrium price and quantity for copied tapes? How many
tape firms are there? What is the per-film royalty rate?

c. Graph these long-run equilibria in the tape market and calculate the increase in producer surplus
between the situations described in parts (a) and (b).

434 Part 4 Competitive Markets



d. Show that the increase in producer surplus is precisely equal to the increase in royalties paid asQ
expands incrementally from its level in part (b) to its level in part (c).

e. Suppose that the government institutes a $5.50 per-film tax on the film copying industry.
Assuming that the demand for copied films is that given in part (a), how will this tax affect the
market equilibrium?

f. How will the burden of this tax be allocated between consumers and producers? What will be
the loss of consumer and producer surplus?

g. Show that the loss of producer surplus as a result of this tax is borne completely by the film
studios. Explain your result intuitively.

12.8
The domestic demand for portable radios is given by

Q ¼ 5,000� 100P ,

where price (P) is measured in dollars and quantity (Q ) is measured in thousands of radios per year.
The domestic supply curve for radios is given by

Q ¼ 150P .

a. What is the domestic equilibrium in the portable radio market?

b. Suppose portable radios can be imported at a world price of $10 per radio. If trade were un-
encumbered, what would the new market equilibrium be? How many portable radios would
be imported?

c. If domestic portable radio producers succeeded in having a $5 tariff implemented, how would
this change the market equilibrium? How much would be collected in tariff revenues? How
much consumer surplus would be transferred to domestic producers? What would the dead-
weight loss from the tariff be?

d. How would your results from part (c) be changed if the government reached an agreement with
foreign suppliers to “voluntarily” limit the portable radios they export to 1,250,000 per year?
Explain how this differs from the case of a tariff.

Analytical Problems
12.9 Ad valorem taxes
Throughout this chapter’s analysis of taxes we have used per-unit taxes—that is, a tax of a fixed amount
for each unit traded in the market. A similar analysis would hold for ad valorem taxes—that is, taxes on
the value of the transaction (or, what amounts to the same thing, proportional taxes on price). Given an
ad valorem tax rate of t (t ¼ 0:05 for a 5 percent tax), the gap between the price demanders pay and
what suppliers receive is given by PD ¼ ð1þ tÞPS .

a. Show that, for an ad valorem tax,

d ln PD

dt
¼ eS

eS � eD
and

d ln PS

dt
¼ eD

eS � eD
.

b. Show that the excess burden of a small tax is

DW ¼ �0:5
eDeS

eS � eD
t2P0Q 0.

c. Compare these results to those derived in this chapter for a unit tax.
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12.10 The Ramsey formula for optimal taxation
The development of optimal tax policy has been a major topic in public finance for centuries.18 Probably
the most famous result in the theory of optimal taxation is due to the English economist Frank Ramsey,
who conceptualized the problem as how to structure a tax system that would collect a given amount of
revenues with the minimal deadweight loss.19 Specifically, suppose there are n goods (xi with prices pi)
to be taxed with a sequence of ad valorem taxes (see Problem 12.9) whose rates are given by
ti ði ¼ 1,nÞ. Total tax revenue is therefore given by T ¼ Xn

i¼1tipixi . Ramsey’s problem, then, is for a
fixed T to choose tax rates that will minimize total deadweight loss DW ¼ Xn

i¼1DW ðtiÞ.
a. Use the Lagrangian multiplier method to show that the solution to Ramsey’s problem requires

ti ¼ λð1=eS � 1=eDÞ, where λ is the Lagrangian multiplier for the tax constraint.

b. Interpret the Ramsey result intuitively.

c. Describe some shortcomings of the Ramsey approach to optimal taxation.

12.11 International trade by a large country
In our analysis of tariffs we assumed that the country in question faced a perfectly elastic supply curve for
imports. Now assume that this country faces a positively sloped supply curve for imported goods.

a. Show graphically how the level of imports will be determined.

b. Use your graph from part (a) to demonstrate the effects of a tariff in this market.

c. Carefully identify the sources of the various changes in consumer and producer surplus that are
brought about by the tariff in part (b).

d. Show how the deadweight losses brought about by the tariff in this case will depend on the
elasticity of demand and the elasticities of supply of domestic and imported goods.
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E X T E N S I O N S

Demand Aggregation and Estimation

In Chapters 4 through 6 we showed that the assump-
tion of utility maximization implies several properties
for individual demand functions:

• the functions are continuous;

• the functions are homogeneous of degree zero
in all prices and income;

• income-compensated substitution effects are nega-
tive; and

• cross-price substitution effects are symmetric.

In this extension we will examine the extent to
which these properties would be expected to hold for
aggregated market demand functions and what, if any,
restrictions should be placed on such functions. In
addition, we illustrate some other issues that arise in
estimating these aggregate functions and some results
from such estimates.

E12.1 Continuity

The continuity of individual demand functions clearly
implies the continuity of market demand functions.
But there are situations in which market demand func-
tions may be continuous while individual functions are
not. Consider the case where goods—such as an auto-
mobile—must be bought in large, discrete units. Here
individual demand is discontinuous, but the aggre-
gated demands ofmany people are (nearly) continuous.

E12.2 Homogeneity and income
aggregation

Because each individual’s demand function is homo-
geneous of degree 0 in all prices and income, market
demand functions are also homogeneous of degree 0
in all prices and individual incomes. However, market
demand functions are not necessarily homogeneous of
degree 0 in all prices and total income.

To see when demand might depend just on total
income, suppose individual i’s demand forX is given by

xi ¼ aiðP Þ þ bðP Þyi, i ¼ 1,n, (i)

where P is the vector of all market prices, ai(P) is a
set of individual-specific price effects, and b(P) is a
marginal propensity-to-spend function that is the
same across all individuals (although the value of this

parameter may depend on market prices). In this case
the market demand functions will depend on P and
on total income:

Y ¼
Xn
i¼1

yi: (ii)

This shows that market demand reflects the behavior
of a single “typical” consumer. Gorman (1959) shows
that this is the most general form of demand function
that can represent such a typical consumer.

E12.3 Cross-equation constraints

Suppose a typical individual buys k items and that
expenditures on each are given by

pj xj ¼
Xk
i¼1

aij pi þ bj y, j ¼ 1, k. (iii)

If expenditures on these k items exhaust total
income, that is, Xk

j¼1

pj xj ¼ y, (iv)

then summing over all goods shows thatXk
j¼1

aij ¼ 0 for all i (v)

and that Xk
j¼1

bj ¼ 1 (vi)

for each person. This implies that researchers are
generally not able to estimate expenditure functions
for k goods independently. Rather, some account
must be taken of relationships between the expendi-
ture functions for different goods.

E12.4 Econometric practice

The degree to which these theoretical concerns are
reflected in the actual practices of econometricians
varies widely. At the least sophisticated level, an equa-
tion similar to Equation iii might be estimated directly
using ordinary least squares (OLS) with little attention
to the ways in which the assumptions might be vio-
lated. Various elasticities could be calculated directly
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TABLE 12.3 Representative Price and Income Elasticities of Demand

Price Elasticity Income Elasticity

Food −0.21 +0.28

Medical services −0.18 +0.22

Housing

Rental −0.18 +1.00

Owner occupied −1.20 +1.20

Electricity −1.14 +0.61

Automobiles −1.20 +3.00

Gasoline −0.55 +1.60

Beer −0.26 +0.38

Wine −0.88 +0.97

Marijuana −1.50 0.00

Cigarettes −0.35 +0.50

Abortions −0.81 +0.79

Transatlantic air travel −1.30 +1.40

Imports −0.58 +2.73

Money −0.40 +1.00

SOURCES: Food: H. Wold and L. Jureen, Demand Analysis (New York: John Wiley & Sons, 1953): 203. Medical services:
income elasticity from R. Andersen and L. Benham, “Factors Affecting the Relationship between Family Income and
Medical Care Consumption,” in Herbert Klarman, Ed., Empirical Studies in Health Economics (Baltimore: Johns Hopkins
University Press, 1970); price elasticity from W. C. Manning et al., “Health Insurance and the Demand for Medical Care:
Evidence from a Randomized Experiment,”American Economic Review (June 1987): 251–77. Housing: income elasticities
from F. de Leeuw, “The Demand for Housing,” Review for Economics and Statistics (February 1971); price elasticities from
H. S. Houthakker and L. D. Taylor, Consumer Demand in the United States (Cambridge, MA: Harvard University Press,
1970): 166–67. Electricity: R. F. Halvorsen, “Residential Demand for Electricity,” unpublished Ph.D. dissertation, Harvard
University, December 1972. Automobiles: Gregory C. Chow, Demand for Automobiles in the United States (Amsterdam:
North Holland, 1957). Gasoline: C. Dahl, “Gasoline Demand Survey,” Energy Journal 7 (1986): 67–82. Beer and wine: J.
A. Johnson, E. H. Oksanen, M. R. Veall, and D. Fritz, “Short-Run and Long-Run Elasticities for Canadian Consumption of
Alcoholic Beverages,” Review of Economics and Statistics (February 1992): 64–74. Marijuana: T. C. Misket and F. Vakil,
“Some Estimate of Price and Expenditure Elasticities among UCLA Students,” Review of Economics and Statistics
(November 1972): 474–75. Cigarettes: F. Chalemaker, “Rational Addictive Behavior and Cigarette Smoking,” Journal
of Political Economy (August 1991): 722–42. Abortions: M. H. Medoff, “An Economic Analysis of the Demand for
Abortions,” Economic Inquiry (April 1988): 253–59. Transatlantic air travel: J. M. Cigliano, “Price and Income Elasticities
for Airline Travel,” Business Economics (September 1980): 17–21. Imports: M. D. Chinn, “Beware of Econometricians
Bearing Estimates,” Journal of Policy Analysis and Management (Fall 1991): 546–67. Money: D. L. Hoffman and
R. H. Rasche, “Long-Run Income and Interest Elasticities of Money Demand in the United States,” Review of
Economics and Statistics (November 1991): 665–74.
NOTE: Price elasticity refers to interest rate elasticity.



from this equation—although, because of the linear
form used, these would not be constant for changes in
pi or y. A constant elasticity formulation of Equation iii
would be

lnðpj xj Þ ¼
Xk
i¼1

aij lnðpiÞ þ bj ln y, j ¼ 1, k,

(vii)
where price and income elasticities would be given
directly by

exj , pj ¼ aj , j � 1,
exj , pi ¼ ai, j ði 6¼ j Þ,
exj , y ¼ bj .

(viii)

Notice here, however, that no specific attention is paid
to biases introduced by the use of aggregate income or
by the disregard of possible cross-equation restrictions
such as those in Equations v and vi. Further restrictions
are also implied by the homogeneity of each of the
demand functions ðXk

i¼1aij þ bj ¼ �1Þ, although this
restriction too is often disregarded in the development
of simple econometric estimates.

More sophisticated studies of aggregated demand
equations seek to remedy these problems by explicitly
considering potential income distribution effects and
by estimating entire systems of demand equations.
Theil (1971, 1975) provides a good introduction to
some of the procedures used.

Econometric results
Table 12.3 reports a number of economic estimates of
representative price and income elasticities drawn
from a variety of sources. The original sources for
these estimates should be consulted to determine the
extent to which the authors have been attentive to the
theoretical restrictions outlined previously. Overall,
these estimates accord fairly well with intuition—the
demand for transatlantic air travel is more price elastic
than is the demand for medical care, for example.
Perhaps somewhat surprising are the high price and
income elasticities for owner-occupied housing, be-
cause “shelter” is often regarded in everyday discus-
sion as a necessity. The very high estimated income
elasticity of demand for automobiles probably con-
flates the measurement of both quantity and quality
demanded. But it does suggest why the automobile
industry is so sensitive to the business cycle.
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C H A P T E R

13

General Equilibrium and Welfare

The partial equilibrium models of perfect competition that were introduced in Chapter 12 are clearly
inadequate for describing all of the effects that occur when changes in one market have repercussions in
other markets. They are therefore also inadequate for making general welfare statements about how well
market economies perform. Instead, what is needed is an economic model that permits us to view many
markets simultaneously. In this chapter we will develop a few simple versions of such models. The Extensions
to the chapter show how general equilibrium models are applied to the real world.

PERFECTLY COMPETITIVE PRICE SYSTEM

The model we will develop in this chapter is primarily an elaboration of the supply-demand
mechanism presented in Chapter 12. Here we will assume that all markets are of the type
described in that chapter and refer to such a set of markets as a perfectly competitive price
system. The assumption is that there is some large number of homogeneous goods in this
simple economy. Included in this list of goods are not only consumption items but also
factors of production. Each of these goods has an equilibrium price, established by the action
of supply and demand.1 At this set of prices, every market is cleared in the sense that suppliers
are willing to supply the quantity that is demanded and consumers will demand the quantity
that is supplied. We also assume that there are no transaction or transportation charges and
that both individuals and firms have perfect knowledge of prevailing market prices.

The law of one price
Because we assume zero transactions cost and perfect information, each good obeys the law
of one price: A homogeneous good trades at the same price no matter who buys it or which
firm sells it. If one good traded at two different prices, demanders would rush to buy the good
where it was cheaper, and firms would try to sell all their output where the good was more
expensive. These actions in themselves would tend to equalize the price of the good. In the
perfectly competitive market, then, each good must have only one price. This is why we may
speak unambiguously of the price of a good.

Behavioral assumptions
The perfectly competitive model assumes that people and firms react to prices in spe-
cific ways.

1One aspect of this market interaction should be made clear from the outset. The perfectly competitive market determines
only relative (not absolute) prices. In this chapter, we speak only of relative prices. It makes no difference whether the prices
of apples and oranges are $.10 and $.20, respectively, or $10 and $20. The important point in either case is that two apples
can be exchanged for one orange in the market.
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1. There are assumed to be a large number of people buying any one good. Each person
takes all prices as given and adjusts his or her behavior to maximize utility, given the
prices and his or her budget constraint. People may also be suppliers of productive
services (for example, labor), and in such decisions they also regard prices as given.2

2. There are assumed to be large number of firms producing each good, and each firm
produces only a small share of the output of any one good. In making input and
output choices, firms are assumed to operate to maximize profits. The firms treat all
prices as given when making these profit-maximizing decisions.

These various assumptions should be familiar because we have been making them
throughout this book. Our purpose here is to show how an entire economic system operates
when all markets work in this way.

A SIMPLE GRAPHICAL MODEL OF GENERAL EQUILIBRIUM
WITH TWO GOODS

We begin our analysis with a simple graphical model of general equilibrium involving only
two goods, which we will call x and y. This model will prove very useful because it in-
corporates many of the features of far more complex general equilibrium representations of
the economy.

General equilibrium demand
Ultimately, demand patterns in an economy are determined by individuals’ preferences. For
our simple model we will assume that all individuals have identical preferences, which can be
represented by an indifference curve map3 defined over quantities of the two goods, x and y.
The benefit of this approach for our purposes is that this indifference curve map (which is
identical to the ones used in Chapters 3–6) shows how individuals rank consumption bundles
containing both goods. These rankings are precisely what we mean by “demand” in a general
equilibrium context. Of course, we cannot actually illustrate which bundles of commodities
will be chosen until we know the budget constraints that demanders face. Because incomes
are generated as individuals supply labor, capital, and other resources to the production
process, we must delay this illustration until we have examined the forces of production and
supply in our model.

General equilibrium supply
Developing a notion of general equilibrium supply in this two-good model is a somewhat
more complex process than describing the demand side of the market because we have not
thus far illustrated production and supply of two goods simultaneously. Our approach is to
use the familiar production possibility curve (see Chapter 1) for this purpose. By detailing the
way in which this curve is constructed, we can also use this construction to examine the ways
in which markets for outputs and inputs are related.

2Because one price represents the wage rate, the relevant budget constraint is in reality a time constraint. For a discussion,
see Chapter 16.
3There are some technical problems in using a single indifference curve map to represent the preferences of an entire
community of individuals. In this case the marginal rate of substitution (that is, the slope of the community indifference
curve) will depend on how the available goods are distributed among individuals: The increase in total y required to
compensate for a one-unit reduction in x will depend on which specific individual(s) the x is taken from. Although we will
not discuss this issue in detail here, it has been widely examined in the international trade literature.
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Edgeworth box diagram for production
Construction of the production possibility curve for two outputs (x and y) begins with the
assumption that there are fixed amounts of capital and labor inputs that must be allocated to
the production of the two goods. The possible allocations of these inputs can be illustrated
with an Edgeworth box diagram with dimensions given by the total amounts of capital and
labor available.

In Figure 13.1, the length of the box represents total labor-hours and the height of the
box represents total capital-hours. The lower left-hand corner of the box represents the
“origin” for measuring capital and labor devoted to production of good x. The upper right-
hand corner of the box represents the origin for resources devoted to y. Using these
conventions, any point in the box can be regarded as a fully employed allocation of the
available resources between goods x and y. Point A, for example, represents an allocation in
which the indicated number of labor hours are devoted to x production together with a
specified number of hours of capital. Production of good y uses whatever labor and capital are
“left over.” Point A in Figure 13.1, for example, also shows the exact amount of labor and
capital used in the production of good y. Any other point in the box has a similar interpreta-
tion. Thus, the Edgeworth box shows every possible way the existing capital and labor might
be used to produce x and y.

Efficient allocations
Many of the allocations shown in Figure 13.1 are technically inefficient in that it is possible to
produce both more x and more y by shifting capital and labor around a bit. In our model we

FIGURE 13.1 Construction of an Edgeworth Box Diagram for Production

The dimensions of this diagram are given by the total quantities of labor and capital available.
Quantities of these resources devoted to x production are measured from origin Ox ; quantities
devoted to y are measured fromOy . Any point in the box represents a fully employed allocation of the
available resources to the two goods.

A

O x
Total labor

Labor for x
Labor in y production

Labor for y

To
ta

l c
ap

ita
l

C
ap

ita
l f

or
 y

Capital
in y
production

Labor in x production

Capital
in x
production

O y

C
ap

ita
l f

or
 x

Chapter 13 General Equilibrium and Welfare 443



assume that competitive markets will not exhibit such inefficient input choices (for reasons we
will explore in more detail later in the chapter). Hence we wish to discover the efficient
allocations in Figure 13.1, because these illustrate the actual production outcomes in this
model. To do so, we introduce isoquant maps for good x (using Ox as the origin) and good y
(using Oy as the origin), as shown in Figure 13.2. In this figure it is clear that the arbitrarily
chosen allocation A is inefficient. By reallocating capital and labor one can produce both
more x than x2 and more y than y2.

The efficient allocations in Figure 13.2 are those such as P1, P2, P3, and P4, where the
isoquants are tangent to one another. At any other points in the box diagram, the two goods’
isoquants will intersect, and we can show inefficiency as we did for point A. At the points of
tangency, however, this kind of unambiguous improvement cannot be made. In going from
P2 to P3, for example, more x is being produced, but at the cost of less y being produced, so
P3 is not “more efficient” than P2—both of the points are efficient. Tangency of the isoquants
for good x and good y implies that their slopes are equal. That is, the RTS of capital for labor
is equal in x and y production. Later we will show how competitive input markets will lead
firms to make such efficient input choices.

The curve joining Ox and Oy that includes all of these points of tangency therefore shows
all of the efficient allocations of capital and labor. Points off this curve are inefficient in that
unambiguous increases in output can be obtained by reshuffling inputs between the two
goods. Points on the curve OxOy are all efficient allocations, however, because more x can be
produced only by cutting back on y production and vice versa.

Production possibility frontier
The efficiency locus in Figure 13.2 shows the maximum output of y that can be produced for
any preassigned output of x. We can use this information to construct a production possibility

FIGURE 13.2 Edgeworth Box Diagram of Efficiency in Production

This diagram adds production isoquants for x and y to Figure 13.1. It then shows technically efficient
ways to allocate the fixed amounts of k and l between the production of the two outputs. The line
joining Ox and Oy is the locus of these efficient points. Along this line, the RTS (of l for k) in the
production of good x is equal to the RTS in the production of y.
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frontier, which shows the alternative outputs of x and y that can be produced with the fixed
capital and labor inputs. In Figure 13.3 the OxOy locus has been taken from Figure 13.2 and
transferred onto a graph with x and y outputs on the axes. At Ox , for example, no resources
are devoted to x production; consequently, y output is as large as is possible with the existing
resources. Similarly, at Oy , the output of x is as large as possible. The other points on the
production possibility frontier (say, P1, P2, P3, and P4) are derived from the efficiency locus
in an identical way. Hence we have derived the following definition.

D E F I N I T I O N
Production possibility frontier. The production possibility frontier shows the alternative
combinations of two outputs that can be produced with fixed quantities of inputs if those
inputs are employed efficiently.

Rate of product transformation
The slope of the production possibility frontier shows how x output can be substituted for y
output when total resources are held constant. For example, for points near Ox on the
production possibility frontier, the slope is a small negative number—say, �1=4; this implies
that, by reducing y output by 1 unit, x output could be increased by 4. Near Oy , on the other
hand, the slope is a large negative number (say, �5), implying that y output must be reduced
by 5 units in order to permit the production of one more x. The slope of the production

FIGURE 13.3 Production Possibility Frontier

The production possibility frontier shows the alternative combinations of x and y that can be
efficiently produced by a firm with fixed resources. The curve can be derived from Figure 13.2 by
varying inputs between the production of x and y while maintaining the conditions for efficiency.
The negative of the slope of the production possibility curve is called the rate of product transfor-
mation (RPT).
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possibility frontier, then, clearly shows the possibilities that exist for trading y for x in
production. The negative of this slope is called the rate of product transformation (RPT ).

D E F I N I T I O N
Rate of product transformation. The rate of product transformation (RPT ) between two
outputs is the negative of the slope of the production possibility frontier for those outputs.
Mathematically,

RPT ðof x for yÞ ¼ �½slope of production possibility frontier�
¼ � dy

dx
ðalongOxOyÞ. (13.1)

TheRPT records how x can be technically traded for y while continuing to keep the available
productive inputs efficiently employed.

Shape of the production possibility frontier
The production possibility frontier illustrated in Figure 13.3 exhibits an increasing RPT. For
output levels near Ox , relatively little y must be sacrificed to obtain one more x (�dy=dx
is small). Near Oy , on the other hand, additional x may be obtained only by substantial
reductions in y output (�dy=dx is large). In this section we will show why this concave
shape might be expected to characterize most production situations.

A first step in that analysis is to recognize that RPT is equal to the ratio of the marginal
cost of x ðMCxÞ to the marginal cost of y ðMCyÞ. Intuitively, this result is obvious. Suppose,
for example, that x and y are produced only with labor. If it takes two labor hours to produce
one more x, we might say that MCx is equal to 2. Similarly, if it takes only one labor hour to
produce an extra y, then MCy is equal to 1. But in this situation it is clear that the RPT is 2:
two y must be forgone to provide enough labor so that x may be increased by one unit.
Hence, the RPT is indeed equal to the ratio of the marginal costs of the two goods.

More formally, suppose that the costs (say, in terms of the “disutility” experienced by
factor suppliers) of any output combination are denoted by Cðx, yÞ. Along the production
possibility frontier, Cðx, yÞ will be constant because the inputs are in fixed supply. Hence we
can write the total differential of the cost function as

dC ¼ ∂C
∂x ⋅ dx þ ∂C

∂y ⋅ dy ¼ 0 (13.2)

for changes in x and y along the production possibility frontier. Manipulating Equation 13.2
yields

RPT ¼ � dy
dx

ðalong OxOyÞ ¼
∂C=∂x
∂C=∂y

¼ MCx

MCy
, (13.3)

which was precisely what we wished to show: The RPT is a measure of the relative marginal
costs of the two goods.

To demonstrate reasons why theRPTmight be expected to rise for clockwise movements
along the production possibility frontier, we can proceed by showing why the ratio ofMCx to
MCy should rise as x output expands and y output contracts. We first present two relatively
simple arguments that apply only to special cases; then we turn to a more sophisticated
general argument.

Diminishing returns
The most common rationale offered for the concave shape of the production possibility
frontier is the assumption that both goods are produced under conditions of diminishing
returns. Hence increasing the output of good x will raise its marginal cost, whereas decreasing
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the output of y will reduce its marginal cost. Equation 13.3 then shows that the RPT will
increase for movements along the production possibility frontier from Ox to Oy . A problem
with this explanation, of course, is that it applies only to cases in which both goods exhibit
diminishing returns to scale, and that assumption is at variance with the theoretical reasons
for preferring the assumption of constant or even increasing returns to scale as mentioned
elsewhere in this book.

Specialized inputs
If some inputs were “more suited” for x production than for y production (and vice versa), the
concave shape of the production frontier also could be explained. In that case, increases in x
output would require drawing progressively less suitable inputs into the production of that
good. Marginal costs of x would therefore rise. Marginal costs for y, on the other hand, would
fall, since smaller output levels for y would permit the use of only those inputs most suited for y
production. Such an argument might apply, for example, to a farmer with a variety of types of
land under cultivation in different crops. In trying to increase the production of any one crop,
the farmer would be forced to grow it on increasingly unsuitable parcels of land. Although this
type of specialized input assumption has considerable importance in explaining a variety of
real-world phenomena, it is nonetheless at variance with our general assumption of homoge-
neous factors of production.Hence it cannot serve as a fundamental explanation for concavity.

Differing factor intensities
Even if inputs are homogeneous and production functions exhibit constant returns to scale,
the production possibility frontier will be concave if goods x and y use inputs in different
proportions.4 In the production box diagram of Figure 13.2, for example, good x is capital
intensive relative to good y. That is, at every point along the OxOy contract curve, the ratio of
k to l in x production exceeds the ratio of k to l in y production: the bowed curve OxOy is
always above the main diagonal of the Edgeworth box. If, on the other hand, good y had
been relatively capital intensive, the OxOy contract curve would have been bowed downward
below the diagonal. Although a formal proof that unequal factor intensities result in a
concave production possibility frontier will not be presented here, it is possible to suggest
intuitively why that occurs. Consider any two points on the frontier OxOy in Figure 13.3—
say, P1 (with coordinates x1, y4) and P3 (with coordinates x3, y2). One way of producing an
output combination “between” P1 and P3 would be to produce the combination

x1 þ x3
2

,
y4 þ y2

2
.

Because of the constant returns-to-scale assumption, that combination would be feasible
and would fully utilize both factors of production. The combination would lie at the midpoint
of a straight-line chord joining points P1 and P3. Although such a point is feasible, it is not
efficient, as can be seen by examining points P1 and P3 in the box diagram of Figure 13.2.
Because of the bowed nature of the contract curve, production at a point midway between P1
and P3 would be off the contract curve: producing at a point such as P2 would provide more of
both goods. The production possibility frontier in Figure 13.3 must therefore “bulge out”
beyond the straight lineP1P3. Because such a proof could be constructed for any two points on
OxOy , we have shown that the frontier is concave; that is, the RPT increases as the output of
good X increases. When production is reallocated in a northeast direction along the OxOy
contract curve (in Figure 13.3), the capital-labor ratio decreases in the production of both x

4If, in addition to homogeneous factors and constant returns to scale, each good also used k and l in the same proportions
under optimal allocations, then the production possibility frontier would be a straight line.
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and y. Because good x is capital intensive, this change raisesMCx . On the other hand, because
good y is labor intensive,MCy falls. Hence the relativemarginal cost of x (as represented by the
RPT ) rises.

Opportunity cost and supply
The production possibility curve demonstrates that there are many possible efficient combi-
nations of the two goods and that producing more of one good necessitates cutting back on
the production of some other good. This is precisely what economists mean by the term
opportunity cost. The cost of producing more x can be most readily measured by the reduction
in y output that this entails. The cost of one more unit of x is therefore best measured as the
RPT (of x for y) at the prevailing point on the production possibility frontier. The fact that
this cost increases as more x is produced represents the formulation of supply in a general
equilibrium context.

EXAMPLE 13.1 Concavity of the Production Possibility Frontier

In this example we look at two characteristics of production functions that may cause the
production possibility frontier to be concave.

Diminishing returns. Suppose that the production of both x and y depends only on labor
input and that the production functions for these goods are

x ¼ f ðlxÞ ¼ l0:5x ,

y ¼ f ðlyÞ ¼ l0:5y .
(13.4)

Hence, production of each of these goods exhibits diminishing returns to scale. If total labor
supply is limited by

lx þ ly ¼ 100, (13.5)

then simple substitution shows that the production possibility frontier is given by

x2 þ y2 ¼ 100 for x, y ≥ 0. (13.6)

In this case, then, the frontier is a quarter-circle and is concave. The RPT can be calculated
by taking the total differential of the production possibility frontier:

2xdx þ 2ydy ¼ 0 or RPT ¼ �dy
dx

¼ �ð�2xÞ
2y

¼ x
y
, (13.7)

and this slope increases as x output increases. A numerical illustration of concavity starts by
noting that the points (10, 0) and (0, 10) both lie on the frontier. A straight line joining
these two points would also include the point (5, 5), but that point lies below the frontier. If
equal amounts of labor are devoted to both goods then production is x ¼ y ¼

ffiffiffiffiffiffi
50

p
, which

yields more of both goods than the midpoint.

Factor intensity. To show how differing factor intensities yield a concave production pos-
sibility frontier, suppose that the two goods are produced under constant returns to scale
but with different Cobb-Douglas production functions:

x ¼ f ðk, lÞ ¼ k0:5x l0:5x ,

y ¼ gðk, lÞ ¼ k0:25y l0:75y .
(13.8)

Suppose also that total capital and labor are constrained by

kx þ ky ¼ 100, lx þ ly ¼ 100. (13.9)
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It is easy to show that

RTSx ¼ kx
lx

¼ κx , RTSy ¼
3ky
ly

¼ 3κy , (13.10)

where κi ¼ ki=li. Being located on the production possibility frontier requires RTSx ¼
RTSy or κx ¼ 3κy . That is, nomatter how total resources are allocated to production, being on
the production possibility frontier requires that x be the capital-intensive good (because, in
some sense, capital is more productive in x production than in y production). The capital-labor
ratios in the production of the two goods are also constrained by the available resources:

kx þ ky
lx þ ly

¼ kx
lx þ ly

þ ky
lx þ ly

¼ ακx þ ð1� αÞκy ¼
100
100

¼ 1, (13.11)

where α ¼ lx=ðlx þ lyÞ—that is, α is the share of total labor devoted to x production. Using
the condition that κx ¼ 3κy , we can find the input ratios of the two goods in terms of the
overall allocation of labor:

κy ¼
1

1þ 2α
, κx ¼ 3

1þ 2α
. (13.12)

Now we are in a position to phrase the production possibility frontier in terms of the share of
labor devoted to x production:

x ¼ κ0:5x lx ¼ κ0:5x αð100Þ ¼ 100α
3

1þ 2α

� �0:5

,

y ¼ κ0:25y ly ¼ κ0:25y ð1� αÞð100Þ ¼ 100ð1� αÞ 1
1þ 2α

� �0:25

.
(13.13)

We could push this algebra even further to eliminate α from these two equations to get an
explicit functional form for the production possibility frontier that involves only x and y, but
we can show concavity with what we already have. First, notice that if α ¼ 0 (x production
gets no labor or capital inputs) then x ¼ 0, y ¼ 100. With α ¼ 1, we have x ¼ 100, y ¼ 0.
Hence, a linear production possibility frontier would include the point (50, 50). But if
α ¼ 0.39, say, then

x ¼ 100α
3

1þ 2α

� �0:5
¼ 39

3
1:78

� �0:5
¼ 50:6,

y ¼ 100ð1� αÞ 1
1þ 2α

� �0:25
¼ 61

1
1:78

� �0:25
¼ 52:8,

(13.14)

which shows that the actual frontier is bowed outward beyond a linear frontier. It is worth
repeating that both of the goods in this example are produced under constant returns to scale
and that the two inputs are fully homogeneous. It is only the differing input intensities involved
in the production of the two goods that yields the concave production possibility frontier.

QUERY: How would an increase in the total amount of labor available shift the production
possibility frontiers in these examples?

Determination of equilibrium prices
Given these notions of demand and supply in our simple two-good economy, we can now
illustrate how equilibrium prices are determined. Figure 13.4 shows PP, the production
possibility frontier for the economy, and the set of indifference curves represents individuals’
preferences for these goods. First, consider the price ratio px=py . At this price ratio, firms will
choose to produce the output combination x1, y1. Profit-maximizing firms will choose the
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more profitable point on PP. At x1, y1 the ratio of the two goods’ prices ðpx=pyÞ is equal to the
ratio of the goods’ marginal costs (the RPT ), so profits are maximized there. On the other
hand, given this budget constraint (line C ),5 individuals will demand x 01, y

0
1. Consequently,

with these prices, there is an excess demand for good x (individuals demand more than is
being produced) but an excess supply of good y. The workings of the marketplace will cause
px to rise and py to fall. The price ratio px=py will rise; the price line will take on a steeper slope.
Firms will respond to these price changes by moving clockwise along the production
possibility frontier; that is, they will increase their production of good x and decrease their
production of good y. Similarly, individuals will respond to the changing prices by substitut-
ing y for x in their consumption choices. These actions of both firms and individuals, then,
serve to eliminate the excess demand for x and the excess supply of y as market prices change.

Equilibrium is reached at x�, y� with a price ratio of p�x =p�y . With this price ratio,6 supply
and demand are equilibrated for both good x and good y. Given px and py , firms will produce

FIGURE 13.4 Determination of Equilibrium Prices

With a price ratio given by px=py , firms will produce x1, y1; society’s budget constraint will be given by
line C . With this budget constraint, individuals demand x 01 and y 01; that is, there is an excess demand
for good x and an excess supply of good y. The workings of the market will move these prices toward
their equilibrium levels p�x , p�y . At those prices, society’s budget constraint will be given by line C�,
and supply and demand will be in equilibrium. The combination x�, y� of goods will be chosen.

Quantity
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5It is important to recognize why the budget constraint has this location. Because px and py are given, the value of total
production is px ⋅ x1 þ py ⋅ y1. This is the value of “GDP” in the simple economy pictured in Figure 13.4. It is also,
therefore, the total income accruing to people in society. Society’s budget constraint therefore passes through x1, y1 and has
a slope of �px=py . This is precisely the budget constraint labeled C in the figure.
6Notice again that competitive markets determine only equilibrium relative prices. Determination of the absolute price level
requires the introduction of money into this barter model.
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x� and y� in maximizing their profits. Similarly, with a budget constraint given by C�,
individuals will demand x� and y�. The operation of the price system has cleared the markets
for both x and y simultaneously. This figure therefore provides a “general equilibrium” view
of the supply-demand process for two markets working together. For this reason we will
make considerable use of this figure in our subsequent analysis.

COMPARATIVE STATICS ANALYSIS

As in our partial equilibrium analysis, the equilibriumprice ratio p�x =p�y illustrated in Figure 13.4
will tend to persist until either preferences or production technologies change. This competi-
tively determined price ratio reflects these two basic economic forces. If preferences were to
shift, say, toward good x, then px=py would rise and a new equilibriumwould be established by
a clockwise move along the production possibility curve. More x and less y would be produced
to meet these changed preferences. Similarly, technical progress in the production of good x
would shift the production possibility curve outward, as illustrated in Figure 13.5. This would
tend to lower the relative price of x and increase the quantity of x consumed (assuming x is a
normal good). In the figure the quantity of y consumed also increases as a result of the income
effect arising from the technical advance; but a slightly different drawing of thefigure could have
reversed that result if the substitution effect had been dominant. Example 13.2 looks at a few
such effects.

FIGURE 13.5 Effects of Technical Progress in x Production

Technical advances that lower marginal costs of x production will shift the production possibility
frontier. This will generally create income and substitution effects that cause the quantity of x
produced to increase (assuming x is a normal good). Effects on the production of y are ambiguous
because income and substitution effects work in opposite directions.
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EXAMPLE 13.2 Comparative Statics in a General Equilibrium Model

To explore how general equilibrium models work, let’s start with a simple example based on
the production possibility frontier in Example 13.1. In that example we assumed that
production of both goods was characterized by decreasing returns x ¼ l0.5x and y ¼ l0.5y and
also that total labor available was given by lx þ ly ¼ 100. The resulting production possibility
frontier was given by x2 þ y2 ¼ 100, and RPT ¼ x=y. To complete this model we assume
that the typical individual’s utility function is given by U ðx, yÞ ¼ x0.5y0.5, so the demand
functions for the two goods are

x ¼ xðpx , py , I Þ ¼
0.5I
px

,

y ¼ yðpx , py , I Þ ¼
0.5I
py

.
(13.15)

Base-case equilibrium. Profit maximization by firms requires that px=py ¼ MCx=MCy ¼
RPT ¼ x=y, and utility-maximizing demand requires that px=py ¼ y=x. So equilibrium
requires that x=y ¼ y=x, or x ¼ y. Inserting this result into the equation for the production
possibility frontier shows that

x� ¼ y� ¼
ffiffiffiffiffiffi
50

p
¼ 7.07 and

px
py

¼ 1. (13.16)

This is the equilibrium for our base case with this model.

The budget constraint. The budget constraint that faces individuals is not especially
transparent in this illustration, so it may be useful to discuss it explicitly. In order to bring
some degree of absolute pricing into the model, let’s consider all prices in terms of the wage
rate, w. Since total labor supply is 100, it follows that total labor income is 100w. But, because
of the diminishing returns assumed for production, each firm also earns profits. For firm x,
say, the total cost function is Cðw, xÞ ¼ wlx ¼ wx2, so px ¼ MCx ¼ 2wx ¼ 2w

ffiffiffiffiffiffi
50

p
. The

profits for firm x are therefore πx ¼ ðpx � ACxÞx ¼ ðpx � wxÞx ¼ wx2 ¼ 50w. A similar
computation shows that profits for firm y are also given by 50w. Because general equilibrium
models must obey the national income identity, we assume that consumers are also share-
holders in the two firms and treat these profits also as part of their spendable incomes. Hence,
total consumer income is

total income ¼ labor income þ profits

¼ 100w þ 2ð50wÞ ¼ 200w. (13.17)

This income will just permit consumers to spend 100w on each good by buying
ffiffiffiffiffiffi
50

p
units at

a price of 2w
ffiffiffiffiffiffi
50

p
, so the model is internally consistent.

A shift in supply. There are only twoways inwhich this base-case equilibriumcanbedisturbed:
(1) By changes in “supply”—that is, by changes in the underlying technology of this economy;
or (2) by changes in “demand”—that is, by changes in preferences. Let’s first consider changes
in technology. Suppose that there is technical improvement in x production so that the produc-
tion function is x ¼ 2l 0.5

x . Now the production possibility frontier is given by x2=4þ y2 ¼
100, andRPT ¼ x=4y. Proceeding as before to find the equilibrium in this model:

px
py

¼ x
4y

supplyð Þ,

px
py

¼ y
x

demandð Þ,
(13.18)
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so x2 ¼ 4y2 and the equilibrium is

x� ¼ 2
ffiffiffiffiffiffi
50

p
, y� ¼

ffiffiffiffiffiffi
50

p
, and

px
py

¼ 1
2
. (13.19)

Technical improvements in x production have caused its relative price to fall and the
consumption of this good to rise. As in many examples with Cobb-Douglas utility, the
income and substitution effects of this price decline on y demand are precisely offsetting.
Technical improvements clearly make consumers better off, however. Whereas utility was
previously given by U ðx, yÞ ¼ x0.5y0.5 ¼

ffiffiffiffiffiffi
50

p
¼ 7.07, now it has increased to U ðx, yÞ ¼

x0.5y0.5 ¼ ð2
ffiffiffiffiffiffi
50

p
Þ0:5ð

ffiffiffiffiffiffi
50

p
Þ0:5 ¼ ffiffiffi

2
p

⋅
ffiffiffiffiffiffi
50

p
¼ 10. Technical change has increased consumer

welfare substantially.

A shift in demand. If consumer preferences were to switch to favor good y as U ðx, yÞ ¼
x0.1y0.9, then demand functions would be given by x ¼ 0.1I=px and y ¼ 0.9I=py , and
demand equilibrium would require px=py ¼ y=9x. Returning to the original production
possibility frontier to arrive at an overall equilibrium, we have

px
py

¼ x
y

supplyð Þ,

px
py

¼ y
9x

demandð Þ,
(13.20)

so 9x2 ¼ y2 and the equilibrium is given by

x� ¼
ffiffiffiffiffiffi
10

p
, y� ¼ 3

ffiffiffiffiffiffi
10

p
, and

px
py

¼ 1
3
. (13.21)

Hence, the decline in demand for x has significantly reduced its relative price. Observe that
in this case, however, we cannot make a welfare comparison to the previous cases because
the utility function has changed.

QUERY: What are the budget constraints in these two alternative scenarios? How is income
distributed between wages and profits in each case? Explain the differences intuitively.

GENERAL EQUILIBRIUM MODELING AND FACTOR PRICES

This very simple general equilibrium model therefore reinforces Marshall’s observations
about the importance of both supply and demand forces in the price determination process.
By providing an explicit connection between the markets for all goods, the general equilib-
rium model makes it possible to examine more complex questions about market relationships
than is possible by looking at only one market at a time. General equilibrium modeling also
permits an examination of the connections between goods and factor markets; we can
illustrate that with an important historical case.

The Corn Laws debate
High tariffs on grain imports were imposed by the British government following the Napo-
leonic wars. Debate over the effects of these Corn Laws dominated the analytical efforts of
economists between the years 1829 and 1845. A principal focus of the debate concerned the
effect that elimination of the tariffs would have on factor prices—a question that continues to
have relevance today, as we will see.
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The production possibility frontier in Figure 13.6 shows those combinations of grain ðxÞ
and manufactured goods (y) that could be produced by British factors of production.
Assuming (somewhat contrary to actuality) that the Corn Laws completely prevented
trade, market equilibrium would be at E with the domestic price ratio given by p�x =p�y .
Removal of the tariffs would reduce this price ratio to p0x=p

0
y . Given that new ratio, Britain

would produce combination A and consume combination B. Grain imports would amount
to xB � xA , and these would be financed by export of manufactured goods equal to yA � yB .
Overall utility for the typical British consumer would be increased by the opening of trade.
Use of the production possibility diagram therefore demonstrates the implications that
relaxing the tariffs would have for the production of both goods.

Trade and factor prices
By referring to the Edgeworth production box diagram (Figure 13.2) that lies behind the
production possibility frontier (Figure 13.3), it is also possible to analyze the effect of tariff
reductions on factor prices. The movement from point E to point A in Figure 13.6 is similar
to a movement from P3 to P1 in Figure 13.2, where production of x is decreased and
production of y is increased.

This figure also records the reallocation of capital and labor made necessary by such a
move. If we assume that grain production is relatively capital intensive, then the movement

FIGURE 13.6 Analysis of the Corn Laws Debate

Reduction of tariff barriers on grain would cause production to be reallocated from point E to
point A; consumption would be reallocated from E to B. If grain production is relatively capital
intensive, the relative price of capital would fall as a result of these reallocations.
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from P3 to P1 causes the ratio of k to l to rise in both industries.7 This in turn will cause the
relative price of capital to fall (and the relative price of labor to rise). Hence we conclude that
repeal of the Corn Laws would be harmful to capital owners (that is, landlords) and helpful to
laborers. It is not surprising that landed interests fought repeal of the laws.

Political support for trade policies
The possibility that trade policies may affect the relative incomes of various factors of
production continues to exert a major influence on political debates about such policies. In
the United States, for example, exports tend to be intensive in their use of skilled labor
whereas imports tend to be intensive in unskilled labor input. By analogy to our discussion of
the Corn Laws, it might thus be expected that further movements toward free trade policies
would result in rising relative wages for skilled workers and in falling relative wages for
unskilled workers. It is therefore not surprising that unions representing skilled workers
(the machinists or aircraft workers) tend to favor free trade, whereas unions of unskilled
workers (those in textiles, shoes, and related businesses) tend to oppose it.8

EXISTENCE OF GENERAL EQUILIBRIUM PRICES

So far we have more or less assumed that competitive markets can reach an equilibrium in
which the forces of supply and demand are balanced in all markets simultaneously. But, given
the assumptions we have made, such a simultaneous solution is by no means ensured.
Beginning with the nineteenth-century investigations by Leon Walras, economists have
used increasingly sophisticated tools to examine whether a set of prices that equilibrates all
markets exists and, if so, how this set of prices can be found. In this section we will explore
some aspects of this question.

A simple mathematical model
The essential aspects of the modern solution to the Walrasian problem can be demonstrated
for the case where no production takes place. Suppose there are n goods (in absolutely fixed
supply) in this economy and that they are distributed in some way among the individuals in
society. Let Si ði ¼ 1, ..., nÞ be the total supply of good i available, and let the price of good i
be represented by pi ði ¼ 1, ..., nÞ. The total demand for good i depends on all the prices, and
this function represents the sum of the individuals’ demand functions for good i. This total
demand function is denoted by

Diðp1,…, pnÞ
for i ¼ 1, ...,n.

Because we are interested in the whole set of prices p1,…, pn, it will be convenient to
denote this whole set by P . Hence the demand functions can be written as

DiðP Þ.
Walras’ problem then can be stated formally as: Does there exist an equilibrium set of prices
ðP�Þ such that

DiðP�Þ ¼ Si (13.22)

for all values of i? The question posed by Walras is whether a set of prices exists for which
supply is equal to demand in all markets simultaneously.

7In the Corn Laws debate, attention actually centered on the factors of land and labor.
8The finding that the opening of trade will raise the relative price of the abundant factor is called the Stolper-Samuelson
theorem after the economists who rigorously proved it in the 1950s.
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Excess demand functions
In what follows it will be more convenient to work with excess demand functions for good i
at any set of prices ðPÞ, which are defined to be9

EDiðP Þ ¼ DiðP Þ � Si, i ¼ 1,n. (13.23)

Using this notation, the equilibrium conditions can be rewritten as

EDiðP�Þ ¼ DiðP�Þ � Si ¼ 0, i ¼ 1,n. (13.24)

This condition states that, at the equilibrium prices, excess demand must be zero in all
markets.10

Walras himself noted several interesting features about the system of Equation 13.24.
First, as we have already shown, the demand functions (and hence the excess demand
functions) are homogeneous of degree 0. If all prices were to double (including the wages of
labor), the quantity demanded of every good would remain unchanged. Hence we can only
hope to establish equilibrium relative prices in a Walrasian-type model. A second assumption
made by Walras was that the demand functions (and therefore the excess demand functions)
are continuous : if prices were to change by only a small amount, quantities demanded would
change by only a small amount. The assumptions of homogeneity and continuity are direct
results of the theory of consumer behavior that we studied in Part 2.

Walras’ law
A final observation that Walras made is that the n excess demand functions are not indepen-
dent of one another. The equations are related by the formulaXn

i¼1

pi ⋅ EDiðPÞ ¼ 0. (13.25)

Equation 13.25 is usually called Walras’ law. The equation states that the “total value” of
excess demand is zero at any set of prices. There can be neither excess demand for all goods
together nor excess supply. Proving Walras’ law is a simple matter, although it is necessary to
introduce some cumbersome notation. The proof rests on the fact that each individual in the
economy is bound by a budget constraint. A simple example of the proof is given in the
footnote;11 the generalization of this proof is left to the reader.

9Although we will not do so, supply behavior can be introduced here by making Si depend on P also.
10This equilibrium condition will be slightly amended later to allow for goods whose equilibrium price is zero.
11Suppose that there are two goods (A and B) and two individuals (Smith and Jones) in society. Let DS

A ,D
S
B , S

S
A , S

S
B be

Smith’s demands and supplies of A and B, and use a similar notation for Jones’s demands and supplies. Smith’s budget
constraint may be written as

pAD
S
A þ pBD

S
B ¼ pAS

S
A þ pBS

S
B

or

pAðDS
A � SS

AÞ þ pBðDS
B � SS

BÞ ¼ 0

or

pAED
S
A þ pBED

S
B ¼ 0,

where EDS
A and EDS

B represent the excess demand of Smith for A and B, respectively.
A similar budget constraint holds for Jones:

pAED
J
A þ pBED

J
B ¼ 0;

hence, letting EDA and EDB represent total excess demands for A and B, it must be that

pA ⋅ ðEDS
A þ ED J

A Þ þ pB ⋅ ðEDS
B þ ED J

B Þ ¼ pA ⋅ EDA þ pB ⋅ EDB ¼ 0:

This is Walras’ law exactly as it appears in Equation 13.25.
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Walras’ law, it should be stressed, holds for any set of prices—not just for equilibriumprices.
The law can be seen to apply trivially to an equilibrium set of prices, because each of the excess
demand functions will be equal to 0 at this set of prices. Walras’ law shows that the equilibrium
conditions in n markets are not independent. We do not have n independent equations in n
unknowns (the n prices). Rather, Equation 13.24 represents only ðn � 1Þ independent equa-
tions, and hence we can hope to determine only ðn � 1Þ of the prices. But this was expected in
view of the homogeneity property of the demand functions. We can hope to determine only
equilibrium relative prices; nothing in this model permits the derivation of absolute prices.

Walras’ proof of the existence of equilibrium prices
Having recognized these technical features of the system of excess demand equations, Walras
turned to the question of the existence of a set of equilibrium (relative) prices. He tried to
establish that the n equilibrium conditions of Equation 13.24 were sufficient, in this situa-
tion, to ensure that such a set of prices would in fact exist and thus that the exchange model
had a consistent theoretical framework. A first indication that this existence of equilibrium
prices might be ensured is provided by a simple counting of equations and unknowns. The
market equilibrium conditions provide ðn � 1Þ independent equations in ðn � 1Þ unknown
relative prices. Hence the elementary algebra of solving simultaneous linear equations
suggests that an equilibrium solution might exist.

Unfortunately, asWalras recognized, the act of solving for equilibriumprices is not nearly as
simple a matter as counting equations and unknowns. First, the equations are not necessarily
linear. Hence the standard conditions for the existence of solutions to simultaneous linear
equations do not apply in this case. Second, from consideration of the economics of the
problem, it is clear that all the equilibrium prices must be nonnegative. A negative price has
nomeaning in the context of this problem. To attack these two difficulties, Walras developed a
tedious proof that involved solving for equilibrium prices in a series of successive approxima-
tions. Without presentingWalras’ proof in detail, it is instructive to see how he approached the
problem.

Start with some initial, arbitrary set of prices. Holding the other ðn � 1Þ prices constant,
find the equilibrium price in themarket for good 1. Call this “provisional” equilibrium price p01.
Now, holding p01 and the other ðn � 2Þ prices constant, solve for the equilibrium price in the
market for good 2. Call this price p02. Notice that in changing p2 from its initial position to p02,
the price initially calculated for market 1 need no longer be an equilibrium price, because good
1 may be a substitute or a complement to good 2. This reflects that the system of equations is
indeed simultaneous. Using the provisional prices p01 and p02, solve for a provisional p03. The
proof proceeds in this way until a complete set of provisional relative prices has been calculated.

In the second iteration of Walras’ proof, p02,…, p0n are held constant while a new equilib-
rium price is calculated for the first good. Call this new provisional price p001. Proceeding as
outlined above, an entire new set of provisional relative prices ðp001,…, p00nÞ can be calculated.
The proof continues to iterate in this way until a reasonable approximation to a set of
equilibrium prices is achieved.

The importance of Walras’ proof is its ability to demonstrate the simultaneous nature of
the problem of finding equilibrium prices. It is, however, a cumbersome proof and is gen-
erally not used today. More recent work has used some relatively simple tools of advanced
mathematics to demonstrate the existence of equilibrium prices in a formal and elegant way.
To demonstrate such a proof, one advanced mathematical theorem must be described.

Brouwer’s fixed point theorem
Because this section is purely mathematical, it is perhaps best to plunge right in by stating
Brouwer’s theorem:
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Any continuous mapping ½F ðX Þ� of a closed, bounded, convex set into itself has at
least one fixed point ðX�Þ such that F ðX�Þ ¼ X�.

Before analyzing this theorem on a word-by-word basis, perhaps an example will aid in
understanding the terminology. Suppose that f ðxÞ is a continuous function defined on the
interval [0, 1] and that f ðxÞ takes on values also on the interval [0, 1]. This function then
obeys the conditions of Brouwer’s theorem; it must be the case that there exists some x� such
that f ðx�Þ ¼ x�. This fact is demonstrated in Figure 13.7. It is clear from this figure that any
function, as long as it is continuous (as long as it has no “gaps”), must cross the 45° line
somewhere. This point of crossing is a fixed point, because f maps this point ðx�Þ into itself.

To study the more general meaning of the theorem, we must define the terms mapping,
closed, bounded, and convex. Definitions of these concepts will be presented in an extremely
intuitive, nonrigorous way, because the costs of mathematical rigor greatly outweigh its
possible benefits for the purposes of this book.

Amapping is a rule that associates the points in one set with points in another (or possibly
the same) set. The most commonly encountered mappings are those that associate one point
in n-dimensional space with some other point in n-dimensional space. Suppose that F is the
mapping we wish to study. Then let X be a point for which the mapping is defined; the
mapping associatesX with some other point Y ¼ F ðX Þ. If a mapping is defined over a subset
of an n-dimensional space ðSÞ and if every point in S is associated (by the rule F ) with some
other point in S, then the mapping is said to map S into itself. In Figure 13.7 the function f
maps the unit interval into itself. A mapping is continuous if points that are “close” to each
other are mapped into other points that are “close” to each other.

The Brouwer fixed point theorem considers mappings defined on certain kinds of sets.
These sets are required to be closed, bounded, and convex. Perhaps the simplest way to
describe such sets is to say that they look like (n-dimensional analogies of) soap bubbles.
They are closed in the sense that they contain their boundaries; the sets are bounded because
none of their dimensions is infinitely large; and they are convex because they have no inden-
tations in them. A technical description of the properties of such sets can be found in any

FIGURE 13.7 A Graphical Illustration of Brouwer’s Fixed Point Theorem

Because any continuous function must cross the 45° line somewhere in the unit square, this function
must have a point for which f ðx�Þ ¼ x�. This point is called a “fixed point.”

1

0 1 xx*

f ( x * )

Fixed point

f ( x )

f (x )

45°
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elementary topology book.12 For our purposes, however, it is only necessary to recognize
that Brouwer’s theorem is intended to apply to certain types of conveniently shaped sets.
Therefore, in order to use the theorem to prove the existence of equilibrium prices, we must
first describe a set of points that has these desirable properties.

Proof of the existence of equilibrium prices
The key to applying Brouwer’s theorem to the exchange model just developed is to choose a
suitable way for “normalizing” prices. Because only relative prices matter in the exchange
model, it is convenient to assume that prices have been defined so that the sum of all prices
is 1. Mathematically, for any arbitrary set of prices ðp1,…, pnÞ, we can instead deal with
normalized prices of the form13

p0i ¼
piXn
i¼1pi

. (13.26)

These new prices will retain their original relative values ðp0i=p0j ¼ pi=pj Þ and will sum to 1:Xn
i¼1

p0i ¼ 1. (13.27)

Because of the degree-0 homogeneity of all the excess demand functions, this kind of
normalization can always be made. Hence, for the remainder of this proof, we will assume
that the feasible set of prices (call this set S) is composed of all possible combinations of n
nonnegative numbers that sum to 1. To avoid complex notation, we drop the special
symbols we have been using for such prices.

This set, S, is the one to which we can apply Brouwer’s theorem. The set S is closed,
bounded, and convex.14 To apply Brouwer’s theorem, we now will define a continuous
mapping of S into itself. By a judicious choice of this mapping, we can show that the fixed
point dictated by the theorem is in fact a set of equilibrium relative prices.

Free goods
Before demonstrating the details of the proof, we must redefine what is meant by an
“equilibrium set of prices.” We do not really require that excess demand be exactly equal
to 0 in every market for an equilibrium. Rather, goods may exist for which the markets are in
equilibrium but for which the available supply exceeds demand; there is negative excess
demand. For this to be the case, however, it is necessary that the price of this particular good
be zero. Hence, the equilibrium conditions of Equation 13.24 should be rewritten to take
account of such free goods :

EDiðP�Þ ¼ 0 for p�i > 0,

EDiðP�Þ � 0 for p�i ¼ 0.
(13.28)

Notice that such a set of equilibrium prices continues to obey Walras’ law.

12For a development of the mathematics used in general equilibrium theory, see the references at the end of this chapter.
13One additional assumption must be made here: at least one of the prices is nonzero. In economic terms this means that
at least one good is scarce. Without this assumption, a normalization of prices would not be possible—but studying eco-
nomics in such a case would be unnecessary, because there would be no economic problem of scarcity.
14In two dimensions the set would simply be a straight line joining the coordinates (0, 1) and (1, 0). In three dimensions
the set would be a triangular-shaped plane with vertices at (0, 0, 1), (0, 1, 0), and (1, 0, 0). It is easy to see that each of
these sets is closed, bounded, and convex.
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Mapping the set of prices into itself
Using this definition of equilibrium and remembering that prices have been normalized to
sum to 1, let’s construct a continuous function that transforms one set of prices into another.
The function builds on the Walrasian idea that, in order to achieve equilibrium, prices of
goods in excess demand should be raised while those in excess supply should have their prices
lowered. Hence, we define the mapping F ðPÞ for any (normalized) set of prices, P , such that
the ith component of F ðPÞ, denoted by F iðPÞ, is given by

FiðPÞ ¼ pi þ EDiðP Þ (13.29)

for all i. The mapping then performs the necessary task of appropriately raising and lowering
prices. If, at pi, good i is in excess demand ½EDiðPÞ > 0�, then the price pi is raised; if excess
demand is negative, pi is reduced. Because the excess demand functions are assumed to be
continuous, this mapping will also be continuous. Two problems with the mapping of
Equation 13.29 remain. First, nothing ensures that the new prices will be nonnegative.
Hence, the mapping must be slightly redefined to be

FiðP Þ ¼ max½pi þ EDiðP Þ,0� (13.30)

for all i. The mapping of Equation 13.30 is also continuous.
A second problem with the mapping of Equation 13.30 is that the recalculated prices are

not necessarily normalized; they will not sum to 1. It would be a simple matter, however, to
normalize these new prices so they do sum to 1.15 To avoid introducing additional notation,
assume that this normalization has been done and hence thatXn

i¼1

FiðPÞ ¼ 1. (13.31)

Application of Brouwer’s theorem
With this normalization, then, F satisfies the conditions of the Brouwer fixed point theorem.
It is a continuous mapping of the set S into itself. Hence there exists a point ðP�Þ that is
mapped into itself. For this point,

p�i ¼ max½p�i þ EDiðP�Þ,0� (13.32)

for all i.
But this says that P� is an equilibrium set of prices: for p�i > 0,

p�i ¼ p�i þ EDiðP�Þ

15To accomplish this normalization, we first need to show that not all of the transformed prices will be zero: it is necessary
to show that pi þ EDiðPÞ > 0 for some i. This can be proved by contradiction. Assume that pi þ EDiðPÞ � 0 for all i.
Multiply this expression by pi and sum over all values of i, givingXn

i¼1

p2i þ
Xn
i¼1

piEDiðP Þ � 0.

But Xn
i¼1

piEDi ¼ 0

by Walras’ law. Hence Xn
i¼1

p2i � 0,

and this implies that pi ¼ 0 for all i. However, we have already ruled out this situation (see footnote 13) and thus have
proved that at least one of the transformed prices must be positive.
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or

EDiðP�Þ ¼ 0; (13.33)
and for p�i ¼ 0,

p�i þ EDiðP�Þ � 0
or

EDiðP�Þ � 0. (13.34)

We have therefore shown that the set of excess demand functions does in fact possess an
equilibrium solution consisting of nonnegative prices. The simple exchange model developed
here is consistent in that the market supply and demand functions necessarily have a solution.
The homogeneity and continuity properties of the demand functions and the ability ofWalras’
law to tie together supply and demand are jointly responsible for this result.

Generalizations
Although this proof is a relatively old one in the field of general equilibrium theory, it does
exhibit features of much of the more recent literature in this field. In particular, practically all
modern proofs use Walras’ law and rely on some type of fixed point theorem. More recent
work has tended to focus on ways in which the proof of the existence of general equilibrium
prices can be generalized to situations involving more complex supply assumptions and on
how equilibrium prices can actually be computed. In later chapters of this book, we will
examine some of these alternative supply assumptions, such as cases of imperfect competition
and problems caused by “public goods” (which we define later in this chapter). In the next
section we show how applied general equilibrium models based on fixed point theorems are
constructed.

EXAMPLE 13.3 A General Equilibrium with Three Goods

The economy of Oz is composed only of three precious metals: (1) silver, (2) gold, and
(3) platinum. There are 10 (thousand) ounces of each metal available. The demands for gold
and platinum are given by

D2 ¼ �2
p2
p1

þ p3
p1

þ 11 and

D3 ¼ � p2
p1

� 2
p3
p1

þ 18,
(13.35)

respectively. Notice that the demands for gold and platinum depend on the relative prices of
the two goods and that these demand functions are homogeneous of degree 0 in all three
prices. Notice also that we have not written out the demand function for silver; but, as we
will show, it can be derived from Walras’ law.

Equilibrium in the gold and platinum markets requires that demand equal supply in both
markets simultaneously:

�2
p2
p1

þ p3
p1

þ 11 ¼ 10,

� p2
p1

� 2
p3
p1

þ 18 ¼ 10.
(13.36)

This system of simultaneous equations can be solved rather easily as
p2
p1

¼ 2,
p3
p1

¼ 3. (13.37)

(continued)
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EXAMPLE 13.3 CONTINUED

In equilibrium, therefore, gold will have a price twice that of silver and platinum a price
three times that of silver. The price of platinum will be 1.5 times that of gold.

Walras’ law and the demand for silver. Because Walras’ law must hold in this economy,
we know that

p1ED1 ¼ �p2ED2 � p3ED3. (13.38)

Solving Equations 13.36 for the excess demands (by moving the fixed supplies to the left-
hand side) and substituting into Walras’ law yields

p1ED1 ¼ 2
p22
p1

� p2p3
p1

� p2 þ p2p3
p1

þ 2
p23
p1

� 8p3 (13.39)

or

ED1 ¼ 2
p22
p21

þ 2
p23
p21

� p2
p1

� 8
p3
p1

. (13.40)

As expected, this function is homogeneous of degree 0 in the relative prices, and the market
for silver is also in equilibrium ðED1 ¼ 0Þ at the relative prices computed previously. (Check
this yourself!)

A change in supply. If gold supply decreases to 7 and platinum supply increases to 11, we
would expect relative prices to change. It seems likely that the relative price of gold will rise.
Similarly, because the rise in gold price will reduce the demand for platinum and platinum
supply has increased, the relative price of platinum should fall. But that will reduce the
demand for gold, so the end result is ambiguous—clearly, a simultaneous solution is called
for. In fact, the solution to

�2
p2
p1

þ p3
p1

þ 11 ¼ 7 and

� p2
p1

� 2
p3
p1

þ 18 ¼ 11
(13.41)

is
p2
p1

¼ 3,
p3
p1

¼ 2. (13.42)

So the price of gold rises relative to both silver and platinum, and the price of platinum
falls relative to that of silver. All of these effects can be captured only in a simultaneous
model.

QUERY: Is the silver market still in equilibrium given the new supplies of gold and platinum?

GENERAL EQUILIBRIUM MODELS

Two advances have resulted in the rapid development of general equilibrium modeling in
recent years. First, the theory of economic equilibrium has been generalized to include many
features of real-world economies such as imperfect competition, environmental externalities,
and complex tax systems. Second, expanding computer capacity together with improvements
in software (especially model “solvers”) has made it possible to study models involving
virtually any number of goods and households desired. In this section we will briefly explore
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some conceptual aspects of these models.16 The Extensions to this chapter describe a few
important applications.

Structure of general equilibrium models
Specification of any general equilibrium model begins by defining the number of goods to
be included in the model. These “goods” include not only consumption goods but also
intermediate goods that are used in the production of other goods (e.g., capital equipment),
productive inputs such as labor or natural resources, and goods that are to be produced by the
government (public goods). The goal of the model is then to solve for equilibrium prices for
all of these goods and to study how these prices change when conditions change.

Some of the goods in a general equilibriummodel are produced by firms. The technology
of this production must be specified by production functions. The most common such
specification is to use the types of CES production functions that we studied in Chapters 9
and 10, because these can yield some important insights about the ways in which inputs are
substituted in the face of changing prices. In general, firms are assumed to maximize their
profits given their production functions and given the input and output prices they face.

Demand is specified in general equilibriummodels by defining utility functions for various
types of households. Utility is treated as a function both of goods that are consumed and of
inputs that are not supplied to the marketplace (for example, available labor that is not
supplied to the market is consumed as leisure). Households are assumed to maximize utility.
Their incomes are determined by the amounts of inputs they “sell” in the market and by the
net result of any taxes they pay or transfers they receive.

Finally, a full general equilibrium model must specify how the government operates. If
there are taxes in the model, how those taxes are to be spent on transfers or on public goods
(which provide utility to consumers) must be modeled. If government borrowing is allowed,
the bond market must be explicitly modeled. In short, the model must fully specify the flow
of sources and uses of income that characterize the economy being modeled.

Solving general equilibrium models
Once technology (supply) and preferences (demand) have been specified, a general equilib-
rium model must be solved for equilibrium prices and quantities. The proof in the previous
section shows that such a model will generally have such a solution, but actually finding that
solution can sometimes be difficult—especially when the number of goods and households is
large. General equilibrium models are usually solved on computers via modifications of an
algorithm originally developed by Herbert Scarf in the 1970s.17 This algorithm (or more
modern versions of it) searches for market equilibria by mimicking the way markets work.
That is, an initial solution is specified and then prices are raised in markets with excess demand
and lowered in markets with excess supply until an equilibrium is found in which all excess
demands are zero. Sometimes multiple equilibria will occur, but usually economic models
have sufficient curvature in the underlying production and utility functions that the equilib-
rium found by the Scarf algorithm will be unique.

16This section is based on Walter Nicholson and Frank Westhoff, “General Equilibrium Models: Improving the Micro-
economics Classroom,” Working Paper, Department of Economics, Amherst College, 2007.
17Herbert Scarf with Terje Hansen, On the Computation of Economic Equilibria (New Haven, CT: Yale University Press,
1973).
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Economic insights from general equilibrium models
General equilibrium models provide a number of insights about how economies operate that
cannot be obtained from the types of partial equilibriummodels studied in Chapter 12. Some
of the most important of these are:

• All prices are endogenous in economic models. The exogenous elements of models
are preferences and productive technologies.

• All firms and productive inputs are owned by households. All income ultimately
accrues to households.

• Any model with a government sector is incomplete if it does not specify how tax
receipts are used.

• The “bottom line” in any policy evaluation is the utility of households. Firms and
governments are only intermediaries in getting to this final accounting.

• All taxes distort economic decisions along some dimension. The welfare costs of such
distortions must always be weighed against the benefits of such taxes (in terms of
public good production or equity-enhancing transfers).

Some of these insights are illustrated in the next two examples. In later chapters we will return
to general equilibrium modeling whenever such a perspective seems necessary to gain a more
complete understanding of the topic being covered.

EXAMPLE 13.4 A Simple General Equilibrium Model

Let’s look at a simple general equilibrium model with only two households, two consumer
goods (x and y), and two inputs (capital k and labor l). Each household has an “endowment”
of capital and labor that it can choose to retain or sell in the market. These endowments
are denoted by

_
k1,

_
l 1 and

_
k2,

_
l 2, respectively. Households obtain utility from the amounts

of the consumer goods they purchase and from the amount of labor they do not sell into
the market (that is, leisure ¼

_
l i � li). The households have simple Cobb-Douglas utility

functions:

U1 ¼ x0.5
1 y0.31 ð

_
l 1 � l1Þ0.2, U2 ¼ x0.4

2 y0.42 ð
_
l 2 � l2Þ0.2. (13.43)

Hence, household 1 has a relatively greater preference for good x than does household 2.
Notice that capital does not enter into these utility functions directly. Consequently, each
household will provide its entire endowment of capital to the marketplace. Households will
retain some labor, however, because leisure provides utility directly.

Production of goods x and y is characterized by simple Cobb-Douglas technologies:

x ¼ k0.2x l0.8x , y ¼ k0.8y l0.2y . (13.44)

So, in this example, production of x is relatively labor intensive while production of y is
relatively capital intensive.

To complete this model we must specify initial endowments of capital and labor. Here we
assume that

_
k1 ¼ 40,

_
l 1 ¼ 24 and

_
k2 ¼ 10,

_
l 2 ¼ 24. (13.45)

Although the households have equal labor endowments (i.e., 24 “hours”), household 1 has
significantly more capital than does household 2.

Base-case simulation. Equations 13.43–13.45 specify our complete general equilibrium
model in the absence of a government. A solution to this model will consist of four
equilibrium prices (for x, y, k, and l) at which households maximize utility and firms

464 Part 4 Competitive Markets



maximize profits.18 Because any general equilibrium model can compute only relative prices,
we are free to impose a price normalization scheme. Here we assume that the prices will
always sum to unity. That is,

px þ py þ pk þ pl ¼ 1. (13.46)

Solving19 for these prices yields

px ¼ 0.363, py ¼ 0.253, pk ¼ 0.136, pl ¼ 0.248. (13.47)

At these prices, total production of x is 23.7 and production of y is 25.1. The utility-
maximizing choices for household 1 are

x1 ¼ 15.7, y1 ¼ 8.1,
_
l 1 � l1 ¼ 24� 14.8 ¼ 9.2, U1 ¼ 13.5; (13.48)

for household 2, these choices are

x2 ¼ 8.1, y2 ¼ 11.6,
_
l 2 � l2 ¼ 24� 18.1 ¼ 5.9, U2 ¼ 8.75. (13.49)

Observe that household 1 consumes quite a bit of good x but provides less in labor supply
than does household 2. This reflects the greater capital endowment of household 1 in this
base-case simulation. We will return to this base case in several later simulations.

QUERY: How would you show that each household obeys its budget constraint in this
simulation? Does the budgetary allocation of each household exhibit the budget shares
that are implied by the form of its utility function?

EXAMPLE 13.5 The Excess Burden of a Tax

In Chapter 12 we showed that taxation may impose an excess burden in addition to the tax
revenues collected because of the incentive effects of the tax. With a general equilibrium
model we can show much more about this effect. Specifically, assume that the government in
the economy of Example 13.4 imposes an ad valorem tax of 0.4 on good x. This introduces a
wedge between what demanders pay for this good x ðpxÞ and what suppliers receive for the
good ðp0x ¼ ð1� tÞpx ¼ 0.6pxÞ. To complete the model we must specify what happens to the
revenues generated by this tax. For simplicity we assume that these revenues are rebated to
the households in a 50–50 split. In all other respects the economy remains as described in
Example 13.4.

Solving for the new equilibrium prices in this model yields

px ¼ 0.472, py ¼ 0.218, pk ¼ 0.121, pl ¼ 0.188. (13.50)

At these prices, total production of x is 17.9 and total production of y is 28.8. Hence, the
allocation of resources has shifted significantly toward y production. Even though the
relative price of x experienced by consumers ð¼ px=py ¼ 0.472=0.218 ¼ 2.17Þ has risen
significantly from its value (of 1.43) in Example 13.4, the price ratio experienced by firms
ð0.6px=py ¼ 1.30Þ has fallen somewhat from this prior value. One might therefore expect,
on the basis of a partial equilibrium analysis, that consumers would demand less of good x
and likewise that firms would similarly produce less of that good. Partial equilibrium analysis
would not, however, allow us to predict the increased production of y (which comes about
because the relative price of y has fallen for consumers but has risen for firms) nor the

(continued)

18Because firms’ production functions are characterized by constant returns to scale, in equilibrium each earns zero profits
so there is no need to specify firm ownership in this model.
19The computer program used to find these solutions is accessible at www.amherst.edu/∼fwesthoff/compequ/
FixedPointsCompEquApplet.html.
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EXAMPLE 13.5 CONTINUED

reduction in relative input prices (because there is less being produced overall). A more
complete picture of all of these effects can be obtained by looking at the final equilibrium
positions of the two households. The post-tax allocation for household 1 is

x1 ¼ 11.6, y1 ¼ 15.2,
_
l 1 � l1 ¼ 11.8, U1 ¼ 12.7; (13.51)

for household 2,

x2 ¼ 6.3, y2 ¼ 13.6,
_
l 2 � l2 ¼ 7.9, U2 ¼ 8.96. (13.52)

Hence, imposition of the tax has made household 1 considerably worse-off: utility falls from
13.5 to 12.7. Household 2 is actually made slightly better-off by this tax, or transfer scheme,
primarily because it receives a relatively large share of the tax proceeds that come mainly
from household 1. Although total utility has declined (as predicted by the simple partial
equilibrium analysis of excess burden), general equilibrium analysis gives a more complete
picture of the distributional consequences of the tax. Notice also that the total amount of
labor supplied falls as a result of the tax: total leisure rises from 15.1 (hours) to 19.7.
Imposition of a tax on good x has therefore had a relatively substantial labor supply effect
that is completely invisible in a partial equilibrium model.

QUERY: Would it be possible to make both households better-off (relative to Example 13.4)
in this taxation scenario by changing how the tax revenues are redistributed?

WELFARE ECONOMICS

Although most people recognize the equilibrium properties of the competitive price system
(after all, prices usually do not fluctuate widely from day to day), they see little overall pattern
to the resulting allocation of resources. The relationships described by the competitive model
are so complex it is hard to believe that any desirable outcome will emerge from the chaos.
This view provides an open-ended rationale to tinker with the system—because the results of
market forces are chaotic, surely human societies can do better through careful planning.

Smith’s invisible hand hypothesis
It took the genius of Adam Smith to challenge this view, which was probably the prevalent one
in the eighteenth century. To Smith, the competitive market system represented the polar
opposite of chaos. Rather, it provided a powerful “invisible hand” that ensured resources
would find their way to where they were most valued, thereby enhancing the “wealth” of the
nation. In Smith’s view, reliance on the economic self-interest of individuals and firms would
result in a (perhaps surprisingly) desirable social outcome.

Smith’s initial insights gave rise to modern welfare economics. Specifically, his widely
quoted “invisible hand” image provided the impetus for what is now called the First Theorem
ofWelfare Economics—that there is a close correspondence between the efficient allocation of
resources and the competitive pricing of these resources. Here we will investigate this
correspondence in some detail. We begin by defining economic efficiency in input and output
choices. Our definitions, which draw on thework of the nineteenth-century economist Vilfred
Pareto, have already been described briefly in Chapter 12. Our goal here is to draw these
discussions together and illustrate their underlying relationship to the competitive allocation
of resources.
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Pareto efficiency
We begin with Pareto’s definition of economic efficiency.

D E F I N I T I O N
Pareto efficient allocation. An allocation of resources is Pareto efficient if it is not possible
(through further reallocations) to make one person better-off without making someone else
worse-off.

The Pareto definition thus identifies particular allocations as being “inefficient” if unambigu-
ous improvements are possible. Notice that the definition does not require interperson
comparisons of utility; “improvements” are defined by individuals themselves.

Efficiency in production
An economy is efficient in production if it is on its production possibility frontier. Formally,
we can use Pareto’s terminology to define productive efficiency as follows:

D E F I N I T I O N
Productive efficiency. An allocation of resources is efficient in production (or “technically
efficient”) if no further reallocation would permit more of one good to be produced without
necessarily reducing the output of some other good.

As for Pareto efficiency itself, it is perhaps easiest to grasp this definition by studying its
converse—an allocation would be inefficient if it were possible to move existing resources
around a bit and get additional amounts of one good and no less of anything else. With
technically efficient allocations, no such unambiguous improvements are possible. The trade-
offs among outputs necessitated by movements along the production possibility frontier
reflect the technically efficient nature of all of the allocations on the frontier.

Technical efficiency is an obvious precondition for overall Pareto efficiency. Suppose
resources were allocated so that production was inefficient; that is, production was occurring
at a point inside the production possibility frontier. It would then be possible to produce
more of at least one good and no less of anything else. This increased output could be given
to some lucky person, making him or her better-off (and no one else worse-off). Hence,
inefficiency in production is also Pareto inefficiency. As we shall see in the next section,
however, technical efficiency does not guarantee Pareto efficiency. An economy can be
efficient at producing the wrong goods—devoting all available resources to producing left
shoes would be a technically efficient use of those resources, but surely some Pareto improve-
ment could be found in which everyone would be better-off.

Efficient allocation of resources among firms
In order to achieve technical efficiency, resources must be allocated correctly among firms.
Intuitively, resources should be allocated to those firms where they can be most efficiently
used. More precisely, the condition for efficient allocation is that the marginal physical
product of any resource in the production of a particular good is the same no matter which
firm produces that good.

A mathematical proof of this rule is straightforward. Suppose there are two firms produc-
ing the same good ðxÞ and their production functions are given by f1ðk1, l1Þ and f2ðk2, l2Þ.
Assume also that total supplies of capital and labor are given by

_
k and

_
l . The allocational

problem is then to maximize

x ¼ f1ðk1, l1Þ þ f2ðk2, l2Þ, (13.53)
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subject to the constraints

k1 þ k2 ¼
_
k,

l1 þ l2 ¼
_
l .

(13.54)

Upon substituting the constraints into Equation 13.53, the maximization problem becomes

x ¼ f1ðk1, l1Þ þ f2ð
_
k � k1,

_
l � l1Þ. (13.55)

First-order conditions for a maximum are
∂x
∂k1

¼ ∂f1
∂k1

þ ∂f2
∂k1

¼ ∂f1
∂k1

� ∂f2
∂k2

¼ 0 and

∂x
∂l1

¼ ∂f1
∂l1

þ ∂f2
∂l1

¼ ∂f1
∂l1

� ∂f2
∂l2

¼ 0
(13.56)

or
∂f1
∂k1

¼ ∂f2
∂k2

and
∂f1
∂l1

¼ ∂f2
∂l2

, (13.57)

as was to be shown.

EXAMPLE 13.6 Gains from Efficiently Allocating Labor

To examine the quantitative gains in output from allocating resources efficiently, suppose
two rice farms have production functions of the simple form

q ¼ k1=4l3=4 (13.58)

but that one rice farm is more mechanized than the other. If capital for the first farm is given
by k1 ¼ 16 and for the second farm by k2 ¼ 625, then

q1 ¼ 2l3=41 ,

q2 ¼ 5l3=42 .
(13.59)

If the total labor supply is 100, an equal allocation of labor to these two farms will provide
total rice output of

Q ¼ q1 þ q2 ¼ 2ð50Þ3=4 þ 5ð50Þ3=4 ¼ 131.6. (13.60)

The efficient allocation is found by equalizing the marginal productivities:

∂q1
∂l1

¼ 3
2

� �
l�1=4
1 ¼ ∂q2

∂l2
¼ 15

4
l�1=4
2 . (13.61)

Hence, for efficiency, labor should be allocated such that

l1 ¼ 5
2

� ��4

l2 ¼ 0.0256l2. (13.62)

Given the greater capitalization of farm 2, practically all of the available labor should be
devoted to it. With 100 units of labor, 97.4 units should be allocated to farm 2 with only
2.6 units to farm 1. In this case total output will be

Q ¼ q1 þ q2 ¼ 2ð2.6Þ3=4 þ 5ð97.4Þ3=4 ¼ 159.1. (13.63)

This represents a gain of more than 20 percent over the rice output obtained under the
equal allocation.

QUERY: Suppose capital were not fixed in this problem. How should capital and labor be
allocated between the two farms?
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Reaching the production possibility frontier
Although equality of marginal productivities will ensure the efficient allocation of resources
among firms producing any one good, that condition is not enough to ensure that in-
puts are allocated efficiently among firms producing different goods. Earlier in this chapter
(Figure 13.2) we saw that the condition for such efficiency is that the rates of technical
substitution among inputs must be the same in the production of each good if production is
to be on the production possibility frontier. Let’s look at a more formal proof. Suppose there
are only two goods being produced (x and y) using capital and labor as inputs. Because we have
already discussed allocating resources among firms producing the same good, here we assume
there is only a single firm producing each good. The production function for x is given by
x ¼ f ðkx , lxÞ and for good y by y ¼ gðky , lyÞ. Total availability of the inputs is constrained by_
k ¼ kx þ ky and

_
l ¼ lx þ ly . The problem of achieving technical efficiency is then to maximize

the value of x for any specified value of y, say
_
y . Setting up the Lagrangian for this problem

yields

ℒ ¼ f ðkx , lxÞ þ λ½gð
_
k � kx ,

_
l � lxÞ �

_
y �, (13.64)

and the first-order conditions for a maximum are
∂ℒ
∂kx

¼ f1 � λg1 ¼ 0,

∂ℒ
∂lx

¼ f2 � λg2 ¼ 0,

∂ℒ
∂λ

¼ gð
_
k � kx ,

_
l � lxÞ �

_
y ¼ 0.

(13.65)

Dividing the first two of these equations yields the required result:
f1
f2

¼ g1
g2

. (13.66)

Therefore, in a situation with many firms and several outputs, the conditions specified in
Equations 13.57 and 13.66 will ensure that production takes place on the production
possibility frontier. That is, production will be technically efficient.

EFFICIENCY IN OUTPUT MIX

Technical efficiency will not necessarily ensure overall Pareto optimality, however. Demand
must also be brought into the story. It does little good for an economy to be an efficient
producer of yo-yos and xylophones if no one wants these goods. In order to ensure Pareto
efficiency, we need some way to tie together individuals’ preferences and the production
possibilities. The condition necessary to ensure that the right goods are produced is that the
marginal rate of substitution (MRS) for any two goods must equal the rate of product
transformation (RPT) of the two goods. Simply phrased, the psychological rate of trade-
off between the two goods in people’s preferences must be equal to the rate at which they can
be traded off in production.

A graphical proof
Figure 13.8 illustrates the requirement for efficiency in product mix for a very simple case, a
single-person economy. It assumes that the one person in this economy (Robinson Crusoe?)
produces only two goods (x and y). (This analysis could also apply to an economy of many
individuals with identical preferences.) Those combinations of x and y that can be produced
are given by the production possibility frontier PP . Any point on PP represents a point of
technical efficiency. By superimposing the individual’s indifference map on Figure 13.8,
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however, we see that only one point on PP provides maximum utility. This point of
maximum utility is at E, where the curve PP is tangent to the individual’s highest indifference
curve,U2. At this point of tangency, the individual’sMRS (of x for y) is equal to the technical
RPT (of x for y); hence, this is the required condition for overall efficiency. Notice that point
E is preferred to every other point that is efficient in a productive sense. In fact, for any other
point, such as F , on the curve PP , there exist points that are inefficient but are preferred to F .
In Figure 13.8, the “inefficient” point G is preferred to the “efficient” point F . It would be
preferable from the individual’s point of view to produce inefficiently rather than be forced to
produce the “wrong” combination of goods in an efficient way. Point E (which is efficiently
produced) is superior to any such “second-best” solution.

A mathematical proof
To demonstrate this result mathematically, assume again there are only two goods (x and y)
and one individual in society (again Robinson Crusoe), whose utility function is given by
U ðx, yÞ. Assume also that this society’s production possibility frontier can be written in
implicit form as T ðx, yÞ ¼ 0. Robinson’s problem is to maximize utility subject to this
production constraint. Setting up the Lagrangian expression for this problem yields

ℒ ¼ U ðx, yÞ þ λ½T ðx, yÞ�, (13.67)

FIGURE 13.8 Efficiency in Product Mix in a Robinson Crusoe Economy

In a single-person economy, the curve PP represents those combinations of x and y that can be
produced. Every point on PP is efficient in a production sense. However, only the output combina-
tion at point E is a true utility maximum for the individual. At E the individual’sMRS is equal to the
rate at which x can technically be traded for y (RPT ).

Output of y
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F
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E
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U 1

P
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and the first-order conditions for an interior maximum are
∂ℒ
∂x

¼ ∂U
∂x

þ λ
∂T
∂x

¼ 0,

∂ℒ
∂y

¼ ∂U
∂y

þ λ
∂T
∂y

¼ 0,

∂ℒ
∂λ

¼ T ðx, yÞ ¼ 0.

(13.68)

Combining the first two of these equations yields

∂U =∂x
∂U =∂y

¼ ∂T =∂x
∂T =∂y

(13.69)

or

MRS ðx for yÞ ¼ � dy
dx

ðalong T Þ ¼ RPT ðx for yÞ, (13.70)

as Figure 13.8 illustrated. We have shown that only if individuals’ preferences are taken into
account will resources be allocated in a Pareto efficient way. Without such an explicit refer-
ence to preferences, it would be possible—by reallocating production—to raise at least one
person’s utility without reducing anyone else’s.

COMPETITIVE PRICES AND EFFICIENCY:
THE FIRST THEOREM OF WELFARE ECONOMICS

The essence of the relationship between perfect competition and the efficient allocation of
resources can be easily summarized. Attaining a Pareto efficient allocation of resources
requires that (except when corner solutions occur) the rate of trade-off between any two
goods, say x and y, should be the same for all economic agents. In a perfectly competitive
economy, the ratio of the price of x to the price of y provides this common rate of trade-off
to which all agents will adjust. Because prices are treated as fixed parameters both in in-
dividuals’ utility-maximizing decisions and in firms’ profit-maximizing decisions, all trade-off
rates between x and y will be equalized to the rate at which x and y can be traded in the
market ðpx=pyÞ. Because all agents face the same prices, all trade-off rates will be equalized
and an efficient allocation will be achieved. This is the First Theorem of Welfare Economics.

Efficiency in production
To see how competitive markets achieve technical efficiency, consider first the requirement
that every firm that produces a particular good (say, x) has identical marginal productivities of
labor in the production of x. In Chapter 11 we showed that a profit-maximizing firm will hire
additional units of any input (say, labor) up to the point at which its marginal contribution to
revenues is equal to the marginal cost of hiring the input. If we let px represent the price of the
good being sold and let f 1 and f 2 represent the production functions for two firms that
produce x, then profit maximization requires that

px f
1
l ¼ w,

px f
2
l ¼ w.

(13.71)

Because both firms face both the same price for x and the same competitive wage rate, these
equations imply

f 1
l ¼ f 2

l . (13.72)
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Consequently, every firm will have the same marginal productivity of labor in the production
of x. The market has succeeded in bringing about an efficient allocation of each input among
firms.

Competitive input markets will also ensure that inputs are employed efficiently across
firms producing different goods. In Chapter 10 we saw that any firm will minimize costs by
choosing an input combination for which the ratio of marginal products (that is, the rate of
technical substitution) is equal to the inputs’ prices. Hence, using our previous notation,

v
w

¼ f1
f2

and
v
w

¼ g1
g2

. (13.73)

Because competitive markets will ensure that inputs obey the law of one price, these cost-
minimizing conditions will lead to the equality of rates of technical substitution required by
Equation 13.66. Notice, as in the case for allocation of inputs among firms producing the
same good, no firm needs to know anything about what the other firms are doing.
Competitive input prices convey all the information necessary to achieve technical efficiency.

Efficiency in product mix
Proving that perfectly competitive markets lead to efficiency in the relationship between
production and preferences is also straightforward. Because the price ratios quoted to con-
sumers are the same ratios that the market presents to firms, theMRS shared by all individuals
will be identical to the RPT shared by all firms. This will be true for any pair of goods.
Consequently, an efficient mix of goods will be produced. Again, notice the two important
functions that market prices perform. First, they ensure supply and demand will be equalized
for all goods. If a goodwere produced in too great amounts, a market reaction would set in (its
price would fall) that would cut back on production of the good and shift resources into other
employment. The equilibrating of supply and demand in the market therefore ensures there
will be neither excess demand nor excess supply. Second, equilibrium prices provide market
trade-off rates for firms and individuals to use as parameters in their decisions. Because these
trade-off rates are identical for firms and individuals, efficiency is ensured.

A graphical proof
Our discussion of general equilibrium modeling earlier in this chapter provides precisely
the tools required to show this result graphically. Figure 13.9 repeats Figure 13.4, but now
we are more interested in the efficiency properties of the general equilibrium solution
illustrated. Given the production possibility frontier PP and preferences represented by the
indifference curves, it is clear that x�, y� represents the efficient output mix (compare this
figure to Figure 13.8). Possibly x�, y� could be decided upon in a centrally planned economy
if the planning board had adequate information about production possibilities and individ-
uals’ preferences. Alternatively, reliance on competitive markets and the self-interest of firms
and individuals will also lead to this allocation. Only with a price ratio of p�x =p�y will supply and
demand be in equilibrium in this model, and that equilibrium will occur at the efficient
product mix, E. Smith’s invisible hand ensures not only that production is technically efficient
(that output combinations lie on the production possibility frontier) but also that the forces
of supply and demand lead to the Pareto efficient output combination. More complex models
of competitive equilibrium price determination reach essentially the same conclusion.20 This
is the First Theorem of Welfare Economics.

20See, for example, K. J. Arrow and F. H. Hahn, General Competitive Analysis (San Francisco: Holden-Day, 1971), chaps.
4 and 5.
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EXAMPLE 13.7 Efficiency and Inefficiency

The efficiency of competitive pricing can be shown with the simple general equilibrium
models examined in Example 13.2. Each of the allocations found in that example are efficient
given the preferences and productive technology that underlie them. That is, in each case
utility is as large as possible given the production possibility frontier.

The base-case allocation (x� ¼ y� ¼ ffiffiffiffiffiffi
50

p
) is technically feasible in both of the other cases

illustrated in Example 13.2, but it is not the best use of resources. For the situation where
there is technical progress in the production of good x, the base-case allocation now lies
inside the production possibility frontier. The allocation (x� ¼ y� ¼ 10) clearly is Pareto
superior to the base case. Another way to see this is by holding y� constant at

ffiffiffiffiffiffi
50

p
; then it is

possible to produce x� ¼ 2
ffiffiffiffiffiffi
50

p
once the technical progress in good x is taken into account.

Opting for the base-case allocation would forgo a substantial amount of x production (of
course, only x� ¼ y� ¼ 10 is truly efficient given the new technology).

The base-case allocation would also be inefficient when preferences shift toward good y.
With the new utility function, the base case would yield

U ðx, yÞ ¼ x0:1y0:9 ¼ ð50Þ0:05ð50Þ0:45 ¼ ð50Þ0:5 ¼ 7:07. (13.74)

Alternatively, the optimal allocation ½x� ¼ ð10Þ0:5, y� ¼ 3ð10Þ0:5� yields utility of

U ðx, yÞ ¼ x0:1y0:9 ¼ ð10Þ0:05ð3Þ0:9ð10Þ0:45 ¼ ð3Þ0:9ð10Þ0:5 ¼ 8:50. (13.75)

Clearly, efficiency requires that preferences and technology be tied together properly.

(continued)

FIGURE 13.9 Competitive Equilibrium and Efficiency in Output Mix

Although all the output combinations on PP are technically efficient, only the combination x�, y� is
Pareto optimal. A competitive equilibrium price ratio of p�x =p�y will lead this economy to this Pareto
efficient solution.
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EXAMPLE 13.7 CONTINUED

The excess burden of a tax, again. Consider again the modeling of taxation. Suppose that
the government is unhappy with our base-case scenario because it believes people should not
consume somuch of good x. To address this concern, the government places a 200 percent tax
on good x butmaintains purchasing power by rebating the tax proceeds to consumers in a lump
sum. Tomodel this tax, we let px=py be the price ratio without the tax; this is the ratio firms see.
Consumers, on the other hand, see a price ratio of 3px=py—that is, they must pay the firm px
and the government 2px whenever they buy a unit of good x. Now equilibrium is described by

px
py

¼ x
y

ðsupplyÞ,

3px
py

¼ y
x

ðdemandÞ.
(13.76)

Hence, x=y ¼ y=3x or y2 ¼ 3x2. Substituting this into the production possibility frontier
yields the following after-tax equilibrium:

x� ¼ 5, y� ¼ 5
ffiffiffi
3

p
,

px
py

¼ 1ffiffiffi
3

p ¼ 0:58. (13.77)

After-tax utility in this situation is

U ðx, yÞ ¼ x0:5y0:5 ¼ 5ð3Þ0:25 ¼ 6:58. (13.78)

The reduction in utility from 7.07 to 6.58 is a measure of the excess burden of this tax.
Here, because tax proceeds are rebated to consumers, there is no other burden of this tax.
The welfare loss arises solely because the tax discourages x consumption by creating a wedge
between what consumers pay for the good and what producers receive for it.

QUERY: Explain the various components of the consumer’s budget constraint in the tax
example studied here.

Laissez-faire policies
In its most dogmatic expression, the correspondence between competitive equilibrium and
Pareto efficiency provides “scientific” support for the laissez-faire position taken by many
economists. For example, there is some theoretical support for Smith’s assertion that

the natural effort of every individual to better his own condition, when suffered to
exert itself with freedom and security, is so powerful a principle that it is alone, and
without any assistance, not only capable of carrying on the society to wealth and
prosperity, but of surmounting a hundred impertinent obstructions with which the
folly of human laws too often encumbers its operations.21

Again, as Smith noted, it is not the “public spirit” of the baker that provides bread for
individuals’ consumption. Rather, bakers (and other producers) operate in their own self-
interest when responding to market signals. Individuals also respond to these signals when
deciding how to allocate their incomes. Government intervention in this smoothly function-
ing process may only result in a loss of Pareto efficiency.

Such a sweeping conclusion, of course, vastly overstates the general applicability of the
simple models we have been using. No one should attempt to draw policy recommendations
from a theoretical structure that pays so little attention to the institutional details of the real

21A. Smith, The Wealth of Nations (New York: Random House, Modern Library Edition, 1937), p. 508.
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world. Still, the efficiency properties of the competitive system do provide a benchmark—a
place to start when examining reasons why competitive markets may fail.

DEPARTING FROM THE COMPETITIVE ASSUMPTIONS

Factors that may distort the ability of competitive markets to achieve efficiency can be classed
into four general groupings that include most of the interesting cases: (1) imperfect compe-
tition, (2) externalities, (3) public goods, and (4) imperfect information. Here we provide a
brief summary of these groupings; we will return to them in later chapters.

Imperfect competition
“Imperfect competition” includes all those situations in which economic agents exert some
market power in determining price. In this case, as we will see in Part 5, these agents will take
such effects into account in their decisions. A firm that faces a downward-sloping demand
curve for its product, for example, will recognize that the marginal revenue from selling one
more unit is less than the market price of that unit. Because it is the marginal return to its
decisions that motivates the profit-maximizing firm, marginal revenue rather than market
price becomes the important magnitude. Market prices no longer carry the informational
content required to achieve Pareto efficiency. Other cases of market power result in similar
informational shortcomings.

Externalities
The competitive price system can also fail to allocate resources efficiently when there are
interactions among firms and individuals that are not adequately reflected in market prices.
Perhaps the prototype example is the case of a firm that pollutes the air with industrial smoke
and other debris. Such a situation is termed an externality : an interaction between the firm’s
level of production and individuals’ well-being that is not accounted for by the price system.
A more complete discussion of the nature of externalities will be presented in Chapter 19, but
here we can describe why the presence of such nonmarket interactions interferes with the
ability of the price system to allocate resources efficiently. With externalities, market prices no
longer reflect all of a good’s costs of production. There is a divergence between private and
social marginal cost, and these extra social costs (or possibly benefits) will not be reflected in
market prices. Hence market prices will not carry the information about true costs that is
necessary to establish an efficient allocation of resources. As we will show in Chapter 19, most
of the study of environmental economics is concerned with potential ways to ameliorate the
effects of such discrepancies.

Public goods
A similar problem in pricing occurs in the case of “public” goods. These are goods, such as
national defense, which (usually) have two properties that make them unsuitable for produc-
tion in markets. First, the goods are nonrival in that additional people can consume the
benefits of them at zero cost. This property suggests that the “correct” price for such goods is
zero—obviously a problem if they are going to be produced profitably. A second feature of
many public goods is nonexclusion: extra individuals cannot be precluded from consuming the
good. Hence, in a market context, most consumers will adopt a “free rider” stance—waiting
for someone else to pay. Both of these technical features of public goods pose substantial
problems for market economies. These problems are also examined in Chapter 19.
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Imperfect information
Our discussion of the efficiency of perfectly competitive pricing has implicitly assumed that
both suppliers and demanders know the equilibrium prices at which transactions occur. If
economic actors are uncertain about prices or if markets cannot reach equilibrium, then there
is no reason to expect that the efficiency property of competitive pricing will be retained.
There are, of course, many ways in which imperfect information may affect market outcomes.
And once it is admitted that information may be imperfect, it is important to construct
models of how information is obtained and used by suppliers and demanders. To examine all
of these issues here would take us too far away from our primary goals. In Chapter 18,
however, we return to the topic of imperfect information by looking in detail at this rapidly
expanding area of economic research.

These four impediments to efficiency suggest that one should be very careful in applying
the First Theorem of Welfare Economics to actual policy choices. As we will discuss in later
chapters, there may be good reason to interfere with market outcomes on efficiency grounds.
There are also, of course, many bad reasons to interfere with markets—there are undoubtedly
situations where the lessons of the First Theorem should be followed. The role of microeco-
nomic analysis is to provide a systematic way of sorting through these cases.

DISTRIBUTION AND THE SECOND THEOREM
OF WELFARE ECONOMICS

Although the First Theorem of Welfare Economics ensures that (under certain conditions)
competitive markets will achieve efficient allocations, there is no guarantee that these alloca-
tions will achieve any sort of fair distribution of welfare among individuals. As A. K. Sen has
pointed out, an allocation of resources may be Pareto efficient “even when some people are
rolling in luxury and others are near starvation, as long as the starvers cannot bemade better off
without cutting into the pleasures of the rich…. In short, a society can be Pareto optimal and
still be perfectly disgusting.”22 Although a formal treatment of social welfare economics is
beyond the scope of this book, here wewill look briefly at the nature of the distributional issue.

An exchange economy
To study distribution in its simplest setting, assume there are only two people in society,
Smith and Jones. Assume also that the total quantities of two goods (x and y) to be distributed
among these people are in fixed supply. Now we can use the Edgeworth box diagram
introduced earlier in this chapter to illustrate all possible allocations of these goods between
Smith and Jones. In Figure 13.10, the dimensions of the Edgeworth box are given by the
total quantities of the goods available. Smith’s indifference curves are drawn with origin OS ,
and Jones’s indifference curves are drawn with originOJ . Any point within the box represents
a possible allocation of the goods to these two people, and we can use the indifference curves
to evaluate the utility derived by each person from such allocations.

Mutually beneficial transactions
Any point within the Edgeworth box at which the MRS for Smith is unequal to that for
Jones offers an opportunity for Pareto improvements. Consider the potential allocation A in
Figure 13.10. This point lies on the point of intersection of Smith’s indifference curveU 1

S and
Jones’s indifference curveU 3

J . Obviously, the marginal rates of substitution (the slopes of the
indifference curves) are not equal at A. Any allocation in the oval-shape shaded area repre-
sents a mutually beneficial trade for these two people—they can both move to a higher level

22A. K. Sen, Collective Choice and Social Welfare (San Francisco: Holden-Day, 1970), p. 22.
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of utility by adopting a trade that moves them into this area. When the marginal rates of
substitution of Smith and Jones are equal, however, such mutually beneficial trades are not
available. The points M1,M2,M3, andM4 in Figure 13.10 indicate tangencies of these
individuals’ indifference curves, and movement away from such points must make at least
one of the people worse-off. A move fromM2 toA, for example, reduces Smith’s utility from
U 2

S toU 1
S even though Jones is made no worse-off by the move. Alternatively, a move from

M2 to B makes Jones worse-off but keeps the utility level of Smith constant. In general, then,
these points of tangency do not offer the promise of additional mutually beneficial trading
and so are Pareto efficient.

Contract curve
The set of all Pareto efficient allocations in an Edgeworth box diagram is called the contract
curve. In Figure 13.10, this set of points is represented by the line running fromOS toOJ and
includes the tangencies M1,M2,M3, andM4 (and many other such tangencies). Points off
the contract curve (such as A or B) are inefficient, so mutually beneficial trades are possible.
But, as its name implies, the contract curve represents the exhaustion of all such trading
opportunities. Even a move along the contract curve (say, fromM1 toM2) cannot represent a
mutually beneficial trade because there will always be a winner (Smith) and a loser (Jones).
These observations may be summarized as follows.

D E F I N I T I O N
Contract curve. In an exchange economy, all efficient allocations of existing goods lie along
a (multidimensional) contract curve. Points off that curve are necessarily inefficient, because
individuals can be made unambiguously better-off by moving to the curve. Along the
contract curve, however, individuals’ preferences are rivals in the sense that one individual’s
situation may be improved only if someone else is made worse-off.

FIGURE 13.10 Edgeworth Box Diagram of Pareto Efficiency in Exchange

The points on the curve OS ,OJ are efficient in the sense that, at these allocations, Smith cannot be
made better-off without making Jones worse-off (and vice versa). An allocation such as A, on the
other hand, is inefficient because both Smith and Jones can be made better-off by choosing to move
into the shaded area. Notice that, along OS ,OJ , the MRS for Smith is equal to that for Jones. The
line OS ,OJ is called the contract curve.
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Exchange with initial endowments
In our previous discussion we assumed that fixed quantities of the two goods could be
allocated in any way conceivable. A somewhat different analysis would hold if the individuals
participating in the exchange possessed specific quantities of the goods at the start. There
would still be the definite possibility that each person could benefit from voluntary trade,
because it is unlikely the initial allocations would be efficient ones. On the other hand, neither
person would engage in a trade that would leave him or her worse-off than without trading.
Hence only a portion of the contract curve can be regarded as allocations that might result
from voluntary exchange.

These ideas are illustrated in Figure 13.11. The initial endowments of Smith and Jones are
represented by pointA in the Edgeworth box. As before, the dimensions of the box are taken
to be the total quantities of the two goods available. The contract curve of efficient allocations
is represented by the line OS ,OJ . Let the indifference curve of Smith that passes through
point A be called UA

S , and let Jones’s indifference curve through A be denoted by UA
J .

Notice that, at point A, the individuals’ indifference curves are not tangent and hence the
initial endowments are not efficient. Neither Smith nor Jones will accept trading outcomes
that give a utility level of less than UA

S orUA
J , respectively. It would be preferable for an in-

dividual to refrain from trading rather than accept such an inferior outcome. Thus, if we focus
only on efficient allocations, then only those between M1 andM2 on the contract curve can
occur as a result of free exchange. The range of efficient outcomes from voluntary exchange
has been narrowed by considering the initial endowments with which the individuals enter
into trading. If the initial distribution of goods favors Jones, then any final allocation will also
favor Jones because it is in Jones’s interest to refuse any trade that provides less utility.

FIGURE 13.11 Exchange with Initial Endowments

If individuals start with initial endowments (such as those represented by point A), then neither
would be willing to accept an allocation that promised a lower level of utility than point A does:
Smith would not accept any allocation below US , and Jones would not accept any allocation below
UA

J . Therefore, not every point on the contract curve can result from free exchange. Only the
efficient allocations between M1 andM2 are eligible if each individual is free to refrain from trading
and we require that the final allocation be efficient.
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The distributional dilemma and the Second Theorem
of Welfare Economics
This, then, is the distributional dilemma in its most abstract setting. If initial endowments are
skewed in favor of some economic actors, the Pareto efficient allocations promised by the
competitive price system will also tend to favor those actors. Voluntary transactions cannot
overcome large differences in initial endowments, and some sort of transfers (possibly lump
sum) will be needed to attain more equal results.

These thoughts lead to what is sometimes called the “Second Theorem of Welfare
Economics.” In general terms, the theorem states that any desired distribution of welfare
among the individuals in an economy can be achieved in an efficient manner through
competitive pricing if initial endowments are adjusted appropriately. It is this theorem that
allows economists to make a sharp distinction between the efficiency issues that arise in a
particular economic problem and the equity issues that arise in that problem. Put simply,
economists frequently argue for using the efficiency properties of competitive prices to “make
the pie as big as possible” and then for adjusting the resulting distribution to be “fair”
through the use of lump-sum transfers. Unfortunately, implementing the required lump-
sum transfers is easier said than done—virtually all tax/transfer systems have real efficiency
costs. Hence, the First and Second Theorems of Welfare Economics are not cure-alls for
every economic policy question. Still, there are many cases where both efficiency and equity
concerns suggest reliance on competitive pricing, so the wisdom of interference in market
transactions to achieve distributional goals is not always a forgone conclusion. Rather, the
correct application of applied welfare economics to any issue requires an independent assess-
ment of both allocational and distributional issues.

EXAMPLE 13.8 A Two-Person Exchange Economy

To fix these ideas, consider an exchange economy in which there are exactly 1,000 soft drinks
ðxÞ and 1,000 hamburgers ðyÞ. If we let Smith’s utility be represented by

USðxS , ySÞ ¼ x2=3
S y1=3S (13.79)

and Jones’s utility by

UJ ðxJ , yJ Þ ¼ x1=3
J y2=3J , (13.80)

then we can compute the efficient ways of allocating soft drinks and hamburgers. Notice at
the start that Smith has a relative preference for soft drinks whereas Jones tends to prefer
hamburgers, as reflected by the differing exponents in the utility functions of the two in-
dividuals. We might therefore expect that efficient allocations would give relatively more soft
drinks to Smith and relatively more hamburgers to Jones.

To find the efficient points in this situation, suppose we let Smith start at any preassigned
utility level, US . Our problem now is to choose xS , yS , xJ , and yJ to make Jones’s utility as
large as possible given Smith’s utility constraint. Setting up the Lagrangian for this problem
yields

ℒ ¼ UJ ðxJ , yJ Þ þ λ½USðxS , ySÞ �
_
U S �

¼ x1=3
J y2=3J þ λðx2=3

S y1=3S �
_
U SÞ. (13.81)

Remember that Jones simply gets what Smith doesn’t, and vice versa. Hence

xJ ¼ 1,000� xS and

yJ ¼ 1,000� yS .
(13.82)

(continued)
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EXAMPLE 13.8 CONTINUED

Our Lagrangian is therefore a function of the two variables xS and yS :

ℒ ¼ ð1,000� xSÞ1=3ð1, 000� ysÞ2=3 þ λðx2=3
S y1=3S �

_
U Þ. (13.83)

The first-order conditions for a maximum are

∂ℒ
∂xS

¼ �1
3

1,000� yS
1,000� xS

� �2=3

þ2λ
3

yS
xS

� �1=3

¼ 0,

∂ℒ
∂yS

¼ �2
3

1,000� xS
1,000� yS

� �1=3

þ λ

3
xS
yS

� �2=3

¼ 0.

(13.84)

Moving the terms in λ to the right side of these equations and dividing the top equation by
the bottom gives23

1
2

1,000 � yS
1,000 � xS

� �
¼ 2

yS
xS

� �
(13.85)

or

xS
1,000� xS

¼ 4yS
1,000 � yS

, (13.86)

which is our required condition for efficiency. We can now use Equation 13.86 to calculate
any number of Pareto efficient allocations. In Table 13.1 we have done so for a few values of
xS ranging from 0 to 1,000 (that is, for situations in which Smith gets nothing to situations
where he or she gets everything).

Pareto efficiency. To illustrate why points off this contract curve are inefficient, consider an
initial allocation in which Smith and Jones share x and y equally. With 500 units of each item,
both Smith and Jones receive a utility of 500 (assuming that such utility measurement is
meaningful). But, by using your basic scientific calculator, it is a relatively simple matter to
show that there are many allocations on the contract curve that offer more utility to both
people. Table 13.1 shows that this is nearly true for the allocations where Smith gets 600 or
700 soft drinks, and the precise boundaries of such mutually beneficial trades can be easily
calculated. For example, consider xS ¼ 660, yS ¼ 327, xJ ¼ 340, and yJ ¼ 673. For this
allocation, Smith’s utility is 522 and Jones’s is 536. Both are clearly better off than at the
initial allocation, and one might expect some sort of trading to take place that moves them
toward the contract curve.

Effects of initial endowments. To see how initial endowments may restrict the range of
Pareto efficient solutions in this economy, suppose Smith starts in a very favorable position
with xS ¼ 800, yS ¼ 800. Then Jones gets xJ ¼ 200, yJ ¼ 200, and the initial utility levels
are US ¼ 800,UJ ¼ 200. There are Pareto improvements that might be made from these
initial endowments, but none of them will improve Jones’s situation very much. For example,
if we hold Smith’s utility at 800, the efficient allocation xS ¼ 884, yS ¼ 657, xJ ¼ 116,
yJ ¼ 343 will increase Jones’s utility from 200 to 239. But that is the best that Jones can
do given the constraint that Smith cannot be made worse-off. The efficiency gains to Jones,
while significant, do very little to move the overall allocation toward more equal outcomes.

23Notice that Equation 13.85 is a restatement of the condition that the individuals’ marginal rates of substitution must
be equal for an efficient allocation. That is, Smith’s MRS ¼ ð∂US=∂xÞ=ð∂US=∂yÞ ¼ 2ð y=xÞ and Jones’s MRS ¼
ð∂UJ =∂xÞ=ð∂UJ =∂yÞ ¼ 1=2ðy=xÞ.
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QUERY: Would different preferences for the two people in this example offer greater scope
for equalizing outcomes from voluntary transactions? Are there any preferences for Smith and
Jones for which voluntary transactions would lead to equality even from very unequal initial
allocations?

TABLE 13.1 Pareto Efficient Allocations of 1,000 Soft Drinks and 1,000 Hamburgers
to Smith and Jones

xS yS

U S ¼
x2=3
S y1=3S

xJ ¼
1,000� xS

yJ ¼
1,000� yS

U J ¼
x1=3
J y2=3J

0 0 0 1,000 1,000 1,000

100 27 65 900 973 948

200 59 133 800 941 891

300 97 206 700 903 830

400 143 284 600 857 761

500 200 368 500 800 684

600 273 461 400 727 596

700 368 565 300 632 493

800 500 684 200 500 368

900 692 825 100 308 212

1,000 1,000 1,000 0 0 0

SUMMARY

This chapter has provided a general exploration of Adam
Smith’s conjectures about the efficiency properties of com-
petitive markets. We began with a description of how to
model many competitive markets simultaneously and then
used that model to make a few statements about welfare.
Some highlights of this chapter are listed here.

• Preferences and production technologies provide the
building blocks upon which all general equilibrium
models are based. One particularly simple version of
such a model uses individual preferences for two goods
together with a concave production possibility frontier
for those two goods.

• Competitive markets can establish equilibrium prices by
making marginal adjustments in prices in response to
information about the demand and supply for individual
goods. Walras’ law ties markets together so that such a
solution is assured (in most cases).

• General equilibrium models can usually be solved by
using computer algorithms. The resulting solutions yield

many insights about the economy that are not obtain-
able from partial equilibrium analysis of single markets.

• Competitive prices will result in a Pareto-efficient alloca-
tion of resources. This is the First Theorem of Welfare
Economics.

• Factors that interfere with competitive markets’ abilities
to achieve efficiency include (1) market power, (2) ex-
ternalities, (3) existence of public goods, and (4) imper-
fect information.

• Competitive markets need not yield equitable distribu-
tions of resources, especially when initial endowments
are highly Skewed. In theory, any desired distribution
can be attained through competitive markets accompa-
nied by appropriate transfers of initial endowments
(the Second Theorem of Welfare Economics). But
there are many practical problems in implementing such
transfers.
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PROBLEMS

13.1
Suppose the production possibility frontier for guns ðxÞ and butter ðyÞ is given by

x2 þ 2y2 ¼ 900.

a. Graph this frontier

b. If individuals always prefer consumption bundles in which y ¼ 2x, how much x and y will be
produced?

c. At the point described in part (b), what will be the RPT and hence what price ratio will cause
production to take place at that point? (This slope should be approximated by considering small
changes in x and y around the optimal point.)

d. Show your solution on the figure from part (a).

13.2
Suppose two individuals (Smith and Jones) each have 10 hours of labor to devote to producing either
ice cream ðxÞ or chicken soup ð yÞ. Smith’s utility function is given by

US ¼ x0:3y0:7,

whereas Jones’s is given by

UJ ¼ x0:5y0:5.

The individuals do not care whether they produce x or y, and the production function for each
good is given by

x ¼ 2l and y ¼ 3l,
where l is the total labor devoted to production of each good.

a. What must the price ratio, px=py , be?

b. Given this price ratio, how much x and y will Smith and Jones demand? Hint: Set the wage
equal to 1 here.

c. How should labor be allocated between x and y to satisfy the demand calculated in part (b)?

13.3
Consider an economy with just one technique available for the production of each good.

a. Suppose land is unlimited but labor equals 100. Write and sketch the production possibility
frontier.

b. Suppose labor is unlimited but land equals 150. Write and sketch the production possibility
frontier.

c. Suppose labor equals 100 and land equals 150. Write and sketch the production possibility
frontier. Hint: What are the intercepts of the production possibility frontier? When is land fully
employed? Labor? Both?

d. Explain why the production possibility frontier of part (c) is concave.

Good Food Cloth

Labor per unit output 1 1
Land per unit output 2 1
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e. Sketch the relative price of food as a function of its output in part (c).

f. If consumers insist on trading 4 units of food for 5 units of cloth, what is the relative price of
food? Why?

g. Explain why production is exactly the same at a price ratio of pF =pC ¼ 1.1 as at pF=pC ¼ 1.9.

h. Suppose that capital is also required for producing food and clothing and that capital require-
ments per unit of food and per unit of clothing are 0.8 and 0.9, respectively. There are 100 units
of capital available. What is the production possibility curve in this case? Answer part (e) for
this case.

13.4
Suppose that Robinson Crusoe produces and consumes fish ðF Þ and coconuts ðCÞ. Assume that, during
a certain period, he has decided to work 200 hours and is indifferent as to whether he spends this time
fishing or gathering coconuts. Robinson’s production for fish is given by

F ¼ ffiffiffiffiffi
lF

p
and for coconuts by

C ¼ ffiffiffiffiffi
lC

p
,

where lF and lC are the number of hours spent fishing or gathering coconuts. Consequently,

lC þ lF ¼ 200.
Robinson Crusoe’s utility for fish and coconuts is given by

utility ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
F ⋅ C

p
.

a. If Robinson cannot trade with the rest of the world, how will he choose to allocate his labor?
What will the optimal levels of F andC be?What will his utility be? What will be theRPT (of fish
for coconuts)?

b. Suppose now that trade is opened and Robinson can trade fish and coconuts at a price ratio of
pF =pC ¼ 2=1. If Robinson continues to produce the quantities of F and C from part (a),
what will he choose to consume once given the opportunity to trade? What will his new level of
utility be?

c. How would your answer to part (b) change if Robinson adjusts his production to take advan-
tage of the world prices?

d. Graph your results for parts (a), (b), and (c).

13.5
Smith and Jones are stranded on a desert island. Each has in his possession some slices of ham ðH Þ and
cheese ðCÞ. Smith is a very choosy eater and will eat ham and cheese only in the fixed proportions of
2 slices of cheese to 1 slice of ham. His utility function is given by US ¼ minðH ,C=2Þ.

Jones is more flexible in his dietary tastes and has a utility function given by UJ ¼ 4H þ 3C . Total
endowments are 100 slices of ham and 200 slices of cheese.

a. Draw the Edgeworth box diagram that represents the possibilities for exchange in this situation.
What is the only exchange ratio that can prevail in any equilibrium?

b. Suppose Smith initially had 40H and 80C. What would the equilibrium position be?

c. Suppose Smith initially had 60H and 80C. What would the equilibrium position be?

d. Suppose Smith (much the stronger of the two) decides not to play by the rules of the game.
Then what could the final equilibrium position be?
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13.6
In the country of Ruritania there are two regions, A and B. Two goods (x and y) are produced in both
regions. Production functions for region A are given by

xA ¼ ffiffiffiffi
lx

p
,

yA ¼
ffiffiffiffi
ly

q
;

here lx and ly are the quantities of labor devoted to x and y production, respectively. Total labor
available in region A is 100 units; that is,

lx þ ly ¼ 100.

Using a similar notation for region B, production functions are given by

xB ¼ 1
2

ffiffiffiffi
lx

p
,

yB ¼ 1
2

ffiffiffiffi
ly

q
.

There are also 100 units of labor available in region B:
lx þ ly ¼ 100.

a. Calculate the production possibility curves for regions A and B.

b. What condition must hold if production in Ruritania is to be allocated efficiently between
regions A and B (assuming labor cannot move from one region to the other)?

c. Calculate the production possibility curve for Ruritania (again assuming labor is immobile
between regions). How much total y can Ruritania produce if total x output is 12? Hint: A
graphical analysis may be of some help here.

13.7
Use the computer algorithm discussed in footnote 19 to examine the consequences of the following
changes to the model in Example 13.4. For each change, describe the final results of the modeling and
offer some intuition about why the results worked as they did.

a. Change the preferences of household 1 to U1 ¼ x0:61 y0:21 ð
_
l 1 � l1Þ0:2.

b. Reverse the production functions in Equation 13.44 so that x becomes the capital-intensive
good.

c. Increase the importance of leisure in each household’s utility function.

Analytical Problems
13.8 Tax equivalence theorem
Use the computer algorithm discussed in footnote 19 to show that a uniform ad valorem tax of both
goods yields the same equilibrium as does a uniform tax on both inputs that collects the same revenue.
Note: This tax equivalence theorem from the theory of public finance shows that taxation may be done
on either the output or input sides of the economy with identical results.

13.9 Returns to scale and the production possibility frontier
The purpose of this problem is to examine the relationships among returns to scale, factor intensity, and
the shape of the production possibility frontier.

Suppose there are fixed supplies of capital and labor to be allocated between the production of good
x and good y. The production functions for x and y are given (respectively) by

x ¼ kαlβ and y ¼ kγlδ,
where the parameters α,β, γ, δ will take on different values throughout this problem.
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Using either intuition, a computer, or a formal mathematical approach, derive the production
possibility frontier for x and y in the following cases.

a. α ¼ β ¼ γ ¼ δ ¼ 1=2.

b. α ¼ β ¼ 1=2,γ ¼ 1=3, δ ¼ 2=3.

c. α ¼ β ¼ 1=2,γ ¼ δ ¼ 2=3.

d. α ¼ β ¼ γ ¼ δ ¼ 2=3.

e. α ¼ β ¼ 0:6, γ ¼ 0:2, δ ¼ 1:0.

f. α ¼ β ¼ 0:7, γ ¼ 0:6, δ ¼ 0:8.

Do increasing returns to scale always lead to a convex production possibility frontier? Explain.

13.10 The Rybczynski theorem
The country of Podunk produces only wheat and cloth, using as inputs land and labor. Both are
produced by constant returns-to-scale production functions. Wheat is the relatively land-intensive
commodity.

a. Explain, in words or with diagrams, how the price of wheat relative to cloth ðpÞ determines the
land-labor ratio in each of the two industries.

b. Suppose that p is given by external forces (this would be the case if Podunk were a “small”
country trading freely with a “large” world). Show, using the Edgeworth box, that if the supply
of labor increases in Podunk then the output of cloth will rise and the output of wheat will fall.
Note: This result was discovered by the Polish economist Tadeusz Rybczynski. It is a funda-
mental result in the theory of international trade.

13.11 Walras’ law
Suppose there are only three goods ðx1, x2, x3Þ in an economy and that the excess demand functions for
x2 and x3 are given by

ED2 ¼ � 3p2
p1

þ 2p3
p1

� 1,

ED3 ¼ 4p2
p1

� 2p3
p1

� 2.

a. Show that these functions are homogeneous of degree 0 in p1, p2, and p3.

b. Use Walras’ law to show that, if ED2 ¼ ED3 ¼ 0, then ED1 must also be 0. Can you also use
Walras’ law to calculate ED1?

c. Solve this system of equations for the equilibrium relative prices p2=p1 and p3=p1. What is the
equilibrium value for p3=p2?

13.12 Initial endowments and prices
In Example 13.8, each individual has an initial endowment of 500 units of each good.

a. Express the demand for Smith and Jones for goods x and y as functions of px and py and their
initial endowments.

b. Use the demand functions from part (a), together with the observation that total demand for
each good must be 1,000, to calculate the equilibrium price ratio px=py in this situation. What
are the equilibrium consumption levels of each good by each person?
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c. How would the answers to this problem change for the following initial endowments?

Explain these varying results.

Smith’s Endowment Jones’s Endowment

x y x y

i 0 1,000 1,000 0

ii 600 600 400 400

iii 400 400 600 600

iv 1,000 1,000 0 0
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E X T E N S I O N S

Computable General Equilibrium Models

As discussed briefly in Chapter 13, recent improve-
ments in computer technology have made it feasible
to develop computable general equilibrium (CGE)
models of considerable detail. These may involve liter-
ally hundreds of industries and individuals, each with
somewhat different technologies or preferences. The
general methodology employed with these models is
to assume various forms for production and utility
functions, then choose particular parameters of those
functions based on empirical evidence. Numerical gen-
eral equilibrium solutions are then generated by the
models and compared to real-world data. After “cali-
brating” the models to reflect reality, various policy
elements in the models are varied as a way of providing
general equilibrium estimates of the overall impact of
those policy changes. In this extension we briefly re-
view a few of these types of applications.

E13.1 Trade models

One of the first uses for applied general equilibrium
models was to the study of the impact of trade barriers.
Because much of the debate over the effects of such
barriers (or of their reduction) focuses on impacts on
real wages, such general equilibrium models are espe-
cially appropriate for the task.

Two unusual features tend to characterize such
models. First, because themodels often have an explicit
focus on domestic versus foreign production of specific
goods, it is necessary to introduce a large degree of
product differentiation into individuals’ utility func-
tions. That is, “U.S. textiles” are treated as being dif-
ferent from “Mexican textiles” even though, in most
trade theories, textiles might be treated as homoge-
neous goods.Modelers have found they must allow for
only limited substitutability among such goods if their
models are to replicate actual trade patterns.

A second feature of CGE models of trade is the
interest in incorporating increasing returns-to-scale
technologies into their production sectors. This per-
mits the models to capture one of the primary advan-
tages of trade for smaller economies. Unfortunately,
introduction of the increasing returns-to-scale assump-
tion also requires that the models depart from perfectly
competitive, price-taking assumptions. Often some
type of markup pricing, together with Cournot-type

imperfect competition (see Chapter 15), is used for
this purpose.

North American free trade
Some of the most extensive CGE modeling efforts
have been devoted to analyzing the impact of the
North American Free Trade Agreement (NAFTA).
Virtually all of these models find that the agreement
offered welfare gains to all of the countries involved.
Gains forMexico accrued primarily because of reduced
U.S. trade barriers onMexican textiles and steel. Gains
to Canada came primarily from an increased ability to
benefit from economies of scale in certain key indus-
tries. Brown (1992) surveys a number of CGE models
of North American free trade and concludes that gains
on the order of 2–3 percent of GDP might be experi-
enced by both of these countries. For the United
States, gains from NAFTA might be considerably
smaller; but even in this case, significant welfare gains
were found to be associated with the increased com-
petitiveness of domestic markets.

E13.2 Tax and transfer models

A second major use of CGE models is to evaluate
potential changes in a nation’s tax and transfer policies.
For these applications, considerable care must be taken
in modeling the factor supply side of the models. For
example, at the margin, the effects of rates of income
taxation (either positive or negative) can have impor-
tant labor supply effects that only a general equilibrium
approach can model properly. Similarly, tax/transfer
policy can also affect savings and investment decisions,
and for these too it may be necessary to adopt more
detailed modeling procedures (for example, differenti-
ating individuals by age so as to examine effects of
retirement programs).

The Dutch MIMIC model
Probably the most elaborate tax/transfer CGE model
is that developed by the Dutch Central Planning
Bureau—theMicroMacroModel to Analyze the Insti-
tutional Context (MIMIC). This model puts emphasis
on social welfare programs and on some of the prob-
lems they seek to ameliorate (most notably unemploy-
ment, which ismissing frommany other CGEmodels).
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Gelauff and Graaflund (1994) summarize the main
features of the MIMIC model. They also use it to
analyze such policy proposals as the 1990s tax reform
in the Netherlands and potential changes to the gener-
ous unemployment and disability benefits in that
country.

E13.3 Environmental models

CGE models are also appropriate for understanding
the ways in which environmental policies may affect
the economy. In such applications, the production of
pollutants is considered as a major side effect of the
other economic activities in the model. By specifying
environmental goals in terms of a given reduction in
these pollutants, it is possible to use these models to
study the economic costs of various strategies for
achieving these goals. One advantage of the CGE ap-
proach is to provide some evidence on the impact of
environmental policies on income distribution—a
topic largely omitted from more narrow, industry-
based modeling efforts.

Assessing CO2 reduction strategies
Concern over the possibility that CO2 emissions in
various energy-using activities may be contributing
to global warming has led to a number of plans for
reducing these emissions. Because the repercussions of
such reductions may be widespread and varied, CGE
modeling is one of the preferred assessment methods.
Perhaps the most elaborate such model is that devel-
oped by the OECD—the General Equilibrium Envi-
ronmental (GREEN) model. The basic structure of
this model is described by Burniaux, Nicoletti, and
Oliviera-Martins (1992). The model has been used
to simulate various policy options that might be
adopted by European nations to reduce CO2 emis-
sions, such as institution of a carbon tax or increasingly
stringent emissions regulations for automobiles and
power plants. In general, these simulations suggest
that economic costs of these policies would be rela-
tively modest given the level of restrictions currently
anticipated. But most of the policies would have ad-
verse distributional effects that may require further
attention through government transfer policy.

E13.4 Regional and urban models

A final way in which CGE models can be used is to
examine economic issues that have important spatial

dimensions. Construction of such models requires
careful attention to issues of transportation costs for
goods and moving costs associated with labor mobil-
ity, because particular interest is focused on where
transactions occur. Incorporation of these costs into
CGE models is in many ways equivalent to adding
extra levels of product differentiation, because these
affect the relative prices of otherwise homogeneous
goods. Calculation of equilibria in regional markets
can be especially sensitive to how transport costs are
specified.

Changing government procurement
CGE regional models have been widely used to exam-
ine the local impact of major changes in government
spending policies. For example, Hoffmann, Robinson,
and Subramanian (1996) use a CGEmodel to evaluate
the regional impact of reduced defense expenditures
on the California economy. They find that the size of
the effects depends importantly on the assumed costs
of migration for skilled workers. A similar finding is
reported by Bernat and Hanson (1995), who examine
possible reductions in U.S. price-support payments to
farms. Although such reductions would offer overall
efficiency gains to the economy, they could have sig-
nificant negative impacts on rural areas.
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P A R T 5
Market Power
CHAPTER 14 Monopoly

CHAPTER 15 Imperfect Competition

In this part we examine the consequences of relaxing the assumption that firms are price takers. When firms
have some power to set prices, they will no longer treat them as fixed parameters in their decisions but will
instead treat price setting as one part of the profit-maximization process. Usually this will mean prices no
longer accurately reflect marginal costs and the efficiency theorems that apply to competitive markets no
longer hold.

Chapter 14 looks at the relatively simple case where there is only a single monopoly supplier of a good.
This supplier can choose to operate at any point on the demand curve for its product that it finds most
profitable. Its activities are constrained only by this demand curve, not by the behavior of rival producers. As
we shall see, this offers the firm a number of avenues for increasing profits, such as employing novel pricing
schemes or adapting the characteristics of its product. Although such decisions will indeed provide more
profits for the monopoly, in general they will also result in welfare losses for consumers (relative to perfect
competition).

In Chapter 15 we consider markets with few producers. Models of such markets are considerably more
complicated than are markets of monopoly (or of perfect competition, for that matter) because the demand
curve faced by any one firm will depend in an important way on what its rivals choose to do. Studying the
possibilities will usually require game-theoretic ideas to capture accurately the strategic possibilities involved.
Hence you should review the basic game theory material in Chapter 8 before plunging into Chapter 15,
whose general conclusion is that outcomes in markets with few firms will depend crucially on the details of
how the “game” is played. In many cases the same sort of inefficiencies that occur in monopoly markets
appear in imperfectly competitive markets as well.
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C H A P T E R

14

Monopoly

Amonopoly is a single firm that serves an entire market. This single firm faces the market demand curve for its
output. Using its knowledge of this demand curve, the monopoly makes a decision on how much to
produce. Unlike the perfectly competitive firm’s output decision (which has no effect on market price), the
monopoly’s output decision will, in fact, determine the good’s price. In this sense, monopoly markets and
markets characterized by perfect competition are polar opposite cases.

At times it is more convenient to treat monopolies as having the power to set prices. Technically, a
monopoly can choose that point on the market demand curve at which it prefers to operate. It may choose
either market price or quantity, but not both. In this chapter we will usually assume that monopolies choose
the quantity of output that maximizes profits and then settle for the market price that the chosen output
level yields. It would be a simple matter to rephrase the discussion in terms of price setting, and in some
places we shall do so.

BARRIERS TO ENTRY

Given these conventions, we have the following definition.

D E F I N I T I O N
Monopoly. A monopoly is a single supplier to a market. This firm may choose to produce at
any point on the market demand curve.

The reason a monopoly exists is that other firms find it unprofitable or impossible to enter the
market. Barriers to entry are therefore the source of all monopoly power. If other firms could
enter a market then the firm would, by definition, no longer be a monopoly. There are two
general types of barriers to entry: technical barriers and legal barriers.

Technical barriers to entry
A primary technical barrier is that the production of the good in question may exhibit
decreasing marginal (and average) costs over a wide range of output levels. The technology
of production is such that relatively large-scale firms are low-cost producers. In this situation
(which is sometimes referred to as natural monopoly), one firm may find it profitable to drive
others out of the industry by cutting prices. Similarly, once a monopoly has been established,
entry will be difficult because any new firmmust produce at relatively low levels of output and
therefore at relatively high average costs. It is important to stress that the range of declining
costs need only be “large” relative to the market in question. Declining costs on some
absolute scale are not necessary. For example, the production and delivery of concrete does
not exhibit declining marginal costs over a broad range of output when compared to the total
U.S. market. However, in any particular small town, declining marginal costs may permit a
monopoly to be established. The high costs of transportation in this industry tend to isolate
one market from another.
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Another technical basis of monopoly is special knowledge of a low-cost productive
technique. But the problem for the monopoly that fears entry is keeping this technique
uniquely to itself. When matters of technology are involved, this may be extremely difficult,
unless the technology can be protected by a patent (see next paragraph). Ownership of
unique resources—such as mineral deposits or land locations, or the possession of unique
managerial talents—may also be a lasting basis for maintaining a monopoly.

Legal barriers to entry
Many pure monopolies are created as a matter of law rather than as a matter of economic
conditions. One important example of a government-granted monopoly position is in the
legal protection of a product by a patent or copyright. Prescription drugs, computer chips,
and Disney animated movies are examples of profitable products that are shielded (for a time)
from direct competition by potential imitators. Because the basic technology for these
products is uniquely assigned to one firm, a monopoly position is established. The defense
made of such a governmentally granted monopoly is that the patent and copyright system
makes innovation more profitable and therefore acts as an incentive. Whether the benefits of
such innovative behavior exceed the costs of having monopolies is an open question that has
been much debated by economists.

A second example of a legally created monopoly is the awarding of an exclusive franchise
to serve a market. These franchises are awarded in cases of public utility (gas and electric)
service, communications services, the post office, some television and radio station markets,
and a variety of other situations. The argument usually put forward in favor of creating
these franchised monopolies is that the industry in question is a natural monopoly: Average
cost is diminishing over a broad range of output levels, and minimum average cost can be
achieved only by organizing the industry as a monopoly. The public utility and commu-
nications industries are often considered good examples. Certainly, that does appear to be
the case for local electricity and telephone service where a given network probably exhibits
declining average cost up to the point of universal coverage. But recent deregulation in
telephone services and electricity generation show that, even for these industries, the natural
monopoly rationale may not be all-inclusive. In other cases, franchises may be based largely
on political rationales. This seems to be true for the postal service in the United States and
for a number of nationalized industries (airlines, radio and television, banking) in other
countries.

Creation of barriers to entry
Although some barriers to entry may be independent of the monopolist’s own activities,
other barriers may result directly from those activities. For example, firms may develop
unique products or technologies and take extraordinary steps to keep these from being
copied by competitors. Or firms may buy up unique resources to prevent potential entry.
The De Beers cartel, for example, controls a large fraction of the world’s diamond mines.
Finally, a would-be monopolist may enlist government aid in devising barriers to entry. It
may lobby for legislation that restricts new entrants so as to “maintain an orderly market” or
for health and safety regulations that raise potential entrants’ costs. Because the monopolist
has both special knowledge of its business and significant incentives to pursue these goals, it
may have considerable success in creating such barriers to entry.

The attempt by a monopolist to erect barriers to entry may involve real resource costs.
Maintaining secrecy, buying unique resources, and engaging in political lobbying are all costly
activities. A full analysis of monopoly should involve not only questions of cost minimization
and output choice (as under perfect competition) but also an analysis of profit-maximizing
creation of entry barriers. However, we will not provide a detailed investigation of such

492 Part 5 Market Power



questions here.1 Instead, we will generally assume that the monopolist can do nothing to
affect barriers to entry and that the firm’s costs are therefore similar to what a competitive
firm’s costs would be.

PROFIT MAXIMIZATION AND OUTPUT CHOICE

Tomaximize profits, a monopoly will choose to produce that output level for which marginal
revenue is equal to marginal cost. Because the monopoly, in contrast to a perfectly competi-
tive firm, faces a negatively sloped market demand curve, marginal revenue will be less than
the market price. To sell an additional unit, the monopoly must lower its price on all units to
be sold if it is to generate the extra demand necessary to absorb this marginal unit. The profit-
maximizing output level for a firm is then the level Q � in Figure 14.1. At that level, marginal
revenue is equal to marginal costs, and profits are maximized.

Given the monopoly’s decision to produce Q �, the demand curve D indicates that a
market price of P� will prevail. This is the price that demanders as a group are willing to pay
for the output of the monopoly. In the market, an equilibrium price-quantity combination of
P�,Q � will be observed. Assuming P� > AC , this output level will be profitable, and the
monopolist will have no incentive to alter output levels unless demand or cost conditions
change. Hence we have the following principle.

FIGURE 14.1 Profit Maximization and Price Determination for a Monopoly

A profit-maximizing monopolist produces that quantity for which marginal revenue is equal to
marginal cost. In the diagram this quantity is given by Q �, which will yield a price of P� in the
market. Monopoly profits can be read as the rectangle of P�EAC .

Price, costs

A

Output per period

D

D

E

MR

AC

MC

Q*

P*

C

1For a simple treatment, see R. A. Posner, “The Social Costs of Monopoly and Regulation,” Journal of Political Economy
83 (August 1975): 807–27.
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O P T I M I Z A T I O N

P R I N C I P L E

Monopolist’s output. A monopolist will choose to produce that output for which marginal
revenue equalsmarginal cost. Because themonopolist faces a downward-sloping demand curve,
market price will exceed marginal revenue and the firm’s marginal cost at this output level.

The inverse elasticity rule, again
In Chapter 11 we showed that the assumption of profit maximization implies that the gap
between a price of a firm’s output and its marginal cost is inversely related to the price
elasticity of the demand curve faced by the firm. Applying Equation 11.13 to the case of
monopoly yields

P �MC
P

¼ � 1
eQ ,P

, (14.1)

where now we use the elasticity of demand for the entire market ðeQ ,P Þ because the mo-
nopoly is the sole supplier of the good in question. This observation leads to two general
conclusions about monopoly pricing. First, a monopoly will choose to operate only in
regions in which the market demand curve is elastic ðeQ ,P < �1Þ. If demand were inelastic,
then marginal revenue would be negative and thus could not be equated to marginal cost
(which presumably is positive). Equation 14.1 also shows that eQ ,P > �1 implies an
(implausible) negative marginal cost.

A second implication of Equation 14.1 is that the firm’s “markup” over marginal cost
(measured as a fraction of price) depends inversely on the elasticity of market demand. For
example, if eQ ,P ¼ �2 then Equation 14.1 shows that P ¼ 2MC , whereas if eQ ,P ¼ �10
then P ¼ 1:11MC . Notice also that if the elasticity of demand were constant along the entire
demand curve, the proportional markup over marginal cost would remain unchanged in
response to changes in input costs. Market price, therefore, moves proportionally to marginal
cost: increases in marginal cost will prompt the monopoly to increase its price proportionally,
and decreases in marginal cost will cause the monopoly to reduce its price proportionally.
Even if elasticity is not constant along the demand curve, it seems clear from Figure 14.1 that
increases in marginal cost will increase price (though not necessarily in the same proportion).
So long as the demand curve facing the monopoly is downward sloping, upward shifts inMC
will prompt the monopoly to reduce output and thereby obtain a higher price.2 We will
examine all these relationships mathematically in Examples 14.1 and 14.2.

Monopoly profits
Total profits earned by the monopolist can be read directly from Figure 14.1. These are
shown by the rectangle P�EAC and again represent the profit per unit (price minus average
cost) times the number of units sold. These profits will be positive if market price exceeds
average total cost. If P� < AC , however, then the monopolist can operate only at a long-
term loss and will decline to serve the market.

Because (by assumption) no entry is possible into a monopoly market, the monopolist’s
positive profits can exist even in the long run. For this reason, some authors refer to the profits
that a monopoly earns in the long run as monopoly rents. These profits can be regarded as a
return to that factor that forms the basis of the monopoly (a patent, a favorable location, or a
dynamic entrepreneur, for example); hence another possible owner might be willing to pay
that amount in rent for the right to the monopoly. The potential for profits is the reason why
some firms pay other firms for the right to use a patent and why concessioners at sporting
events (and on some highways) are willing to pay for the right to the concession. To the

2The comparative statics of a shift in the demand curve facing the monopolist are not so clear, however, and no unequivocal
prediction about price can be made. For an analysis of this issue, see the discussion that follows and Problem 14.4.
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extent that monopoly rights are given away at less than their true market value (as in radio and
television licensing), the wealth of the recipients of those rights is increased.

Although a monopoly may earn positive profits in the long run,3 the size of such profits
will depend on the relationship between the monopolist’s average costs and the demand for
its product. Figure 14.2 illustrates two situations in which the demand, marginal revenue, and
marginal cost curves are rather similar. As Equation 14.1 suggests, the price–marginal cost
markup is about the same in these two cases. But average costs in Figure 14.2a are consider-
ably lower than in Figure 14.2b. Although the profit-maximizing decisions are similar in the
two cases, the level of profits ends up being quite different. In Figure 14.2a the monopolist’s
price ðP�Þ exceeds the average cost of producing Q � (labeled AC�) by a large extent, and
significant profits are obtained. In Figure 14.2b, however, P� ¼ AC� and the monopoly
earns zero economic profits, the largest amount possible in this case. Hence, large profits
from a monopoly are not inevitable, and the actual extent of economic profits may not always
be a good guide to the significance of monopolistic influences in a market.

There is no monopoly supply curve
In the theory of perfectly competitive markets presented in Part 4, it was possible to speak of
an industry supply curve. We constructed the long-run supply curve by allowing the market
demand curve to shift and observing the supply curve that was traced out by the series
of equilibrium price-quantity combinations. This type of construction is not possible for

FIGURE 14.2 Monopoly Profits Depend on the Relationship between the Demand
and Average Cost Curves

Both of the monopolies in this figure are equally “strong” if by this we mean they produce similar
divergences between market price and marginal cost. However, because of the location of the
demand and average cost curves, it turns out that the monopoly in (a) earns high profits whereas
that in (b) earns no profits. Consequently, the size of profits is not a measure of the strength of a
monopoly.

Quantity per period

Price Price

(a) Monopoly with large profits

C*

Q* Q*

P*
P* = AC*

D

D

D

D

MR
MR

MC

MC
AC

AC

(b) Zero-profit monopoly

Quantity per period

3As in the competitive case, the profit-maximizing monopolist would be willing to produce at a loss in the short run as long
as market price exceeds average variable cost.
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monopolistic markets. With a fixed market demand curve, the supply “curve” for a monopoly
will be only one point—namely, that price-quantity combination for whichMR ¼ MC . If the
demand curve should shift then the marginal revenue curve would also shift, and a new profit-
maximizing output would be chosen. However, connecting the resulting series of equilib-
rium points on the market demand curves would have little meaning. This locus might have a
very strange shape, depending on how the market demand curve’s elasticity (and its associ-
ated MR curve) changes as the curve is shifted. In this sense the monopoly firm has no well-
defined “supply curve.” Each demand curve is a unique profit-maximizing opportunity for a
monopolist.

EXAMPLE 14.1 Calculating Monopoly Output

Suppose the market for Olympic-quality Frisbees (Q , measured in Frisbees bought per year)
has a linear demand curve of the form

Q ¼ 2,000� 20P (14.2)

or

P ¼ 100�Q =20, (14.3)

and let the costs of a monopoly Frisbee producer be given by

CðQ Þ ¼ 0:05Q 2 þ 10,000. (14.4)

To maximize profits, this producer chooses that output level for which MR ¼ MC . In order
to solve this problem we must phrase both MR and MC as functions of Q alone. Toward
this end, write total revenue as

P ⋅ Q ¼ 100Q � Q 2

20
. (14.5)

Consequently,

MR ¼ 100� Q
10

¼ MC ¼ 0:1Q (14.6)

and

Q � ¼ 500, P� ¼ 75. (14.7)

At the monopoly’s preferred output level,

CðQ Þ ¼ 0:05ð500Þ2 þ 10,000 ¼ 22,500,

AC ¼ 22,500
500

¼ 45.
(14.8)

Using this information, we can calculate profits as

π ¼ ðP� �ACÞ ⋅ Q � ¼ ð75� 45Þ ⋅ 500 ¼ 15,000. (14.9)

Observe that at this equilibrium there is a large markup between price (75) and marginal
cost ðMC ¼ 0:1Q ¼ 50Þ. Yet as long as entry barriers prevent a new firm from producing
Olympic-quality Frisbees, this gap and positive economic profits can persist indefinitely.

QUERY: How would an increase in fixed costs from 10,000 to 12,500 affect the monopoly’s
output plans? How would profits be affected? Suppose total costs shifted to CðQ Þ ¼
0:075Q 2 þ 10,000. How would the equilibrium change?
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EXAMPLE 14.2 Monopoly with Simple Demand Curves

We can derive a few simple facts about monopoly pricing in cases where the demand curve
facing the monopoly takes a simple algebraic form and the firm has constant marginal costs
(that is, CðQ Þ ¼ cQ andMC ¼ c).

Linear demand. Suppose that the inverse demand function facing the monopoly is of the
linear form P ¼ a � bQ . In this case, PQ ¼ aQ � bQ 2 and MR ¼ dPQ =dQ ¼ a � 2bQ .
Hence profit maximization requires that

MR ¼ a � 2bQ ¼ MC ¼ c or Q ¼ a � c
2b

. (14.10)

Inserting this solution for the profit-maximizing output level back into the inverse demand
function yields a direct relationship between price and marginal cost:

P ¼ a � bQ ¼ a � a � c
2

¼ a þ c
2

. (14.11)

An interesting implication is that, in this linear case, dP=dc ¼ 1=2. That is, only half of the
amount of any increase in marginal cost will show up in the market price of the monopoly
product.4

Constant elasticity demand. If the demand curve facing the monopoly takes the constant
elasticity form Q ¼ aPe (where e is the price elasticity of demand), then we know MR ¼
Pð1þ 1=eÞ and so profit maximization requires

P 1þ 1
e

� �
¼ c or P ¼ c

e
1þ e

� �
. (14.12)

Because it must be the case that e < �1 for profit maximization, price will clearly exceed
marginal cost and this gap will be larger the closer e is to �1. Notice also that dP=dc ¼
e=ð1þ eÞ and so any given increase in marginal cost will increase price by more than this
amount. Of course, as we have already pointed out, the proportional increase in marginal
cost and price will be the same. That is, eP , c ¼ dP=dc ⋅ c=P ¼ 1.

QUERY: The demand function in both of these cases is shifted by the parameter a. Discuss
the effects of such a shift for both linear and constant elasticity demand. Explain your results
intuitively.

MONOPOLY AND RESOURCE ALLOCATION

In Chapter 13 we briefly mentioned why the presence of monopoly distorts the allocation of
resources. Because the monopoly produces a level of output for which MC ¼ MR < P , the
market price of its good no longer conveys accurate information about production costs.
Hence, consumers’ decisions will no longer reflect true opportunity costs of production, and
resources will be misallocated. In this section we explore this misallocation in some detail in a
partial equilibrium context.

4Notice that when c ¼ 0 we have P ¼ a=2. That is, price should be halfway between zero and the price intercept of the
demand curve.
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Basis of comparison
To evaluate the allocational effect of a monopoly, we need a precisely defined basis of
comparison. A particularly useful comparison is provided by the perfectly competitive, con-
stant cost industry. In this case, as we showed in Chapter 12, the industry’s long-run supply
curve will be infinitely elastic with price equal to both marginal and average cost. It is
convenient to think of amonopoly as arising from the “capture” of such a competitive industry
and to treat the individual firms that constituted the competitive industry as now being single
plants in the monopolist’s empire. A prototype case would be John D. Rockefeller’s purchase
of most of the U.S. petroleum refineries in the late nineteenth century and his decision to
operate them as part of the Standard Oil trust. We can then compare the performance of this
monopoly to the performance of the previously competitive industry to arrive at a statement
about the welfare consequences of monopoly.

A graphical analysis
Figure 14.3 shows a simple linear demand curve for a product produced by a constant cost
industry. If this market were competitive, output would be Q �—that is, production would
occur where price is equal to long-run average and marginal cost. Under a simple single-price
monopoly, output would be Q �� because this is the level of production for which marginal
revenue is equal to marginal cost. The restriction in output from Q � to Q �� represents the

FIGURE 14.3 Allocational and Distributional Effects of Monopoly

Monopolization of this previously competitive market would cause output to be reduced from Q �
to Q ��. Consumer expenditures and productive inputs worth AEQ �Q �� are reallocated to the
production of other goods. Consumer surplus equal to P��BAP� is transferred into monopoly
profits. There is a deadweight loss given by BEA.
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misallocation brought about through monopolization. The total value of resources released
by this output restriction is shown in Figure 14.3 as area AEQ �Q ��. Essentially, the
monopoly closes down some of the plants that were operating in the competitive case.
These transferred inputs can be productively employed elsewhere, so area AEQ �Q �� is
not a social loss.

The restriction in output from Q � to Q �� involves a total loss in consumer surplus of
P��BEP�. Part of this loss is captured by the monopoly as profits. These profits are measured
by P��BAP�, and they reflect a transfer of income from consumers to the firm. As with any
transfer, difficult issues of equity arise in attempting to assess whether or not such a transfer is
“equitable.” However, there is no ambiguity about the loss in consumers’ surplus given by
area BEA, because this loss is not transferred to anyone. It is a pure “deadweight” loss and
represents the principal measure of the allocational harm of the monopoly.5

To illustrate the nature of this deadweight loss, consider Example 14.1, in which we
calculated an equilibrium price of $75 and a marginal cost of $50. This gap between price
and marginal cost is an indication of the efficiency-improving trades that are forgone through
monopolization. Undoubtedly, there is a would-be buyer who is willing to pay, say, $60
for an Olympic Frisbee but not $75. A price of $60 would more than cover all of the
resource costs involved in Frisbee production, but the presence of the monopoly prevents
such a mutually beneficial transaction between Frisbee users and the providers of Frisbee-
making resources. For this reason, the monopoly equilibrium is not Pareto optimal—
an alternative allocation of resources would make all parties better off. Economists have
made many attempts to estimate the overall cost of these deadweight losses in actual
monopoly situations. Most of these estimates are rather small when viewed in the context
of the whole economy.6 Allocational losses are larger, however, for some narrowly defined
industries.

EXAMPLE 14.3 Welfare Losses and Elasticity

The allocational effects of monopoly can be characterized fairly completely in the case of
constant marginal costs and a constant price elasticity demand curve. To do so, assume again
that constant marginal (and average) costs for a monopolist are given by c and that the
demand curve has a constant elasticity form of

Q ¼ Pe , (14.13)

where e is the price elasticity of demand ðe < �1Þ. We know the competitive price in this
market will be

Pc ¼ c (14.14)

and the monopoly price is given by

Pm ¼ c
1þ 1=e

. (14.15)

(continued)

5If the monopolized industry has a positively sloped long-run supply curve, then some of the deadweight losses will also be
reflected in reduced rents for inputs.
6The classic study is A. Harberger, “Monopoly and Resource Allocation,” American Economic Review (May 1954):
77–87. Harberger estimates that such losses constitute about 0.1 percent of gross national product.
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EXAMPLE 14.3 CONTINUED

The consumer surplus associated with any price ðP0Þ can be computed as

CS ¼ ∫
∞

P0

Q ðP Þ dP

¼ ∫
∞

P0

Pe dP

¼ Peþ1

e þ 1

����∞
P0

¼ � Peþ1
0

e þ 1
. (14.16)

Hence, under perfect competition we have

CSc ¼ � ceþ1

e þ 1
(14.17)

and, under monopoly,

CSm ¼ �
c

1þ 1=e

� �eþ1

e þ 1
. (14.18)

Taking the ratio of these two surplus measures yields

CSm
CSc

¼ 1
1þ 1=e

� �eþ1

. (14.19)

If e ¼ �2, for example, then this ratio is 1
2: consumer surplus under monopoly is half what it

is under perfect competition. For more elastic cases this figure falls a bit (because output
restrictions under monopoly are more significant). For elasticities closer to �1, the ratio
increases.

Profits. The transfer from consumer surplus into monopoly profits can also be computed
fairly easily in this case. Monopoly profits are given by

πm ¼ PmQ m � cQ m ¼ c
1þ 1=e

� c
� �

Qm

¼ �c=e
1þ 1=e

� �
⋅

c
1þ 1=e

� �e

¼ � c
1þ 1=e

� �eþ1

⋅
1
e
. (14.20)

Dividing this expression by Equation 14.17 yields

πm

CSc
¼ e þ 1

e

� �
1

1þ 1=e

� �eþ1

¼ e
1þ e

� �e

. (14.21)

For e ¼ �2 this ratio is 1
4. Hence, one fourth of the consumer surplus enjoyed under perfect

competition is transferred into monopoly profits. The deadweight loss from monopoly in
this case is therefore also a fourth of the level of consumer surplus under perfect competition.

QUERY: Suppose e ¼ �1:5. What fraction of consumer surplus is lost through monopoliza-
tion? How much is transferred into monopoly profits? Why do these results differ from the
case e ¼ �2?
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MONOPOLY, PRODUCT QUALITY, AND DURABILITY

The market power enjoyed by a monopoly may be exercised along dimensions other than the
market price of its product. If the monopoly has some leeway in the type, quality, or diversity
of the goods it produces, then it would not be surprising for the firm’s decisions to differ from
those that might prevail under a competitive organization of the market. Whether a monop-
oly will produce higher-quality or lower-quality goods than would be produced under
competition is unclear, however. It all depends on the firm’s costs and the nature of consumer
demand.

A formal treatment of quality
Suppose consumers’ willingness to pay for quality ðX Þ is given by the inverse demand
function PðQ ,X Þ, where

∂P
∂Q

< 0 and
∂P
∂X

> 0.

If the costs of producing Q and X are given by CðQ ,X Þ, the monopoly will choose Q and
X to maximize

π ¼ P ðQ ,X ÞQ � CðQ ,X Þ. (14.22)

The first-order conditions for a maximum are

∂π
∂Q

¼ P ðQ , X Þ þQ
∂P
∂Q

� CQ ¼ 0, (14.23)

∂π
∂X

¼ Q
∂P
∂X

� CX ¼ 0. (14.24)

The first of these equations repeats the usual rule that marginal revenue equals marginal
cost for output decisions. The second equation states that, when Q is appropriately set, the
monopoly should choose that level of quality for which the marginal revenue attainable
from increasing the quality of its output by one unit is equal to the marginal cost of making
such an increase. As might have been expected, the assumption of profit maximization
requires the monopolist to proceed to the margin of profitability along all of the dimensions
it can. Notice, in particular, that the marginal demander’s valuation of quality per unit is mul-
tiplied by the monopolist’s output level when determining the profit-maximizing choice.

The level of product quality chosen under competitive conditions will also be the one that
maximizes net social welfare:

SW ¼ ∫
0

Q �
P ðQ ,X Þ dQ � CðQ ,X Þ, (14.25)

where Q � is the output level determined through the competitive process of marginal cost
pricing, given X . Differentiation of Equation 14.25 with respect to X yields the first-order
condition for a maximum:

∂SW
∂X

¼ ∫
0

Q �
PX ðQ ,X Þ dQ �CX ¼ 0. (14.26)

The difference between the quality choice specified in Equation 14.24 and Equation 14.26
is that the former looks at the marginal valuation of one more unit of quality assuming Q
is at its profit-maximizing level, whereas the latter looks at the marginal value of quality
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averaged across all output levels.7 Therefore, even if a monopoly and a perfectly competitive
industry choose the same output level, they might opt for differing quality levels because
each is concerned with a different margin in its decision making. Only by knowing the
specifics of the problem is it possible to predict the direction of these differences. For an
example, see Problem 14.9; more detail on the theory of product quality and monopoly is
provided in Problem 14.11.

The durability of durable goods
Much of the research on the effect of monopolization on quality has focused on durable
goods. These are goods such as automobiles, houses, or refrigerators that provide services to
their owners over several periods rather than being completely consumed soon after they are
bought. The element of time that enters into the theory of durable goods leads to many
interesting problems and paradoxes. Initial interest in the topic started with the question of
whether monopolies would produce goods that lasted as long as would similar goods
produced under perfect competition. The intuitive notion that monopolies would “under-
produce” durability (just as they choose an output below the competitive level) was soon
shown to be incorrect by the Australian economist Peter Swan8 in the early 1970s.

Swan’s insight was to view the demand for durable goods as the demand for a flow of
services (i.e., automobile transportation) over several periods. He argued that both a mo-
nopoly and a competitive market would seek to minimize the cost of providing this flow to
consumers. The monopoly would, of course, choose an output level that restricted the flow
of services so as to maximize profits, but—assuming constant returns to scale in production—
there is no reason that durability per se would be affected by market structure. This result is
sometimes referred to as “Swan’s independence assumption.” Output decisions can be
treated independently from decisions about product durability.

Subsequent research on the Swan result has focused on showing how it can be under-
mined by different assumptions about the nature of a particular durable good or by relaxing
the implicit assumption that all demanders are the same. For example, the result depends
critically on how durable goods deteriorate. The simplest type of deterioration is illustrated by
a durable good, such as a light bulb, that provides a constant stream of services until it
becomes worthless. With this type of good, Equations 14.24 and 14.26 are identical, so
Swan’s independence result holds. Even when goods deteriorate smoothly, the independence
result continues to hold if a constant flow of services can be maintained by simply replacing
what has been used—this requires that new goods and old goods be perfect substitutes and
infinitely divisible. Outdoor house paint may, more or less, meet this requirement. On the
other hand, most goods clearly do not. It is just not possible to replace a run-down refrigerator
with, say, half of a new one. Once such more complex forms of deterioration are considered,
Swan’s result may not hold because we can no longer fall back upon the notion of providing a
given flow of services at minimal cost over time. In these more complex cases, however, it
is not always the case that a monopoly will produce less durability than will a competitive
market—it all depends on the nature of the demand for durability.

7The average marginal valuation ðAV Þ of product quality is given by

AV ¼ ∫
0

Q�
PX ðQ ,X Þ dQ =Q .

Hence Q ⋅AV ¼ Cx is the quality rule adopted to maximize net welfare under perfect competition. Compare this to
Equation 14.24.
8P. L. Swan, “Durability of Consumption Goods,” American Economic Review (December 1970): 884–94.
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Time inconsistency and heterogeneous demand
Focusing on the service flow from durable goods provides important insights on durability,
but it does leave an important question unanswered—when should the monopoly produce
the actual durable goods needed to provide the desired service flow? Suppose, for example,
that a light-bulb monopoly decides that its profit-maximizing output decision is to supply the
services provided by 1 million 60-watt bulbs. If the firm decides to produce 1 million bulbs in
the first period, what is it to do in the second period (say, before any of the original bulbs burn
out)? Because the monopoly chooses a point on the service demand curve where P > MC , it
has a clear incentive to produce more bulbs in the second period by cutting price a bit. But
consumers can anticipate this, so they may reduce their first-period demand, waiting for a
bargain. Hence, the monopoly’s profit-maximizing plan will unravel. Ronald Coase was the
first economist to note this “time inconsistency” that arises when a monopoly produces a
durable good.9 Coase argued that its presence would severely undercut potential monopoly
power—in the limit, competitive pricing is the only outcome that can prevail in the durable
goods case. Only if the monopoly can succeed in making a credible commitment not to
produce more in the second period can it succeed in its plan to achieve monopoly profits on
the service flow from durable goods.

Recent modeling of the durable goods question has examined how a monopolist’s
choices are affected in situations where there are different types of demanders.10 In such
cases, questions about the optimal choice of durability and about credible commitments
become even more complicated. The monopolist must not only settle on an optimal scheme
for each category of buyers, it must also ensure that the scheme intended for, (say) type-1
demanders is not also attractive to type-2 demanders. Studying these sorts of models would
take us too far afield, but some illustrations of how such “incentive compatible constraints”
work are provided in the Extensions to this chapter and in Chapter 18.

PRICE DISCRIMINATION

In some circumstances a monopoly may be able to increase profits by departing from a single-
price policy for its output. The possibility of selling identical goods at different prices is called
price discrimination.11

D E F I N I T I O N
Price discrimination. A monopoly engages in price discrimination if it is able to sell
otherwise identical units of output at different prices.

Whether a price discrimination strategy is feasible depends crucially on the inability of buyers
of the good to practice arbitrage. In the absence of transactions or information costs, the “law
of one price” implies that a homogeneous good must sell everywhere for the same price.
Consequently, price discrimination schemes are doomed to failure because demanders who
can buy from the monopoly at lower prices will be more attractive sources of the good—for
those who must pay high prices—than is the monopoly itself. Profit-seeking middlemen will

9R. Coase, “Durability and Monopoly,” Journal of Law and Economics (April 1972): 143–49.
10For a summary, see M. Waldman, “Durable Goods Theory for Real World Markets,” Journal of Economic Perspectives
(Winter 2003): 131–54.
11A monopoly may also be able to sell differentiated products at differential price-cost margins. Here, however, we treat
price discrimination only for a monopoly that produces a single homogeneous product.
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destroy any discriminatory pricing scheme. However, when resale is costly or can be pre-
vented entirely, then price discrimination becomes possible.

First-degree or perfect price discrimination
If each buyer can be separately identified by a monopolist, then it may be possible to charge
each the maximum price he or she would willingly pay for the good. This strategy of perfect
(or first-degree) price discrimination would then extract all available consumer surplus,
leaving demanders as a group indifferent between buying the monopolist’s good or doing
without it. The strategy is illustrated in Figure 14.4. The figure assumes that buyers are
arranged in descending order of willingness to pay. The first buyer is willing to pay up to P1
for Q 1 units of output, so the monopolist charges P1 and obtains total revenues of P1Q 1, as
indicated by the lightly shaded rectangle. A second buyer is willing to pay up to P2 for
Q 2 � Q 1 units of output, so the monopolist obtains total revenue of P2ðQ 2 � Q 1Þ from this
buyer. Notice that this strategy cannot succeed unless the second buyer is unable to resell the
output he or she buys at P2 to the first buyer (who pays P1 > P2).

The monopolist will proceed in this way up to the point at which the marginal buyer is no
longer willing to pay the good’s marginal cost (labeled MC in Figure 14.4). Hence total
quantity produced will be Q �. Total revenues collected will be given by the areaDEQ �0. All
consumer surplus has been extracted by the monopolist and there is no deadweight loss in
this situation. (Compare Figures 14.3 and 14.4.) The allocation of resources under perfect
price discrimination is therefore efficient, though it does entail a large transfer from consumer
surplus into monopoly profits.

FIGURE 14.4 Perfect Price Discrimination

Under perfect price discrimination, the monopoly charges a different price to each buyer. It sells Q 1
units at P1,Q 2 �Q 1 units at P2, and so forth. In this case the firm will produce Q �, and total
revenues will be DEQ �0.
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EXAMPLE 14.4 First-Degree Price Discrimination

Consider again the Frisbee monopolist in Example 14.1. Because there are relatively few
high-quality Frisbees sold, the monopolist may find it possible to discriminate perfectly
among a few world-class flippers. In this case it will choose to produce that quantity for
which the marginal buyer pays exactly the marginal cost of a Frisbee:

P ¼ 100� Q
20

¼ MC ¼ 0:1Q . (14.27)

Hence

Q � ¼ 666

and, at the margin, price and marginal cost are given by

P ¼ MC ¼ 66:6. (14.28)

Now we can compute total revenues by integration:

R ¼ ∫
0

Q�
P ðQ Þ dQ ¼ 100Q � Q 2

40

�����
666

0

¼ 55,511. (14.29)

Total costs are

CðQ Þ ¼ 0:05Q 2 þ 10,000 ¼ 32,178; (14.30)

total profits are given by

π ¼ R �C ¼ 23,333, (14.31)

which represents a substantial increase over the single-price policy examined in Example 14.1
(which yielded 15,000).

QUERY: What is the maximum price any Frisbee buyer pays in this case? Use this to obtain a
geometric definition of profits.

Third-degree price discrimination through
market separation
First-degree price discrimination poses a considerable information burden for themonopoly—
it must know the demand function for each potential buyer. A less stringent requirement
would be to assume the monopoly can separate its buyers into relatively few identifiable
markets (such as “rural-urban,” “domestic-foreign,” or “prime-time–off-prime”) and pursue
a separate monopoly pricing policy in each market. Knowledge of the price elasticities of
demand in thesemarkets is sufficient to pursue such a policy. Themonopoly then sets a price in
each market according to the inverse elasticity rule. Assuming that marginal cost is the same in
all markets, the result is a pricing policy in which

Pi 1þ 1
ei

� �
¼ Pj 1þ 1

ej

 !
(14.32)
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or

Pi

Pj
¼ ð1þ 1=ej Þ

ð1þ 1=eiÞ
, (14.33)

where Pi and Pj are the prices charged in markets i and j , which have price elasticities of
demand given by ei and ej . An immediate consequence of this pricing policy is that the
profit-maximizing price will be higher in markets in which demand is less elastic. If, for
example, ei ¼ �2 and ej ¼ �3, then Equation 14.33 shows that Pi=Pj ¼ 4=3—prices will be
one third higher in market i, the less elastic market.

Figure 14.5 illustrates this result for two markets that the monopoly can serve at constant
marginal cost ðMCÞ. Demand is less elastic in market 1 than in market 2, so the gap between
price and marginal revenue is larger in the former market. Profit maximization requires that
the firm produce Q �

1 in market 1 and Q �
2 in market 2, resulting in a higher price in the less

elastic market. So long as arbitrage between the two markets can be prevented, this price
difference can persist. The two-price discriminatory policy is clearly more profitable for the
monopoly than a single-price policy would be, because the firm can always opt for the latter
policy should market conditions warrant.

The welfare consequences of third-degree price discrimination are, in principle, ambigu-
ous. Relative to a single-price policy, the discriminating policy requires raising the price in the
less elastic market and reducing it in the more elastic one. Hence, the changes have an

FIGURE 14.5 Separated Markets Raise the Possibility of Third-Degree Price Discrimination

If two markets are separate, then a monopolist can maximize profits by selling its product at different
prices in the twomarkets. This would entail choosing that output for whichMC ¼ MR in each of the
markets. The diagram shows that the market with a less elastic demand curve will be charged the
higher price by the price discriminator.
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offsetting effect on total allocational losses. A more complete analysis suggests the intuitively
plausible conclusion that the multiple-price policy will be allocationally superior to a single-
price policy only in situations in which total output is increased through discrimination.
Example 14.5 illustrates a simple case of linear demand curves in which a single-price policy
does result in greater allocational losses.12

EXAMPLE 14.5 Third-Degree Price Discrimination

Suppose that a monopoly producer of widgets has a constant marginal cost of c ¼ 6 and sells
its products in two separated markets whose inverse demand functions are

P1 ¼ 24�Q 1 and P2 ¼ 12� 0:5Q 2. (14.34)

Notice that consumers in market 1 are more eager to buy than are consumers in market 2 in
the sense that the former are willing to pay more for any given quantity. Using the results for
linear demand curves from Example 14.2 shows that the profit-maximizing price-quantity
combinations in these two markets are:

P�
1 ¼ 24þ 6

2
¼ 15, Q �

1 ¼ 9, P�2 ¼ 12þ 6
2

¼ 9, Q �
2 ¼ 6. (14.35)

With this pricing strategy, profits are π ¼ ð15� 6Þ ⋅ 9þ ð9� 6Þ ⋅ 6 ¼ 81þ 18 ¼ 99. We
can compute the deadweight losses in the two markets by recognizing that the competitive
output (with P ¼ MC ¼ 6) in market 1 is 18 and in market 2 is 12:

DW ¼ DW1 þDW2

¼ 0:5ðP�
1 � 6Þð18� 9Þ þ 0:5ðP�

2 � 6Þð12� 6Þ
¼ 40:5þ 9 ¼ 49:5. (14.36)

A single-price policy. In this case, constraining the monopoly to charge a single price would
reduce welfare. Under a single-price policy the monopoly would simply cease serving mar-
ket 2, since it canmaximize profits by charging a price of 15 and at that price nowidgets will be
bought in market 2 (because the maximum willingness to pay is 12). Total deadweight loss in
this situation is therefore increased from its level in Equation 14.36 because total potential
consumer surplus in market 2 is now lost:

DW ¼ DW1 þDW2 ¼ 40:5þ 0:5ð12� 6Þð12� 0Þ ¼ 40:5þ 36 ¼ 76:5.
(14.37)

This illustrates a situation where third-degree price discrimination is welfare improving over
a single price policy—when the discriminatory policy permits “smaller” markets to be
served. Whether such a situation is common is an important policy question (consider, for
example, the case of U.S. pharmaceutical manufacturers charging higher prices at home than
abroad).

QUERY: Suppose these markets were no longer separated. How would you construct the
market demand in this situation? Would the monopolist’s profit-maximizing single price still
be 15?

12For a detailed discussion, see R. Schmalensee, “Output and Welfare Implications of Monopolistic Third-Degree Price
Discrimination,” American Economic Review (March 1981): 242–47. See also Problem 14.13.
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SECOND-DEGREE PRICE DISCRIMINATION
THROUGH PRICE SCHEDULES

The examples of price discrimination examined in the previous section require the monopoly
to separate demanders into a number of categories and then choose a profit-maximizing price
for each such category. An alternative approach would be for the monopoly to choose a
(possibly rather complex) price schedule that provides incentives for demanders to separate
themselves depending on how much they wish to buy. Such schemes include quantity
discounts, minimum purchase requirements or “cover” charges, and tie-in sales. These
plans would be adopted by a monopoly if they yielded greater profits than would a single-
price policy, after accounting for any possible costs of implementing the price schedule.
Because the schedules will result in demanders paying different prices for identical goods, this
form of (second-degree) price discrimination is feasible only when there are no arbitrage
possibilities. Here we look at one simple case. The Extensions to this chapter and portions of
Chapters 15 and 18 look at other aspects of second-degree price discrimination.

Two-part tariffs
One form of pricing schedule that has been extensively studied is a linear two-part tariff,
under which demanders must pay a fixed fee for the right to consume a good and a uniform
price for each unit consumed. The prototype case, first studied byWalter Oi, is an amusement
park (perhaps Disneyland) that sets a basic entry fee coupled with a stated marginal price for
each amusement used.13 Mathematically, this scheme can be represented by the tariff any
demander must pay to purchase q units of a good:

T ðqÞ ¼ a þ pq, (14.38)

where a is the fixed fee and p is the marginal price to be paid. The monopolist’s goal then is
to choose a and p to maximize profits, given the demand for this product. Because the
average price paid by any demander is given by

_
p ¼ T

q
¼ a

q
þ p, (14.39)

this tariff is feasible only when those who pay low average prices (those for whom q is large)
cannot resell the good to those who must pay high average prices (those for whom q is small).

One approach described by Oi for establishing the parameters of this linear tariff would be
for the firm to set the marginal price, p, equal to MC and then set a so as to extract the
maximum consumer surplus from a given set of buyers. One might imagine buyers being
arrayed according to willingness to pay. The choice of p ¼ MC would then maximize
consumer surplus for this group, and a could be set equal to the surplus enjoyed by the
least eager buyer. He or she would then be indifferent about buying the good, but all other
buyers would experience net gains from the purchase.

This feasible tariff might not be the most profitable, however. Consider the effects on
profits of a small increase in p above MC . This would result in no net change in the profits
earned from the least willing buyer. Quantity demanded would drop slightly at the margin
where p ¼ MC , and some of what had previously been consumer surplus (and therefore part
of the fixed fee, a) would be converted into variable profits because now p > MC . For all
other demanders, profits would be increased by the price rise. Although each will pay a bit less

13W. Y. Oi, “A Disneyland Dilemma: Two-Part Tariffs for a Mickey Mouse Monopoly,” Quarterly Journal of Economics
(February 1971): 77–90. Interestingly, the Disney empire once used a two-part tariff but abandoned it because the costs of
administering the payment schemes for individual rides became too high. Like other amusement parks, Disney moved to a
single-admissions price policy (which still provided them with ample opportunities for price discrimination, especially with
the multiple parks at Disney World).
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in fixed charges, profits per unit bought will rise to a greater extent.14 In some cases it is
possible to make an explicit calculation of the optimal two-part tariff. Example 14.6 provides
an illustration. More generally, however, optimal schedules will depend on a variety of
contingencies. Some of the possibilities are examined in the Extensions to this chapter.

EXAMPLE 14.6 Two-Part Tariffs

In order to illustrate the mathematics of two-part tariffs, let’s return to the demand equations
introduced in Example 14.5 but now assume that they apply to two specific demanders:

q1 ¼ 24� p1,
q2 ¼ 24� 2p2,

(14.40)

where now the p’s refer to the marginal prices faced by these two buyers.15

An Oi tariff. Implementing the two-part tariff suggested by Oi would require the monopo-
list to set p1 ¼ p2 ¼ MC ¼ 6. Hence, in this case, q1 ¼ 18 and q2 ¼ 12. With this marginal
price, demander 2 (the less eager of the two) obtains consumer surplus of 36 ½¼ 0:5 ⋅
ð12� 6Þ ⋅ 12�. That is the maximal entry fee that might be charged without causing this
person to leave the market. Consequently, the two-part tariff in this case would be T ðqÞ ¼
36þ 6q. If the monopolist opted for this pricing scheme, its profits would be

π ¼ R � C ¼ T ðq1Þ þ T ðq2Þ �ACðq1 þ q2Þ
¼ 72þ 6 ⋅ 30� 6 ⋅ 30 ¼ 72. (14.41)

These fall short of those obtained in Example 14.5.

The optimal tariff. The optimal two-part tariff in this situation can be computed by noting
that total profits with such a tariff are π ¼ 2a þ ðp �MCÞðq1 þ q2Þ. Here the entry fee, a,
must equal the consumer surplus obtained by person 2. Inserting the specific parameters of
this problem yields

π ¼ 0:5 ⋅ 2q2ð12� pÞ þ ðp � 6Þðq1 þ q2Þ
¼ ð24 � 2pÞð12� pÞ þ ðp � 6Þð48� 3pÞ
¼ 18p � p2. (14.42)

Hence, maximum profits are obtained when p ¼ 9 and a ¼ 0:5ð24� 2pÞð12� pÞ ¼ 9.
Therefore the optimal tariff is T ðqÞ ¼ 9þ 9q. With this tariff, q1 ¼ 15 and q2 ¼ 6, and the
monopolist’s profits are 81 ½¼ 2ð9Þ þ ð9� 6Þ ⋅ ð15þ 6Þ�. The monopolist might opt for this
pricing scheme if it were under political pressure to have a uniform pricing policy and to
agree not to price demander 2 “out of the market.” The two-part tariff permits a
degree of differential pricing ð _p1 ¼ 9:60,

_
p2 ¼ 9:75Þ but appears “fair” because all buyers

face the same schedule.

QUERY: Suppose a monopolist could choose a different entry fee for each demander. What
pricing policy would be followed?

14This follows because qiðmcÞ > q1ðmcÞ, where qiðmcÞ is the quantity demanded when p ¼ MC for all except the least
willing buyer (person 1). Hence the gain in profits from an increase in price aboveMC ,∆pqiðmcÞ, exceeds the loss in profits
from a smaller fixed fee, ∆pq1ðmcÞ.
15The theory of utility maximization that underlies these demand curves is that the quantity demanded is determined by
the marginal price paid, whereas the entry fee a determines whether q ¼ 0 might instead be optimal.
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REGULATION OF MONOPOLY

The regulation of natural monopolies is an important subject in applied economic analysis.
The utility, communications, and transportation industries are highly regulated in most
countries, and devising regulatory procedures that induce these industries to operate in a
desirable way is an important practical problem. Here we will examine a few aspects of the
regulation of monopolies that relate to pricing policies.

Marginal cost pricing and the natural monopoly dilemma
Many economists believe it is important for the prices charged by regulated monopolies to
reflect marginal costs of production accurately. In this way the deadweight loss may be
minimized. The principal problem raised by an enforced policy of marginal cost pricing is
that it will require natural monopolies to operate at a loss. Natural monopolies, by definition,
exhibit decreasing average costs over a broad range of output levels. The cost curves for such
a firmmight look like those shown in Figure 14.6. In the absence of regulation the monopoly
would produce output level QA and receive a price of PA for its product. Profits in this
situation are given by the rectangle PAABC. A regulatory agency might instead set a price of
PR for the monopoly. At this price, QR is demanded, and the marginal cost of producing this
output level is also PR. Consequently, marginal cost pricing has been achieved. Unfortu-
nately, because of the negative slope of the firm’s average cost curve, the price PR (¼marginal
cost) falls below average costs. With this regulated price, the monopoly must operate at a loss

FIGURE 14.6 Price Regulation for a Decreasing Cost Monopoly

Because natural monopolies exhibit decreasing average costs, marginal costs fall below average costs.
Consequently, enforcing a policy of marginal cost pricing will entail operating at a loss. A price of PR,
for example, will achieve the goal of marginal cost pricing but will necessitate an operating loss
of GFEPR.
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of GFEPR. Because no firm can operate indefinitely at a loss, this poses a dilemma for the
regulatory agency: Either it must abandon its goal of marginal cost pricing, or the govern-
ment must subsidize the monopoly forever.

Two-tier pricing systems
One way out of the marginal cost pricing dilemma is the implementation of a multiprice
system. Under such a system the monopoly is permitted to charge some users a high price
while maintaining a low price for marginal users. In this way the demanders paying the high
price in effect subsidize the losses of the low-price customers. Such a pricing scheme is shown
in Figure 14.7. Here the regulatory commission has decided that some users will pay a
relatively high price, P1. At this price, Q 1 is demanded. Other users (presumably those who
would not buy the good at the P1 price) are offered a lower price, P2. This lower price
generates additional demand of Q 2 � Q 1. Consequently, a total output of Q 2 is produced
at an average cost of A. With this pricing system, the profits on the sales to high-price
demanders (given by the rectangle P1DBA) balance the losses incurred on the low-priced
sales (BFEC). Furthermore, for the “marginal user,” the marginal cost pricing rule is being
followed: it is the “intramarginal” user who subsidizes the firm so it does not operate at a loss.
Although in practice it may not be so simple to establish pricing schemes that maintain
marginal cost pricing and cover operating costs, many regulatory commissions do use price
schedules that intentionally discriminate against some users (for example, businesses) to the
advantage of others (consumers).

FIGURE 14.7 Two-Tier Pricing Schedule

By charging a high price (P1) to some users and a low price (P2) to others, it may be possible for a
regulatory commission to (1) enforce marginal cost pricing and (2) create a situation where the
profits from one class of user (P1DBA) subsidize the losses of the other class (BFEC).
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Rate of return regulation
Another approach followed inmany regulatory situations is to permit themonopoly to charge
a price abovemarginal cost that is sufficient to earn a “fair” rate of return on investment.Much
analytical effort is then devoted to defining the “fair” rate concept and to developing ways in
which it might be measured. From an economic point of view, some of the most interesting
questions about this procedure concern how the regulatory activity affects the firm’s input
choices. If, for example, the rate of return allowed to firms exceeds what owners might obtain
on investment under competitive circumstances, there will be an incentive to use relatively
more capital input than would truly minimize costs. And if regulators delay in making rate
decisions, this may give firms cost-minimizing incentives that would not otherwise exist. We
will now briefly examine a formal model of such possibilities.16

A formal model
Suppose a regulated utility has a production function of the form

q ¼ f ðk, lÞ. (14.43)

This firm’s actual rate of return on capital is then defined as

s ¼ pf ðk, lÞ � wl
k

, (14.44)

where p is the price of the firm’s output (which depends on q) and w is the wage rate for
labor input. If s is constrained by regulation to be equal to (say)

_
s , then the firm’s problem is

to maximize profits

π ¼ pf ðk, lÞ � wl � vk (14.45)

subject to this regulatory constraint. Setting up the Lagrangian expression for this problem
yields

ℒ ¼ pf ðk, lÞ � wl � vk þ λ½wl þ _
s k � pf ðk, lÞ�. (14.46)

Notice that if λ ¼ 0, regulation is ineffective and the monopoly behaves like any profit-
maximizing firm. If λ ¼ 1, Equation 14.46 reduces to

ℒ ¼ ð_s � vÞk, (14.47)

which, assuming
_
s > v (which it must be if the firm is not to earn less than the prevailing rate

of return on capital elsewhere), means this monopoly will hire infinite amounts of capital—
an implausible result. Hence, 0 < λ < 1. The first-order conditions for a maximum are

∂ℒ
∂l

¼ pfl � w þ λðw � pf1Þ ¼ 0,

∂ℒ
∂k

¼ pfk � v þ λð_s � pfkÞ ¼ 0,

∂ℒ
∂λ

¼ wl þ _
s k � pf ðk, lÞ ¼ 0.

(14.48)

The first of these conditions implies that the regulated monopoly will hire additional labor
input up to the point at which pfl ¼ w—a result that holds for any profit-maximizing firm.
For capital input, however, the second condition implies that

ð1� λÞpfk ¼ v � λ
_
s (14.49)

16This model is based on H. Averch and L. L. Johnson, “Behavior of the Firm under Regulatory Constraint,” American
Economic Review (December 1962): 1052–69.
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or

pfk ¼
v � λ

_
s

1� λ
¼ v � λð_s � vÞ

1� λ
. (14.50)

Because
_
s > v and λ < 1, Equation 14.50 implies

pfk < v. (14.51)

The firm will hire more capital (and achieve a lower marginal productivity of capital) than it
would under unregulated conditions. “Overcapitalization” may therefore be a regulatory-
induced misallocation of resources for some utilities. Although we shall not do so here, it is
possible to examine other regulatory questions using this general analytical framework.

DYNAMIC VIEWS OF MONOPOLY

The static view that monopolistic practices distort the allocation of resources provides the
principal economic rationale for favoring antimonopoly policies. Not all economists believe
that the static analysis should be definitive, however. Some authors, most notably J. A.
Schumpeter, have stressed the beneficial role that monopoly profits can play in the process
of economic development.17 These authors place considerable emphasis on innovation and
the ability of particular types of firms to achieve technical advances. In this context the profits
that monopolistic firms earn provide funds that can be invested in research and development.
Whereas perfectly competitive firms must be content with a normal return on invested capital,
monopolies have “surplus” funds with which to undertake the risky process of research. More
important, perhaps, the possibility of attaining a monopolistic position—or the desire to
maintain such a position—provides an important incentive to keep one step ahead of potential
competitors. Innovations in new products and cost-saving production techniques may be
integrally related to the possibility of monopolization. Without such a monopolistic position,
the full benefits of innovation could not be obtained by the innovating firm.

Schumpeter stresses the point that the monopolization of a market may make it less costly
for a firm to plan its activities. Being the only source of supply for a product eliminates many
of the contingencies that a firm in a competitive market must face. For example, a monopoly
may not have to spend as much on selling expenses (advertising, brand identification, and
visiting retailers, for example) as would be the case in a more competitive industry. Similarly, a
monopoly may know more about the specific demand curve for its product and may more
readily adapt to changing demand conditions. Of course, whether any of these purported
benefits of monopolies outweigh their allocational and distributional disadvantages is an
empirical question. Issues of innovation and cost savings cannot be answered by recourse
to a priori arguments; detailed investigation of real-world markets is a necessity.

SUMMARY

In this chapter we have examined models of markets in
which there is only a single monopoly supplier. Unlike the
competitive case investigated in Part 4, monopoly firms do
not exhibit price-taking behavior. Instead, the monopolist
can choose the price-quantity combination on the market
demand curve that is most profitable. A number of conse-
quences then follow from this market power.

• The most profitable level of output for the monopolist is
the one for which marginal revenue is equal to marginal
cost. At this output level, price will exceed marginal cost.
The profitability of the monopolist will depend on the
relationship between price and average cost.

• Relative to perfect competition, monopoly involves a loss
of consumer surplus for demanders. Some of this is

17See, for example, J. A. Schumpeter, Capitalism, Socialism and Democracy, 3rd ed. (New York: Harper & Row, 1950),
especially chap. 8.
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PROBLEMS

14.1
A monopolist can produce at constant average and marginal costs of AC ¼ MC ¼ 5. The firm faces a
market demand curve given by Q ¼ 53� P .

a. Calculate the profit-maximizing price-quantity combination for the monopolist. Also calculate
the monopolist’s profits.

b. What output level would be produced by this industry under perfect competition (where price¼
marginal cost)?

c. Calculate the consumer surplus obtained by consumers in case (b). Show that this exceeds the
sum of the monopolist’s profits and the consumer surplus received in case (a). What is the value
of the “deadweight loss” from monopolization?

14.2
A monopolist faces a market demand curve given by

Q ¼ 70� p.

a. If the monopolist can produce at constant average and marginal costs of AC ¼ MC ¼ 6, what
output level will the monopolist choose in order to maximize profits? What is the price at this
output level? What are the monopolist’s profits?

b. Assume instead that the monopolist has a cost structure where total costs are described by

CðQ Þ ¼ 0:25Q 2 � 5Q þ 300.

With the monopolist facing the same market demand and marginal revenue, what price-
quantity combination will be chosen now to maximize profits? What will profits be?

c. Assume now that a third cost structure explains the monopolist’s position, with total costs
given by

CðQ Þ ¼ 0:0133Q 3 � 5Q þ 250.

Again, calculate the monopolist’s price-quantity combination that maximizes profits. What will
profit be? Hint: Set MC ¼ MR as usual and use the quadratic formula to solve the second-
order equation for Q .

d. Graph the market demand curve, the MR curve, and the three marginal cost curves from parts
(a), (b), and (c). Notice that the monopolist’s profit-making ability is constrained by (1) the
market demand curve (along with its associated MR curve) and (2) the cost structure underly-
ing production.

14.3
A single firm monopolizes the entire market for widgets and can produce at constant average and
marginal costs of

AC ¼ MC ¼ 10.

transferred into monopoly profits, whereas some of the
loss in consumer supply represents a deadweight loss of
overall economic welfare—a sign of Pareto inefficiency.

• Monopolists may opt for different levels of quality than
would perfectly competitive firms. Durable goods mo-
nopolists may be constrained by markets for used goods.

• A monopoly may be able to increase its profits further
through price discrimination—that is, charging different

prices to different categories of buyers. The ability of the
monopoly to practice price discrimination depends on its
ability to prevent arbitrage among buyers.

• Governments often choose to regulate natural monopo-
lies (firms with diminishing average costs over a broad
range of output levels). The type of regulatory mechan-
isms adopted can affect the behavior of the regulated
firm.
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Originally, the firm faces a market demand curve given by

Q ¼ 60� P .

a. Calculate the profit-maximizing price-quantity combination for the firm. What are the firm’s
profits?

b. Now assume that the market demand curve shifts outward (becoming steeper) and is given by

Q ¼ 45� 0:5P .

What is the firm’s profit-maximizing price-quantity combination now? What are the firm’s
profits?

c. Instead of the assumptions of part (b), assume that the market demand curve shifts outward
(becoming flatter) and is given by

Q ¼ 100� 2P .

What is the firm’s profit-maximizing price-quantity combination now? What are the firm’s
profits?

d. Graph the three different situations of parts (a), (b), and (c). Using your results, explain why
there is no real supply curve for a monopoly.

14.4
Suppose the market for Hula Hoops is monopolized by a single firm.

a. Draw the initial equilibrium for such a market.

b. Now suppose the demand for Hula Hoops shifts outward slightly. Show that, in general
(contrary to the competitive case), it will not be possible to predict the effect of this shift in
demand on the market price of Hula Hoops.

c. Consider three possible ways in which the price elasticity of demand might change as the
demand curve shifts: it might increase, it might decrease, or it might stay the same. Consider
also that marginal costs for the monopolist might be rising, falling, or constant in the range
where MR ¼ MC . Consequently, there are nine different combinations of types of demand
shifts and marginal cost slope configurations. Analyze each of these to determine for which it is
possible to make a definite prediction about the effect of the shift in demand on the price of
Hula Hoops.

14.5
Suppose a monopoly market has a demand function in which quantity demanded depends not only on
market price (P) but also on the amount of advertising the firm does (A, measured in dollars). The
specific form of this function is

Q ¼ ð20� PÞð1þ 0:1A � 0:01A2Þ.
The monopolistic firm’s cost function is given by

C ¼ 10Q þ 15þA.

a. Suppose there is no advertising ðA ¼ 0Þ. What output will the profit-maximizing firm choose?
What market price will this yield? What will be the monopoly’s profits?

b. Now let the firm also choose its optimal level of advertising expenditure. In this situation, what
output level will be chosen?What price will this yield? What will the level of advertising be? What
are the firm’s profits in this case? Hint: This can be worked out most easily by assuming the
monopoly chooses the profit-maximizing price rather than quantity.
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14.6
Suppose a monopoly can produce any level of output it wishes at a constant marginal (and average) cost
of $5 per unit. Assume the monopoly sells its goods in two different markets separated by some distance.
The demand curve in the first market is given by

Q 1 ¼ 55� P1,

and the demand curve in the second market is given by

Q 2 ¼ 70� 2P2.

a. If the monopolist can maintain the separation between the two markets, what level of output
should be produced in each market, and what price will prevail in each market? What are total
profits in this situation?

b. How would your answer change if it costs demanders only $5 to transport goods between the
two markets? What would be the monopolist’s new profit level in this situation?

c. How would your answer change if transportation costs were zero and then the firm was forced
to follow a single-price policy?

d. Suppose the firm could adopt a linear two-part tariff under which marginal prices must be equal
in the two markets but lump-sum entry fees might vary. What pricing policy should the firm
follow?

14.7
Suppose a perfectly competitive industry can produce widgets at a constant marginal cost of $10 per
unit. Monopolized marginal costs rise to $12 per unit because $2 per unit must be paid to lobbyists to
retain the widget producers’ favored position. Suppose the market demand for widgets is given by

Q D ¼ 1,000� 50P .

a. Calculate the perfectly competitive and monopoly outputs and prices.

b. Calculate the total loss of consumer surplus from monopolization of widget production.

c. Graph your results and explain how they differ from the usual analysis.

14.8
Suppose the government wishes to combat the undesirable allocational effects of a monopoly through
the use of a subsidy.

a. Why would a lump-sum subsidy not achieve the government’s goal?

b. Use a graphical proof to show how a per-unit-of-output subsidy might achieve the govern-
ment’s goal.

c. Suppose the government wants its subsidy to maximize the difference between the total value of
the good to consumers and the good’s total cost. Show that, in order to achieve this goal, the
government should set

t
P

¼ � 1
eQ ,P

,

where t is the per-unit subsidy and P is the competitive price. Explain your result intuitively.

14.9
Suppose a monopolist produces alkaline batteries that may have various useful lifetimes ðX Þ. Suppose
also that consumers’ (inverse) demand depends on batteries’ lifetimes and quantity ðQ Þ purchased
according to the function

PðQ ,X Þ ¼ gðX ⋅ Q Þ,
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where g 0 < 0. That is, consumers care only about the product of quantity times lifetime: They are
willing to pay equally for many short-lived batteries or few long-lived ones. Assume also that battery
costs are given by

CðQ ,X Þ ¼ CðX ÞQ ,

where C 0ðX Þ > 0. Show that, in this case, the monopoly will opt for the same level of X as does a
competitive industry even though levels of output and prices may differ. Explain your result. Hint:
Treat XQ as a composite commodity.

Analytical Problems
14.10 Taxation of a monopoly good
The taxation of monopoly can sometimes produce results different from those that arise in the
competitive case. This problem looks at some of those cases. Most of these can be analyzed by using
the inverse elasticity rule (Equation 14.1).

a. Consider first an ad valorem tax on the price of a monopoly’s good. This tax reduces the net
price received by the monopoly from P to Pð1� tÞ—where t is the proportional tax rate. Show
that, with a linear demand curve and constant marginal cost, the imposition of such a tax causes
price to rise by less than the full extent of the tax.

b. Suppose that the demand curve in part (a) were a constant elasticity curve. Show that the price
would now increase by precisely the full extent of the tax. Explain the difference between these
two cases.

c. Describe a case where the imposition of an ad valorem tax on a monopoly would cause the price
to rise by more than the tax.

d. A specific tax is a fixed amount per unit of output. If the tax rate is τ per unit, total tax collections
are τQ . Show that the imposition of a specific tax on a monopoly will reduce output more (and
increase price more) than will the imposition of an ad valorem tax that collects the same tax
revenue.

14.11 More on the welfare analysis of quality choice
An alternative way to study the welfare properties of a monopolist’s choices is to assume the existence
of a utility function for the customers of the monopoly of the form utility ¼ U ðQ ,X Þ, where Q is
quantity consumed and X is the quality associated with that quantity. A social planner’s problem then
would be to chooseQ andX to maximize social welfare as represented by SW ¼U ðQ ,X Þ � CðQ ,X Þ.

a. What are the first-order conditions for a welfare maximum?

b. The monopolist’s goal is to choose the Q and X that maximize π ¼ PðQ ,X Þ ⋅Q � CðQ ,X Þ.
What are the first-order conditions for this maximization?

c. Use your results from parts (a) and (b) to show that, at the monopolist’s preferred choices,
∂SW =∂Q > 0. That is, as we have already shown, prove that social welfare would be improved if
more were produced. Hint: Assume that ∂U =∂Q ¼ P .

d. Show that, at the monopolist’s preferred choices, the sign of ∂SW =∂X is ambiguous—that is,
it cannot be determined (on the sole basis of the general theory of monopoly) whether the
monopolist produces either too much or too little quality.

14.12 The welfare effects of third-degree price discrimination
In an important 1985 paper,18 Hal Varian shows how to assess third-degree price discrimination using
only properties of the indirect utility function (see Chapter 3). This problem provides a simplified
version of his approach. Suppose that a single good is sold in two separated markets. Quantities in the

18H. R. Varian, “Price Discrimination and Social Welfare,” American Economic Review (September 1985): 870–75.
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two markets are designated by q1, q2 with prices p1, p2. Consumers of the good are assumed to be
characterized by an indirect utility function that takes a quasi-linear form: V ðp1, p2, I Þ ¼ vðp1, p2Þ þ I .
Income is assumed to have an exogenous component ð

_
I Þ, and the monopoly earns profits of

π ¼ p1q1 þ p2q2 � cðq1 þ q2Þ, where c is marginal and average cost (which is assumed to be constant).

a. Given this setup, let’s first show some facts about this kind of indirect utility function.

(1) Use Roy’s identity (see the Extensions to Chapter 5) to show that the Marshallian demand
functions for the two goods in this problem are given by qi ðp1, p2, I Þ ¼ �∂v=∂pi .

(2) Show that the function vðp1, p2Þ is convex in the prices.

(3) Because social welfare (SW ) can be measured by the indirect utility function of the
consumers, show that the welfare impact of any change in prices is given by ∆SW ¼
∆v þ ∆π. How does this expression compare to the notion (introduced in Chapter 12)
that any change in welfare is the sum of changes in consumer and producer surplus?

b. Suppose now that we wish to compare the welfare associated with a single-price policy for these
two markets, p1 ¼ p2 ¼ _

p, to the welfare associated with different prices in the two markets,
p1 ¼ p�1 and p2 ¼ p�2 . Show that an upper bound to the change in social welfare from adopting a
two-price policy is given by ∆SW � ð_p � cÞðq�1 þ q�2 � _

q1 �
_
q 2Þ. Hint: Use a first-order

Taylor expansion for the function v around p�1 , p�2 together with Roy’s identity and the fact
that v is convex.

c. Show why the results of part (b) imply that, for social welfare to increase from the adoption of
the two-price policy, total quantity demanded must increase.

d. Use an approach similar to that taken in part (b) to show that a lower bound to the change
in social welfare from adopting a two-price policy is given by ∆SW 	 ðp�1 � cÞðq�1 � _

q1Þ þ
ðp�2 � cÞðq�2 � _

q2Þ. Can you interpret this lower bound condition?

e. Notice that the approach taken here never uses the fact that the price-quantity combinations
studied are profit maximizing for the monopolist. Can you think of situations (other than third-
degree price discrimination) where the analysis here might apply? Note: Varian shows that the
bounds for welfare changes can be tightened a bit in the price discrimination case by using profit
maximization.
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E X T E N S I O N S

Optimal Linear Two-part Tariffs

In Chapter 14 we examined a simple illustration of
ways in which a monopoly may increase profits by
practicing second-degree price discrimination—that
is, by establishing price (or “outlay”) schedules that
prompt buyers to separate themselves into distinct
market segments. Here we pursue the topic of linear
tariff schedules a bit further. Nonlinear pricing sched-
ules are discussed in Chapter 18.

E14.1 Structure of the problem

To examine issues related to price schedules in a sim-
ple context for each demander, we define the “valua-
tion function” as

viðqÞ ¼ piðqÞ ⋅ q þ si, (i)

where piðqÞ is the inverse demand function for in-
dividual i and si is consumer surplus. Hence vi rep-
resents the total value to individual i of undertaking
transactions of amount q, which includes total spend-
ing on the good plus the value of consumer surplus
obtained. Here we will assume (a) there are only two
demanders1 (or homogeneous groups of demanders)
and (b) person 1 has stronger preferences for this
good than person 2 in the sense that

v1ðqÞ > v2ðqÞ (ii)

for all values of q. The monopolist is assumed to have
constant marginal costs (denoted by c) and chooses a
tariff (revenue) schedule, T ðqÞ, that maximizes profits
given by

π ¼ T ðq1Þ þ T ðq2Þ � cðq1 þ q2Þ, (iii)

where qi represents the quantity chosen by person i.
In selecting a price schedule that successfully differ-
entiates among consumers, the monopolist faces two
constraints. To ensure that the low-demand person
(2) is actually served, it is necessary that

v2ðq2Þ � T ðq2Þ 	 0. (iv)

That is, person 2 must derive a net benefit from her
optimal choice, q2. Person 1, the high-demand in-
dividual, must also obtain a net gain from his chosen
consumption level ðq1Þ and must prefer this choice to

the output choice made by person 2:

v1ðq1Þ � T ðq1Þ 	 v1ðq2Þ � T ðq2Þ. (v)

If the monopolist does not recognize this “incen-
tive compatibility” constraint, it may find that person 1
opts for the portion of the price schedule intended
for person 2, thereby destroying the goal of obtaining
self-selected market separation. Given this general
structure, we can proceed to illustrate a number of
interesting features of the monopolist’s problem.

E14.2 Pareto superiority

Permitting the monopolist to depart from a simple
single-price scheme offers the possibility of adopting
“Pareto superior” tariff schedules under which all par-
ties to the transaction are made better-off. For exam-
ple, suppose the monopolist’s profit-maximizing price
is pM . At this price, person 2 consumes qM2 and receives
a net value from this consumption of

v2ðqM2 Þ � pM qM2 . (vi)

A tariff schedule for which

T ðqÞ ¼ pM q for q � qM2 ,

a þ _
pq for q > qM2 ,

(
(vii)

where a > 0 and c <
_
p < pM , may yield increased

profits for the monopolist as well as increased welfare
for person 1. Specifically, consider values of a and

_
p

such that

a þ _
pqM1 ¼ pM qM1

or

a ¼ ðpM � _
pÞqM1 , (viii)

where qM1 represents consumption of person 1 under a
single-price policy. In this case, then, a and

_
p are set so

that person 1 can still afford to buy qM1 under the new
price schedule. Because

_
p < pM , however, he will opt

for q�1 > qM1 . Because person 1 could have bought
qM1 but chose q�1 instead, he must be better-off under
the new schedule. The monopoly’s profits are now
given by

π ¼ a þ _
pq1 þ pM qM2 � cðq1 þ qM2 Þ (ix)

and
π � πM ¼ a þ _

pq1 þ pM qM1 � cðq1 � qM1 Þ, (x)
1Generalizations to many demanders are nontrivial. For a discussion, see
Wilson (1993, chaps. 2–5).
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where πM is the monopoly’s single-price profits
½¼ ðpM � cÞðqM1 þ qM2 Þ�. Substitution for a from
Equation viii shows

π � πM ¼ ð_p � cÞðq1 � qM1 Þ > 0. (xi)

Hence, this new price schedule also provides more
profits to the monopoly, some of which might be
shared with person 2. The price schedule is Pareto
superior to a single monopoly price. The notion that
multipart schedules may be Pareto superior has been
used not only in the study of price discrimination but
also in the design of optimal tax schemes and auction
mechanisms (see Willig, 1978).

Pricing a farmland reserve
The potential Pareto superiority of complex tariff
schedules is used by R. B. W. Smith (1995) to estimate
a least-cost method for the U.S. government to fi-
nance a conservation reserve program for farmland.
The specific plan the author studies would maintain a
34-million-acre reserve out of production in any given
year. He calculates that use of carefully constructed
(nonlinear) tariff schedules for such a program might
cost only $1 billion annually.

E14.3 Tied sales

Sometimes a monopoly will market two goods to-
gether. This situation poses a number of possibilities
for discriminatory pricing schemes. Consider, for ex-
ample, laser printers that are sold with toner cartridges
or electronic game players sold with patented addi-
tional games. Here the pricing situation is similar to
that examined in Chapter 14—usually consumers buy
only one unit of the basic product (the printer or
camera) and thereby pay the “entry” fee. Then they
consume a variable number of tied products (toner and
film). Because our analysis in Chapter 14 suggests that
the monopoly will choose a price for its tied product
that exceeds marginal cost, there will be a welfare loss
relative to a situation in which the tied good is pro-
duced competitively. Perhaps for this reason, tied sales
are prohibited by law in some cases. Prohibition may
not necessarily increase welfare, however, if the mo-
nopoly declines to serve low-demand consumers in the
absence of such a practice (Oi, 1971).

Automobiles and wine
One way in which tied sales can be accomplished is
through creation of a multiplicity of quality variants
that appeal to different classes of buyers. Automobile

companies have been especially ingenious at devising
quality variants of their basic models (for example, the
Honda Accord comes in DX, LX, EX, and SX con-
figurations) that act as tied goods in separating
buyers into various market niches. A 1992 study by
J. E. Kwoka examines one specific U.S. manufacturer
(Chrysler) and shows how market segmentation is
achieved through quality variation. The author calcu-
lates that significant transfer from consumer surplus to
firms occurs as a result of such segmentation.

Generally, this sort of price discrimination in a tied
good will be infeasible if that good is also produced
under competitive conditions. In such a case the tied
good will sell for marginal cost, and the only possibility
for discriminatory behavior open to the monopolist is
in the pricing of its basic good (that is, by varying
“entry fees” among demanders). In some special
cases, however, choosing to pay the entry fee will con-
fer monopoly power in the tied good on the monopo-
list even though it is otherwise reduced under com-
petitive conditions. For example, Locay andRodriguez
(1992) examine the case of restaurants’ pricing of
wine. Here group decisions to patronize a particular
restaurant may confer monopoly power to the restau-
rant owner in the ability to practice wine price discrim-
ination among buyers with strong grape preferences.
Since the owner is constrained by the need to attract
groups of customers to the restaurant, the power to
price discriminate is less than under the puremonopoly
scenario.
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C H A P T E R

15

Imperfect Competition

This chapter discusses oligopolies, markets with relatively few firms (but more than one) that fall between the
extremes of perfect competition and monopoly. Oligopolies raise the possibility of strategic interaction
among firms. To analyze this strategic interaction rigorously, we will apply the concepts from game theory
that were introduced in Chapter 8. Our game-theoretic analysis will show that small changes in details
concerning the variables firms choose, the timing of their moves, or their information about market
conditions or rival actions can have a dramatic effect on market outcomes. The first half of the chapter
deals with short-term decisions such as pricing and output and the second half with longer-term decisions
such as investment, advertising, and entry.

SHORT-RUN DECISIONS: PRICING AND OUTPUT

The first half of this chapter will analyze firms’ short-run (pricing and/or output) decisions in
an oligopoly, a market with relatively few firms but more than one. It is difficult to predict
exactly the possible outcomes for price and output when there are few firms; prices depend on
how aggressively firms compete, which in turn depends on which strategic variables firms
choose, how much information firms have about rivals, and how often firms interact with
each other in the market.

For example, consider the Bertrand game studied in the next section. The game involves
two identical firms choosing prices simultaneously for their identical products in their one
meeting in the market. The Bertrand game has a Nash equilibrium at point C in Figure 15.1.
Even though there may be only two firms in the market, in this equilibrium they behave as if
they were perfectly competitive, setting price equal to marginal cost and earning zero profit.
We will discuss whether the Bertrand game is a realistic depiction of actual firm behavior, but
an analysis of the model shows that it is possible to think up rigorous game-theoretic models
in which one extreme—the competitive outcome—can emerge in very concentrated markets
with few firms.

At the other extreme, as indicated by pointM in Figure 15.1, firms as a group may act as a
cartel, recognizing that they can affect price and coordinate their decisions. Indeed, they may
be able to act as a perfect cartel and achieve the highest possible profits—namely, the profit a
monopoly would earn in the market. One way to maintain a cartel is to bind firms with
explicit pricing rules. Such explicit pricing rules are often prohibited by antitrust law. But
firms need not resort to explicit pricing rules if they interact on the market repeatedly; they
can collude tacitly. High collusive prices can be maintained with the tacit threat of a price war
if any firm undercuts. We will analyze this game formally and discuss the difficulty of
maintaining collusion.

The Bertrand and cartel models determine the outer limits between which actual prices
in an imperfectly competitive market are set (one such intermediate price is represented by
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point A in Figure 15.1). This band of outcomes may be very wide, and given the plethora of
available models there may be a model for nearly every point within the band. For example, in
a later section we will show how the Cournot model, in which firms set quantities rather than
prices as in the Bertrand model, leads to an outcome (such as pointA) somewhere betweenC
and M in Figure 15.1.

It is important to know where the industry is on the line between pointsC andM because
total welfare (as measured by the sum of consumer surplus and firms’ profits; see Chapter 12)
depends on the location of this point. At pointC , total welfare is as high as possible; at pointA,
total welfare is lower by the area of the shaded triangle 3. In Chapter 12, this shortfall in total
welfare relative to the highest possible level was called deadweight loss. At pointM , deadweight
loss is even greater and is given by the area of shaded regions 1, 2, and 3. The closer the
imperfectly competitive outcome toC and the farther fromM , the higher is total welfare and
the better-off society will be.1

FIGURE 15.1 Pricing and Output under Imperfect Competition

Market equilibrium under imperfect competition can occur at many points on the demand curve. In
this figure, which assumes that marginal costs are constant over all output ranges, the equilibrium of
the Bertrand game occurs at point C , also corresponding to the perfectly competitive outcome. The
perfect cartel outcome occurs at point M , also corresponding to the monopoly outcome. Many
solutions may occur between points M and C , depending on the specific assumptions made about
how firms compete. For example, the equilibrium of the Cournot game might occur at a point such
asA. The deadweight loss given by the shaded triangle is increasing as one moves from pointC toM .
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1Since this section deals with short-run decision variables (price and quantity), the discussion of total welfare in this
paragraph focuses on short-run considerations. As discussed in a later section, an imperfectly competitive market may
produce considerably more deadweight loss than a perfectly competitive one in the short run yet provide more innovation
incentives, leading to lower production costs and new products and perhaps higher total welfare in the long run. The patent
system intentionally impairs competition by granting a monopoly right in order to improve innovation incentives.
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BERTRAND MODEL

The Bertrandmodel is named after the economist who first proposed it.2 The model is a game
involving two identical firms, labeled 1 and 2, producing identical products at a constant
marginal cost (and constant average cost) c. The firms choose prices p1 and p2 simultaneously
in a single period of competition. Since firms’ products are perfect substitutes, all sales go to
the firm with the lowest price. Sales are split evenly if p1 ¼ p2. Let DðpÞ be market demand.

We will look for the Nash equilibrium. The game has a continuum of actions, as does
Example 8.6 (the Tragedy of the Commons) in Chapter 8. Unlike Example 8.6, we cannot
use calculus to derive best-response functions because the profit functions are not differen-
tiable here. Starting from equal prices, if one firm lowers its price by the smallest amount then
its sales and profit would essentially double. We will proceed by first guessing what the Nash
equilibrium is and then spending some time to verify that our guess was in fact correct.

Nash equilibrium of the Bertrand game
The only pure-strategy Nash equilibrium of the Bertrand game is p�1 ¼ p�2 ¼ c. That is, the
Nash equilibrium involves both firms charging marginal cost. In saying that this is the
only Nash equilibrium, we are making two statements that need to be verified: this outcome
is a Nash equilibrium; and there is no other Nash equilibrium.

To verify that this outcome is a Nash equilibrium, we need to show that both firms are
playing a best response to each other—or, in other words, that neither firm has an incentive to
deviate to some other strategy. In equilibrium, firms charge a price equal to marginal cost,
which in turn is equal to average cost. But a price equal to average cost means firms earn zero
profit in equilibrium. Can a firm earn more than the zero it earns in equilibrium by deviating
to some other price? No. If it deviates to a higher price then it will make no sales and therefore
no profit, not strictly more than in equilibrium. If it deviates to a lower price, then it will make
sales but will be earning a negative margin on each unit sold, since price would be below
marginal cost. So the firm would earn negative profit, less than in equilibrium. Because there
is no possible profitable deviation for the firm, we have succeeded in verifying that both firms’
charging marginal cost is a Nash equilibrium.

It is clear that marginal cost pricing is the only pure-strategy Nash equilibrium. If prices
exceeded marginal cost, the high-price firm would gain by undercutting the other slightly
and capturing all of market demand. More formally, to verify that p�1 ¼ p�2 ¼ c is the only
Nash equilibrium, we will go one by one through an exhaustive list of cases for various values
of p1, p2, and c, verifying that none besides p1 ¼ p2 ¼ c is a Nash equilibrium. To reduce the
number of cases, assume firm 1 is the low-price firm—that is, p1 � p2. The same conclusions
would be reached taking 2 to be the low-price firm.

There are three exhaustive cases: (i) c > p1, (ii) c < p1, and (iii) c ¼ p1. Case (i) cannot be
a Nash equilibrium. Firm 1 earns a negative margin p1 � c on every unit it sells and, since it
makes positive sales, it must earn negative profit. It could earn higher profit by deviating to a
higher price. For example, firm 1 could guarantee itself zero profit by deviating to p1 ¼ c.

Case (ii) cannot be a Nash equilibrium, either. At best firm 2 gets only half of market
demand (if p1 ¼ p2 ) and at worst gets no demand (if p1 < p2 ). Firm 2 could capture all of
market demand by undercutting firm 1’s price by a tiny amount ε. This ε could be chosen
small enough that market price and total market profit are hardly affected. If p1 ¼ p2 prior to
the deviation, the deviation would essentially double firm 2’s profit. If p1 < p2 prior to the
deviation, the deviation would result in firm 2 moving from zero to positive profit. In either
case, firm 2’s deviation would be profitable.

2J. Bertrand, “Théorie Mathematique de la Richess Sociale,” Journal de Savants (1883): 499–508.
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Case (iii) includes the subcase of p1 ¼ p2 ¼ c, which we saw is a Nash equilibrium. The
only remaining subcase in which p1 � p2 is c ¼ p1 < p2. This subcase cannot be a Nash
equilibrium: firm 1 earns zero profit here but could earn positive profit by deviating to a price
slightly above c but still below p2.

Though the analysis focused on the game with two firms, it is clear that the same outcome
would arise for any number of firms n 	 2. The Nash equilibrium of the n-firm Bertrand
game is p�1 ¼ p�2 ¼ … ¼ p�n ¼ c.

Bertrand paradox
The Nash equilibrium of the Bertrand model is the same as the perfectly competitive
outcome. Price is set to marginal cost, and firms earn zero profit. This result—that the
Nash equilibrium in the Bertrand model is the same as in perfect competition even though
there may be only two firms in the market—is called the Bertrand paradox. It is paradoxical
that competition between as few as two firms would be so tough. The Bertrand paradox is a
general result in the sense that we did not specify the marginal cost c or the demand curve, so
the result holds for any c and any downward-sloping demand curve.

In another sense, the Bertrand paradox is not very general; it can be undone by changing
various of the model’s other assumptions. Each of the next several sections will present a
different model generated by changing a different one of the Bertrand assumptions. In the
next section, for example, we will assume that firms choose quantity rather than price, leading
to what is called the Cournot game. We will see that firms do not end up charging marginal
cost and earning zero profit in the Cournot game. In subsequent sections, we will show that
the Bertrand Paradox can also be avoided if still other assumptions are changed: if firms face
capacity constraints rather than being able to produce an unlimited amount at cost c, if
products are slightly differentiated rather than being perfect substitutes, or if firms engage in
repeated interaction rather than one round of competition.

COURNOT MODEL

The Cournot model, named after the economist who proposed it,3 is similar to the Bertrand
except that firms are assumed to simultaneously choose quantities rather than prices. As we
will see, this simple change in strategic variable will lead to a big change in implications. Price
will be above marginal cost and firms will earn positive profit in the Nash equilibrium of the
Cournot game. It is somewhat surprising (but nonetheless an important point to keep in
mind) that this simple change in choice variable matters in the strategic setting of an
oligopoly when it did not matter with a monopoly: the monopolist obtained the same
profit-maximizing outcome whether it chose prices or quantities.

We will start with a general version of the Cournot game with n firms indexed by
i ¼ 1,…,n. Each firm chooses its output qi of an identical product simultaneously. The
outputs are combined into a total industry output Q ¼ q1 þ q2 þ…þ qn, resulting in
market price PðQ Þ. Observe that PðQ Þ is the inverse demand curve corresponding to the
market demand curve Q ¼ DðPÞ. Assume market demand is downward sloping and so

3A. Cournot, Researches into the Mathematical Principles of the Theory of Wealth, trans. N. T. Bacon (New York: Macmillan,
1897). Although the Cournot model appears after Bertrand’s in this chapter, Cournot’s work, originally published in 1838,
predates Bertrand’s. Cournot’s work is one of the first formal analyses of strategic behavior in oligopolies, and his solution
concept anticipated Nash equilibrium.
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inverse demand is, too; that is, P 0ðQ Þ < 0. Firm i’s profit equals its total revenue, PðQ Þqi ,
minus its total cost, CiðqiÞ:

πi ¼ P ðQ Þqi � CiðqiÞ. (15.1)

Nash equilibrium of the Cournot game
Unlike the Bertrand game, the profit function (15.1) in the Cournot game is differentiable;
hence we can proceed to solve for the Nash equilibrium of this game just as we did in
Example 8.6, the Tragedy of the Commons. That is, we find each firm i’s best response by
taking the first-order condition of the objective function (15.1) with respect to qi :

∂πi

∂qi
¼ PðQ Þ þ P 0ðQ Þqi|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

MR

�C 0
iðqiÞ|fflfflffl{zfflfflffl}
MC

¼ 0. (15.2)

Equation 15.2 must hold for all i ¼ 1,…,n in the Nash equilibrium.
According to Equation 15.2, the familiar condition for profit maximization from

Chapter 11—marginal revenue (MR) equals marginal cost (MC)—holds for the Cournot
firm. As we will see from an analysis of the particular form that the marginal revenue term
takes for the Cournot firm, price is above the perfectly competitive level (above marginal
cost) but below the level in a perfect cartel that maximizes firms’ joint profits.

In order for Equation 15.2 to equal 0, price must exceed marginal cost by the magnitude
of the “wedge” term P 0ðQ Þqi . If the Cournot firm produces another unit on top of its
existing production of qi units then, since demand is downward sloping, the additional unit
causes market price to fall by P 0ðQ Þ, leading to a loss of revenue of P 0ðQ Þqi (the wedge term)
from firm i’s existing production.

To compare the Cournot outcome with the perfect cartel outcome, note that the
objective for the cartel is to maximize joint profit:Xn

j¼1

πj ¼ P ðQ Þ
Xn
j¼1

qj �
Xn
j¼1

Cj ðqj Þ. (15.3)

Taking the first-order condition of Equation 15.3 with respect to qi gives

∂
∂qi

 Xn
j¼1

πj

!
¼ P ðQ Þ þ P 0ðQ Þ

Xn
j¼1

qj|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
MR

�C 0
iðqiÞ|fflfflffl{zfflfflffl}
MC

¼ 0. (15.4)

This first-order condition is similar to Equation 15.2 except that the wedge term,

P 0ðQ Þ
Xn
j¼1

qj ¼ P 0ðQ ÞQ , (15.5)

is larger in magnitude with a perfect cartel than with Cournot firms. In maximizing joint
profits, the cartel accounts for the fact that an additional unit of firm i’s output, by reducing
market price, reduces the revenue earned on all firms’ existing output. Hence P 0ðQ Þ is
multiplied by total cartel output Q in Equation 15.5. The Cournot firm accounts for the
reduction in revenue only from its own existing output qi. Hence, Cournot firms will end up
overproducing relative to the joint profit–maximizing outcome. That is, the extra pro-
duction in the Cournot outcome relative to a perfect cartel will end up in lower joint profit
for the firms. What firms would regard as overproduction is good for society because it
means that the Cournot outcome (point A, referring back to Figure 15.1) will involve more
total welfare than the perfect cartel outcome (point M in Figure 15.1).
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EXAMPLE 15.1 Natural-Spring Duopoly

As a numerical example of some of these ideas, we will consider a case with just two firms and
simple demand and cost functions. Following Cournot’s nineteenth-century example of two
natural springs, we assume that each spring owner has a large supply of (possibly healthful)
water and faces the problem of how much to provide the market. A firm’s cost of pumping
and bottling qi liters is CiðqiÞ ¼ cqi, implying that marginal costs are a constant c per liter.
Inverse demand for spring water is

P ðQ Þ ¼ a �Q , (15.6)

where a is the demand intercept (measuring the strength of spring-water demand) and
Q ¼ q1 þ q2 is total spring-water output. We will now examine various models of how this
market might operate.

Bertrand model. In the Nash equilibrium of the Bertrand game, the two firms set price
equal to marginal cost. Hence market price is P� ¼ c, total output is Q � ¼ a � c, firm profit
is π�i ¼ 0, and total profit for all firms is Π� ¼ 0. For the Bertrand quantity to be positive we
must have a > c, which we will assume throughout the problem.

Cournot model. The solution for the Nash equilibrium follows Example 8.6 quite closely.
Profits for the two Cournot firms are

π1 ¼ P ðQ Þq1 � cq1 ¼ ða � q1 � q2 � cÞq1,
π2 ¼ P ðQ Þq2 � cq2 ¼ ða � q1 � q2 � cÞq2.

(15.7)

Using the first-order conditions to solve for the best-response functions, we obtain

q1 ¼ a � q2 � c
2

, q2 ¼ a � q1 � c
2

. (15.8)

Solving Equations 15.8 simultaneously yields the Nash equilibrium

q�1 ¼ q�2 ¼ a � c
3

. (15.9)

Total output is thus Q � ¼ ð2=3Þða � cÞ. Substituting total output into the inverse demand
curve implies an equilibrium price of P� ¼ ða þ 2cÞ=3. Substituting price and outputs into
the profit functions (Equations 15.7) implies π�1 ¼ π�2 ¼ ð1=9Þða � cÞ2, so total market
profit equals Π� ¼ π�1 þ π�2 ¼ ð2=9Þða � cÞ2.
Perfect cartel. The objective function for a perfect cartel involves joint profits

π1 þ π2 ¼ ða � q1 � q2 � cÞq1 þ ða � q1 � q2 � cÞq2. (15.10)

The two first-order conditions for maximizing Equation 15.10 with respect to q1 and q2 are
the same:

∂
∂q1

ðπ1 þ π2Þ ¼
∂
∂q2

ðπ1 þ π2Þ ¼ a � 2q1 � 2q2 � c ¼ 0. (15.11)

The first-order conditions do not pin down market shares for firms in a perfect cartel
because they produce identical products at constant marginal cost. But Equation 15.11 does
pin down total output: q�1 þ q�2 ¼ Q � ¼ ð1=2Þða � cÞ. Substituting total output into in-
verse demand implies that the cartel price is P� ¼ ð1=2Þða þ cÞ. Substituting price and quan-
tities into Equation 15.10 implies a total cartel profit of Π� ¼ ð1=4Þða � cÞ2.
Comparison. Moving from the Bertrand model to the Cournot model to a perfect cartel,
since a > c we can show that quantityQ � falls from a � c to ð2=3Þða � cÞ to ð1=2Þða � cÞ. It
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can also be shown that price P� and industry profit Π� rise. For example, if a ¼ 120 and
c ¼ 0 (implying that inverse demand is PðQ Þ ¼ 120� Q and that production is costless),
then market quantity is 120 with Bertrand competition, 80 with Cournot competition, and
60 with a perfect cartel. Price rises from 0 to 40 to 60 across the cases and industry profit rises
from 0 to 3,200 to 3,600.

QUERY: In a perfect cartel, do firms play a best response to each other’s quantities? If not, in
which direction would they like to change their outputs? What does this say about the
stability of cartels?

EXAMPLE 15.2 Cournot Best-Response Diagrams

Continuing with the natural-spring duopoly from Example 15.1, it is instructive to solve for
the Nash equilibrium using graphical methods. We will graph the best-response functions
given in Equation 15.8; the intersection between the best responses is the Nash equilibrium.
As background, you may want to review a similar diagram (Figure 8.4) for the Tragedy of the
Commons.

The linear best-response functions are most easily graphed by plotting their intercepts, as
shown in Figure 15.2. The best-response functions intersect at the point q�1 ¼ q�2 ¼ða� cÞ=3,
which was the Nash equilibrium of the Cournot game computed using algebraic methods in
Example 15.1.

(continued)

FIGURE 15.2 Best-Response Diagram for Cournot Duopoly

Firms’ best responses are drawn as thick lines; their intersection (E) is the Nash equilibrium of the
Cournot game. Isoprofit curves for firm 1 increase until point M is reached, which is the monopoly
outcome for firm 1.
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EXAMPLE 15.2 CONTINUED

Figure 15.2 displays firms’ isoprofit curves. An isoprofit curve for firm 1 is the locus of
quantity pairs providing it with the same profit level. To compute the isoprofit curve
associated with a profit level of (say) 100, we start by setting Equation 15.7 equal to 100:

π1 ¼ ða � q1 � q2 � cÞq1 ¼ 100. (15.12)

Then we solve for q2 to facilitate graphing the isoprofit:

q2 ¼ a � c � q1 �
100
q1

. (15.13)

Several example isoprofits for firm 1 are shown in the figure. As profit increases from 100 to
200 to yet higher levels, the associated isoprofits shrink down to the monopoly point, which is
the highest isoprofit on the diagram. To understand why the individual isoprofits are shaped
like frowns, refer back to Equation 15.13. As q1 approaches 0, the last term ð�K=q1Þ
dominates, causing the left side of the frown to turn down. As q1 increases, the �q1 term in
Equation 15.13 begins to dominate, causing the right side of the frown to turn down.

Figure 15.3 shows how to use best-response diagrams to quickly tell how changes in such
underlying parameters as the demand intercept a or marginal cost c would affect the
equilibrium. Panel (a) depicts an increase in both firms’ marginal cost c. The best responses
shift inward, resulting in a new equilibrium that involves lower output for both. Although
firms have the same marginal cost in this example, one can imagine a model in which firms
have different marginal cost parameters and so can be varied independently. Panel (b) depicts
an increase in just firm 1’s marginal cost; only firm 1’s best response shifts. The new
equilibrium involves lower output for firm 1 and higher output for firm 2. Though firm 2’s
best response does not shift, it still increases its output as it anticipates a reduction in firm 1’s
output and best-responds to this anticipated output reduction.

FIGURE 15.3 Shifting Cournot Best Responses

Firms’ initial best responses are drawn as solid lines,
resulting in a Nash equilibrium at point E 0. Panel (a)
depicts an increase in both firms’ marginal costs, shift-
ing their best responses—now given by the dashed

lines—inward. The new intersection point, and
thus the new equilibrium, is point E 00. Panel (b)
depicts an increase in just firm 1’s marginal cost.

q2 q2

BR1(q2) BR1(q2)

BR2(q1) BR2(q1)

q1 q1

E′ E′

E″
E″

(a) Increase in both firms’ marginal costs (b) Increase in firm 1’s marginal cost
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QUERY: Explain why firm 1’s individual isoprofits reach a peak on its best-response function
in Figure 15.2. What would firm 2’s isoprofits look like in Figure 15.2? How would you
represent an increase in demand intercept a in Figure 15.3?

Varying the number of Cournot firms
The Cournot model is particularly useful for policy analysis because it can represent the whole
range of outcomes from perfect competition to perfect cartel/monopoly (i.e., the whole
range of points between C and M in Figure 15.1) by varying the number of firms n from
n ¼ ∞ to n ¼ 1. For simplicity, consider the case of identical firms, which here means the n
firms sharing the same cost function CðqiÞ. In equilibrium, firms will produce the same share
of total output: qi ¼ Q =n. Substituting qi ¼ Q =n into Equation 15.2, the wedge term
becomes P 0ðQ ÞQ =n. The wedge term disappears as n grows large; firms become infinitesi-
mally small. An infinitesimally small firm effectively becomes a price taker because it produces
so little that any fall in market price from an increase in output hardly affects its revenue. Price
approaches marginal cost and the market outcome approaches the perfectly competitive one.
As n falls to 1, the wedge term approaches that in Equation 15.5, implying the Cournot
outcome approaches that of a perfect cartel. As the Cournot firm’s market share grows, it
internalizes the revenue loss from a fall in market price to a greater extent.

EXAMPLE 15.3 Natural-Spring Oligopoly

Return to the natural springs in Example 15.1, but now consider a variable number n of firms
rather than just two. The profit of one of them, firm i, is

πi ¼ P ðQ Þqi � cqi ¼ ða �Q � cÞqi ¼ ða � qi �Q �i � cÞqi. (15.14)

It is convenient to express total output as Q ¼ qi þ Q �i, where Q �i ¼ Q � qi is the output
of all firms except for i. Taking the first-order condition of Equation 15.20 with respect to
qi, we recognize that firm i takes Q �i as a given and so treats it as a constant in the
differentiation,

∂πi

∂qi
¼ a � 2qi �Q �i � c ¼ 0, (15.15)

which holds for all i ¼ 1, 2,…,n.
The key to solving the system of n equations for the n equilibrium quantities is to

recognize that the Nash equilibrium involves equal quantities because firms are symmetric.
Symmetry implies that

Q �
�i ¼ Q � � q�i ¼ nq�i � q�i ¼ ðn � 1Þq�i . (15.16)

Substituting Equation 15.16 into 15.15 yields

a � 2q�i � ðn � 1Þq�i � c ¼ 0, (15.17)

or q�i ¼ ða � cÞ=ðn þ 1Þ.
Total market output is

Q � ¼ nq�i ¼ n
n þ 1

� �
ða � cÞ, (15.18)

(continued)
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EXAMPLE 15.3 CONTINUED

and market price is

P� ¼ a �Q � ¼ 1
n þ 1

� �
a þ n

n þ 1

� �
c. (15.19)

Substituting for q�i ,Q �, and P� into the firm’s profit Equation 15.14, we have that total
profit for all firms is

Π� ¼ nπ�i ¼ n
a � c
n þ 1

� �2

. (15.20)

Setting n ¼ 1 in Equations 15.18–15.20 gives the monopoly outcome, which gives the
same price, total output, and profit as in the perfect cartel case computed in Example 15.1.
Letting n grow without bound in Equations 15.18–15.20 gives the perfectly competitive
outcome, the same outcome computed in Example 15.1 for the Bertrand case.

QUERY: We used the trick of imposing symmetry after taking the first-order condition for
firm i’s quantity choice. It might seem simpler to impose symmetry before taking the first-
order condition. Why would this be a mistake? How would the incorrect expressions for
quantity, price, and profit compare to the correct ones here?

Prices or quantities?
Moving from price competition in the Bertrand model to quantity competition in the
Cournot model changes the market outcome dramatically. This change is surprising on
first thought. After all, the monopoly outcome from Chapter 14 is the same whether we
assume the monopolist sets price or quantity. Further thought suggests why price and
quantity are such different strategic variables. Starting from equal prices, a small reduction
in one firm’s price allows it to steal all of market demand from its competitors. This sharp
benefit from undercutting makes price competition extremely “tough.” Quantity competi-
tion is “softer.” Starting from equal quantities, a small increase in one firm’s quantity has only
a marginal effect on the revenue that other firms receive from their existing output. Firms
have less of an incentive to outproduce each other with quantity competition than to
undercut each other with price competition.

An advantage of the Cournot model is its realistic implication that the industry grows
more competitive as the number n of firms entering the market increases from monopoly to
perfect competition. In the Bertrand model there is a discontinuous jump from monopoly
to perfect competition if just two firms enter, and additional entry beyond two has no
additional effect on the market outcome.

An apparent disadvantage of the Cournot model is that firms in real-world markets tend
to set prices rather than quantities, contrary to the Cournot assumption that firms choose
quantities. For example, grocers advertise prices for orange juice, say $2.50 a container, in
newpaper circulars rather than the number of containers it stocks. As we will see in the next
section, the Cournot model applies even to the orange juice market if we reinterpret quantity
to be the firm’s capacity, defined as the most the firm can sell given the capital it has in place
and other available inputs in the short run.
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CAPACITY CONSTRAINTS

For the Bertrand model to generate the Bertrand paradox (the result that two firms essen-
tially behave as perfect competitors), firms must have unlimited capacities. Starting from
equal prices, if a firm lowers its price the slightest amount then its demand essentially doubles.
The firm can satisfy this increased demand because it has no capacity constraints, giving firms
a big incentive to undercut. If the undercutting firm could not serve all the demand at its
lower price because of capacity constraints, that would leave some residual demand for the
higher-priced firm and would decrease the incentive to undercut.

More realistically, firms may not have an unlimited ability to meet all demand. Consider a
two-stage game in which firms build capacity in the first stage and firms choose prices p1 and
p2 in the second stage.4 Firms cannot sell more in the second stage than the capacity built in
the first stage. If the cost of building capacity is sufficiently high, it turns out that the subgame-
perfect equilibrium of this sequential game leads to the same outcome as theNash equilibrium
of the Cournot model.

To see this result, we will analyze the game using backward induction. Consider the
second-stage pricing game supposing the firms have already built capacities

_
q1 and

_
q2 in the

first stage. Let
_
p be the price that would prevail when production is at capacity for both firms.

A situation in which

p1 ¼ p2 <
_
p (15.21)

is not a Nash equilibrium. At this price, total quantity demanded exceeds total capacity, so
firm 1 could increase its profits by raising price slightly and continuing to sell

_
q1. Similarly,

p1 ¼ p2 >
_
p (15.22)

is not a Nash equilibrium because now total sales fall short of capacity. At least one firm (say,
firm 1) is selling less than its capacity. By cutting price slightly, firm 1 can increase its profits
by selling up to its capacity,

_
q1. Hence, the Nash equilibrium of this second-stage game is

for firms to choose the price at which quantity demanded exactly equals the total capacity
built in the first stage:5

p1 ¼ p2 ¼ _
p . (15.23)

Anticipating that the price will be set such that firms sell all their capacity, the first-stage
capacity choice game is essentially the same as the Cournot game. The equilibrium quan-
tities, price, and profits will thus be the same as in the Cournot game. Thus, even in markets
(such as orange juice sold in grocery stores) where it looks like firms are setting prices, the
Cournot model may prove more realistic than it first seems.

PRODUCT DIFFERENTIATION

Another way to avoid the Bertrand paradox is to replace the assumption that the firms’
products are identical with the assumption that firms produce differentiated products. Many
(if not most) real-world markets exhibit product differentiation. For example, toothpaste
brands vary somewhat from supplier to supplier—differing in flavor, fluoride content, whit-
ening agents, endorsement from the American Dental Association, and so forth. Even if

4The model is due to D. Kreps and J. Scheinkman, “Quantity Precommitment and Bertrand Competition Yield Cournot
Outcomes,” Bell Journal of Economics (Autumn 1983): 326–37.
5For completeness, it should be noted that there is no pure-strategy Nash equilibrium of the second-stage game with
unequal prices ðp1≠p2Þ. The low-price firm would have an incentive to raise its price and/or the high-price firm would have
an incentive to lower its price. For large capacities, there may be a complicated mixed-strategy Nash equilibrium, but this
can be ruled out by supposing the cost of building capacity is sufficiently high.
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suppliers’ product attributes are similar, suppliers may still be differentiated in another
dimension: physical location. Because demanders will be closer to some suppliers than to
others, they may prefer nearby sellers because buying from them involves less travel time.

Meaning of “the market”
The possibility of product differentiation introduces some fuzziness into what we mean by
the market for a good. With identical products, demanders were assumed to be indifferent
about which firm’s output they bought; hence they shop at the lowest-price firm, leading to
the law of one price. The law of one price no longer holds if demanders strictly prefer one
supplier to another at equal prices. Are green-gel and white-paste toothpastes in the same
market or in two different ones? Is a pizza parlor at the outskirts of town in the samemarket as
one in the middle of town?

With differentiated products, we will take the market to be a group of closely related
products that are more substitutable among each other (as measured by cross-price elastici-
ties) than with goods outside the group. We will be somewhat loose with this definition,
avoiding precise thresholds for how high the cross-price elasticity must be between goods
within the group (and how low with outside goods). Arguments about which goods should
be included in a product group often dominate antitrust proceedings, and we will try to avoid
this contention here.

Bertrand competition with differentiated products
Return to the Bertrand model but now suppose there are n firms that simultaneously choose
prices pi ði ¼ 1,…,nÞ for their differentiated products. Product i has its own specific attri-
butes ai , possibly reflecting special options, quality, brand advertising, or location. A product
may be endowed with the attribute (orange juice is by definition made from oranges and
cranberry juice from cranberries) or the attribute may be the result of the firm’s choice and
spending level (the orange juice supplier can spend more and make its juice from fresh
oranges rather than from frozen concentrate). The various attributes serve to differentiate
the products. Firm i’s demand is

qiðpi,P�i, ai,A�iÞ, (15.24)

where P�i is a list of all other firms’ prices besides i’s and A�i is a list of all other firms’
attributes besides i’s. Firm i’s total cost is

Ciðqi, aiÞ (15.25)

and profit is thus

πi ¼ piqi � Ciðqi, aiÞ. (15.26)

With differentiated products, the profit function (Equation 15.26) is differentiable, so we
do not need to solve for the Nash equilibrium on a case-by-case basis as we did in the Bertrand
model with identical products. We can solve for the Nash equilibrium as in the Cournot
model, solving for best-response functions by taking each firm’s first-order condition (here
with respect to price rather than quantity). The first-order condition from Equation 15.26
with respect to pi is

∂πi

∂pi
¼ qi þ pi

∂qi
∂pi|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

A

� ∂Ci

∂qi
⋅
∂qi
∂pi|fflfflfflfflfflffl{zfflfflfflfflfflffl}

B

¼ 0. (15.27)

The first two terms (labeled A) on the right-hand side of Equation 15.27 are a sort of mar-
ginal revenue—not the usual marginal revenue from an increase in quantity, but rather the
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marginal revenue from an increase in price. The increase in price increases revenue on existing
sales of qi units, but wemust also consider the negative effect of the reduction in sales (∂qi=∂pi
multiplied by the price pi) that would have been earned on these sales. The last term, labeledB,
is the cost savings associated with the reduced sales that accompany an increased price.

The Nash equilibrium can be found by simultaneously solving the system of first-order
conditions in Equation 15.27 for all i ¼ 1,…,n. If the attributes ai are also choice variables
(rather than just endowments), there will be another set of first-order conditions to consider.
For firm i, the first-order condition with respect to ai has the form

∂πi

∂ai
¼ pi

∂qi
∂ai

� ∂Ci

∂ai
� ∂Ci

∂qi
⋅
∂qi
∂ai

¼ 0. (15.28)

The simultaneous solution of these first-order conditions can be quite complex, and they
yield few definitive conclusions about the nature of market equilibrium. Some insights from
particular cases will be developed in the next two examples.

EXAMPLE 15.4 Toothpaste as a Differentiated Product

Suppose two firms produce toothpaste, one a green gel and the other a white paste. Suppose
for simplicity that production is costless. Demand for product i is

qi ¼ ai � pi þ
pj
2
. (15.29)

The positive coefficient on pj , the other good’s price, indicates that the goods are gross
substitutes. Firm i’s demand is increasing in the attribute ai, which we will take to be
demanders’ inherent preference for the variety in question; we will suppose that this is an
endowment rather than a choice variable for the firm (and so will abstract from the role of
advertising to promote preferences for a variety).

Algebraic solution. Firm i’s profit is

πi ¼ piqi � CiðqiÞ ¼ pi ai � pi þ
pj
2

� �
, (15.30)

where CiðqiÞ ¼ 0 because i’s production is costless. The first-order condition for profit
maximization with respect to pi is

∂πi

∂pi
¼ ai � 2pi þ

pj
2
¼ 0. (15.31)

Solving for pi gives the following best-response functions for i ¼ 1, 2:

p1 ¼ 1
2

a1 þ
p2
2

� �
, p2 ¼ 1

2
a2 þ

p1
2

� �
. (15.32)

Solving Equations 15.32 simultaneously gives the Nash equilibrium prices

p�i ¼ 8
15

ai þ
2
15

aj . (15.33)

The associated profits are

π�i ¼ 8
15

ai þ
2
15

aj

� �2

. (15.34)

(continued)
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EXAMPLE 15.4 CONTINUED

Firm i’s equilibrium price is not only increasing in its own attribute, ai , but also in the
other product’s attribute, aj . An increase in aj causes firm j to increase its price, which
increases firm i’s demand and thus the price i charges.

Graphical solution. We could also have solved for equilibrium prices graphically, as in
Figure 15.4. The best responses in Equation 15.32 are upward sloping. They intersect at
the Nash equilibrium, point E. The isoprofit curves for firm 1 are smile-shaped. To see this,
take the expression for firm 1’s profit in Equation 15.30, set it equal to a certain profit level
(say, 100), and solve for p2 to facilitate graphing it on the best-response diagram. We have

p2 ¼ 100
p1

þ p1 � a1. (15.35)

The smile turns up as p1 approaches 0 because the denominator of 100=p1 approaches 0.
The smile turns up as p1 grows large because then the second term on the right-hand side of
Equation 15.35 grows large. Isoprofit curves for firm 1 increase as one moves away from the
origin along its best-response function.

QUERY: How would a change in the demand intercepts be represented on the diagram?

FIGURE 15.4 Best Responses for Bertrand Model with Differentiated Products

Firm’ best responses drawn as thick lines; their intersection (E) is the Nash equilibrium. Isoprofit
curves for firm 1 increase moving out along firm 1’s best-response function.
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EXAMPLE 15.5 Hotelling’s Beach

A simple model in which identical products are differentiated because of the location of their
suppliers (spatial differentiation) was provided by H. Hotelling in the 1920s.6 As shown in
Figure 15.5, two ice cream stands, labeled A and B, are located along a beach of length L.
The stands make identical ice cream cones, which for simplicity are assumed to be costless to
produce. Let a and b represent the firms’ locations on the beach. (We will take the locations
of the ice cream stands as given; in a later example we will revisit firms’ equilibrium location
choices.) Assume that demanders are located uniformly along the beach, one at each unit of
length. Carrying ice cream a distance d back to one’s beach umbrella costs td2, since ice
cream melts more the higher the temperature t and the further one must walk.7 Consistent
with the Bertrand assumption, firms choose prices pA and pB simultaneously.

Determining demands. Let x be the location of the consumer who is indifferent between
buying from the two ice cream stands. The following condition must be satisfied by x:

pA þ t ðx � aÞ2 ¼ pB þ t ðb � xÞ2. (15.36)

The left-hand side of Equation 15.36 is the generalized cost of buying from A (including
the price paid and the cost of transporting the ice cream the distance x � a). Similarly, the
right-hand side is the generalized cost of buying from B. Solving Equation 15.36 for x yields

x ¼ b þ a
2

þ pB � pA
2t ðb � aÞ. (15.37)

If prices are equal, the indifferent consumer is located midway between a and b. If A’s price
is less than B’s, then x shifts toward A. (This is the case shown in Figure 15.5.)

Since all demanders between 0 and x buy fromA and since there is one consumer per unit
distance, it follows that A’s demand equals x:

qAðpA , pB , a, bÞ ¼ x ¼ b þ a
2

þ pB � pA
2t ðb � aÞ. (15.38)

The remaining L � x consumers constitute B’s demand:

qBðpB , pA , b, aÞ ¼ L � x ¼ L � b þ a
2

þ pA � pB
2t ðb � aÞ. (15.39)

(continued)

6H. Hotelling, “Stability in Competition,” Economic Journal 39 (1929): 41–57.
7The assumption of quadratic “transportation costs” turns out to simplify later work, when we compute firms’ equilibrium
locations in the model.

FIGURE 15.5 Hotelling’s Beach

Ice cream standsA and B are located at points a and b along a beach of length L. The consumer who
is indifferent between buying from the two stands is located at x. Consumers to the left of x buy
from A and to the right buy from B.

A’s demand B’s demand

a0 x b L
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EXAMPLE 15.5 CONTINUED

Solving for Nash equilibrium. The Nash equilibrium is found in the same way as in
Example 15.4 except that, for demands, we use Equations 15.38 and 15.39 in place of
Equation 15.29. Skipping the details of the calculations, the Nash equilibrium prices are

p�A ¼ t
3
ðb � aÞð2L þ a þ bÞ,

p�B ¼ t
3
ðb � aÞð4L � a � bÞ.

(15.40)

These prices will depend on the precise location of the two stands and will differ from each
other. For example, if we assume that the beach is L ¼ 100 yards long, a ¼ 40 yards,
b ¼ 70 yards, and t ¼ $0:001 (one tenth of a penny), then p�A ¼ $3:10 and p�B ¼ $2:90.
These price differences arise only from the locational aspects of this problem—the cones
themselves are identical and costless to produce. Because A is somewhat more favorably
located than B, it can charge a higher price for its cones without losing too much business to
B. Using Equation 15.38 shows that

x ¼ 110
2

þ 3:10� 2:90
ð2Þð0:001Þð110Þ � 52, (15.41)

so stand A sells 52 cones whereas B sells only 48 despite its lower price. At point x, the
consumer is indifferent between walking the 12 yards to A and paying $3.10 or walking 18
yards to B and paying $2.90. The equilibrium is inefficient in that a consumer slightly to the
right of x would incur a shorter walk by patronizing A but still chooses B because of A’s
power to set higher prices.

Equilibrium profits are

π�A ¼ t
18

ðb � aÞð2L þ a þ bÞ2,

π�B ¼ t
18

ðb � aÞð4L � a � bÞ2.
(15.42)

Somewhat surprisingly, the ice cream stands benefit from faster melting, as measured here
by the transportation cost t . For example, if we take L ¼ 100, a ¼ 40, b ¼ 70, and t ¼
$0:001 as in the previous paragraph, then π�A ¼ $160 and π�B ¼ $140 (rounding to the
nearest dollar). If transportation costs doubled to t ¼ $0:002, then profits would double to
π�A ¼ $320 and π�B ¼ $280.

The transportation/melting cost is the only source of differentiation in the model. If
t ¼ 0, then we can see from Equation 15.40 that prices equal 0 (which is marginal cost given
that production is costless) and from Equation 15.42 that profits equal 0—in other words,
the Bertrand paradox results.

QUERY: What happens to prices and profits if ice cream stands locate in the same spot? If
they locate at the opposite ends of the beach?

Consumer search and price dispersion
Hotelling’s model analyzed in Example 15.5 suggests the possibility that competitors may
have some ability to charge prices above marginal cost and earn positive profits even if the
physical characteristics of the goods they sell are identical. Firms’ various locations—closer to
some demanders and farther from others—may lead to spatial differentiation. The Internet
makes the physical location of stores less relevant to consumers, especially if shipping charges
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are independent of distance (or are not assessed). Even in this setting, firms can avoid the
Bertrand paradox if we drop the assumption that demanders know every firm’s price in the
market. Instead we will assume that demanders face a small cost s , called a search cost, to visit
the store (or click to its website) to find its price.

In P. Diamond’s search model, demanders search by picking one of the n stores at
random and learning its price.8 Demanders know the equilibrium distribution of prices but
not which store is charging which price. Demanders get their first price search for free but
then must pay s for additional searches. They need at most one unit of the good, and they all
have the same gross surplus v for the one unit.

Not only do stores manage to avoid the Bertrand paradox in this model, they obtain the
polar opposite outcome: all charge the monopoly price v, which extracts all consumer surplus!
This outcome holds no matter how small the search cost s is—as long as s is positive (say, a
penny). It is easy to see that all stores charging v is an equilibrium. If all charge the same price v
then demanders may as well buy from the first store they search, since additional searches are
costly and do not end up revealing a lower price. It can also be seen that this is the only
equilibrium. Consider any outcome in which at least one store charges less than v, and
consider the lowest-price store (label it i) in this outcome. Store i could raise its price pi by
as much as s and still make all the sales it did before. The lowest price a demander could expect
to pay elsewhere is no less than pi, and the demander would have to pay the cost s to find this
other price.

Less extreme equilibria are found in models where consumers have different search costs.9

For example, suppose one group of consumers can search for free and another group has to
pay s per search. In equilibrium, there will be some price dispersion across stores. One set of
stores serves the low–search-cost demanders (and the lucky high–search-cost consumers who
happen to stumble upon a bargain). These bargain stores sell at marginal cost. The other
stores serve the high–search-cost demanders at a price that makes these demanders indifferent
between buying immediately and taking a chance that the next price search will uncover a
bargain store.

TACIT COLLUSION

In Chapter 8, we showed that players may be able to earn higher payoffs in the subgame-
perfect equilibrium of an infinitely repeated game than from simply repeating the Nash
equilibrium from the single-period game indefinitely. For example, we saw that, if players
are patient enough, they can cooperate on playing silent in the infinitely repeated version of
the Prisoners’ Dilemma rather than finking on each other each period. From the perspective
of oligopoly theory, the issue is whether firms must endure the Bertrand paradox (marginal
cost pricing and zero profits) in each period of a repeated game or whether they might instead
achieve more profitable outcomes through tacit collusion.

A distinction should be drawn between tacit collusion and the formation of an explicit
cartel. An explicit cartel involves legal agreements enforced with external sanctions if the
agreements (for example, to sustain high prices or low outputs) are violated. Tacit collusion
can only be enforced through punishments internal to the market—that is, only those that
can be generated within a subgame-perfect equilibrium of a repeated game. Antitrust laws
generally forbid the formation of explicit cartels, so tacit collusion is usually the only way for
firms to raise prices above the static level.

8P. Diamond, “A Model of Price Adjustment,” Journal of Economic Theory 3 (1971): 156–68.
9The following model is due to S. Salop and J. Stiglitz, “Bargains and Ripoffs: A Model of Monopolistically Competitive
Price Dispersion,” Review of Economic Studies 44 (1977): 493–510.
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Finitely repeated game
Taking the Bertrand game to be the stage game, Selten’s theorem from Chapter 8 tells us that
repeating the stage game any finite number of times T does not change the outcome. The
only subgame-perfect equilibrium of the finitely repeated Bertrand game is to repeat the
stage-game Nash equilibrium—marginal cost pricing—in each of the T periods. The game
unravels through backward induction. In any subgame starting in period T , the unique Nash
equilibrium will be played regardless of what happened before. Since the outcome in period
T � 1 does not affect the outcome in the next period, it is as if period T � 1 is the last period,
and the unique Nash equilibrium must be played then, too. Applying backward induction,
the game unravels in this manner all the way back to the first period.

Infinitely repeated game
If the stage game is repeated infinitely many periods, however, the folk theorem applies. The
folk theorem indicates that any feasible and individually rational payoff can be sustained each
period in an infinitely repeated game as long as the discount factor, δ, is close enough to
unity. Recall that the discount factor is the value in the present period of one dollar earned
one period in the future—a measure, roughly speaking, of how patient players are. Since the
monopoly outcome (with profits divided among the firms) is a feasible and individually
rational outcome, the folk theorem implies that the monopoly outcome must be sustainable
in a subgame-perfect equilibrium for δ close enough to 1. Let us investigate the threshold
value of δ needed.

First suppose there are two firms competing in a Bertrand game each period. Let ΠM
denote the monopoly profit and PM the monopoly price in the stage game. The firms may
collude tacitly to sustain the monopoly price—with each firm earning an equal share of the
monopoly profit—by using the grim trigger strategy of continuing to collude as long as no
firm has undercut PM in the past but reverting to the stage-game Nash equilibrium of mar-
ginal cost pricing every period from then on if any firm deviates by undercutting. Successful
tacit collusion provides the profit stream

V collude ¼ ΠM

2
þ δ ⋅

ΠM

2
þ δ2 ⋅

ΠM

2
þ…

¼ ΠM

2
ð1þ δþ δ2 þ…Þ

¼ ΠM

2

� �
1

1� δ

� �
. (15.43)

Refer to Chapter 8 for a discussion of adding up a series of discount factors 1þ δþ δ2 þ….
We need to check that a firm has no incentive to deviate. By undercutting the collusive price
PM slightly, a firm can obtain essentially all of the monopoly profit for itself in the current
period. This deviation would trigger the grim strategy punishment of marginal cost pricing
in the second and all future periods, so all firms would earn zero profit from there on.
Hence, the stream of profits from deviating is V deviate ¼ ΠM .

For this deviation not to be profitable we must have V collude 	 V deviate or, upon
substituting,

ΠM

2

� �
1

1� δ

� �
	 ΠM . (15.44)

Rearranging Equation 15.44, the condition reduces to δ 	 1=2. To prevent deviation, firms
must value the future enough that the threat of losing profits by reverting to the one-period
Nash equilibrium outweighs the benefit of undercutting and taking the whole monopoly
profit in the present period.
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EXAMPLE 15.6 Tacit Collusion in a Bertrand Model

Bertrand duopoly. Suppose only two firms produce a certain medical device used in
surgery. The medical device is produced at constant average and marginal cost of $10, and
the demand for the device is given by

Q ¼ 5,000� 100P . (15.45)

If the Bertrand game is played in a single period, then each firm will charge $10 and a total of
4,000 devices will be sold. Because the monopoly price in this market is $30, firms have a clear
incentive to consider collusive strategies. At the monopoly price, total profits each period are
$40,000 and each firm’s share of total profits is $20,000. According to Equation 15.44,
collusion at the monopoly price is sustainable if

20,000
1

1� δ

� �
	 40,000 (15.46)

or if δ 	 1=2, as we saw.
Is the condition δ 	 1=2 likely to be met in this market? That depends on what factors

we consider in computing δ, including the interest rate and possible uncertainty about
whether the game will continue. Leave aside uncertainty for a moment and consider only
the interest rate. If the period length is one year, then it might be reasonable to assume an
annual interest rate of r ¼ 10%. As shown in the Appendix to Chapter 17, δ ¼ 1=ð1þ rÞ, so
if r ¼ 10% then δ ¼ 0:91. This value of δ clearly exceeds the threshold of 1=2 needed to
sustain collusion. For δ to be less than the 1=2 threshold for collusion, we must incorporate
uncertainty into the discount factor. There must be a significant chance that the market will
not continue into the next period—perhaps because a new surgical procedure is developed
that renders the medical device obsolete.

We focused on the best possible collusive outcome: the monopoly price of $30. Would
collusion be easier to sustain at a lower price, say $20? No. At a price of $20, total profits each
period are $30,000 and each firm’s share is $15,000. Substituting into Equation 15.44,
collusion can be sustained if

15,000
1

1� δ

� �
	 30,000, (15.47)

again implying δ 	 1=2. Whatever collusive profit the firms try to sustain will cancel out
from both sides of Equation 15.44, leaving the condition δ 	 1=2. We therefore get a
discrete jump in firms’ ability to collude as they become more patient—that is, as δ increases
from 0 to 1.10 For δ below 1=2, no collusion is possible. For δ above 1=2, any price between
marginal cost and the monopoly price can be sustained as a collusive outcome. In the face of
this multiplicity of subgame-perfect equilibria, economists often focus on the one that is
most profitable for the firms, but the formal theory as to why firms would play one or
another of the equilibria is still unsettled.

Bertrand oligopoly. Now suppose n firms produce the medical device. The monopoly
profit continues to be $40,000, but each firm’s share is now only $40, 000=n. By undercut-
ting the monopoly price slightly, a firm can still obtain the whole monopoly profit for itself
regardless of how many other firms there are. Replacing the collusive profit of $20,000 in

(continued)

10The discrete jump in firms’ ability to collude is a feature of the Bertrand model; the ability to collude increases
continuously with δ in the Cournot model of Example 15.7.
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EXAMPLE 15.6 CONTINUED

Equation 15.46 with $40,000=n, we have that the n firms can successfully collude on the
monopoly price if

40,000
n

1
1� δ

� �
	 40,000, (15.48)

or

δ 	 1� 1
n
. (15.49)

Taking the “reasonable” discount factor of δ ¼ 0:91 used previously, collusion is possible
when 11 or fewer firms are in the market and impossible with 12 or more. With 12 or more
firms, the only subgame-perfect equilibrium involves marginal cost pricing and zero profits.

Equation 15.49 shows that tacit collusion is easier the more patient are firms (as we saw
before) and the fewer of them there are. One rationale used by antitrust authorities to challenge
certain mergers is that a merger may reduce n to a level such that Equation 15.49 begins to be
satisfied and collusion becomes possible, resulting in higher prices and lower total welfare.

QUERY: A period can be interpreted as the length of time it takes for firms to recognize and
respond to undercutting by a rival. What would be the relevant period for competing gasoline
stations in a small town? In what industries would a year be a reasonable period?

EXAMPLE 15.7 Tacit Collusion in a Cournot Model

Suppose that there are again two firms producing medical devices but that each period they
now engage in quantity (Cournot) rather than price (Bertrand) competition. We will again
investigate the conditions under which firms can collude on the monopoly outcome. To
generate the monopoly outcome in a period, firms need to produce 1,000 each; this leads to a
price of $30, total profits of $40,000, and firm profits of $20,000. The present discounted
value of the stream of these collusive profits is

V collude ¼ 20,000
1

1� δ

� �
. (15.50)

Computing the present discounted value of the stream of profits from deviating is
somewhat complicated. The optimal deviation is not as simple as producing the whole
monopoly output oneself and having the other firm produce nothing. The other firm’s
1,000 units would be provided to the market. The optimal deviation (by firm 1, say) would
be to best-respond to firm 2’s output of 1,000. To compute this best response, first note
that if demand is given by Equation 15.45 then inverse demand is given by

P ¼ 50� Q
100

. (15.51)

Firm 1’s profit is

π1 ¼ Pq1 � cq1 ¼ q1 40� q1 þ q2
100

� �
. (15.52)

Taking the first-order condition with respect to q1 and solving for q1 yields the best-response
function

q1 ¼ 2,000� q2
2
. (15.53)
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Firm 1’s optimal deviation when firm 2 produces 1,000 units is to increase its output from
1,000 to 1,500. Substituting these quantities into Equation 15.52 implies that firm 1 earns
$22,500 in the period in which it deviates.

How much firm 1 earns in the second and later periods following a deviation depends on
the trigger strategies firms use to punish deviation. Assume that firms use the grim strategy of
reverting to the Nash equilibrium of the stage game—in this case, the Nash equilibrium of
the Cournot game—every period from then on. In the Nash equilibrium of the Cournot
game, each firm best-responds to the other in accordance with the best-response function in
Equation 15.53 (switching subscripts in the case of firm 2). Solving these best-response
equations simultaneously implies that the Nash equilibrium outputs are q�1 ¼ q�2 ¼ 4,000=3
and that profits are π�1 ¼ π�2 ¼ $17, 778. Firm 1’s present discounted value of the stream of
profits from deviation is

V deviate ¼ 22,500 þ 17,778δþ 17,778δ2 þ 17,778δ3 þ…

¼ 22,500 þ ð17,778 ⋅ δÞð1þ δþ δ2 þ…Þ

¼ $22,500þ $17,778
δ

1� δ

� �
. (15.54)

We have V collude 	 V deviate if

$20,000
1

1� δ

� �
	 $22,500þ $17,778

δ

1� δ

� �
(15.55)

or, after some algebra, if δ 	 0:53.
Unlike with the Bertrand stage game, with the Cournot stage game there is a possibility of

some collusion for discount factors below 0.53. However, the outcome would have to
involve higher outputs and lower profits than monopoly.

QUERY: The benefit to deviating is lower with the Cournot stage game than with the
Bertrand stage game because the Cournot firm cannot steal all the monopoly profit with a
small deviation. Why then is a more stringent condition (δ 	 0:53 rather than δ 	 0:5)
needed to collude on the monopoly outcome in the Cournot duopoly compared to the
Bertrand duopoly?

LONGER-RUN DECISIONS: INVESTMENT, ENTRY, AND EXIT

The chapter has so far focused on the most basic short-run decisions regarding what price or
quantity to set. The scope for strategic interaction expands when we introduce longer-run
decisions. Take the case of the market for cars. Longer-run decisions include whether to
update the basic design of the car, a process that might take up to two years to complete.
Longer-run decisions may also include investing in robotics to lower production costs,
moving manufacturing plants to locate closer to consumers and cheap inputs, engaging in
a new advertising campaign, and entering or exiting certain product lines (say, ceasing the
production of station wagons or starting production of hybrid cars). In making such deci-
sions, an oligopolist must consider how rivals will respond to it. Will competition with
existing rivals become tougher or milder? Will the decision lead to the exit of current rivals
or encourage new ones to enter? Is it better to be the first to make such a decision or to wait
until after rivals move?
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Flexibility versus commitment
Crucial to our analysis of longer-run decisions such as investment, entry, and exit is how easy
it is to reverse a decision once it has been made. On first thought, it might seem that it is
better for a firm to be able to easily reverse decisions, since this would give the firm more
flexibility in responding to changing circumstances. For instance, a car manufacturer might
be more willing to invest in developing a hybrid-electric car if it could easily change the design
back to a standard gasoline-powered one should the price of gasoline (and the demand for
hybrid cars along with it) fall unexpectedly. Absent strategic considerations—and so for the
case of a monopolist—a firm would always value flexibility and reversibility. The “option
value” provided by flexibility is discussed in further detail in Chapter 7.

Surprisingly, the strategic considerations that arise in an oligopoly setting may lead a firm
to prefer its decision be irreversible. What the firm loses in terms of flexibility may be offset by
the value of being able to commit to the decision. We will see a number of instances of the
value of commitment in the next several sections. If a firm can commit to an action before
others move, the firm may gain a first-mover advantage. A firm may use its first-mover
advantage to stake out a claim to a market by making a commitment to serve it and in the
process limit the kinds of actions its rivals find profitable. Commitment is essential for a first-
mover advantage. If the first mover could secretly reverse its decision, then its rival would
anticipate the reversal and the firms would be back in the game with no first-mover advantage.

We already encountered a simple example of the value of commitment in the Battle of the
Sexes game from Chapter 8. In the simultaneous version of the model, there were three Nash
equilibria. In one pure-strategy equilibrium, the wife obtains her highest payoff by attending
her favorite event with her husband, but she obtains lower payoffs in the other two equilibria
(a pure-strategy equilibrium in which she attends her less favored event and a mixed-strategy
equilibrium giving her the lowest payoff of all three). In the sequential version of the game, if
a player were given the choice between being the first mover and having the ability to commit
to attending an event or being the second mover and having the flexibility to be able to meet
up with the first wherever he or she showed up, a player would always choose the ability
to commit. The first mover can guarantee his or her preferred outcome as the unique
subgame-perfect equilibrium by committing to attend his or her favorite event.

Sunk costs
Expenditures on irreversible investments are called sunk costs.

D E F I N I T I O N
Sunk cost. A sunk cost is an expenditure on an investment that cannot be reversed and has
no resale value.

Sunk costs include expenditures on unique types of equipment (for example, a newsprint-
making machine) or job-specific training for workers (developing the skills to use the
newsprint machine). There is sometimes confusion between sunk costs and what we have
called fixed costs. They are similar in that they do not vary with the firm’s output level in a
production period and are incurred even if no output is produced in that period. But instead
of being incurred periodically, as are many fixed costs (heat for the factory, salaries for
secretaries and other administrators), sunk costs are incurred only once in connection with
a single investment.11 Some fixed costs may be avoided over a sufficiently long run—say, by

11Mathematically, the notion of sunk costs can be integrated into the per-period total cost function as

Ct ðqt Þ ¼ S þ Ft þ cqt ,

where S is the per-period amortization of sunk costs (for example, the interest paid for funds used to finance capital
investments), Ft is the per-period fixed costs, c is marginal cost, and qt is per-period output. If qt ¼ 0 then Ct ¼ S þ Ft , but
if the production period is long enough then some or all of Ft may also be avoidable. No portion of S is avoidable, however.

542 Part 5 Market Power



reselling the plant and equipment involved—but sunk costs can never be recovered because
the investments involved cannot be moved to a different use. When the firm makes a sunk
investment it has committed itself to that investment, and this may have important con-
sequences for its strategic behavior.

First-mover advantage in the Stackelberg model
The simplest setting to illustrate the first-mover advantage is in the Stackelberg model,
named after the economist who first analyzed it.12 The model is similar to a duopoly version
of the Cournot model except that—rather than simultaneously choosing the quantities of
their identical outputs—firms move sequentially, with firm 1 (the leader) choosing its output
first and then firm 2 (the follower) choosing after observing firm 1’s output.

We use backward induction to solve for the subgame-perfect equilibrium of this sequen-
tial game. Begin with the follower’s output choice. Firm 2 chooses the output q2 that
maximizes its own profit, taking firm 1’s output q1 as given. In other words, firm 2 best-
responds to firm 1’s output. This results in the same best-response function for firm 2 as we
computed in the Cournot game from the first-order condition (Equation 15.2). Label this
best-response function BR2ðq1Þ.

Turn then to the leader’s output choice. Firm 1 recognizes that it can influence the
follower’s action because the follower best-responds to 1’s observed output. Substituting
BR2ðq1Þ into the profit function for firm 1 given by Equation 15.1, we have

π1 ¼ P ðq1 þ BR2ðq1ÞÞq1 � C1ðq1Þ. (15.56)

The first-order condition with respect to q1 is

∂π1

∂q1
¼ PðQ Þ þ P 0ðQ Þq1 þ P 0ðQ ÞBR0

2ðq1Þq1|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
S

�C 0
iðqiÞ ¼ 0. (15.57)

This is the same first-order condition computed in the Cournot model (see Equation 15.2)
except for the addition of the term S, which accounts for the strategic effect of firm 1’s output
on firm 2’s. The strategic effect S will lead firm 1 to produce more than it would have in a
Cournot model. By overproducing, firm 1 leads firm 2 to reduce q2 by the amount BR0

2ðq1Þ;
the fall in 2’s output increases market price, thus increasing the revenue that 1 earns on
its existing sales. We know that q2 falls with an increase in q1 because best-response func-
tions under quantity competition are generally downward sloping; see Figure 15.2 for an
illustration.

The strategic effect would be absent if the leader’s output choice were unobservable to
the follower or if the leader could reverse its output choice in secret. The leader must be able
to commit to an observable output choice or else firms are back in the Cournot game. It is
easy to see that the leader prefers the Stackelberg game to the Cournot game. The leader
could always reproduce the outcome from the Cournot game by choosing its Cournot
output in the Stackelberg game. The leader can do even better by producing more than its
Cournot output, thereby taking advantage of the strategic effect S.

12H. von Stackelberg, The Theory of the Market Economy, trans. A. T. Peacock (New York: Oxford University Press, 1952).
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EXAMPLE 15.8 Stackelberg Springs

Recall the two natural-spring owners from Example 15.1. Now, rather than having them
choose outputs simultaneously as in the Cournot game, assume that they choose outputs
sequentially as in the Stackelberg game, with firm 1 being the leader and firm 2 the follower.

Firm 2’s output. We will solve for the subgame-perfect equilibrium using backward induc-
tion, starting with firm 2’s output choice. We already found firm 2’s best-response function in
Equation 15.8, repeated here:

q2 ¼ a � q1 � c
2

. (15.58)

Firm 1’s output. Now fold the game back to solve for firm 1’s output choice. Substituting
2’s best response from Equation 15.58 into 1’s profit function from Equation 15.56 yields

π1 ¼ a � q1 �
a � q1 � c

2

� �
� c

h i
q1 ¼ 1

2
ða � q1 � cÞq1. (15.59)

Taking the first-order condition,

∂π1

∂q1
¼ 1

2
ða � 2q1 � cÞ ¼ 0, (15.60)

and solving gives q�1 ¼ ða � cÞ=2. Substituting q�1 back into firm 2’s best-response function
gives q�2 ¼ ða � cÞ=4. Profits are π�1 ¼ ð1=8Þða � cÞ2 and π�2 ¼ ð1=16Þða � cÞ2.

To provide a numerical example, suppose a ¼ 120 and c ¼ 0. Then q�1 ¼ 60, q�2 ¼ 30,
π�1 ¼ $1,800, and π�2 ¼ $900. Firm 1 produces twice as much and earns twice as much as
firm 2. Recall from the simultaneous Cournot game in Example 15.1 that, for these numeri-
cal values, total market output was 80 and total industry profit was 3,200, implying that each
of the two firms produced 80=2 ¼ 40 units and earned $3, 200=2 ¼ $1, 600. Therefore,
when firm 1 is the first mover in a sequential game, it produces ð60� 40Þ=40 ¼ 33:3%more
and earns ð1,800� 1,600Þ=1,600 ¼ 12:5% more than in the simultaneous game.

Graphing the Stackelberg outcome. Figure 15.6 illustrates the Stackelberg equilibrium on
a best-response function diagram. The leader realizes that the follower will always best-
respond, so the resulting outcome will always be on the follower’s best-response function.
The leader effectively picks the point on the follower’s best-response function that maxi-
mizes the leader’s profit. The highest isoprofit (highest in terms of profit level, but recall from
Figure 15.2 that higher profit levels are reached as one moves down toward the horizontal
axis) is reached at the point S of tangency between firm 1’s isoprofit and firm 2’s best-response
function. This is the Stackelberg equilibrium. Compared to the Cournot equilibrium at point
C , the Stackelberg equilibrium involves higher output and profit for firm 1. Firm 1’s profit is
higher because, by committing to the high output level, firm 2 is forced to respond by
reducing its output.

Commitment is required for the outcome to stray from firm 1’s best-response function, as
happens at point S. If firm 1 could secretly reduce q1 (perhaps because q1 is actually capacity
that can be secretly reduced by reselling capital equipment for close to its purchase price to a
manufacturer of another product that uses similar capital equipment), then it would move
back to its best response, firm 2 would best-respond to this lower quantity, and so on,
following the dotted arrows from S back to C.
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QUERY: What would be the outcome if the identity of the first mover were not given and
instead firms had to compete to be the first? How would firms vie for this position? Do these
considerations help explain overinvestment in Internet firms and telecommunications during
the “dot-com bubble”?

Contrast with price leadership
In the Stackelberg game, the leader uses what has been called a “top dog” strategy,13

aggressively overproducing to force the follower to scale back its production. The leader
earns more than in the associated simultaneous game (Cournot), while the follower earns
less. While it is generally true that the leader prefers the sequential game to the simultaneous
game (the leader can do at least as well, and generally better, by playing its Nash equilibrium
strategy from the simultaneous game), it is not generally true that the leader harms the
follower by behaving as a “top dog.” Sometimes the leader benefits by behaving as a “puppy
dog,” as illustrated in Example 15.9.

FIGURE 15.6 Stackelberg Game

Best-response functions from the Cournot game are drawn as thick lines. Frown-shaped curves are
firm 1’s isoprofits. Point C is the Nash equilibrium of the Cournot game (involving simultaneous
output choices). The Stackelberg equilibrium is point S, the point at which the highest isoprofit for
firm 1 is reached on 2’s best-response function. At S, 1’s isoprofit is tangent to 2’s best-response
function. If firm 1 cannot commit to its output then the outcome unravels, following the dotted line
from S back to C .

q2

q1

BR2(q1)

BR1(q2)

S

C

13“Top dog,” “puppy dog,” and other colorful labels for strategies are due to D. Fudenberg and J. Tirole, “The Fat Cat
Effect, the Puppy Dog Ploy and the Lean and Hungry Look,” American Economic Review, Papers and Proceedings 74
(1984): 361–68.
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EXAMPLE 15.9 Price-Leadership Game

Return to Example 15.4, in which two firms chose price for differentiated toothpaste brands
simultaneously. So that the following calculations do not become too tedious, we make the
simplifying assumptions that a1 ¼ a2 ¼ 1 and c ¼ 0. Substituting these parameters back into
Example 15.4 shows that equilibrium prices are 2=3 � 0:667 and profits are 4=9 � 0:444 for
each firm.

Now consider the game in which firm 1 chooses price before firm 2.14 We will solve for
the subgame-perfect equilibrium using backward induction, starting with firm 2’s move.
Firm 2’s best response to its rival’s choice p1 is the same as computed in Example 15.4—
which, upon substituting a2 ¼ 1 and c ¼ 0 into Equation 15.32, is

p2 ¼ 1
2
þ p1

4
. (15.61)

Fold the game back to firm 1’s move. Substituting firm 2’s best response into firm 1’s profit
function from Equation 15.30 gives

π1 ¼ p1 1� p1 þ
1
2

1
2
þ p1

4

� �	 

¼ p1

8
ð10� 7p1Þ. (15.62)

Taking the first-order condition and solving for the equilibrium price, we obtain p�1 � 0:714.
Substituting into Equation 15.61 gives p�2 � 0:679. Equilibrium profits are π�1 � 0:446 and

FIGURE 15.7 Price-Leadership Game

Thick lines are best-response functions from the game in which firms choose prices for differentiated
products. U-shaped curves are firm 1’s isoprofits. Point B is the Nash equilibrium of the simultaneous
game, and L is the subgame-perfect equilibrium of the sequential game in which firm 1 moves first.
At L, 1’s isoprofit is tangent to 2’s best response.

p2

BR1(p2)

BR2(p1)
B

L

p1

14Sometimes this game is called the Stackelberg price game, although technically the original Stackelberg game involved
quantity competition.
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π�2 � 0:460. Both firms’ prices and profits are higher in this sequential game than in the
simultaneous one, but now the follower earns even more than the leader.

As illustrated in the best-response function diagram in Figure 15.7, firm 1 commits to a
high price in order to induce firm 2 to raise its price also, essentially “softening” the
competition between them. The leader needs a moderate price increase (from 0.667 to
0.714) in order to induce the follower to raise its price slightly (from 0.667 to 0.679), so
the leader’s profits do not increase as much as the follower’s.

QUERY: What choice variable realistically is easier to commit to, prices or quantities? What
business strategies do firms use to increase their commitment to their list prices?

We say that the first mover is playing a “puppy dog” strategy in Example 15.9 because it
increases its price relative to the simultaneous-move game; when translated into outputs, this
means that the first mover ends up producing less than in the simultaneous-move game. It is
as if the first mover strikes a less aggressive posture in the market and so leads its rival to
compete less aggressively.

A comparison of Figures 15.6 and 15.7 suggests the crucial difference between the games
that leads the first mover to play a “top dog” strategy in the quantity game and a “puppy dog”
strategy in the price game: the best-response functions have different slopes. The goal is to
induce the follower to compete less aggressively. The slopes of the best-response functions
determine whether the leader can best do that by playing aggressively itself or by softening its
strategy. The first mover plays a “top dog” strategy in the sequential quantity game or,
indeed, any game in which best responses slope down. When best responses slope down,
playing more aggressively induces a rival to respond by competing less aggressively. Con-
versely, the first mover plays a “puppy dog” strategy in the price game or any game in which
best responses slope up. When best responses slope up, playing less aggressively induces a rival
to respond by competing less aggressively.

Knowing the slope of firms’ best responses therefore provides considerable insight into
the sort of strategies firms will choose if they have commitment power. The Extensions at the
end of this chapter provide further technical details, including shortcuts for determining the
slope of a firm’s best-response function just by looking at its profit function.

STRATEGIC ENTRY DETERRENCE

We saw that, by committing to an action, a first mover may be able to manipulate the
second mover into being a less aggressive competitor. In this section we will see that the
first mover may be able to prevent the entry of the second mover entirely, leaving the first
mover as the sole firm in the market. In this case, the firm may not behave as an un-
constrained monopolist because it may have distorted its actions in order to fend off the
rival’s entry.

In deciding whether to deter the second mover’s entry, the first mover must weigh the
costs and benefits relative to accommodating entry—that is, allowing entry to happen.
Accommodating entry does not mean behaving nonstrategically. The first mover would
move off its best-response function to manipulate the second mover into being less competi-
tive, as described in the previous section. The cost of deterring entry is that the first mover
would have to move off its best-response function even further than it would if it accom-
modates entry. The benefit is that it operates alone in the market and has market demand to
itself. Deterring entry is relatively easy for the first mover if the second mover must pay a
substantial sunk cost to enter the market.
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EXAMPLE 15.10 Deterring Entry of a Natural Spring

Recall Example 15.8, where two natural-spring owners choose outputs sequentially. We now
add an entry stage: in particular, after observing firm 1’s initial quantity choice, firm 2 decides
whether or not to enter the market. Entry requires the expenditure of sunk cost K2, after
which firm 2 can choose output. Market demand and cost are as in Example 15.8. To simplify
the calculations, we will take the specific numerical values a ¼ 120 and c ¼ 0 [implying that
inverse demand is PðQ Þ ¼ 120� Q and that production is costless]. To further simplify, we
will abstract from firm 1’s entry decision and assume that it has already sunk any cost needed
to enter before the start of the game. We will look for conditions under which firm 1 prefers
to deter rather than accommodate firm 2’s entry.

Accommodating entry. Start by computing firm 1’s profit if it accommodates firm 2’s entry,
denoted πacc

1 . This has already been done in Example 15.8, in which there was no issue of
deterring 2’s entry. There we found firm 1’s equilibrium output to be ða � cÞ=2 ¼ qacc1 and its
profit to be ða � cÞ2=8 ¼ πacc

1 . Substituting the specific numerical values a ¼ 120 and c ¼ 0,
we have qacc1 ¼ 60 and πacc

1 ¼ ð120� 0Þ2=8 ¼ 1,800.

Deterring entry. Next, compute firm 1’s profit if it deters firm 2’s entry, denoted πdet
1 . To

deter entry, firm 1 needs to produce an amount qdet1 high enough that, even if firm 2 best-
responds to qdet1 , it cannot earn enough profit to cover its sunk cost K2. We know from
Equation 15.58 that firm 2’s best-response function is

q2 ¼ 120� q1
2

. (15.63)

Substituting for q2 in firm 2’s profit function (Equation 15.7) and simplifying gives

π2 ¼ 120� qdet1

2

� �2

�K2. (15.64)

Setting firm 2’s profit in Equation 15.64 equal to 0 and solving yields

qdet1 ¼ 120� 2
ffiffiffiffiffiffiffi
K2

p
; (15.65)

qdet1 is the firm-1 output needed to keep firm 2 out of the market. At this output level, firm 1’s
profit is

πdet
1 ¼ 2

ffiffiffiffiffiffiffi
K2

p ð120� 2
ffiffiffiffiffiffiffi
K2

p Þ, (15.66)

which we found by substituting qdet1 , a ¼ 120, and c ¼ 0 into firm 1’s profit function from
Equation 15.7. We also set q2 ¼ 0 because, if firm 1 is successful in deterring entry, it
operates alone in the market.

Comparison. The final step is to juxtapose πacc
1 and πdet

1 to find the condition under which
firm 1 prefers deterring to accommodating entry. To simplify the algebra, let x ¼ 2

ffiffiffiffiffiffi
K2

p
.

Then πdet
1 ¼ πacc

1 if

x2 � 120x þ 1,800 ¼ 0. (15.67)

Applying the quadratic formula yields

x ¼ 120
 ffiffiffiffiffiffiffiffiffiffiffiffi
7200

p

2
. (15.68)

Taking the smaller root (since we will be looking for a minimum threshold), we
have x ¼ 17:6 (rounding to the nearest decimal). Substituting x ¼ 17:6 into x ¼ 2

ffiffiffiffiffiffi
K2

p
and
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solving for K2 yields

K2 ¼ x
2

� �2
¼ 17:6

2

� �2

� 77. (15.69)

IfK2 ¼ 77, then entry is so cheap for firm 2 that firm 1would have to increase its output all the
way to qdet1 ¼ 102 in order to deter entry. This is a significant distortion above what it would
producewhen accommodating entry: qacc1 ¼ 60. IfK2 < 77 then the output distortion needed
to deter entry wastes so much profit that firm 1 prefers to accommodate entry. If K2 > 77,
output need not be distorted as much to deter entry, so firm 1 prefers to deter entry.

QUERY: Suppose the first mover must pay the same entry cost as the second, K1 ¼ K2 ¼ K .
Suppose further that K is high enough that the first mover prefers to deter rather than
accommodate the second mover’s entry. Wouldn’t this sunk cost be high enough to keep the
first mover out of the market, too? Why or why not?

A real-world example of overproduction (or overcapacity) to deter entry is provided by
the 1945 antitrust case against Alcoa, a U.S. aluminum manufacturer. A U.S. Federal Court
ruled that Alcoa maintained much higher capacity than was needed to serve the market as a
strategy to deter rivals’ entry, and it held that Alcoa was in violation of antitrust laws.

To recap what we have learned in the last two sections: with quantity competition, the
first mover plays a “top dog” strategy regardless of whether it deters or accommodates
the second mover’s entry. True, the entry-deterring strategy is more aggressive than the
entry-accommodating one, but this difference is one of degree rather than kind. However,
with price competition (as in Example 15.9), the first mover’s entry-deterring strategy would
differ in kind from its entry-accommodating strategy. It would play a “puppy dog” strategy if
it wished to accommodate entry, because this is how it manipulates the second mover into
playing less aggressively. It plays a “top dog” strategy of lowering its price relative to the
simultaneous game if it wants to deter entry. Two general principles emerge.

• Entry deterrence is always accomplished by a “top dog” strategy whether competition
is in quantities or prices, or (more generally) whether best-response functions slope
down or up. The first mover simply wants to create an inhospitable environment for
the second mover.

• If firm 1 wants to accommodate entry, whether it should play a “puppy dog” or “top
dog” strategy depends on the nature of competition—in particular, on the slope of the
best-response functions.

These principles apply more generally beyond the commitments to a fixed quantity or price
that we have studied so far. Example 15.11 shows that a first mover might choose the
placement of its product strategically to put it in the best competitive position. The placement
of the product is literally the firm’s physical location in the example, but location could also be
interpreted as some other attribute of the product, such as sweetness or whitening additives
in toothpaste.

EXAMPLE 15.11 Product Placement on Hotelling’s Beach

We will return to Hotelling’s beach in Example 15.5 and investigate where the ice cream
stands would choose to locate under alternative scenarios. To model the location decisions
formally, we will suppose that, prior to the price competition in Example 15.5, there is an

(continued)
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EXAMPLE 15.11 CONTINUED

initial entry/location stage. FirmA moves first and chooses its location a on the unit interval.
Firm B observes a and decides whether to enter and, if it enters, its location b. Let KB be the
sunk cost that B must pay to enter the market (abstract fromA’s entry cost for simplicity). We
will solve for the subgame-perfect equilibrium of this sequential game using backward
induction.

Firm B’s location. We have already solved for the Nash equilibrium of the pricing subgame
given that both stands enter and locate at arbitrary points a and b on the line. Equation 15.42
lists the stands’ payoffs. Fold the game back to consider firm B’s location, supposing it has
entered. To find B’s optimal location, take the derivative of B’s payoff in Equation 15.42 with
respect to b:

t
18

ð4L � a � bÞð4L þ a � 3bÞ. (15.70)

This derivative is positive for all values of a and b between 0 and L. We have a “corner”
solution: B wants to locate as far as possible to the right of the beach, that is, b ¼ L.
Substituting b ¼ L into the stands’ payoffs, we have

πA ¼ t
18

ðL � aÞð3L þ aÞ2,

πB ¼ t
18

ðL � aÞð3L � aÞ2 �KB .
(15.71)

Note that we have subtracted B’s sunk entry cost in the expression for its profit.
Next, fold the game one step back to solve for A’s location. A’s optimal location depends

on whether it wants to deter or accept B’s entry. We analyze both possibilities in turn.

Entry deterrence. To deter B’s entry, A wants to choose a location that reduces B’s payoff
to zero or below. A technical point before proceeding is that we will restrict A’s location to
the left half of the beach: a � L=2. If A were to locate in the right half, B would respond by
leapfrogging A and locating in the left half. The outcome would be the mirror image of the
one derived here, so we need not analyze that case separately.

A glance at Equation 15.71 shows that B’s payoff falls the closer A locates to the right.
Among locations a � L=2, the greatest harmA can inflict on B is to locate right in the middle
of the interval: a ¼ L=2. Substituting a ¼ L=2 into Equation 15.71, we see that B’s profit
can be reduced to tð5=12Þ2L3 �KB , which is negative if

KB > 0:174tL3. (15.72)

For example, if the beach is L ¼ 100 yards long and transport costs are t ¼ $0:01 per
yard, then B’s entry can be deterred if it involves a sunk cost greater than $1,740. If it is at all
possible for A to deter B’s entry, then A will certainly want to do so. If A deters B’s entry,
then A ends up alone in the middle of the market, which happens to be the best location for
a monopolist. (Locating in the middle minimizes transportation costs for the monopolist’s
consumers and allows the monopolist to charge a higher price.) Luckily for A in this game,
A’s monopoly strategy is the same as the most aggressive “top dog” strategy it can use to
deter entry.

Entry accommodation. If the condition in Equation 15.72 does not hold, then it is
impossible for A to deter B’s entry and so A has no choice but to accommodate entry.
What is A’s optimal location then? We know that B will locate at b ¼ L and that A’s profit
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is given by Equation 15.71. Taking the first derivative of Equation 15.71 with respect to a
gives

� t
18

ð3L þ aÞðL þ 3aÞ, (15.73)

which is negative. We have a “corner” solution: A wants to locate as far as possible to the
left, that is, a ¼ 0.

If A cannot deter B’s entry, it pursues a “puppy dog” strategy of locating as far from B as
possible. Why does A shy away from the middle of the interval? After all, holding prices
constant, moving closer to the middle would increase A’s market share. The reason is that
prices are not held constant. Moving closer to the middle would increase the aggressiveness
of the price competition between A and B, and the resulting reduction in prices would offset
the benefit of increased market share.

QUERY: Suppose the national park service that operates the beach regulates the price that ice
cream stands can charge. Would A’s entry-deterring strategy change? Would A’s entry-
accommodating strategy change? Why or why not?

SIGNALING

The preceding sections have shown that the first mover’s ability to commit may afford it a big
strategic advantage. In this section we will analyze another possible first-mover advantage:
the ability to signal. If the secondmover has incomplete information about market conditions
(costs, demand, and so forth), then it may try to learn about these conditions by observing
how the first mover behaves. The first mover may try to distort its actions in order to
manipulate what the second learns. The analysis in this section is closely tied to the material
on signaling games in Chapter 8, and the reader may want to review that material before
proceeding with this section.

The ability to signal may be a plausible benefit of being a first mover in some settings in
which the benefit we studied earlier—commitment—is implausible. For example, in indus-
tries where the capital equipment is readily adapted to manufacture other products, costs are
not very “sunk” and so capacity commitments may not be especially credible. The first mover
can reduce its capacity with little loss. For another example, the price-leadership game
involved a commitment to price. It is hard to see what sunk costs are involved in setting a
price and thus what commitment value it has.15 Yet even in the absence of commitment
value, prices may have strategic, signaling value.

Entry-deterrence model
Consider the incomplete-information game in Figure 15.8. The game involves a first mover
(firm 1) and a second mover (firm 2) that choose prices for their differentiated products.
Firm 1 has private information about its marginal cost, which can take on one of two values:
high with probability PrðH Þ or low with probability PrðLÞ ¼ 1� PrðH Þ. In period 1, firm 1
serves the market alone. At the end of the period, firm 2 observes firm 1’s price and decides

15The Query in Example 15.9 asks you to consider reasons why a firm may be able to commit to a price. The firm may gain
commitment power by using contracts (e.g., long-term supply contracts with customers or a most-favored customer clause,
which ensures that if the firm lowers price in the future to other customers then the favored customer gets a rebate on the
price difference). The firm may advertise a price through an expensive national advertising campaign. The firm may have
established a valuable reputation as charging “everyday low prices.”
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whether or not to enter the market. If it enters, it sinks an entry cost K2 and learns the true
level of firm 1’s costs; then firms compete as duopolists in the second period, choosing prices
for differentiated products as in Example 15.4 or 15.5. (We do not need to be specific about
the exact form of demands.) If firm 2 does not enter, it obtains a payoff of zero and firm 1
again operates alone in the market. Assume there is no discounting between periods.

Firm 2 draws inferences about firm 1’s cost from the price that 1 charges in the first
period. Firm 2 earns more if it competes against the high-cost type because the high-cost
type’s price will be higher, and as we saw in Examples 15.4 and 15.5, the higher the rival’s
price for a differentiated product, the higher the firms own demand and profit. Let Dt

i be the
duopoly profit (not including entry costs) for firm i 2 f1, 2g if firm 1 is of type t 2 fL,Hg.
To make the model interesting, we will suppose DL

2 < K2 < DH
2 , so that firm 2 earns more

than its entry cost if it faces the high-cost type but not if it faces the low-cost type. Otherwise,
the information in firm 1’s signal would be useless because firm 2 would always enter or
always stay out regardless of 1’s type.

To simplify the model, we will suppose that the low-cost type only has one relevant action
in the first period—namely, setting its monopoly price pL1 . The high-cost type can choose one
of two prices: it can set the monopoly price associated with its type, pH1 , or it can choose the
same price as the low type, pL1 . Presumably, the optimal monopoly price is increasing in
marginal cost, so pL1 < pH1 . LetMt

1 be firm 1’s monopoly profit if it is of type t 2 fL,Hg (the

FIGURE 15.8 Signaling for Entry Deterrence

Firm 1 signals its private information about its cost (highH or low L) through the price it sets in the
first period. Firm 2 observes 1’s price and then decides whether or not to enter. If 2 enters, the firms
compete as duopolists; otherwise, 1 operates alone on the market again in the second period. Firm 2
earns positive profit if and only if it enters against a high-cost rival.
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profit if it is alone and charges its optimal monopoly price pH1 if it is the high type and pL1 if
it is the low type). Let R be the high type’s loss relative to the optimal monopoly profit
in the first period if it charges pL1 rather than its optimal monopoly price pH1 . Thus, if the
high type charges pH1 in the first period then it earnsMH

1 in that period, but if it charges pL1 it
earns MH

1 �R.

Separating equilibrium
We will look for two kinds of perfect Bayesian equilibria: separating and pooling. In a
separating equilibrium, the different types of the first mover must choose different actions.
Here, there is only one such possibility for firm 1: the low-cost type chooses pL1 and the
high-cost type chooses pH1 . Firm 2 learns firm 1’s type from these actions perfectly and stays
out upon seeing pL1 and enters upon seeing pH1 . It remains to check whether the high-cost
type would prefer to deviate to pL1 . In equilibrium, the high type earns a total profit of
MH

1 þDH
1 : MH

1 in the first period because it charges its optimal monopoly price, and DH
1

in the second because firm 2 enters and the firms compete as duopolists. If the high type were
to deviate to pL1 then it would earn MH

1 �R in the first period, the loss R coming from
charging a price other than its first-period optimum, but firm 2 would think it is the low type
and would not enter. Hence firm 1 would earn MH

1 in the second period, for a total of
2MH

1 �R across periods. For deviation to be unprofitable we must have

MH
1 þDH

1 	 2MH
1 �R (15.74)

or (upon rearranging)

R 	 MH
1 �DH

1 . (15.75)

That is, the high-type’s loss from distorting its price from its monopoly optimum in the first
period exceeds its gain from deterring firm 2’s entry in the second period.

If the condition in Equation 15.75 does not hold, there still may be a separating
equilibrium in an expanded game in which the low type can charge other prices beside pL1 .
The high type could distort its price downward below pL1 , increasing the first-period loss the
high type would suffer from pooling with the low type to such an extent that the high type
would rather charge pH1 even if this results in firm 2’s entry.

Pooling equilibrium
If the condition in Equation 15.75 does not hold, then the high type would prefer to pool
with the low type if pooling deters entry. Pooling deters entry if firm 2’s prior belief that firm 1
is the high type, PrðH Þ—which is equal to its posterior belief in a pooling equilibrium—is low
enough that firm 2’s expected payoff from entering,

PrðH ÞDH
2 þ ½1� PrðH Þ�DL

2 �K2 (15.76)

is less than its payoff of zero from staying out of the market.

Predatory pricing
The incomplete-information model of entry deterrence has been used to explain why a
rational firm might want to engage in predatory pricing, the practice of charging an artificially
low price to prevent potential rivals from entering or to force existing rivals to exit. The
predatory firm sacrifices profits in the short run to gain a monopoly position in future periods.

Predatory pricing is prohibited by antitrust laws. In the most famous antitrust case, dating
back to 1911, John D. Rockefeller—owner of the Standard Oil company that controlled a
substantial majority of refined oil in the United States—was accused of attempting to
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monopolize the oil market by cutting prices dramatically to drive rivals out and then raising
prices after rivals had exited the market or sold out to Standard Oil. Predatory pricing remains
a controversial antitrust issue because of the difficulty in distinguishing between predatory
conduct, which authorities would like to prevent, and competitive conduct, which authorities
would like to promote. In addition, economists initially had trouble developing game-
theoretic models in which predatory pricing is rational and credible.

Suitably interpreted, predatory pricingmay emerge as a rational strategy in the incomplete-
information model of entry deterrence. Predatory pricing can show up in a separating
equilibrium—in particular, in the expanded model where the low-cost type can separate
only by reducing price below its monopoly optimum. Total welfare is actually higher in this
separating equilibrium than it would be in its full-information counterpart. Firm 2’s entry
decision is the same in both outcomes, but the low-cost type’s price may be lower (to signal
its type) in the predatory outcome.

Predatory pricing can also show up in a pooling equilibrium. In this case it is the high-cost
type that charges an artificially low price, pricing below its first-period optimum in order to
keep firm 2 out of the market. Whether social welfare is lower in the pooling equilibrium than
in a full-information setting is unclear. In the first period, price is lower (and total welfare
presumably higher) in the pooling equilibrium than in a full-information setting. On the
other hand, deterring firm 2’s entry results in higher second-period prices and lower welfare.
Weighing the first-period gain against the second-period loss would require detailed knowl-
edge of demand curves, discount factors, and so forth.

The incomplete-information model of entry deterrence is not the only model of preda-
tory pricing that economists have developed. Another model involves frictions in the market
for financial capital that stem perhaps from informational problems (between borrowers
and lenders) of the sort we will discuss in Chapter 18. With limits on borrowing, firms may
only have limited resources to “make a go” in a market. A larger firm may force financially
strapped rivals to endure losses until their resources are exhausted and they are forced to exit
the market.

HOW MANY FIRMS ENTER?

To this point, we have taken the number of firms in the market as given, often assuming that
there are at most two firms (as in Examples 15.1, 15.3, and 15.10). We did allow for a general
number of firms, n, in some of our analysis (as in Examples 15.3 and 15.7) but were silent
about how this number n was determined. In this section, we provide a game-theoretic
analysis of the number of firms by introducing a first stage in which a large number of
potential entrants can each choose whether or not to enter. We will abstract from first-mover
advantages, entry deterrence, and other strategic considerations by assuming that firms make
their entry decisions simultaneously. Strategic considerations are interesting and important,
but we have already developed some insights into strategic considerations from the previous
sections and—by abstracting from them—we can simplify the analysis here.

Barriers to entry
In order for the market to be oligopolistic with a finite number of firms rather than perfectly
competitive with an infinite number of infinitesimal firms, some factors, called barriers to
entry, must eventually make entry unattractive or impossible. We discussed many of these
factors at length in the previous chapter on monopoly. If a sunk cost is required to enter
the market, then—even if firms can freely choose whether or not to enter—only a limited
number of firms will choose to enter in equilibrium, because competition among more
than that number would drive profits below the level needed to recoup the sunk entry cost.
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Government intervention in the form of patents or licensing requirements may prevent firms
from entering even if it would be profitable for them to do so.

Some of the new concepts discussed in this chapter may introduce additional barriers to
entry. Search costs may prevent consumers from finding new entrants with lower prices and/
or higher quality than existing firms. Product differentiation may raise entry barriers because
of strong brand loyalty. Existing firms may bolster brand loyalty through expensive advertis-
ing campaigns, and softening this brand loyalty may require entrants to conduct similarly
expensive advertising campaigns. Existing firms may take other strategic measures to deter
entry, such as committing to a high capacity or output level, engaging in predatory pricing, or
other measures discussed in previous sections.

Long-run equilibrium
Consider the following game-theoretic model of entry in the long run. A large number of
symmetric firms are potential entrants into a market. Firms make their entry decisions
simultaneously. Entry requires the expenditure of sunk cost K . Let n be the number of
firms that decide to enter. In the next stage, the n firms engage in some form of competition
over a sequence of periods during which they earn the present discounted value of some
constant profit stream. To simplify, we will usually collapse the sequence of periods of
competition into a single period. Let gðnÞ be the profit earned by an individual firm in this
competition subgame [not including the sunk cost, so gðnÞ is a gross profit]. Presumably, the
more firms in the market, the more competitive the market is and the less an individual firm
earns, so g 0ðnÞ < 0.

We will look for a subgame-perfect equilibrium in pure strategies.16 This will be the
number of firms, n�, satisfying two conditions. First, the n� entering firms earn enough to
cover their entry cost: gðn�Þ 	 K . Otherwise at least one of them would have preferred to
have deviated to not entering. Second, an additional firm cannot earn enough to cover its
entry cost: gðn� þ 1Þ � K . Otherwise a firm that remained out of the market could have
profitably deviated by entering. Given that g 0ðnÞ < 0, we can put these two conditions
together and say that n� is the greatest integer satisfying gðn�Þ 	 K .

This condition is reminiscent of the zero-profit condition for long-run equilibrium under
perfect competition. The slight nuance here is that active firms are allowed to earn positive
profits. Especially ifK is large relative to the size of the market, there may only be a few long-
run entrants (so the market looks like a canonical oligopoly) earning well above what they
need to cover their sunk costs, yet an additional firm does not enter because its entry would
depress individual profit enough that the entrant could not cover its large sunk cost.

Is the long-run equilibrium efficient? Does the oligopoly involve too few or too many
firms relative to what a benevolent social planner would choose for the market? Suppose the
social planner can choose the number of firms (restricting entry through licenses and
promoting entry through subsidizing the entry cost) but cannot regulate prices or other
competitive conduct of the firms once in the market. The social planner would choose n to
maximize

CSðnÞ þ ngðnÞ � nK , (15.77)

where CSðnÞ is equilibrium consumer surplus in an oligopoly with n firms, ngðnÞ is total
equilibrium profit (gross of sunk entry costs) across all firms, and nK is the total expenditure
on sunk entry costs. Let n�� be the social planner’s optimum.

16A symmetric mixed-strategy equilibrium also exists in which sometimes more and sometimes fewer firms enter than can
cover their sunk costs. There are multiple pure-strategy equilibria depending on the identity of the n� entrants, but n� is
uniquely identified.
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In general, the long-run equilibrium number of firms, n�, may be greater or less than the
social optimum, n��, depending on two offsetting effects: the appropriability effect and the
business-stealing effect.

• The social planner takes account of the benefit of increased consumer surplus from
lower prices, but firms do not appropriate consumer surplus and so do not take into
account this benefit. This appropriability effect would lead a social planner to choose
more entry than in the long-run equilibrium: n�� > n�.

• Working in the opposite direction is that entry causes the profits of existing firms to
fall, as indicated by the derivative g 0ðnÞ < 0. Entry increases the competitiveness of
the market, destroying some of firms’ profits. In addition, the entrant “steals” some
market share from existing firms—hence the name business-stealing effect. The
marginal firm does not take other firms’ loss in profits when making its entry decision,
whereas the social planner would. The business-stealing effect biases long-run equi-
librium toward more entry than a social planner would choose: n�� < n�.

Depending on the functional forms for demand and costs, the appropriability effect dom-
inates in some cases and there is less entry in long-run equilibrium than is efficient. In other
cases, the business-stealing effect dominates and there is more entry in long-run equilibrium
than is efficient, as in Example 15.12.

EXAMPLE 15.12 Cournot in the Long Run

Long-run equilibrium. Return to Example 15.3 of a Cournot oligopoly. We will determine
the long-run equilibrium number of firms in the market. Let K be the sunk cost a firm must
pay to enter the market in an initial entry stage. Suppose there is one period of Cournot
competition after entry. To further simplify the calculations, assume that a ¼ 1 and c ¼ 0.
Substituting these values back into Example 15.3, we have that an individual firm’s gross
profit is

gðnÞ ¼ 1
n þ 1

� �2

. (15.78)

The long-run equilibrium number of firms is the greatest integer n� satisfying gðn�Þ 	 K .
Ignoring integer problems, n� satisfies

n� ¼ 1ffiffiffiffiffi
K

p � 1. (15.79)

Social planner’s problem. We first compute the individual terms in the social planner’s
objective function (Equation 15.77). Consumer surplus equals the area of the shaded triangle
in Figure 15.9, which, using the formula for the area of a triangle, is

CSðnÞ ¼ 1
2
Q ðnÞ½a � P ðnÞ� ¼ n2

2ðn þ 1Þ2; (15.80)

here the last equality comes from substituting for price and quantity from Equations 15.18
and 15.19. Total profits for all firms (gross of sunk costs) equal the area of the shaded
rectangle:

ngðnÞ ¼ Q ðnÞP ðnÞ ¼ n

ðn þ 1Þ2. (15.81)
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Substituting from Equations 15.80 and 15.81 into the social planner’s objective function
(Equation 15.77) gives

n2

2ðn þ 1Þ2 þ n

ðn þ 1Þ2 � nK . (15.82)

After removing positive constants, the first-order condition with respect to n is

1�K ðn þ 1Þ3 ¼ 0, (15.83)

implying that

n�� ¼ 1
K 1=3 � 1. (15.84)

Ignoring integer problems, this is the optimal number of firms for a social planner.

Comparison. If K < 1 (a condition required for there to be any entry), then n�� < n� and
so there is more entry in long-run equilibrium than a social planner would choose. To take a
particular numerical example, let K ¼ 0:1. Then n� ¼ 2:16 and n�� ¼ 1:15, implying that
the market would be a duopoly in long-run equilibrium, but a social planner would have
preferred a monopoly.

QUERY: If the social planner could set both the number of firms and the price in this example,
what choices would he or she make? How would these compare to long-run equilibrium?

FIGURE 15.9 Profit and Consumer Surplus in Example 15.12

Equilibrium for n firms drawn for the demand and cost assumptions in Example 15.12.
Consumer surplus, CSðnÞ, is the area of the shaded triangle. Total profits ngðnÞ for all firms
(gross of sunk costs) is the area of the shaded rectangle.
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Feedback effect
We found that certain factors decreased the stringency of competition and increased firms’
profits (e.g., quantity rather than price competition, product differentiation, search costs,
discount factors sufficient to sustain collusion). A feedback effect is that the more profitable
the market is for a given number of firms, the more firms will enter the market, making the
market more competitive and less profitable than it would be if the number of firms were
fixed.

To take an extreme example, compare the Bertrand and Cournot games. Taking as given
that the market involves two identical producers, we would say that the Bertrand game is
much more competitive and less profitable than the Cournot game. This conclusion would
be reversed if firms facing a sunk entry cost were allowed to make rational entry decisions.
Only one firm would choose to enter the Bertrand market. A second firm would drive gross
profit to zero, and so its entry cost would not be covered. The long-run equilibrium outcome
would involve a monopolist and thus the highest prices and profits possible, exactly the
opposite of our conclusions when the number of firms was fixed! On the other hand, the
Cournot market may have space for several entrants driving prices and profits below their
monopoly levels in the Bertrand market.

The moderating effect of entry should lead economists to be careful when drawing
conclusions about oligopoly outcomes. Product differentiation, search costs, collusion, and
other factors may reduce competition and increase profits in the short run, but they may also
lead to increased entry and competition in the long run and thus have ambiguous effects
overall on prices and profits. Perhaps the only truly robust conclusions about prices and
profits in the long run involve sunk costs. Greater sunk costs constrain entry even in the long
run, so we can confidently say that prices and profits will tend to be higher in industries
requiring higher sunk costs (as a percentage of sales) to enter.17

INNOVATION

At the end of the previous chapter, we asked which market structure—monopoly or perfect
competition—leads to more innovation in new products and cost-reducing processes. If
monopoly is more innovative, will the long-run benefits of innovation offset the short-run
deadweight loss of monopoly? The same questions can be asked in the context of oligopoly.
Do concentrated market structures, with few firms perhaps charging high prices, provide
better incentives for innovation? Which is more innovative, a large or a small firm? An
established firm or an entrant? Answers to these questions can help inform policy toward
mergers, entry regulation, and small-firm subsidies.

As we will see with the aid of some simple models, there is no definite answer as to what
level of concentration is best for long-run total welfare. We will derive some general trade-
offs, but quantifying these trade-offs to determine whether a particular market would be
more innovative if it were concentrated or unconcentrated will depend on the nature of
competition for innovation, the nature of competition for consumers, and the specification of
demand and cost functions. The same can be said for determining what firm size or age is
most innovative.

The models we introduce here are of product innovations, the invention of a product
(e.g., plasma televisions) that did not exist before. Another class of innovations is that of
process innovations, which reduce the cost of producing existing products—for example, the
use of robot technology in automobile manufacture.

17For more on robust conclusions regarding industry structure and competitiveness, see J. Sutton, Sunk Costs and Market
Structure (Cambridge, MA: MIT Press, 1991).
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Monopoly on innovation
Begin by supposing that only a single firm, call it firm 1, has the capacity to innovate. For
example, a pharmaceutical manufacturer may have an idea for a malaria vaccine that no other
firm is aware of. How much would the firm be willing to complete research and development
for the vaccine and to test it with large-scale clinical trials? How does this willingness to spend
(which we will take as a measure of the innovativeness of the firm) depend on concentration
of firms in the market?

Suppose first that there is currently no other vaccine available for malaria. If firm 1
successfully develops the vaccine, then it will be a monopolist. Letting ΠM be the monopoly
profit, firm 1 would be willing to spend as much as ΠM to develop the vaccine. Next, to
examine the case of a less concentrated market, suppose that another firm (firm 2) already has
a vaccine on the market for which firm 1’s would be a therapeutic substitute. If firm 1 also
develops its vaccine, the firms compete as duopolists. Let πD be the duopoly profit. In a
Bertrand model with identical products, πD ¼ 0, but πD > 0 in other models—for example,
models involving quantity competition or collusion. Firm 1 would be willing to spend as
much as πD to develop the vaccine in this case. Comparing the two cases, since ΠM > πD , it
follows that firm 1 would be willing to spend more (and, by this measure, would be more
innovative) in a more concentrated market. The general principle here can be labeled a
dissipation effect : competition dissipates some of the profit from innovation and thus reduces
incentives to innovate. The dissipation effect is part of the rationale behind the patent system.
A patent grants monopoly rights to an inventor, intentionally restricting competition in order
to ensure higher profits and greater innovation incentives.

Another comparison that can be made is to see which firm, 1 or 2, has more of an
incentive to innovate given that it has a monopoly on the initial idea. Firm 1 is initially out of
the market and must develop the new vaccine to enter. Firm 2 is already in the malaria market
with its first vaccine but can consider developing a second one as well, which we will con-
tinue to assume is a perfect substitute. As shown in the previous paragraph, firm 1 would be
willing to pay up to πD for the innovation. Firm 2 would not be willing to pay anything, since
it is currently a monopolist in the malaria vaccine market and would continue as a monopolist
whether or not it developed the second medicine. (Crucial to this conclusion is that the firm
with the initial idea can fail to develop it but still not worry that the other firm will take the
idea; we will change this assumption in the next subsection.) Therefore, the potential com-
petitor (firm 1) is more innovative by our measure than the existing monopolist (firm 2).
The general principle here has been labeled a replacement effect : firms gain less incremental
profit, and thus have less incentive to innovate, if the new product replaces an existing
product already making profit than if the firm is a new entrant in the market. The replacement
effect can explain turnover in certain industries where old firms become increasingly conser-
vative and are eventually displaced by innovative and quickly growing startups, as Microsoft
displaced IBM as the dominant company in the computer industry.

Competition for innovation
New firms are not always more innovative than existing firms. The dissipation effect may
counteract the replacement effect, leading old firms to be more innovative. To see this trade-
off requires yet another variant of the model. Suppose now that more than one firm has an
initial idea for a possible innovation and that they compete to see which can develop the idea
into a viable product. For example, the idea for a new malaria vaccine may have occurred to
scientists in two firms’ laboratories at about the same time, and the firms may engage in a race
to see who can produce a viable vaccine from this initial idea. Continue to assume that firm 2
already has a malaria vaccine on the market and that this new vaccine would be a perfect
substitute for it.
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The difference between the models in this and the previous section is that, if firm 2 does
not win the race to develop the idea, then the idea does not simply fall by the wayside but
rather is developed by the competitor, firm 1. Firm 2 has an incentive to win the innovation
competition to prevent firm 1 from becoming a competitor. Formally, if firm 1 wins the
innovation competition then it enters the market and is a competitor with firm 2, earning
duopoly profit πD . As we have repeatedly seen, this is the maximum that firm 1 would pay for
the innovation. Firm 2’s profit is ΠM if it wins the competition for the innovation but πD if it
loses and firm 1 wins. Firm 2 would pay up to the difference,ΠM � πD , for the innovation. If
ΠM > 2πD—that is, if industry profit under a monopoly is greater than under a duopoly,
which it is when some of the monopoly profit is dissipated by duopoly competition—then
ΠM � πD > πD , and firm 2 will have more incentive to innovate than firm 1.

This model explains the puzzling phenomenon of dominant firms filing for “sleeping
patents”: patents that are never implemented. Dominant firms have a substantial incentive—
as we have seen, possibly greater than entrants’—to file for patents to prevent entry and
preserve their dominant position. While the replacement effect may lead to turnover in the
market and innovation by new firms, the dissipation effect may help preserve the position of
dominant firms and retard the pace of innovation.

SUMMARY

Many markets fall between the polar extremes of perfect
competition and monopoly. In such imperfectly competitive
markets, determining market price and quantity is compli-
cated because equilibrium involves strategic interaction
among the firms. In this chapter, we used the tools of
game theory developed in Chapter 8 to study strategic inter-
action in oligopoly markets. We first analyzed oligopoly
firms’ short-run choices such as prices and quantities and
then went on to analyze firms’ longer-run decisions such as
product location, innovation, entry, and the deterrence of
entry. We found that seemingly small changes in modeling
assumptions may lead to big changes in equilibrium out-
comes. Predicting behavior in oligopoly markets may there-
fore be difficult based on theory alone and may require
knowledge of particular industries and careful empirical anal-
ysis. Still, some general principles did emerge from our
theoretical analysis that aid in understanding oligopoly
markets.

• One of the most basic oligopoly models, the Bertand
model involves two identical firms that set prices simul-
taneously. The equilibrium resulted in the Bertrand par-
adox: even though the oligopoly is the most con-
centrated possible, firms behave as perfect competitors,
pricing at marginal cost and earning zero profit.

• The Bertrand paradox is not the inevitable outcome in
an oligopoly but can be escaped by changing assump-
tions underlying the Bertrand model—for example,
allowing for quantity competition, differentiated prod-

ucts, search costs, capacity constraints, or repeated play
leading to collusion.

• As in the Prisoners’ Dilemma, firms could profit by
coordinating on a less competitive outcome, but this
outcome will be unstable unless firms can explicitly col-
lude by forming a legal cartel or tacitly collude in a
repeated game.

• For tacit collusion to sustain super-competitive profits,
firms must be patient enough that the loss from a price
war in future periods to punish undercutting exceeds the
benefit from undercutting in the current period.

• Whereas a nonstrategic monopolist prefers flexibility to
respond to changing market conditions, a strategic
oligopolist may prefer to commit to a single choice.
The firm can commit to the choice if it involves a sunk
cost that cannot be recovered if the choice is later
reversed.

• A first mover can gain an advantage by committing to a
different action from what it would choose in the Nash
equilibrium of the simultaneous game. To deter entry,
the first mover should commit to reducing the entrant’s
profits using an aggressive “top dog” strategy (high
output or low price). If it does not deter entry, the first
mover should commit to a strategy leading its rival to
compete less aggressively. This is sometimes a “top dog”
and sometimes a “puppy dog” strategy, depending on
the slope of firms’ best responses.
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PROBLEMS

15.1
Assume for simplicity that a monopolist has no costs of production and faces a demand curve given by
Q ¼ 150� P .

a. Calculate the profit-maximizing price-quantity combination for this monopolist. Also calculate
the monopolist’s profit.

b. Suppose instead that there are two firms in the market facing the demand and cost conditions
just described for their identical products. Firms choose quantities simultaneously as in the
Cournot model. Compute the outputs in the Nash equilibrium. Also compute market output,
price, and firm profits.

c. Suppose the two firms choose prices simultaneously as in the Bertrand model. Compute the
prices in the Nash equilibrium. Also compute firm output and profit as well as market output.

d. Graph the demand curve and indicate where the market price-quantity combinations from parts
(a)–(c) appear on the curve.

15.2
Suppose that firms’ marginal and average costs are constant and equal to c and that inverse market
demand is given by P ¼ a � bQ , where a, b > 0.

a. Calculate the profit-maximizing price-quantity combination for a monopolist. Also calculate the
monopolist’s profit.

b. Calculate the Nash equilibrium quantities for Cournot duopolists, which choose quantities for
their identical products simultaneously. Also compute market output, market price, and firm
and industry profits.

c. Calculate the Nash equilibrium prices for Bertrand duopolists, which choose prices for their
identical products simultaneously. Also compute firm and market output as well as firm and
industry profits.

d. Suppose now that there are n identical firms in a Cournotmodel. Compute theNash equilibrium
quantities as functions of n. Also compute market output, market price, and firm and industry
profits.

e. Show that the monopoly outcome from part (a) can be reproduced in part (d) by setting n ¼ 1,
that the Cournot duopoly outcome from part (b) can be reproduced in part (d) by setting n ¼ 2
in part (d), and that letting n approach infinity yields the same market price, output, and
industry profit as in part (c).

15.3
Let ci be the constant marginal and average cost for firm i (so that firms may have different marginal
costs). Suppose demand is given by P ¼ 1�Q .

a. Calculate the Nash equilibrium quantities assuming there are two firms in a Cournot market.
Also compute market output, market price, firm profits, industry profits, consumer surplus, and
total welfare.

• Holding the number of firms in an oligopoly constant in
the short run, the introduction of a factor that softens
competition (product differentiation, search costs, collu-
sion, and so forth) will raise firms’ profit, but an off-
setting effect in the long run is that entry—which tends
to reduce oligopoly profit—will be more attractive.

• Innovation may be even more important than low prices
for total welfare in the long run. Determining which
oligopoly structure is the most innovative is difficult
because offsetting effects (dissipation and replacement)
are involved.
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b. Represent the Nash equilibrium on a best-response function diagram. Show how a reduction in
firm 1’s cost would change the equilibrium. Draw a representative isoprofit for firm 1.

15.4
Suppose that firms 1 and 2 operate under conditions of constant average and marginal cost but that
firm 1’s marginal cost is c1 ¼ 10 and firm 2’s is c2 ¼ 8. Market demand is Q ¼ 500� 20P .

a. Suppose firms practice Bertrand competition, that is, setting prices for their identical products
simultaneously. Compute the Nash equilibrium prices. (To avoid technical problems in this
question, assume that if firms charge equal prices then the low-cost firm makes all the sales.)

b. Compute firm output, firm profit, and market output.

c. Is total welfare maximized in the Nash equilibrium? If not, suggest an outcome that would
maximize total welfare, and compute the deadweight loss in the Nash equilibrium compared to
your outcome.

15.5
Consider the following Bertrand game involving two firms producing differentiated products. Firms
have no costs of production. Firm 1’s demand is

q1 ¼ 1� p1 þ bp2,

where b > 0. A symmetric equation holds for firm 2’s demand.

a. Solve for the Nash equilibrium of the simultaneous price-choice game.

b. Compute the firms’ outputs and profits.

c. Represent the equilibrium on a best-response function diagram. Show how an increase in b
would change the equilibrium. Draw a representative isoprofit curve for firm 1.

15.6
Recall Example 15.6, which covers tacit collusion. Suppose (as in the example) that a medical device is
produced at constant average and marginal cost of $10 and that the demand for the device is given by

Q ¼ 5,000� 100P .

The market meets each period for an infinite number of periods. The discount factor is δ.

a. Suppose that n firms engage in Bertrand competition each period. Suppose it takes two periods to
discover a deviation because it takes two periods to observe rivals’ prices. Compute the discount
factor needed to sustain collusion in a subgame-perfect equilibrium using grim strategies.

b. Now restore the assumption that, as in Example 15.7, deviations are detected after just one
period. Next, assume that n is not given but rather is determined by the number of firms that
choose to enter the market in an initial stage in which entrants must sink a one-time cost K to
participate in the market. Find an upper bound on n. Hint: Two conditions are involved.

15.7
Assume as in Problem 15.1 that two firms with no production costs, facing demand Q ¼ 150� P ,
choose quantities q1 and q2.

a. Compute the subgame-perfect equilibrium of the Stackelberg version of the game in which
firm 1 chooses q1 first and then firm 2 chooses q2.

b. Now add an entry stage after firm 1 chooses q1. In this stage, firm 2 decides whether or not to
enter. If it enters then it must sink cost K2, after which it is allowed to choose q2. Compute the
threshold value of K2 above which firm 1 prefers to deter firm 2’s entry.

562 Part 5 Market Power



c. Represent the Cournot, Stackelberg, and entry-deterrence outcomes on a best-response func-
tion diagram.

15.8
Recall the Hotelling model of competition on a linear beach from Example 15.5. Suppose for simplicity
that ice cream stands can locate only at the two ends of the line segment (zoning prohibits commercial
development in the middle of the beach). This question asks you to analyze an entry-deterring strategy
involving product proliferation.

a. Consider the subgame in which firm A has two ice cream stands, one at each end of the beach,
and B locates along withA at the right endpoint. What is the Nash equilibrium of this subgame?
Hint: Bertrand competition ensues at the right endpoint.

b. If B must sink an entry costKB , would it choose to enter given that firmA is in both ends of the
market and remains there after entry?

c. Is A’s product proliferation strategy credible? Or would A exit the right end of the market after
B enters? To answer these questions, compare A’s profits for the case in which it has a stand on
the left side and both it and B have stands on the right to the case in which A has one stand on
the left end and B has one stand on the right end (so B’s entry has driven A out of the right side
of the market).

Analytical Problems

15.9 Herfindahl index of market concentration
One way of measuring market concentration is through the use of the Herfindahl index, which is
defined as

H ¼
Xn
i¼1

s2i ,

where si ¼ qi=Q is firm i’s market share. The higher isH , the more concentrated the industry is said to
be. Intuitively, more concentrated markets are thought to be less competitive because dominant firms
in concentrated markets face little competitive pressure. We will assess the validity of this intuition
using several models.

a. If you have not already done so, answer Problem 15.2(d) by computing the Nash equilibrium
of this n-firm Cournot game. Also compute market output, market price, consumer surplus,
industry profit, and total welfare. Compute the Herfindahl index for this equilibrium.

b. Suppose two of the n firms merge, leaving the market with n � 1 firms. Recalculate the Nash
equilibrium and the rest of the items requested in part (a). How does the merger affect price,
output, profit, consumer surplus, total welfare, and the Herfindahl index?

c. Put the model used in parts (a) and (b) aside and turn to a different setup: that of Problem 15.3,
where Cournot duopolists face different marginal costs. Use your answer to Problem 15.3(a) to
compute equilibrium firm outputs, market output, price, consumer surplus, industry profit, and
total welfare, substituting the particular cost parameters c1 ¼ c2 ¼ 1=4. Also compute the
Herfindahl index.

d. Repeat your calculations in part (c) while assuming that firm 1’s marginal cost c1 falls to 0 but c2
stays at 1=4. How does the merger affect price, output, profit, consumer surplus, total welfare,
and the Herfindahl index?

e. Given your results from parts (a)–(d), can we draw any general conclusions about the relation-
ship between market concentration on the one hand and price, profit, or total welfare on the
other?
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15.10 Inverse elasticity rule
Use the first-order condition (Equation 15.2) for a Cournot firm to show that the usual inverse elasticity
rule from Chapter 11 holds under Cournot competition (where the elasticity is associated with an
individual firm’s residual demand, the demand left after all rivals sell their output on the market).
Manipulate Equation 15.2 in a different way to obtain an equivalent version of the inverse elasticity rule:

P �MC
P

¼ � si
eQ ,P

,

where si ¼ Q =qi is firm i’s market share and eQ ,P is the elasticity of market demand. Compare this
version of the inverse elasticity rule to that for a monopolist from the previous chapter.

15.11 Competition on a circle
Hotelling’s model of competition on a linear beach is used widely in many applications, but one
application that is difficult to study in the model is free entry. Free entry is easiest to study in a model
with symmetric firms, but more than two firms on a line cannot be symmetric, because those located
nearest the endpoints will have only one neighboring rival while those located nearer the middle will
have two.

To avoid this problem, Steven Salop introduced competition on a circle.18 As in the Hotelling
model, demanders are located at each point and each demands one unit of the good. A consumer’s
surplus equals v (the value of consuming the good) minus the price paid for the good as well as the
cost of having to travel to buy from the firm. Let this travel cost be td, where t is a parameter measuring
how burdensome travel is and d is the distance traveled (note that we are here assuming a linear rather
than a quadratic travel-cost function, in contrast to Example 15.5).

Initially, we take as given that there are n firms in the market and that each has the same cost
function Ci ¼ K þ cqi , where K is the sunk cost required to enter the market [this will come into play
in part (e) of the question, where we consider free entry] and c is the constant marginal cost of
production. For simplicity, assume that the circumference of the circle equals 1 and that the n firms
are located evenly around the circle at intervals of 1=n. The n firms choose prices pi simultaneously.

a. Each firm i is free to choose its own price ðpiÞ but is constrained by the price charged by its
nearest neighbor to either side. Let p� be the price these firms set in a symmetric equilibrium.
Explain why the extent of any firm’s market on either side (x) is given by the equation

p þ tx ¼ p� þ t ½ð1=nÞ � x�.
b. Given the pricing decision analyzed in part (a), firm i sells qi ¼ 2x because it has a market on

both sides. Calculate the profit-maximizing price for this firm as a function of p�, c, t , and n.

c. Noting that in a symmetric equilibrium all firms’ prices will be equal to p�, show that pi ¼
p� ¼ c þ t=n. Explain this result intuitively.

d. Show that a firm’s profits are t=n2 �K in equilibrium.

e. What will the number of firms n� be in long-run equilibrium in which firms can freely choose
to enter?

f. Calculate the socially optimal level of differentiation in this model, defined as the number of
firms (and products) that minimizes the sum of production costs plus demander travel costs.
Show that this number is precisely half the number calculated in part (e). Hence, this model
illustrates the possibility of overdifferentiation.

15.12 Signaling with entry accommodation
This question will explore signaling when entry deterrence is impossible, so the signaling firm accom-
modates its rival’s entry. Assume deterrence is impossible because the two firms do not pay a sunk cost

18See S. Salop, “Monopolistic Competition with Outside Goods,” Bell Journal of Economics (Spring 1979): 141–56.
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to enter or remain in the market. The setup of the model will follow Example 15.4, so the calculations
there will aid the solution of this problem. In particular, firm i’s demand is given by

qi ¼ ai � pi þ
pj
2
,

where ai is product i’s attribute (say, quality). Production is costless. Firm 1’s attribute can be one of
two values: either a1 ¼ 1, in which case we say firm 1 is the low type, or a1 ¼ 2, in which case we say it
is the high type. Assume there is no discounting across periods for simplicity.

a. Compute the Nash equilibrium of the game of complete information in which firm 1 is the high
type and firm 2 knows that firm 1 is the high type.

b. Compute the Nash equilibrium of the game in which firm 1 is the low type and firm 2 knows
that firm 1 is the low type.

c. Solve for the Bayesian-Nash equilibrium of the game of incomplete information in which firm 1
can be either type with equal probability. Firm 1 knows its type, but firm 2 only knows the
probabilities. Since we did not spend time in this chapter on Bayesian games, you may want to
consult Chapter 8 (especially Example 8.9).

d. Which of firm 1’s types gains from incomplete information? Which type would prefer complete
information (and thus would have an incentive to signal its type if possible)? Does firm 2 earn
more profit on average under complete information or under incomplete information?

e. Consider a signaling variant of the model that has two periods. Firms 1 and 2 choose prices in
the first period, when 2 has incomplete information about 1’s type. Firm 2 observes firm 1’s
price in this period and uses the information to update its beliefs about 1’s type. Then firms
engage in another period of price competition. Show that there is a separating equilibrium in
which each type of firm 1 charges the same prices as computed in part (d). You may assume that,
if firm 1 chooses an out-of-equilibrium price in the first period, then firm 2 believes that firm 1 is
the low type with probability 1.Hint: To prove the existence of a separating equilibrium, show
that the loss to the low type from trying to pool in the first period exceeds the second-period
gain from having convinced firm 2 that it is the high type. Use your answers from parts (a)–(d)
where possible to aid in your solution.
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E X T E N S I O N S

Strategic Substitutes and Complements

We saw in the chapter that one can often understand
the nature of strategic interaction in a market simply
from the slope of firms’ best-response functions. For
example, we argued that a first mover that wished to
accept rather than deter entry should commit to a strat-
egy that leads its rival to behave less aggressively. What
sort of strategy this is depends on the slope of firms’ best
responses. If best responses slope downward, as in a
Cournotmodel, then the first mover should play a “top
dog” strategy and produce a large quantity, leading its
rival to reduce its production. If best responses slope
upward, as in a Bertrand model with price competition
for differentiated products, then the first mover should
play a “puppy dog” strategy and charge a high price,
leading its rival to increase its price as well.

More generally, we have seen repeatedly that best-
response function diagrams are often quite helpful in
understanding the nature of Nash equilibrium, how
the Nash equilibrium changes with parameters of the
model, how incomplete information might affect
the game, and so forth. Simply knowing the slope of
the best-response function is often all one needs to
draw a usable best-response function diagram.

By analogy to similar definitions from consumer and
producer theory, game theorists define firms’ actions to
be strategic substitutes if an increase in the level of the
action (e.g., output, price, investment) by one firm is
met by a decrease in that action by its rival.On the other
hand, actions are strategic complements if an increase in
an action by one firm ismet by an increase in that action
by its rival.

E15.1 Nash equilibrium

To make these ideas precise, suppose that firm 1’s
profit, π1ða1, a2Þ, is a function of its action a1 and its
rival’s (firm 2’s) action a2. (Here we have moved from
subscripts to superscripts for indicating the firm to
which the profits belong in order to make room for
subscripts that will denote partial derivatives.) Firm 2’s
profit function is denoted similarly. A Nash equilib-
rium is a profile of actions for each firm, ða�1 , a�2 Þ, such
that each firm’s equilibrium action is a best response
to the other’s. Let BR1ða2Þ be firm 1’s best-response
function and let BR2ða1Þ be firm 2’s; then a Nash
equilibrium is given by a�1 ¼ BR1ða�2 Þ and a�2 ¼
BR2ða�1 Þ.

E15.2 Best-response functions
in more detail

The first-order condition for firm 1’s action choice is

π1
1ða1, a2Þ ¼ 0, (i)

where subscripts forπ represent partial derivatives with
respect to its various arguments. A unique maximum,
and thus a unique best response, is guaranteed if we
assume that the profit function is concave:

π1
11ða1, a2Þ < 0. (ii)

Given a rival’s action a2, the solution to Equation i for
a maximum is firm 1’s best-response function:

a1 ¼ BR1ða2Þ. (iii)

Since the best response is unique, BR1ða2Þ is indeed a
function rather than a correspondence (see Chapter 8
for more on correspondences).

The strategic relationship between actions is deter-
mined by the slope of the best-response functions.
If best responses are downward sloping [i.e., if
BR0

1ða2Þ< 0 and BR0
2ða1Þ< 0] then a1 and a2 are

strategic substitutes. If best responses are upward
sloping [i.e., if BR0

1ða2Þ> 0 and BR0
2ða1Þ> 0] then

a1 and a2 are strategic complements.

E15.3 Inferences from the
profit function

We just saw that a direct route for determining whether
actions are strategic substitutes or complements is first
to solve explicitly for best-response functions and then
to differentiate them. In some applications, however, it
is difficult or impossible to find an explicit solution to
Equation i. We can still determine whether actions are
strategic substitutes or complements by drawing infer-
ences directly from the profit function.

Substituting Equation iii into the first-order con-
dition of Equation i gives

π1
1ðBR1ða2Þ, a2Þ ¼ 0. (iv)

Totally differentiating Equation iv with respect to a2
yields, after dropping the arguments of the functions
for brevity,

π1
11BR

0
1 þ π1

12 ¼ 0. (v)
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Rearranging Equation v gives the derivative of the
best-response function:

BR0
1 ¼ �π1

12

π1
11
. (vi)

In view of the second-order condition (Equation ii),
the denominator of Equation vi is negative. Thus the
sign of BR0

1 is the same as the sign of the numerator,
π1
12. That is, π1

12 > 0 implies BR0
1 > 0 and π1

12 < 0
implies BR0

1 < 0. The strategic relationship between
the actions can be inferred directly from the cross-
partial derivative of the profit function.

E15.4 Cournot model

In the Cournot model, profits are given as a function
of the two firms’ quantities:

π1ðq1, q2Þ ¼ q1P ðq1, q2Þ � Cðq1Þ. (vii)

The first-order condition is

π1
1 ¼ q1P

0ðq1 þ q2Þ þ P ðq1 þ q2Þ � C 0ðq1Þ,
(viii)

aswe have already seen (Equation 15.2). The derivative
of Equation viii with respect to q2 is, after dropping
functions’ arguments for brevity,

π1
12 ¼ q1P

00 þ P 0. (ix)

Because P 0 < 0, the sign of π1
12 will depend on the

sign of P 00—that is, the curvature of demand. With
linear demand, P 00 ¼ 0 and so π1

12 is clearly negative.
Quantities are strategic substitutes in the Cournot
model with linear demand. Figure 15.2 illustrates this
general principle. This figure is drawn for an example
involving linear demand, and indeed the best re-
sponses are downward sloping.

More generally, quantities are strategic substitutes
in the Cournot model unless the demand curve is
“very” convex (i.e., unless P 00 is positive and large
enough to offset the last term in Equation ix). For a
more detailed discussion see Bulow, Geanakoplous,
and Klemperer (1985).

E15.5 Bertrand model with
differentiated products

In the Bertrand model with differentiated products,
demand can be written as

q1 ¼ D1ðp1, p2Þ. (x)

See Equation 15.24 for a related expression. Using
this notation, profit can be written as

π1 ¼ p1q1 � Cðq1Þ
¼ p1D

1ðp1, p2Þ � CðD1ðp1, p2ÞÞ. (xi)

The first-order condition with respect to p1 is

π1
1 ¼ p1D

1
1ðp1, p2Þ þD1ðp1, p2Þ

� C 0ðD1ðp1, p2ÞÞD1
1ðp1, p2Þ. (xii)

The cross-partial derivative is, after dropping func-
tions’ arguments for brevity,

π1
12 ¼ p1D

1
12 þD1

2 �C 0D1
12 � C 00D1

2D
1
1.

(xiii)

Interpreting this mass of symbols is no easy task. In
the special case of constant marginal cost (C 00 ¼ 0) and
linear demand (D1

12 ¼ 0), the sign ofπ1
12 is given by the

sign of D1
2 (i.e., how a firm’s demand is affected by

changes in the rival’s price). In the usual case when the
two goods are themselves substitutes, we haveD1

2 > 0
and so π1

12 > 0. That is, prices are strategic comple-
ments. The terminology here can seem contradictory,
so the result bears repeating: If the goods that the
firms sell are substitutes, then the variables the firms
choose—prices—are strategic complements. Firms in
such a duopoly would either raise or lower prices to-
gether (see Tirole, 1988). We saw an example of this in
Figure 15.4. The figure was drawn for the case of linear
demand and constant marginal cost, and we saw that
best responses are upward sloping.

E15.6 Entry accommodation
in a sequential game

Consider a sequential game in which firm 1 chooses a1
and then firm 2 chooses a2. Suppose firm 1 finds it
more profitable to accommodate than to deter firm 2’s
entry. Since firm 2 moves after firm 1, we can substi-
tute 2’s best response into 1’s profit function to obtain

π1ða1,BR2ða1ÞÞ. (xiv)

Firm 1’s first-order condition is

π1
1 þ π1

2BR
0
2|fflfflfflffl{zfflfflfflffl}

S

¼ 0. (xv)

By contrast, the first-order condition from the simul-
taneous game (see Equation i) is simply π1

1 ¼ 0. The
first-order conditions from the sequential and simulta-
neous games differ in the term S. This term captures
the strategic effect of moving first—that is, whether the
first mover would choose a higher or lower action in
the sequential game than in the simultaneous game.
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The sign of S is determined by the signs of the two
factors in S. We will argue in the next paragraph that
these two factors will typically have the same sign (both
positive or both negative), implying that S > 0 and
hence that the first mover will typically distort its action
upward in the sequential game compared to the simul-
taneous game. This result confirms the findings from
several of the examples in the text. In Figure 15.6, we
see that the Stackelberg quantity is higher than the
Cournot quantity. In Figure 15.7, we see that the
price leader distorts its price upward in the sequential
game compared to the simultaneous one.

Section E15.3 showed that the sign of BR0
2 is the

same as the sign of π2
12. If there is some symmetry to

the market, then the sign of π2
12 will be the same as the

sign of π1
12. Typically, π

1
2 and π1

12 will have the same
sign. For example, consider the case of Cournot com-
petition. By Equation 15.1, firm 1’s profit is

π1 ¼ P ðq1 þ q2Þq1 � Cðq1Þ. (xvi)

Therefore,

π1
2 ¼ P 0ðq1 þ q2Þq1. (xvii)

Since demand is downward sloping, it follows that
π1
2 < 0. Differentiating Equation xvii with respect to

q1 yields

π1
12 ¼ P 0 þ q1P

00. (xviii)

This expression is also negative if demand is linear (so
P 00 ¼ 0) or if demand is not too convex (so the last
term in Equation xviii does not swamp the term P 0).

E15.7 Extension to general
investments

The model from the previous section can be extended
to general investments—that is, beyond a mere com-
mitment to a quantity or price. Let K1 be this general
investment—(say) advertising, investment in lower-
cost manufacturing, or product positioning—sunk at
the outset of the game. The two firms then choose
their product-market actions a1 and a2 (representing
prices or quantities) simultaneously in the second
period. Firms’ profits in this extended model are,
respectively,

π1ða1, a2,K1Þ and π2ða1, a2Þ. (xix)

The analysis is simplified by assuming that firm 2’s
profit is not directly a function ofK1, although firm 2’s
profit will indirectly depend on K1 in equilibrium
because equilibrium actions will depend on K1. Let

a�1 ðK1Þ and a�2 ðK1Þ be firms’ actions in a subgame-
perfect equilibrium:

a�1 ðK1Þ ¼ BR1ða�2 ðK1Þ,K1Þ,
a�2 ðK1Þ ¼ BR2ða�1 ðK1ÞÞ.

(xx)

Since firm 2’s profit function does not depend directly
on K1 in Equation xix, neither does its best response
in Equation xx.

The analysis here draws on Fudenberg and Tirole
(1984) and Tirole (1988). Substituting from Equa-
tion xx into Equation xix, the firms’ Nash equilibrium
profits in the subgame following firm 1’s choice of
K1 are

π1�ðK1Þ ¼ π1ða�1 ðK1Þ, a�2 ðK1Þ,K1Þ,
π2�ðK1Þ ¼ π2ða�1 ðK1Þ, a�2 ðK1ÞÞ.

(xxi)

Fold the game back to firm 1’s first-period choice of
K1. Because firm 1 wants to accommodate entry, it
chooses K1 to maximize π1�ðK1Þ. Totally differenti-
ating π1�ðK1Þ, the first-order condition is

dπ1�
dK1

¼ π1
1
da�1
dK1

þ π1
2
da�2
dK1

þ ∂π1

∂K1

¼ π1
2
da�2
dK1|fflfflfflffl{zfflfflfflffl}
S

þ ∂π1

∂K1
. (xxii)

The second equality in Equation xxii holds by the
envelope theorem. (The envelope theorem just says
that π1

1 ⋅ da
�
1 =dK1 disappears because a1 is chosen

optimally in the second period, so π1
1 ¼ 0 by the first-

order condition for a1.) The first of the remaining two
terms in Equation xxii, S, is the strategic effect of an
increase inK1 on firm1’s profit through firm2’s action.
If firm 1 cannot make an observable commitment to
K1, then S disappears from Equation xxii and only the
last term, the direct effect of K1 on firm 1’s profit, will
be present.

The sign of S determines whether firm 1 strategi-
cally over- or underinvests in K1 when it can make a
strategic commitment. We have the following steps:

signðSÞ ¼ sign π2
1
da�2
dK1

� �

¼ sign π2
1BR

0
2
da�1
dK1

� �

¼ sign
dπ2�
dK1

BR0
2

� �
. (xxiii)
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The first line of Equation xxiii holds if there is some
symmetry to the market, so that the sign of π1

2 equals
the sign of π2

1. The second line follows from differenti-
ating a�2 ðK1Þ in Equation xx. The third line follows by
totally differentiating π2� in Equation xxi:

dπ2�
dK1

¼ π2
1
da�1
dK1

þ π2
2
da�2
dK1

¼ π2
1
da�1
dK1

, (xxiv)

where the second equality again follows from the
envelope theorem.

By Equation xxiii, the sign of the strategic effect S is
determined by the sign of two factors. The first factor,
dπ2�=dK1, indicates the effect of K1 on firm 2’s equi-
librium profit in the subgame. If dπ2�=dK1 < 0, then
an increase in K1 harms firm 2 and we say that invest-
mentmakes firm 1 “tough.” If dπ2�=dK1 > 0, then an
increase in K1 benefits firm 2 and we say that invest-
ment makes firm 1 “soft.” The second factor, BR0

2, is
the slope of firm 2’s best response, which depends on
whether actions a1 and a2 are strategic substitutes or
complements. Each of the two terms in S can have one
of two signs for a total of four possible combinations,
displayed in Table 15.1. If investment makes firm 1
“tough”, then the strategic effect S leads firm 1 to
reduce K1 if actions are strategic complements or to
increase K1 if actions are strategic substitutes. The
opposite is true if investment makes firm 1 “soft.”

For example, actions could be prices in a Bertrand
model with differentiated products and thus would be
strategic complements. InvestmentK1 could be adver-
tising that steals market share from firm 2. Table 15.1
indicates that, when K1 is observable, firm 1 should
strategically underinvest in order to induce less aggres-
sive price competition from firm 2.

E15.8 Most-favored customer program

The preceding analysis applies even if K1 is not a
continuous investment variable but instead a 0–1
choice. For example, consider the decision by firm 1
of whether to start a most-favored-customer program
(studied in Cooper, 1986). A most-favored customer
program rebates the price difference (sometimes in
addition to a premium) to past customers if the firm
lowers its price in the future. Such a program makes
firm 1 “soft” by reducing its incentive to cut price. If
firms compete in strategic complements (say, in a
Bertrand model with differentiated products), then
Table 15.1 says that firm 1 should “overinvest” in
the most-favored customer program, meaning that it
should be more willing to implement the program if
doing so is observable to its rival. The strategic effect
leads to less aggressive price competition and thus to
higher prices and profits.

One’s first thought might have been that such a
most-favored customer program should be beneficial
to consumers and lead to lower prices, since the clause
promises payments back to them. As we can see from
this example, strategic considerations sometimes prove
one’s initial intuition wrong, suggesting that caution is
warranted when examining strategic situations.

E15.9 Trade policy

The analysis in Section E15.7 applies even if K1 is not
a choice by firm 1 itself. For example, researchers in
international trade sometimes take K1 to be a govern-
ment’s policy choice on behalf of its domestic firms.
Brander and Spencer (1985) studied a model of inter-
national trade in which exporting firms from country 1
engage in Cournot competition with domestic firms

TABLE 15.1 Strategic Effect When Accommodating Entry

Firm 1’s Investment

“Tough”
(dπ2�=dK1 < 0)

“Soft”
(dπ2�=dK1 > 0)

A
ct
io
ns

Strategic
Complements
(BR0 > 0)

Underinvest
(�)

Overinvest
(+)

Strategic
Substitutes
(BR0 < 0)

Overinvest
(+)

Underinvest
(�)
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in country 2. The actions (quantities) are strategic
substitutes. The authors ask whether the government
of country 1 would want to implement an export
subsidy program, a decision that plays the role of K1
in their model. An export subsidy makes exporting
firms “tough” because it effectively lowers their mar-
ginal costs, increasing their exports to country 2 and
reducing market price there. According to Table 15.1,
the government of country 1 should overinvest in the
subsidy policy, adopting the policy if it is observable to
domestic firms in country 2 but not otherwise. The
model explains why countries unilaterally adopt export
subsidies and other trade interventions when free trade
would be globally efficient (at least in this simple
model).

Our analysis can be used to show that Brander and
Spencer’s rationalization of export subsidies may not
hold up under alternative assumptions about competi-
tion. If exporting firms and domestic firms were to
compete in strategic complements (say, Bertrand com-
petition in differentiated products rather than Cournot
competition), then an export subsidy would be a bad
idea according to Table 15.1. Country 1 should then
underinvest in the export subsidy (that is, not adopt it)
to avoid overly aggressive price competition.

E15.10 Entry deterrence

Continuewith themodel from Section E15.7, but now
suppose that firm 1 prefers to deter rather than accom-
modate entry. Firm 1’s objective is then to choose K1
to reduce 2’s profitπ2� to zero.Whether firm 1 should
distort K1 upward or downward to accomplish this
depends only on the sign of dπ2�=dK1—that is, on
whether investment makes firm 1 “tough” or “soft”—
and not on whether actions are strategic substitutes or

complements. If investment makes firm 1 “tough,” it
should overinvest to deter entry relative to the case in
which it cannot observably commit to investment. On
the other hand, if investment makes firm 1 “soft,” it
should underinvest to deter entry.

For example, if K1 is an investment in marginal
cost reduction, this likely makes firm 1 “tough” and so
it should overinvest to deter entry. If K1 is an adver-
tisement that increases demand for the whole product
category more than its own brand (advertisements for
a particular battery brand involving an unstoppable,
battery-powered bunny may increase sales of all bat-
tery brands if consumers have difficulty remembering
exactly which battery was in the bunny), then this will
likely make firm 1 “soft,” so it should underinvest to
deter entry.
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P A R T 6
Pricing in Input Markets
CHAPTER 16 Labor Markets

CHAPTER 17 Capital and Time

Our study of input demand in Chapter 11 was quite general in that it can be applied to any factor of
production. In Chapters 16 and 17 we take up several issues specifically related to pricing in the labor and
capital markets. Chapter 16 focuses mainly on labor supply. Most of our analysis deals with labor supply
decisions of single individuals. Labor supply by unions is also considered, as is the possibility that a labor
market may be noncompetitive on the demand side.

In Chapter 17we examine the market for capital. The central purpose of the chapter is to emphasize the
connection between capital and the allocation of resources over time. Some care is also taken to integrate the
theory of capital into the models of firms’ behavior we developed in Part 3. A brief appendix to Chapter 17
presents some useful mathematical results about interest rates.

In The Principles of Political Economy and Taxation, Ricardo wrote:

The produce of the earth . . . is divided among three classes of the community, namely, the proprietor of
the land, the owner of the stock of capital necessary for its cultivation, and the laborers by whose industry it
is cultivated. To determine the laws which regulate this distribution is the principal problem in Political
Economy.*

The purpose of Part 6 is to illustrate how the study of these “laws” has advanced since Ricardo’s time.

*D. Ricardo, The Principles of Political Economy and Taxation (1817; reprinted, London: J. M. Dent and Son, 1965), p. 1.
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C H A P T E R

16

Labor Markets

In this chapter we examine some aspects of input pricing that are related particularly to the labor market.
Because we have already discussed questions about the demand for labor (or any other input) in some detail
in Chapter 11, here we will be concerned primarily with analyzing the supply of labor.

ALLOCATION OF TIME

In Part 2 we studied the way in which an individual chooses to allocate a fixed amount of
income among a variety of available goods. Individuals must make similar choices in deciding
how they will spend their time. The number of hours in a day (or in a year) is absolutely fixed,
and time must be used as it “passes by.” Given this fixed amount of time, any individual
must decide how many hours to work; how many hours to spend consuming a wide variety
of goods, ranging from cars and television sets to operas; how many hours to devote to
self-maintenance; and how many hours to sleep. By examining how individuals choose to
divide their time among these activities, economists are able to understand the labor supply
decision.

Simple two-good model
For simplicity we start by assuming there are only two uses to which an individual may devote
his or her time—either engaging in market work at a real wage rate of w per hour or not
working. We shall refer to nonwork time as “leisure,” but this word is not meant to carry any
connotation of idleness. Time not spent in market work can be devoted to work in the home,
to self-improvement, or to consumption (it takes time to use a television set or a bowling
ball).1 All of those activities contribute to an individual’s well-being, and time will be allo-
cated to them in what might be assumed to be a utility-maximizing way.

More specifically, assume that an individual’s utility during a typical day depends on
consumption during that period ðcÞ and on hours of leisure enjoyed ðhÞ:

utility ¼ U ðc, hÞ: (16.1)

Notice that in writing this utility function we have used two “composite” goods, con-
sumption and leisure. Of course, utility is actually derived by devoting real income and time
to the consumption of a wide variety of goods and services.2 In seeking to maximize utility,

1Perhaps the first formal theoretical treatment of the allocation of time was given by G. S. Becker in “A Theory of the
Allocation of Time,” Economic Journal 75 (September 1965): 493–517.
2This observation leads to the consideration of how such activities are produced in the home. For an influential survey, see
R. Gronau, “Home Production: A Survey,” in O. C. Ashenfelter and R. Layard, Eds., Handbook of Labor Economics
(Amsterdam: North-Holland, 1986), vol. 1, pp. 273–304.

573



an individual is bound by two constraints. The first of these concerns is available time. If we
let l represent hours of work, then

l þ h ¼ 24: (16.2)

That is, the day’s time must be allocated either to work or to leisure (nonwork). A second
constraint records the fact that an individual can purchase consumption items only by
working (later in this chapter we will allow for the availability of nonlabor income). If the
real hourly market wage rate the individual can earn is given by w, then the income con-
straint is given by

c ¼ wl . (16.3)

Combining the two constraints, we have

c ¼ wð24� hÞ (16.4)

or

c þ wh ¼ 24w: (16.5)

This combined constraint has an important interpretation. Any person has a “full income”
given by 24w. That is, an individual who worked all the time would have this much
command over real consumption goods each day. Individuals may spend their full income
either by working (for real income and consumption) or by not working and thereby en-
joying leisure. Equation 16.5 shows that the opportunity cost of consuming leisure is w per
hour; it is equal to earnings forgone by not working.

Utility maximization
The individual’s problem, then, is to maximize utility subject to the full income constraint.
Given the Lagrangian expression

ℒ ¼ U ðc, hÞ þ λð24w � c � whÞ, (16.6)

the first-order conditions for a maximum are

∂ℒ
∂c

¼ ∂U
∂c

� λ ¼ 0,

∂ℒ
∂h

¼ ∂U
∂h

� wλ ¼ 0.
(16.7)

Dividing the two lines in Equation 16.7, we obtain

∂U =∂h
∂U =∂c

¼ w ¼ MRS ðh for cÞ: (16.8)

Hence we have derived the following principle.

O P T I M I Z A T I O N

P R I N C I P L E

Utility-maximizing labor supply decision. To maximize utility given the real wage w, the
individual should choose to work that number of hours for which the marginal rate of
substitution of leisure for consumption is equal to w.

Of course, the result derived in Equation 16.8 is only a necessary condition for a maximum.
As in Chapter 4, this tangency will be a true maximum provided the MRS of leisure for
consumption is diminishing.
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Income and substitution effects of a change in w
A change in the real wage rate ðwÞ can be analyzed in a manner identical to that used in
Chapter 5. When w rises, the “price” of leisure becomes higher: a person must give up more
in lost wages for each hour of leisure consumed. As a result, the substitution effect of an
increase in w on the hours of leisure will be negative. As leisure becomes more expensive,
there is reason to consume less of it. However, the income effect will be positive—because
leisure is a normal good, the higher income resulting from a higher w will increase the
demand for leisure. Thus, the income and substitution effects work in opposite directions. It
is impossible to predict on a priori grounds whether an increase in w will increase or decrease
the demand for leisure time. Because leisure and work are mutually exclusive ways to spend
one’s time, it is also impossible to predict what will happen to the number of hours worked.
The substitution effect tends to increase hours worked when w increases, whereas the income
effect—because it increases the demand for leisure time—tends to decrease the number of
hours worked. Which of these two effects is the stronger is an important empirical question.3

A graphical analysis
The two possible reactions to a change in w are illustrated in Figure 16.1. In both graphs, the
initial wage is w0 and the initial optimal choices of c and h are given by the point c0, h0. When
the wage rate increases to w1, the optimal combination moves to point c1, h1. This movement

FIGURE 16.1 Income and Substitution Effects of a Change in the Real Wage Rate w

Because the individual is a supplier of labor, the income and substitution effects of an increase in the
real wage rate ðwÞ work in opposite directions in their effects on the hours of leisure demanded (or
on hours of work). In (a) the substitution effect (movement to point S) outweighs the income effect,
and a higher wage causes hours of leisure to decline to h1. Hours of work therefore increase. In
(b) the income effect is stronger than the substitution effect, and h increases to h1. In this case, hours
of work decline.

Consumption Consumption

Leisure Leisure

(a) (b)

c1
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c0 c0

h1 h0 h0 h1

S S

U1 U1

U0
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h )

h )
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h )

3If the family is taken to be the relevant decision unit, then even more complex questions arise about the income and
substitution effects that changes in the wages of one family member will have on the labor force behavior of other family
members.
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can be considered the result of two effects. The substitution effect is represented by the
movement of the optimal point from c0, h0 to S and the income effect by the movement from
S to c1, h1. In the two panels of Figure 16.1, these two effects combine to produce different
results. In panel (a) the substitution effect of an increase in w outweighs the income effect,
and the individual demands less leisure ðh1 < h0Þ. Another way of saying this is that the
individual will work longer hours when w rises.

In panel (b) of Figure 16.1 the situation is reversed. The income effect of an increase in w
more than offsets the substitution effect, and the demand for leisure increases ðh1 > h0Þ. The
individual works shorter hours when w rises. In the cases examined in Chapter 5 this would
have been considered an unusual result—when the “price” of leisure rises, the individual
demands more of it. For the case of normal consumption goods, the income and substitution
effects work in the same direction. Only for “inferior” goods do they differ in sign. In the case
of leisure and labor, however, the income and substitution effects always work in opposite
directions. An increase in w makes an individual better-off because he or she is a supplier of
labor. In the case of a consumption good, individuals are made worse-off when a price rises
because they are consumers of that good. We can summarize this analysis as follows.

O P T I M I Z A T I O N

P R I N C I P L E

Income and substitution effects of a change in the real wage. When the real wage rate
increases, a utility-maximizing individual may increase or decrease hours worked. The sub-
stitution effect will tend to increase hours worked as the individual substitutes earnings for
leisure, which is now relatively more costly. On the other hand, the income effect will tend to
reduce hours worked as the individual uses his or her increased purchasing power to buy
more leisure hours.

We now turn to examine a mathematical development of these responses that provides
additional insights into the labor supply decision.

A MATHEMATICAL ANALYSIS OF LABOR SUPPLY

To derive a mathematical statement of labor supply decisions, it is helpful first to amend the
budget constraint slightly to allow for the presence of nonlabor income. To do so, we rewrite
Equation 16.3 as

c ¼ wl þ n, (16.9)

where n is real nonlabor income and may include such items as dividend and interest income,
receipt of government transfer benefits, or simply gifts from other persons. Indeed, n could
stand for lump-sum taxes paid by this individual, in which case its value would be negative.

Maximization of utility subject to this new budget constraint would yield results virtually
identical to those we have already derived. That is, the necessary condition for a maximum
described in Equation 16.8 would continue to hold as long as the value of n is unaffected by
the labor-leisure choices being made; that is, so long as n is a lump-sum receipt or loss of
income,4 the only effect of introducing nonlabor income into the analysis is to shift the
budget constraints in Figure 16.1 outward or inward in a parallel manner without affecting
the trade-off rate between earnings and leisure.

4In many situations, however, n itself may depend on labor supply decisions. For example, the value of welfare or
unemployment benefits a person can receive depends on his or her earnings, as does the amount of income taxes paid. In
such cases the slope of the individual’s budget constraint will no longer be reflected by the real wage but must instead
reflect the net return to additional work after taking increased taxes and reductions in transfer payments into account. For
some examples, see the problems at the end of this chapter.
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This discussion suggests that we can write the individual’s labor supply function as lðw,nÞ
to indicate that the number of hours worked will depend both on the real wage rate and on
the amount of real nonlabor income received. On the assumption that leisure is a normal
good, ∂l=∂n will be negative; that is, an increase in n will raise the demand for leisure and
(because there are only 24 hours in the day) reduce l . Before studying wage effects on labor
supply ð∂l=∂wÞ, we will find it helpful to consider the dual problem to the individual’s primary
utility-maximization problem.

Dual statement of the problem
As we showed in Chapter 5, related to the individual’s primary problem of utility maximiza-
tion given a budget constraint is the dual problem of minimizing the expenditures necessary
to attain a given utility level. In the present context, this problem can be phrased as choosing
values for consumption ðcÞ and leisure time ðh ¼ 24� lÞ such that the amount of spending,

E ¼ c � wl � n, (16.10)

required to attain a given utility level [say, U0 ¼ U ðc, hÞ] is as small as possible. As in
Chapter 5, solving this minimization problem will yield exactly the same solution as solving
the utility-maximization problem.

Now we can apply the envelope theorem to the minimum value for these extra expendi-
tures calculated in the dual problem. Specifically, a small change in the real wage will change
the minimum expenditures required by

∂E
∂w

¼ �l . (16.11)

Intuitively, each $1 increase in w reduces the required value of E by $l , because that is the
extent to which labor earnings are increased by the wage change. This result is similar to
Shephard’s lemma in the theory of production (see Chapter 11); here the result shows that
a labor supply function can be calculated from the expenditure function by partial differ-
entiation. Because utility is held constant in the dual expenditure minimization approach, this
function should be interpreted as a “compensated” (constant utility) labor supply function,
which we will denote by l cðw,U Þ to avoid confusing it with the uncompensated labor supply
function lðw,nÞ introduced earlier.

Slutsky equation of labor supply
Nowwe can use these concepts to derive a Slutsky-type equation that reflects the substitution
and income effects that result from changes in the real wage. We begin by recognizing that
the expenditures being minimized in the dual problem of Equation 16.11 play the role of
nonlabor income in the primal utility-maximization problem. Hence, by definition, for the
utility-maximizing choice we have

lcðw,U Þ ¼ l½w,Eðw,U Þ� ¼ lðw,nÞ. (16.12)

Partial differentiation of both sides of Equation 16.12 with respect to w yields

∂lc

∂w
¼ ∂l

∂w
þ ∂l

∂E ⋅
∂E
∂w

, (16.13)

and by using the envelope relation from Equation 16.11 for ∂E=∂w we obtain

∂lc

∂w
¼ ∂l

∂w
� l

∂l
∂E

¼ ∂l
∂w

� l
∂l
∂n

: (16.14)
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Introducing a slightly different notation for the compensated labor supply function,
∂lc

∂w
¼ ∂l

∂w

����
U¼U0

, (16.15)

and then rearranging terms gives the final Slutsky equation for labor supply:
∂l
∂w

¼ ∂l
∂w

����
U¼U0

þ l
∂l
∂n

: (16.16)

Inwords (as we have previously shown), the change in labor supplied in response to a change in
the real wage can be disaggregated into the sum of a substitution effect in which utility is held
constant and an income effect that is analytically equivalent to an appropriate change in
nonlabor income. Because the substitution effect is positive (a higher wage increases the
amount of work chosen when utility is held constant) and the term ∂l=∂n is negative,
this derivation shows that the substitution and income effects work in opposite directions.
The mathematical development supports the earlier conclusions from our graphical analysis
and suggest at least the theoretical possibility that labor supply might respond negatively
to increases in the real wage. The mathematical development also suggests that the impor-
tance of negative income effects may be greater the greater is the amount of labor itself
being supplied.

EXAMPLE 16.1 Labor Supply Functions

Individual labor supply functions can be constructed from underlying utility functions in
much the same way that we constructed demand functions in Part 2. Here we will begin with
a fairly extended treatment of a simple Cobb-Douglas case and then provide a shorter
summary of labor supply with CES utility.

1. Cobb-Douglas utility. Suppose that an individual’s utility function for consumption, c,
and leisure, h, is given by

U ðc, hÞ ¼ cαhβ, (16.17)

and assume for simplicity that αþ β ¼ 1. This person is constrained by two equations:
(1) an income constraint that shows how consumption can be financed,

c ¼ wl þ n, (16.18)

where n is nonlabor income; and (2) a total time constraint

l þ h ¼ 1, (16.19)

where we have arbitrarily set the available time to be 1. By combining the financial and time
constraints into a “full income” constraint, we can arrive at the following Lagrangian ex-
pression for this utility-maximization problem:

ℒ ¼ U ðc, hÞ þ λðw þ n � wh � cÞ ¼ cαhβ þ λðw þ n � wh � cÞ. (16.20)

First-order conditions for a maximum are

∂ℒ
∂c

¼ αc�βhβ � λ ¼ 0,

∂ℒ
∂h

¼ βcαh�α � λw ¼ 0,

∂ℒ
∂λ

¼ w þ n � wh � c ¼ 0.

(16.21)
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Dividing the first of these by the second yields

αh
βc

¼ αh
ð1� αÞc ¼ 1

w
or wh ¼ 1� α

α
⋅ c. (16.22)

Substitution into the full income constraint then yields the familiar results

c ¼ αðw þ nÞ,

h ¼ βðw þ nÞ
w

.
(16.23)

In words, this person spends a fixed fraction, α, of his or her full income ðw þ nÞ on
consumption and the complementary fraction, β ¼ 1� α, on leisure (which costs w per
unit). The labor supply function for this person is then given by

lðw,nÞ ¼ 1� h ¼ ð1� βÞ � βn
w

. (16.24)

2. Properties of the Cobb-Douglas labor supply function. This labor supply function
shares many of the properties exhibited by consumer demand functions derived from Cobb-
Douglas utility. For example, if n ¼ 0 then ∂l=∂w ¼ 0—this person always devotes 1� β
proportion of his or her time to working, no matter what the wage rate. Income and
substitution effects of a change in w are precisely offsetting in this case, just as they are with
cross-price effects in Cobb-Douglas demand functions.

On the other hand, if n > 0 then ∂l=∂w > 0.When there is positive nonlabor income, this
person spends βn of it on leisure. But leisure “costs” w per hour, so an increase in the wage
means that fewer hours of leisure can be bought. Hence, a rise in w increases labor supply.

Finally, observe that ∂l=∂n < 0. An increase in nonlabor income allows this person to buy
more leisure, so labor supply decreases. One interpretation of this result is that transfer
programs (such as welfare benefits or unemployment compensation) reduce labor supply.
Another interpretation is that lump-sum taxation increases labor supply. But actual tax and
transfer programs are seldom lump sum—usually they affect net wage rates as well. Hence,
any precise prediction requires a detailed look at how such programs affect the budget
constraint.

3. CES labor supply. In the Extensions to Chapter 4 we derived the general form for
demand functions generated from a CES (constant elasticity of substitution) utility function.
We can apply that derivation directly here to study CES labor demand. Specifically, if utility is
given by

U ðc, hÞ ¼ cδ

δ
þ hδ

δ
, (16.25)

then budget share equations are given by

sc ¼
c

w þ n
¼ 1

1þ wκ
,

sh ¼ wh
w þ n

¼ 1
1þ w�κ

,

(16.26)

where κ ¼ δ=ðδ� 1Þ. Solving explicitly for leisure demand gives

h ¼ w þ n
w þ w1�κ

(16.27)

(continued)
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EXAMPLE 16.1 CONTINUED

and

lðw,nÞ ¼ 1� h ¼ w1�κ � n
w þ w1�κ

. (16.28)

It is perhaps easiest to explore the properties of this function by taking some examples. If
δ ¼ 0:5 and κ ¼ �1, the labor supply function is

lðm,nÞ ¼ w2 � n
w þ w2 ¼ 1� n=w2

1þ 1=w
. (16.29)

If n ¼ 0 then clearly ∂l=∂w > 0; because of the relatively high degree of substitutability
between consumption and leisure in this utility function, the substitution effect of a higher
wage outweighs the income effect. On the other hand, if δ ¼ �1 and κ ¼ 0:5 then the labor
supply function is

lðw,nÞ ¼ w0:5 � n
w þ w0:5 ¼ 1� n=w0:5

1þ w0:5 . (16.30)

Now (when n ¼ 0) ∂l=∂w < 0; because there is a smaller degree of substitutability in the
utility function, the income effect outweighs the substitution effect in labor supply.5

QUERY: Whydoes the effect of nonlabor income in theCES case depend on the consumption/
leisure substitutability in the utility function?

MARKET SUPPLY CURVE FOR LABOR

We can plot a curve for market supply of labor based on individual labor supply decisions. At
each possible wage rate we add together the quantity of labor offered by each individual to
arrive at a market total. One particularly interesting aspect of this procedure is that, as the
wage rate rises, more individuals may be induced to enter the labor force. Figure 16.2
illustrates this possibility for the simple case of two people. For a real wage below w1, neither
individual chooses to work. Consequently, the market supply curve of labor (Figure 16.2c)
shows that no labor is supplied at real wages below w1. A wage in excess of w1 causes individ-
ual 1 to enter the labor market. However, as long as wages fall short of w2, individual 2 will
not work. Only at a wage-rate above w2 will both individuals participate in the labor market.
In general, the possibility of the entry of new workers makes the market supply of labor
somewhat more responsive to wage-rate increases than would be the case if the number of
workers were assumed to be fixed.

The most important example of higher real wage rates inducing increased labor force
participation is the labor force behavior of married women in the United States in the post–
World War II period. Since 1950 the percentage of working married women has increased
from 32 percent to over 65 percent; economists attribute this, at least in part, to the in-
creasing wages that women are able to earn.

5In the Cobb-Douglas case ðδ ¼ 0, κ ¼ 0Þ, the constant-share result (for n ¼ 0) is given by lðw,nÞ ¼ ðw � nÞ=2w ¼
0:5� n=2w.
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LABOR MARKET EQUILIBRIUM

Equilibrium in the labor market is established through the interaction of individuals’ labor
supply decisions with firms’ decisions about how much labor to hire. That process is
illustrated by the familiar supply-demand diagram in Figure 16.3. At a real wage rate of
w�, the quantity of labor demanded by firms is precisely matched by the quantity supplied by
individuals. A real wage higher than w� would create a disequilibrium in which the quantity
of labor supplied is greater than the quantity demanded. There would be some involuntary
unemployment at such a wage, and this may create pressure for the real wage to fall. Similarly,
a real wage lower than w� would result in disequilibrium behavior because firms would want
to hire more workers than are available. In the scramble to hire workers, firms may bid up real
wages to restore equilibrium.

Possible reasons for disequilibria in the labor market are a major topic in macroeconomics,
especially in relationship to the business cycle. Perceived failures of the market to adjust to
changing equilibria have been blamed on “sticky” real wages, inaccurate expectations by
workers or firms about the price level, the impact of government unemployment insurance
programs, labor market regulations and minimum wages, and intertemporal work decisions
by workers. Microeconomic modeling of all of these possibilities has played a major role in
recent advances in macroeconomics, though we will not pursue these topics here because that
would take us away from the primary purposes of this book.

Equilibrium models of the labor market can also be used to study a number of questions
about taxation and regulatory policy. For example, the tax incidence modeling illustrated in
Chapter 12 can be readily adapted to the study of employment taxation. One interesting
possibility that arises in the study of labor markets is that a given policy intervention may shift
both demand and supply functions—a possibility we examine in Example 16.2.

FIGURE 16.2 Construction of the Market Supply Curve for Labor

As the real wage rises, there are two reasons why the supply of labor may increase. First, higher real
wages may cause each person in the market to work more hours. Second, higher wages may induce
more individuals (for example, individual 2) to enter the labor market.
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EXAMPLE 16.2 Mandated Benefits

A number of recent laws have mandated that employers provide special benefits to their
workers such as health insurance, paid time off, or minimum severance packages. The effect
of suchmandates on equilibrium in the labor market depends importantly on how the benefits
are valued by workers. Suppose that, prior to implementation of a mandate, the supply and
demand for labor are given by

lS ¼ a þ bw,
lD ¼ c � dw.

(16.31)

Setting lS ¼ lD yields an equilibrium wage of

w� ¼ c � a
b þ d

. (16.32)

Now suppose that the government mandates that all firms provide a particular benefit to
their workers and that this benefit costs t per unit of labor hired. Unit labor costs therefore
increase to w þ t . Suppose also that the new benefit has a monetary value to workers of k per
unit of labor supplied—hence the net return from employment rises to w þ k. Equilibrium
in the labor market then requires that

a þ bðw þ kÞ ¼ c � dðw þ t Þ: (16.33)

A bit of manipulation of this expression shows that the net wage is given by

w�� ¼ c � a
b þ d

� bk þ dt
b þ d

¼ w� � bk þ dt
b þ d

. (16.34)

If workers derive no value from the mandated benefit ðk ¼ 0Þ, then the mandate is just like a
tax on employment: employees pay a share of the tax given by the ratio d=ðb þ dÞ and the
equilibrium quantity of labor hired falls. Qualitatively similar results will occur so long as

FIGURE 16.3 Equilibrium in the Labor Market

A real wage of w� creates an equilibrium in the labor market with an employment level of l�.

Real wage

Quantity of labor

S

D

l *

w *

582 Part 6 Pricing in Input Markets



k < t . On the other hand, if workers value the benefit at precisely its cost ðk ¼ tÞ, then the
new wage falls precisely by the amount of this cost ðw�� ¼ w� � tÞ and the equilibrium level
of employment does not change. Finally, if workers value the benefit at more than it costs
the firm to provide it (k > t—a situation where one might wonder why the benefit was not
already provided), then the equilibrium wage will fall by more than the benefit costs and
equilibrium employment will increase.

QUERY: How would you graph this analysis? Would its conclusions depend on using linear
supply and demand functions?

Wage variation
One topic that should be mentioned in connection with the supply-demand diagram in
Figure 16.3 concerns how differences in workers and jobs can lead to differences in observed
wages. Such wage variation has increased significantly in many economies in recent years, and
examining the nature of supply and demand in the labor market can go a long way toward
explaining it. Here we look briefly at two factors that are important in competitive labor
markets before turning to a more extended discussion of imperfect competition in the labor
market.

Human capital. Because the firm’s demand for labor depends on the worker’s marginal
productivity, differences in productivity among workers should lead to different wages.
Perhaps the most important source of such productivity differences is the human capital
embodied in workers. Such capital is accumulated during a worker’s lifetime through formal
education, other formal methods of acquiring skills (such as a job training course), on-the-job
training, and general life experiences. This process has much in common with the process of
investing in physical capital—a topic we take up in the next chapter. Workers invest both
money and their own time in acquiring skills in the hope that those skills will pay off in the
labor market. Presumably, in making decisions about undertaking these activities, workers
look at the rate of return that might be expected from their investments. Only those
investments in skills that promise a return higher than can be made elsewhere will be
undertaken. Of course, investing in human capital is different from investing in physical
capital, primarily because human capital, once acquired, cannot be divested. This makes
human capital investments somewhat more risky than are more liquid investments, and
consequently rates of return may be higher.6 Because human capital is both costly and raises
worker productivity, it would be expected to have an unambiguously positive effect on real
wages.

Compensating differentials. People obviously prefer some jobs to others. Factors such as
pleasant working conditions, flexible hours, or easy commuting may make an individual
willing to accept a job that pays less than others offer. This supply effect would be manifested
in lower wages for such jobs. Alternatively, jobs that are unpleasant or involve significant risks
will require higher wages if they are to be attractive to workers (see Problem 16.3). Such
supply-induced differences in wages are termed “compensating wage differentials” because
they compensate for job characteristics that workers value. The variation in such character-
istics therefore explains some portion of the variation in wages.

6Pioneering work in the theory of human capital can be found in Gary Becker, Human Capital: A Theoretical and
Empirical Analysis with Special Reference to Education (New York: National Bureau of Economic Research, 1964).
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MONOPSONY IN THE LABOR MARKET

In many situations firms are not price takers for the inputs they buy. That is, the supply curve
for, say, labor faced by the firm is not infinitely elastic at the prevailing wage rate. It often may
be necessary for the firm to offer a wage above that currently prevailing if it is to attract more
employees. In order to study such situations, it is most convenient to examine the polar case
of monopsony (a single buyer) in the labor market. If there is only one buyer in the labor
market, then this firm faces the entire market supply curve. To increase its hiring of labor by
one more unit, it must move to a higher point on this supply curve. This will involve paying
not only a higher wage to the “marginal worker” but also additional wages to those workers
already employed. The marginal expense associated with hiring the extra unit of labor ðMElÞ
therefore exceeds its wage rate. We can show this result mathematically as follows. The total
cost of labor to the firm is wl . Hence the change in those costs brought about by hiring an
additional worker is

MEl ¼
∂wl
∂l

¼ w þ l
∂w
∂l

. (16.35)

In the competitive case, ∂w=∂l ¼ 0 and the marginal expense of hiring one more worker is
simply the market wage, w. However, if the firm faces a positively sloped labor supply curve,
then ∂w=∂l > 0 and the marginal expense exceeds the wage. These ideas are summarized in
the following definition.

D E F I N I T I O N
Marginal input expense. The marginal expense ðMEÞ associated with any input is the
increase in total costs of the input that results from hiring one more unit. If the firm faces an
upward-sloping supply curve for the input, the marginal expense will exceed the market price
of the input.

A profit-maximizing firm will hire any input up to the point at which its marginal revenue
product is just equal to its marginal expense. This result is a generalization of our previous
discussion of marginalist choices to cover the case of monopsony power in the labor market.
As before, any departure from such choices will result in lower profits for the firm. If, for
example, MRPl > MEl , then the firm should hire more workers because such an action
would increase revenues more than costs. Alternatively, ifMRPl < MEl , employment should
be reduced because that would lower costs more rapidly than revenues.

Graphical analysis
The monopsonist’s choice of labor input is illustrated in Figure 16.4. The firm’s demand
curve for labor ðDÞ is drawn negatively sloped, as we have shown it must be.7 Here also the
MEl curve associated with the labor supply curve ðSÞ is constructed in much the same way
that the marginal revenue curve associated with a demand curve can be constructed. Because
S is positively sloped, the MEl curve lies everywhere above S. The profit-maximizing level of
labor input for the monopsonist is given by l1, for at this level of input the profit-maximizing
condition holds. At l1 the wage rate in the market is given by w1. Notice that the quantity of
labor demanded falls short of that which would be hired in a perfectly competitive labor
market ðl�Þ. The firm has restricted input demand by virtue of its monopsonistic position in

7Figure 16.4 is intended only as a pedagogic device and cannot be rigorously defended. In particular, the curve labeled D,
although it is supposed to represent the “demand” (or marginal revenue product) curve for labor, has no precise meaning
for the monopsonist buyer of labor, because we cannot construct this curve by confronting the firm with a fixed wage rate.
Instead, the firm views the entire supply curve, S, and uses the auxiliary curve MEl to choose the most favorable point on S.
In a strict sense, there is no such thing as the monopsonist’s demand curve. This is analogous to the case of a monopoly, for
which we could not speak of a monopolist’s “supply curve.”
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the market. The formal similarities between this analysis and that of monopoly presented in
Chapter 14 should be clear. In particular, the “demand curve” for a monopsonist consists of a
single point given by l1,w1. The monopsonist has chosen this point as the most desirable of all
points on the supply curve, S. A different point will not be chosen unless some external
change (such as a shift in the demand for the firm’s output or a change in technology) affects
labor’s marginal revenue product.8

EXAMPLE 16.3 Monopsonistic Hiring

To illustrate these concepts in a simple context, suppose a coal mine’s workers can dig two
tons of coal per hour and coal sells for $10 per ton. The marginal revenue product of a coal
miner is therefore $20 per hour. If the coal mine is the only hirer of miners in a local area and
faces a labor supply curve of the form

l ¼ 50w, (16.36)

(continued)

FIGURE 16.4 Pricing in a Monopsonistic Labor Market

If a firm faces a positively sloped supply curve for labor ðSÞ, it will base its decisions on the marginal
expense of additional hiring ðMEl Þ. Because S is positively sloped, the MEl curve lies above S. The
curve S can be thought of as an “average cost of labor curve,” and theMEl curve is marginal to S. At
l1 the equilibrium condition MEl ¼ MRPl holds, and this quantity will be hired at a market wage
rate w1. Notice that the monopsonist buys less labor than would be bought if the labor market were
perfectly competitive ðl�Þ.

Wage

Labor input per period

S

S

D

D

MEl

l *

w *

w1

l1

8A monopsony may also practice price discrimination in all of the ways described for a monopoly in Chapter 14. For a
detailed discussion of the comparative statics analysis of factor demand in the monopoly and monopsony cases, see W. E.
Diewert, “Duality Approaches to Microeconomic Theory,” in K. J. Arrow and M. D. Intriligator, Eds., Handbook of
Mathematical Economics (Amsterdam: North-Holland, 1982), vol. 2, pp. 584–90.
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EXAMPLE 16.3 CONTINUED

then this firm must recognize that its hiring decisions affect wages. Expressing the total wage
bill as a function of l ,

wl ¼ l2

50
, (16.37)

permits the mine operator (perhaps only implicitly) to calculate the marginal expense asso-
ciated with hiring miners:

MEl ¼
∂wl
∂l

¼ l
25

. (16.38)

Equating this to miners’ marginal revenue product of $20 implies that the mine operator
should hire 500 workers per hour. At this level of employment the wage will be $10 per
hour—only half the value of the workers’ marginal revenue product. If the mine operator
had been forced by market competition to pay $20 per hour regardless of the number of
miners hired, then market equilibrium would have been established with l ¼ 1,000 rather
than the 500 hired under monopsonistic conditions.

QUERY: Suppose the price of coal rises to $15 per ton. How would this affect the monop-
sonist’s hiring and the wages of coal miners? Would the miners benefit fully from the increase
in their MRP ?

LABOR UNIONS

Workers may at times find it advantageous to join together in a labor union to pursue goals
that can more effectively be accomplished by a group. If association with a union were wholly
voluntary, we could assume that every union member derives a positive benefit from belong-
ing. Compulsory membership (the “closed shop”), however, is often used to maintain the
viability of the union organization. If all workers were left on their own to decide on
membership, their rational decision might be not to join the union, thereby avoiding dues
and other restrictions. However, they would benefit from the higher wages and better
working conditions that have been won by the union. What appears to be rational from
each individual worker’s point of viewmay prove to be irrational from a group’s point of view,
because the union is undermined by “free riders.”Compulsory membership therefore may be
a necessary means of maintaining the union as an effective bargaining agent.

Unions’ goals
A good starting place for our analysis of union behavior is to describe union goals. A first
assumption we might make is that the goals of a union are in some sense an adequate
representation of the goals of its members. This assumption avoids the problem of union
leadership and disregards the personal aspirations of those leaders, which may be in conflict
with rank-and-file goals. Union leaders therefore are assumed to be conduits for expressing
the desires of the membership.9

In some respects, unions can be analyzed in the same way as monopoly firms. The union
faces a demand curve for labor; because it is the sole source of supply, it can choose at

9Much recent analysis, however, revolves around whether “potential” union members have some voice in setting union
goals and how union goals may affect the desires of workers with differing amounts of seniority on the job.

586 Part 6 Pricing in Input Markets



which point on this curve it will operate. The point actually chosen by the union will obviously
depend on what particular goals it has decided to pursue. Three possible choices are illustrated
in Figure 16.5. For example, the union may choose to offer that quantity of labor that
maximizes the total wage bill ðw ⋅ lÞ. If this is the case, it will offer that quantity for which the
“marginal revenue” from labor demand is equal to 0.This quantity is given by l1 in Figure 16.5,
and the wage rate associated with this quantity is w1. The point E1 is therefore the preferred
wage-quantity combination. Notice that at wage rate w1 there may be an excess supply of
labor, and the union must somehow allocate available jobs to those workers who want them.

Another possible goal the union may pursue would be to choose the quantity of labor that
would maximize the total economic rent (that is, wages less opportunity costs) obtained by
those members who are employed. This would necessitate choosing that quantity of labor for
which the additional total wages obtained by having one more employed union member (the
marginal revenue) are equal to the extra cost of luring that member into the market. The
union should therefore choose that quantity, l2, at which the marginal revenue curve crosses
the supply curve.10 The wage rate associated with this quantity is w2, and the desired wage-
quantity combination is labeled E2 in the diagram. With the wage w2, many individuals who
desire to work at the prevailing wage are left unemployed. Perhaps the union may “tax” the
large economic rent earned by those who do work to transfer income to those who don’t.

A third possibility would be for the union to aim for maximum employment of its
members. This would involve choosing the point w3, l3, which is precisely the point that
would result if the market were organized in a perfectly competitive way. No employment
greater than l3 could be achieved, because the quantity of labor that union members supply
would be reduced for wages less than w3.

FIGURE 16.5 Three Possible Points on the Labor Demand Curve
That a Monopolistic Union Might Choose

A union has a monopoly in the supply of labor, so it may choose it most preferred point on the
demand curve for labor. Three such points are shown in the figure. At point E1, total labor payments
ðw ⋅ lÞ are maximized; at E2, the economic rent that workers receive is maximized; and at E3, the total
amount of labor services supplied is maximized.

w1

w2

w3

S

D

D

l 2 l 1 l 3
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Quantity of labor
per period

Real wage
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10Mathematically, the union’s goal is to choose l so as to maximize wl� (area under S), where S is the compensated supply
curve for labor and reflects workers’ opportunity costs in terms of forgone leisure.
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EXAMPLE 16.4 Modeling a Union

In Example 16.3 we examined a monopsonistic hirer of coal miners who faced a supply curve
given by

l ¼ 50w. (16.39)

To study the possibilities for unionization to combat this monopsonist, assume (contrary to
Example 16.3) that the monopsonist has a downward-sloping marginal revenue product for
labor curve of the form

MRP ¼ 70� 0:1l . (16.40)

It is easy to show that, in the absence of an effective union, the monopsonist in this situation
will choose the same wage-hiring combination it did in Example 16.3: 500 workers will be
hired at a wage of $10.

If the union can establish control over labor supply to the mine owner, then several other
options become possible. The union could press for the competitive solution, for example. A
contract of l ¼ 583, w ¼ 11:66 would equate supply and demand. Alternatively, the union
could act as a monopolist facing the demand curve given by Equation 16.40. It could
calculate the marginal increment yielded by supplying additional workers as

dðl ⋅MRP Þ
dl

¼ 70� 0:2l . (16.41)

The intersection between this “marginal revenue” curve and the labor supply curve (which
indicates the “marginal opportunity cost” of workers’ labor supply decisions) yields maxi-
mum rent to the unions’ workers:

l
50

¼ 70� 0:2l (16.42)

or

3,500 ¼ 11l. (16.43)

Such a calculation would therefore suggest a contract of l ¼ 318 and a wage (MRP) of
$38.20. The fact that both the competitive and union monopoly supply contracts differ
significantly from the monopsonist’s preferred contract indicates that the ultimate outcome
here is likely to be determined through bilateral bargaining. Notice also that the wage differs
significantly depending on which side has market power.

QUERY: Which, if any, of the three wage contracts described in this example might represent
a Nash equilibrium?

EXAMPLE 16.5 A Union Bargaining Model

Game theory can be used to gain insights into the economics of unions. As a simple illustra-
tion, suppose a union and a firm engage in a two-stage game. In the first stage, the union sets
the wage rate its workers will accept. Given this wage, the firm then chooses its employment
level. This two-stage game can be solved by backward induction. Given the wage w specified
by the union, the firm’s second-stage problem is to maximize

π ¼ RðlÞ � wl (16.44)
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where R is the total revenue function of the firm expressed as a function of employment.
The first-order condition for a maximum here (assuming that the wage is fixed) is the
familiar

R0ðlÞ ¼ w: (16.45)

Assuming l� solves Equation 16.45, the union’s goal is to choose w to maximize utility

U ðw, lÞ ¼ U ½w, l�ðwÞ�, (16.46)

and the first-order condition for a maximum is

U1 þU2l
0 ¼ 0 (16.47)

or

U1=U2 ¼ �l 0: (16.48)

In words, the union should choose w so that its MRS is equal to the absolute value of the
slope of the firm’s labor demand function. The w�, l� combination resulting from this game
is clearly a Nash equilibrium.

Efficiency of the labor contract. The labor contract w�, l� is Pareto inefficient. To see this,
notice that Equation 16.48 implies that small movements along the firm’s labor demand
curve ðlÞ leave the union equally well-off. But the envelope theorem implies that a decline in
w must increase profits to the firm. Hence there must exist a contract wp, l p(where wp < w�
and l p > l�) with which both the firm and union are better-off.

The inefficiency of the labor contract in this two-stage game is similar to the inefficiency
of some of the repeated Nash equilibria we studied in Chapter 15. This suggests that, with
repeated rounds of contract negotiations, trigger strategies might be developed that form a
subgame-perfect equilibrium and maintain Pareto-superior outcomes. For a simple example,
see Problem 16.10.

QUERY: Suppose the firm’s total revenue function differed depending on whether the
economy was in an expansion or a recession. What kinds of labor contracts might be Pareto
optimal?

SUMMARY

In this chapter we examined some models that focus on pric-
ing in the labor market. Because labor demand was al-
ready treated as being derived from the profit-maximization
hypothesis in Chapter 11, most of the new material
here focused on labor supply. Our primary findings were
as follows.

• A utility-maximizing individual will choose to supply an
amount of labor at which his or her marginal rate of
substitution of leisure for consumption is equal to the
real wage rate.

• An increase in the real wage creates substitution and
income effects that work in opposite directions in affect-
ing the quantity of labor supplied. This result can be

summarized by a Slutsky-type equation much like the
one already derived in consumer theory.

• A competitive labor market will establish an equilibrium
real wage at which the quantity of labor supplied by
individuals is equal to the quantity demanded by firms.

• Monopsony power by firms on the demand side of the
labor market will reduce both the quantity of labor hired
and the real wage. As in the monopoly case, there will
also be a welfare loss.

• Labor unions can be treated analytically as monopoly
suppliers of labor. The nature of labor market equilib-
rium in the presence of unions will depend importantly
on the goals the union chooses to pursue.
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PROBLEMS

16.1
Suppose there are 8,000 hours in a year (actually there are 8,760) and that an individual has a potential
market wage of $5 per hour.

a. What is the individual’s full income? If he or she chooses to devote 75 percent of this income to
leisure, how many hours will be worked?

b. Suppose a rich uncle dies and leaves the individual an annual income of $4,000 per year. If he or
she continues to devote 75 percent of full income to leisure, how many hours will be worked?

c. How would your answer to part (b) change if the market wage were $10 per hour instead of
$5 per hour?

d. Graph the individual’s supply of labor curve implied by parts (b) and (c).

16.2
As we saw in this chapter, the elements of labor supply theory can also be derived from an expenditure-
minimization approach. Suppose a person’s utility function for consumption and leisure takes the
Cobb-Douglas form U ðc, hÞ ¼ cαh1�α. Then the expenditure-minimization problem is

minimize c � wð24� hÞ s.t. U ðc, hÞ ¼ cαh1�α ¼
_
U :

a. Use this approach to derive the expenditure function for this problem.

b. Use the envelope theorem to derive the compensated demand functions for consumption and
leisure.

c. Derive the compensated labor supply function. Show that ∂l c=∂w > 0.

d. Compare the compensated labor supply function from part (c) to the uncompensated labor
supply function in Example 16.1 (with n ¼ 0). Use the Slutsky equation to show why income
and substitution effects of a change in the real wage are precisely offsetting in the uncompen-
sated Cobb-Douglas labor supply function.

16.3
A welfare program for low-income people offers a family a basic grant of $6,000 per year. This grant is
reduced by $0.75 for each $1 of other income the family has.

a. How much in welfare benefits does the family receive if it has no other income? If the head of
the family earns $2,000 per year? How about $4,000 per year?

b. At what level of earnings does the welfare grant become zero?

c. Assume the head of this family can earn $4 per hour and that the family has no other income.
What is the annual budget constraint for this family if it does not participate in the welfare
program? That is, how are consumption ðcÞ and hours of leisure ðhÞ related?

d. What is the budget constraint if the family opts to participate in the welfare program? (Remem-
ber, the welfare grant can only be positive.)

e. Graph your results from parts (c) and (d).

f. Suppose the government changes the rules of the welfare program to permit families to keep
50 percent of what they earn. How would this change your answers to parts (d) and (e)?

g. Using your results from part (f), can you predict whether the head of this family will work more
or less under the new rules described in part (f)?
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16.4
Suppose demand for labor is given by

l ¼ �50w þ 450

and supply is given by

l ¼ 100w,

where l represents the number of people employed and w is the real wage rate per hour.

a. What will be the equilibrium levels for w and l in this market?

b. Suppose the government wishes to raise the equilibrium wage to $4 per hour by offering a
subsidy to employers for each person hired. How much will this subsidy have to be? What will
the new equilibrium level of employment be? How much total subsidy will be paid?

c. Suppose instead that the government declared a minimum wage of $4 per hour. How much
labor would be demanded at this price? How much unemployment would there be?

d. Graph your results.

16.5
Carl the clothier owns a large garment factory on an isolated island. Carl’s factory is the only source of
employment for most of the islanders, and thus Carl acts as a monopsonist. The supply curve for
garment workers is given by

l ¼ 80w,

where l is the number of workers hired and w is their hourly wage. Assume also that Carl’s labor
demand (marginal revenue product) curve is given by

l ¼ 400� 40MRPl :

a. How many workers will Carl hire to maximize his profits, and what wage will he pay?

b. Assume now that the government implements a minimum wage law covering all garment
workers. How many workers will Carl now hire, and how much unemployment will there be
if the minimum wage is set at $4 per hour?

c. Graph your results.

d. How does a minimum wage imposed under monopsony differ in results as compared with a
minimum wage imposed under perfect competition? (Assume the minimum wage is above the
market-determined wage.)

16.6
The Ajax Coal Company is the only hirer of labor in its area. It can hire any number of female workers or
male workers it wishes. The supply curve for women is given by

lf ¼ 100wf

and for men by

lm ¼ 9w2
m,

where wf and wm are the hourly wage rates paid to female and male workers, respectively. Assume that
Ajax sells its coal in a perfectly competitive market at $5 per ton and that each worker hired (both men
and women) can mine 2 tons per hour. If the firm wishes to maximize profits, how many female and
male workers should be hired, and what will the wage rates be for these two groups? How much will
Ajax earn in profits per hour on its mine machinery? How will that result compare to one in which Ajax
was constrained (say, by market forces) to pay all workers the same wage based on the value of their
marginal products?
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16.7
Universal Fur is located in Clyde, Baffin Island, and sells high-quality fur bow ties throughout the world
at a price of $5 each. The production function for fur bow ties ðqÞ is given by

q ¼ 240x � 2x2,

where x is the quantity of pelts used each week. Pelts are supplied only by Dan’s Trading Post, which
obtains them by hiring Eskimo trappers at a rate of $10 per day. Dan’s weekly production function for
pelts is given by

x ¼
ffiffi
l

p
,

where l represents the number of days of Eskimo time used each week.

a. For a quasi-competitive case in which both Universal Fur and Dan’s Trading Post act as price
takers for pelts, what will be the equilibrium price ðpxÞ and how many pelts will be traded?

b. Suppose Dan acts as a monopolist, while Universal Fur continues to be a price taker. What
equilibrium will emerge in the pelt market?

c. Suppose Universal Fur acts as a monopsonist but Dan acts as a price taker. What will the
equilibrium be?

d. Graph your results, and discuss the type of equilibrium that is likely to emerge in the bilateral
monopoly bargaining between Universal Fur and Dan.

16.8
Following in the spirit of the labor market game described in Example 16.5, suppose the firm’s total
revenue function is given by

R ¼ 10l � l2

and the union’s utility is simply a function of the total wage bill:

U ðw, lÞ ¼ wl :

a. What is the Nash equilibrium wage contract in the two-stage game described in Example 16.5?

b. Show that the alternative wage contract w0 ¼ l 0 ¼ 4 is Pareto superior to the contract identified
in part (a).

c. Under what conditions would the contract described in part (b) be sustainable as a subgame-
perfect equilibrium?

Analytical Problems
16.9 Compensating wage differentials for risk
An individual receives utility from daily income ðyÞ, given by

U ðyÞ ¼ 100y � 1
2
y2:

The only source of income is earnings. Hence y ¼ wl , where w is the hourly wage and l is hours
worked per day. The individual knows of a job that pays $5 per hour for a certain 8-hour day. What
wage must be offered for a construction job where hours of work are random—with a mean of 8 hours
and a standard deviation of 6 hours—to get the individual to accept this more “risky” job? Hint: This
problem makes use of the statistical identity

Eðx2Þ ¼ Var x þ Eðx2Þ:

16.10 Family labor supply
A family with two adult members seeks to maximize a utility function of the form

U ðc, h1, h2Þ,
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where c is family consumption and h1 and h2 are hours of leisure of each family member. Choices are
constrained by

c ¼ w1ð24� h1Þ þ w2ð24� h2Þ þ n,

where w1 and w2 are the wages of each family member and n is nonlabor income.

a. Without attempting a mathematical presentation, use the notions of substitution and income
effects to discuss the likely signs of the cross-substitution effects ∂h1=∂w2 and ∂h2=∂w1.

b. Suppose that one family member (say, individual 1) can work in the home, thereby converting
leisure hours into consumption according to the function

c1 ¼ f ðh1Þ,
where f 0 > 0 and f 00 < 0. How might this additional option affect the optimal division of work
among family members?

16.11 A few results from demand theory
The theory developed in this chapter treats labor supply as the mirror image of the demand for leisure.
Hence, the entire body of demand theory developed in Part 2 of the text becomes relevant to the study
of labor supply as well. Here are three examples.

a. Roy’s identity. In the Extensions to Chapter 5 we showed how demand functions can be
derived from indirect utility functions by using Roy’s identity. Use a similar approach to show
that the labor supply function associated with the utility maximization problem described in
Equation 16.20 can be derived from the indirect utility function by

lðw,nÞ ¼ ∂V ðw,nÞ=∂w
∂V ðw,nÞ=∂n :

Illustrate this result for the Cobb-Douglas case described in Example 16.1.

b. Substitutes and complements. A change in the real wage will affect not only labor supply, it may
also affect the demand for specific items in the preferred consumption bundle. Develop a
Slutsky-type equation for the cross-price effect of a change in w on a particular consumption
item and then use it to discuss whether leisure and the item are (net or gross) substitutes or
complements. Provide an example of each type of relationship.

c. Labor supply and marginal expense.Use a derivation similar to that used to calculate marginal
revenue for a given demand curve to show that MEl ¼ w ð1þ 1=el ,wÞ.

16.12 Optimal wage taxation
The study of an optimal income tax structure is one of the most important topics in public economics.
In this problem we investigate some aspects of this problem by assuming that individuals receive income
only from the labor market. Hence income is given by I ¼ wl , and we are interested in the properties of
the tax function T ðI Þ. The most customary way to describe the tax function is by the structure of
marginal tax rates implied by the function—that is, by the function T 0ðI Þ. Two factors generate the
distribution of incomes: (1) the distribution of wages (which are assumed to reflect individuals’ skills
and are unaffected by taxation); and (2) individual labor supply choices (which may be affected by
taxation). To simplify matters we will assume that the distribution of wages is uniform over the interval
[0, 1]. Hence, the distribution is characterized by a density function in which f ðwÞ ¼ 1 and by a
cumulative distribution function for which F ðwÞ ¼ w.

a. Assume first that labor supply is unaffected by taxation because leisure does not enter into the
utility function. In this case then the distribution of income is unaffected by what tax function is
chosen. Show that, if individuals’ utility of income functions are identical and logarithmic, then a
proportional tax function ½T ðI Þ ¼ kI �will equilibrate the utility tax burden ½U ðI Þ�U ðI � T ðI ÞÞ�
across taxpayers.

b. Describe how the conclusions about burden sharing from part (a) would be modified for utility
functions that depart from the logarithmic form.
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c. An alternative approach to defining optimality focuses on an explicit social welfare function that
assigns social values to individual utility of the form ψ½U ðI � T ðI ÞÞ�, where ψ0 > 0 and ψ00 < 0.
Total social welfare is therefore given by SW ¼ ∫ψdw. Show that, if there is no labor supply
response to taxation, then the optimal tax scheme for any given revenue target is one that
equalizes after-tax incomes.

d. Characterizing the optimal tax structure for more general social welfare functions is difficult. For
an extended discussion see B. Salanie, The Economics of Taxation (Cambridge, MA: MIT Press,
2003), chap. 4. For the simple case in which changes in marginal tax rates influence labor supply
choices only over a narrow range of wages (say, in the neighborhood of w0), wages are dis-
tributed as we have assumed, and the social welfare function seeks to maximize revenues from
those who pay taxes, Salanie shows that the optimal marginal tax function is characterized by

T 0ðI Þ
1� T 0ðI Þ ¼ 1þ 1

el ,w

 !
1� w0

w0

� �
:

Try to prove this yourself by assuming that, for a tax schedule to be optimal, any small increase
in the marginal rate must not increase revenues.

e. Discuss the role that the elasticity of labor supply plays in determining the optimal marginal tax
rate in part (d).

f. How does the optimal marginal tax rate calculated in part (d) depend on wages? Explain this
result intuitively.
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C H A P T E R

17

Capital and Time

In this chapter we provide an introduction to the theory of capital. In many ways that theory resembles our
previous analysis of input pricing in general—the principles of profit-maximizing input choice do not change.
But capital theory adds an important time dimension to economic decision making; our goal here is to
explore that extra dimension. We begin with a broad characterization of the capital accumulation process and
the notion of the rate of return. Then we turn to more specific models of economic behavior over time.

CAPITAL AND THE RATE OF RETURN

When we speak of the capital stock of an economy, we mean the sum total of machines,
buildings, and other reproducible resources in existence at some point in time. These assets
represent some part of an economy’s past output that was not consumed but was instead set
aside to be used for production in the future. All societies, from the most primitive to the
most complex, engage in capital accumulation. Hunters in a primitive society taking time off
from hunting to make arrows, individuals in a modern society using part of their incomes to
buy houses, or governments taxing citizens in order to purchase dams and post office
buildings are all engaging in essentially the same sort of activity: some portion of current
output is being set aside for use in producing output in future periods. Present “sacrifice” for
future gain is the essential aspect of capital accumulation.

Rate of return
The process of capital accumulation is pictured schematically in Figure 17.1. In both panels
of the figure, society is initially consuming level c0 and has been doing so for some time. At
time t1 a decision is made to withhold some output (amount s) from current consumption for
one period. Starting in period t2, this withheld consumption is in some way put to use pro-
ducing future consumption. An important concept connected with this process is the rate of
return, which is earned on that consumption that is put aside. In panel (a), for example, all of
the withheld consumption is used to produce additional output only in period t2. Consump-
tion is increased by amount x in period t2 and then returns to the long-run level c0. Society
has saved in one year in order to splurge in the next year. The (one-period) rate of return from
this activity is defined as follows.

D E F I N I T I O N
Single-period rate of return. The single-period rate of return ðr1Þ on an investment is the
extra consumption provided in period 2 as a fraction of the consumption forgone in period 1.
That is,

r1 ¼ x � s
s

¼ x
s
� 1. (17.1)
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If x > s (if more consumption comes out of this process than went into it), we would say that
the one-period rate of return to capital accumulation is positive. For example, if withholding
100 units from current consumption permitted society to consume an extra 110 units next
year, then the one-period rate of return would be

110
100

� 1 ¼ 0:10

or 10 percent.
In panel (b) of Figure 17.1, society takes a more long-term view in its capital accumula-

tion. Again, an amount s is set aside at time t1. Now, however, this set-aside consumption is
used to raise the consumption level for all periods in the future. If the permanent level of
consumption is raised to c0 þ y, we define the perpetual rate of return as follows.

D E F I N I T I O N
Perpetual rate of return. The perpetual rate of return ðr∞Þ is the permanent increment to
future consumption expressed as a fraction of the initial consumption forgone. That is,

r∞ ¼ y
s
. (17.2)

If capital accumulation succeeds in raising c0 permanently, then r∞ will be positive. For
example, suppose that society set aside 100 units of output in period t1 to be devoted to
capital accumulation. If this capital would permit output to be raised by 10 units for every
period in the future (starting at time period t2), the perpetual rate of return would be
10 percent.

When economists speak of the rate of return to capital accumulation, they have in mind
something between these two extremes. Somewhat loosely we shall speak of the rate of return
as being a measure of the terms at which consumption today may be turned into consump-
tion tomorrow (this will be made more explicit soon). A natural question to ask is how the
economy’s rate of return is determined. Again, the equilibrium arises from the supply and
demand for present and future goods. In the next section we present a simple two-period
model in which this supply-demand interaction is demonstrated.

FIGURE 17.1 Two Views of Capital Accumulation

In (a), society withdraws some current consumption (s) to gorge itself (with x extra consumption) in
the next period. The one-period rate of return would be measured by x=s � 1. The society in
(b) takes a more long-term view and uses s to increase its consumption perpetually by y. The
perpetual rate of return would be given by y=s .

Consumption Consumption

Time Time

(a) One-period return (b) Perpetual return

c0

t1 t2 t3 t1 t2 t3

c0

x

s s

y
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DETERMINING THE RATE OF RETURN

In this section we will describe how operation of supply and demand in the market for
“future” goods establishes an equilibrium rate of return. We begin by analyzing the connec-
tion between the rate of return and the “price” of future goods. Then we show how
individuals and firms are likely to react to this price. Finally, these actions are brought
together (as we have done for the analysis of other markets) to demonstrate the determina-
tion of an equilibrium price of future goods and to examine some of the characteristics of that
solution.

Rate of return and price of future goods
For most of the analysis in this chapter, we assume there are only two periods to be con-
sidered: the current period (denoted by the subscript 0) and the next period (subscript 1). We
will use r to denote the (one-period) rate of return between these two periods. Hence, as
defined in the previous section,

r ¼ ∆c1
∆c0

� 1, (17.3)

where the ∆ notation indicates the change in consumption during the two periods.
Rewriting Equation 17.3 yields

∆c1
∆c0

¼ 1þ r (17.4)

or

∆c0
∆c1

¼ 1
1þ r

. (17.5)

The term on the left of Equation 17.5 records how much c0 must be forgone if c1 is to be
increased by 1 unit; that is, the expression represents the relative “price” of 1 unit of c1 in
terms of c0. So we have defined the price of future goods.1

D E F I N I T I O N
Price of future goods. The relative price of future goods ðp1Þ is the quantity of present goods
that must be forgone to increase future consumption by 1 unit. That is,

p1 ¼ ∆c0
∆c1

¼ 1
1þ r

. (17.6)

We now proceed to develop a demand-supply analysis of the determination of p1. By so doing
we also will have developed a theory of the determination of r, the rate of return in this simple
model.

Demand for future goods
The theory of the demand for future goods is one further application of the utility-
maximization model developed in Part 2 of this book. Here the individual’s utility depends
on present and future consumption [that is, utility ¼ U ðc0, c1Þ], and he or she must decide
how much current wealth ðW Þ to allocate to these two goods.2 Wealth not spent on current
consumption can be invested at the rate of return r to obtain consumption next period.

1This price is identical to the discount factor introduced in connection with repeated games in Chapter 8.
2For an analysis of the case where the individual has income in both periods, see Problem 17.1.
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As before, p1 reflects the present cost of future consumption, and the individual’s budget
constraint is given by

W ¼ c0 þ p1c1. (17.7)

This constraint is illustrated in Figure 17.2. If the individual chooses to spend all of his or her
wealth on c0, then total current consumption will be W with no consumption occurring in
period 2. Alternatively, if c0 ¼ 0, then c1 will be given by W =p1 ¼ W ð1þ rÞ. That is, if all
wealth is invested at the rate of return r, current wealth will grow to W ð1þ rÞ in period 2.3

Utility maximization
Imposing the individual’s indifference curve map for c0 and c1 onto the budget constraint in
Figure 17.2 illustrates utility maximization. Here utility is maximized at the point c�0 , c�1 . The
individual consumes c�0 currently and chooses to save W � c�0 to consume next period. This
future consumption can be found from the budget constraint as

p1c
�
1 ¼ W � c�0 (17.8)

FIGURE 17.2 Individual’s Intertemporal Utility Maximization

When faced with the intertemporal budget constraint W ¼ c0 þ p1c1, the individual will maximize
utility by choosing to consume c�0 currently and c�1 in the next period. A fall in p1 (an increase in the
rate of return, r) will cause c1 to rise, but the effect on c0 is indeterminate because substitution and
income effects operate in opposite directions (assuming that both c0 and c1 are normal goods).

Future
consumption (c1)

Current
consumption (c0)

W = c0 + p1c1

U2

U1
U0

W/p1

c1*

c0* W

3This observation yields an alternative interpretation of the intertemporal budget constraint, which can be written in terms
of the rate of return as

W ¼ c0 þ
c1

1þ r
.

This illustrates that it is the “present value” of c1 that enters into the individual’s current budget constraint. The concept of
present value is discussed in more detail later in this chapter.
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or

c�1 ¼ ðW � c�0 Þ
p1

(17.9)

¼ ðW � c�0 Þð1þ rÞ. (17.10)

In words, wealth that is not currently consumed ðW � c�0 Þ is invested at the rate of return, r,
and will grow to yield c�1 in the next period.

EXAMPLE 17.1 Intertemporal Impatience

Individuals’ utility-maximizing choices over time will obviously depend on how they feel
about the relative merits of consuming currently or waiting to consume in the future. One
way of reflecting the possibility that people exhibit some impatience in their choices is to
assume that the utility from future consumption is implicity discounted in the individual’s
mind. For example, we might assume that the utility function for consumption, U ðcÞ, is
the same in both periods (with U 0 > 0, U 00 < 0) but that period 1’s utility is discounted
in the individual’s mind by a “rate of time preference” of 1=ð1þ δÞ (where δ > 0). If the
intertemporal utility function is also separable (for more discussion of this concept, see the
Extensions to Chapter 6), we can write

U ðc0, c1Þ ¼ U ðc0Þ þ
1

1þ δ
U ðc1Þ. (17.11)

Maximization of this function subject to the intertemporal budget constraint

W ¼ c0 þ
c1

1þ r
(17.12)

yields the following Lagrangian expression:

ℒ ¼ U ðc0, c1Þ þ λ W � c0 �
c1

1þ r

	 

, (17.13)

and the first-order conditions for a maximum are

∂ℒ
∂c0

¼ U 0ðc0Þ � λ ¼ 0,

∂ℒ
∂c1

¼ 1
1þ δ

U 0 c1
� �� λ

1þ r
¼ 0,

∂ℒ
∂λ

¼ W � c0 �
c1

1þ r
¼ 0.

(17.14)

Dividing the first and second of these and rearranging terms gives4

U 0ðc0Þ ¼
1þ r
1þ δ

U 0ðc1Þ. (17.15)

Because the utility function for consumption is assumed to be the same in two periods, we
can conclude that c0 ¼ c1 if r ¼ δ, that c0 > c1 if δ > r [to obtain U 0ðc0Þ < U 0ðc1Þ requires
c0 > c1], and that c0 < c1 for r > δ. Whether this individual’s consumption increases or

(continued)

4Equation 17.15 is sometimes called the “Euler equation” for intertemporal utility maximization. As we show, once a
specific utility function is defined, the equation indicates how consumption changes over time.

Chapter 17 Capital and Time 599



EXAMPLE 17.1 CONTINUED

decreases from period 0 to period 1 will therefore depend on exactly how impatient he or
she is. Although a consumer may have a preference for present goods ðδ > 0Þ, he or she may
still consume more in the future than in the present if the rate of return received on savings is
high enough.

Consumption smoothing. Because utility functions exhibit diminishing marginal utility of
consumption, individuals will seek to equalize their consumption across periods. The extent
of such smoothing will depend on the curvature of the utility function. Suppose, for example,
that an individual’s utility function takes the CES form

U ðcÞ ¼ cR=R if R 6¼ 0 and R � 1,
lnðcÞ if R ¼ 0.



(17.16)

Suppose also that this person’s rate of time preference is δ ¼ 0. In this case Equation 17.15
can be written as

cR�1
0 ¼ ð1þ rÞcR�1

1 or
c1
c0

¼ ð1þ rÞ1=ð1�RÞ. (17.17)

If r ¼ 0, this person will equalize consumption no matter what his or her utility function is.
But a positive interest rate will encourage unequal consumption because in that case future
goods are relatively cheaper. The degree to which a positive interest rate will encourage
consumption inequality is determined by the value of R (which is sometimes referred to as
the “coefficient of fluctuation aversion” in this context). For example, if R ¼ 0 then c1=c0 ¼
1þ r and so, with a 5 percent interest rate, consumption in period 1 will be 5 percent higher
than in period 0. On the other hand, if this person is more averse to consumption fluctuations
then R might take a value such as �3. In this case (with a 5 percent interest rate),

c1
c0

¼ ð1þ rÞ0:25 ¼ ð1:05Þ0:25 ¼ 1:012. (17.18)

That is, consumption in period 1 will be only about 1 percent higher than in period 0. The
real interest rate has a substantially smaller effect in encouraging this person to depart from
an equalized consumption pattern when he or she is averse to fluctuations.

QUERY: Empirical data show that per capita consumption has increased at an annual rate of
approximately 2 percent in the U.S. economy over the past 50 years. What real interest rate
would be needed to make this increase utility maximizing (again assuming that δ ¼ 0)?
Note: We will return to the relationship between consumption smoothing and the real
interest rate in Example 17.2. Problem 17.12 shows how intertemporal discount rates that
follow a hyperbolic pattern can be used to explain why people may sometimes make decisions
that seem “shortsighted.”

Effects of changes in r
A comparative statics analysis of the equilibrium illustrated in Figure 17.2 is straightforward.
If p1 falls (that is, if r rises), then both income and substitution effects will cause more c1 to be
demanded—except in the unlikely event that c1 is an inferior good. Hence, the demand curve
for c1 will be downward sloping. An increase in r effectively lowers the price of c1, and
consumption of that good thereby increases. This demand curve is labeled D in Figure 17.3.
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Before leaving our discussion of individuals’ intertemporal decisions, we should point out
that the analysis does not permit an unambiguous statement to be made about the sign of
∂c0=∂p1. In Figure 17.2, substitution and income effects work in opposite directions and so
no definite prediction is possible. A fall in p1 will cause the individual to substitute c1 for c0 in
his or her consumption plans. But the fall in p1 raises the real value of wealth, and this income
effect causes both c0 and c1 to increase. Phrased somewhat differently, the model illustrated in
Figure 17.2 does not permit a definite prediction about how changes in the rate of return
affect current-period wealth accumulation (saving). A higher r produces substitution effects
that favor more saving and income effects that favor less. Ultimately, then, the direction of
the effect is an empirical question.

Supply of future goods
In one sense the analysis of the supply of future goods is quite simple. We can argue that an
increase in the relative price of future goods ðp1Þ will induce firms to produce more of them,
because the yield from doing so is now greater. This reaction is reflected in the positively
sloped supply curve S in Figure 17.3. It might be expected that, as in our previous perfectly
competitive analysis, this supply curve reflects the increasing marginal costs (or diminishing
returns) firms experience when attempting to turn present goods into future ones through
capital accumulation.

Unfortunately, delving deeper into the nature of capital accumulation runs into complica-
tions that have occupied economists for hundreds of years.5 Basically, all of these derive from
problems in developing a tractable model of the capital accumulation process. For our model
of individual behavior this problem did not arise, because we could assume that the “market”
quoted a rate of return to individuals so they could adapt their behavior to it. We shall also
follow this route when describing firms’ investment decisions later in the chapter. But to

FIGURE 17.3 Determination of the Equilibrium Price of Future Goods

The point p�1 , c�1 represents an equilibrium in the market for future goods. The equilibrium price of
future goods determines the rate of return via Equation 17.16.

Future consumption (c1)

Price (p1)

c1*

p1*

D

D

s

s

5For a discussion of some of this debate, see M. Blaug, Economic Theory in Retrospect, rev. ed. (Homewood, IL: Richard D.
Irwin, 1978), chap. 12.
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develop an adequate model of capital accumulation by firms, we must describe precisely how
c0 is “turned into” c1, and doing so would take us too far afield into the intricacies of capital
theory. Instead, we will be content to draw the supply curve in Figure 17.3 with a positive
slope on the presumption that such a shape is intuitively reasonable. Much of the subsequent
analysis in this chapter may serve to convince you that this is indeed the case.

Equilibrium price of future goods
Equilibrium in the market shown in Figure 17.3 is at p�1 , c�1 . At that point, individuals’ supply
and demand for future goods are in balance, and the required amount of current goods will
be put into capital accumulation to produce c�1 in the future.6

There are a number of reasons to expect that p1 will be less than 1; that is, it will cost less
than the sacrifice of one current good to “buy” one good in the future. As we showed in
Example 17.1, it might be argued that individuals require some reward for waiting. Everyday
adages (“a bird in the hand is worth two in the bush,” “live for today”) and more substantial
realities (the uncertainty of the future and the finiteness of life) suggest that individuals are
generally impatient in their consumption decisions. Hence, capital accumulation such as that
shown in Figure 17.3 will take place only if the current sacrifice is in some way worthwhile.

There are also supply reasons for believing p1 will be less than 1. All of these involve the
idea that capital accumulation is “productive”: Sacrificing one good today will yield more
than one good in the future. Some simple examples of the productivity of capital investment
are provided by such pastoral activities as the growing of trees or the aging of wine and
cheese. Tree nursery owners and vineyard and dairy operators “abstain” from selling their
wares in the belief that time will make them more valuable in the future. Although it is
obvious that capital accumulation in a modern industrial society is more complex than
growing trees (consider building a steel mill or an electric power system), economists believe
the two processes have certain similarities. In both cases, investing current goods makes the
production process longer and more complex, thereby increasing the contribution of other
resources used in production.

The equilibrium rate of return
We can now define the relationship of the rate of return ðrÞ to what we have called the price of
future goods:

p�1 ¼ 1
1þ r

. (17.19)

Because we believe that p�1 will be less than 1, the rate of return ðrÞ will be positive. For
example, if p�1 ¼ 0:9 then r will equal approximately 0.11, and we would say that the rate of
return to capital accumulation is “11 percent.” By withholding 1 unit of current con-
sumption, the consumption of future goods can be increased by 1.11. The rate of return and
p1 are equivalent ways of measuring the terms on which present goods can be turned into
future goods.

Rate of return, real interest rates, and nominal
interest rates
The concept of the rate of return that we have been analyzing here is sometimes used
synonymously with the related concept of the “real” interest rate. In this context, both are
taken to refer to the real return that is available from capital accumulation. This concept must

6This is a much simplified form of an analysis orginally presented by I. Fisher, The Rate of Interest (New York:
Macmillan, 1907).
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be differentiated from the nominal interest rate actually available in financial markets.
Specifically, if overall prices are expected to increase by p_e between two periods (that is,
p_e ¼ 0:10 for a 10 percent inflation rate), then we would expect the nominal interest rate ðiÞ
to be given by the equation

1þ i ¼ ð1þ rÞð1þ p_eÞ, (17.20)

because a would-be lender would expect to be compensated for both the opportunity cost
of not investing in real capital ðrÞ and for the general rise in prices ðp_eÞ. Expansion of
Equation 17.17 yields

1þ i ¼ 1þ r þ p_e þr p_e ; (17.21)

and assuming r ⋅ p_e is small, we have the simpler approximation

i ¼ r þ p_e . (17.22)

If the real rate of return is 4 percent (0.04) and the expected rate of inflation is 10 percent
(0.10), then the nominal interest rate would be approximately 14 percent (0.14). Therefore,
the difference between observed nominal interest rates and real interest rates may be
substantial in inflationary environments.

EXAMPLE 17.2 Determination of the Real Interest Rate

A simple model of real interest rate determination can be developed by assuming that
consumption grows at some exogenous rate, g . For example, suppose that the only con-
sumption good is perishable fruit and that this fruit comes from trees that are growing at the
rate g . More realistically, g might be determined by macroeconomic forces, such as the rate of
technical change in the Solow growth model (see the Extensions to Chapter 9). No matter
how the growth rate is determined, the real interest rate must adjust so that consumers are
willing to accept this rate of growth in consumption.

Optimal consumption. The typical consumer wants his or her consumption pattern to
maximize the utility received from this consumption over time. That is, the goal is to
maximize

utility ¼ ∫
∞

0

e�δ tU ðcðt ÞÞ dt , (17.23)

where δ is the rate of pure time preference. At each instant of time, this person earns a wage
w and earns interest r on his or her capital stock k. Hence, this person’s capital evolves
according to the equation

dk
dt

¼ w þ rk � c (17.24)

and is bound by the endpoint constraints kð0Þ ¼ 0 and kð∞Þ ¼ 0. Setting up the augmented
Hamiltonian for this dynamic optimization problem (see Chapter 2) yields

H ¼ e�δ tU ðcÞ þ λðw þ rk � cÞ þ k
dλ
dt

. (17.25)

The “maximum principle” therefore requires:

Hc ¼ e�δtU 0ðcÞ � λ ¼ 0;

Hk ¼ rλþ dλ
dt

¼ 0 or rλ ¼ �dλ
dt

.
(17.26)

(continued)
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EXAMPLE 17.2 CONTINUED

Solving the differential equation implied by the second of these conditions yields the
conclusion that λ ¼ e�rt , and substituting this into the first of the conditions shows that

U 0ðcÞ ¼ eðδ�rÞt . (17.27)

Hence, consistent with our results in Example 17.1, marginal utility should rise or fall over
time depending on the relationship between the rate of time preference and the real rate of
interest.When utility takes theCES form ofU ðcÞ ¼ cR=R andU 0ðcÞ ¼ cR�1, Equation 17.27
gives the explicit solution:

cðt Þ ¼ exp
r � δ

1�R
t


 �
, (17.28)

where expfxg ¼ ex . So, if r > δ then consumption should rise over time, but the extent
of this increase should be affected by how willing this person is to tolerate unequal
consumption.

Real interest rate determination. The only “price” in this simple economy is the real
interest rate. This rate must adjust so that consumers will accept the rate of growth of
consumption that is being determined exogenously. Hence it must be the case that

g ¼ r � δ

1�R
or r ¼ δþ ð1�RÞg . (17.29)

If g ¼ 0, then the real rate of interest will equal the rate of time preference. With a positive
growth rate of consumption, the real interest rate must exceed the rate of time preference to
encourage people to accept consumption growth.

Real interest rate paradox. Equation 17.29 provides the basis for what is sometimes termed
the “real interest rate paradox.” Over time, real consumption grows at about 1.6 percent
per year in theU.S. economy, and other evidence suggests thatR is around�2 or�3. Hence,
even when the rate of time preference is zero, the real interest rate should be at least
r ¼ 0þ ð1þ 2Þ ⋅ 0:016 ¼ 0:048 (that is, about 5 percent). But empirical evidence shows
that the real, risk-free rate in the United States over the past 75 years has been only about
2 percent—far lower than it should be. Either there is something wrong with this model,
or people are more flexible in their consumption decisions than is believed.

QUERY: How should the results of this example be augmented to allow for the possibility
that g may be subject to random fluctuations? (See also Problem 17.9.)

THE FIRM’S DEMAND FOR CAPITAL

Firms rent machines in accordance with the same principles of profit maximization we
derived in Chapter 11. Specifically, in a perfectly competitive market, the firm will choose
to hire that number of machines for which the marginal revenue product is precisely equal to
their market rental rate. In this section we first investigate the determinants of this market
rental rate, and we assume that all machines are rented. Later in the section, because most
firms buy machines and hold them until they deteriorate rather than rent them, we shall
examine the particular problems raised by such ownership.
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Determinants of market rental rates
Consider a firm in the business of renting machines to other firms. Suppose the firm owns a
machine (say, a car or a backhoe) that has a current market price of p. Howmuch will the firm
charge its clients for the use of the machine? The owner of the machine faces two kinds of
costs: depreciation on the machine and the opportunity cost of having its funds tied up in a
machine rather than in an investment earning the current available rate of return. If it is
assumed that depreciation costs per period are a constant percentage ðdÞ of the machine’s
market price and that the real interest rate is given by r, then the total costs to the machine
owner for one period are given by

pd þ pr ¼ pðr þ dÞ. (17.30)

If we assume that the machine rental market is perfectly competitive, then no long-run
profits can be earned by renting machines. The workings of the market will ensure that the
rental rate per period for the machine ðvÞ is exactly equal to the costs of the machine owner.
Hence we have the basic result that

v ¼ pðr þ dÞ. (17.31)

The competitive rental rate is the sum of forgone interest and depreciation costs the
machine’s owner must pay. For example, suppose the real interest rate is 5 percent (that is,
0.05) and the physical depreciation rate is 15 percent (0.15). Suppose also that the current
market price of the machine is $10,000. Then, in this simple model, the machine would
have an annual rental rate of $2,000 ½¼ $10,000� ð0:05þ 0:15Þ� per year; $500 of this
would represent the opportunity cost of the funds invested in the machine, and the re-
maining $1,500 would reflect the physical costs of deterioration.

Nondepreciating machines
In the hypothetical case of a machine that does not depreciate ðd ¼ 0Þ, Equation 17.31 can
be written as

v
P

¼ r . (17.32)

In equilibrium an infinitely long-lived (nondepreciating) machine is equivalent to a
perpetual bond (see the Appendix to this chapter) and hence must “yield” the market rate of
return. The rental rate as a percentage of the machine’s price must be equal to r. If v=p > r
then everyone would rush out to buy machines, because renting out machines would yield
more than rates of return elsewhere. Similarly, if v=p < r then no one would be in the
business of renting out machines, because more could be made on alternative investments.

Ownership of machines
Our analysis so far has assumed that firms rent all of the machines they use. Although such rental
does take place in the real world (for example, many firms are in the business of leasing airplanes,
trucks, freight cars, and computers to other firms), it is more common for firms to own the
machines they use. A firm will buy a machine and use it in combination with the labor it hires to
produce output. The ownership of machines makes the analysis of the demand for capital some-
what more complex than that of the demand for labor. However, by recognizing the important
distinction between a stock and a flow, we can show that these two demands are quite similar.

A firm uses capital services to produce output. These services are a flow magnitude. It is
the number of machine-hours that is relevant to the productive process (just as it is labor-
hours), not the number of machines per se. Often, however, the assumption is made that
the flow of capital services is proportional to the stock of machines (100 machines, if fully
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employed for 1 hour, can deliver 100 machine hours of service); therefore, these two different
concepts are often used synonymously. If during a period a firm desires a certain number of
machine hours, this is usually taken to mean that the firm desires a certain number of
machines. The firm’s demand for capital services is also a demand for capital.7

A profit-maximizing firm in perfect competition will choose its level of inputs so that the
marginal revenue product from an extra unit of any input is equal to its cost. This result also
holds for the demand for machine hours. The cost of capital services is given by the rental rate
ðvÞ in Equation 17.31. This cost is borne by the firm whether it rents the machine in the open
market or owns the machine itself. In the former case it is an explicit cost, whereas in the latter
case the firm is essentially in two businesses: (1) producing output; and (2) owning machines
and renting them to itself. In this second role the firms’ decisions would be the same as any
other machine rental firm because it incurs the same costs. The fact of ownership, to a first
approximation, is irrelevant to the determination of cost. Hence our prior analysis of capital
demand applies to the owners by case as well.

D E F I N I T I O N
Demand for capital. A profit-maximizing firm that faces a perfectly competitive rental market
for capital will hire additional capital input up to the point at which its marginal revenue product
ðMRPkÞ is equal to the market rental rate, v. Under perfect competition, the rental rate will
reflect both depreciation costs and opportunity costs of alternative investments. Thus we have

MRPk ¼ v ¼ pðr þ dÞ. (17.33)

Theory of investment
If a firm obeys the profit-maximizing rule of Equation 17.33 and finds that it desires more
capital services than can be provided by its currently existing stock of machinery, then it has
two choices. First, it may hire the additional machines that it needs in the rental market. This
would be formally identical to its decision to hire additional labor. Second, the firm can buy
new machinery to meet its needs. This second alternative is the one most often chosen; we
call the purchase of new equipment by the firm investment.

Investment demand is an important component of “aggregate demand” in macroeconomic
theory. It is often assumed this demand for plant and equipment (that is, machines) is inversely
related to the real rate of interest, or what we have called the “rate of return.”Using the analysis
developed in this part of the text, we can demonstrate the links in this argument. A fall in the real
interest rate ðrÞwill, ceteris paribus, decrease the rental rate on capital (Equation 17.31).Because
forgone interest represents an implicit cost for the owner of a machine, a decrease in r in effect
reduces the price (that is, the rental rate) of capital inputs. This fall in v implies that capital has
become a relatively less expensive input; this will prompt firms to increase their capital usage.

PRESENT DISCOUNTED VALUE APPROACH
TO INVESTMENT DECISIONS

When a firm buys amachine, it is in effect buying a stream of net revenues in future periods. To
decide whether to purchase the machine, the firmmust compute the present discounted value
of this stream.8 Only by doing so will the firm have taken adequate account of the effects of
forgone interest. This provides an alternative approach to explaining the investment decision.

7Firms’ decisions on how intensively to use a given capital stock during a period are often analyzed as part of the study of
business cycles.
8See the Appendix to this chapter for an extended discussion of present discounted value.
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Consider a firm in the process of deciding whether to buy a particular machine. The
machine is expected to last n years and will give its owner a stream of monetary returns (that
is, marginal revenue products) in each of the n years. Let the return in year i be represented
by Ri . If r is the present real interest rate and if this rate is expected to prevail for the next
n years, then the present discounted value ðPDV Þ of the net revenue flow from the machine
to its owner is given by

PDV ¼ R1

1þ r
þ R2

ð1þ rÞ2 þ
…þ Rn

ð1þ rÞn . (17.34)

This present discounted value represents the total value of the stream of payments provided
by the machine—once adequate account is taken of the fact that these payments occur in
different years. If the PDV of this stream of payments exceeds the price ðpÞ of the machine
then the firm, and other similar firms, should make the purchase. Even when the effects of
the interest payments the firm could have earned on its funds had it not purchased the
machine are taken into account, the machine promises to return more than its prevailing
price. On the other hand, if p > PDV , the firm would be better off to invest its funds in
some alternative that promises a rate of return of r. When account is taken of forgone
interest, the machine does not pay for itself. Thus, in a competitive market, the only
equilibrium that can prevail is that in which the price of a machine is equal to the present
discounted value of the net revenues from the machine. Only in this situation will there be
neither an excess demand for machines nor an excess supply of machines. Hence, market
equilibrium requires that

p ¼ PDV ¼ R1

1þ r
þ R2

ð1þ rÞ2 þ
…þ Rn

ð1þ rÞn. (17.35)

We shall now use this condition to show two situations in which the present discounted
value criterion of investment yields the same equilibrium conditions described earlier in the
chapter.

Simple case
Assume first that machines are infinitely long lived and that the marginal revenue product
ðRiÞ is the same in every year. This uniform return also will equal the rental rate for machines
ðvÞ, because that is what another firm would pay for the machine’s use during any period.
With these simplifying assumptions, we may write the present discounted value frommachine
ownership as

PDV ¼ v
ð1þ rÞ þ

v

ð1þ rÞ2 þ
…þ v

ð1þ rÞn þ…

¼ v ⋅
1

ð1þ rÞ þ
1

ð1þ rÞ2 þ
…þ 1

ð1þ rÞn þ…

 !

¼ v ⋅
1

1� 1=ð1þ rÞ � 1
� �

¼ v ⋅
1þ r
r

� 1
� �

¼ v ⋅
1
r
. (17.36)
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But in equilibrium p ¼ PDV , so

p ¼ v ⋅
1
r

(17.37)

or
v
p
¼ r , (17.38)

as was already shown in Equation 17.32. For this case, the present discounted value criterion
gives results identical to those outlined in the previous section.

General case
Equation 17.31 can also be derived for the more general case in which the rental rate on
machines is not constant over time and in which there is some depreciation. This analysis is
most easily carried out by using continuous time. Suppose that the rental rate for a new
machine at any time s is given by vðsÞ. Assume also that the machine depreciates exponentially
at the rate of d.9 The net rental rate (and the marginal revenue product) of a machine
therefore declines over time as the machine gets older. In year s , the net rental rate on an old
machine bought in a previous year ðtÞ would be

vðsÞe�dðs�t Þ, (17.39)

because s � t is the number of years over which the machine has been decaying. For
example, suppose that a machine is bought new in 2000. Its net rental rate in 2005 then
would be the rental rate earned by new machines in 2005 [v(2005)] discounted by the e�5d

to account for the amount of depreciation that has taken place over the five years of the
machine’s life.

If the firm is considering buying the machine when it is new in year t , it should discount
all of these net rental amounts back to that date. The present value of the net rental in year s
discounted back to year t is therefore (if r is the interest rate)

e�rðs�t ÞvðsÞe�dðs�t Þ ¼ eðrþdÞvðsÞe�ðrþdÞs (17.40)

because, again, ðs � tÞ years elapse from when the machine is bought until the net rental is
received. The present discounted value of a machine bought in year t is therefore the sum
(integral) of these present values. This sum should be taken from year t (when the machine
is bought) over all years into the future:

PDV ðt Þ ¼ ∫
∞

t

eðrþdÞt vðsÞe�ðrþdÞs ds . (17.41)

Since in equilibrium the price of the machine at year t ½pðtÞ� will be equal to this present
value, we have the following fundamental equation:

pðt Þ ¼ ∫
∞

t

eðrþdÞt vðsÞe�ðrþdÞs ds . (17.42)

9In this view of depreciation, machines are assumed to “evaporate” at a fixed rate per unit of time. This model of decay is in
many ways identical to the assumptions of radioactive decay made in physics. There are other possible forms that physical
depreciation might take; this is just one that is mathematically tractable.

It is important to keep the concept of physical depreciation (depreciation that affects a machine’s productivity) distinct
from accounting depreciation. The latter concept is important only in that the method of accounting depreciation chosen
may affect the rate of taxation on the profits from a machine. From an economic point of view, however, the cost of a
machine is a sunk cost: any choice on how to “write off” this cost is to some extent arbitrary.

608 Part 6 Pricing in Input Markets



This rather formidable equation is simply a more complex version of Equation 17.35 and
can be used to derive Equation 17.31. First rewrite the equation as

pðt Þ ¼ eðrþdÞt ∫
∞

t

vðsÞe�ðrþdÞs ds . (17.43)

Now differentiate with respect to t , using the rule for taking the derivative of a product:

dpðt Þ
dt

¼ ðr þ dÞeðrþdÞt∫
∞

t

vðsÞe�ðrþdÞsds � eðrþdÞt vðt Þe�ðrþdÞt

¼ ðr þ dÞpðt Þ � vðt Þ. (17.44)

Hence

vðt Þ ¼ ðr þ dÞpðt Þ � dpðt Þ
dt

. (17.45)

This is precisely the result shown earlier in Equation 17.31 except that the term�dpðtÞ=dt has
been added. The economic explanation for the presence of this added term is that it represents
the capital gains accruing to the owner of the machine. If the machine’s price can be expected
to rise, for example, the owner may accept somewhat less than ðr þ dÞp for its rental.10 On the
other hand, if the price of themachine is expected to fall ½dpðtÞ=dt < 0�, the owner will require
more in rent than is specified in Equation 17.31. If the price of the machine is expected to
remain constant over time, then dpðtÞ=dt ¼ 0 and the equations are identical. This analysis
shows there is a definite relationship between the price of a machine at any time, the stream of
future profits the machine promises, and the current rental rate for the machine.

EXAMPLE 17.3 Cutting Down a Tree

As an example of the PDV criterion, consider the case of a forester who must decide when to
cut down a growing tree. Suppose the value of the tree at any time, t , is given by f ðtÞ (where
f 0ðtÞ > 0, f 00ðtÞ < 0) and that l dollars were invested initially as payments to workers who
planted the tree. Assume also that the (continuous) market interest rate is given by r. When
the tree is planted, the present discounted value of the tree owner’s profits is given by

PDV ðt Þ ¼ e�rt f ðt Þ � l , (17.46)

which is simply the difference between (the present value of) revenues and present costs.
The forester’s decision, then, consists of choosing the harvest date t to maximize this value.
As always, this value may be found by differentiation:

dPDV ðt Þ
dt

¼ e�rt f 0ðt Þ � re�rt f ðt Þ ¼ 0 (17.47)

or, dividing both sides by e�rt ,
f 0ðt Þ � rf ðt Þ ¼ 0. (17.48)

Therefore,

r ¼ f 0ðt Þ
f ðt Þ (17.49)

(continued)

10For example, rental houses in suburbs with rapidly appreciating house prices will usually rent for less than the landlord’s
actual costs because the landlord also gains from price appreciation.

Chapter 17 Capital and Time 609



EXAMPLE 17.3 CONTINUED

Two features of this optimal condition are worth noting. First, observe that the cost of the
initial labor input drops out upon differentiation. This cost is (even in a literal sense) a “sunk”
cost that is irrelevant to the profit-maximizing decision. Second, Equation 17.49 can be
interpreted as saying the tree should be harvested when the rate of interest is equal to the
proportional rate of growth of the tree. This result makes intuitive sense. If the tree is growing
more rapidly than the prevailing interest rate then its owner should leave his or her funds
invested in the tree, because the tree provides the best return available. On the other hand, if
the tree is growing less rapidly than the prevailing interest rate, then the tree should be cut
and the funds obtained from its sale should be invested elsewhere at the rate r.

Equation 17.49 is only a necessary condition for a maximum. By differentiating Equa-
tion 17.48 again it is easy to see that it is also required that, at the chosen value of t ,

f 00ðt Þ � rf 0ðt Þ < 0 (17.50)

if the first-order conditions are to represent a true maximum. Because we assumed f 0ðtÞ > 0
(the tree is always growing) and f 00ðtÞ < 0 (the growth slows over time), it is clear that this
condition holds.

A numerical illustration. Suppose trees grow according to the equation

f ðt Þ ¼ expf0:4 ffiffiffi
t

p g. (17.51)

This equation always exhibits a positive growth rate ½ f 0ðtÞ > 0� and, because
f 0ðt Þ
f ðt Þ ¼ 0:2ffiffiffi

t
p , (17.52)

the tree’s proportional growth rate diminishes over time. If the real interest rate were, say,
0.04, then we could solve for the optimal harvesting age as

r ¼ 0:04 ¼ f 0ðt Þ
f ðt Þ ¼ 0:2ffiffiffi

t
p (17.53)

or ffiffiffi
t

p ¼ 0:2
0:4

¼ 5,

so

t� ¼ 25. (17.54)

Up to 25 years of age, the volume of wood in the tree is increasing at a rate in excess of
4 percent per year, so the optimal decision is to permit the tree to stand. But for t > 25, the
annual growth rate falls below 4 percent and so the forester can find better investments—
perhaps planting new trees.

A change in the interest rate. If the real interest rate rises to 5 percent, then Equation 17.53
becomes

r ¼ 0:05 ¼ 0:2ffiffiffi
t

p , (17.55)

and the optimal harvest age would be

t� ¼ 0:2
0:05

� �2
¼ 16. (17.56)
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The higher real interest rate discourages investment in trees by prompting the forester to
choose an earlier harvest date.11

QUERY: Suppose all prices (including those of trees) were rising at 10 percent per year. How
would this change the optimal harvesting results in this problem?

NATURAL RESOURCE PRICING

Pricing of natural resources has been a concern of economists at least since the time of
ThomasMalthus. A primary issue has been whether the market system can achieve a desirable
allocation of such resources given their ultimately finite and exhaustible nature. In this section
we look at a simple model of resource pricing to illustrate some of the insights that economic
analysis can provide.

Profit-maximizing pricing and output
Suppose that a firm owns a finite stock of a particular resource. Let the stock of the resource at
any time be denoted by xðtÞ and current production from this stock by qðtÞ. Hence, the stock
of this resource evolves according to the differential equation

dxðt Þ
dt

¼ _x ðt Þ ¼ �qðt Þ, (17.57)

where we use the dot notation to denote a time derivative. The stock of this resource is
constrained by xð0Þ ¼ _

x and xð∞Þ ¼ 0. Extraction of this resource exhibits constant average
and marginal cost for changes in output levels, but this cost may change over time. Hence the
firm’s total costs at any point in time areCðtÞ ¼ cðtÞqðtÞ. The firm’s goal then is to maximize
the present discounted value of profits subject to the constraint given in Equation 17.57. If
we let pðtÞ be the price of the resource at time t , then profits are given by

π ¼ ∫
∞

0

½pðt Þqðt Þ � cðt Þqðt Þ�e�rt dt , (17.58)

where r is the real interest rate (assumed to be constant throughout our analysis). Setting up
the augmented Hamiltonian for this dynamic optimization problem yields

H ¼ ½pðt Þqðt Þ � cðt Þqðt Þ�e�rt þ λ½�qðt Þ� þ xðt Þ dλ
dt

. (17.59)

The maximum principle applied to this dynamic problem has two first-order conditions for a
maximum:

Hq ¼ ½pðt Þ � cðt Þ�e�rt � λ ¼ 0,

Hx ¼ dλ
dt

¼ 0.
(17.60)

The second of these conditions implies that the “shadow price” of the resource stock should
remain constant over time. Because producing a unit of the resource reduces the stock by

11For futher tree-related economics, see Problems 17.4 and 17.11.
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precisely 1 unit no matter when it is produced, any time path along which this shadow price
changed would be nonoptimal. Substituting this result into the first condition yields

dλ
dt

¼ _λð _p � _cÞe�rt � rðp � cÞe�rt ¼ 0. (17.61)

Dividing by e�rt and rearranging terms provides an equation that explains how the price of
the resource must change over time:

_p ¼ rðp � cÞ þ _c . (17.62)

Notice that the price change has two components. The second component shows that price
changes must follow any changes in marginal extraction costs. The first shows that, even if
extraction costs do not change, there will be an upward trend in prices that reflects the
scarcity value of the resource. The firm will have an incentive to delay some resource
production only if so refraining will yield a return equivalent to the real interest rate.
Otherwise it is better for the firm to sell all its resource assets and invest the funds elsewhere.
This result, first noted12 by Harold Hotelling in the early 1930s, can be further simplified
by assuming that marginal extraction costs are always zero. In this case, Equation 17.62
reduces to the simple differential equation

_p ¼ rp, (17.63)

whose solution is

p ¼ p0e
rt . (17.64)

That is, prices rise exponentially at the real rate of interest. More generally, suppose that
marginal costs also follow an exponential trend given by

cðt Þ ¼ c0e
γt , (17.65)

where γ may be either positive or negative. In this case, the solution to the differential
Equation 17.62 is

pðt Þ ¼ ðp0 � c0Þert þ c0e
γt . (17.66)

This makes it even clearer that the resource price is influenced by two trends: an increasing
scarcity rent that reflects the asset value of the resource, and the trend in marginal extraction
costs.

EXAMPLE 17.4 Can Resource Prices Decrease?

Although Hotelling’s original observation suggests that natural resource prices should rise at
the real rate of interest, Equation 17.66 makes clear that this conclusion is not unambiguous.
If marginal extraction costs fall because of technical advances (that is, if γ is negative), then it
is possible that the resource price will fall. The conditions that would lead to falling resource
prices can be made more explicit by calculating the first and second time derivatives of price in
Equation 17.66:

dp
dt

¼ rðp0 � c0Þert þ γc0e
γt ,

d2p
dt 2

¼ r2ðp0 � c0Þert þ γ2c0e
γt > 0.

(17.67)

12H. Hotelling, “The Economics of Exhaustible Resources,” Journal of Political Economy (April 1931): 137–75.
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Because the second derivative is always positive, we need only examine the sign of the first
derivative at t ¼ 0 to conclude when prices decline. At this initial date,

dp
dt

¼ rðp0 � c0Þ þ γc0. (17.68)

Hence, prices will decline (at least initially), providing

�γ

r
>

p0 � c0
c0

. (17.69)

Clearly this condition cannot be met if marginal extraction costs are increasing over time
(γ > 0). But if costs are falling, a period of declining real price is possible. For example, if
r ¼ 0.05 and γ ¼ �0.02, then prices would fall provided initial scarcity rents were less than
40 percent of extraction costs. Although prices must eventually turn up, a fairly abundant
resource that experienced significant declines in extraction costs could have a relatively long
period of falling prices. This seems to have been the case for crude oil, for example.

QUERY: Is the firm studied in this section a price taker? How would the analysis differ if the
firm were a monopolist? (See also Problem 17.10.)

Generalizing the model
The description of natural resource pricing given here provides only a brief glimpse of this
important topic.13 Some additional issues that have been considered by economists include
social optimality, substitution, and renewable resources.

Social Optimality. Are the price trends described in Equation 17.66 economically efficient?
That is, do they maximize consumer surplus in addition to maximizing the firm’s profits? Our
previous discussion of optimal consumption over time suggests that the marginal utility of
consumption should change in certain prescribed ways if the consumer is to remain on his or
her optimal path. Because individuals will consume any resource up to the point at which its
price is proportional to marginal utility, it seems plausible that the price trends calculated here
might be consistent with optimal consumption. But a more complete analysis would need to
introduce the consumer’s rate of time preference and his or her willingness to substitute for
an increasingly high-priced resource, so there is no clear-cut answer. Rather, the optimality of
the path indicated by Equation 17.66 will depend on the specifics of the situation.

Substitution. A related issue is how substitute resources should be integrated into this
analysis. A relatively simple answer is provided by considering how the initial price (p0)
should be chosen in Equation 17.66. If that price is such that the initial price-quantity
combination is a market equilibrium, then—assuming all other finite resource prices follow
a similar time trend—relative resource prices will not change and (with certain utility func-
tions) the price-quantity time paths for all of them may constitute an equilibrium. An
alternative approach would be to assume that a perfect substitute for the resource will be
developed at some date in the future. If this new resource is available in perfectly elastic
supply, then its availability would put a cap on the price or the original resource; this also
would have implications for p0 (see Problem 17.7). But all of these solutions to modeling

13For a sampling of dynamic optimization models applied to natural resource issues, see J. M. Conrad and C. W. Clark,
Natural Resource Economics: Notes and Problems (Cambridge: Cambridge University Press, 2004).
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substitutability are special cases. To model the situation more generally requires a dynamic
general equilibrium model capable of capturing interactions in many markets.

Renewable Resources. A final complication that might be added to the model of resource
pricing presented here is the possibility that the resource in question is not finite: it can be
renewed through natural or economic actions. This would be the case for timber or fishing
grounds, where various types of renewal activities are possible. The formal consideration of
renewable resources requires a modification of the differential equation defining changes in
the resource stock, which no longer takes the simple form given in Equation 17.57. Specifi-
cation of profit-maximizing price trajectories in such cases can become quite complicated.

PROBLEMS

17.1
An individual has a fixed wealth ðW Þ to allocate between consumption in two periods (c1 and c2). The
individual’s utility function is given by

U ðc1, c2Þ,
and the budget constraint is

W ¼ c1 þ
c2

1þ r
,

where r is the one-period interest rate.

a. Show that, in order to maximize utility given this budget constraint, the individual should
choose c1 and c2 such that the MRS (of c1 for c2) is equal to 1þr.

b. Show that ∂c2=∂r 	 0 but that the sign of ∂c1=∂r is ambiguous. If ∂c1=∂r is negative, what can
you conclude about the price elasticity of demand for c2?

c. How would your conclusions from part (b) be amended if the individual received income in
each period (y1 and y2) such that the budget constraint is given by

y1 � c1 þ
y2 � c2
1þ r

¼ 0?

17.2
Assume that an individual expects to work for 40 years and then retire with a life expectancy of an
additional 20 years. Suppose also that the individual’s earnings rise at a rate of 3 percent per year and

SUMMARY

In this chapter we examined several aspects of the theory of
capital, with particular emphasis on integrating it with the
theory of resource allocation over time. Some of the results
were as follows.

• Capital accumulation represents the sacrifice of present
for future consumption. The rate of return measures the
terms at which this trade can be accomplished.

• The rate of return is established through mechanisms
much like those that establish any equilibrium price. The
equilibrium rate of return will be positive, reflecting not
only individuals’ relative preferences for present over
future goods but also the positive physical productivity
of capital accumulation.

• The rate of return (or real interest rate) is an important
element in the overall costs associated with capital own-
ership. It is an important determinant of the market
rental rate on capital, v.

• Future returns on capital investments must be dis-
counted at the prevailing real interest rate. Use of such
present value notions provides an alternative way to ap-
proach studying the firm’s investment decisions.

• Individual wealth accumulation, natural resource pric-
ing, and other dynamic problems can be studied using
the techniques of optimal control theory. Often such
models will yield competitive-type results.
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that the interest rate is also 3 percent (the overall price level is constant in this problem). What
(constant) fraction of income must the individual save in each working year to be able to finance a
level of retirement income equal to 60 percent of earnings in the year just prior to retirement?

17.3
As scotch whiskey ages, its value increases. One dollar of scotch at year 0 is worth V ðtÞ ¼
expf2 ffiffiffi

t
p � 0:15tg dollars at time t . If the interest rate is 5 percent, after how many years should a

person sell scotch in order to maximize the PDV of this sale?

17.4
As in Example 17.3, suppose trees are produced by applying 1 unit of labor at time 0. The value of the
wood contained in a tree is given at any time t by f ðtÞ. If the market wage rate is w and the real interest
rate is r, what is the PDV of this production process, and how should t be chosen tomaximize this PDV ?

a. If the optimal value of t is denoted by t�, show that the “no pure profit” condition of perfect
competition will necessitate that

w ¼ e�rt f ðt�Þ.
Can you explain the meaning of this expression?

b. A tree sold before t� will not be cut down immediately. Rather, it still will make sense for the
new owner to let the tree continue to mature until t�. Show that the price of a u-year-old tree
will be weru and that this price will exceed the value of the wood in the tree ½ f ðuÞ� for every
value of u except u ¼ t� (when these two values are equal).

c. Suppose a landowner has a “balanced” woodlot with one tree of “each” age from 0 to t�. What
is the value of this woodlot? Hint: It is the sum of the values of all trees in the lot.

d. If the value of the woodlot is V , show that the instantaneous interest on V (that is, r ⋅V ) is
equal to the “profits” earned at each instant by the landowner, where by profits we mean the
difference between the revenue obtained from selling a fully matured tree ½ f ðt�Þ� and the cost
of planting a new one ðwÞ. This result shows there is no pure profit in borrowing to buy a
woodlot, because one would have to pay in interest at each instant exactly what would be earned
from cutting a fully matured tree.

17.5
This problem focuses on the interaction of the corporate profits tax with firms’ investment decisions.

a. Suppose (contrary to fact) that profits were defined for tax purposes as what we have called pure
economic profits. How would a tax on such profits affect investment decisions?

b. In fact, profits are defined for tax purposes as

π0 ¼ pq � wl � depreciation,

where depreciation is determined by governmental and industry guidelines that seek to allocate
a machine’s costs over its “useful” lifetime. If depreciation were equal to actual physical
deterioration and if a firm were in long-run competitive equilibrium, how would a tax on π0

affect the firm’s choice of capital inputs?

c. Given the conditions of part (b), describe how capital usage would be affected by adoption of
“accelerated depreciation” policies, which specify depreciation rates in excess of physical deteri-
oration early in a machine’s life but much lower depreciation rates as the machine ages.

d. Under the conditions of part (c), how might a decrease in the corporate profits tax affect
capital usage?

17.6
A high-pressure life insurance salesman was heard to make the following argument: “At your age a
$100,000 whole life policy is a much better buy than a similar term policy. Under a whole life policy
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you’ll have to pay $2,000 per year for the first four years but nothing more for the rest of your life.
A term policy will cost you $400 per year, essentially forever. If you live 35 years, you’ll pay only $8,000
for the whole life policy, but $14,000 (¼ $400 ⋅ 35) for the term policy. Surely, the whole life is a better
deal.”

Assuming the salesman’s life expectancy assumption is correct, how would you evaluate this
argument? Specifically, calculate the present discounted value of the premium costs of the two policies
assuming the interest rate is 10 percent.

17.7
Suppose that a perfect substitute for crude oil will be discovered in 15 years and that the price of
this substitute will be the equivalent of an oil price of $125 per barrel. Suppose the current marginal
extraction cost for oil is $7 per barrel. Assume also that the real interest rate is 5 percent and that real
extraction costs fall at a rate of 2 percent annually. If crude oil prices follow the path described in
Equation 17.66, what should the current price of crude oil be? Does your answer shed any light on
actual pricing in the crude oil market?

Analytical Problems

17.8 Capital gains taxation
Suppose an individual hasW dollars to allocate between consumption this period ðc0Þ and consumption
next period ðc1Þ and that the interest rate is given by r.

a. Graph the individual’s initial equilibrium and indicate the total value of current-period
savings ðW � c0Þ.

b. Suppose that, after the individual makes his or her savings decision (by purchasing one-period
bonds), the interest rate falls to r 0. How will this alter the individual’s budget constraint? Show
the new utility-maximizing position. Discuss how the individual’s improved position can be
interpreted as resulting from a “capital gain” on his or her initial bond purchases.

c. Suppose the tax authorities wish to impose an “income” tax based on the value of capital gains.
If all such gains are valued in terms of c0 as they are “accrued,” show how those gains should be
measured. Call this value G1.

d. Suppose instead that capital gains are measured as they are “realized”—that is, capital gains are
defined to include only that portion of bonds that is cashed in to buy additional c0. Show how
these realized gains can be measured. Call this amount G2.

e. Develop a measure of the true increase in utility that results from the fall in r, measured in terms
of c0. Call this “true” capital gain G3. Show that G3 < G2 < G1. What do you conclude about a
tax policy that taxes only realized gains?

Note: This problem is adapted from J. Whalley, “Capital Gains Taxation and Interest Rate Changes,”
National Tax Journal (March 1979): 87–91.

17.9 Precautionary saving and prudence
The Query to Example 17.2 asks how uncertainty about the future might affect a person’s savings
decisions. In this problem we explore this question more fully. All of our analysis is based on the simple
two-period model in Example 17.1.

a. To simplify matters, assume that r ¼ δ in Equation 17.15. If consumption is certain, this implies
thatU 0ðc0Þ ¼ U 0ðc1Þ or c0 ¼ c1. But suppose that consumption in period 1 will be subject to a
zero-mean random shock, so that c1 ¼ c p1 þ x, where c p1 is planned period-1 consumption and
x is a random variable with an expected value of 0. Describe why, in this context, utility
maximization requires U 0ðc0Þ ¼ E½U 0ðc1Þ�.
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b. Use Jensen’s inequality (see Chapters 2 and 7) to show that this person will opt for c p1 > c0 if
and only if U 0 is convex—that is, if and only if U 000 > 0.

c. Kimball14 suggests using the term “prudence” to describe a person whose utility function is
characterized by U 000 > 0. Describe why the results from part (b) show that such a definition is
consistent with everyday usage.

d. In Example 17.2 we showed that real interest rates in the U.S. economy seem too low to
reconcile actual consumption growth rates with evidence on individuals’ willingness to experi-
ence consumption fluctuations. If consumption growth rates were uncertain, would this explain
or exacerbate the paradox?

17.10 Monopoly and natural resource prices
Suppose that a firm is the sole owner of a stock of a natural resource.

a. How should the analysis of the maximization of the discounted profits from selling this resource
(Equation 17.58) be modified to take this fact into account?

b. Suppose that the demand for the resource in question had a constant elasticity form qðtÞ ¼
a½pðtÞ�b . How would this change the price dynamics shown in Equation 17.62?

c. How would the answer to Problem 17.7 be changed if the entire crude oil supply were owned
by a single firm?

17.11 Renewable timber economics
The calculations in Problem 17.4 assume there is no difference between the decisions to cut a single tree
and to manage a woodlot. But managing a woodlot also involves replanting, which should be explicitly
modeled. To do so, assume a lot owner is considering planting a single tree at a costw, harvesting the tree
at t�, planting another, and so forth forever. The discounted stream of profits from this activity is then

V ¼ �w þ e�rt ½ f ðt Þ � w� þ e�r2t ½ f ðt Þ � w� þ … þ e�rnt ½ f ðt Þ � w� þ…:

a. Show that the total value of this planned harvesting activity is given by

V ¼ f ðt Þ � w
e�rt � 1

� w.

b. Find the value of t that maximizes V . Show that this value solves the equation

f 0ðt�Þ ¼ rf ðt�Þ þ rV ðt�Þ.

c. Interpret the results of part (b): How do they reflect optimal usage of the “input” time? Why is
the value of t� specified in part (b) different from that in Example 17.2?

d. Suppose tree growth (measured in constant dollars) follows the logistic function

f ðt Þ ¼ 50=ð1þ e10�0:1t Þ.
What is the maximum value of the timber available from this tree?

e. If tree growth is characterized by the equation given in part (d), what is the optimal rotation
period if r ¼ 0:05 and w ¼ 0? Does this period produce a “maximum sustainable” yield?

f. How would the optimal period change if r fell to 0.04?

Note: The equation derived in part (b) is known in forestry economics as Faustmann’s equation.

14M. S. Kimball, “Precautionary Savings in the Small and in the Large,” Econometrica (January 1990): 53–73.
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17.12 Hyperbolic discounting
The notion that people might be “shortsighted”was formalized by David Laibson in “Golden Eggs and
Hyperbolic Discounting” (Quarterly Journal of Economics, May 1997, pp. 443–477). In this paper the
author hypothesizes that individuals maximize an intertemporal utility function of the form

utility ¼ U ðct Þ þ β
Xτ¼T

τ¼1

δτU ðctþτÞ,

where 0 < β < 1 and 0 < δ < 1. The particular time pattern of these discount factors leads to the
possibility of shortsightedness.

a. Laibson suggests hypothetical values of β ¼ 0:6 and δ ¼ 0:99. Show that, for these values, the
factors by which future consumption is discounted follow a general hyperbolic pattern. That is,
show that the factors drop significantly for period t þ 1 and then follow a steady geometric rate
of decline for subsequent periods.

b. Describe intuitively why this pattern of discount rates might lead to shortsighted behavior.

c. More formally, calculate the MRS between ctþ1 and ctþ2 at time t . Compare this to the MRS
between ctþ1 and ctþ2 at time t þ 1. Explain why, with a constant real interest rate, this would
imply “dynamically inconsistent” choices over time. Specifically, how would the relationship
between optimal ctþ1 and ctþ2 differ from these two perspectives?

d. Laibson explains that the pattern described in part (c) will lead “early selves” to find ways to
constrain “future selves” and so achieve full utility maximization. Explain why such constraints
are necessary.

e. Describe a few of the ways in which people seek to constrain their future choices in the
real world.
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A P P E N D I X T O C H A P T E R

17

The Mathematics of Compound
Interest

The purpose of this appendix is to gather some simple results concerning the mathematics of compound
interest. These results have applications in a wide variety of economic problems that range from macroeco-
nomic policy to the optimal way of raising Christmas trees.

We assume there is a current prevailing market interest rate of i per period—say, of one year.
This interest rate is assumed to be both certain and constant over all future periods.1 If $1 is
invested at this rate i and if the interest is then compounded (that is, future interest is paid on
post interest earned), then: at the end of one period, $1 will be

$1� ð1þ iÞ;
at the end of two periods, $1 will be

$1� ð1þ iÞ � ð1þ iÞ ¼ $1� ð1þ iÞ2;
and at the end of n periods, $1 will be

$1� ð1þ iÞn.
Similarly, $N grows like

$N � ð1þ iÞn.

PRESENT DISCOUNTED VALUE

The present value of $1 payable one period from now is

$1
1þ i

.

1The assumption of a constant i is obviously unrealistic. Because problems introduced by considering an interest rate that
varies from period to period greatly complicate the notation without adding a commensurate degree of conceptual
knowledge, such an analysis is not undertaken here. In many cases the generalization to a varying interest rate is merely a
trivial application of the notion that any multiperiod interest rate can be regarded as resulting from compounding several
single-period rates. If we let rij be the interest rate prevailing between periods i and j (where i < j), then

1þ rij ¼ ð1þ ri, iþ1Þ þ ð1þ riþ1,iþ2Þ þ…þ ð1þ rj�1, j Þ.

619



This is simply the amount an individual would be willing to pay now for the promise of $1 at
the end of one period. Similarly, the present value of $1 payable n periods from now is

$1
ð1þ iÞn ,

and the present value of $N payable n periods from now is

$N
ð1þ iÞn .

The present discounted value of a stream of payments N0,N1,N2, :::,Nn (where the
subscripts indicate the period in which the payment is to be made) is

PDV ¼ N0 þ
N1

ð1þ iÞ þ N2

ð1þ iÞ2 þ…þ Nn

ð1þ iÞn. (17A.1)

The PDV is the amount an individual would be willing to pay in return for a promise to
receive the stream N0,N1,N2, :::,Nn. It represents the amount that would have to be
invested now if one wished to duplicate the payment stream.

Annuities and perpetuities
An annuity is a promise to pay $N in each period for n periods, starting next period. The
PDV of such a contract is

PDV ¼ N
1þ i

þ N

ð1þ iÞ2 þ…þ N
ð1þ iÞn. (17A.2)

Let δ ¼ 1=ð1þ iÞ; then,

PDV ¼ N ðδþ δ2 þ…þ δnÞ
¼ Nδð1þ δþ δ2 þ…þ δn�1Þ

¼ Nδ
1� δn

1� δ

� �
. (17A.3)

Observe that

lim
n!∞

δn ¼ 0.

Therefore, for an annuity of infinite duration,

PDV of infinite annuity ¼ lim
n!∞

PDV ¼ Nδ
1

1� δ

� �
; (17A.4)

by the definition of δ,

Nδ
1

1� δ

� �
¼ N

1
1þ i

� �
1

1� 1=ð1þ iÞ
� �

¼ N
1

1þ i

� �
1þ i
i

� �
¼ N

i
. (17A.5)

This case of an infinite-period annuity is sometimes called a perpetuity or a consol. The
formula simply says that the amount that must be invested if one is to obtain $N per period
forever is simply $N =i, because this amount of money would earn $N in interest each
period ði ⋅ $N =i ¼ $N Þ.
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The special case of a bond
An n-period bond is a promise to pay $N each period, starting next period, for n periods. It
also promises to return the principal (face) value of the bond at the end of n periods. If the
principal value of the bond is $P (usually $1,000 in the U.S. bond market), then the present
discounted value of such a promise is

PDV ¼ N
1þ i

þ N

ð1þ iÞ2 þ
…þ N

ð1þ iÞn þ P
ð1þ iÞn . (17A.6)

Again, let δ ¼ 1=ð1þ iÞ; then,

PDV ¼ NδþNδ2 þ…þ ðN þ PÞδn . (17A.7)

Equation 17A.7 can be looked at in another way. Suppose we knew the price (say, B) at
which the bond is currently trading. Then we could ask what value of i gives the bond a
PDV equal to B. To find this i we set

B ¼ PDV ¼ NδþNδ2 þ…þ ðN þ P Þδn . (17A.8)

Because B,N , and P are known, we can solve this equation for δ and hence for i.2 The i that
solves the equation is called the yield on the bond and is the best measure of the return
actually available from the bond. The yield of a bond represents the return available both
from direct interest payments and from any price differential between the initial price ðBÞ
and the maturity price ðPÞ.

Notice that, as i increases, PDV decreases. This is a precise way of formulating the well-
known concept that bond prices (PDVs) and interest rates (yields) are inversely correlated.

CONTINUOUS TIME

Thus far our approach has dealt with discrete time—the analysis has been divided into
periods. Often it is more convenient to deal with continuous time. In such a case the interest
on an investment is compounded “instantaneously” and growth over time is “smooth.” This
facilitates the analysis of maximization problems because exponential functions are more
easily differentiated. Many financial intermediaries (for example, savings banks) have adopted
(nearly) continuous interest formulas in recent years.

Suppose that i is given as the (nominal) interest rate per year but that half this nominal
rate is compounded every six months. Then, at the end of one year, the investment of $1
would have grown to

$1� 1þ i
2

� �2
. (17A.9)

Observe that this is superior to investing for one year at the simple rate i, because interest
has been paid on interest; that is,

1þ i
2

� �2

> ð1þ iÞ. (17A.10)

2Because this equation is an nth-degree polynomial, there are in reality n solutions (roots). Only one of these solutions is
the relevant one reported in bond tables or on calculators. The other solutions are either imaginary or unreasonable. In the
present example there is only one real solution.
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Consider the limit of this process: for the nominal rate of i per period, consider the
amount that would be realized if i were in fact “compounded n times during the period.”
Letting n ! ∞, we have

lim
n!∞

1þ i
n

� �n

. (17A.11)

This limit exists and is simply ei, where e is the base of natural logarithms (the value of e is
approximately 2.72). It is important to note that ei > ð1þ iÞ—it is much better to have
continuous compounding over the period than to have simple interest.

We can ask what continuous rate r yields the same amount at the end of one period as the
simple rate i. We are looking for the value of r that solves the equation

er ¼ ð1þ iÞ. (17A.12)

Hence,

r ¼ lnð1þ iÞ. (17A.13)

Using this formula, it is a simplematter to translate from discrete interest rates into continuous
ones. If i is measured as a decimal yearly rate, then r is a yearly continuous rate. Table 17A.1
shows the effective annual interest rate ðiÞ associated with selected interest rates ðrÞ that are
continuously compounded.3 Tables similar to 17A.1 often appear in the windows of savings
banks advertising the “true” yields on their accounts.

Continuous growth
One dollar invested at a continuous interest rate of r will become

V ¼ $1 ⋅ erT (17A.14)

3To compute the figures in Table 17A.1, interest rates are used in decimal rather than percent form (that is, a 5 percent
interest rate is recorded as 0.05 for use in Equation 17A.12).

TABLE 17A.1 Effective Annual Interest Rates for Selected
Continuously Compounded Rates

Continuously
Compounded Rate Effective Annual Rate

3.0% 3.05%

4.0 4.08

5.0 5.13

5.5 5.65

6.0 6.18

6.5 6.72

7.0 7.25

8.0 8.33

9.0 9.42

10.0 10.52

622 Part 6 Pricing in Input Markets



after T years. This growth formula is a convenient one to work with. For example, it is easy
to show that the instantaneous relative rate of change in V is, as would be expected, simply
given by r:

relative rate of change ¼ dV =dt
V

¼ rert

ert
¼ r . (17A.15)

Continuous interest rates also are convenient for calculating present discounted values.
Suppose we wished to calculate the PDV of $1 to be paid T years from now. This would be
given by4

$1
erT

¼ $1� e�rT . (17A.16)

The logic of this calculation is exactly the same as that used in the discrete time analysis of
this appendix: future dollars are worth less than present dollars.

Payment streams
One interesting application of continuous discounting occurs in calculating the PDV of
$1 per period paid in small installments at each instant of time from today (time 0) until time
T . Because there would be an infinite number of payments, the mathematical tool of
integration must be used to compute this result:

PDV ¼ ∫
T

0

e�rt dt . (17A.17)

What this expression means is that we are adding all the discounted dollars over the time
period 0 to T .

The value of this definite integral is given by

PDV ¼ �e�rt

r

����T
0

¼ �e�rT

r
þ 1

r
: (17A.18)

As T aproaches infinity, this value becomes

PDV ¼ 1
r
, (17A.19)

as was the case for the infinitely long annuity considered in the discrete case.
Continuous discounting is particularly convenient for calculating the PDV of an arbitrary

stream of payments over time. Suppose that f ðtÞ records the number of dollars to be paid
during period t . Then the PDV of the payment at time t is

e�rt f ðt Þ, (17A.20)

and the PDV of the entire stream from the present time (year 0) until year T is given by

∫
T

0

f ðt Þe�rt dt . (17A.21)

4In physics this formula occurs as an example of “radioactive decay.” If 1 unit of a substance decays continuously at the rate δ
then, after T periods, e�δT units will remain. This amount never exactly reaches zero no matter how large T is. Depreciation
can be treated the same way in capital theory.
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Often, economic agents may seek to maximize an expression such as that given in Equation
17A.21. Use of continuous time makes the analysis of such choices straightforward because
standard calculus methods of maximization can be used.

Duration
The use of continuous time can also clarify a number of otherwise rather difficult financial
concepts. For example, suppose we wished to know how long, on average, it takes for an
individual to receive a payment from a given payment stream, f ðtÞ. The present value of the
stream is given by

V ¼ ∫
T

0

f ðt Þe�rt dt . (17A.22)

Differentiation of this value by the discount factor, e�r , yields

∂V
∂e�r ¼ ∫

T

0

tf ðt Þe�rðt�1Þ dt , (17A.23)

and the elasticity of this change is given by

e ¼ ∂V
∂e�r ⋅

e�r

V
¼ ∫T0 tf ðt Þe�rt dt

V
. (17A.24)

Hence the elasticity of the present value of this payment stream with respect to the annual
discount factor (which is similar to, say, the elasticity of bond prices with respect to changes
in interest rates) is given by the ratio of the present value of a time-weighted stream of
payments to an unweighted stream. Conceptually, then, this elasticity represents the average
time an individual must wait to receive the typical payment. In the financial press this
concept is termed the duration of the payment stream. This is an important measure of the
volatility of the present value of such a stream with respect to interest rate changes.5

5As an example, a duration of 8 years would mean that the mean length of time that the individual must wait for the typical
payment is 8 years. It also means that the elasticity of the value of this stream with respect to the discount factor is 8.0.
Because the elasticity of the discount factor itself with respect to the interest rate is simply �r, the elasticity of the value of
the stream with respect to this interest rate is �8r. If r ¼ 0:05, for example, then the elasticity of the present value of this
stream with respect to r is �0:40.

624 Part 6 Pricing in Input Markets



P A R T 7
Market Failure
CHAPTER 18 Asymmetric Information

CHAPTER 19 Externalities and Public Goods

In this part we look more closely at some of the reasons why markets may perform poorly in allocating
resources. We will also examine some of the ways in which such market failures might be mitigated.

Chapter 18 focuses on situations where some market participants are better informed than others. In
such cases of asymmetric information, establishing efficient contracts between these parties can be quite
complicated and may involve a variety of strategic choices. We will see that in many situations the first-best,
fully informed solution is not attainable. Therefore, second-best solutions that may involve some efficiency
losses must be considered.

Externalities are the principal topic of Chapter 19. The first part of the chapter is concerned with
situations in which the actions of one economic actor directly affect the well-being of another actor. We
show that, unless these costs or benefits can be internalized into the decision process, resources will be
misallocated. In the second part of the chapter we turn to a particular type of externality, that posed by
“public goods”: goods that are both nonexclusive and nonrival. We show that markets will often under-
allocate resources to such goods, so other ways of financing (such as compulsary taxation) should be
considered. Chapter 19 concludes with an examination of how voting may affect this process.
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C H A P T E R

18

Asymmetric Information

Markets may not be fully efficient when one side has information that the other side does not (asymmetric
information). Contracts with more complex terms than simple per-unit prices may be used to help solve
problems raised by such asymmetric information. The two important classes of asymmetric information
problems studied in this chapter include adverse selection problems, in which a party obtains asymmetric
information about market conditions before signing the contract, and moral hazard problems, in which one
party’s actions during the term of the contract are unobservable to the other. Carefully designed contracts
may reduce such problems by providing incentives to reveal one’s information and take appropriate actions.
But these contracts seldom eliminate the inefficiencies entirely. Surprisingly, unbridled competition may
worsen private information problems, although a carefully designed auction can harness competitive forces
to the auctioneer’s advantage.

COMPLEX CONTRACTS AS A RESPONSE
TO ASYMMETRIC INFORMATION

So far, the transactions we have studied have involved simple contracts. We assumed that
firms bought inputs from suppliers at constant per-unit prices and likewise sold output to
consumers at constant per-unit prices. Many real-world transactions involve much more
complicated contracts. Rather than an hourly wage, a corporate executive’s compensation
usually involves complex features such as the granting of stock, stock options, and bonuses.
Expensive durable goods such as appliances and cars often carry warranties that can be
extended for an extra fee. Insurance policies may cap the insurer’s liability and may require
the customer to bear costs in the form of deductibles and copayments. Rather than being sold
at a posted price, some goods are sold at auction with reserve prices and other complicated
features. In this chapter, we will show that such complex contracts and sales methods may
arise as a way for transacting parties to deal with the problem of asymmetric information.

Asymmetric information

Transactions can involve a considerable amount of uncertainty. The value of a snow shovel
will depend on how much snow falls during the winter season. The value of a hybrid car will
depend on how much gasoline prices rise in the future. By itself, uncertainty need not
introduce inefficiencies. Buyers and sellers can handle uncertainty by exchanging contingent
commodities (introduced in Chapter 7). For example, rather than buying a snow shovel out-
right, a consumer could buy the services of the shovel during the month of January con-
ditional on snowfall of 10 inches or more. With markets for such commodities covering every
possible future contingency, the same results that ensured the efficiency of perfect com-
petition under perfect certainty would also hold under uncertainty.

Uncertainty need not lead to inefficiency when both sides of a transaction have the same
limited knowledge concerning the future, but it can lead to inefficiency when one side has
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better information. The side with better information is said to have private information or,
equivalently, asymmetric information. There are several sources of asymmetric information.
Parties will often have “inside information” concerning themselves that the other side does
not have. Consider the case of health insurance. A customer seeking insurance will often have
private information about his or her own health status and family medical history that the
insurance company does not. Consumers in good health may not bother to purchase health
insurance at the prevailing rates. A consumer in poor health would have higher demand for
insurance, wishing to shift the burden of large anticipated medical expenses to the insurer. A
medical examination may help the insurer learn about a customer’s health status, but
examinations are costly and may not reveal all of the customer’s private health information.
The customer will be reluctant to report family medical history and genetic disease honestly
if the insurer might use this information to deny coverage or raise premiums. The customer
also has better information about lifestyle choices that may affect health and thus medical
expenses—for example, eating a healthy diet and not smoking. The insurer might like to
condition coverage on the maintenance of a healthy lifestyle, but it may be prohibitively
expensive for the insurer to monitor such behaviors day in and day out (and the customer
again cannot be expected to reveal information about his or her behavior if this could be used
to reduce coverage or increase premiums).

Other sources of asymmetric information arise when what is being bought is an agent’s
service. The buyer may not always be able to monitor how hard and well the agent is working.
The agent may have better information about the requirements of the project because of his
or her expertise, which is the reason the agent was hired in the first place. For example, a
repairer called to fix a kitchen appliance will know more about the true severity of the
appliance’s mechanical problems than does the homeowner.

Asymmetric information can lead to inefficiencies. Insurance companies may offer less
insurance and charge higher premiums than if they could observe the health of potential
clients and could require customers to obey strict health regimens. The whole market may
unravel as consumers who expect their health expenditures to be lower than the average
insured consumer’s withdraw from the market in successive stages, leaving only the few worst
health risks as consumers. With appliance repair, the repairer may pad his or her bill by
replacing parts that still function and may take longer than needed—a waste of resources.

The value of contracts

Contractual provisions can be added in order to circumvent some of these inefficiencies. An
insurance company can offer lower health insurance premiums to customers who submit to
medical exams or who are willing to bear the cost of some fraction of their ownmedical services.
Lower-risk consumers may be more willing than high-risk consumers to submit to medical
exams and to bear a fraction of their medical expenses. A homeowner may buy a service contract
that stipulates a fixed fee for keeping the appliance running rather than a payment for each
service call and part needed in the event the appliance breaks down.

Although contracts may help reduce the inefficiencies associated with asymmetric infor-
mation, rarely do they eliminate the inefficiencies altogether. In the health insurance example,
having some consumers undertake a medical exam requires the expenditure of real resources.
Requiring low-risk consumers to bear some of their own medical expenditures means that
they are not fully insured, which is a social loss to the extent that a risk-neutral insurance
company would be a more efficient risk bearer than a risk-averse consumer. A fixed-fee
contract to maintain an appliance may lead the homeowner to be careless when handling
the appliance because any subsequent malfunction is the repairman’s problem, not the home-
owner’s. It may also lead the repairer to supply too little effort, overlooking potential prob-
lems in the hope that nothing breaks until after the service contract expires (and so then the
problems become the homeowner’s).
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PRINCIPAL-AGENT MODEL

Models of asymmetric information can quickly become quite complicated and so, before
considering a full-blown market model with many suppliers and demanders, we will devote
much of our analysis to a simpler model—called a principal-agent model—in which there is
only one party on each side of the market. The party who proposes the contract is called the
principal. The party who decides whether or not to accept the contract and then performs
under the terms of the contract (if accepted) is called the agent. The agent is typically the
party with the asymmetric information. We will use “she” for the principal and “he” for the
agent to facilitate the exposition.

Two leading models

Two models of asymmetric information are studied most often. In a first model, the agent’s
actions taken during the term of the contract affect the principal, but the principal does not
observe these actions directly. The principal may observe outcomes that are correlated with
the agent’s actions but not the actions themselves. This first model is called a hidden-action
model. For historical reasons stemming from the insurance context, the hidden-action model
is also called a moral hazard model.

In a second model, the agent has private information about the state of the world before
signing the contract with the principal. The agent’s private information is called his type,
consistent with our terminology from games of private information studied in Chapter 8. The
second model is thus called a hidden-type model. For historical reasons stemming from its
application in the insurance context, which we discuss later, the hidden-type model is also
called an adverse selection model.

As indicated by Table 18.1, the hidden-type and hidden-action models cover a wide
variety of applications. Note that the same party might be a principal in one setting and an
agent in another. For example, a company’s CEO is the principal in dealings with the
company’s employees but is the agent of the firm’s shareholders. We will study several of
the applications from Table 18.1 in detail throughout the remainder of this chapter.

TABLE 18.1 Applications of the Principal-Agent Model

Principal Agent Hidden type Hidden action

Shareholders Manager Managerial skill Effort, executive
decisions

Manager Employee Job skill Effort

Homeowner Appliance
repairer

Skill, severity
of appliance
malfunction

Effort, unnecessary
repairs

Student Tutor Subject
knowledge

Preparation,
patience

Monopoly Customer Value for good Care to avoid
breakage

Health insurer Insurance
purchaser

Preexisting
condition

Risky activity

Parent Child Moral fiber Delinquency

Agent’s private information
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First, second, and third best

In a full-information environment, the principal could propose a contract to the agent that
maximizes their joint surplus and captures all of this surplus for herself, leaving the agent with
just enough surplus to make him indifferent between signing the contract or not. This outcome
is called the first best, and the contract implementing this outcome is called the first-best contract.
The first best is a theoretical benchmark that is unlikely to be achieved in practice because the
principal is rarely fully informed. The outcome that maximizes the principal’s surplus subject to
the constraint that the principal is less well informed than the agent is called the second best, and
the contract that implements this outcome is called the second-best contract. Adding further
constraints to the principal’s problem besides the informational constraint—for example,
restricting contracts to some simple form such as constant per-unit prices—leads to the third
best, the fourth best, and so on, depending on how many constraints are added.

Since this chapter is in the part of the book that examines market failures, we will be
interested in determining how important a market failure is asymmetric information. Com-
paring the first to the second best will allow us to quantify the reduction in total welfare due
to asymmetric information.

Also illuminating is a comparison of the second and third best. This comparison will
indicate how surpluses are affected when moving from simple contracts in the third best to
potentially quite sophisticated contracts in the second best. Of course, the principal’s surplus
cannot decrease when she has access to a wider range of contracts with which to maximize
her surplus. However, total welfare—the sum of the principal’s and agent’s surplus in a
principal-agent model—may decrease. Figure 18.1 suggests why. In the example in panel
(a) of the figure, the complex contract increases the total welfare “pie” that is divided between
the principal and the agent. The principal likes the complex contract because it allows her to
obtain a roughly constant share of a bigger pie. In panel (b), the principal likes the complex
contract even though the total welfare pie is smaller with it than with the simple contract. The
complex contract allows her to appropriate a larger slice at the expense of reducing the pie’s
total size. The different cases in panels (a) and (b) will come up in the applications analyzed in
subsequent sections.

HIDDEN ACTIONS

The first of the two important models of asymmetric information is the hidden-action model,
also sometimes called the moral hazard model in insurance and other contexts. The principal
would like the agent to take an action that maximizes their joint surplus (and given that the
principal makes the contract offer, she would like to appropriate most of the surplus for
herself). In the application to the owner-manager relationship that we will study, the owner
would like themanager whom she hires to show up during business hours and work diligently.
In the application to the accident insurance, the insurance company would like the insured
individual to avoid accidents. The agent’s actions may be unobservable to the principal.
Observing the action may require the principal to monitor the agent at all times, and such
monitoring may be prohibitively expensive. If the agent’s action is unobservable then he will
prefer to shirk, choosing an action to suit himself rather than the principal. In the owner-
manager application, shirking might mean showing up late for work and slacking off while on
the job; in the insurance example, shirking might mean taking more risk than the insurance
company would like.

Although contracts cannot prevent shirking directly by tying the agent’s compensation to
his action—because his action is unobservable—contracts can mitigate shirking by tying
compensation to observable outcomes. In the owner-manager application, the relevant
observable outcome might be the firm’s profit. The owner may be able to induce the
manager to work hard by tying the manager’s pay to the firm’s profit, which depends on
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the manager’s effort. The insurance company may be able to induce the individual to take
care by having him bear some of the cost of any accident.

Often, the principal is more concerned with the observable outcome than with the agent’s
unobservable action anyway, so it seems the principal should do just as well by conditioning
the contract on outcomes as on actions. The problem is that the outcome may depend in part
on random factors outside of the agent’s control. In the owner-manager application, the firm’s
profit may depend on consumer demand, which may depend on unpredictable economic
conditions. In the insurance application, whether an accident occurs depends in part on the
care taken by the individual but also on a host of other factors, including other people’s actions
and acts of nature. Tying the agent’s compensation to partially random outcomes exposes him
to risk. If the agent is risk averse, then this exposure causes disutility and requires the payment
of a risk premium before he will accept the contract (see Chapter 7). In many applications, the
principal is less risk averse and thus is a more efficient risk bearer than the agent. In the owner-
manager application, the owner might be one of many shareholders who each hold only a
small share of the firm in a diversified portfolio. In the insurance application, the company may
insure a large number of agents, whose accidents are uncorrelated, and thus face little
aggregate risk. If there were no issue of incentives then the agent’s compensation should be
independent of risky outcomes, completely insuring him against risk and shifting the risk to

FIGURE 18.1 The Contracting “Pie”

The total welfare is the area of the circle (“pie”); the principal’s surplus is the area of the shaded region.
In panel (a), the complex contract increases total welfare and the principal’s surplus alongwith it because
she obtains a constant share. In panel (b), the principal offers the complex contract—even though this
reduces total welfare—because the complex contract allows her to appropriate a larger share.

(a)  Complex contract increases parties’ joint surplus

(b)  Complex contract increases principal’s share of surplus

Complex,
second-best

contract

Simple,
third-best
contract

Complex,
second-best

contract

Simple,
third-best
contract
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the efficient bearer: the principal. The second-best contract strikes the optimal balance
between incentives and insurance, but it does not provide as strong incentives or as full
insurance as the first-best contract.

In the following sections, we will study two specific applications of the hidden-action
model. First, we will study employment contracts signed between a firm’s owners and a
manager who runs the firm on behalf of the owners. Second, we will study contracts offered
by an insurance company to insure an individual against accident risk.

OWNER-MANAGER RELATIONSHIP

Modern corporations may be owned by millions of dispersed shareholders who each own a
small percentage of the corporation’s stock. The shareholders—who may have little expertise
in the line of business and who may own too little of the firm individually to devote much
attention to it—delegate the operation of the firm to a managerial team consisting of the chief
executive (CEO) and other officers. We will simplify the setting and suppose that the firm has
one representative owner and one manager. The owner, who plays the role of the principal in
the model, offers a contract to the manager, who plays the role of the agent. The manager
decides whether to accept the employment contract and, if so, what action e 	 0 to take. An
increase in e increases the firm’s gross profit (not including payments to the manager) but is
personally costly to the manager.

One interpretation of e is the effort and time the manager puts in on the job. By working
harder, the manager can supervise workers better, make more informed and thus better
managerial decisions, and so forth. To fix ideas, we will often interpret e in this way and refer
to it as effort, but it can be interpreted in other ways. For example, e can be intepreted as
making such distasteful but profitable decisions as firing unproductive workers, trimming
perks, and avoiding expansion for the mere sake of enlarging his “empire.”

Assume the firm’s gross profit πg takes the following simple form:

πg ¼ e þ ε. (18.1)

Gross profit is increasing in the manager’s effort e and also depends on a random variable ε,
which represents demand, cost, and other economic factors outside of the manager’s control.
Assume that ε is normally distributed with mean 0 and variance σ2. The manager’s personal
disutility (or cost) of undertaking effort cðeÞ is increasing ½c0ðeÞ > 0� and convex ½c00ðeÞ > 0�.

Let s be the salary—which may depend on effort and ∕or gross profit, depending on what
the owner can observe—offered as part of the contract between the owner and manager.
Because the owner represents individual shareholders who each own a small share of the firm
as part of a diversified portfolio, we will assume that she is risk neutral. Letting net profit πn
equal gross profit minus payments to the manager,

πn ¼ πg � s, (18.2)

the risk-neutral owner wants to maximize the expected value of her net profit:

EðπnÞ ¼ Eðe þ ε� sÞ ¼ e � EðsÞ. (18.3)

To introduce a trade-off between incentives and risk, we will assume the manager is risk
averse; in particular, we assume the manager has a utility function with respect to salary
whose constant absolute risk aversion parameter is A > 0. We can use the results from
Example 7.3 to show that his expected utility is

EðU Þ ¼ EðsÞ � A
2

VarðsÞ � cðeÞ. (18.4)

We will examine the optimal salary contract that induces the manager to take appropriate
effort e under different informational assumptions. We will study the first-best contract,
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when the owner can observe e perfectly, and then the second-best contract when there is
asymmetric information about e.

First best (full-information case)

With full information, it is relatively easy to design an optimal salary contract. The owner can
pay the manager a fixed salary s� if he exerts the first-best level of effort e� (which we will
compute shortly) and nothing otherwise. The manager’s expected utility from the contract
can be found by substituting the expected value [Eðs�Þ ¼ s�] and variance [Varðs�Þ ¼ 0] of
the fixed salary as well as the effort e� into Equation 18.4. For the manager to accept the
contract, this expected utility must exceed what he would obtain from his next-best job offer:

EðU Þ ¼ s� � cðe�Þ 	 0, (18.5)

where we have assumed for simplicity that he obtains 0 from his next-best job offer. In
principal-agent models, a condition like Equation 18.5 is called a participation constraint,
ensuring the agent’s participation in the contract.

The owner optimally pays the lowest salary satisfying Equation 18.5: s� ¼ cðe�Þ. The
owner’s net profit then is

EðπnÞ ¼ e� � Eðs�Þ ¼ e� � cðe�Þ, (18.6)

which is maximized for e� satisfying the first-order condition

c0ðe�Þ ¼ 1. (18.7)

At an optimum, the marginal cost of effort, c0ðe�Þ, equals the marginal benefit, 1.

Second best (hidden-action case)

If the owner can observe the manager’s effort, then she can implement the first best by
simply ordering the manager to exert the first-best effort level. If she cannot observe effort,
the contract cannot be conditioned on e. However, she can still induce the manager to exert
some effort if the manager’s salary depends on the firm’s gross profit. The manager is given
performance pay: the more the firm earns, the more the manager is paid.

Notice that a constant salary independent of the firm’s gross profit would not induce the
manager to exert any effort. With a constant salary s , the manager’s expected utility from
Equation 18.4 would equal s � cðeÞ, which is maximized by choosing the lowest level of
effort possible: e ¼ 0.

Instead of a constant salary, suppose the owner offers the manager one that is linear in
gross profit:

sðπgÞ ¼ a þ bπg , (18.8)

where a is the fixed component of salary and b measures the slope, sometimes called the
power, of the incentive scheme. If b ¼ 0 then the salary is constant and, as we saw, provides
no effort incentives. As b increases toward 1, the incentive scheme provides increasingly
powerful incentives. The fixed component a can be thought of as the manager’s base salary
and b as the incentive pay in the form of stocks, stock options, and performance bonuses.

The owner-manager relationship can be viewed as a three-stage game. In the first stage,
the owner sets the salary, which amounts to choosing a and b. In the second stage, the
manager decides whether or not to accept the contract. In the third stage, the manager
decides how much effort to exert conditional on accepting the contract. We will solve for the
subgame-perfect equilibrium of this game by using backward induction, starting with the
manager’s choice of e in the last stage and taking as given that the manager was offered salary
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scheme a þ bπg and accepted it. Substituting from Equation 18.8 into Equation 18.4, the
manager’s expected utility from the linear salary is

Eða þ bπgÞ �
A
2

Varða þ bπgÞ � cðeÞ. (18.9)

Reviewing a few facts about expectations and variances of a random variable will help us
simplify Equation 18.9. First note that

Eða þ bπg Þ ¼ Eða þ be þ bεÞ ¼ a þ be þ bEðεÞ ¼ a þ be, (18.10)

because the expected value of a linear function of the random variable ε is a linear function
of the expected value of ε.1 Furthermore,

Varða þ bπg Þ ¼ Varða þ be þ bεÞ ¼ b VarðεÞ ¼ b2σ2, (18.11)

which follows from the formula for the variance of a linear function of a random variable
(see Problem 2.14). Therefore, Equation 18.9 reduces to

manager’s expected utility ¼ a þ be � Ab2σ2

2
� cðeÞ. (18.12)

The first-order condition for the choice of e that maximizes the manager’s expected utility in
Equation 18.12 yields

c 0ðeÞ ¼ b. (18.13)

Because cðeÞ is convex, the marginal cost of effort c0ðeÞ is increasing in e. Hence, as shown in
Figure 18.2, the higher is the power b of the incentive scheme, the more effort e the
manager exerts. The manager’s effort depends only on the slope, b, and not on the fixed
part, a, of his incentive scheme.

Now fold the game back to the manager’s second-stage choice of whether to accept the
contract. The manager accepts the contract if his expected utility in Equation 18.12 is
nonnegative or, upon rearranging, if

a 	 cðeÞ þ Ab2σ2

2
� be. (18.14)

Equation 18.14 indicates that the fixed part of the salary, a, must be high enough for the
manager to accept the contract.

Next, fold the game back to the owner’s first-stage choice of the parameters a and b of the
salary scheme. The owner’s objective is to maximize her expected surplus, which (upon
substituting from Equation 18.10 into 18.3) is

owner’s surplus ¼ eð1� bÞ � a, (18.15)

subject to two constraints. The first constraint (Equation 18.14) is that the manager must
accept the contract in the second stage. As mentioned in the previous section, this is called
a participation constraint. Although Equation 18.14 is written as an inequality, it is clear that
the owner will keep lowering a until the condition holds with equality, since a does not affect
the manager’s effort and since the owner does not want to pay the manager any more than
necessary to induce him to accept the contract. The second constraint (Equation 18.13) is
that the manager will choose e to suit himself rather than the owner, who cannot observe e.
This is called the incentive compatibility constraint. Substituting the constraints into Equation
18.15 allows us to express the owner’s surplus as a function only of the manager’s effort:

1This point is established in Problem 2.13, where it is shown that E½ gðX Þ� � g ½EðX Þ� if g is concave and
E½ gðX Þ� 	 g ½EðX Þ� if g is convex. If g is linear (and thus simultaneously concave and convex) then both inequalities
must hold, implying E½ gðX Þ� ¼ g ½EðX Þ�.
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e � cðeÞ � Aσ2c0ðeÞ2
2

. (18.16)

The second-best effort e�� satisfies the first-order condition

c0ðe��Þ ¼ 1
1þAσ2c00ðe��Þ. (18.17)

The right-hand side of Equation 18.17 is also equal to the power b�� of the incentive
scheme in the second best, since c0ðe��Þ ¼ b�� by Equation 18.13.

The second-best effort is less than 1 and thus is less than the first-best effort e� ¼ 1: The
presence of asymmetric information leads to lower equilibrium effort. If the owner cannot
specify e in a contract, then she can induce effort only by tying the manager’s pay to firm
profit; however, doing so introduces variation into his pay for which the risk-averse manager
must be paid a risk premium. This risk premium (the third term in Equation 18.16) adds to
the owner’s cost of inducing effort. As shown in Figure 18.3, an increase in the marginal cost
of inducing effort leads to a lower level of effort in the second than in the first best.

If effort incentives were not an issue, then the risk-neutral owner would be better-off
bearing all risk herself and insuring the risk-averse manager against any fluctuations in profit by
offering a constant salary, as we saw in the first-best problem. Yet if effort is unobservable then
a constant salary will not provide any incentive to exert effort. The second-best contract trades
off the owner’s desire to induce high effort (which would come from setting b close to 1)
against her desire to insure the risk-averse manager against variations in his salary (which
would come from setting b close to 0). Hence the resulting value of b�� falls somewhere
between 0 and 1.

In short, the fundamental trade-off in the owner-manager relationship is between incen-
tives and insurance. The more risk averse is the manager (i.e., the higher is A), the more
important is insurance relative to incentives. The owner insures the manager by reducing the

FIGURE 18.2 Manager’s Effort Responds to Increased Incentives

Because the manager’s marginal cost of effort, c0ðeÞ, slopes upward, an increase in the power of the
incentive scheme from b1 to b2 induces the manager to increase his effort from e1 to e2.

c′(e)

e1 e2

e

b2

b1
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dependence of his salary on fluctuating profit, reducing b�� and therefore e��. For the same
reason, the more that profit varies owing to factors outside of the manager’s control (i.e., the
higher is σ2), the lower is b�� and e��.2

EXAMPLE 18.1 Owner-Manager Relationship

As a numerical example of some of these ideas, suppose the manager’s cost of effort has the
simple form cðeÞ ¼ e2=2 and suppose σ2 ¼ 1.

First best. The first-best level of effort satisfies c0ðe�Þ ¼ e� ¼ 1: A first-best contract specifies
that the manager exerts first-best effort e� ¼ 1 in return for a fixed salary of 1=2, which leaves
the manager indifferent between accepting the contract and pursuing his next-best available
job (which we have assumed provides him with utility 0). The owner’s net profit equals 1=2.

Second best. The second-best contract depends on the degree of the manager’s risk mea-
sured by A. Suppose first that A ¼ 1.3 Then, by Equation 18.17, the second-best level of
effort is e�� ¼ 1=2, and b�� ¼ 1=2 as well. To compute the fixed part a�� of the manager’s
salary, recall that Equation 18.14 holds as an equality in the second best and substitute the

FIGURE 18.3 First- versus Second-Best Effort

The owner’s marginal cost of inducing effort ðMCÞ is effectively higher in the second best (when
effort is unobservable) than in the first best (when effort is observable) because the manager requires
a higher risk premium to accept a higher-powered incentive scheme that exposes him more to fluctua-
tions in profit. An increase in the manager’s risk aversion or in the variance of profit causesMC in the
second best to shift as indicated by the bold arrow, resulting in a further reduction in equilibrium effort.

MB

e

e*e**

MC in second best
c′(e) + risk term

MC in first best
c′(e)

1

2A study has confirmed that CEOs and other top executives receive more powerful incentives if they work for firms with
less volatile stock prices. See R. Aggarwal and A. Samwick, “The Other Side of the Trade-off: The Impact of Risk on
Executive Compensation,” Journal of Political Economy 107 (1999): 65–105.
3To make the calculations easier, we have scaled A up from its more realistic values in Chapter 7 and have rescaled several
other parameters as well.
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variables computed so far, yielding a�� ¼ 0. The manager receives no fixed pay but does
receive incentive pay equal to 50 cents for every dollar of gross profit. Substituting the variables
computed so far into Equation 18.15, we see that the owner’s expected net profit is 1=4.

Now suppose A ¼ 2, so that the manager is more risk averse. The second-best effort falls
to e�� ¼ 1=3, and b�� falls to 1=3 as well. The fixed part of the manager’s salary rises to
a�� ¼ 1=18. The owner’s expected net profit falls to 1=6.

Empirical evidence. In an influential study of performance pay, Jensen and Murphy esti-
mated that b ¼ 0:003 for top executives in a sample of large U.S. firms, which is orders of
magnitude smaller than the values of b�� we just computed.4 The fact that real-world
incentive schemes are less sensitive to performance than theory would indicate is a puzzle
for future research to unravel.

QUERY: How would the analysis change if the owners did not perfectly observe gross profit
but instead depended on the manager for a self-report? Could this explain the puzzle that top
executives’ incentives are unexpectedly low-powered? Relate your discussion to the wave of
accounting scandals at Enron and other firms.

Comparison to standard model of the firm

It is natural to ask how the results with hidden information about the manager’s action
compare to the standard model of a perfectly competitive market with no asymmetric in-
formation. First, the presence of hidden information raises a possibility of shirking and
inefficiency that is completely absent in the standard model. The manager does not exert as
much effort as he would if effort were observable. Even if the owner does as well as she can in
the presence of asymmetric information to provide incentives for effort, she must balance the
benefits of incentives against the cost of exposing the manager to too much risk.

Second, although the manager can be regarded as an input like any other (capital, labor,
materials, and so forth) in the standard model, he becomes a unique sort of input when his
actions are hidden information. It is not enough to pay a fixed unit price for this input as a firm
would the rental rate for capital or themarket price formaterials.Howproductive themanager
is depends on how his compensation is structured. The same can be said for any sort of labor
input: workers may shirk on the job unless monitored or given incentives not to shirk.

MORAL HAZARD IN INSURANCE

Another important context in which hidden actions lead to inefficiencies is the market for
insurance. Individuals can take a variety of actions that influence the probability that a risky
event will occur. Homeowners contemplating possible losses from fire, for example, can
install sprinkler systems or keep fire extinguishers at convenient locations. Similarly, people
may buy antitheft devices for cars or eat healthy food in an attempt to reduce the likelihood of
illness. In these activities, utility-maximizing individuals will pursue risk reduction up to the
point at which marginal gains from additional precautions are equal to the marginal cost of
these precautions.

In the presence of insurance coverage, however, this calculation may change. If a person
is fully insured against losses then he or she will have a reduced incentive to undertake
costly precautions, which may increase the likelihood of a loss occurring. In the automobile

4M. Jensen and K. Murphy, “Performance Pay and Top-Management Incentives,” Journal of Political Economy 98 (1990):
225–64.
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insurance case, for example, a person who has a policy that covers theft may park in less safe
areas or refrain from installing antitheft devices. This behavioral response to insurance
coverage is termed moral hazard.

D E F I N I T I O N
Moral hazard. The effect of insurance coverage on an individual’s precautions, which may
change the likelihood or size of losses.

The use of the term “moral” to describe this response is perhaps unfortunate. There is
nothing particularly “immoral” about the behavior being described, since individuals are
simply responding to the incentives they face. In some applications, this response might even
be desirable. For example, people with medical insurance may be encouraged to seek early
treatment because the insurance reduces their out-of-pocket cost of medical care. But, be-
cause insurance providers may find it costly to measure and evaluate such responses, moral
hazard may have important implications for the allocation of resources. To examine these, we
need a model of utility-maximizing behavior by insured individuals.

Mathematical model

Suppose a risk-averse individual faces the possibility of incurring a loss (l) that will reduce his
initial wealth (W0). The probability of loss is π. An individual can reduce the probability of
loss by spending more on preventive measures (e).5 Let U ðW Þ be the individual’s utility
given wealth W .

An insurance company (here playing the role of principal) offers an insurance contract
involving a payment x to the individual if a loss occurs. The premium for this coverage is p. If
the individual takes the coverage, then his wealth in state 1 (no loss) and state 2 (loss) are

W1 ¼ W0 � e � p and
W2 ¼ W0 � e � p � l þ x,

(18.18)

and his expected utility is
ð1� πÞU ðW1Þ þ πU ðW2Þ. (18.19)

The risk-neutral insurance company’s objective is to maximize expected profit:

expected insurance profit ¼ p � πx. (18.20)

First-best insurance contract

In the first-best case, the insurance company can perfectly monitor the agent’s precautionary
effort e. It sets e and the other terms of the insurance contract ðx and pÞ to maximize its
expected profit subject to the participation constraint that the individual accepts the contract:

ð1� πÞU ðW1Þ þ πU ðW2Þ 	
_
U , (18.21)

where
_
U is the highest utility the individual can attain in the absence of insurance. It is clear

that the insurance company will increase the premium until the participation constraint
holds with equality. Thus, the first-best insurance contract is the solution to a maximization
problem subject to an equality constraint, which we can use Lagrangian methods to solve.
The associated Lagrangian is

ℒ ¼ p � πx þ λ½ð1� πÞU ðW1Þ þ πU ðW2Þ �
_
U �. (18.22)

5For consistency, we use the same variable e as we did for managerial effort. In this context, since e is subtracted from the
individual’s wealth, e should be thought of as either a direct expenditure or the monetary equivalent of the disutility of
effort.
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The first-order conditions are

0 ¼ ∂ℒ
∂p

¼ 1� λ½ð1� πÞU 0ðW0 � e � pÞ þ πU 0ðW0 � e � p � l þ xÞ�, (18.23)

0 ¼ ∂ℒ
∂x

¼ �πþ λπU 0ðW0 � e � p � l þ xÞ, (18.24)

0 ¼ ∂ℒ
∂e

¼ � ∂π
∂e

x � λ
n
ð1� πÞU 0ðW0 � e � pÞ þ πU 0ðW0 � e � p � l þ xÞ

(18.25)� ∂π
∂e

½U ðW0 � e � pÞ þU ðW0 � e � p � l þ xÞ�
o
.

These conditions may seem complicated, but they quickly reduce down to provide simple
results. Equations 18.23 and 18.24 together imply

1
λ
¼ ð1� πÞU 0ðW0 � e � pÞ þ πU 0ðW0 � e � p � l þ xÞ
¼ U 0ðW0 � e � p � l þ xÞ, (18.26)

which in turn implies x ¼ l . This is the familiar result that the first best involves full
insurance. Take Equation 18.25 and substitute for λ from Equation 18.26; then, with
x ¼ l , we have

∂π
∂e

l ¼ 1. (18.27)

At an optimum, the marginal social benefit of precaution (the reduction in the probability of
a loss multiplied by the amount of the loss) equals the marginal social cost of precaution
(which here is just 1). In sum, the first-best insurance contract provides the individual with
full insurance but requires him to choose the socially efficient level of precaution.

Second-best insurance contract

To obtain the first best, the insurance company would need to monitor the insured individ-
ual to ensure that the person was constantly taking the first-best level of precaution, e�. In the
case of insurance for automobile accidents, the company would have to make sure that the
driver never exceeds a certain speed, always keeps alert, and never drives while talking on his
cell phone, for example. Even if a black-box recorder could be installed to constantly track the
car’s speed, it would still be impossible to monitor the driver’s alertness. Similarly, for health
insurance, it would be impossible to watch everything the insured party eats to make sure he
doesn’t eat anything unhealthy.

Assume for simplicity that the insurance company cannot monitor precaution e at all, so
that e cannot be specified by the contract directly. This second-best problem is similar to the
first-best except that a new constraint must to be added: an incentive compatibility constraint
specifying that the agent is free to choose the level of precaution that suits him and maximizes
his expected utility,

ð1� πÞU ðW1Þ þ πU ðW2Þ. (18.28)

Unlike the first best, the second-best contract will typically not involve full insurance. Under
full insurance, x ¼ l and (as Equation 18.18 shows) W1 ¼ W2. But then the insured party’s
expected utility from Equation 18.28 is

U ðW1Þ ¼ U ðW0 � e � pÞ, (18.29)

which is maximized by choosing the lowest level of precaution possible, e ¼ 0.
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To induce the agent to take precaution, the company should provide him only partial
insurance. Exposing the individual to some risk induces him to take at least some precaution.
The company will seek to offer just the right level of partial insurance: not too much in-
surance (else the agent’s precaution drops too low) and not too little insurance (else the agent
would not be willing to pay much in premiums). The principal faces the same trade-off in this
insurance example as in the owner-manager relationship studied previously: incentives versus
insurance.

The solution for the optimal second-best contract is quite complicated, given the general
functional forms for utility that we are using.6 Example 18.2 provides some further practice
on the moral hazard problem with specific functional forms.

EXAMPLE 18.2 Insurance and Precaution against Car Theft

In Example 7.2 we examined an individual’s decision to purchase insurance against the theft
of a $20,000 car. Here we reexamine the market for theft insurance when he can also take
the precaution of installing a car alarm that costs $1,750 and that reduces the probability of
theft from 0.25 to 0.15.

No insurance. In the absence of insurance, the individual can decide either not to install the
alarm, in which case (as we saw from Example 7.2) his expected utility is 11.4571, or to install
the alarm, in which case his expected utility is

0:85 lnð100,000� 1,750Þ þ 0:25 lnð100,000� 1,750� 20,000Þ ¼ 11:4590.
(18.30)

He prefers to install the device.

First best. The first-best contract maximizes the insurance company’s profit given that it
requires the individual to install an alarm and can costlessly verify whether the individual
has complied. The first-best contract provides full insurance, paying the full $20,000 if the car
is stolen. The highest premium p that the company can charge leaves the individual indiffer-
ent between accepting the full-insurance contract and going without insurance:

lnð100,000� 1,750� pÞ ¼ 11:4590. (18.31)

Solving for p yields
98,250� p ¼ e11.4590, (18.32)

implying that p ¼ 3, 298. (Note that the e in Equation 18.32 is the number 2.7818…, not
the individual’s precaution.) The company’s profit equals the premium minus the expected
payout: 3, 298� ð0:15� 20,000Þ ¼ $298.

Second best. If the company cannot monitor whether the individual has installed an alarm,
then it has two choices. It can induce him to install the alarm by offering only partial in-
surance, or it can disregard the alarm and provide him with full insurance.

If the company offers full insurance, then the individual will certainly save the $1,750
by not installing the alarm. The highest premium that the company can charge him solves

lnð100,000� pÞ ¼ 11:4590, (18.33)

implying that p ¼ 5,048. The company’s profit is then 5,048� ð0:25� 20,000Þ ¼ $48:
On the other hand, the company can induce the individual to install the alarm if it re-

duces the payment after theft from the full $20,000 down to $3,374 and lowers the premium

6For more analysis see S. Shavell, “On Moral Hazard and Insurance,” Quarterly Journal of Economics (November 1979):
541–62.
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to $602. (These contractual terms are within a decimal place of the second best as computed
by the authors using numerical methods; we will forgo the complicated computations and
just take these terms as given.) Let’s check that the individual would indeed want to install the
alarm. His expected utility if he accepts the contract and installs the alarm is

0:15 lnð100,000� 1,750 � 602Þ
þ 0:85 lnð100,000� 1,750� 602� 20,000þ 3,374Þ ¼ 11:4611, (18.34)

the same as if he accepts the contract and does not install the alarm:

0:25 lnð100,000� 602Þ
þ 0:75 lnð100,000� 602� 20,000þ 3,374Þ ¼ 11:4611: (18.35)

His expected utility in either event is slightly higher than the 11.4590 obtained if he does not
accept the contract. The insurance company’s profit is 602� ð0:15� 3,374Þ ¼ $96. Thus,
partial insurance is more profitable than full insurance when the company cannot observe
precaution.

QUERY: What is the most that the insurance company would be willing to spend in order to
monitor whether the individual has installed an alarm?

Competitive insurance market

So far in this chapter we have studied insurance using the same principal-agent framework as
we used to study the owner-manager relationship. In particular, we have assumed that a
monopoly insurance company (principal) makes a take-it-or-leave-it offer to the individual
(agent). This is a different perspective than in Chapter 7, where we implicitly assumed that
insurance is offered at fair rates—that is, at a premium that just covers the insurer’s expected
payouts for losses. Fair insurance would arise in a perfectly competitive insurance market.

With competitive insurers, the first best maximizes the insurance customer’s expected
utility given that the contract can specify his precaution level. The second best maximizes the
customer’s expected utility under the constraint that his precaution level must be induced by
having the contract offer only partial insurance.

Our conclusions about the moral hazard problem remain essentially unchanged when
moving from a monopoly insurer to perfect competition. The first best still involves full
insurance and a precaution level satisfying Equation 18.27. The second best still involves
partial insurance and a moderate level of precaution. The main difference is in the distribution
of surplus: insurance companies no longer earn positive profits, since the extra surplus now
accrues to the individual.

EXAMPLE 18.3 Competitive Theft Insurance

Return to Example 18.2, but now assume that car theft insurance is sold by perfectly
competitive companies rather than by a monopolist.

First best. If companies can costlessly verify whether or not the individual has installed an
alarm, then the first-best contract requires him to install the alarm and fully insures him for
a premium of 3,000. This is a fair insurance premium because it equals the expected payout
for a loss: 3,000 ¼ 0:15� 20,000: Firms earn zero profit at this fair premium. The indi-
vidual’s expected utility rises to 11.4643 from the 11.4590 of Example 18.2.

(continued)
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EXAMPLE 18.3 CONTINUED

Second best. Suppose now that insurance companies cannot observe whether the individual
has installed an alarm. The second-best contract is similar to that computed in Example 18.2
except that the $96 earned by the monopoly insurer is essentially converted to a reduced
premium charged by competiting insurers. The equilibrium premium is p ¼ 506 and the
payment for loss is x ¼ 3,374:

QUERY: Which case—monopoly or perfect competition—best describes the typical insur-
ance market? Which types of insurance (car, health, life, disability) and which countries do
you think have more competitive markets?

HIDDEN TYPES

Next we turn to the other leading variant of principal-agent model: the model of hidden
types. Whereas in the hidden-action model the agent has private information about a choice
he has made, in the hidden-type model he has private information about an innate character-
istic he cannot choose. For example, a student’s type may be his innate intelligence as
opposed to an action such as the effort he expends in studying for an exam.

At first glance, it is not clear why there should be a fundamental economic difference
between hidden types and hidden actions that requires us to construct a whole new model
(and devote a whole new section to it). The fundamental economic difference is this: In a
hidden-type model, the agent has private information before signing a contract with the
principal; in a hidden-action model, the agent obtains private information afterwards.

Having private information before signing the contract changes the game between the
principal and the agent. In the hidden-action model, the principal shares symmetric information
with the agent at the contracting stage and so can design a contract that extracts all of the agent’s
surplus. In the hidden-typemodel, the agent’s private information at the time of contracting puts
him in a better position. There is noway for the principal to extract all the surplus from all types of
agents. A contract that extracts all the surplus from the “high” types (those who benefit more
from a given contract) would provide the “low” types with negative surplus, and they would
refuse to sign it. The principal will try to extract as much surplus as possible from agents through
clever contract design. She will even bewilling to shrink the size of the contracting pie, sacrificing
some joint surplus in order to obtain a larger share for herself [as in panel (b) of Figure 18.1].

To extract as much surplus as possible from each type while ensuring that low types are
not “scared off,” the principal will offer a contract in the form of a cleverly designed menu
that include options targeted to each agent type. The menu of options will be more profitable
for the principal than a contract with a single option, but the principal will still not be able to
extract all the surplus from all agent types. Since the agent’s type is hidden, he cannot be
forced to select the option targeted at his type but is free to select any of the options, and this
ability will ensure that the high types always end up with positive surplus.

To make these ideas more concrete, we will study two applications of the hidden-type
model that are important in economics. First we will study the optimal nonlinear pricing
problem, and then we will study private information in insurance.

NONLINEAR PRICING

In the first application of the hidden-type model, we consider a monopolist (the principal)
who sells to a consumer (the agent) with private information about his own valuation for the
good. Rather than allowing the consumer to purchase any amount he wants at a constant
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price per unit, the monopolist offers the consumer a nonlinear price schedule. The nonlinear
price schedule is a menu of different-sized bundles at different prices, from which the con-
sumer makes his selection. In such schedules, the larger bundle generally sells for a higher
total price but a lower per-unit price than a smaller bundle.

Our approach builds on the analysis of second-degree price discrimination in Chapter 14.
Here we analyze general nonlinear pricing schedules, the most general form of second-
degree price discrimination. (In the earlier chapter, we limited our attention to a simpler
form of second-degree price discrimination involving two-part tariffs.) The linear, two-part,
and general nonlinear pricing schedules are plotted in Figure 18.4. The figure graphs the total
tariff—the total cost to the consumer of buying q units—for the three different schedules.
Basic and intermediate economics courses focus on the case of a constant per-unit price,
which is called a linear pricing schedule. The linear pricing schedule is graphed as a straight
line that intersects the origin (because nothing needs to be paid if no units are purchased).
The two-part tariff is also a straight line, but its intercept—reflecting the fixed fee—is above
the origin. The darkest curve is a general nonlinear pricing schedule.

Examples of nonlinear pricing schedules include a coffee shop’s selling three different
sizes—say, a small (8-ounce) cup for $1.50, a medium (12-ounce) cup for $1.80, and a large
(16-ounce) cup for $2.00. Although larger cups cost more in total, they cost less per ounce
(18.75 cents per ounce for the small, 15 for themedium, and 12.5 for the large). The consumer
does not have the choice of buying as much coffee as he wants at a given per-ounce price;
instead he must pick one of these three menu options, each specifying a particular bundled
quantity. In other examples, the “q” that is bundled in amenu item is the quality of a single unit
of the product rather than the quantity or number of units. For example, an airline ticket
involves a single unit (i.e., a single flight) whose quality varies depending on the class of the

FIGURE 18.4 Shapes of Various Pricing Schedules

The graph shows the shape of three different pricing schedules. Darker curves are more complicated
pricing schedules and so represent more sophisticated forms of second-degree price discrimination.
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ticket, which ranges from first class, with fancy drinks andmeals and plush seats offering plenty
of leg room, to coach class, with peanuts for meals and small seats having little leg room.

Mathematical model

To understand the economic principles involved in nonlinear pricing, consider a formal
model in which a single consumer obtains surplus

U ¼ θvðqÞ � T (18.36)

from consuming a bundle of q units of a good for which he pays a total tariff of T . The first
term in the consumer’s utility function, θvðqÞ, reflects the consumer’s benefit from con-
sumption. Assume v0ðqÞ > 0 and v00ðqÞ < 0, implying that the consumer prefers more of the
good to less but that the marginal benefit of more units is declining. The consumer’s type is
given by θ, which can be high ðθH Þ with probability β and low ðθLÞ with probability 1� β.
The high type enjoys consuming the good more than the low type: 0 < θL < θH . The total
tariff T paid by the consumer for the bundle is subtracted from his benefit to compute his
net surplus.

For simplicity, we are assuming that there is a single consumer in the market. The analysis
would likewise apply to markets with many consumers, a proportion β of which are high types
and 1� β of which are low types. The only complication in extending the model to many
consumers is that we would need to assume that consumers cannot divide bundles into
smaller packages for resale among themselves. (Of course, such repackaging would be impos-
sible for a single unit of the good involving a bundle of quality; and resellingmay be impossible
even for quantity bundles if the costs of reselling are prohibitive.)

Suppose the monopolist has a constant marginal and average cost c of producing a unit of
the good. Then the monopolist’s profit from selling a bundle of q units for a total tariff of T is

Π ¼ T � cq. (18.37)

First-best nonlinear pricing

In the first-best case, the monopolist can observe the consumer’s type θ before offering him a
contract. The monopolist chooses the contract terms q and T to maximize her profit subject
to Equation 18.37 and subject to a participation constraint that the consumer accepts the
contract. Setting the consumer’s utility to 0 if he rejects the contract, the participation
constraint may be written as

θvðqÞ � T 	 0. (18.38)

The monopolist will choose the highest value of T satisfying the participation constraint:
T ¼ θvðqÞ. Substituting this value of T into the monopolist’s profit function yields

θvðqÞ � cq. (18.39)

Taking the first-order condition and rearranging provides a condition for the first-best
quantity:

θv0ðqÞ ¼ c. (18.40)

This equation is easily interpreted. In the first best, the marginal social benefit of increased
quantity on the left-hand side [the consumer’s marginal private benefit, θv0ðqÞ] equals the
marginal social cost on the right-hand side [the monopolist’s marginal cost, c].

The first-best quantity offered to the high type ðq�H Þ satisfies Equation 18.40 for θ ¼ θH ,
and that offered to the low type ðq�L Þ satisfies the equation for θ ¼ θL . The tariffs are set so as
to extract all the type’s surplus. The first best for the monopolist is identical to what we termed
first-degree price discrimination in Chapter 14.
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It is instructive to derive themonopolist’s first best in a different way, usingmethods similar
to those used to solve the consumer’s utility maximization problem in Chapter 4. The contract
ðq,T Þ can be thought of as a bundle of two different “goods” over which the monopolist has
preferences. The monopolist regards T as a good (more money is better than less) and q as a
bad (higher quantity requires higher production costs). Her indifference curve (actually an
isoprofit curve) over ðq,T Þ combinations is a straight line with slope c. To see this, note that the
slope of the monopolist’s indifference curve is her marginal rate of substitution:

MRS ¼ � ∂Π=∂q
∂Π=∂T

¼ �ð�cÞ
1

¼ c. (18.41)

The monopolist’s indifference curves are drawn as dashed lines in Figure 18.5. Because q is a
bad for the monopolist, her indifference curves are higher as one moves toward the upper left.

Figure 18.5 also draws indifference curves for the two consumer types: the high type’s
(labeled U 0

H ) and the low type’s (labeled U 0
L). Because T is a bad for consumers, higher

indifference curves for both types of consumer are reached as one moves toward the lower
right. The U 0

H indifference curve for the high type is special because it intersects the origin,
implying that the high type gets the same surplus as if he didn’t sign the contract at all. The
first-best contract offered by the monopolist to the high type is point A, at which the highest
indifference curve for the monopolist still intersects the high type’s U 0

H indifference curve
and thus still provides the high type with nonnegative surplus. This is a point of tangency
between the contracting parties’ indifference curves—that is, a point at which the indifference
curves have the same slope. The monopolist’s indifference curves have slope c everywhere, as

FIGURE 18.5 First-Best Nonlinear Pricing

The consumer’s indifference curves over the bundle of contractual terms are drawn as solid lines (the
darker one for the high type and lighter for the low type); the monopolist’s isoprofits are drawn as
dashed lines. Point A is the first-best contract option offered to the high type, and point B is that
offered to the low type.
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we saw in Equation 18.41. The slope of type θ’s indifference curve is the marginal rate of
substitution:

MRS ¼ � ∂U =∂q
∂U =∂T

¼ � θv0ðqÞ
�1

¼ θv0ðqÞ. (18.42)

Equating the slopes gives the same condition for the first best as we found in Equation 18.40
(marginal social benefit equals marginal social cost of an additional unit). The same arguments
imply that point B is the first-best contract offered to the low type, and we can again verify that
Equation 18.40 is satisfied there.

To summarize, the first-best contract offered to each type specifies a quantity (q�H or
q�L , respectively) that maximizes social surplus given the type of consumer and a tariff (T �

H or
T �

L , respectively) that allows the monopolist to extract all of the type’s surplus.

Second-best nonlinear pricing

Now suppose that the monopolist does not observe the consumer’s type when offering him
a contract but knows only the distribution (θ ¼ θH with probability β and θ ¼ θL with
probability 1� β). As Figure 18.6 shows, the first-best contract would no longer “work”
because the high type obtains more utility (moving from the indifference curve labeled U 0

H
to the one labeled U 2

H ) by choosing the bundle targeted to the low type (B) rather than the
bundle targeted to him (A). In other words, choosingA is no longer incentive compatible for

FIGURE 18.6 First Best Not Incentive Compatible

The first-best contract, involving points A and B, is not incentive compatible if the consumer has
private information about his type. The high type can reach a higher indifference curve by choosing
the bundle ðBÞ that is targeted at the low type. To keep him from choosing B, the monopolist must
reduce the high type’s tariff by replacing bundle A with C .
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the high type. In order to keep the high type from choosing B, the monopolist must reduce
the high type’s tariff, offering C instead of A.

The substantial reduction in the high type’s tariff (indicated by the downward-pointing
arrow) puts a big dent in the monopolist’s expected profit. Themonopolist can do better than
offering themenu of contracts ðB,CÞ: she can distort the low type’s bundle in order tomake it
less attractive to the high type. Then the high type’s tariff need not be reduced asmuch to keep
him from choosing the wrong bundle. Figure 18.7 shows how this new contract would work.
Themonopolist reduces the quantity in the low type’s bundle (while reducing the tariff so that
the low type stays on his U 0

L indifference curve and thus continues to accept the contract),
offering bundleD rather than B. The high type obtains less utility fromD than B, asD reaches
only his U 1

H indifference curve and is short of his U 2
H indifference curve. To keep the high

type from choosing D, the monopolist needs only lower the high type’s tariff by the amount
given by the vertical distance between A and E rather than all the way down to C .

Relative to (B, C), the second-best menu of contracts (D, E) trades off a distortion in the
low type’s quantity (moving from the first-best quantity in B to the lower quantity in D and
destroying some social surplus in the process) against an increase in the tariff that can be
extracted from the high type in moving from C to E. An attentive student might wonder why
the monopolist would want to make this trade-off. After all, the monopolist must reduce
the low type’s tariff in moving from B to D or else the low type would refuse to accept the
contract. How canwe be sure that this reduction in the low type’s tariff doesn’tmore than offset
any increase in the high type’s tariff? The reason is that a reduction in quantity harms the

FIGURE 18.7 Second-Best Nonlinear Pricing

The second-best contract is indicated by the circled points D and E. Relative to the incentive-
compatible contract found in Figure 18.6 (points B andC), the second-best contract distorts the low
type’s quantity (indicated by the move from B to D) in order to make the low type’s bundle less
attractive to the high type. This allows the principal to charge tariff to the high type (indicated by the
move from C to E).
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high type more than it does the low type. As Equation 18.42 shows, the consumer’s marginal
rate of substitution between contractual terms (quantity and tariff) depends on his type θ and is
higher for the high type. Since the high type values quantity more than does the low type, the
high type would pay more to avoid the decrease in quantity in moving from B toD than would
the low type.

Further insight can be gained from an algebraic characterization of the second best. The
second-best contract is a menu that targets bundle ðqH , TH Þ at the high type and ðqL , TLÞ
at the low type. The contract maximizes the monopolist’s expected profit,

βðTH � cqH Þ þ ð1� βÞðTL � cqLÞ, (18.43)

subject to four constraints:
θLvðqLÞ � TL 	 0, (18.44)

θHvðqH Þ � TH 	 0, (18.45)

θLvðqLÞ � TL 	 θLvðqH Þ � TH , (18.46)

θHvðqH Þ � TH 	 θHvðqLÞ � TL . (18.47)

The first two are participation constraints for the low and high type of consumer, ensuring
that they accept the contract rather than forgoing the monopolist’s good. The last two are
incentive compatibility constraints, ensuring that each type chooses the bundle targeted to
him rather than the other type’s bundle.

As suggested by the graphical analysis in Figure 18.7, only two of these constraints play
a role in the solution. The most important constraint was to keep the high type from choosing
the low type’s bundle; this is Equation 18.47 (incentive compatibility constraint for the high
type). The other relevant constraint was to keep the low type on hisU 0

L indifference curve to
prevent him from rejecting the contract; this is Equation 18.44 (participation constraint for
the low type). Hence, Equations 18.44 and 18.47 hold with equality in the second best.

The other two constraints can be ignored, as can be seen in Figure 18.7. The high type’s
second-best bundle E puts him on a higher indifference curve (U 1

H ) than if he rejects the
contract (U 0

H ), so the high type’s participation constraint (Equation 18.45) can be safely
ignored. The low type would be on a lower indifference curve if he chose the high type’s
bundle (E) rather than his own (D), so the low type’s incentive compatibility constraint
(Equation 18.46) can also be safely ignored.

Treating Equations 18.44 and 18.47 as equalities and using them to solve for TL and TH
yields

TL ¼ θLvðqLÞ (18.48)
and

TH ¼ θH ½vðqH Þ � vðqLÞ� þ TL

¼ θH ½vðqH Þ � vðqLÞ� þ θLvðqLÞ. (18.49)

By substituting these expressions for TL and TH into the monopolist’s objective function
(Equation 18.39), we convert a complicated maximization problem with four inequality
constraints into the simpler unconstrained problem of choosing qL and qH to maximize

βfθH ½vðqH Þ � vðqLÞ� þ θLvðqLÞ � cqHg þ ð1� βÞ½θLvðqLÞ � cqL �. (18.50)

The low type’s quantity satisfies the first-order condition with respect to qL , which (upon
considerable rearranging) yields

θLv
0ðq��L Þ ¼ c þ βðθH � θLÞv0ðq��L Þ

1� β
. (18.51)
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The last term is clearly positive and so the equation implies that θLv
0ðq��L Þ > c, whereas

θLv
0ðq�L Þ ¼ c in the first best. Since vðqÞ is concave, we see that the second-best quantity is

lower than the first best, verifying the insight from our graphical analysis that the low type’s
quantity is distorted downward in the second best to extract surplus from the high type.

The high type’s quantity satisfies the first-order condition from the maximization of
Equation 18.43 with respect to qH ; upon rearranging, this yields

θHv0ðq��H Þ ¼ c. (18.52)

This condition is identical to the first best, implying that there is no distortion of the high
type’s quantity in the second best. There is no reason to distort the high type’s quantity
because there is no higher type from whom to extract surplus. The result that the highest
type is offered an efficient contract is often referred to as “no distortion at the top.”

Returning to the low type’s quantity, how much the monopolist distorts this quantity
downward depends on the probabilities of the two consumer types or—equivalently, in a
model with many consumers—on the relative proportions of the two types. If there are
many low types (β is low) then the monopolist would not be willing to distort the low type’s
quantity very much, because the loss from this distortion would be substantial and there would
be few high types from whom additional surplus could be extracted. The more high types
(the higher is β), the more the monopolist is willing to distort the low type’s quantity
downward. Indeed, if there are enough high types, the monopolist may decide not to serve
the low types at all and just offer one bundle that would be purchased by the high types. This
would allow the monopolist to squeeze all the surplus from the high types because they would
have no other option.

EXAMPLE 18.4 Monopoly Coffee Shop

The college has a single coffee shop whose marginal cost is 5 cents per ounce of coffee. The
representative customer is equally likely to be a coffee hound (high type with θH ¼ 20) or a
regular Joe (low type with θL ¼ 15). Assume vðqÞ ¼ 2

ffiffiffi
q

p
.

First best. Substituting the functional form vðqÞ ¼ 2
ffiffiffi
q

p
into the condition for first-best

quantities [θv0ðqÞ ¼ c] and rearranging, we have q ¼ ðθ=cÞ2. Therefore, q�L ¼ 9 and q�H ¼ 16.
The tariff extracts all of each type’s surplus [T ¼ θvðqÞ], here implying that T �

L ¼ 90 and
T �

H ¼ 160. The shop’s expected profit is
1
2
ðT �

H � cq�H Þ þ 1
2
ðT �

L � cq�L Þ ¼ 62:5 (18.53)

cents per customer. The first best can be implemented by having the owner sell a 9-ounce
cup for 90 cents to the low type and a 16-ounce cup for $1.60 to the high type. (Somehow
the barista can discern the customer’s type just by looking at him as he walks in the door.)

Incentive compatibility when types are hidden. The first best is not incentive compatible
if the barista cannot observe the customer’s type. The high type obtains no surplus from
the 16-ounce cup sold at $1.60. If he instead paid 90 cents for the 9-ounce cup, he would
obtain a surplus of θHvð9Þ � 90 ¼ 30 cents. Keeping the same cup sizes as in the first best,
the price for the large cup would have to be reduced by 30 cents (to $1.30) in order to keep
the high type from buying the small cup. The shop’s expected profit from this incentive
compatible menu is

1
2
½130� ð5Þð16Þ� þ 1

2
½90� ð5Þð9Þ� ¼ 47:5. (18.54)

(continued)

Chapter 18 Asymmetric Information 649



EXAMPLE 18.4 CONTINUED

Second best. The shop can do even better by reducing the size of the small cup to make it
less attractive to high demanders. The size of the small cup in the second best satisfies
Equation 18.51, which, for the functional forms in this example, implies that

θLq
�1=2
L ¼ c þ ðθH � θLÞq�1=2

L (18.55)

or, rearranging,

q��L ¼ 2θL � θH
c

	 
2
¼ ð2Þð15Þ � 20

5

	 
2
¼ 4. (18.56)

The highest price that can be charged without losing the low-type customers is

T ��
L ¼ θLvðq��L Þ ¼ ð15Þð2

ffiffiffi
4

p
Þ ¼ 60. (18.57)

The large cup is the same size as in the first best: 16 ounces. It can be sold for no more than
$1.40 or else the coffee hound would buy the 4-ounce cup instead. Although the total tariff
for the large cup is higher at $1.40 than for the small cup at 60 cents, the unit price is lower
(8.75 cents versus 15 cents per ounce). Hence the large cup sells at a quantity discount.

The shop’s expected profit is

1
2
½140� ð5Þð16Þ� þ 1

2
½60� ð5Þð4Þ� ¼ 50 (18.58)

cents per consumer. Reducing the size of the small cup from 9 to 4 ounces allows the shop
to recapture some of the profit lost when the customer’s type cannot be observed.

QUERY: Investigate the menu of your favorite local coffee shop. Looking at just the largest
and smallest cup sizes on the menu, determine whether these sizes and prices are consistent
with reasonable values of the parameters c, θH , and θL and of the proportion of high and low
types ðβ and 1� βÞ [still assuming that vðqÞ ¼ 2

ffiffiffi
q

p
as in this example].

ADVERSE SELECTION IN INSURANCE

For the second application of the hidden-type model, we will return to the insurance market
in which an individual with state-independent preferences and initial income W0 faces the
prospect of loss l . Assume the individual can be one of two types: a high-risk type with
probability of loss πH or a low-risk type with probability πL , where πH > πL . We will first
assume the insurance company is a monopolist; later we will study the case of competitive
insurers. The presence of hidden risk types in an insurance market is said to lead to adverse
selection. Insurance tends to attract more risky than safe consumers (the “selection” in adverse
selection) because it is more valuable to risky types, yet risky types are more expensive to serve
(the “adverse” in adverse selection).

D E F I N I T I O N
Adverse selection. The problem facing insurers that risky types are both more likely to
accept an insurance policy and more expensive to serve.

As we will see, if the insurance company is clever then it can mitigate the adverse selection
problem by offering a menu of contracts. The policy targeted to the safe type offers only
partial insurance so that it is less attractive to the high-risk type.

650 Part 7 Market Failure



First best

In the first best, the insurer can observe the individual’s risk type and offer a different policy to
each. Our previous analysis of insurance makes it clear that the first best involves full insurance
for each type, so the insurance payment x in case of a loss equals the full amount of the loss l .
Different premiums are charged to each type and are set to extract all of the surplus that each
type obtains from the insurance.

The solution is shown in Figure 18.8 (the construction of this figure is discussed further in
Chapter 7). Without insurance, each type finds himself at point E. Point A (resp., B) is the
first-best policy offered to the high-risk (resp., low-risk) type. Points A and B lie on the
certainty line because both are fully insured. Since the premiums extract each type’s surplus
from insurance, both types are on their indifference curves through the no-insurance point E.
The high type’s premium is higher, so A is further down the certainty line toward the origin
than is B.7

FIGURE 18.8 First Best for a Monopoly Insurer

In the first best, the monopoly insurer offers policyA to the high-risk type and B to the low-risk type.
Both types are fully insured. The premiums are sufficiently high to keep each type on his indifference
curve through the no-insurance point (E).

A

B

0

E

W1

W2

Certainty line

UH
0

UL
0

7Mathematically, A appears further down the certainty line than B in Figure 18.8 because the high type’s indifference curve
through E is flatter than the low type’s. To see this, note that expected utility equals ð1� πÞU ðW1Þ þ πU ðW2Þ and so the
MRS is given by

� dW1

dW2
¼ ð1� πÞU 0ðW1Þ

πU 0ðW2Þ
.

At a given ðW1,W2Þ combination on the graph, the marginal rates of substitution differ only because the underlying
probabilities of loss differ. Since
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Second best

If the monopoly insurer cannot observe the agent’s type, then the first-best contracts will not
be incentive compatible: the high-risk type would claim to be low risk and take full insurance
coverage at the lower premium. As in the nonlinear pricing problem, the second best will
involve a menu of contracts. Other principles from the nonlinear pricing problem also carry
over here. The high type continues to receive the first-best quantity (here, full insurance)—
there is no distortion at the top. The low type’s quantity is distorted downward from the first
best, so he receives only partial insurance. Again we see that, with hidden types, the principal
is willing to sacrifice some social surplus in order to extract some of the surplus the agent
would otherwise derive from his private information.

Figure 18.9 depicts the second best. If the insurer tried to offer a menu containing the
first-best contracts A and B, then the high-risk type would choose B rather than A. To
maintain incentive compatibility, the insurer distorts the low type’s policy from B along its
indifference curve u0

L down to D. The low type is only partially insured, and this allows the
insurer to extract more surplus from the high type. The high type continues to be fully
insured, but the increase in his premium shifts his policy down the certainty line to C .

FIGURE 18.9 Second Best for a Monopoly Insurer

Second-best insurance policies are represented by the circled points: C for the high-risk type and D
for the low-risk type.
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B

0

E

C

D

W1

W2

Certainty line

UH
0

UH
1

UL
0

1� πH

πH
<

1� πL

πL
,

it follows that the high-risk type’s indifference curve will be flatter. This proof follows the analysis presented in
M. Rothschild and J. Stiglitz, “Equilibrium in Competitive Insurance Markets: An Essay on the Economics of Imperfect
Information,” Quarterly Journal of Economics (November 1976): 629–50.
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EXAMPLE 18.5 Insuring the Little Red Corvette

The analysis of automobile insurance in Example 18.2 (which is based on Example 7.2) can
be recast as an adverse selection problem. Suppose that the probability of theft depends not
on the act of installing an antitheft device but rather on the color of the car. Because thieves
prefer red to gray cars, the probability of theft is higher for red cars (πH ¼ 0:25) than for gray
cars (πL ¼ 0:15).

First best. The monopoly insurer can observe the car color and offer different policies for
different colors. Both colors are fully insured for the $20,000 loss of the car. The premium is
the maximum amount that each type would be willing to pay in lieu of going without
insurance; as computed in Example 7.2, this amount is $5,426 for the high type (red cars).
Similar calculations show that a gray-car owner’s expected utility if he is not insured is
11.4795, and the maximum premium he would be willing to pay for full insurance is
$3,287. Although the insurer pays more claims for red cars, the higher associated premium
more than compensates and so the expected profit from a policy sold for a red car is
5, 426� ð0:25Þð20,000Þ ¼ $426 versus 3,287� ð0:15Þð20,000Þ ¼ $287 for a gray car.

Second best. Suppose the insurer does not observe the color of the customer’s car and
knows only that 10 percent of all cars are red and the rest are gray. The second-best menu of
insurance policies—consisting of a premium ∕ insurance coverage bundle ðpH , xH Þ targeted
for high-risk, red cars and ðpL , xLÞ for low-risk, gray cars—is indicated by the circled points in
Figure 18.9. Red cars are fully insured: xH ¼ 20,000. To solve for the rest of the contractual
parameters, observe that xH , pH , and pL can be found as the solution to the maximization of
expected insurer profit

0:1 ½ pH � ð0:25Þð20,000Þ� þ 0:9 ½pL � ð0:15ÞðxLÞ� (18.59)

subject to a participation constraint for the low type,

0:85 lnð100,000� pLÞ þ 0:15 lnð100,000� pL � 20,000þ xLÞ 	 11:4795,
(18.60)

and to an incentive compatibility constraint for the high type,

lnð100,000� pH Þ 	 0:75 lnð100,000� pLÞ
þ 0:25 lnð100,000� pL � 20,000þ xLÞ. (18.61)

Participation and incentive compatibility constraints for the other types can be ignored,
just as in the nonlinear pricing problem. This maximization problem is too difficult to solve
by hand, but it can be solved numerically using popular spreadsheet programs or other
mathematical software. The second-best values that result are x��H ¼ 20,000, p��H ¼ 4,154,
x��L ¼ 11,556, and p��L ¼ 1,971:

QUERY: Look at the spreadsheet associated with this example on the website for this
textbook. Play around with different probabilities of the two car colors. What happens
when red cars become sufficiently common? (Even if you cannot access the spreadsheet,
you should be able to guess the answer.)

Competitive insurance market

Assume now that insurance is provided not by a monopoly but rather by a perfectly
competitive market, resulting in fair insurance. Figure 18.10 depicts the equilibrium in
which insurers can observe each individual’s risk type. Lines EF and EG are drawn with
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slopes �ð1� πLÞ=πL and �ð1� πH Þ=πH , respectively, and show the market opportunities
for each person to trade W1 for W2 by purchasing fair insurance.8 The low-risk type is sold
policy F , and the high-risk type is sold policy G. Each type receives full insurance at a fair
premium.

However, the outcome in Figure 18.10 is unstable if insurers cannot observe risk types.
The high type would claim to be low risk and take contract F . But then insurers that offered F
would earn negative expected profit: at F , insurers break even serving only the low-risk types,
so adding individuals with a higher probability of loss would push the company below the
break-even point.

The competitive equilibrium with unobservable types is shown in Figure 18.11. The
equilibrium is similar to the second best for a monopoly insurer. A set of policies are offered
that separates the types. The high-risk type is fully insured at point G, the same policy as he
was offered in the first best. The low-risk type is offered policy J , which features partial
insurance. The low type would be willing to pay more for fuller insurance, preferring a policy

FIGURE 18.10 Competitive Insurance Equilibrium with Perfect Information

With perfect information, the competitive insurance market results in full insurance at fair premiums
for each type. The high type is offered policy G; the low type, policy F .

G

F

E

0 W1

W2

Certainty line

8To derive these slopes, called odds ratios, note that fair insurance requires the premium to satisfy p ¼ πx: Substituting into
W1 and W2 yields

W1 ¼ W0 � p ¼ W0 � πx and
W2 ¼ W0 � p � l þ x ¼ W0 � l þ ð1� πÞx:

Hence, a $1 increase in the insurance payment (x) reduces W1 by π and increases W2 by 1� π.
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such asK . BecauseK is below line EF , an insurer would earn positive profit from selling such
a policy to low-risk types only. The problem is that K would also attract high-risk types,
leading to insurer losses. Hence insurance is rationed to the low-risk type.

With hidden types, the competitive equilibriummust involve a set of separating contracts;
it cannot involve a single policy that pools both types. This can be shown with the aid of
Figure 18.12. To be accepted by both types and allow the insurer to at least break even, the
pooling contract would have to be a point (such asM ) within triangle EFG. ButM cannot be
a final equilibrium because at M there exist further trading opportunities. To see this, note
that—as indicated in the figure and discussed earlier in the chapter—the indifference curve
for the high type ðUH Þ is flatter than that for the low type ðUH Þ. Consequently, there are
insurance policies such as N that are unattractive to high-risk types, attractive to low-risk
types, and profitable to insurers (because such policies lie below EF ).

Assuming that no barriers prevent insurers from offering new contracts, policies such asN
will be offered and will “skim the cream” of low-risk individuals from any pooling equilib-
rium. Insurers that continue to offer M are left with the “adversely selected” individuals,
whose risk is so high that insurers cannot expect to earn any profit by serving them.

FIGURE 18.11 Competitive Insurance Equilibrium with Hidden Types

With hidden types, the high-risk type continues to be offered first-best policy G but the low-risk type
is rationed, receiving only partial insurance at J in order to keep the high-risk type from pooling.
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EXAMPLE 18.6 Competitive Insurance for the Little Red Corvette

Recall the automobile insurance analysis in Example 18.5, but now assume that insurance is
provided by a competitive market rather than a monopolist. Under full information, the com-
petitive equilibrium involves full insurance for both types at a fair premium of ð0:25Þð20,000Þ ¼
$5,000 for high-risk, red cars and ð0:15Þð20,000Þ ¼ $3,000 for low-risk, gray cars.

If insurers cannot observe car colors, then in equilibrium the coverage for the two types
will still be separated into two policies. The policy targeted for red cars is the same as under
full information. The policy targeted for gray cars involves a fair premium pL ¼ 0:15xL and an
insurance level that does not give red-car owners an incentive to deviate by pooling on the
gray-car policy:

0:75 lnð100,000� pLÞ þ 0:25 lnð100,000� pL � 20,000 þ xLÞ ¼ lnð95,000Þ.
(18.62)

Figure 18.13 provides a graphical solution for pL . The figure graphs the left-hand side of
Equation 18.62 (after substituting the condition for fair insurance, xL ¼ pL=0:15) versus
the right-hand side. With a precise enough graph, one can see that the intersection is at
pL ¼ 453. The associated insurance level is xL ¼ 3,020.

QUERY: Howmuch more would gray-car owners be willing to pay for full insurance? Would
an insurer profit from selling full insurance at this higher premium if it sold only to owners of
gray cars? Why then do the companies ration insurance to gray cars by insuring them partially?

FIGURE 18.12 Impossibility of a Competitive Pooling Equilibrium

Pooling contractM cannot be an equilibrium because there exist insurance policies such asN that are
profitable to insurers and are attractive to low-risk types but not to high-risk types.
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MARKET SIGNALING

In all the models studied so far, the uninformed principal moved first—making a contract
offer to the agent, who had private information. If the information structure is reversed and
the informed player moves first, then the analysis becomes much more complicated, putting
us in the world of signaling games studied in Chapter 8. When the signaler is a principal who
is offering a contract to an agent, the signaling games becomes complicated because the
strategy space of contractual terms is virtually limitless. Compare the simpler strategy space of
Spence’s education signaling game in Chapter 8, where the worker chose one of just two
actions: to obtain an education or not. We do not have space to delve too deeply into
complex signaling games here nor to repeat Chapter 8’s discussion of simpler signaling
games. We will be content to gain some insights from a few simple applications.

Signaling in competitive insurance markets

In a competitive insurance market with adverse selection (i.e., hidden risk types), we saw that
the low-risk type receives only partial insurance in equilibrium. He would benefit from report
of his type, perhaps hiring an independent auditor to certify that type so the report would be
credible. The low-risk type would be willing to pay the difference between his equilibrium
and his first-best surplus in order to issue such a credible signal.

It is important that there be some trustworthy auditor or other way to verify the
authenticity of such reports, because a high-risk individual would now have an even greater
incentive to make false reports. The high-risk type may even be willing to pay a large bribe to
the auditor for a false report.

FIGURE 18.13 Graphical Solution to Equation 18.62

The two sides of Equation 18.62 are equal when pL ¼ 453.
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EXAMPLE 18.7 Certifying Car Color

Return to the competitive market for automobile insurance from Example 18.6. LetR be the
most that the owner of a gray car would be willing to pay to have his car color (and thus his
type) certified and reported to the market. He would then be fully insured at a fair premium
of $3,000, earning surplus lnð100,000� 3,000�RÞ. In the absence of such a certified
report, his expected surplus is

0:85 lnð100,000� 453Þ þ 0:15 lnð100,000� 453� 20,000 þ 3,020Þ
¼ 11:4803. (18.63)

Solving for R in the equation

lnð100,000� 453�RÞ ¼ 11:4803 (18.64)

yields R ¼ 207. Thus the low-risk type would be willing to pay up to $207 to have a
credible report of his type issued to the market.

The owner of the red car would pay a bribe as high as $2,000—the difference between his
fair premium with full information ($5,000) and the fair premium charged to an individual
known to be of low risk ($3,000). Therefore, the authenticity of the report is a matter of great
importance.

QUERY: How would the equilibrium change if reports are not entirely credible (i.e., if there
is some chance the high-risk individual can successfully send a false report about his type)?
What incentives would an auditor have to maintain his or her reputation for making honest
reports?

Market for lemons

Markets for used goods raise an interesting possibility for signaling. Cars are a leading
example: having driven the car over a long period of time, the seller has much better
information about its reliability and performance than a buyer, who can take only a short
test drive. Yet even the mere act of offering the car for sale can be taken as a signal of car
quality by the market. The signal is not positive: the quality of the good must be below the
threshold that would have induced the seller to keep it. As George Akerlof showed in the
article for which he won the Nobel Prize in economics, the market may unravel in equilib-
rium so that only the lowest-quality goods, the “lemons,” are sold.9

To gain more insight into this result, consider the used-car market. Suppose there is a
continuum of qualities from low-quality lemons to high-quality gems and that only the
owner of a car knows its type. Because buyers cannot differentiate between lemons and
gems, all used cars will sell for the same price, which is a function of the average car quality. A
car’s owner will choose to keep it if the car is at the upper end of the quality spectrum (since a
good car is worth more than the prevailing market price) but will sell the car if it is at the low
end (since these are worth less than the market price). This reduction in average quality of
cars offered for sale will reduce market price, leading would-be sellers of the highest-quality
remaining cars to withdraw from the market. The market continues to unravel until only the
worst-quality lemons are offered for sale.

The lemons problem leads the market for used cars to be much less efficient than it would
be under the standard competitive model in which quality is known. (Indeed, in the standard

9G. A. Akerlof, “The Market for ‘Lemons’: Quality Uncertainty and the Market Mechanism,” Quarterly Journal of
Economics (August 1970): 488–500.
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model the issue of quality does not arise, because all goods are typically assumed to be of the
same quality.) Whole segments of the market disappear—along with the gains from trade in
these segments—because higher-quality items are no longer traded. In the extreme, the
market can simply break down with nothing (or perhaps just a few of the worst items) being
sold. The lemons problem can be mitigated by trustworthy used-car dealers, by development
of car-buying expertise by the general public, by sellers providing proof that their cars are
trouble-free, and by sellers offering money-back guarantees. But anyone who has ever
shopped for a used car knows that the problem of potential lemons is a real one.

EXAMPLE 18.8 Used-Car Market

Suppose the quality q of used cars is uniformly distributed between 0 and 20,000. Sellers
value their cars at q. Buyers (equal in number to the sellers) place a higher value on cars,
q þ b, so there are gains to be made from trade in the used-car market. Under full informa-
tion about quality, all used cars would be sold. But this does not occur when sellers have
private information about quality and buyers know only the distribution. Let p be the market
price. Sellers offer their cars for sale if and only if q � p. The quality of a car offered for sale is
thus uniformly distributed between 0 and p, implying that expected quality is

∫
p

0

q
1
p

� �
dq ¼ p

2
(18.65)

(see Chapter 2 for background on the uniform distribution). Hence, a buyer’s expected net
surplus is

p
2
þ b � p ¼ b � p

2
. (18.66)

There may be multiple equilibria, but the one with the most sales involves the highest value
of p for which Equation 18.66 is nonnegative: b � p=2 ¼ 0, implying that p� ¼ 2b. Only a
fraction 2b=20,000 of the cars are sold. As b falls, the market for used cars dries up.

QUERY: What would the equilibrium look like in the full-information case?

AUCTIONS

The monopolist has difficulty extracting surplus from the agent in the nonlinear pricing
problem because high-demand consumers could guarantee themselves a certain surplus by
choosing the low demanders’ bundle. A seller can often do better if several consumers
compete against each other for her scarce supplies in an auction. Competition among con-
sumers in an auction can help the seller solve the hidden-type problem, because high-value
consumers are then pushed to bid high so they don’t lose the good to another bidder. In the
setting of an auction, the principal’s “offer” is no longer a simple contract ormenu of contracts
as in the nonlinear pricing problem; instead, her offer is the format of the auction itself.
Different formats might lead to substantially different outcomes and more or less revenue for
the seller, so there is good reason for sellers to think carefully about how to design the auction.
There is also good reason for buyers to think carefully about what bidding strategies to use.

Auctions have received a great deal of attention in the economics literature ever since
William Vickery’s seminal work, for which he won the Nobel Prize in economics.10 Auctions

10W. Vickery, “Counterspeculation, Auctions, and Competitive Sealed Tenders,” Journal of Finance (March 1961): 8–37.
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continue to grow in significance as a market mechanism and are used for selling such goods as
airwave spectrum, Treasury bills, foreclosed houses, and collectibles on the Internet auction
site eBay.

There are a host of different auction formats. Auctions can involve sealed bids or open
outcries. Sealed-bid auctions can be first price (the highest bidder wins the object andmust pay
the amount bid) or second price (the highest bidder still wins but need only pay the next-
highest bid). Open-outcry auctions can be either ascending, as in the so-called English auction
where buyers yell out successively higher bids until no one is willing to top the last, or de-
scending, as in the so-called Dutch auction where the auctioneer starts with a high price and
progressively lowers it until one of the participants stops the auction by accepting the price at
that point. The seller can decide whether or not to set a “reserve clause,” which requires bids
to be over a certain threshold else the object will not be sold. Evenmore exotic auction formats
are possible. In an “all-pay” auction, for example, bidders pay their bids even if they lose.

A powerful and somewhat surprising result due to Vickery is that, in simple settings (risk-
neutral bidders who each know their valuation for the good perfectly, no collusion, etc.),
many of the different auction formats listed here (and more besides) provide the monopolist
with the same expected revenue in equilibrium. To see why this result is surprising, we will
analyze two auction formats in turn—a first-price and a second-price sealed-bid auction—
supposing that a single object is to be sold.

In the first-price sealed-bid auction, all bidders simultaneously submit secret bids. The
auctioneer unseals the bids and awards the object to the highest bidder, who pays his or her
bid. In equilibrium, it is a weakly dominated strategy to submit a bid b greater than or equal
to the buyer’s valuation v.

D E F I N I T I O N
Weakly dominated strategy. A strategy is weakly dominated if there is another strategy
that does at least as well against all rivals’ strategies and strictly better against at least one.

A buyer receives no surplus if he bids b ¼ v no matter what his rivals bid: if the buyer loses, he
gets no surplus; if he wins, he must pay his entire surplus back to the seller and again gets no
surplus. By bidding less than his valuation, there is a chance that others’ valuations (and
consequent bids) are low enough that the bidder wins the object and derives a positive surplus.
Bidding more than his valuation is even worse than just bidding his valuation. There is good
reason to think that players avoid weakly dominated strategies, meaning here that bids will be
below buyers’ valuations.

In a second-price sealed-bid auction, the highest bidder pays the next-highest bid rather
than his own. This auction format has a special property in equilibrium. All bidding strategies
are weakly dominated by the strategy of bidding exactly one’s valuation. Vickery’s analysis of
second-price auctions and of the property that they induce bidders to reveal their valuations
has led them to be called Vickery auctions or Vickery mechanisms.

We will prove that, in this kind of auction, bidding something other than one’s true
valuation is weakly dominated by bidding one’s valuation. Let v be a buyer’s valuation and b
his bid. If the two variables are not equal then there are two cases to consider: either b < v or
b > v. Consider the first case (b < v). Let b~ be the highest rival bid. If b~ > v, then the buyer
loses whether his bid is b or v, so there is a tie between the strategies. If b~ < b, then the buyer
wins the object whether his bid is b or v and his payment is the same (the second-highest bid, b~)
in either case, so again we have a tie. We no longer have a tie if b~ lies between b and v. If the
buyer bids b then he loses the object and obtains no surplus. If he bids v then he wins the
object and obtains a net surplus of v � b~ > 0, so bidding v is strictly better than bidding b < v
in this case. Similar logic shows that bidding v weakly dominates bidding b > v.

The reason that bidding one’s valuation is weakly dominant is that the winner’s bid does
not affect the amount he has to pay, for that depends on someone else’s (the second-highest
bidder’s) bid. But bidding one’s valuation ensures the buyer wins the object when he should.
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With an understanding of equilibrium bidding in second-price auctions, we can compare
first- and second-price sealed-bid auctions. Each format has plusses and minuses with regard
to the revenue the seller earns. On the one hand, bidders shade their bids below their
valuations in the first-price auction but not in the second-price auction, a “plus” for second-
price auctions. On the other hand, the winning bidder pays the highest bid in the first-price
auction but only the second-highest bid in the second-price auction, a “minus” for second-
price auctions. The surprising result proved by Vickery is that these plusses and minuses
balance perfectly, so that both auction types provide the seller with the same expected
revenue. Rather than working through a general proof of this revenue equivalence result,
we will show in Example 18.9 that it holds in a particular case.

EXAMPLE 18.9 Art Auction

Suppose two buyers (1 and 2) bid for a painting in a first-price sealed-bid auction. Buyer i’s
valuation, vi, is a random variable that is uniformly distributed between 0 and 1 and is
independent of the other buyer’s valuation. Buyers’ valuations are private information. We
will look for a symmetric equilibrium in which buyers bid a constant fraction of their
valuations, bi ¼ kvi . The remaining step is to solve for the equilibrium value of k.

Symmetric equilibrium. Given that buyer 1 knows his own type v1 and knows buyer 2’s
equilibrium strategy b2 ¼ kv2, buyer 1 best responds by choosing the bid b1 maximizing his
expected surplus

Prð1 wins auctionÞðv1 � b1Þ þ Prð1 loses auctionÞð0Þ
¼ Prðb1 > b2Þðv1 � b1Þ
¼ Prðb1 > kv2Þðv1 � b1Þ
¼ Prðv2 < b1=kÞðv1 � b1Þ

¼ b1
k
ðv1 � b1Þ. (18.67)

We have ignored the possibility of equal bids, because they would only occur in equilibrium
if buyers had equal valuations yet the probability is zero that two independent and con-
tinuous random variables equal each other.

The only tricky step in Example 18.67 is the last one. The discussion of cumulative
distribution functions in Chapter 2 shows that the probability Prðv2 < xÞ can be written as

Prðv2 < xÞ ¼ ∫
x

�∞

f ðv2Þ dv2, (18.68)

where f is the probability density function. But for a random variable uniformly distributed
between 0 and 1 we have

∫
x

0

f ðv2Þ dv2 ¼ ∫
x

0

ð1Þ dv2 ¼ x, (18.69)

so Prðv2 < xÞ ¼ b1=k.
Taking the first-order condition of Equation 18.67 with respect to b1 and rearranging

yields b1 ¼ v1=2. Hence k� ¼ 1=2, implying that buyers shade their valuations down by half
in forming their bids.

(continued)
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EXAMPLE 18.9 CONTINUED

Order statistics. Before computing the seller’s expected revenue from the auction, we will
introduce the notion of an order statistic. If n independent draws are made from the same
distribution and if they are arranged from smallest to largest, then the kth lowest draw is
called the kth-order statistic, denoted XðkÞ. For example: with n random variables, the nth-
order statistic XðnÞ is the largest of the n draws; the ðn � 1Þth-order statistic Xðn�1Þ is the
second largest; and so on. Order statistics are so useful that statisticians have done a lot of
work to characterize their properties. For instance, statisticians have computed that if n draws
are taken from a uniform distribution between 0 and 1, then the expected value of the kth-
order statistic is

EðXðkÞÞ ¼
k

n þ 1
. (18.70)

This formula may be found in many standard statistical references.

Expected revenue. The expected revenue from the first-price auction equals

Eðmaxðb1, b2ÞÞ ¼
1
2
Eðmaxðv1, v2ÞÞ. (18.71)

But maxðv1, v2Þ is the largest-order statistic from two draws of a uniform random variable
between 0 and 1, the expected value of which is 2=3 (according to Equation 18.70).
Therefore, the expected revenue from the auction equals ð1=2Þð2=3Þ ¼ 1=3.

Second-price auction. Suppose that the seller decides to use a second-price auction to sell
the painting. In equilibrium, buyers bid their true valuations: bi ¼ vi . The seller’s expected
revenue is Eðminðb1, b2ÞÞ because the winning bidder pays an amount equal to the loser’s bid.
But minðb1, b2Þ ¼ minðv1, v2Þ, and the latter is the first-order statistic for two draws from
a random variable uniformly distributed between 0 and 1 whose expected value is 1=3
(according to Equation 18.70). This is the same expected revenue generated by the first-
price auction.

QUERY: In the first-price auction, could the seller try to boost bids up toward buyers’
valuations by specifying a reservation price r such that no sale is made if the maximal bid
falls below r? What are the trade-offs involved for the seller from such a reservation price?
Would a reservation price help boost revenue in a second-price auction?

In more complicated economic environments, the long list of different auction formats do
not necessarily yield the same revenue. One complication that is frequently considered is
supposing that the good has the same value to all bidders but that they do not know exactly
what that value is: each bidder has only an imprecise estimate of what his or her valuation
might be. For example, bidders for oil tracts may have each conducted their own surveys of
the likelihood that there is oil below the surface. All bidders’ surveys taken together may give
a clear picture of the likelihood of oil, but each one separately may give only a rough idea. For
another example, the value of a work of art depends in part on its resale value (unless the
bidder plans on keeping it in the family forever), which in turn depends on others’ valuations;
each bidder knows his or her own valuation but perhaps not others’. An auction conducted in
such an economic environment is called a common values auction.

The most interesting issue that arises in a common values setting is the so-called winner’s
curse. The winning bidder realizes that every other bidder probably thought the good was
worth less, meaning that he or she probably overestimated the value of the good. The
winner’s curse sometimes leads inexperienced bidders to regret having won the auction.
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Sophisticated bidders take account of the winner’s curse by shading down their bids below
their (imprecise) estimates of the value of the good, so they never regret having won the
auction in equilibrium.

Analysis of the common values setting is rather complicated, and the different auction
formats previously listed no longer yield equivalent revenue. Roughly speaking, auctions that
incorporate other bidders’ information in the price paid tend to provide the seller with more
revenue. For example, a second-price auction tends to be better than a first-price auction
because the price paid in a second-price auction depends on what other bidders think the
object is worth. If other bidders thought the object was not worth much then the second-
highest bid will be low and the price paid by the winning bidder will be low, precluding the
winner’s curse.

PROBLEMS

18.1
A personal-injury lawyer works as an agent for his injured plaintiff. The expected award from the trial
(taking into account the plaintiff’s probability of prevailing and the damage award if she prevails) is l ,
where l is the lawyer’s effort. Effort costs the lawyer l2=2.

a. What is the lawyer’s effort, his surplus, and the plaintiff’s surplus in equilibrium when the lawyer
obtains the customary 1 ∕ 3 contingency fee (that is, the lawyer gets 1 ∕ 3 of the award if the
plaintiff prevails)?

b. Repeat part (a) for a general contingency fee of c.

SUMMARY

In this chapter we have provided a survey of some issues that
arise in modeling markets with asymmetric information.
Asymmetric information can lead to market inefficiencies
relative to the first-best benchmark, which assumes perfect
information. Cleverly designed contracts can often help re-
cover some of this lost surplus. We examined some of the
following specific issues.

• Asymmetric information is often studied using a
principal-agent model in which a principal offers a con-
tract to an agent who has private information. The two
main variants of the principal-agent model are the mod-
els of hidden actions and of hidden types.

• In a hidden-action model (called a moral hazard model
in an insurance context), the principal tries to induce the
agent to take appropriate actions by tying the agent’s
payments to observable outcomes. Doing so exposes the
agent to random fluctuations in these outcomes, which
is costly for a risk-averse agent.

• In a hidden-type model (called an adverse selection
model in an insurance context), the principal cannot
extract all the surplus from high types because they can
always gain positive surplus by pretending to be a low
type. In an effort to extract the most surplus possible,
the principal offers a menu of contracts from which

different types of agent can select. The principal distorts
the quantity in the contract targeted to low types in
order to make this contract less attractive to high
types, thus extracting more surplus in the contract tar-
geted to the high types.

• Most of the insights gained from the basic form of the
principal-agent model, in which the principal is a
monopolist, carry over to the case of competing princi-
pals. Themain change is that agents obtainmore surplus.

• The lemons problem arises when sellers have private
information about the quality of their goods. Sellers
whose goods are higher than average quality may refrain
from selling at the market price, which reflects the aver-
age quality of goods sold on the market. The market
may collapse, with goods of only the lowest quality
being offered for sale.

• The principal can extract more surplus from agents if
several of them are pitted against each other in an auc-
tion setting. In a simple economic environment, a variety
of common auction formats generate the same revenue
for the seller. Differences in auction format may generate
different level of revenue in more complicated settings.

Chapter 18 Asymmetric Information 663



c. What is the optimal contingency fee from the plaintiff’s perspective? Compute the associated
surpluses for the lawyer and plaintiff.

d. What would be the optimal contingency fee from the plaintiff ’s perspective if she could “sell”
the case to her lawyer [that is, if she could ask him for an up-front payment in return for a
specified contingency fee, possibly higher than in part (c)]? Compute the up-front payment
(assuming that the plaintiff makes the offer to the lawyer) and the associated surpluses for the
lawyer and plaintiff. Do they do better in this part than in part (c)? Why do you think selling
cases in this way is outlawed in many countries?

18.2
Solve for the optimal linear price per ounce of coffee that the coffee shop would charge in Example 18.4.
How does the shop’s profit compare to when it uses nonlinear prices?Hint: Your first step should be to
compute each type’s demand at a linear price p.

18.3
Return to the nonlinear pricing problem facing the monopoly coffee shop in Example 18.4, but now
suppose the proportion of high demanders increases to 2=3 and the proportion of low demanders falls
to 1=3. What is the optimal menu in the second-best situation? How does the menu compare to the one
in Example 18.4?

18.4
Suppose there is a 50–50 chance that an individual with logarithmic utility from wealth and with a
current wealth of $20,000 will suffer a loss of $10,000 from a car accident. Insurance is competitively
provided at actuarily fair rates.

a. Compute the outcome if the individual buys full insurance.

b. Compute the outcome if the individual buys only partial insurance covering half the loss. Show
that the outcome in part (a) is preferred.

c. Now suppose that individuals who buy the partial rather than the full insurance policy take more
care when driving, reducing the damage from loss from $10,000 to $7,000. What would be the
actuarily fair price of the partial policy? Does the individual now prefer the full or the partial
policy?

18.5
Suppose that left-handed people are more prone to injury than right-handed people. Lefties have an
80 percent chance of suffering an injury leading to a $1,000 loss (in terms of medical expenses and the
monetary equivalent of pain and suffering) but righties have only a 20 percent chance of suffering such
an injury. The population contains equal numbers of lefties and righties. Individuals all have logarithmic
utility-of-wealth functions and initial wealth of $10,000. Insurance is provided by a monopoly company.

a. Compute the first best for the monopoly insurer (i.e., supposing it can observe the individual’s
dominant hand).

b. Take as given that, in the second best, the monopolist prefers not to serve righties at all and
targets only lefties. Knowing this, compute the second-best menu of policies for the monopoly
insurer.

c. Use a spreadsheet program (such as the one on the website associated with Example 18.5) or
other mathematical software to solve numerically the constrained optimization problem for the
second best. Make sure to add constraints bounding the insurance payments for righties:
0 � xR � 1,000: Establish that the constraint 0 � xR is binding and so righties are not served
in the second best.
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18.6
Consider the same setup as in Problem 18.5, but assume that insurance is offered by competitive
insurers.

a. Assume insurance companies cannot distinguish lefties from righties and so offer a single con-
tract. If both types are equally likely to buy insurance, what would be the actuarially fair
premium for full insurance?

b. Which types will buy insurance at the premium calculated in (a)?

c. Given your results from part (b), will the insurance premiums be correctly computed?

18.7
Suppose 100 cars will be offered on the used-car market. Let 50 of them be good cars, each worth
$10,000 to a buyer, and let 50 be lemons, each worth only $2,000.

a. Compute a buyer’s maximum willingness to pay for a car if he or she cannot observe the car’s
quality.

b. Suppose that there are enough buyers relative to sellers that competition among them leads cars
to be sold at their maximum willingness to pay. What would the market equilibrium be if sellers
value good cars at $8,000? At $6,000?

18.8
Consider the following simple model of a common values auction. Two buyers each obtain a private
signal about the value of an object. The signal can be either high (H ) or low (L) with equal probability.
If both obtain signal H , the object is worth 1; otherwise, it is worth 0.

a. What is the expected value of the object to a buyer who sees signal L? To a buyer who sees
signal H ?

b. Suppose buyers bid their expected value computed in part (a). Show that they earn negative
profit conditional on observing signal H—an example of the winner’s curse.

Analytical Problems

18.9 Doctor-patient relationship
Consider the principal-agent relationship between a patient and doctor. Suppose that the patient’s
utility function is given by UP ðm, xÞ, where m denotes medical care (whose quantity is determined
by the doctor) and x denotes other consumption goods. The patient faces budget constraint
Ic ¼ pmm þ x, where pm is the relative price of medical care. The doctor’s utility function is given by
UdðIdÞ þUp—that is, the doctor derives utility from income but, being altruistic, also derives utility
from the patient’s well-being. Moreover, the additive specification implies that the doctor is a perfect
altruist in the sense that his or her utility increases one-for-one with the patient’s. The doctor’s income
comes from the patient’s medical expenditures: Id ¼ pmm. Show that, in this situation, the doctor will
generally choose a level of m that is higher than a fully informed patient would choose.

18.10 Diagrams with three types
Suppose the agent can be one of three types rather than just two as in the chapter.

a. Return to the monopolist’s problem of computing the optimal nonlinear price. Represent the
first best in a schematic diagram by modifying Figure 18.5. Do the same for the second best by
modifying Figure 18.7.

b. Return to the monopolist’s problem of designing optimal insurance policies. Represent the first
best in a schematic diagram by modifying Figure 18.8. Do the same for the second best by
modifying Figure 18.9.
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18.11 Increasing competition in an auction
A painting is auctioned to n bidders, each with a private value for the painting that is uniformly
distributed between 0 and 1.

a. Compute the equilibrium bidding strategy in a first-price sealed-bid auction. Compute the
seller’s expected revenue in this auction. Hint: Use the formula for the expected value of
the kth-order statistic for uniform distributions in Equation 18.70.

b. Compute the equilibrium bidding strategy in a second-price sealed-bid auction. Compute the
seller’s expected revenue in this auction using the hint from part (a).

c. Do the two auction formats exhibit revenue equivalence?

d. For each auction format, how do bidders’ strategies and the seller’s revenue change with an
increase in the number of bidders?

18.12 Team effort
Increasing the size of a team that creates a joint product may dull incentives, as this problem will
illustrate.11 Suppose n partners together produce a revenue of R ¼ e1 þ…þ en; here ei is partner i’s
effort, which costs him cðeiÞ ¼ e2i =2 to exert.

a. Compute the equilibrium effort and surplus (revenue minus effort cost) if each partner receives
an equal share of the revenue.

b. Compute the equilibrium effort and average surplus if only one partner gets a share. Is it better
to concentrate the share or to disperse it?

c. Return to part (a) and take the derivative of surplus per partner with respect to n. Is surplus per
partner increasing or decreasing in n? What is the limit as n increases?

d. Some commentators say that ESOPs (employee stock ownership plans, whereby part of the
firm’s shares are distributed among all its workers) are beneficial because they provide incen-
tives for employees to work hard. What does your answer to part (c) say about the incentive
properties of ESOPs for modern corporations, which may have thousands of workers?
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E X T E N S I O N S

Nonlinear Pricing with a Continuum of Types

In this extension, we will expand the analysis of nonlin-
ear pricing to allow for a continuum of consumer types
rather than just two. The extension will be especially
valuable for students who are interested in seeing new
applications of optimal control techniques introduced
in Chapter 2 to applications beyond dynamic choice
problems. Be warned that themathematics used here is
some of the most complicated in the book. For those
not interested in practicing optimal control, the main
point to take away from this extension is “reassurance”:
we can rest assured that the conclusions we have drawn
from the simple two-type model in this chapter indeed
hold in more general settings. Besides drawing on
Chapter 2, the extension draws on Section 2.3.3 of
Bolton and Dewatripont (2005).

E18.1 Remaining questions about
hidden-type models

We analyzed the simplest possible hidden-type model
in Chapter 18. The agent’s type could be one of only
two possible values. In the nonlinear pricing applica-
tion, for example, the agent was a consumer who
could have high or low demand. In the application
to adverse selection in insurance, the agent was an
individual who could have a high or low probability
of an accident. We derived a number of insights from
the analysis, including that the low type’s contract was
distorted downward relative to the first best although
the high type’s contract was not. The latter insight was
summarized as “no distortion at the top.”

The analysis left a number of open questions. How
general are the first-order conditions characterizing
the second-best contract? Does “no distortion at the
top” mean that only the highest type’s contract is
efficient, or that all but the very lowest type’s are, or
something in between? Does the monopolist want to
serve all types, or will the lowest types be left off the
menu? We cannot tell by analyzing a two-type model,
but we can answer these questions by extending the
analysis to a continuous distribution of types. As men-
tioned previously, the other motivation for this exten-
sion is to show the power of the optimal control
methods introduced in Chapter 2 for solving problems
beyond dynamic choice problems.

E18.2 Nonlinear pricing model

For concreteness, we will focus our analysis on the
nonlinear pricing problem for a monopolist. The mo-
nopolist offers a menu of bundles, one for each type θ,
where a bundle is a specification of a quantity qðθÞ and
a total tariff for this quantity T ðθÞ. The consumer has
private information about his type, but the monopolist
knows only the distribution from which θ is drawn.
Let φðθÞ be the associated probability density function
and ΦðθÞ the cumulative distribution function. Sup-
pose all types fall in the interval between θL at the low
end and θH at the high end. (Review the section on
probability and statistics from Chapter 2 for these and
other concepts used in this extension.)

As before, the consumer’s utility function isU ðθÞ ¼
θvðqðθÞÞ � T ðθÞ. The monopolist’s profit from serving
type θ is ΠðθÞ ¼ T ðθÞ � cqðθÞ, where c is the constant
marginal and average cost of production.

E18.3 First best

The first best is easy to solve for. Each type is offered
the socially optimal quantity, which satisfies the condi-
tion θv0ðqÞ ¼ c. Each type is charged the tariff that
extracts all of his surplus T ðθÞ ¼ θvðqðθÞÞ. The mo-
nopolist earns profit θvðqðθÞÞ � cqðθÞ, which is clearly
all of the social surplus.

E18.4 Second best

The monopolist’s second-best pricing scheme is the
menu of bundles qðθÞ and T ðθÞ that maximizes its
expected profit,

∫
θH

θL

ΠðθÞφðθÞ dθ ¼ ∫
θH

θL

½T ðθÞ � cqðθÞ�φðθÞ dθ, (i)

subject to participation and incentive compatibility
constraints for the consumer. As we have seen, the
participation constraint is a concern only for the
lowest type that the monopolist serves. Then all types
will participate as long as θL does. The relevant
participation constraint is thus

θLvðqðθLÞÞ � T ðθLÞ 	 0. (ii)
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That all types participate in the contract doesnot require
the monopolist to serve them with a positive quantity.
The monopolist may choose to offer the null contract
(zero quantity and tariff ) to a range of types. By reduc-
ing some types down to the null contract, the monop-
olist can extract even more surplus from higher types.

Incentive compatibility requires additional discus-
sion. Incentive compatibility requires that type θ pre-
fer its bundle to any other type’s, say, qðθ~Þ and T ðθ~Þ.
In other words, θvðqðθ~ÞÞ � T ðθ~Þ is maximized at
θ~¼ θ. Taking the first-order condition with respect
to θ~ yields

θv0ðqðθ~ÞÞq0ðθ~Þ � T 0ðθ~Þ ¼ 0 for θ~¼ θ; (iii)

that is,

θv0ðqðθÞÞq0ðθÞ � T 0ðθÞ ¼ 0. (iv)

Equation iv is both necessary and sufficient for incentive
compatibility under a set of conditions that hold inmany
examples but are a bit too technical to discuss here.

E18.5 Rewriting the problem

There are too many derivatives in Equation iv for us to
apply the optimal control methods from Chapter 2.
The analogous equation in Chapter 2 (Equation
2.148) has only one derivative. To obtain a workable
incentive compatibility constaint, observe that

U 0ðθÞ ¼ vðqðθÞÞ þ θv0ðqðθÞÞq0ðθÞ � T 0ðθÞ
¼ vðqðθÞÞ, (v)

where the second line follows from Equation iv. Now
we have expressed the incentive compatibility con-
straint in a form with only one derivative, as required.
Since the differential equation U 0ðθÞ ¼ vðqðθÞÞ in-
volves the derivative of U ðθÞ rather than of T ðθÞ, we
can make the substitution T ðθÞ ¼ θvðqðθÞÞ �U ðθÞ
everywhere in the maximization problem to put it in
terms of qðθÞ and U ðθÞ rather than qðθÞ and T ðθÞ.

The reformulated problem is to maximize

∫
θH

θL

½θvðqðθÞÞ �U ðθÞ � cqðθÞ�φðθÞ dθ (vi)

subject to the participation constraint (inequality ii) and
the incentive compatibility constraintU 0ðθÞ ¼ vðqðθÞÞ.
By Equation 2.150, the Hamiltonian associated with
the optimal control problem is

H ¼ ½θvðqðθÞÞ �U ðθÞ � cqðθÞ�φðθÞ
þ λðθÞvðqðθÞÞ þU ðθÞλ0ðθÞ. (vii)

To see how this Hamiltonian is constructed, θ is here
playing the role played by t in Chapter 2, qðθÞ is play-
ing the role of control variable cðtÞ, U ðθÞ is playing
the role of the state variable xðtÞ,

½θvðqðθÞÞ �U ðθÞ � cqðθÞ�φðθÞ (viii)

is playing the role of f , and U 0ðθÞ ¼ vðqðθÞÞ is playing
the role of differential equation

dxðt Þ
dt

¼ gðxðt Þ, cðt Þ, t Þ. (ix)

E18.6 Optimal control solution

Analogous to the conditions ∂H=∂c ¼ 0 and
∂H=∂x ¼ 0 from Equation 2.151, here the conditions
for the optimal control solution are

∂H
∂q

¼ ½θv0ðqðθÞÞ � c�φðθÞ þ λðθÞv0ðθÞ ¼ 0, (x)

∂H
∂U

¼ �φðθÞ þ λ0ðθÞ ¼ 0 . (xi)

To cast these conditions in a more useful form, we
shall eliminate the Lagrange multiplier. The second
equation implies λ0ðθÞ ¼ φðθÞ. By the fundamental
theorem of calculus (discussed in Chapter 2),

λðθH Þ � λðθÞ ¼ ∫
θH

θ

λ0ðsÞ ds

¼ ∫
θH

θ

φðsÞ ds

¼ ΦðθH Þ � ΦðθÞ
¼ 1� ΦðθÞ, (xii)

where ΦðθH Þ ¼ 1 because Φ is a cumulative distribu-
tion function, which equals 1 when evaluated at the
greatest possible value of the random variable.
Therefore,

λðθÞ ¼ λðθH Þ þ ΦðθÞ � 1
¼ ΦðθÞ � 1, (xiii)

since λðθH Þ ¼ 0 [there are no types above θH from
whom to extract surplus, so the value from distort-
ing type θH ’s contract as measured by λðθH Þ is 0].
Substituting into Equation x and rearranging yields

θv0ðqðθÞÞ ¼ c þ 1� ΦðθÞ
φðθÞ v0ðqðθÞÞ. (xiv)
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This equation tells us a lot about the second best.
Because ΦðθH Þ ¼ 1, for the highest type the equation
reduces to θHv0ðqðθH ÞÞ ¼ c, the first-best condition.
We again have “no distortion at the top” for the high
type, but all other types face some downward dis-
tortion in qðθÞ. To see this, note that θv0ðqðθÞÞ > c
for these other types, implying that qðθÞ is less than
the first best for all θ < θH .

E18.7 Uniform example

Suppose θ is uniformly distributed between 0 and 1
and that vðqÞ ¼ 2

ffiffiffi
q

p
. Then φðθÞ ¼ 1 and ΦðθÞ ¼ θ.

Equation xiv implies that

qðθÞ ¼ 2θ� 1
c

� �2

. (xv)

It is apparent from Equation xv that only types above
1 ∕ 2 are served. By leaving types below 1 ∕ 2 unserved,
the monopolist can extract more surplus from the
higher-value consumers whom it does serve. To com-
pute the tariff, observe that

T ðθÞ ¼ ∫
θ

1=2

T 0ðsÞ ds

¼ ∫
θ

1=2

sv0ðqðsÞÞq0ðsÞ ds

¼ 4θ2 � 1
2c

, (xvi)

where the first equality holds by the fundamental
theorem of calculus, the second by Equation iv, and
the third by Equation xv.

Figure E18.1 graphs the resulting nonlinear pricing
schedule. Each point on the schedule is a bundle tar-
geted at a particular type. The implied per-unit price
can be found by looking at the slope of the chord from
the origin to the graph. It is clear that this chord is
declining as q increases, implying that the per-unit
price is falling, which in turn implies that the schedule
involves quantity discounts for large purchases.

Reference
Bolton, P., and M. Dewatripont. Contract Theory. Cam-

bridge, MA: MIT Press, 2005.

FIGURE E18.1 Nonlinear Pricing Schedule for Continuum of Types

The graph is based on calculations for uniformly distributed types. Larger bundles receive per-unit
price discount.
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C H A P T E R

19

Externalities and Public Goods

In Chapter 13 we looked briefly at a few problems that may interfere with the allocational efficiency of
perfectly competitive markets. Here we will examine two of those problems—externalities and public
goods—in more detail. This examination has two purposes. First, we wish to show clearly why the existence
of externalities and public goods may distort the allocation of resources. In so doing it will be possible to
illustrate some additional features of the type of information provided by competitive prices and some of the
circumstances that may diminish the usefulness of that information. Our second reason for looking more
closely at externalities and public goods is to suggest ways in which the allocational problems they pose
might be mitigated. We will see that, at least in some cases, the efficiency of competitive market outcomes
may be more robust than might have been anticipated.

DEFINING EXTERNALITIES

Externalities occur because economic actors have effects on third parties that are not reflected
in market transactions. Chemical makers spewing toxic fumes on their neighbors, jet planes
waking up people, and motorists littering the highway are, from an economic point of view,
all engaging in the same sort of activity: they are having a direct effect on the well-being of
others that is outside market channels. Such activities might be contrasted to the direct effects
of markets. When I choose to purchase a loaf of bread, for example, I (perhaps imperceptibly)
raise the price of bread generally, and that may affect the well-being of other bread buyers.
But such effects, because they are reflected in market prices, are not externalities and do not
affect the market’s ability to allocate resources efficiently.1 Rather, the rise in the price of
bread that results from my increased purchase is an accurate reflection of societal preferences,
and the price rise helps ensure that the right mix of products is produced. That is not the case
for toxic chemical discharges, jet noise, or litter. In these cases, market prices (of chemicals,
air travel, or disposable containers) may not accurately reflect actual social costs because they
may take no account of the damage being done to third parties. Information being conveyed
by market prices is fundamentally inaccurate, leading to a misallocation of resources.

As a summary, then, we have developed the following definition.

D E F I N I T I O N
Externality. An externality occurs whenever the activities of one economic actor affect the
activities of another in ways that are not reflected in market transactions.

1Sometimes effects of one economic agent on another that take place through the market system are termed pecuniary
externalities to differentiate such effects from the technological externalities we are discussing. Here the use of the term
externalities will refer only to the latter type, because these are the only type with consequences for the efficiency of resource
allocation by competitive markets.
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Before analyzing in detail why failing to take externalities into account can lead to a
misallocation of resources, we will examine a few examples that should clarify the nature of
the problem.

Interfirm externalities
To illustrate the externality issue in its simplest form, we consider two firms: one producing
good x and the other producing good y. The production of good x is said to have an external
effect on the production of y if the output of y depends not only on the inputs chosen by the
y-entrepreneur but also on the level at which the production of x is carried on. Notationally,
the production function for good y can be written as

y ¼ f ðk, l ; xÞ, (19.1)

where x appears to the right of the semicolon to show that it is an effect on production over
which the y-entrepreneur has no control.2 As an example, suppose the two firms are located on
a river, with firm y being downstream from x. Suppose firm x pollutes the river in its productive
process. Then the output of firm y may depend not only on the level of inputs it uses itself
but also on the amount of pollutants flowing past its factory. The level of pollutants, in turn, is
determined by the output of firm x. In the production function shown by Equation 19.1, the
output of firm x would have a negative marginal physical productivity ∂y=∂x < 0. Increases in
x output would cause less y to be produced. In the next section we return to analyze this case
more fully, since it is representative of most simple types of externalities.

Beneficial externalities
The relationship between two firmsmay be beneficial. Most examples of such positive externali-
ties are rather bucolic in nature. Perhaps the most famous, proposed by J. Meade, involves two
firms, one producing honey (raising bees) and the other producing apples.3 Because the bees
feed on apple blossoms, an increase in apple production will improve productivity in the honey
industry. The beneficial effects of having well-fed bees is a positive externality to the beekeeper.
In the notation of Equation 19.1, ∂y=∂x would now be positive. In the usual perfectly com-
petitive case, the productive activities of one firm have no direct effect on those of other firms:
∂y=∂x ¼ 0.

Externalities in utility
Externalities also can occur if the activities of an economic actor directly affect an individual’s
utility. Most common examples of environmental externalities are of this type. From an eco-
nomic perspective it makes little difference whether such effects are created by firms (in the
form, say, of toxic chemicals or jet noise) or by other individuals (litter or, perhaps, the noise
from a loud radio). In all such cases the amount of such activities would enter directly into the
individual’s utility function in much the same way as firm x’s output entered into firm y’s pro-
duction function in Equation 19.1. As in the case of firms, such externalities may sometimes be
beneficial (you may actually like the song being played on your neighbor’s radio). So, again, a
situation of zero externalities can be regarded as the middle ground in which other agents’
activities have no direct effect on individuals’ utilities.

One special typeof utility externality that is relevant to the analysis of social choices ariseswhen
one individual’s utility depends directly on the utility of someone else. If, for example, Smith cares
about Jones’s welfare, then we could write his or her utility function ðUSÞ as

utility ¼ USðx1,…, xn ;UJ Þ, (19.2)

2We will find it necessary to redefine the assumption of “no control” considerably as the analysis of this chapter proceeds.
3J. Meade, “External Economies and Diseconomies in a Competitive Situation,” Economic Journal 62 (March 1952): 54–67.
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where x1, . . . , xn are the goods that Smith consumes and UJ is Jones’s utility. If Smith is
altruistic and wants Jones to be well-off (as might happen if Jones were a close relative),
∂US=∂UJ would be positive. If, on the other hand, Smith were envious of Jones, then it might
be the case that ∂US=∂UJ would be negative; that is, improvements in Jones’s utility make
Smith worse-off. The middle ground between altruism and envy would occur if Smith were
indifferent to Jones’s welfare ð∂US=∂UJ ¼ 0Þ, and that is what we have usually assumed
throughout this book (for a brief discussion, see the Extensions to Chapter 3).

Public goods externalities
Goods that are “public” or “collective” in nature will be the focus of our analysis in the second
half of this chapter. The defining characteristic of these goods is nonexclusion; that is, once the
goods are produced (either by the government or by some private entity), they provide
benefits to an entire group—perhaps to everyone. It is technically impossible to restrict these
benefits to the specific group of individuals who pay for them, so the benefits are available to all.
As we mentioned in Chapter 13, national defense provides the traditional example. Once a
defense system is established, all individuals in society are protected by it whether they wish to
be or not andwhether they pay for it or not. Choosing the right level of output for such a good
can be a tricky process, because market signals will be inaccurate.

EXTERNALITIES AND ALLOCATIVE INEFFICIENCY

Externalities lead to inefficient allocations of resources becausemarket prices do not accurately
reflect the additional costs imposed on or benefits provided to third parties. To illustrate these
inefficiencies requires a general equilibrium model, because inefficient allocations in one
market throw into doubt the efficiency of market-determined outcomes everywhere. Here
we choose a very simple and, in some ways, rather odd general equilibrium model that allows
us to make these points in a compact way. Specifically, we assume there is only one person in
our simple economy and that his or her utility depends on the quantities of x and y consumed.
Consumption levels of these two goods are denoted by xc and yc , so

utility ¼ U ðxc , ycÞ. (19.3)

This person has initial stocks of x and y (denoted by x� and y�) and can either consume these
directly or use them as intermediary goods in production. To simplify matters, we assume that
good x is produced using only good y, according to the production function

xo ¼ f ðyiÞ, (19.4)

where subscript o refers to outputs and i to inputs. To illustrate externalities, we assume that the
output of good y depends not only on howmuch x is used as an input in the production process
but also on the x production level itself. Hence this would model a situation, say, where y is
downriver from firm x and must cope with the pollution created by production of x output.
The production function for y is given by

yo ¼ gðxi, xoÞ, (19.5)

where g1 > 0 (more x input producesmore y output), but g2 < 0 (additional x output reduces
y output because of the externality involved).

The quantities of each good in this economy are constrained by the initial stocks available
and by the additional production that takes place:

xc þ xi ¼ xo þ x�, (19.6)
yc þ yi ¼ yo þ y�. (19.7)
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Finding the efficient allocation
The economic problem for this society, then, is to maximize utility subject to the four
constraints represented by Equations 19.4–19.7. To solve this problem we must introduce
four Lagrangian multipliers. The Lagrangian expression for this maximization problem is

ℒ ¼U ðxc , ycÞ þλ1½ f ðyiÞ � xo� þ λ2½ gðxi, x0Þ � yo�
þ λ3ðxc þ xi � xo � x�Þ þ λ4ðyc þ yi � yo � y�Þ, (19.8)

and the six first-order conditions for a maximum are

∂ℒ=∂xc ¼ U1 þ λ3 ¼ 0, ½i�
∂ℒ=∂yc ¼ U2 þ λ4 ¼ 0, ½ii�
∂ℒ=∂xi ¼ λ2g1 þ λ3 ¼ 0, ½iii�
∂ℒ=∂yi ¼ λ1 fy þ λ4 ¼ 0, ½iv�
∂ℒ=∂xo ¼ �λ1 þ λ2g2 � λ3 ¼ 0, ½v�
∂ℒ=∂yo ¼ �λ2 � λ4 ¼ 0. ½vi�

(19.9)

Eliminating the λs from these equations is a straightforward process. Taking the ratio of
Equations i and ii yields the familiar result

MRS ¼ U1

U2
¼ λ3

λ4
. (19.10)

But Equations iii and vi also imply

MRS ¼ λ3
λ4

¼ λ2g1
λ2

¼ g1. (19.11)

Hence optimality in y production requires that the individual’s MRS in consumption equal
the marginal productivity of x in the production of y. This conclusion repeats the result from
Chapter 13, where we showed that efficient output choice requires that dy=dx in consump-
tion be equal to dy=dx in production.

To achieve efficiency in x production, we must also consider the externality that this
production poses to y. Combining Equations iv–vi gives

MRS ¼ λ3
λ4

¼ �λ1 þ λ2 g2
λ4

¼ �λ1
λ4

þ λ2g2
λ4

¼ 1
fy
� g2. (19.12)

Intuitively, this equation requires that the individual’s MRS must also equal dy=dx obtained
through x production. The first term in the expression, 1=fy , represents the reciprocal of the
marginal productivity of y in x production—this is the first component ofdy=dx as it relates to x
production. The second term, g2, represents the negative impact that added x production has
on y output—this is the second component of dy=dx as it relates to x production. This final
term occurs because of the need to consider the externality from x production. If g2 were zero,
then Equations 19.11 and 19.12 would represent essentially the same condition for efficient
production, whichwould apply to both x and y.With the externality, however, determining an
efficient level of x production is more complex.

Inefficiency of the competitive allocation
Reliance on competitive pricing in this simple model will result in an inefficient allocation of
resources. With equilibrium prices px and py , a utility-maximizing individual would opt for
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MRS ¼ px=py (19.13)

and the profit-maximizing producer of good y would choose x input according to

px ¼ py g1. (19.14)

Hence the efficiency condition (Equation 19.11) would be satisfied. But the producer of
good x would choose y input so that

py ¼ px fy or
px
py

¼ 1
fy
. (19.15)

That is, the producer of x would disregard the externality that its production poses for y and so
the other efficiency condition (Equation 19.12) would not be met. This failure results in an
overproduction of x relative to the efficient level. To see this, note that themarginal product of
y in producing x ð fyÞ is smaller under themarket allocation represented byEquation 19.15 than
under the optimal allocation represented by Equation 19.12. More y is used to produce x in
themarket allocation (and hencemore x is produced) than is optimal. Example 19.1 provides a
quantitative example of this nonoptimality in a partial equilibrium context.

EXAMPLE 19.1 Production Externalities

As a partial equilibrium illustration of the losses from failure to consider production external-
ities, suppose two newsprint producers are located along a river. The upstream firm ðxÞ has a
production function of the form

x ¼ 2,000l1=2x , (19.16)

where lx is the number of workers hired per day and x is newsprint output in feet. The down-
streamfirm ðyÞhas a similar production function, but its outputmaybe affectedby the chemicals
firm x pours into the river:

y ¼ 2,000l1=2y ðx � x0Þa for x > x0,
2,000l1=2y for x � x0,

(
(19.17)

where x0 represents the river’s natural capacity for neutralizing pollutants. If α ¼ 0 then x’s
production process has no effect on firm y, but if α < 0, an increase in x above x0 causes y’s
output to decline.

Assuming newsprint sells for $1 per foot and workers earn $50 per day, firm x will
maximize profits by setting this wage equal to labor’s marginal revenue product:

50 ¼ p ⋅
∂x
∂lx

¼ 1,000l�1=2
x . (19.18)

The solution then is lx ¼ 400. If α ¼ 0 (there are no externalities), firm y will also hire 400
workers. Each firm will produce 40,000 feet of newsprint.

Effects of an externality. When firm x does have a negative externality ðα < 0Þ, its profit-
maximizing hiring decision is not affected—it will still hire lx ¼ 400 and produce x ¼ 40,000.
But for firm y, labor’s marginal product will be lower because of this externality. If α ¼ �0.1
and x0 ¼ 38,000, for example, then profit maximization will require

50 ¼ p ⋅
∂y
∂ly

¼ 1,000l�1=2
y ðx � 38,000Þ�0:1

¼ 1,000l�1=2
y ð2,000Þ�0:1

¼ 468l�1=2
y . (19.19)
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Solving this equation for ly shows that firm y now hires only 87 workers because of this
lowered productivity. Output of firm y will now be

y ¼ 2,000ð87Þ1=2ð2,000Þ�0.1 ¼ 8,723: (19.20)

Because of the externality ðα ¼ �0.1Þ, newsprint output will be lower than without the
externality ðα ¼ 0Þ.
Inefficiency. We can demonstrate that decentralized profit maximization is inefficient in this
situation by imagining that firms x and y merge and that the manager must decide how to
allocate the combined workforce. If one worker is transferred from firm x to firm y, then x
output becomes

x ¼ 2,000ð399Þ1=2

¼ 39,950; (19.21)

for firm y,

y ¼ 2,000ð88Þ1=2ð1,950Þ�0.1

¼ 8,796: (19.22)

Total output has increased by 23 feet of newsprint with no change in total labor input. The
market-based allocation was inefficient because firm x did not take into account the negative
effect of its hiring decisions on firm y.

Marginal productivity. This can be illustrated in another way by computing the true social
marginal productivity of labor input to firm x. If that firm were to hire one more worker, its
own output would rise to

x ¼ 2,000ð401Þ1=2 ¼ 40,050. (19.23)

As profit maximization requires, the (private) marginal value product of the 401st worker is
equal to the wage. But increasing x’s output now also has an effect on firm y—its output
declines by about 21 units. Hence, the social marginal revenue product of labor to firm x
actually amounts to only $29 ($50�$21). That is why the manager of a merged firm would
find it profitable to shift some workers from firm x to firm y.

QUERY: Suppose α ¼ þ0.1. What would that imply about the relationship between the
firms? How would such an externality affect the allocation of labor?

SOLUTIONS TO THE EXTERNALITY PROBLEM

Incentive-based solutions to the allocational harm of externalities start from the basic observa-
tion that output of the externality-producing activity is too high under a market-determined
equilibrium. Perhaps the first economist to provide a complete analysis of this distortion was
A. C. Pigou, who in the 1920s suggested that the most direct solution would simply be to tax
the externality-creating entity.4 All incentive-based5 solutions to the externality problem stem
from this basic insight.

4A. C. Pigou, The Economics of Welfare (London: MacMillan, 1920). Pigou also recognized the importance of subsidizing
goods that yield positive externalities.
5We do not discuss purely regulatory solutions here, although the study of such solutions forms an important part of most
courses in environmental economics. See W. J. Baumol and W. E. Oates, The Theory of Environmental Policy, 2nd ed.
(Cambridge: Cambridge University Press, 2005) and the Extensions to this chapter.
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A graphic analysis
Figure 19.1 provides the traditional illustration of an externality together with Pigou’s taxation
solution. The competitive supply curve for good x also represents that good’s private marginal
costs of production (MC).When the demand for x is given byDD, themarket equilibriumwill
occur at x1. The external costs involved in x production create a divergence between private
marginal costs (MC) and overall social marginal costs (MC 0)—the vertical distance between
the two curves represents the costs that x production poses for third parties (in our examples,
only on firm y). Notice that the per-unit costs of these externalities need not be constant,
independent of x-output. In the figure, for example, the size of these external costs rises as x
output expands (that is, MC 0 and MC become further apart). At the market-determined
output level x1, the comprehensive social marginal cost exceeds the market price p1, thereby
indicating that the production of x has been pushed “too far.” It is clear from the figure that the
optimal output level is x2, at which the market price p2 paid for the good now reflects all costs.

As is the case for any tax, imposition of a Pigovian tax would create a vertical wedge
between the demand and supply curves for good x. In Figure 19.1 this optimal tax is shown
as t . Imposition of this tax serves to reduce output to x2, the social optimum. Tax collections
equal the precise amount of external harm that x production causes. These collections might
be used to compensate firm y for these costs, but this is not crucial to the analysis. Notice here
that the tax must be set at the level of harm prevailing at the optimum (that is, at x2), not at
the level of harm at the original market equilibrium (x1). This point is also made in the next
example and more completely in the next section by returning to our simple general
equilibrium model.

FIGURE 19.1 Graphic Analysis of an Externality

The demand curve for good x is given by DD. The supply curve for x represents the private marginal
costs (MC) involved in x production. If x production imposes external costs on third parties, social
marginal costs (MC 0) will exceedMC by the extent of these costs.Market equilibriumoccurs at x1 and,
at this output level, social marginal costs exceed what consumers pay for good x. A tax of amount t that
reflects the costs of the externalities would achieve the efficient output of x—given by output level x2.
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EXAMPLE 19.2 A Pigovian Tax on Newsprint

The inefficiency in Example 19.1 arises because the upstream newsprint producer (firm x)
takes no account of the effect that its production has on firm y. A suitably chosen tax on firm x
can cause it to reduce its hiring to a level at which the externality vanishes. Because the river can
absorb the pollutants generated with an output of x ¼ 38,000, we might consider imposing a
tax ðtÞ on the firm’s output that encourages it to reduce output to this level. Because output
will be 38,000 if lx ¼ 361, we can calculate t from the labor demand condition:

ð1� t ÞMPL ¼ ð1� t Þ1,000ð361Þ�0.5 ¼ 50, (19.24)

or
t ¼ 0.05: (19.25)

Such a 5 percent tax would effectively reduce the price firm x receives for its newsprint to
$0.95 and provide it with an incentive to reduce its hiring by 39 workers. Now, because the
river can handle all the pollutants that x produces, there is no externality in the production
function of firm y. It will hire 400 workers and produce 40,000 feet of newsprint per day.
Observe that total newsprint output is now 78,000, a significantly higher figure than would
be produced in the untaxed situation. The taxation solution provides a considerable improve-
ment in the efficiency of resource allocation.

QUERY: The tax rate proposed here (0.05) seems rather small given the significant output
gains obtained relative to the situation inExample 19.1. Can you explainwhy?Would amerged
firm opt for x ¼ 38,000 even without a tax?

Taxation in the general equilibrium model
The optimal Pigovian tax in our general equilibrium model is to set t ¼ �py g2. That is, the
per-unit tax on good x should reflect the marginal harm that x does in reducing y output,
valued at the market price of good y. Notice again that this tax must be based on the value of
this externality at the optimal solution; because g2 will generally be a function of the level of
x output, a tax based on some other output level would be inappropriate. With the optimal
tax, firm x now faces a net price for its output of px � t and will choose y input according to

py ¼ ðpx � t Þfy : (19.26)

Hence the resulting allocation of resources will achieve

MRS ¼ px
py

¼ 1
fy

þ t
py

¼ 1
fy

� g2, (19.27)

which is precisely what is required for optimality (compare to the efficiency condition,
Equation 19.12). The Pigovian taxation solution can be generalized in a variety of ways that
provide insights about theconductofpolicy towardexternalities. Forexample, in aneconomywith
many x-producers, the taxwould convey information about themarginal impact that output from
any one of these would have on y output.Hence the tax schememitigates the need for regulatory
attention to the specifics of any particular firm. It does require that regulators have enough
information to set taxes appropriately—that is, they must know firm y’s production function.

Pollution rights
An innovation that would mitigate the informational requirements involved with Pigovian
taxation is the creation of a market for “pollution rights.” Suppose, for example, that firm x
must purchase from firm y rights to pollute the river they share. In this case, x’s decision to
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purchase these rights is identical to its decision to choose its output level, because it cannot
produce without them. The net revenue x receives per unit is given by px � r, where r is the
payment the firmmust make for each unit it produces. Firm y must decide howmany rights to
sell to firm x. Because it will be paid r for each right, it must “choose” x output tomaximize its
profits:

πy ¼ py gðxi, x0Þ þ rx0; (19.28)

the first-order condition for a maximum is

∂πy

∂x0
¼ py g2 þ r ¼ 0 or r ¼ �py g2: (19.29)

Equation 19.29makes clear that the equilibrium solution to pricing in the pollution rights
market will be identical to the Pigovian tax equilibrium. From the point of view of firm x it
makes no difference whether a tax of amount t is paid to the government or a royalty r of
the same amount is paid to firm y. So long as t ¼ r (a condition ensured by Equation 19.29),
the same efficient equilibrium will result.

The Coase theorem
In a famous 1960 paper, Ronald Coase showed that the key feature of the pollution rights
equilibrium is that these rights be well defined and tradable with zero transaction costs.6 The
initial assignment of rights is irrelevant because subsequent trading will always yield the same
efficient equilibrium. In our examplewe initially assigned the rights to firm y, allowing that firm
to trade them away to firm x for a per-unit fee r. If the rights had been assigned to firm x
instead, that firm still would have to impute some cost to using these rights themselves rather
than selling them to firm y. This calculation, in combination with firm y’s decision about how
many such rights to buy, will again yield an efficient result.

To illustrate the Coase result, assume that firm x is given xT rights to produce (and to
pollute). It can choose to use some of these to support its own production ðx0Þ, or it may sell
some to firm y (an amount given by xT � x0). Gross profits for x are given by

πx ¼ pxx0 þ rðxT � x0Þ ¼ ðpx � rÞx0 þ rxT ¼ ðpx � rÞf ðyiÞ þ rxT (19.30)

and for y by

πy ¼ py gðxi, x0Þ � rðxT � x0Þ. (19.31)

Clearly, profit maximization in this situation will lead to precisely the same solution as in the
case where firm y was assigned the rights. Because the overall total number of rights ðxT Þ is a
constant, the first-order conditions for a maximum will be exactly the same in the two cases.
This independence of initial rights assignment is usually referred to as the Coase theorem.

Although the results of the Coase theorem may seem counterintuitive (how can the level
of pollution be independent of who initially owns the rights?), it is in reality nothing more
than the assertion that, in the absence of impediments to making bargains, all mutually
beneficial transactions will be completed. When transaction costs are high or when infor-
mation is asymmetric, initial rights assignments will matter because the sorts of trading
implied by the Coase theorem may not occur. It is therefore the limitations of the Coase
theorem that provide the most interesting opportunities for further analysis. This analysis has
been especially far reaching in the field of law and economics,7 where the theorem has been

6R. Coase, “The Problem of Social Cost,” Journal of Law and Economics 3 (October 1960): 1–44.
7The classic text is R. A. Posner, Economic Analysis of Law, 4th ed. (Boston: Little, Brown, 1992). A more mathematical
approach is T. J. Miceli, Economics of the Law (New York: Oxford University Press, 1997).
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applied to such topics as tort liability laws, contract law, and product safety legislation (see
Problem 19.4).

ATTRIBUTES OF PUBLIC GOODS

We now turn our attention to a related set of problems about the relationship between com-
petitive markets and the allocation of resources: those raised by the existence of public goods.
We begin by providing a precise definition of this concept and then examine why such goods
pose allocational problems. We then briefly discuss theoretical ways in which such problems
might be mitigated before turning to examine how actual decisions on public goods are made
through voting.

The most common definitions of public goods stress two attributes of such goods:
nonexclusivity and nonrivalness. We now describe these attributes in detail.

Nonexclusivity
The first property that distinguishes public goods concerns whether individuals may be excluded
from the benefits of consuming the good. For most private goods such exclusion is indeed
possible: I can easily be excluded from consuming a hamburger if I don’t pay for it. In some
cases, however, such exclusion is either very costly or impossible.National defense is the standard
example.Onceadefense system isestablished, everyone inacountrybenefits from itwhether they
pay for it ornot. Similar comments apply, on amore local level, togoods suchasmosquito control
or a program to inoculate against disease. In these cases, once the programs are implemented, no
one in thecommunitycanbeexcluded fromthosebenefitswhetherheor shepays for themornot.
Hence, we can divide goods into two categories according to the following definition.

D E F I N I T I O N
Exclusive goods. A good is exclusive if it is relatively easy to exclude individuals from bene-
fiting from the good once it is produced. A good is nonexclusive if it is impossible (or costly) to
exclude individuals from benefiting from the good.

Nonrivalry
A second property that characterizes public goods is nonrivalry. A nonrival good is one for
which additional units can be consumed at zero socialmarginal cost. Formost goods, of course,
consumption of additional amounts involves somemarginal costs of production.Consumption
of onemore hot dog requires that various resources be devoted to its production.However, for
certain goods this is not the case. Consider, for example, having one more automobile cross a
highway bridge during an off-peak period. Because the bridge is already in place, having one
more vehicle cross requires no additional resource use and does not reduce consumption
elsewhere. Similarly, having one more viewer tune in to a television channel involves no
additional cost, even though this action would result in additional consumption taking place.
Therefore, we have developed the following definition.

D E F I N I T I O N
Nonrival goods. A good is nonrival if consumption of additional units of the good involves
zero social marginal costs of production.

Typology of public goods
The concepts of nonexclusion and nonrivalry are in someways related.Many nonexclusive goods
are also nonrival. National defense and mosquito control are two examples of goods for which
exclusion is notpossible andadditional consumption takes place at zeromarginal cost.Manyother
instances might be suggested. The concepts, however, are not identical: some goodsmay possess
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one property but not the other. For example, it is impossible (or at least very costly) to exclude
somefishingboats fromoceanfisheries, yet thearrivalof anotherboatclearly imposes social costs in
the formof a reduced catch for all concerned. Similarly, use of a bridge during off-peak hoursmay
benonrival, but it is possible toexcludepotential usersby erecting toll booths. Table19.1presents
a cross-classification of goods by their possibilities for exclusion and their rivalry. Several examples
ofgoods thatfit intoeachof the categories areprovided.Manyof the examples, other than those in
the upper left corner of the table (exclusive and rival private goods), are often produced by
governments. That is especially the case for nonexclusive goods because, as we shall see, it is dif-
ficult to developways of paying for suchgoods other than through compulsory taxation.Nonrival
goods often are privately produced (there are, after all, private bridges, swimming pools, and
highways that consumersmust pay to use) as long as nonpayers can be excluded from consuming
them.8 Still, we will use the following stringent definition, which requires both conditions.

D E F I N I T I O N
Public good. A good is a (pure) public good if, once produced, no one can be excluded from
benefiting from its availability and if the good is nonrival—the marginal cost of an additional
consumer is zero.

PUBLIC GOODS AND RESOURCE ALLOCATION

To illustrate the allocational problems created by public goods, we again employ a simple
general equilibrium model. In this model there are only two individuals—a single-person
economy would not experience problems from public goods because he or she would incor-
porate all of the goods’ benefits into consumption decisions. We denote these two individuals
byA andB. There are also only two goods in this economy. Good y is an ordinary private good,
and each person begins with an allocation of this good given by yA� and yB�, respectively. Each
person may choose to consume some of his or her y directly or to devote some portion of it to
the production of a single public good, x. The amounts contributed are given by yAs and yBs , and
the public good is produced according to the production function

x ¼ f ðyAs þ yBs Þ. (19.32)

Resulting utilities for these two people in this society are given by

UA ½ðx, ðyA� � yAs Þ� (19.33)

TABLE 19.1 Examples Showing the Typology of Public and Private Goods

Exclusive

Yes No

Rival

Yes Hot dogs, automobiles,
houses

Fishing grounds, public grazing
land, clean air

No Bridges, swimming pools,
satellite television transmission
(scrambled)

National defense, mosquito
control, justice

8Nonrival goods that permit imposition of an exclusion mechanism are sometimes referred to as club goods, because
provision of such goods might be organized along the lines of private clubs. Such clubs might then charge a “membership”
fee and permit unlimited use by members. The optimal size of a club is determined by the economies of scale present in the
production process for the club good. For an analysis, see R. Cornes and T. Sandler, The Theory of Externalities, Public
Goods, and Club Goods (Cambridge: Cambridge University Press, 1986).
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and
UB ½ðx, ðyB� � yBs Þ�. (19.34)

Notice here that the level of public good production, x, enters identically into each
person’s utility function. This is the way in which the nonexclusivity and nonrivalry cha-
racteristics of such goods are captured mathematically. Nonexclusivity is reflected by the fact
that each person’s consumption of x is the same and independent of what he or she con-
tributes individually to its production. Nonrivalry is shown by the fact that the consumption
of x by each person is identical to the total amount of x produced. Consumption of x
benefits by A does not diminish what B can consume. These two characteristics of good x
constitute the barriers to efficient production under most decentralized decision schemes,
including competitive markets.

The necessary conditions for efficient resource allocation in this problem consist of
choosing the levels of public goods subscriptions (yAs and yBs ) that maximize, say, A’s utility
for any given level of B’s utility. The Lagrangian expression for this problem is

ℒ ¼ UAðx, y A� � y A
s Þ þ λ½UBðx, yB� � yBs Þ �K �, (19.35)

where K is a constant level of B’s utility. The first-order conditions for a maximum are

∂ℒ
∂yAs

¼ UA
1 f

0 �UA
2 þ λUB

1 f
0 ¼ 0, (19.36)

∂ℒ
∂yBs

¼ UA
1 f

0 � λUB
2 þ λUB

1 f
0 ¼ 0. (19.37)

A comparison of these two equations yields the immediate result that

λUB
2 ¼ UA

2 . (19.38)

As might have been expected here, optimality requires that the marginal utility of y
consumption for A and B be equal except for the constant of proportionality, λ. This equa-
tion may now be combined with either Equation 19.36 or 19.37 to derive the optimality
condition for producing the public good x. Using Equation 19.36, for example, gives

UA
1

UA
2
þ λUB

1

λUB
2
¼ 1

f 0 (19.39)

or, more simply,

MRSA þMRSB ¼ 1
f 0. (19.40)

The intuition behind this condition, which was first articulated by P. A. Samuelson,9 is
that it is an adaptation of the efficiency conditions described in Chapter 13 to the case of
public goods. For such goods, the MRS in consumption must reflect the amount of y that
all consumers would be willing to give up to get one more x, because everyone will obtain
the benefits of the extra x output. Hence it is the sum of each individual’s MRS that should
be equated to dy=dx in production (here given by 1=f 0).

Failure of a competitive market
Production of goods x and y in competitive markets will fail to achieve this allocational goal.
With perfectly competitive prices px and py , each individual will equate his or herMRS to the
price ratio px=py . A producer of good x would also set 1=f 0 to be equal to px=py , as would be

9P. A. Samuelson, “The Pure Theory of Public Expenditure,” Review of Economics and Statistics (November 1954): 387–89.
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required for profit maximization. This behavior would not achieve the optimality condition
expressed in Equation 19.40. The price ratio px=py would be “too low” in that it would
provide too little incentive to produce good x. In the private market, a consumer takes no
account of how his or her spending on the public good benefits others, so that consumer will
devote too few resources to such production.

The allocational failure in this situation can be ascribed to the way in which private
markets sum individual demands. For any given quantity, the market demand curve reports
the marginal valuation of a good. If one more unit were produced, it could then be consumed
by someone who would value it at this market price. For public goods, the value of producing
one more unit is in fact the sum of each consumer’s valuation of that extra output, because all
consumers will benefit from it. In this case, then, individual demand curves should be added
vertically (as shown in Figure 19.2) rather then horizontally (as they are in competitive
markets). The resulting price on such a public good demand curve will then reflect, for any
level of output, how much an extra unit of output would be valued by all consumers. But the
usual market demand curve will not properly reflect this full marginal valuation.

Inefficiency of a Nash equilibrium
An alternative approach to the production of public goods in competitive markets might
rely on individuals’ voluntary contributions. Unfortunately, this also will yield inefficient
results. Consider the situation of person A, who is thinking about contributing sA of his or
her initial y endowment to public goods production. The utility maximization problem for A
is then

choose sA to maximize UA ½ f ðsA þ sBÞ, y A� � sA �. (19.41)

FIGURE 19.2 Derivation of the Demand for a Public Good

For a public good, the price individuals are willing to pay for one more unit (their “marginal
valuations”) is equal to the sum of what each individual would pay. Hence, for public goods, the
demand curve must be derived by a vertical summation rather than the horizontal summation used in
the case of private goods.

D1 + D2 + D3 = D

D1

D2

D3

D

Price

Quantity per period

3

2

1
3

2
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The first-order condition for a maximum is

UA
1 f

0 �UA
2 ¼ 0 or

UA
1

UA
2
¼ MRSA ¼ 1

f 0 . (19.42)

Because a similar logic will apply to person B, efficiency condition 19.40 will oncemore fail
to be satisfied. Again the problem is that each person considers only his or her benefit
from investing in the public good, taking no account of the benefits provided to others.
With many consumers, this direct benefit may be very small indeed. (For example, how much
do one person’s taxes contribute to national defense in the United States?) In this case, any
one person may opt for sA ¼ 0 and become a pure “free rider,” hoping to benefit from the
expenditures of others. If every person adopts this strategy, then no resources will be sub-
scribed to public goods. Example 19.3 illustrates the free-rider problem in a situation that
may be all too familiar.

EXAMPLE 19.3 Purchasing a Public Good: The Roommates’ Dilemma

To illustrate the nature of the public goods problem numerically, suppose two Bohemian
roommates with identical preferences derive utility from the number of paintings hung on
their hovel’s walls ðxÞ and on the number of granola bars ðyÞ they eat. The specific form of the
utility function is given by

Uiðx, yiÞ ¼ x1=3y2=3i for i ¼ 1, 2. (19.43)

Observe that utility for each person depends on the total number of paintings hung and on
the number of granola bars each person consumes individually. Hence, in this problem the
enjoyment of paintings constitutes a public good.

If we assume that each roommate has $300 to spend and that px ¼ $100 and py ¼ $0.20,
thenwe canexplore the consequences of various expenditure allocations.Weknow fromprevious
Cobb-Douglas examples that, if each person lived alone, eachwould spend 1

3 of his or her income
on paintings ðx ¼ 1Þ and 2

3 on granola bars ðy ¼ 1,000Þ.

Public goods provision and strategy. When the roommates live together, however, each
must think about what the other will do. Each could, for example, assume that the other will
buy the paintings. In this case x ¼ 0 and both people end up with a zero utility level.
Alternatively, person 1 might assume that person 2 will buy no paintings. If that proves to
be the case, then person 1 would choose to purchase a painting and receive a utility of

U1ðx, y1Þ ¼ 11=3ð1,000Þ2=3 ¼ 100; (19.44)

person 2’s utility would then be

U2ðX ,Y2Þ ¼ 11=3ð1,500Þ2=3 ¼ 131. (19.45)

Clearly, person 2 has gained from his or her free-rider position. Person 1’s purchases provide
an externality to person 2. Of course, person 2’s purchases of paintings—should he or she
choose to be socially conscious—would also provide an externality to person 1.

Inefficiency of allocation. That the solution obtained in Equations 19.44 and 19.45 (along
with many other possibilities) is inefficient can be shown by calculating each person’s
marginal rate of substitution:

MRSi ¼ ∂Ui=∂x
∂Ui=∂yi

¼ yi
2x

. (19.46)

(continued)
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EXAMPLE 19.3 CONTINUED

Hence, at the allocations described,

MRS1 ¼ 1,000
2

¼ 500,

MRS2 ¼ 1,500
2

¼ 750.
(19.47)

The roommates in total would be willing to sacrifice 1,250 granola bars for one more
painting—a sacrifice that would actually cost them only 500 bars combined. Relying on
decentralized decision making in this case is inefficient—too few paintings are bought.

An efficient allocation. To calculate the efficient level of painting purchases, we must set the
sum of each person’s MRS equal to the goods’ price ratio, because such a sum correctly
reflects the trade-offs the roommates living together would make:

MRS1 þMRS2 ¼ y1
2x

þ y2
2x

¼ y1 þ y2
2x

¼ px
py

¼ 100
0.20

. (19.48)

Consequently,
y1 þ y2 ¼ 1,000x, (19.49)

which can be substituted into the combined budget constraint

0.20ðy1 þ y2Þ þ 100x ¼ 600 (19.50)

to obtain
x ¼ 2,

y1 þ y2 ¼ 2,000. (19.51)

Allocating the cost of paintings. Assuming the roommates split the cost of the two
paintings and use their remaining funds to buy granola bars, each will finally receive a utility of

Ui ¼ 21=31,0002=3 ¼ 126. (19.52)

Although person 1 may not be able to coerce person 2 into such a joint sharing of cost,
a 75–25 split provides a utility of

U1 ¼ 21=37502=3 ¼ 104,

U2 ¼ 21=31,2502=3 ¼ 146,
(19.53)

which is Pareto superior to the solution obtained when person 1 acts alone. Many other
financing schemes would also yield allocations that are Pareto superior to those discussed
previously. Which of these, if any, might be chosen depends on how well each roommate
plays the strategic financing game.

QUERY: Show that, in this example, an efficient solution would be obtained if two people
living separately decided to live together and pool their paintings. Would you expect that
result to hold generally?

LINDAHL PRICING OF PUBLIC GOODS

An important conceptual solution to the public goods problem was first suggested by the
Swedish economist Erik Lindahl10 in the 1920s. Lindahl’s basic insight was that individuals

10Excerpts from Lindahl’s writings are contained in R. A. Musgrave and A. T. Peacock, Eds., Classics in the Theory of Public
Finance (London: Macmillan, 1958).
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might voluntarily consent to be taxed for beneficial public goods if they knew that others were
also being taxed. Specifically, Lindahl assumed that each individual would be presented by the
governmentwith the proportion of a public good’s cost he or shewould be expected to pay and
then reply (honestly) with the level of public good output he or she would prefer. In the nota-
tion of our simple general equilibrium model, individual A would be quoted a specific per-
centage ðαAÞ and then asked the level of public goods that he or she would want given the
knowledge that this fraction of total cost would have to be paid. To answer that question (truth-
fully), this person would choose that overall level of public goods output, x, that maximizes

utility ¼ UA ½x, yA� � αAf �1ðxÞ�. (19.54)

The first-order condition for this utility-maximizing choice of x is given by

UA
1 � αUB

2
1
f 0

� �
¼ 0 or MRSA ¼ αA

f 0
. (19.55)

Individual B, presented with a similar choice, would opt for a level of public goods satisfying

MRSB ¼ αB

f 0 . (19.56)

An equilibrium would then occur where αA þ αB ¼ 1—that is, where the level of public
goods expenditure favored by the two individuals precisely generates enough in tax con-
tributions to pay for it. For in that case

MRSA þMRSB ¼ αA þ αB

f 0
¼ 1

f 0, (19.57)

and this equilibrium would be efficient (see Equation 19.40). Hence, at least on a con-
ceptual level, the Lindahl approach solves the public good problem. Presenting each person
with the equilibrium tax share “price” will lead him or her to opt for the efficient level of
public goods production.

EXAMPLE 19.4 A Lindahl Solution for the Roommates

Lindahl pricing provides a conceptual solution to the roommates’ problem of buying paint-
ings in Example 19.3. If “the government” (or perhaps social convention) suggests that each
roommate will pay half of painting purchases, then each would face an effective price of
paintings of $50. Since the utility functions for the roommates imply that a third of each
person’s total income of $300 will be spent on paintings, it follows that each will be willing
to spend $100 on such art and will, if each is honest, report that he or she would like to have
two paintings. Hence the solution will be x ¼ 2 and y1 ¼ y2 ¼ 1,000. This is indeed the effi-
cient solution calculated in Example 19.3. The problem with this solution, of course, is that
neither roommate has an incentive to truthfully report what his or her demand is for public
goods given the Lindahl price. Rather, each will know that he or she would be better off
by following one of the free-rider scenarios laid out in Example 19.3. As in the Prisoners’
Dilemma studied in Chapter 8, the Lindahl solution—though Pareto optimal—is not a stable
equilibrium.

QUERY: Although the 50–50 sharing in this example might arise from social custom, in fact
the optimality of such a split is a special feature of this problem. What is it about this problem
that leads to such a Lindahl outcome? Under what conditions would Lindahl prices result in
other than a 50–50 sharing?
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Shortcomings of the Lindahl solution
Unfortunately, Lindahl’s solution is only a conceptual one.We have already seen in our examina-
tionof theNashequilibrium for public goodsproduction and inour roommates’ example that the
incentive to be a free rider in the public goods case is very strong. This fact makes it difficult to
envision how the information necessary to compute equilibrium Lindahl shares might be
obtained. Because individuals know their tax shares will be based on their reported demands
for public goods, they have a clear incentive to understate their true preferences—in so doing they
hope that the “other guy” will pay. Hence, simply asking people about their demands for public
goods should not be expected to reveal their true demands. It also appears to be difficult to design
truth-revealing voting mechanisms—for reasons we will examine in the next chapter. In general,
then, Lindahl’s solution remains a tantalizing but not readily achievable target.

Local public goods
Some economists believe that demand revelation for public goods may be more tractable at
the local level.11 Because there are many communities in which individuals might reside, they
can indicate their preferences for public goods (that is, for their willingness to pay Lindahl tax
shares) by choosing where to live. If a particular tax burden is not utility maximizing then
people can, in principle, “vote with their feet” and move to a community that does provide
optimality. Hence, with perfect information, zero costs ofmobility, and enough communities,
the Lindahl solution may be implemented at the local level. Similar arguments apply to other
types of organizations (such as private clubs) that provide public goods to their members;
given a sufficiently wide spectrum of club offerings, an efficient equilibrium might result. Of
course, the assumptions that underlie the purported efficiency of such choices by individuals
are quite strict. Even minor relaxation of these assumptions may yield inefficient results owing
to the fragile nature of the way in which the demand for public goods is revealed.

EXAMPLE 19.5 The Relationship between Environmental Externalities and Public Goods Production

In recent years, economists have begun to study the relationship between the two issues we
have been discussing in this chapter: externalities and public goods. The basic insight from
this examination is that one must take a general equilibrium view of these problems in order
to identify solutions that are efficient overall. Here we illustrate this point by returning to the
computable general equilibriummodel firms described in Chapter 13 (see Example 13.4). To
simplify matters we will now assume that this economy includes only a single representative
person whose utility function is given by

utility ¼ U ðx, y, l , g , cÞ ¼ x0.5y0.3l0.2g0.1c0.2, (19.58)

where we have added terms for the utility provided by public goods ðgÞ, which are initially
financed by a tax on labor, and by clean air ðcÞ. Production of the public good requires capital
and labor input according to the production function g ¼ k0.5l0.5; there is an externality in
the production of good y, so that the quantity of clean air is given by c ¼ 10� 0.2y. The
production functions for goods x and y remain as described in Example 13.4, as do the
endowments of k and l . Hence, our goal is to allocate resources in such a way that utility is
maximized.

Base case: Optimal public goods production with no Pigovian tax. If no attempt ismade
to control the externality in this problem, then the optimal level of public goods production

11The classic reference is C. M. Tiebout, “A Pure Theory of Local Expenditures,” Journal of Political Economy (October
1956): 416–24.
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requires g ¼ 2.93 and this is financed by a tax rate of 0.25 on labor. Output of good y in this
case is 29.7, and the quantity of clean air is given by c ¼ 10� 5.94 ¼ 4.06. Overall utility in
this situation is U ¼ 19.34. This is the highest utility that can be obtained in this situation
without regulating the externality.

A Pigovian tax. As suggested by Figure 19.1, a unit tax on the production of good y may
improvematters in this situation.With a tax rate of 0.1, for example, output of good y is reduced
to y ¼ 27.4 (c ¼ 10� 5.48 ¼ 4.52), and the revenue generated is used to expand public goods
production to g ¼ 3.77.Utility is raised toU ¼ 19.38. By carefully specifying how the revenue
generated by the Pigovian tax is used, a general equilibrium model permits a more complete
statement of welfare effects.

The “double dividend” of environmental taxes. The solution just described is not optimal,
however. Production of public goods is actually too high in this case, since the revenues from
environmental taxes are alsoused topay forpublicgoods. In fact, simulations showthatoptimality
can be achieved by reducing the labor tax to 0.20 andpublic goods production to g ¼ 3.31.With
these changes, utility expands even further toU ¼ 19.43. This result is sometimes referred to as
the “double dividend” of environmental taxation: not only do these taxes reduce externalities
relative to the untaxed situation (now c ¼ 10� 5.60 ¼ 4.40), but also the extra governmental
revenue made available thereby may permit the reduction of other distorting taxes.

QUERY: Why does the quantity of clean air decline slightly when the labor tax is reduced
relative to the situation where it is maintained at 0.25? More generally, describe whether
environmental taxes would be expected always to generate a double dividend.

VOTING AND RESOURCE ALLOCATION

Voting is used as a social decision process in many institutions. In some instances, individuals
vote directly on policy questions. That is the case in someNew England townmeetings, many
statewide referenda (for example, California’s Proposition 13 in 1977), and for many of the
national policies adopted in Switzerland. Direct voting also characterizes the social decision
procedure used for many smaller groups and clubs such as farmers’ cooperatives, university
faculties, or the local Rotary Club. In other cases, however, societies have found it more
convenient to use a representative form of government, in which individuals vote directly only
for political representatives, who are then charged with making decisions on policy questions.
For our study of public choice theory, we will begin with an analysis of direct voting. This is an
important subject not only because such a procedure applies to many cases but also because
elected representatives often engage in direct voting (in Congress, for example), and the
theory we will illustrate applies to those instances as well.

Majority rule
Because so many elections are conducted on a majority rule basis, we often tend to regard that
procedure as a natural and, perhaps, optimal one for making social choices. But even a cursory
examination indicates that there is nothing particularly sacred about a rule requiring that a
policy obtain 50 percent of the vote to be adopted. In the U.S. Constitution, for example, two
thirds of the states must adopt an amendment before it becomes law. And 60 percent of the
U.S. Senate must vote to limit debate on controversial issues. Indeed, in some institutions
(Quaker meetings, for example), unanimity may be required for social decisions. Our discus-
sion of the Lindahl equilibrium concept suggests there may exist a distribution of tax shares
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that would obtain unanimous support in voting for public goods. But arriving at such unani-
mous agreements is usually thwarted by emergence of the free-rider problem. Examining in
detail the forces that lead societies to move away from unanimity and to choose some other
determining fraction would take us too far afield here. We instead will assume throughout our
discussion of voting that decisions will be made by majority rule. Readers may wish to ponder
for themselves what kinds of situations might call for a decisive proportion of other than
50 percent.

The paradox of voting
In the 1780s, the French social theorist M. de Condorcet observed an important peculiarity of
majority rule voting systems—they may not arrive at an equilibrium but instead may cycle
among alternative options. Condorcet’s paradox is illustrated for a simple case in Table 19.2.
Suppose there are three voters (Smith, Jones, and Fudd) choosing among three policy options.
For our subsequent analysis we will assume the policy options represent three levels of spend-
ing (A low, Bmedium, or C high) on a particular public good, but Condorcet’s paradoxwould
arise even if the options being considered did not have this type of ordering associated with
them. Preferences of Smith, Jones, and Fudd among the three policy options are indicated in
Table 19.2. These preferences give rise to Condorcet’s paradox.

Consider a vote between options A and B. Here option A would win, because it is favored
by Smith and Fudd and opposed only by Jones. In a vote between options A and C, option C
would win, again by 2 votes to 1. But in a vote of C versus B, B would win and we would
be back where we started. Social choices would endlessly cycle among the three alternatives.
In subsequent votes, any choice initially decided upon could be defeated by an alternative,
and no equilibrium would ever be reached. In this situation, the option finally chosen will
depend on such seemingly nongermane issues as when the balloting stops or how items are
ordered on an agenda—rather than being derived in some rational way from the preferences
of voters.

Single-peaked preferences and the median voter theorem
Condorcet’s voting paradox arises because there is a degree of irreconcilability in the preferences
of voters.Onemight therefore askwhether restrictions on the types of preferences allowed could
yield situations where equilibrium voting outcomes are more likely. A fundamental result about
this probability was discovered by Duncan Black in 1948.12 Black showed that equilibrium

TABLE 19.2 Preferences That Produce the Paradox of Voting

Preferences Smith Jones Fudd

A B C

B C A

C A B

Choices: A—Low Spending
B—Medium Spending
C—High Spending

12D. Black, “On the Rationale of Group Decision Making,” Journal of Political Economy (February 1948): 23–34.
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voting outcomes always occur in cases where the issue being voted upon is one-dimensional
(such as how much to spend on a public good) and where voters’ preferences are “single
peaked.” To understand what the notion of single peaked means, consider again Condorcet’s
paradox. In Figure 19.3 we illustrate the preferences that gave rise to the paradox by assigning
hypothetical utility levels tooptionsA,B, andC that are consistentwith the preferences recorded
in Table 19.2. For Smith and Jones, preferences are single peaked: as levels of public goods
expenditures rise, there is only one local utility-maximizing choice (A for Smith, B for Jones).
Fudd’s preferences, on the other hand, have two local maxima (A and C). It is these preferences
that produced the cyclical voting pattern. If instead Fuddhad the preferences represented by the
dashed line in Figure 19.3 (where nowC is the only local utilitymaximum), then there would be
noparadox. In this case, optionBwouldbe chosenbecause that optionwoulddefeat bothA and
C by votes of 2 to 1. Here B is the preferred choice of the “median” voter (Jones), whose
preferences are “between” the preferences of Smith and the revised preferences of Fudd.

Black’s result is quite general and applies to any number of voters. If choices are unidi-
mensional13 and if preferences are single peaked, then majority rule will result in the selection
of the project that is most favored by the median voter. Hence, that voter’s preferences will
determine what public choices are made. This result is a key starting point for many models of
the political process. In such models, the median voter’s preferences dictate policy choices—
either because that voter determines which policy gets amajority of votes in a direct election or
because the median voter will dictate choices in competitive elections in which candidates
must adopt policies that appeal to this voter.

FIGURE 19.3 Single-Peaked Preferences and the Median Voter Theorem

This figure illustrates the preferences in Table 19.2. Smith’s and Jones’s preferences are single
peaked, but Fudd’s have two local peaks and these yield the voting paradox. If Fudd’s preferences
had instead been single peaked (the dashed line), then option B would have been chosen as the
preferred choice of the median voter (Jones).

Fudd

Fudd (alternate)

Jones

Smith

Utility

Quantity of
public good

A B C

13The result can be generalized a bit to deal with multidimensional policies if individuals can be characterized in their
support for such policies along a single dimension.
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A SIMPLE POLITICAL MODEL

To illustrate how the median voter theorem is applied in political models, suppose a commu-
nity is characterized by a large number ðnÞ of voters each with an income given by yi . The
utility of each voter depends on his or her consumption of a private good ðciÞ and of a public
good ðgÞ according to the additive utility function

utility of person i ¼ Ui ¼ ci þ f ðgÞ, (19.59)

where fg > 0 and fgc < 0.
Each voter must pay income taxes to finance g . Taxes are proportional to income and are

imposed at a rate t . Therefore, each person’s budget constraint is given by

ci ¼ ð1� t Þyi. (19.60)

The government is also bound by a budget constraint:

g ¼
Xn
1

tyi ¼ tny A, (19.61)

where yA denotes average income for all voters.
Given these constraints, the utility of person i can be written as a function of his or her

choice of g only:

UiðgÞ ¼ y A � g
n

� � yi
y A þ f ðgÞ. (19.62)

Utility maximization for person i shows that his or her preferred level of expenditures on the
public good satisfies

dUi

dg
¼ � yi

nyA
þ fgðgÞ ¼ 0 or g ¼ f �1

g
yi
nyA

� �
. (19.63)

This shows that desired spending on g is inversely related to income. Because (in this model)
the benefits of g are independent of income but taxes increase with income, high-income
voters can expect to have smaller net gains (or even losses) from public spending than can
low-income voters.

The median voter equilibrium
If g is determined here through majority rule, its level will be chosen to be that level favored
by the “mean voter.” In this case, voters’ preferences align exactly with incomes, so g will be
set at that level preferred by the voter with median income ðymÞ. Any other level for g would
not get 50 percent of the vote. Hence, equilibrium g is given by

g� ¼ f �1
g

ym

nyA

� �
¼ f �1

g
1
n

� �
ym

yA

� �	 

. (19.64)

Ingeneral, thedistributionof income is skewed to the right inpractically everypolitical jurisdiction
in the world. With such an income distribution, ym < y A, and the difference between the two
measures becomes larger the more skewed is the income distribution. Hence Equation 19.64
suggests that, ceteris paribus, the more unequal is the income distribution in a democracy, the
higherwillbe tax ratesand thegreaterwill be spendingonpublicgoods. Similarly, laws that extend
the vote to increasingly poor segments of the population can also be expected to increase such
spending.

Optimality of the median voter result
Although the median voter theorem permits a number of interesting positive predictions
about the outcome of voting, the normative significance of these results is more difficult to
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pinpoint. In this example, it is clear that the result does not replicate the Lindahl voluntary
equilibrium—high-income voters would not voluntarily agree to the taxes imposed.14 The
result also does not necessarily correspond to any simple criterion for social welfare. For
example, under a “utilitarian” social welfare criterion, g would be chosen so as to maximize
the sum of utilities:

SW ¼
Xn
1

Ui ¼
X

yA � g
n

� � yi
y A þ f ðgÞ

	 

¼ nyA � g þ nf ðgÞ. (19.65)

The optimal choice for g is then found by differentiation:

dSW
dg

¼ �1þ nfg ¼ 0,

or

g� ¼ f �1
g

1
n

� �
¼ f �1

g
1
n

� �
yA

yA

� �	 

, (19.66)

which shows that a utilitarian choice would opt for the level of g favored by the voter with
average income. That output of g would be smaller than that favored by the median voter
because ym < y A . In Example 19.6 we take this analysis a bit further by showing how it
might apply to governmental transfer policy.

EXAMPLE 19.6 Voting for Redistributive Taxation

Suppose voters were considering adoption of a lump-sum transfer to be paid to every person
and financed through proportional taxation. If we denote the per-person transfer by b, then
each individual’s utility is now given by

Ui ¼ ci þ b (19.67)

and the government budget constraint is

nb ¼ tnyA or b ¼ tyA . (19.68)

For a voter whose income is greater than average, utility would be maximized by choosing
b ¼ 0, because such a voter would pay more in taxes than he or she would receive from the
transfer. Any voter with less than average incomewill gain from the transfer nomatter what the
tax rate is. Hence such voters (including the decisive median voter) will opt for t ¼ 1 and
b ¼ yA. That is, they would vote to fully equalize incomes through the tax system. Of course,
such a tax scheme is unrealistic—primarily because a 100 percent tax rate would undoubtedly
create negative work incentives that reduce average income.

To capture such incentive effects, assume15 that each person’s income has two components,
one responsive to tax rates ½yiðtÞ� andone not responsive ðniÞ. Assume also that the average value
of ni is 0 but that its distribution is skewed to the right, so nm < 0. Now utility is given by

Ui ¼ ð1� t Þ½yiðt Þ þ ni� þ b. (19.69)

Assuming that each person first optimizes over those variables (such as labor supply) that
affect yiðtÞ, the first-order condition16 for a maximum in his or her political decisions about

(continued)

14Although they might if the benefits of g were also proportional to income.
15What follows represents a much simplified version of a model first developed by T. Romer in “Individual Welfare,
Majority Voting, and the Properties of a Linear Income Tax,” Journal of Public Economics (December 1978): 163–68.
16Equation 19.70 can be derived from 19.69 through differentiation and by recognizing that dyi=dt ¼ 0 because of the
assumption of individual optimization.
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EXAMPLE 19.6 CONTINUED

t and b then become (using the government budget constraint in Equation 19.68)

dUi

dt
¼ �ni þ t

dyA

dt
¼ 0. (19.70)

Hence for voter i the optimal redistributive tax rate is given by

ti ¼
ni

dyA=dt
. (19.71)

Assuming political competition under majority-rule voting will opt for that policy favored by
the median voter, the equilibrium rate of taxation will be

t� ¼ nm

dyA=dt
. (19.72)

Because both nm and dyA=dt are negative, this rate of taxation will be positive. The optimal tax
will be greater the farther nm is from its average value (that is, the more unequally income is
distributed). Similarly, the larger are distortionary effects from the tax, the smaller the optimal
tax. This model then poses some rather strong testable hypotheses about redistribution in the
real world.

QUERY: Would progressive taxation be more likely to raise or lower t� in this model?

VOTING MECHANISMS

The problems involved in majority rule voting arise in part because such voting is simply not
informative enough to provide accurate appraisals of how people value public goods. This
situation is in some ways similar to some of the models of asymmetric information examined
in the previous chapter. Here voters are more informed than is the government about the value
they place on various tax-spending packages. Resource allocation would be improved if mecha-
nisms could be developed that encourage people to be more accurate in what they reveal about
these values. In this section we examine two such mechanisms. Both are based on the basic
insight from Vickrey second-price auctions (see Chapter 18) that incorporating information
about other bidders’ valuations into decision makers’ calculations can yield a greater likelihood
of revealing truthful valuations.

The Groves mechanism
In a 1973 paper, T. Groves proposed a way to incorporate the Vickrey insight into a method
for encouraging people to reveal their demands for a public good.17 To illustrate this mecha-
nism, suppose that there are n individuals in a group and each has a private (and unobservable)
net valuation ui for a proposed taxation–expenditure project. In seeking information about
these valuations, the government states that, should the project be undertaken, each person
will receive a transfer given by

ti ¼
X
�i

vi, (19.73)

where vi represents the valuation reported by person i and the notation “�i” is used to indicate
that the summation is to be made over all individuals other than person i. If the project is not
undertaken, then no transfers are made.

17T. Groves, “Incentives in Teams,” Econometrica (July 1973): 617–31.
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Given this setup, the problem for voter i is to choose his or her reported net valuation so
as to maximize utility, which is given by

utility ¼ ui þ ti ¼ ui þ
X
�i

vi. (19.74)

Since the project will be undertaken only if
P

n vi > 0 and since each person will wish the
project to be undertaken only if it raises utility (that is, ui þ

P
�i vi > 0), it follows that a

utility-maximizing strategy is to set vi ¼ ui. Hence, the Groves mechanism encourages each
person to be truthful in his or her reporting of valuations for the project.

The Clarke mechanism
A similar mechanism was proposed by E. Clarke, also in the early 1970s.18 This mechanism
also envisions asking individuals about their net valuations for some public project, but it
focuses mainly on “pivotal voters”—those whose reported valuations can change the overall
evaluation from negative to positive or vice versa. For all other voters, there are no special
transfers, on the presumption that (barring strategic behavior among voters) reporting a
nonpivotal valuation will not change the decision, so he or she might as well report truthfully.
For voters reporting pivotal valuations, however, the Clarke mechanism incorporates a
Pigovian-like tax (or transfer) to encourage truth telling. To see how this works, suppose that
the net valuations reported by all other voters are negative (

P
�i vi < 0), but that a truthful

statement of the valuation by person i would make the project acceptable ðui þ
P

�i vi > 0Þ.
Here, as for the Groves mechanism, a transfer of ti ¼

P
�i vi (which in this case would be

negative—that is, a tax) would encourage this pivotal voter to report vi ¼ ui . Similarly, if all
other individuals reported valuations favorable to a project ðP�i vi > 0Þ but inclusion of
person i’s evaluation of the project would make it unfavorable, then a transfer of ti ¼

P
�i vi

(which in this case is positive) would encourage this pivotal voter to choose vi ¼ ui also.
Overall, then, theClarkemechanism is also truth revealing.Notice that in this case the transfers
play much the same role that Pigovian taxes did in our examination of externalities. If other
voters view a project as unfavorable, then voter i must compensate them for accepting it. On
the other hand, if other voters find the project acceptable, then voter i must be sufficiently
against the project that he or she cannot be “bribed” by other voters into accepting it.

Generalizations
The voter mechanisms we have been describing are sometimes called VCG mechanisms after
the three pioneering economists in this area of research (Vickrey, Clarke, and Groves). These
mechanisms can be generalized to include multiple governmental projects, alternative con-
cepts of voter equilibrium, or an infinite number of voters. One assumption behind the
mechanisms that does not seem amenable to generalization is the quasi-linear utility func-
tions that we have been using throughout. Whether this assumption provides a good ap-
proximation for modeling political decision making remains an open question, however.

18E. Clarke, “Multipart Pricing for Public Goods,” Public Choice (Fall 1971): 19–33.
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PROBLEMS

19.1
A firm in a perfectly competitive industry has patented a new process for making widgets. The new
process lowers the firm’s average cost, meaning that this firm alone (although still a price taker) can earn
real economic profits in the long run.

a. If the market price is $20 per widget and the firm’s marginal cost is given byMC ¼ 0.4q, where
q is the daily widget production for the firm, how many widgets will the firm produce?

b. Suppose a government study has found that the firm’s new process is polluting the air and
estimates the social marginal cost of widget production by this firm to be SMC ¼ 0.5q. If the
market price is still $20, what is the socially optimal level of production for the firm? What
should be the rate of a government-imposed excise tax to bring about this optimal level of
production?

c. Graph your results.

19.2
On the island of Pago Pago there are 2 lakes and 20 anglers. Each angler can fish on either lake and
keep the average catch on his particular lake. On Lake x, the total number of fish caught is given by

Fx ¼ 10lx �
1
2
l2x ,

where lx is the number of people fishing on the lake. For Lake y, the relationship is

Fy ¼ 5ly .

a. Under this organization of society, what will be the total number of fish caught?

b. The chief of Pago Pago, having once read an economics book, believes it is possible to raise
the total number of fish caught by restricting the number of people allowed to fish on Lake x.

SUMMARY

In this chapter we have examined market failures that arise
from externality (or spillover) effects involved in the con-
sumption or production of certain types of goods. In some
cases it may be possible to design mechanisms to cope with
these externalities in a market setting, but important limits
are involved in such solutions. Some specific issues we ex-
amined were as follows.

• Externalities may cause a misallocation of resources be-
cause of a divergence between private and social mar-
ginal cost. Traditional solutions to this divergence
include mergers among the affected parties and adop-
tion of suitable (Pigovian) taxes or subsidies.

• If transactions costs are small, then private bargaining
among the parties affected by an externality may bring
social and private costs into line. The proof that re-
sources will be efficiently allocated under such circum-
stances is sometimes called the Coase theorem.

• Public goods provide benefits to individuals on a nonex-
clusive basis—no one can be prevented from consuming

such goods. Such goods are also usually nonrival in that
the marginal cost of serving another user is zero.

• Private markets will tend to underallocate resources to
public goods because no single buyer can appropriate all
of the benefits that such goods provide.

• A Lindahl optimal tax-sharing scheme can result in an
efficient allocation of resources to the production of
public goods. However, computing these tax shares
requires substantial information that individuals have
incentives to hide.

• Majority rule voting does not necessarily lead to an
efficient allocation of resources to public goods. The
median voter theorem provides a useful way of model-
ing the actual outcomes from majority rule in certain
situations.

• Several truth-revealing voting mechanisms have been
developed. Whether these are robust to the special
assumptions made or capable of practical application
remain unresolved questions.
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What number should be allowed to fish on Lake x in order to maximize the total catch of
fish? What is the number of fish caught in this situation?

c. Being opposed to coercion, the chief decides to require a fishing license for Lake x. If the
licensing procedure is to bring about the optimal allocation of labor, what should the cost of a
license be (in terms of fish)?

d. Explain how this example sheds light on the connection between property rights and externalities.

19.3
Suppose the oil industry in Utopia is perfectly competitive and that all firms draw oil from a single (and
practically inexhaustible) pool. Assume that each competitor believes that it can sell all the oil it can
produce at a stable world price of $10 per barrel and that the cost of operating a well for one year
is $1,000.

Total output per year ðQ Þ of the oil field is a function of the number of wells ðnÞ operating in the
field. In particular,

Q ¼ 500n � n2,

and the amount of oil produced by each well ðqÞ is given by

q ¼ Q
n

¼ 500� n. (19.75)

a. Describe the equilibrium output and the equilibrium number of wells in this perfectly competi-
tive case. Is there a divergence between private and social marginal cost in the industry?

b. Suppose now that the government nationalizes the oil field. How many oil wells should it
operate? What will total output be? What will the output per well be?

c. As an alternative to nationalization, the Utopian government is considering an annual license
fee per well to discourage overdrilling. How large should this license fee be if it is to prompt the
industry to drill the optimal number of wells?

19.4
There is considerable legal controversy about product safety. Two extreme positions might be termed
caveat emptor (let the buyer beware) and caveat vendor (let the seller beware). Under the former scheme
producers would have no responsibility for the safety of their products: buyers would absorb all losses.
Under the latter scheme this liability assignment would be reversed: firms would be completely
responsible under law for losses incurred from unsafe products. Using simple supply and demand
analysis, discuss how the assignment of such liability might affect the allocation of resources. Would
safer products be produced if firms were strictly liable under law? How do possible information
asymmetries affect your results?

19.5
Suppose a monopoly produces a harmful externality. Use the concept of consumer surplus in a partial
equilibrium diagram to analyze whether an optimal tax on the polluter would necessarily be a welfare
improvement.

19.6
Suppose there are only two individuals in society. Person A’s demand curve for mosquito control is
given by

qn ¼ 100� p;

for person B, the demand curve for mosquito control is given by

qb ¼ 200� p.
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a. Suppose mosquito control is a pure public good; that is, once it is produced, everyone benefits
from it. What would be the optimal level of this activity if it could be produced at a constant
marginal cost of $120 per unit?

b. If mosquito control were left to the private market, how much might be produced? Does your
answer depend on what each person assumes the other will do?

c. If the government were to produce the optimal amount of mosquito control, how much will
this cost? How should the tax bill for this amount be allocated between the individuals if they are
to share it in proportion to benefits received from mosquito control?

19.7
Suppose the production possibility frontier for an economy that produces one public good ð yÞ and one
private good ðxÞ is given by

x2 þ 100y2 ¼ 5,000.

This economy is populated by 100 identical individuals, each with a utility function of the form

utility ¼ ffiffiffiffiffiffiffi
xiy

p
,

where xi is the individual’s share of private good production ð¼ x=100Þ. Notice that the public good is
nonexclusive and that everyone benefits equally from its level of production.

a. If the market for x and y were perfectly competitive, what levels of those goods would be
produced? What would the typical individual’s utility be in this situation?

b. What are the optimal production levels for x and y? What would the typical individual’s utility
level be? How should consumption of good x be taxed to achieve this result? Hint:The
numbers in this problem do not come out evenly, and some approximations should suffice.

Analytical Problems
19.8 More on Lindahl equilibrium
The analysis of public goods in Chapter 19 exclusively used a model with only two individuals. The
results are readily generalized to n persons—a generalization pursued in this problem.

a. With n persons in an economy, what is the condition for efficient production of a public good?
Explain how the characteristics of the public good are reflected in these conditions.

b. What is the Nash equilibrium in the provision of this public good to n persons? Explain why this
equilibrium is inefficient. Also explain why the underprovision of this public good is more severe
than in the two-person cases studied in the chapter.

c. How is the Lindahl solution generalized to n persons? Is the existence of a Lindahl equilibrium
guaranteed in this more complex model?

19.9 Taxing pollution
Suppose that there are n firms each producing the same good but with differing production functions.
Output for each of these firms depends only on labor input, so the functions take the form qi ¼ fiðliÞ. In
its production activities each firm also produces some pollution, the amount of which is determined by a
firm-specific function of labor input of the form giðliÞ.

a. Suppose that the government wishes to place a cap of amount K on total pollution. What is the
efficient allocation of labor among firms?

b. Will a uniform Pigovian tax on the output of each firm achieve the efficient allocation described
in part (a)?
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c. Suppose that, instead of taxing output, the Pigovian tax is applied to each unit of pollution.
How should this tax be set? Will the tax yield the efficient allocation described in part (a)?

d. What are the implications of the problem for adopting pollution control strategies? (For more
on this topic see the Extensions to this chapter.)

19.10 Vote trading
Suppose there are three individuals in society trying to rank three social states (A, B, andC). For each of
the methods of social choice indicated, develop an example to show how the resulting social ranking of
A, B, and C will be intransitive (as in the Paradox of voting) or indeterminate.

a. Majority rule without vote trading.

b. Majority rule with vote trading.

c. Point voting where each voter can give 1, 2, or 3 points to each alternative and the alternative
with the highest point total is selected.

19.11 Public choice of unemployment benefits
Suppose individuals face a probability of u that they will be unemployed next year. If they are
unemployed they will receive unemployment benefits of b, whereas if they are employed they receive
wð1� tÞ, where t is the tax used to finance unemployment benefits. Unemployment benefits are
constrained by the government budget constraint ub ¼ twð1� uÞ.

a. Suppose the individual’s utility function is given by

U ¼ ðyiÞδ=δ,
where 1� δ is the degree of constant relative risk aversion. What would be the utility-
maximizing choices for b and t?

b. How would the utility-maximizing choices for b and t respond to changes in the probability of
unemployment, u?

c. How would b and t change in response to changes in the risk aversion parameter δ?

19.12 Probabilistic voting
Probabilistic voting is a way of modeling the voting process that introduces continuity into individuals’
voting decisions. In this way, calculus-type derivations become possible. To take an especially simple
form of this approach, suppose there are n voters and two candidates (labeled A and B) for elective
office. Each candidate proposes a platform that promises a net gain or loss to each voter. These
platforms are denoted by θAi and θBi , where i ¼ 1,…, n. The probability that a given voter will vote
for candidate A is given by πA

i ¼ f ½UiðθAi Þ �UiðθBi Þ�, where f 0 > 0 > f 00. The probability that the
voter will vote for candidate B is πB

i ¼ 1� πA
i .

a. How should each candidate chose his or her platform so as to maximize the probability of
winning the election subject to the constraint

P
n θ

A
i ¼Pn θ

B
i ¼ 0? (Do these constraints seem

to apply to actual political candidates?)

b. Will there exist a Nash equilibrium in platform strategies for the two candidates?

c. Will the platform adopted by the candidates be socially optimal in the sense of maximizing a
utilitarian social welfare? [Social welfare is given by SW ¼Pn UiðθiÞ.]

Chapter 19 Externalities and Public Goods 697



SUGGESTIONS FOR FURTHER READING
Alchian, A., and H. Demsetz. “Production, Information
Costs, and Economic Organization.” American Economic
Review 62 (December 1972): 777–95.

Uses externality arguments to develop a theory of economic
organizations.

Barzel, Y. Economic Analysis of Property Rights. Cambridge:
Cambridge University Press, 1989.

Provides a graphical analysis of several economic questions that are
illuminated through use of the property rights paradigm.

Black, D. “On the Rationale of Group Decision Making.”
Journal of Political Economy (February 1948): 23–34.
Reprinted in K. J. Arrow and T. Scitovsky, Eds., Readings
in Welfare Economics. Homewood, IL: Richard D. Irwin,
1969.

Early development of the median voter theorem.
Buchanan, J. M., and G. Tullock. The Calculus of Consent.
Ann Arbor: University of Michigan Press, 1962.

Classic analysis of the properties of various voting schemes.
Cheung, S. N. S. “The Fable of the Bees: An Economic
Investigation.” Journal of Law and Economics 16 (April
1973): 11–33.

Empirical study of how the famous bee–orchard owner externality is

handled by private markets in the state of Washington.
Coase, R. H. “The Market for Goods and the Market for
Ideas.”AmericanEconomicReview 64 (May1974): 384–91.

Speculative article about notions of externalities and regulation in the
“marketplace of ideas.”

———. “The Problem of Social Cost.” Journal of Law and
Economics 3 (October 1960): 1–44.

Classic article on externalities. Many fascinating historical legal cases.
Cornes, R., and T. Sandler. The Theory of Externalities,
Public Goods, and Club Goods. Cambridge: Cambridge
University Press, 1986.

Good theoretical analysis of many of the issues raised in this chapter.
Good discussions of the connections between returns to scale, exclud-

ability, and club goods.

Demsetz, H. “Toward a Theory of Property Rights.”
American Economic Review, Papers and Proceedings 57
(May 1967): 347–59.

Brief development of a plausible theory of how societies come to
define property rights.

Mas-Colell, A., M. D. Whinston, and J. R. Green.
Microeconomic Theory. New York: Oxford University Press,
1995.

Chapter 11 covers much of the same ground as this chapter does,

though at a somewhat more abstract level.
Olson, M. The Logic of Collective Action. Cambridge, MA:
Harvard University Press, 1965.

Analyzes the effects of individual incentives on the willingness to
undertake collective action. Many fascinating examples.

Persson, T., and G. Tabellini. Political Economics: Explain-
ing Economic Policy. Cambridge, MA: MIT Press, 2000.

A complete summary of recent models of political choices. Covers
voting models and issues of institutional frameworks.

Posner, R. A. Economic Analysis of Law, 5th ed. Boston:
Little, Brown, 1998.

In many respects the “bible” of the law and economics movement.
Posner’s arguments are not always economically correct but are

unfailingly interesting and provocative.
Samuelson, P. A. “The Pure Theory of Public Expendi-
tures.” Review of Economics and Statistics 36 (November
1954): 387–89.

Classic statement of the efficiency conditions for public goods
production.

698 Part 7 Market Failure



E X T E N S I O N S

Pollution Abatement

Althoughour discussionof externalities focused on how
Pigovian taxes can make goods’ markets operate more
efficiently, similar results also apply to the study of the
technology of pollution abatement. In these Extensions
we briefly review this alternative approach. We assume
there are only two firms,A and B, and that their output
levels (qA and qB , respectively) are fixed throughout our
discussion. It is an inescapable scientific principle that
production of physical goods (as opposed to services)
must obey the conservation of matter. Hence produc-
tion of qA and qB is certain to involve some emission by-
products, eA and eB . The physical amounts of these
emissions (or at least their harmful components) can
be abated using inputs zA and zB (which cost p per unit).
The resulting levels of emissions are given by

f AðqA, zAÞ ¼ eA and f BðqB , zBÞ ¼ eB , (i)

where, for each firm’s abatement function, f1 > 0
and f2 < 0.

E19.1 Optimal abatement

If a regulatory agency has decided that e� represents
the maximum allowable level of emissions from these
firms, then this level would be achieved at minimal
cost by solving the Lagrangian expression

ℒ ¼ pzA þ pzB þ λðf A þ f B � e�Þ. (ii)

First-order conditions for a minimum are

p þ λf A
2 ¼ 0 and p þ λf B

2 ¼ 0: (iii)

Hence we have

λ ¼ �p=f A
2 ¼ �p=f B

2 . (iv)

This equation makes the rather obvious point that
cost-minimizing abatement is achieved when the mar-
ginal cost of abatement (universally referred to as MAC
in the environmental literature) is the same for each
firm. A uniform standard that required equal emissions
from each firm would not be likely to achieve that
efficient result—considerable cost savings might be
attainable under equalization of MACs as compared
to such uniform regulation.

E19.2 Emission taxes

The optimal solution described in Equation iv can be
achieved by imposing an emission tax ðtÞ equal to λ on
each firm (presumably this tax would be set at a level

that reflects the marginal harm that a unit of emissions
causes). With this tax, each firm seeks to minimize
pzi þ tf iðqi , ziÞ, which does indeed yield the efficient
solution

t ¼ �p=f A2 ¼ �p=f B2 . (v)

Notice that, as in the analysis of Chapter 19, one
benefit of the taxation solution is that the regulatory
authority need not know the details of the firms’
abatement functions. Rather, the firms themselves
make use of their own private information in determin-
ing abatement strategies. If these functions differ
significantly among firms then it would be expected
that emissions reductions would also differ.

Emission taxes in the United Kingdom
Hanley, Shogren, and White (1997) review a variety of
emission taxation schemes that have been implemented
in theUnitedKingdom.They showthatmarginalcostsof
pollution abatement vary significantly (perhaps as much
as thirtyfold) among firms. Hence, relative to uniform
regulation, the cost savings from taxation schemes canbe
quite large. For example, the authors review a series of
studies of theTees estuary that report annual cost savings
in the range of £10 million (1976 pounds). The authors
alsodiscuss someof the complications that arise in setting
efficient effluent taxeswhenemission streamsdonothave
a uniform mix of pollutants or when pollutants may
accumulate to dangerous levels over time.

E19.3 Tradable permits

As we illustrated in Chapter 19, many of the results
achievable through Pigovian taxation can also be
achieved through a tradable permit system. In this
case, the regulatory agency would set the number of
permits ðs�Þ equal to e� and allocate these permits in
some way among firms ðsA þ sB ¼ s�Þ. Each firm may
then buy or sell any number of permits desired butmust
also ensure that its emissions are equal to the number of
permits it holds. If the market price of permits is given
by ps , then each firm’s problem is again to minimize

pzi þ psðei � siÞ, (vi)

which yields an identical solution to that derived in
Equations iv and v with ps ¼ t ¼ λ. Hence the
tradable permit solution would be expected to yield
the same sort of cost savings as do taxation schemes.
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SO2 trading
The U.S. Clean Air Act of 1990 established the first
large-scale programof tradable emission permits. These
focused on sulfur dioxide emissions with the goal of
reducing acid rain arising from power-plant burning of
coal. Schmalensee et al. (1998) review early experiences
under this program. They conclude that it is indeed
possible to establish large and well-functioning markets
in emission permits. More than five million (one-ton)
emission permits changed hands in themost recent year
examined—at prices that averaged about $150 per per-
mit. The authors also show that firms using the permit
system employed a wide variety of compliance strate-
gies. This suggests that the flexibility inherent in the
permit system led to considerable cost savings. One
interesting aspect of this review of SO2 permit trading
is the authors’ speculations about why the permit prices
were only about half what had been expected. They
attribute a large part of the explanation to an initial
“overinvestment” in emission cleaning technology by
power companies in the mistaken belief that permit
prices, once the system was implemented, would be in
the $300–$400 range. With such large fixed-cost in-
vestments, the marginal cost of removing a ton of SO2

may have been as low as $65/ton, thereby exerting a
significant downward force on permit prices.

E19.4 Innovation

Although taxes and tradable permits appear to bemath-
ematically equivalent in the models we have been

describing, this equivalence may vanish once the dy-
namics of innovation in pollution abatement technol-
ogy is considered. Of course, both procedures offer
incentives to adopt new technologies: if a new process
can achieve a given emission reduction at a lowerMAC,
it will be adopted under either scheme. Yet in a de-
tailed analysis of dynamics under the two approaches,
Milliman and Prince (1989) argue that taxation is bet-
ter. Their reasoning is that the taxation approach
encourages a more rapid diffusion of new abatement
technology because incremental profits attainable from
adoption are greater than with permits. Such rapid dif-
fusion may also encourage environmental agencies to
adopt more stringent emission targets because these
targets will now more readily meet cost-benefit tests.
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The following brief answers to the queries that accom-
pany each example in the text may help students test
their understanding of the concepts being presented.

CHAPTER 1

1.1
If price depends on quantity, differentiation of pðqÞ ⋅ q
would be more complicated. This would lead to the
concept of marginal revenue—a topic we encounter in
many places in this book.

1.2
The reduced form in Equation 1.16 shows that
∂p�=∂a ¼ 1=225. So, if a increases by 450, p� should
increase by 2—which is what a direct solution shows.

1.3
If all labor is devoted to x production, then x ¼ffiffiffiffiffiffiffiffi
200

p ¼ 14:1 with full employment and x ¼ ffiffiffiffiffiffiffiffi
180

p ¼
13:4 with unemployment. Hence the efficiency cost
of unemployment is 0.7 units of x. Similar calculations
show that the efficiency cost in terms of good y is about
1.5 units of that good. With reductions in both goods,
one would need to know the relative price of x in terms
of y in order to aggregate the losses.

CHAPTER 2

2.1
The first-order condition for a maximum is ∂π=∂l ¼
50=

ffiffi
l

p � 10 ¼ 0, l� ¼ 25,π� ¼ 250.

2.2
No, only the exponential function (or a function that
approximates it over a range) has constant elasticity.

2.3
These would be concentric circles centered at x1 ¼ 1,
x2 ¼ 2. For y ¼ 10, the “circle” is a single point.

2.4
For different constants, each production possibility
frontier is a successively larger quarter ellipse centered
at the origin.

2.5
∂y�=∂b ¼ 0 because x1 would always be set at b for
optimality, and the term ðx1 � bÞ would vanish.

2.6
With x1 þ x2 ¼ 2, x1 ¼ 0:5, x2 ¼ 1:5. Now y� ¼ 9:5.
For x1 þ x2 	 3, the unconstrained optimum is
attainable.

2.7
A circular field encloses maximal area for minimum
perimeter. Proof requires a limit argument.

2.8
The local maximum is also a global maximum here.
The constancy of the second derivative implies the
slope of the function decreases at a constant rate.

2.9
This function resembles an inverted cone that has only
one highest point.

2.10
A linear constraint would be represented by a plane in
these three-dimensional figures. Such a plane would
have a unique tangency to the surfaces in both Figures
2.4(a) and 2.4(c). For an unconstrained maximum,
however, the plane would be horizontal, so only
Figure 2.4(a) would have a maximum.

2.11
Such a transformation would not preserve homogene-
ity. However it would not affect the trade-off between
the x’s: for any constant k, �f1=f2 ¼ �x2=x1.
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2.12
Total variable costs of this expansion would be

∫
110

100 0:2q dq ¼ 0:1q2
����110
100

¼ 1,210� 1,000 ¼ 210:

This could also be calculated by subtracting total costs
when q ¼ 100ð1,500Þ from total costs when q ¼
110ð1,710Þ. Fixed costs would cancel out in this
subtraction.

2.13
As we show in Chapter 17, a higher value for δ will
cause wine to be consumed earlier. A lower value for γ
will make the consumer less willing to experience con-
sumption fluctuations.

2.14
If gðxÞ is concave, then values of this function will in-
crease less rapidly than does x itself. Hence E½ gðxÞ� <
g ½EðxÞ�. In Chapter 7 this is used to explain why a
person with a diminishing marginal utility of wealth
will be risk averse.

2.15
Using the results from Examples 2.14 and 2.15 for the
uniform distribution gives μx ¼ ðb � aÞ=2 ¼ 6, σ2

x ¼
ðb � aÞ2=12 ¼ 12, and σx ¼ 120:5 ¼ 3:464. In this
case, 57.7 percent (¼ 2 ⋅ 3:464=12) of the distribution
is within one standard deviation of the mean. This
is less than the comparable figure for the Normal dis-
tribution because the uniform distribution is not
bunched around the mean. However, unlike the Nor-
mal, the entire uniform distribution is within two
standard deviations of the mean because that distribu-
tion does not have long tails.

CHAPTER 3

3.1
The derivation here holds utility constant to create an
implicit relationship between y and x. Changes in x
also implicitly change y because of this relationship
(Equation 3.11).

3.2
TheMRS is not changed by such a doubling in Exam-
ples 1 and 3. In Example 2 theMRSwould be changed
because ð1þ xÞ=ð1þ yÞ 6¼ ð1þ 2xÞ=ð1þ 2yÞ.

3.3
For homothetic functions, the MRS is the same for
every point along a positively sloped ray through the
origin.

3.4
The indifference curves here are “horizontally paral-
lel.” That is, for any given level of y, the MRS is the
same no matter what the value of x is. One implication
of this (as we shall see in Chapter 4) is that the effect of
additional income on purchases of good y is zero—
after a point all extra income is channeled into the
good with constant marginal utility (good x).

CHAPTER 4

4.1
Constant shares imply ∂x=∂py ¼ 0 and ∂y=∂px ¼ 0.
Notice py does not enter into Equation 4.23; px does
not enter into 4.24.

4.2
Budget shares are not affected by income, but they
may be affected by changes in relative prices. This is
the case for all homothetic functions.

4.3
Since a doubling of all prices and nominal income does
not change the budget constraint, it will not change
utility-maximizing choices. Indirect utility is homoge-
neous of degree zero in all prices and nominal income.

4.4
In the Cobb-Douglas case, with py ¼ 3, Eð1,3,2Þ ¼
2 ⋅ 1 ⋅ 30:5 ⋅ 2 ¼ 6:93, so this person should have his or
her income reduced by a lump-sum 1.07 to compen-
sate for the fall in prices. In the fixed proportions case,
the original consumption bundle now costs 7, so the
compensation is �1.0. Notice that with fixed propor-
tions the consumption bundle does not change, but
with the Cobb-Douglas, the new choice is x ¼ 3:46,
y ¼ 1:15 because this person takes advantage of the
reduction in the price of y.

CHAPTER 5

5.1
The shares equations computed from Equations 5.5 or
5.7 show that this individual always spends all of his

702 Brief Answers to Queries



or her income regardless of px , py , and I . That is, the
shares sum to one.

5.2
If x ¼ 0:5I=px then I ¼ 100 and px ¼ 1 imply that
x ¼ 50. In Equation 5.11, x ¼ 0:5ð100=1Þ ¼ 50 also.
If px rises to 2.0, the Cobb-Douglas predicts x ¼ 25.
TheCES impliesx ¼ 100=6 ¼ 16:67.TheCES ismore
responsive to price.

5.3
Since proportional changes in px and py do not induce
substitution effects, holding V constant implies that x
and y will not change. That should be true for all
compensated demand functions.

5.4
A larger exponent for, say, x in the Cobb-Douglas
function will increase the share of income devoted to
that good and increase the relative importance of the
income effect in the Slutsky decomposition. This is
easiest to see using the Slutsky equation in elasticity
form (Example 5.5).

5.5
Consider the Cobb-Douglas case for which ex, px ¼ �1
regardless of budget shares. The Slutsky equation in
elasticity terms shows that, because the income effect
here is�sxex, I ¼ �sxð1Þ ¼ �sx , the compensated price
elasticity is ecx, px ¼ ex, px þ sx ¼ �ð1� sxÞ. This occurs
because proportional changes in x demand will be
larger when the share devoted to that good is smaller
because they are starting from a smaller base.

5.6
Typically it is assumed that demand goes to zero at
some finite price when calculating total consumer sur-
plus. The specific assumption made does not affect
calculations of changes in consumer surplus.

CHAPTER 6

6.1
Since ∂x=∂py includes both income and substitution
effects, this derivative could be 0 if the effects offset
each other. The conclusion that ∂x=∂py ¼ 0 implies the
goods must be used in fixed proportions would hold
only if the income effect of this price change were 0.

6.2
Asymmetry can occur with homothetic preferences
since, although substitution effects are symmetric, in-
come effects may differ in size.

6.3
Since the relationships between py , pz , and ph never
change, themaximization problemwill always be solved
the same way.

CHAPTER 7

7.1
In case 1, the probability of seven heads is less than
0.01. Hence the value of the original game is $6. In
case 2, the prize for obtaining the first head on the
twentieth flip is over $1 million. The value of the game
in this case is 19þ 1,000,000=219 ¼ $20:91.

7.2
With linear utility, the individual would care only about
expected dollar values and would be indifferent about
buying actuarially fair insurance. When utility U is a
convex function of wealth (U > 0,U 00 > 0), the indi-
vidual prefers to gamble andwill buy insurance only if it
costs less than is actuarially justified.

7.3

If A ¼ 10�4:

CEð#1Þ ¼ 107,000� 0:5 � 10�4 � ð104Þ2
¼ 102,000,

CEð#2Þ ¼ 102,000� 0:5 � 10�4 � 4 � 106

¼ 101,800:

So the riskier allocation is preferred. On the other
hand, if A ¼ 3 ⋅ 10�4 then the less risky allocation is
preferred.

7.4
Willingness to pay is a declining function of wealth
(Equation 7.43). WithR ¼ 0 the person will pay 50 to
avoid a 1,000 bet if W0 ¼ 10,000 but only 5 if W0 ¼
100,000. With R ¼ 2 he or she will pay 149 to avoid
a 1,000 bet if W0 ¼ 10,000 but only 15 if W0 ¼
100,000.

7.5
One possible reason is that any investor in risky assets
incurs transactions costs. If there are economies of
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scale to these costs, then individuals with greater
wealth will face lower transactions costs and will in-
crease the share of their portfolios invested in risky
assets.

7.6
The actuarially fair price for such a policy is 0:25 ⋅
19,000 ¼ 4,750. The maximum amount the individ-
ual would pay (X ) solves the equation

11:45714¼ 0:75 lnð100,000� xÞ
þ 0:25 lnð99,000� xÞ:

Solving this yields an approximate value of x ¼ $5,120.
This person would be willing to pay up to $370 in
administrative costs for the deductible policy.

7.7
Although price is uncertain, the model here allows the
individual to buy more y when he or she encounters a
low price and less when a high price is encountered.
Because V is a convex function of py , the mean of V
for two different values of py exceeds the value of V at
the mean of py . This has no relationship to risk aver-
sion, which concerns choices among options with the
same expected value.

CHAPTER 8

8.1
Best responses are not unique, so the game has no
dominant strategies. The extensive form looks like
Figure 8.1 with different payoffs.

8.2
No dominant strategies. (Paper, scissors) isn’t a Nash
equilibrium because player 1 would deviate to rock.

8.3
It might be closer to the Battle of the Sexes to specify a
payoff of 0 rather than 1 if a player plays favorite action
when no other player does. The normal form for
Four’s Company could be represented with four ma-
trices, one for each strategy profile for players 3 and 4.

8.4
If the wife plays mixed strategy (1=9, 8=9) and the
husband plays (4=5, 1=5), then his expected payoff is
4=9. If she plays (1, 0) and he plays (4=5, 1=5), his
expected payoff is 4=5. If he plays (4=5, 1=5), her best
response is to play ballet.

8.5
Players earn 2=3 in the mixed-strategy Nash equilib-
rium. This is less than the payoff even in the less
desirable of the two pure-strategy Nash equilibria.
Symmetry might favor the mixed-strategy Nash
equilibrium.

8.6
The Nash equilibrium would involve higher quantities
for both if their benefits increased. If herder 2’s bene-
fit decreased, his or her quantity would fall and the
other’s would rise.

8.7
There are a number of possible answers. One is to play
the mixed-strategy Nash equilibrium first and then the
“good” stage-game Nash equilibrium, for an average
payoff of 15=8. Another would be to play the mixed-
strategy Nash equilibrium first and then the “bad”
stage-game Nash equilibrium, for an average payoff
of 7=8.

8.8
Yes. Letting p be the probability that player 1 is type
t ¼ 6, player 2’s expected payoff from choosing L is
2p. This is at least as high as 2’s expected payoff of
4ð1� pÞ from choosing R if p 	 2=3.

8.9
Moving from incomplete to full information increases
herder 1’s output and decreases the rival’s if 1 is the
high type. The opposite is true if 1 is the low type. The
high type prefers full information and would like to
somehow signal its type; the low type prefers incom-
plete information and would like to conceal its type.

8.10
Obtaining an education informs the firm about the
worker’s ability and thus may increase the high-skill
worker’s salary. The separating equilibrium would not
exist if the low-skill worker could get an education
more cheaply than the high-skill one.

8.11
The proposed pooling outcome cannot be an equilib-
rium if the firm’s posterior beliefs equal its priors after
unexpectedly seeing an uneducated worker. Then its
beliefs would be the same whether or not it encoun-
tered an educated worker, it would have the same best
response, and workers would deviate from E. If the
firm has pessimistic posteriors following NE, then the
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outcome is an equilibrium because the firm’s best
response to NE would be NJ , inducing both types
of worker to pool on E.

8.12
In equilibrium, type H obtains an expected payoff of
j�w � cH ¼ cL � cH . This exceeds the payoff of 0 from
deviating toNE. Type L pools with typeH on E with
probability e�. But de�=d PrðH Þ ¼ ðπ� wÞ=π. Since
this expression is positive, type L must increase its
probability of playing E to offset an increase in PrðH Þ
and still keep player 2 indifferent between J and NJ .

8.13
Players earn more in more informative equilibria. Sup-
pose 0 < d < 1=3. In a babbling equilibrium, player 1
earns expected payoff ð1�dÞ=2 and player 2 earns
ð1þ dÞ=2. In themost informative equilibrium, player 1
earns 1 and player 2 earns 1�d, lower payoffs than in
the babbling equilibrium if d < 1=3. In theory, there is
no difference between announcing “A or C” and an-
nouncing the agreed-upon synonym “purple.” In prac-
tice, itmight be difficult for players to coordinate on the
meaning of a nonsense word. Languages are more effi-
cient the more precise they are and the more wide-
spread agreement there is about meanings, but there
may be trade-offs between these two features.

CHAPTER 9

9.1
Now, with k ¼ 11:

q ¼ 72,600l2 � 1,331l3,
MPl ¼ 145,200l � 3,993l2,
APl ¼ 72,600l � 1,331l2:

In this case, APl reaches its maximal value at l ¼ 27:3
rather than at l ¼ 30.

9.2
Since k and l enter f symmetrically, if k ¼ l then fk ¼ fl
and fkk ¼ fll . Hence, the numerator of Equation 9.21
will be negative if fkl > fll . Combining Equations 9.24
and 9.25 (and remembering k ¼ l) shows this holds
for k ¼ l < 20.

9.3
The q ¼ 4 isoquant contains the points k ¼ 4, l ¼ 0;
k ¼ 1, l ¼ 1; and k ¼ 0, l ¼ 4. It is therefore fairly

sharply convex. It seems possible that an L-shaped iso-
quant might be approximated for particular coeffi-
cients of the linear and radical terms.

9.4
Because the composite technical change factor is θ ¼
αφþ ð1� αÞε, a value of α ¼ 0:3 implies that techni-
cal improvements in labor will be weighted more
highly in determining the overall result.

CHAPTER 10

10.1
If σ ¼ 2, ρ ¼ 0:5, k=l ¼ 16, l ¼ 8=5, k ¼ 128=5,
C ¼ 96.

If σ ¼ 0:5, ρ ¼ �1, k=l ¼ 2, l ¼ 60, k ¼ 120,C ¼
1080.

Notice that changes in σ also change the scale of the
production function, so the total cost figures cannot
be compared directly.

10.2
The expression for unit costs is ðv1�σ þ w1�σÞ1=ð1�σÞ.
If σ ¼ 0 then this function is linear in w þ v. For σ > 0
the function is increasingly convex, showing that large
increases in w can be offset by small decreases in v.

10.3
The elasticities are given by the exponents in the cost
functions and are unaffected by technical change as
modeled here.

10.4
In this case σ ¼ ∞. With w ¼ 4v, cost minimization
could use the inputs in any combination (for q con-
stant) without changing costs. A rise in w would cause
the firm to switch to using only capital and would not
affect total costs. This shows that the impact on costs
of an increase in the price of a single input depends
importantly on the degree of substitution.

10.5
Because capital costs are fixed in the short run, they do
not affect short-run marginal costs (in mathematical
terms, the derivative of a constant is zero). Capital
costs do, however, affect short-run average costs. In
Figure 10.9 an increase in v would shift MC , AC , and
all of the SATC curves upward, but would leave the
SMC curves unaffected.
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CHAPTER 11

11.1
IfMC ¼ 5, profit maximization requires q ¼ 25. Now
P ¼ 7:50, R ¼ 187:50, C ¼ 125, and π ¼ 62:50.

11.2
Factors other than p can be incorporated into the
constant term a. These would shift D and MR but
would not affect the elasticity calculations.

11.3
When w rises to 15, supply shifts inward to q ¼ 8P=5.
When k increases to 100, supply shifts outward to
q ¼ 25P=6. A change in v would not affect short-run
marginal cost or the shutdown decision.

11.4
A change in v has no effect on SMC but it does affect
fixed costs. A change in w would affect SMC and
short-run supply.

11.5
A rise in wages for all firms would shift the market
supply curve upward, raising the product price. Be-
cause total output must fall given a negatively sloped
demand curve, each firm must produce less. Again,
both substitution and output effects would then be
negative.

CHAPTER 12

12.1
The ability to sum incomes in this linear case would
require that each person have the same coefficient for
income. Because each person faces the same price,
aggregation requires only adding the price coefficients.

12.2
A value for β other than 0.5 would mean that the
exponent of price would not be 1.0. The higher is β
the more price elastic is short-run supply.

12.3
Following steps similar to those used to derive Equa-
tion 10.36 yields

eP ,β ¼ �eQ ,β

eS,P � eQ ,P

Here eQ ,β ¼ eQ ,w ¼ �0:5, so eP ,β ¼ �ð�0:5Þ=2:2 ¼
0:227. Multiplication by 0.20 (since wages rose 20

percent) predicts a price rise of 4.5 percent, very close
to the number in the example.

12.4
The short-run supply curve is given by Q s ¼
0:5P þ 750, and the short-term equilibrium price is
$643. Each firm earns approximately $2,960 in profits
in the short run.

12.5
Total and average costs for Equation 12.55 exceed
those for Equation 12.42 for q > 15:9. Marginal costs
for Equation 12.55 always exceed those for Equa-
tion 12.42. Optimal output is lower with Equation
12.55 than with Equation 12.42 because marginal
costs increase more than average costs.

12.6
Losses from a given restriction in quantity will be
greater when supply and/or demand is less elastic.
The actor with the least elastic response will bear the
greater share of the loss.

12.7
An increase in t unambiguously increases deadweight
loss. Because increases in t reduce quantity, however,
total tax revenues are subject to countervailing effects.
Indeed, if t=ðP þ tÞ 	 �1=eQ ,P then dtQ =dt < 0.

12.8
Total transfer to domestic producers is (in billions)
0:5 � ð11:7Þ þ 0:5ð0:5Þð0:7Þ ¼ 6:03. This would be
gained as rents to those inputs that give the auto
supply curve its positive slope. With a quota, domestic
producers may also be able to gain some portion of
what would have been tariff revenue.

CHAPTER 13

13.1
An increase in labor input will shift the first frontier out
uniformly. In the second case, such an increase will
shift the y-intercept out farther than the x-intercept
because good y uses labor intensively.

13.2
In all three scenarios the total value of output is 200w,
composed half of wages and half of profits. With the
shift in supply, consumers still devote 100w to each
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good. Purchases of x are twice those of y because y
costs twice as much. With the shift in demand, the
consumer spends 20w on good x and 180w on good
y. But good y now costs three times what x costs, so
consumers buy only three times as much y as they do x.

13.3
Walras’ law ensures that the silver market is in equilib-
rium. Recalculating Equation 16.40 gives

ED1 ¼ 2ðp2=p1Þ2 þ 2ðp3=p1Þ2 � 4p2=p1 � 7p3=p1

or, at the new relative prices,

¼ 2ð3Þ2 þ 2ð2Þ2 � 4ð3Þ � 7ð2Þ ¼ 0:

13.4
The consumers here also spend some of their total in-
come on leisure. For person 1, say, total income with
the equilibrium prices is 40 � 0:136þ 24 � 0:248 ¼
11:4. The Cobb-Douglas exponents imply that this
person will spend half of this on good x. Hence, total
spending on that good will be 5.7, which is also equal
to the quantity of x bought (15.7) multiplied by this
good’s equilibrium price (0.363).

13.5
No—such redistribution could not make both better-
off owing to the excess burden of the tax.

13.6
Because each production function exhibits constant
returns to scale, any allocation of capital will be effi-
cient if labor is allocated appropriately.

13.7
Total post-transfer consumer income is 300w, which is
allocated equally to each good. Firms producing good y
get this as total revenue (150w). Firms producing good
x receive only 50w in revenues because 100w goes to
the government in taxes. For these firms, total (after-
tax) revenue is px � x ¼ 50w. Consumer spending on
good x, however, is 3px � x ¼ 150w. In this case, GDP
is still 200w: 50w in x production and 150w in y pro-
duction. There is 100w in taxes and transfers, but this
figure is not part of GDP.

13.8
The indifference curves are relatively flat here, imply-
ing that these individuals are quite willing to substitute

one good for another. This flexibility implies a rela-
tively narrow range of mutually beneficial trading op-
portunities at point A. With less flexible preferences,
the number of opportunities is increased because the
individuals may start trading from widely differing
marginal rates of substitution.

CHAPTER 14

14.1
The increase in fixed costs would not alter the output
decisions because it would not affect marginal costs.
It would, however, raise AC by 5 and reduce profits
to 12,500. With the new C function, MC would rise
to 0:15Q . In this case, Q � ¼ 400, P� ¼ 80,C ¼
22,000, and π ¼ 10, 000.

14.2
For the linear case, an increase in a would increase
price by a=2. A shift in the price intercept has an effect
similar to an increase in marginal cost in this case. In
the constant elasticity case, the term a does not enter
into the calculation of price. For a given elasticity of
demand, the gap between price and marginal cost is
the same no matter what a is.

14.3
With e ¼ �1:5, the ratio of monopoly to competitive
consumer surplus is 0.58 (Equation 14.19). Profits
represent 19 percent of competitive consumer surplus
(Equation 14.21).

14.4
If Q ¼ 0, P ¼ 100. Total profits are given by the tri-
angular area between the demand curve and the MC
curve, less fixed costs. This area is 0:5ð100Þð666Þ ¼
33,333. So π ¼ 33,333� 10,000 ¼ 23,333.

14.5
Onemust be careful when summing the demand func-
tions. For P > 12, there is no demand in market 2,
so the monopoly solution in that case yields profits
of 81. For P < 12, market demand isQ ¼ 48� 3P or
P ¼ 16� Q =3. In this case the monopoly price would
be 11. Profits would be ð11� 6Þ � 15 ¼ 75, so it is still
not worthwhile to serve market 2. Profits are maxi-
mized when P ¼ 15.
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CHAPTER 15

15.1
Members of a perfect cartel produce less than their
best responses, so cartels may be unstable.

15.2
A point on firm 1’s best response must involve a tan-
gency between 1’s isoprofit and a horizontal line of
height q2. This isoprofit reaches a peak at this point.
Firm 2’s isoprofits look something like right paren-
theses that peak on 2’s best-response curve. An in-
crease in demand intercept would shift out both best
responses, resulting in higher quantities in equilibrium.

15.3
The first-order condition is the mathematical repre-
sentation of the optimal choice. Imposing symmetry
before taking a first-order condition is like allowing
firm i to choose the others’ outputs as well as its own.
Making this mistake would lead to the monopoly
rather than the Cournot outcome in this example.

15.4
An increase in the demand intercepts would shift out
both best responses, leading to an increase in equilib-
rium prices.

15.5
Locating in the same spot leads to marginal cost pric-
ing as in the Bertrand model with homogeneous pro-
ducts. Locating at opposite ends of the beach results in
the softest price competition and the highest prices.

15.6
It is reasonable to suppose that competing gas stations
monitor each other’s prices and could respond to a
price change within the day, so one day would be a
reasonable period length. A year would be a reason-
able period for producers of small cartons of milk for
school lunches, because the contracts might be rene-
gotiated each new school year.

15.7
Reverting to the stage-game Nash equilibrium is a less
harsh punishment in a Cournot model (firms earn posi-
tive profit) than a Bertrand model (firms earn zero
profit).

15.8
Firms might race to be the first to market, investing in
research and development and capacity before suffi-
cient demand has materialized. In this way, they may
compete away all the profits from being first, a possible
explanation for the puncturing of the dot-com bubble.
Investors may even have overestimated the advantages
of being first in the affected industries.

15.9
In most industries, price can be changed quickly—
perhaps instantly—whereas quantity may be more
difficult to adjust, requiring the installation of more
capacity. Thus, price is more difficult to commit to.
Among other ways, firms can commit to prices by
mentioning price in their national advertising cam-
paigns, by offering price guarantees, and by maintain-
ing a long-run reputation for not discounting list price.

15.10
Entry reduces market shares and lower prices from
tougher competition, so one firm may earn enough
profit to cover its fixed cost where two firms would not.

15.11
A’s entry-deterring strategy would still be to locate in
the middle, since this leaves the smallest niche for B to
enter and is worst for B’s profits. A’s accommodating
strategy would change from the unregulated price
case. A would locate in the middle, since this captures
the biggest market share for A. It does not have to
worry about the strategic effect of depressing price,
since price is regulated.

15.12
The social planner would have one firm charge mar-
ginal cost prices. This would eliminate any deadweight
loss from pricing and also economize on fixed costs.

CHAPTER 16

16.1
Nonlabor income permits the individual to “buy” lei-
sure but the amount of such purchases depends on
labor-leisure substitutability.

16.2
The conclusion does not depend on linearity. So long
as the demand and supply curves are conventionally
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shaped, the curves will be shifted vertically by the pa-
rameters t and k.

16.3
Now MRP ¼ $30 per hour. In this case, the monop-
sony will hire 750 workers, and wages will be $15 per
hour. As before, the wage remains at only half theMRP.

16.4
The monopsonist wants to be on its demand for labor
curve; the union (presumably) wants to be on the
labor supply curve of its members. Only the supply-
demand equilibrium (l ¼ 583, w ¼ 11:67) satisfies
both these curves. Whether this is indeed a Nash equi-
librium depends, among other things, on whether the
union defines its payoffs as being accurately reflected
by the labor supply curve.

16.5
If the firm is risk neutral, workers risk averse, optimal
contracts might have lower wages in exchange for
more-stable income.

CHAPTER 17

17.1
Using Equation 17.17 yields c1=c0 ¼ 1:02 ¼
ð1þ rÞ1=ð1�RÞ. Hence 1þ r ¼ ð1:02Þ1�R. If R ¼ 0
then r ¼ 0:02; if R ¼ �3 then r ¼ 0:082.

17.2
If g is uncertain, the future marginal utility of con-
sumption will be a random variable. IfU 0ðcÞ is convex,
its expected value with uncertain growth will be greater
than its value when growth is at its expected value. The
effect is similar to what would occur with a lower
growth rate. Equation 17.29 shows that the risk-free
interest rate must fall to accommodate such a lower g.

17.3
With an inflation rate of 10 percent, the nominal value
of the tree would rise at an additional 10 percent per
year. But such revenues would have to be discounted
by an identical amount to calculate real profits so the
optimal harvesting age would not change.

17.4
For a monopolist, an equation similar to Equa-
tion 17.62 would hold with marginal revenue re-
placing price. With a constant elasticity demand
curve, price would have the same growth rate under
monopoly as under perfect competition.

CHAPTER 18

18.1
The manager would have an incentive to overstate
gross profits unless some discipline were imposed by
an audit. If audits are costly, the efficient arrangement
might involve few audits with harsh punishments for
false reports. If harsh punishments are impossible, the
power of the manager’s incentives might have to be
reduced. Enron’s managers did overstate profits. Audi-
tors did not catch or were complicit in the overstate-
ment. The harsh punishments meted out may deter
future corporate crimes even if audits continue to be
not especially effective.

18.2
The insurer would be willing to pay the difference be-
tween its first- and second-best profits, 298� 96 ¼
$202.

18.3
Insurance markets are generally thought to be fairly
competitive, except where regulation has limited
entry. It is hard to say which segment is most competi-
tive. The fact that the individuals purchase car insur-
ance whereas firms purchase health insurance on behalf
of their employees “in bulk” may affect the nature of
competition.

18.4
The corner coffee shop in Hanover charges $1.25 for
an 8-ounce cup and $1.55 for a 16-ounce cup. This
menu is not consistent with reasonable values of θH
and θL . Substituting the quantity and tariff for the small
cup into the equation θLvðqLÞ � TL yields θL ¼ 22:1,
which is greater than the θH ¼ 12:8 that results from
substituting the menu terms into θHvðqH Þ � TH ¼
θHvðqLÞ � TL . Perhaps actual utility functions are dif-
ferent from those assumed here.

18.5
The insurance company decides to offer just one policy
targeted to red cars and ignores gray cars.

18.6
Gray-car owners obtain utility of 11.48033 in the
competitive equilibrium under asymmetric informa-
tion. They would obtain the same utility under full
insurance with a premium of $3,207. The difference
between this and the equilibrium premium ($453) is
$2,754. Any premium between $3,000 and $3,207
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would allow an insurance company to break even from
its sales just for gray cars. The problem is that red-car
owners would deviate to the policy, causing the com-
pany to make negative profit.

18.7
If the reports are fairly credible, then gray cars may still
be able to get as full insurance with reporting as with-
out, but not as full as with 100 percent credibility.
Auditors have short-run incentives to take bribes to
issue “gray” reports. In the long run, dishonesty will
reduce the fees the auditor can charge. He or she
would like to maintain high fees by establishing a
reputation for honest reporting (which would be
ruined if ever discovered to be dishonest).

18.8
If there are fewer sellers than buyers, then all the cars
will sell. A car of quality q will sell at a price of q þ b. If
there are fewer buyers than sellers, then all buyers
will purchase a car but some cars will be left unsold
(a random selection of them). The equilibrium price
will equal the car’s quality: q.

18.9
Yes, reservation prices can often help. The trade-offs
involved in increasing the reservation price are, on the
one hand, that buyers are encouraged to increase their
bids, but, on the other hand, that the probability the
object goes unsold increases. In a second-price auc-
tion, buyers bid their valuations without a reservation
price, and a reservation price would not induce them
to bid above their valuations.

CHAPTER 19

19.1
Production of x would have a beneficial impact on y
so labor would be underallocated to x by competitive
markets.

19.2
The tax is relatively small because of the nature of the
externality that vanishes with only a relatively minor
reduction in x output. A merged firm would also find
x ¼ 38,000 to be a profit-maximizing choice.

19.3
The roommates’ separate allocations are x ¼ 1, y ¼
1,000, so they would achieve the efficient allocation if
they moved in together. This results from the simple
additive nature of theMRS values in the Cobb-Douglas
case and would not be expected to hold generally.

19.4
The roommates have identical preferences here and
therefore identical marginal rates of substitution. If
each pays half the price of the public good then the
sum of their MRS s will be precisely the ratio of the
price of the public good to the price of the private
good, as required in Equation 19.40. With differing
MRS s, the sharing might depart from 50–50 to en-
sure efficiency

19.5
Reduction of the labor tax increases after-tax income
and the demand for good y. With a fixed Pigovian tax,
pollution rises. More generally, the likelihood of a
double dividend depends on the precise demand rela-
tionship in people’s utility functions between clean air
and the other items being taxed (here, labor).

19.6
Progressive taxation should raise t� because the me-
dian voter can gain more revenue from high-income
tax payers without incurring high tax costs.
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Only very brief solutions to most of the odd-numbered
problems in the text are given here. Complete solutions to all
of the problems are contained in the Solutions Manual, which
is available to instructors upon request.

CHAPTER 2

2.1
a. 8x, 6y
b. 8, 12
c. 8xdx þ 6ydy
d. dy=dx ¼ �4x=3y.
e. x ¼ 1, U ¼ ð4Þð1Þ þ ð3Þð4Þ ¼ 16.
f. dy=dx ¼ �2=3.
g. U ¼ 16 contour line is an ellipse.

2.3
Both approaches yield x ¼ y ¼ 0:5.

2.5
a. The first-order condition for a maximum is

�gt þ 40 ¼ 0, so t� ¼ 40=g .
b. Substitution yields f ðt�Þ ¼ �0:5gð40=gÞ2þ

40ð40=gÞ ¼ 800=g . So ∂f ðt�Þ=∂g ¼ �800=g2.
c. This follows because ∂f =∂g ¼ �0:5ðt�Þ2.
d. ∂f =∂g ¼ �0:5ð40=gÞ2 ¼ �0:8, so each 0.1 increase

in g reduces maximum height by 0.08.

2.7
a. First-order conditions require f1 ¼ f2 ¼ 1. Hence,

x2 ¼ 5. With k ¼ 10, x1 ¼ 5.
b. With k ¼ 4, x1 ¼ �1.
c. x1 ¼ 0, x2 ¼ �4.
d. With k ¼ 20, x1 ¼ 15, x2 ¼ 5. Because marginal value

of x1is constant, every addition to k beyond 5 adds
only to that variable.

2.9
Since fii < 0, the condition for concavity implies that
the matrix of second-order partials is negative definite.
Hence the quadratic form involving ½ f1, f2� will be

negative as required for quasi-concavity. The converse
is not true, as shown by the Cobb-Douglas function
with αþ β > 1.

2.11
a. f 00 ¼ δðδ� 1Þxδ�2 < 0.
b. Since f11, f22 < 0 and f12, f21 ¼ 0, Equation 2.98

obviously holds.
c. This preserves quasi-concavity but not concavity.

2.13
a. g ½EðxÞ� ¼ Eðc þ dxÞ ¼ c þ dEðxÞ 	 E½ gðxÞ�.
b. Just reverse the inequality.
c. Let u ¼ 1� F ðxÞ, du ¼ �f ðxÞ, x ¼ v, and

dv ¼ dx. Apply Equation 2.136.
d. Use the hint and the fact that ∫∞t xf ðxÞ dx 	

∫∞t tf ðxÞ dx.
e. (1) ∫∞1 2x

�3 dx ¼ �x�2
��∞
1 ¼ 1.

(2) F ðxÞ ¼ 1� x�2.
(3) E xð Þ ¼ 1.
(4) Prðx 	 tÞ ¼ 1� F ðtÞ ¼ t�2 � 1=t .

f. (1) ∫2�1 x
2=3 dx ¼ x3=9

��2
�1¼ 1.

(2) E xð Þ ¼ 5=4.
(3) Prð�1 � x � 0Þ ¼ 1=9.
(4) f ðxjAÞ ¼ 9f ðxÞ=8 ¼ 3x2=8.
(5) EðxjAÞ ¼ 1:5.
(6) The expected value is increased by looking only at

positive values for x.

CHAPTER 3

3.1
a. No
b. Yes
c. Yes
d. No
e. Yes

3.3
The shape of the marginal utility function is not necessarily
an indicator of convexity of indifference curves.
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3.5
a. U ðh, b,m, rÞ ¼ minðh, 2b,m, 0:5rÞ.
b. A fully condimented hot dog
c. $1.60
d. $2.10—an increase of 31 percent.
e. Price would increase only to $1.725—an increase

of 7.8 percent.
f. Raise prices so that a fully condimented hot dog rises

in price to $2.60. This would be equivalent to
a lump-sum reduction in purchasing power.

3.7
a. Indifference curve is linear—MRS ¼ 1=3.
b. α ¼ 2, β ¼ 1.
c. Just knowing the MRS at a known point can identify

the ratio of the Cobb-Douglas exponents.

3.9
a.–c. See detailed solutions.

3.11
It follows, since MRS ¼ MUx=MUy ⋅MUx doesn’t depend
on y or vice versa. 3.1(b) is a counterexample.

3.13
a. MRS ¼ fx=fy ¼ y.
b. fxx ¼ fxy ¼ 0, so the condition for quasi-concavity

reduces to �1=y2 < 0.
c. An indifference curve is given by y ¼ expðk � xÞ.
d. Marginal utility of x is constant, marginal utility

of y diminishes. As income rises, consumers will
eventually choose only added x.

e. y could be a particular good, whereas x could be
“everything else.”

CHAPTER 4

4.1
a. t ¼ 5 and s ¼ 2.
b. t ¼ 5=2 and s ¼ 4. Costs $2 so needs extra $1.

4.3
a. c ¼ 10, b ¼ 3, and U ¼ 127.
b. c ¼ 4, b ¼ 1, and U ¼ 79.

4.5
a. g ¼ I=ðpg þ pv=2Þ; v ¼ I=ð2pg þ pvÞ.
b. Utility ¼ m ¼ v ¼ I=ð2pg þ pvÞ.
c. E ¼ mð2pg þ pvÞ.

4.7
a. See detailed solutions.
b. Requires expenditure of 12.

c. Subsidy is 5=9 per unit. Total cost of subsidy is 5.
d. Expenditures to reach U ¼ 2 are 9.71. To reach

U ¼ 3 requires 4.86 more. A subsidy on good x must
be 0.74 per unit and costs 8.29.

e. With fixed proportions the lump sum and single good
subsidy would cost the same.

4.9
If px=py < a=b then E ¼ pxU =a. If px=py > a=b
then E ¼ pyU =b. If px=py ¼ a=b then E ¼ pxU =a ¼
pyU =b.

4.11
a. Set MRS ¼ px=py .
b. Set δ ¼ 0.
c. Use pxx=pyy ¼ ðpx=pyÞδ=ðδ�1Þ.

4.13
a. See detailed solutions.
b. Multiplying prices and income by 2 does not

change V .
c. Obviously ∂V =∂I > 0.
d. ∂V =∂px , ∂V =∂py < 0.
e. Just exchange I and V .
f. Multiplying the prices by 2 doubles E.
g. Just take partials.
h. Show ∂E=∂px > 0, ∂2E=∂p2x < 0.

CHAPTER 5

5.1
a. U ¼ x þ 3

8 y.
b. x ¼ I=px if px � 3

8 py :

x ¼ 0 if px > 3
8 py .

d. Changes in py don’t affect demand until they reverse
the inequality.

e. Just two points (or vertical lines).

5.3
a. It is obvious since px=py doesn’t change.
b. No good is inferior.

5.5
a. x ¼ I � px

2px
, y ¼ I þ px

2py
.

Hence, changes in py do not affect x, but changes
in px do affect y.

b. V ¼ ðI þ pxÞ2
4pxpy

and so E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pxpyV

q
� px .

c. The compensated demand function for x depends
on py , whereas the uncompensated function did not.
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5.7
a. Use the Slutsky equation in elasticity form. Because

there are no substitution effects, eh, ph ¼ 0� sheh, I ¼
0� 0:5 ¼ �0:5.

b. Compensated price elasticity is zero for both goods,
which are consumed in fixed proportions.

c. Now sh ¼ 2=3 so eh, ph ¼ �2=3.
d. For a ham and cheese sandwich (sw), esw, psw ¼ �1,

esw, ph ¼ esw, psw ⋅ epsw , ph ¼ ð�1Þ ⋅ 0:5 ¼ �0:5.

5.9
a.

∂sx
∂I

¼ pxI ∂x=∂I � pxx
I 2

. Multiplication by
I
sx
¼ I 2

pxx

gives the result.
b.–d. All of these proceed as in part (a).
e. Use Slutsky equation—see detailed solutions.

5.11
a. Just follow the approaches used in the two-good cases

in the text (see detailed solutions).

5.13
a. ln Eðpx , py , U Þ ¼

a0 þ α1ln px þ α2 log py þ 1
2 γ11ðln pxÞ2

þ 1
2γ22ðln pyÞ2 þ γ12 ln px ln py þUβ0p

β1
x pβ2

y .
b. Doubling all prices adds log 2 to the log of the

expenditure function, thereby doubling it (with U
held constant).

c. sx ¼ α1 þ γ11 ln px þ γ12 ln py þUβ0β1p
β1�1
x pβ2

y .

CHAPTER 6

6.1
a. Convert this to a Cobb-Douglas with α ¼ β ¼ 0:5.

Result follows from prior examples.
b. Also follows from Cobb-Douglas
c. Set ∂m=∂ps ¼ ∂s=∂pm and cancel the symmetric

substitution effects.
d. Use the Cobb-Douglas representation.

6.3
a. pbt ¼ 2pb þ pt .
b. Since pc and I are constant, c ¼ I=2pc is also constant.
c. Yes—since changes in pb or pt affect only pbt .

6.5
a. p2x2 þ p3x3 ¼ p3ðkx2 þ x3Þ.
b. Relative price ¼ ðp2 þ tÞ=ðp3 þ tÞ.

Approaches p2=p3 < 1 as t !0.
Approaches 1 as t !∞.
So, an increase in t raises the relative price of x2.

c. Does not strictly apply since changes in t change
relative prices.

d. May reduce spending on x2—the effect on x3 is
uncertain.

6.7
Show xi ⋅ ∂xj=∂I ¼ xj ⋅ ∂xi=∂I and use symmetry of net
substitution effects.

6.9
a. CV ¼ Eðp01, p02,

_
p3,…,

_
pn,

_
U Þ � Eðp1, p2,

_
p3,…,

_
pn,

_
U Þ.

b. See graphs in detailed solutions—note that change in
one price shifts compensated demand curve in the
other market.

c. Symmetry of cross-price effects implies that order is
irrelevant.

d. Smaller for complements than for substitutes.

6.11
See graphs in detailed solutions or in Samuelson reference.

CHAPTER 7

7.1
P ¼ 0:525.

7.3
a. One trip: expected value ¼ 0:5 ⋅ 0þ 0:5 ⋅12 ¼ 6.

Two trip: expected value ¼ 0:25 ⋅ 0þ 0:5 ⋅6þ
0:25 ⋅ 12 ¼ 6.

b. Two-trip strategy is preferred because of smaller
variance.

c. Adding trips reduces variance, but at a diminishing rate.
So desirability depends on the trips’ cost.

7.5
a. EðU Þ ¼ 0:75 lnð10,000Þ þ 0:25 lnð9,000Þ ¼ 9:1840.
b. EðU Þ ¼ lnð9,750Þ ¼ 9:1850—insurance is preferable.
c. $260

7.7
a. Plant corn.
b. Yes, a mixed crop should be chosen. Diversification

increases variance, but takes advantage of wheat’s high
yield.

c. 44 percent wheat, 56 percent corn
d. The farmer would only plant wheat.

7.9
a. rðW Þ ¼ ðμþW =γÞ�1.
b. If μ ¼ 0, θ ¼ ½ð1� γÞ=γ�γ�1,U ðW Þ ¼ W 1�γ=

ð1� γÞ1�γ, rrðW Þ ¼ γ.
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c. rðW Þ! 1=μ.
d. Let A ¼ 1=μ.
e. U ðW Þ ¼ θðW 2 � 2μW þ μ2Þ.
f. For example, function may be unbounded and so

St. Petersburg paradox can be regenerated.

7.11
a. Risk aversion is an unwillingness to substitute between

states.
b. R ¼ 1 implies perfect substitution, R ¼ �∞ implies

zero substitution.
c. Depends on whether goods are gross substitutes or

gross complements.
d. i. R � �3.

ii. A 2 percent premium roughly compensates for
a 10 percent gamble with R ¼ �3.

7.13
a. If utility of wealth is homothetic, then uniform tax will

not affect allocation.
b. Increases incentives to hold risky assets, especially for

those less risk averse.
c. Tax on asset returns will increase allocation to risky

assets—see graph in detailed solutions.

CHAPTER 8

8.1
a. ðC , F Þ
b. Each player randomizes over the two actions with

equal probability.
c. Players each earn 4 in the pure-strategy equilibrium.

Players 1 and 2 earn 6 and 7, respectively, in the
mixed-strategy equilibrium.

d. The extensive form is similar to Figures 18.1 and 18.2
but has three branches from each node rather than two.

8.3
a. The extensive form is similar to Figures 8.1 and 8.2.
b. (Don’t veer, veer) and (veer, don’t veer)
c. Players randomize with equal probabilities over the

two actions.
d. Teen 2 has four contingent strategies: always veer,

never veer, do the same as Teen 1, and do the
opposite of Teen 1.

e. The first is (don’t veer, always veer), the second is
(don’t veer, do the opposite), and the third is (veer,
never veer).

f. (Don’t veer, do the opposite) is a subgame-perfect
equilibrium.

8.5
a. If all play blond, then one would prefer to deviate

to brunette to obtain a positive payoff. If all play

brunette, then one would prefer to deviate to blond
for payoff a rather than b.

b. Playing brunette provides a certain payoff of b
and blond provides a payoff of a with probability
ð1� pÞn�1 (the probability no other player approaches
the blond). Equating the two payoffs yields p� ¼
1� ðb=aÞ1=ðn�1Þ.

c. The probability the blond is approached by at least
one male equals 1 minus the probability no males
approach her: 1� ð1� p�Þn ¼ 1� ðb=aÞn=ðn�1Þ.
This expression is decreasing in n because n=ðn � 1Þ
is decreasing in n and b=a is a fraction.

8.7
a. The best-response function is lLC ¼ 3:5þ l2=4 for the

low-cost type of player 1, lHC ¼ 2:5þ l2=4 for the
high-cost type, and l2 ¼ 3þ

_
l 1=4 for player 2, where

_
l 1

is the average for player 1. Solving these equations
yields l�LC ¼ 4:5, l�HC ¼ 3:5, and l�2 ¼ 4.

c. The low-cost type of player 1 earns 20.25 in the
Bayesian-Nash equilibrium and 20.55 in the
full-information game, so it would prefer to signal
its type if it could. Similar calculations show that
the high-cost player would like to hide its type.

8.9
For any strategy profile besides the dominant-strategy
equilibrium, each player would have an incentive to
deviate to its dominant strategy, ruling out the profile
as a Nash equilibrium.

8.11
a. The condition for cooperation to be sustainable with

one period of punishment is δ 	 1, so one period of
punishment is not enough. Two periods of punish-
ment are enough as long as δ2 þ δ� 1 	 0, or
δ 	 0:62.

b. The required condition is that the present discounted
value of the payoffs from cooperating, 2=ð1� δÞ,
exceed that from deviating, 3þ
δð1� δ10Þ=ð1� δÞ þ 2δ11=ð1� δÞ. Simplifying,
2δ� δ11 � 1 	 0. Using numerical or graphical
methods, this condition can be shown to be δ 	 0:50025,
not much stricter than the condition for cooperation
with infinitely many periods of punishment ðδ 	 1=2Þ.

CHAPTER 9

9.1
a. k ¼ 10 and l ¼ 5.
b. k ¼ 8 and l ¼ 8.
c. k ¼ 9, l ¼ 6:5, k ¼ 9:5, and l ¼ 5:75 (fractions of

hours).
d. The isoquant is linear between solutions (a) and (b).
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9.3
a. q ¼ 10, k ¼ 100, l ¼ 100, C ¼ 10,000.
b. q ¼ 10, k ¼ 33, l ¼ 132, C ¼ 8,250.
c. q ¼ 12:13, k ¼ 40, l ¼ 160, C ¼ 10,000.
d. Carla’s ability to influence the decision depends on

whether she can impose any costs on the bar if she is
unhappy serving the additional tables. Such ability
depends on whether Carla is a draw for Cheers’
customers.

9.5
Let A ¼ 1 for simplicity.
a. fk ¼ αkα�1lβ > 0, fl ¼ βkαlβ�1 > 0,

fkk ¼ αðα� 1Þkα�2lβ < 0,
fll ¼ βðβ� 1Þkαlβ�2 < 0,
fkl ¼ flk ¼ αβkα�1lβ�1 > 0:

b. eq, k ¼ fk ⋅ k=q ¼ α, eq, l ¼ fl ⋅ l=q ¼ β.

c. f ðtk, tlÞ ¼ tαþβf ðk, lÞ;
∂f ðtk, tlÞ=∂t ⋅ t=f ðk, lÞ ¼ ðαþ βÞtαþβ.
At t ¼ 1 this is just αþ β.

d., e. Apply the definitions using the derivatives from
part (a).

9.7
a. β0 ¼ 0.
b. MPk ¼ β2 þ 1

2β1

ffiffiffiffiffiffiffi
l=k

p
; MPL ¼ β3 þ 1

2β1

ffiffiffiffiffiffiffi
k=l

p
.

c. In general, σ is not constant. If β2 ¼ β3 ¼ 0,σ ¼ 1.
If β1 ¼ 0,σ ¼ ∞.

9.9
a. If f ðtk, tlÞ ¼ tf ðk, lÞ then eq, t ¼ ∂f ðtk, tlÞ=∂t ⋅ t=f ðtk, tlÞ.

If t ! 1 then f ðk, lÞ=f ðk, lÞ ¼ 1.
b. Apply Euler’s theorem and use part (a): f ðk, lÞ ¼

fkk þ fl l .
c. eq, t ¼ 2ð1� qÞ. Hence q < 0:5 implies eq, t > 1 and

q > 0:5 implies eq, t < 1.
d. The production function has an upper bound of q ¼ 1.

9.11
a. Apply Euler’s theorem to each fi .
b. With n ¼ 2, k2fkk þ 2klfkl þ l2fll ¼ kðk � 1Þf ðk, lÞ. If

k ¼ 1, this implies fkl > 0. If k > 1, it is even clearer
that fkl must be positive. For k < 1, the case is not so clear.

c. Implies that fij > 0 is more common for k ¼ 1.
d. ðPαiÞ2 �

P
αi ¼ kðk � 1Þ.

CHAPTER 10

10.1
a. The draftsman is right because the minimum of

SAC curves occurs where the slope is zero. In the
constant-returns-to-scale case, both are correct.

10.3
a., b. q ¼ 150, J ¼ 25,MC ¼ 4;

q ¼ 300, J ¼ 100,MC ¼ 8;
q ¼ 450, J ¼ 225,MC ¼ 12.

10.5
a. q ¼ 2

ffiffiffiffiffiffiffiffi
k ⋅ l

p
; k ¼ 100, q ¼ 20

ffiffiffiffi
l ,

p
l ¼ q2=400.

SC ¼ vk þ wl ¼ 100þ q2=100,
SAC¼ SC=q ¼ 100=q þ q=100.

b. SMC ¼ q=50.
q SC SAC SMC
25 106:25 4:25 0:50

50 125 2:5 1

100 200 2 2

200 500 2:5 4
c., d. As long as the marginal cost of producing one more

unit is below the average-cost curve, average costs
will be falling. Similarly, if the marginal cost of
producing one more unit is higher than the
average cost, then average costs will be rising.
Therefore, the SMC curve must intersect the
SAC curve at its lowest point.

e. C ¼ v
_
k þ wq2=4

_
k.

f.
_
k ¼ ðq=2Þw1=2v1=2.

g. C ¼ qw1=2v1=2.
h. Yields an envelope relationship.

10.7
a. l ¼ ∂C=∂w ¼ 2

3 qðv=wÞ1=3.
k ¼ 1

3 qðw=vÞ2=3.
b. q ¼ Bl2=3k1=3 where B is a constant.

10.9
a. C ¼ q1=γ½ðv=aÞ1�σþðw=bÞ1�σ�1=ð1�σÞ.
b. C ¼ qa�ab�bvawb .
c. wl=vk ¼ b=a.
d. l=k ¼ ½ðv=aÞ=ðw=bÞ�σ so wl=vk ¼ ðv=wÞσ�1ðb=aÞσ.

Labor’s relative share is an increasing function of b=a.
If σ > 1, labor’s share moves in the same direction
as v=w. If σ < 1, labor’s relative share moves in
the opposite direction to v=w. This accords with
intuition on how substitutability should affect shares.

10.11
a. si, j ¼ ∂ ln Ci=∂ ln wj � ∂ ln Cj=∂ ln wj ¼ exci ,wj

� excj ,wj
.

b. si, j ¼ ∂ ln Cj=∂ ln wi � ∂ ln Ci=∂ ln wi ¼ excj ,wi
� exci ,wi

.
c. See detailed solutions.
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CHAPTER 11

11.1
a. q ¼ 50.
b. π¼ 200.
c. q ¼ 5P � 50.

11.3
a., b. q ¼ a þ bP , P ¼ q=b � a=b, R ¼ Pq ¼

ðq2 � aqÞ=b, mr ¼ 2q=b � a=b, and the mr curve
has double the slope of the demand curve, so
d �mr ¼ �q=b.

c. mr ¼ Pð1þ 1=eÞ ¼ Pð1þ 1=bÞ.
d. It follows since e ¼ ∂q=∂P ⋅P=q.

11.5
a. C ¼ wq2=4.
b. πðP ,wÞ ¼ P2=w.
c. q ¼ 2P=w.
d. lðP ,wÞ ¼ P2=w2.

11.7
a. Diminishing returns is needed to ensure that a

profit-maximizing output choice exists.
b. Cðq, v,wÞ ¼ ðw þ vÞq2=100,ΠðP , v,wÞ ¼

25P2=ðw þ vÞ.
c. q ¼ ∂Π=∂P ¼ 50P=ðw þ vÞ ¼ 20,Π ¼ 6,000.
d. q ¼ 30,Π ¼ 13,500.

11.9
b. Diminishing returns is needed to ensure increasing

marginal cost.
c. σ determines how firms adapt to disparate input prices.
d. q ¼ ∂Π=∂P

¼ 1=ð1� γÞKPγ=ðγ�1Þðv1�σ þ w1�σÞγ=ð1�σÞðγ�1Þ :

The size of σ does not affect the supply elasticity,
but greater substitutability implies that increases in
one input price will shift the supply curve less.

e. See detailed solutions.

11.11
a. Shephard’s lemma shows Cv,Cw are the demands for

inputs whenQ ¼ 1. The result follows from the assump-
tion of constant returns to scale.

b. Differentiate results from part (a).
c. Follows because C is homogeneous of degree 1 in the

input prices.
d. Substitution
e. Substitution of elasticity definitions.
f. The substitution effect is similar to that for a single firm.

The output effect is derived from moving along the
demand curve for the product.

CHAPTER 12

12.1
a. q ¼ 10

ffiffiffiffi
P

p � 20.
b. Q ¼ 1,000

ffiffiffiffi
P

p � 2,000.
c. P ¼ 25; Q ¼ 3,000.

12.3
a. P ¼ 6.
b. q ¼ 60,100� 10,000P .
c. P ¼ 6:01,P ¼ 5:99.
d. eq, p ¼ �600.

a0 P ¼ 6.
b0 Q ¼ 359,800� 59,950P .
c0 P ¼ 6:002; P ¼ 5:998.
d0 eq, p ¼ �0:6; eq, p ¼ �3,597.

12.5
a. n ¼ 50,Q ¼ 1,000, q ¼ 20,P ¼ 10, and w ¼ 200.
b. n ¼ 72,Q ¼ 1,728, q ¼ 24,P ¼ 14, and w ¼ 288.
c. The increase for the makers ¼ $5,368. The linear

approximation for the supply curve yields approximately
the same result.

12.7
a. P ¼ 11,Q ¼ 500, and r ¼ 1.
b. P ¼ 12,Q ¼ 1,000, and r ¼ 2.
c. ∆PS ¼ 750.
d. ∆ rents ¼ 750.

12.9
a. Use exponential demand and supply: Q D ¼ aPb ,

Q S ¼ cPd . If P is supplier price, then demand is
Q D ¼ að1þ tÞbPb and equilibrium requires
að1þ tÞb=c ¼ Pd�b . Taking logs of this expression,
using the approximation that lnð1þ tÞ � t , and
differentiating with respect to t yields d ln P=dt ¼
b=ðd � bÞ. A similar expression holds for demand
price.

b. DW � 0:5∆P∆Q � 0:5tP0∆ lnQ ⋅Q 0 ¼ 0:5td ⋅
∆ ln P ⋅P0Q 0 ¼ 0:5t2½db=ðd � bÞ�P0Q 0.

c. These results are almost identical to those in the chapter,
and may often be easier to use.

12.11
a. Foreign supply curve augments domestic one (see

graph in detailed solutions).
b. Tariff shifts foreign portion of supply curve (see graph).
c. Loss of consumer surplus is similar to perfectly elastic

case. Tariff also causes a loss of some foreign producer
surplus in this case.
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CHAPTER 13

13.1
b. If y ¼ 2x, x2 þ 2ð2xÞ2 ¼ 900; 9x2 ¼ 900;

x ¼ 10, y ¼ 20.
c. If x ¼ 9 on the production possibility frontier,

y ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
819=2

p ¼ 20:24.
If x ¼ 11 on the frontier, y ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

779=2
p ¼ 19:74.

Hence, RPT is approximately �∆y=∆x ¼
�ð�0:50Þ=2 ¼ 0:25.

13.3
Let F ¼ Food, C ¼ Cloth.
a. Labor constraint: F þ C ¼ 100.
b. Land constraint: 2F þ C ¼ 150.
c. Outer frontier satisfies both constraints.
d. Frontier is concave because it must satisfy both

constraints. Since the RPT ¼ 1 for the labor constraint
and 2 for the land constraint, the production possibility
frontier of part (c) exhibits an increasing RPT; hence it
is concave.

e. Constraints intersect at F ¼ 50, C ¼ 50. For F < 50,
dC=dF ¼ �1 so PF =PC ¼ 1. For F > 50, dC=dF ¼ �2
so PF =PC ¼ 2.

f. If for consumers dC=dF ¼ � 5
4 then PF =PC ¼ 5

4.
g. If PF =PC ¼ 1:9 or PF=PC ¼ 1:1, will still choose

F ¼ 50, C ¼ 50 since both price lines are “tangent”
to production possibility frontier at its kink.

h. 0:8F þ 0:9C ¼ 100. Capital constraint: C ¼ 0,F ¼
125, F ¼ 0,C ¼ 111:1. This results in the same PPF
since capital constraint is nowhere binding.

13.5
a. The contract curve is a straight line. Only equilibrium

price ratio is PH =PC ¼ 4=3.
b. Initial equilibrium on the contract curve
c. Not on the contract curve—equilibrium is between 40H,

80C and 48H, 96C.
d. Smith takes everything; Jones starves.

13.7
a. px ¼ 0:374, py ¼ 0:238, pk ¼ 0:124, pl ¼ 0:264,

x ¼ 26:2, y ¼ 22:3.
b. px ¼ 0:284, py ¼ 0:338, pk ¼ 0:162, pl ¼ 0:217,

x ¼ 30:2, y ¼ 18:5.
c. Raises price of labor and relative price of x.

13.9
Computer simulations show that increasing returns to scale
is still compatible with a concave production possibility
frontier provided the input intensities of the two goods
are suitably different.

13.11
a. Doubling prices leaves excess demands unchanged.
b. Since, by Walras’ law, p1ED1 ¼ 0 and ED1 ¼ 0. The

excess demand in market 1 can be calculated explicitly as:
ED1 ¼ ð3p22 � 6p2p3 þ 2p23 þ p1p2þ 2p1p3Þ=p21.
This is also homogeneous of degree 0 in the prices.

c. p2=p1 ¼ 3, p3=p1 ¼ 5.

CHAPTER 14

14.1
a. Q ¼ 24, P ¼ 29, and π ¼ 576.
b. MC ¼ P ¼ 5 and Q ¼ 48.
c. Consumers’ surplus ¼ 1,152. Under monopoly,

consumer surplus ¼ 288, profits ¼ 576, deadweight
loss ¼ 288.

14.3
a. Q ¼ 25, P ¼ 35, and π ¼ 625.
b. Q ¼ 20, P ¼ 50, and π ¼ 800.
c. Q ¼ 40, P ¼ 30, and π ¼ 800.

14.5
a. P ¼ 15, Q ¼ 5, C ¼ 65, and π ¼ 10.
b. A ¼ 3, P ¼ 15, Q ¼ 6:05, and π ¼ 12:25.

14.7
a. Under competition: P ¼ 10, Q ¼ 500,CS ¼ 2,500.

Under monopoly: P ¼ 16, Q ¼ 200, CS ¼ 400.
b. See graph in detailed solutions.
c. Loss of 2,100, of which 800 is transferred to monopoly

profits, 400 is a loss from increased costs (not relevant
in usual analysis), and 900 is a deadweight loss.

14.9
First-order conditions for a maximum imply X ¼
CðX Þ=C 0ðX Þ—that is, X is chosen independently of Q.

14.11
a. ∂U =∂Q � ∂C=∂Q ¼ 0, ∂U =∂X � ∂C=∂X ¼ 0.
b. P þQ ½∂P=∂Q � � ∂C=∂Q ¼ 0,

∂P=∂X ⋅ Q � ∂C=∂X ¼ 0.
c. Using the hint, parts (a) and (b) imply ∂SW =∂Q ¼

�Q ½∂P=∂Q � > 0.
d. ∂SW =∂X ¼ ∂U =∂X � ∂P=∂X ⋅Q , where the de-

rivatives are calculated at the monopolist’s profit-
maximizing choices. It is generally not possible to sign
this expression.
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CHAPTER 15

15.1
a. Pm ¼ Q m ¼ 75, Πm ¼ 5,625.
b. Pc ¼ qci ¼ 50, πc

i ¼ 2,500.
c. Pb ¼ 0, Q b ¼ 150, πb

i ¼ 0.

15.3
a. The best-response function for firm 1 is q1 ¼

ð1� q2 � c1Þ=2 and similarly for firm 2. The equilibrium
quantities are qci ¼ ð1� 2ci þ cj Þ=3. Further, Q c ¼
ð2� c1 � c2Þ=3, Pc ¼ ð1þ c1 þ c2Þ=3, πc

i ¼
ð1� 2c1 þ c2Þ2=9, Πc ¼ πc

1 þ πc
2, CS

c ¼
ð2� c1 � c2Þ2=18, and Wc ¼ Πc þ CSc .

b. The diagram looks like Figure 15.2. A reduction in
firm 1’s cost would shift its best response out, increasing
its equilibrium output and reducing 2’s.

15.5
a. Firm i’s best response is pi ¼ ð1þ bpj Þ=2. The Nash

equilibrium is p�i ¼ 1=ð2� bÞ.
b. q�i ¼ ð1� 2bÞ=ð2� bÞ; π�i ¼ 1=ð2� bÞ2.
c. The diagram would look like Figure 15.4. An increase

in b would shift out both best responses and result in
higher equilibrium prices for both.

15.7
a. Firm 2’s best response is q2 ¼ ð150� q1Þ=2.

Substituting this into firm 1’s profit function and
taking the first-order condition yields 150� 2q1 ¼ 0,
implying q�1 ¼ 75 and q�2 ¼ 75=2.

b. If firm 1 accommodates 2’s entry, the outcome in
part (a) arises, and 1 earns 2,812.5. To deter 2’s
entry, 1 needs to produce

_
q 1 sufficiently high that

even if 2 best-responds to
_
q1, generating profit

ð150� _
q1Þ2=4�K2, this profit is less than or equal

to 0. The threshold value of
_
q1 is

_
q1 ¼ 150� 2

ffiffiffiffiffiffi
K2

p
.

Firm 1’s profit from operating alone in the market and
producing this output is ð150� 2

ffiffiffiffiffiffi
K2

p Þð2 ffiffiffiffiffiffi
K2

p Þ, which
exceeds 2,812.5 if (as can be shown by graphing both
sides of the inequality) K2 	 120:6.

15.9
a. Firm i’s profit is qiða � bqi � bQ �i � cÞ with associated

first-order condition a � 2b � bQ �i � c ¼ 0. Imposing
symmetry ½Q �

�i ¼ ðn � 1Þq�i � and solving, q�i ¼
ða � cÞ=ðn þ 1Þb. Further, Q � ¼ nða � cÞ=ðn þ 1Þb,
P� ¼ ða þ ncÞ=ðn þ 1Þ, Π� ¼ nπ�i ¼ ðn=bÞ½ða � cÞ=
ðn þ 1Þ�2,CS� ¼ ðn2=bÞ ⋅ ½ða � cÞ=ðn þ 1Þ�2, and
W � ¼ ½n=ðn þ 1Þ� ⋅ ½ða � cÞ2=b�. Because firms are
symmetric, si ¼ 1=n, implyingH ¼ nð1=nÞ2 ¼ 1=n.

b. We can obtain a rough idea of the effect of merger
by seeing how the variables in part (a) change with

a reduction in n. Per-firm output, price, industry profit,
and the Herfindahl index increase. Total output,
consumer surplus, and welfare decrease.

c. Substituting c1 ¼ c2 ¼ 1=4 into the answers for 15.3,
we have q�i ¼ 1=4, Q � ¼ 1=2, P� ¼ 1=2, Π� ¼ 1=8,
CS� ¼ 1=8, and W � ¼ 1=4. Also, H ¼ 1=2.

d. Substituting c1 ¼ 0 and c2 ¼ 1=4 into the answers for
15.3, we have q�1 ¼ 5=12, q�1 ¼ 2=12, Q � ¼ 7=12,
P� ¼ 5=12, Π� ¼ 29=144, CS� ¼ 49=288, and
W � ¼ 107=288. Also, H ¼ 29=49.

e. Comparing part (a) with (b) suggests that increases in
the Herfindahl index are associated with lower welfare.
The opposite is evidenced in the comparison of part (c)
to (d): welfare and the Herfindahl increase together.
General conclusions are thus hard to reach.

15.11
a. This is the indifference condition for a consumer located

distance x from firm i.
b. The profit-maximizing price is p ¼ðp� þ c þ t=nÞ=2.
c. Setting p ¼ p� and solving for p�gives the specified

answer. Equilibrium price is increasing in cost
and the degree of differentiation, given by the
transportation cost and the spacing between firms
(depending on their numbers).

d. Substituting p ¼ p� ¼ c þ t=n into the profit function
gives the specified answer.

e. Setting t=n2 �K ¼ 0 and solving for n yields
n� ¼ ffiffiffiffiffiffiffiffiffi

t=K
p

.
f. Total transportation costs equal the number of

half-segments between firms, 2n, times the
transportation costs of consumers on the half segment,
∫1=2n0 tx dx ¼ t=8n2. Total fixed cost equal nF . The
number of firms minimizing the sum of the two is
n�� ¼ ð1=2Þ ffiffiffiffiffiffiffiffiffi

t=K
p

.

CHAPTER 16

16.1
a. Full income ¼ 40,000; l ¼ 2,000 hours.
b. l ¼ 1,400 hours.
c. l ¼ 1,700 hours.
d. Supply is asymptotic to 2,000 hours as w rises.

16.3
a. Grant ¼ 6,000� 0:75ðI Þ.

If I ¼ 0 Grant ¼ 6,000.
I ¼ 2,000 Grant ¼ 4,500.
I ¼ 4,000 Grant ¼ 3,000.

b. Grant¼ 0 when 6,000�0:75I ¼ 0, I ¼ 6,000=
0:75 ¼ 8,000.

c. Assume there are 8,000 hours in the year. Full Income
¼ 4� 8,000 ¼ 32,000 ¼ c þ 4h.
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d. Full Income
¼32,000þ grant
¼32,000þ 6,000� 0:75 ⋅ 4ð8,000� hÞ
¼38,000� 24,000þ 3h ¼ c þ 4h
or 14,000 ¼ c þ h for I < 8,000. That is: for h < 6,000
hours, welfare grant creates a kink in the budget
constraint at 6,000 hours of leisure.

16.5
a. For MEl ¼ MRPl , l=40 ¼ 10� l=40 so 2l=40 ¼ 10

and l ¼ 200. Get w from supply curve: w ¼ l=80 ¼
200=80 ¼ $2:50.

b. For Carl, the marginal expense of labor now equals
the minimum wage—wm ¼ $4:00. Setting this equal
to the MRP yields l ¼ 240.

c. Under perfect competition, a minimum wage means
higher wages but fewer workers employed. Under
monopsony, a minimum wage may result in higher
wages andmore workers employed.

16.7
a. Since q ¼ 240x � 2x2, total revenue is 5q ¼ 1,200x�

10x2.MRP ¼ ∂TR=∂x ¼ 1,200� 20x.
Production of pelts x ¼ ffiffi

l
p

. Total cost ¼ wl ¼ 10x2.
Marginal cost ¼ ∂C=∂x ¼ 20x. Under competition,
price of pelts ¼ MC ¼ 20x,MRP ¼ px ¼ MC ¼ 20x;
x ¼ 30, px ¼ 600.

b. FromDan’s perspective, demand for pelts¼ MRP ¼
1,200� 20x,R ¼ px ⋅ x ¼ 1,200x � 20x2.Marginal
revenue: ∂R=∂x ¼ 1,200� 40x set equal tomarginal
cost¼ 20x. Yields x ¼ 20, px ¼ 800.

c. FromUF ’s perspective, supply of pelts ¼ MC ¼ 20x ¼
px , total cost pxx ¼ 20x2 andMEx ¼ ∂C=∂x ¼ 40x. So
MEx ¼ 40x ¼ MRPx ¼ 1, 200� 20x with a solution
of x ¼ 20, px ¼ 400.

16.9
E½U ðyjob1 Þ� ¼ 100 ⋅ 40� 0:5 ⋅ 1,600 ¼ 3,200.
E½U ðyjob2 Þ� ¼ E½U ðwhÞ� ¼ E½100wh � 0:5ðwhÞ2� ¼
800w � 0:5 ⋅ ½36w2 þ 64w2� ¼ 800w � 50w2.

16.11
a. ∂V =∂w ¼ λð1� hÞ ¼ λlðw,nÞ, ∂V =∂n ¼ λ,

lðw,nÞ ¼ ð∂V =∂wÞ=ð∂V =∂nÞ.
b. ∂xi=∂w ¼ ∂xi=∂wjU¼ constant þ l ½∂xi=∂n�.
c. MEl ¼ ∂wl=∂l ¼ w þ l∂w=∂l ¼ w½1þ 1=ðel ,wÞ�.

CHAPTER 17

17.1
b. Income and substitution effects work in opposite

directions. If ∂c1=∂r < 0, then c2 is price elastic.

c. Budget constraint passes through y1, y2, and rotates
through this point as r changes. Income effect
depends on whether y1 > c1 or y1 < c1 initially.

17.3
25 years

17.5
a. Not at all
b. Tax would be on opportunity cost of capital.
c. Taxes are paid later, so cost of capital is reduced.
d. If tax rates decline, the benefit of accelerated

depreciation is reduced.

17.9
a. Maximizes expected utility.
b. If marginal utility is convex, applying Jensen’s

inequality to that function implies E½U 0ðc1Þ� >
U 0½Eðc1Þ� ¼ U 0ðc0Þ. So must increase next period’s
consumption to yield equality.

c. Part (b) shows that this person will save more when
next period’s consumption is random.

d. Prompting added precautionary savings would
require an even higher r, exacerbating the paradox.

17.11
a. Use x=ð1� xÞ ¼ x þ x2 þ… for x < 1.
b. See detailed solutions for derivative.
c. The increased output from a higher t must be balanced

against (1) the delay in getting the first yield and (2)
the opportunity cost of a delay in all future rotations.

d. f ðtÞ is asymptotic to 50 as t !∞.
e. t� ¼ 100.
f. t� ¼ 104:1.

CHAPTER 18

18.1
a. The lawyer maximizes ð1=3Þl � l2=2, yielding

equilibrium effort l� ¼ 1=3. His surplus is 1=18 and the
plaintiff ’s is ð2=3Þl� ¼ 2=9.

b. The lawyer maximizes cl � l2=2, yielding equilibrium
effort l� ¼ c. His surplus is c2=2 and the plaintiff’s
is cð1� cÞ.

c. The optimal contingency fee for the plaintiff is c� ¼ 1=2,
maximizing her surplus cð1� cÞ. Her surplus is 1=4
and the lawyer’s is 1=8.

d. With a 100% contingency fee, the lawyer chooses
l� ¼ 1 and earns a surplus of 1=2, which the plaintiff
can extract initially by selling the case to him.

Solutions to Odd-Numbered Problems 719



18.3
a. The low type’s second-best quantity satisfies Equation

18.51 at the new parameter values: q��L ¼ 1. The tariff
is T ��

L ¼ θLvð1Þ ¼ 30. The high type’s quantity is
the same as in the first best: q��H ¼ 16. The tariff just
satisfies incentive compatibility: T ��

H ¼ 150.

18.5
a. With no insurance, a lefty’s expected utility is 9.1261

and a righty’s is 9.1893. The monopolist fully insures
both at a premium that reduces each to his no-insurance
utility: pL ¼ 808 and pH ¼ 208.

b. Lefties receive the same policy as in part (a).
c. Lefties are fully insured. The second-best values of the

other policy terms ðpL , pR, and xRÞ maximize the
insurer’s expected profit
½ pL � ð0:8Þð1,000Þ�=2þ ½ pR � 0:2xR�=2 subject to the
righty’s participation and lefty’s incentive compatibility
constraints. A spreadsheet calculation shows that the
solution is approximately p��L ¼ 808, p��R ¼ 0, and
x��R ¼ 0.

18.7
a. ð1=2Þð10,000Þ þ ð1=2Þð2,000Þ ¼ $6,000.
b. If sellers value cars at 8,000, only lemons will be sold

at a market price of $2,000. If sellers value cars at 6,000,
all cars will be sold at a market price of $6,000.

18.9
The optimum of the fully informed patient satisfies
ð∂Up=∂mÞ=ð∂Up=∂xÞ ¼ pm or MRS ¼ pm, where MRS is
the patient’s marginal rate of substitution. The doctor’s
optimum satisfies pmU

0
d þ ∂Up=∂m � pm∂Up=∂x ¼ 0.

Rearranging, this implies MRS < pm, in turn implying that
the doctor chooses more medical care (a diagram of the
patient’s indifference curves helps to show this).

18.11
a. Bidder 1 maximizes Prðb1 > maxðb2,…, bnÞÞðv1� b1Þ,

which equals ðv1 � b1Þ∏n
i¼2 Prðvi < b1=kÞ assuming

rivals use linear bidding strategies, which in turn equals
ðv1 � b1Þðb1=kÞn�1. Maximizing with respect to b1 yields
b1 ¼ v1ðn � 1Þ=n. Expected revenue isEðvðnÞÞðn � 1Þ=n.
This equals ðn � 1Þ=ðn þ 1Þ, using the formula for the
expected value of the maximum order statistic vðnÞ.

b. Buyers bid bi ¼ vi . Expected revenue is Eðvðn�1ÞÞ ¼
ðn � 1Þ=ðn þ 1Þ.

c. Yes.
d. Bids converge to valuations in the first-price auction

but don’t change in the second-price auction.
Expected revenue approaches 1.

CHAPTER 19

19.1
a. P ¼ 20 and q ¼ 50.
b. P ¼ 20, q ¼ 40, MC ¼ 16, and tax¼ 4.

19.3
a. n ¼ 400. The externality arises because one well’s

drilling affects all wells’ output.
b. n ¼ 200.
c. Fee¼ 2,000/well.

19.5
The tax will improve matters only if the output restriction
required by the externality exceeds the output restriction
brought about by the monopoly.

19.7
a. If each person is a free rider, utility will be 0.
b. y ¼ 5, x ¼ 50, x=100 ¼ 0:5, and utility ¼

ffiffiffiffiffiffiffi
2:5

p
.

19.9
a. Want g 0

i to be the same for all firms.
b. A uniform tax will not achieve the result in part (a).
c. In general optimal pollution tax is t ¼ ðp � w=f 0Þ ⋅1=g 0,

which will vary from firm to firm. However, if firms
have simple linear production functions given by
qi ¼ ali , then a uniform tax can achieve efficiency
even if gi differs among firms. In this case the optimal
tax is t ¼ λða � wÞ=a, where λ is the value of the
Lagrangian in the social optimum described in part (a).

d. It is more efficient to tax pollution than to tax output.

19.11
a. Choose b and t so that y is the same in each state.

Requires t ¼ U .
b. b always ¼ ð1� tÞw and t ¼ U .
c. No. Because this person is risk averse, he or she will

always opt for equal income in each state.
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Glossary of Frequently Used Terms

Some of the terms that are used frequently in this book are
defined below. The reader may wish to use the index to find
those sections of the text that give more complete descrip-
tions of these concepts.

Adverse Selection The problem facing insurers that risky
types are both more likely to accept an insurance policy
and more expensive to serve.

Asymmetric Information A situation in which an agent on
one side of a transaction has information that the agent
on the other side does not have.

Bayesian-Nash Equilibrium A strategy profile in a two-
player simultaneous-move game in which player 1 has
private information. This generalizes the Nash equilib-
rium concept to allow for player 2’s beliefs about player
1’s type.

Bertrand Paradox The Nash equilibrium in a simultaneous-
move pricing game is competitive pricing even when
there are only two firms.

Best Response si is a best response for player i to rivals’
strategies, s�i , denoted by si 2 BRiðs�iÞ, if Uiðsi , s�iÞ 	
Uiðs 0i , s�iÞ for all s 0i 2 Si .

Ceteris Paribus Assumption The assumption that all other
relevant factors are held constant when examining the in-
fluence of one particular variable in an economic model.
Reflected in mathematical terms by the use of partial
differentiation.

Coase Theorem Result attributable to R. Coase: if bargain-
ing costs are zero, an efficient allocation of resources can
be attained in the presence of externalities through reli-
ance on bargaining among the parties involved.

Compensated Demand Function Function showing rela-
tionship between the price of a good and the quantity
consumed while holding real income (or utility) constant.
Denoted by xcð px , py ,U Þ.

Compensating Variation (CV) The compensation re-
quired to restore a person’s original utility level when
prices change.

Compensating Wage Differentials Differences in real
wages that arise when the characteristics of occupations
cause workers in their supply decisions to prefer one job
over another.

Complements (Gross) Two goods such that if the price of
one rises, the quantity consumed of the other will fall.

Goods x and y are gross complements if ∂x=∂py < 0. See
also Substitutes (Gross).

Complements (Net) Two goods such that if the price of
one rises, the quantity consumed of the other will fall,
holding real income (utility) constant. Goods x and y are
net complements if

∂x=∂py U¼ �
U < 0:

��
Such compensated cross-price effects are symmetric,
that is,

∂x=∂py U¼ �
U ¼ ∂y=∂px U¼ �

U :
����

See also Substitutes (Net). Also called Hicksian substitutes
and complements.

Composite Commodity A group of goods whose prices all
move together—the relative prices of goods in the group
do not change. Such goods can be treated as a single
commodity in many applications.

Concave Function A function that lies everywhere below its
tangent plane.

Constant Cost Industry An industry in which expansion of
output and entry by new firms has no effect on the cost
curves of individual firms.

Constant Returns to Scale See Returns to Scale.
Consumer Surplus The area below theMarshallian demand

curve and above market price. Shows what an individual
would pay for the right to make voluntary transactions at
this price. Changes in consumer surplus can be used to
measure the welfare effects of price changes.

Contingent Input Demand See Input Demand Functions.
Contour Line The set of points along which a function has

a constant value. Useful for graphing three-dimensional
functions in two dimensions. Individuals’ indifference
curve maps and firms’ production isoquant maps are
examples.

Contract Curve The set of all the efficient allocations of
goods among those individuals in an exchange economy.
Each of these allocations has the property that no one
individual can be made better off without making some-
one else worse off.

Cost Function See Total Cost Function.
Cournot Equilibrium Equilibrium in duopoly quantity-

setting game. A similar concept applies to an n-person
game.
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Deadweight Loss A loss of mutually beneficial transactions.
Losses in consumer and producer surplus that are not
transferred to another economic agent.

Decreasing Cost Industry An industry in which expansion
of output generates cost-reducing externalities that cause
the cost curves of those firms in the industry to shift
downward.

Decreasing Returns to Scale See Returns to Scale.
Demand Curve A graph showing the ceteris paribus rela-

tionship between the price of a good and the quantity of
that good purchased. A two-dimensional representation
of the demand function x ¼ xðpx , py , I Þ. This is referred
to as “Marshallian” demand to differentiate it from the
compensated (Hicksian) demand concept.

Diminishing Marginal Productivity See Marginal Physical
Product.

Diminishing Marginal Rate of Substitution See Marginal
Rate of Substitution.

Discount Factor The degree to which a payoff next period
is discounted in making this period’s decisions; denoted
by δ in the text. If r is the single-period interest rate, then
usually δ ¼ 1=ð1þ rÞ.

Discrimination, Price Occurs whenever a buyer or seller is
able to use its market power effectively to separate mar-
kets and to follow a different price policy in each market.
See also Price Discrimination.

Dominant Strategy A strategy, s�i , for player i that is a best
response to the all-strategy profile of other players.

Duality The relationship between any constrained maximi-
zation problem and its related “dual” constrained mini-
mization problem.

Economic Efficiency Exists when resources are allocated so
that no activity can be increased without cutting back on
some other activity. See also Pareto-Efficient Allocation.

Edgeworth Box Diagram A graphic device used to demon-
strate economic efficiency. Most frequently used to illus-
trate the contract curve in an exchange economy, but also
useful in the theory of production.

Elasticity A unit-free measure of the proportional effect
of one variable on another. If y ¼ f xð Þ, then ey, x ¼
∂y=∂x ⋅ x=y.

Entry Conditions Characteristics of an industry that deter-
mine the ease with which a new firm may begin produc-
tion. Under perfect competition, entry is assumed to be
costless, whereas in a monopolistic industry there are
significant barriers to entry.

Envelope Theorem A mathematical result: the change in
the maximum value of a function brought about by a
change in a parameter of the function can be found by
partially differentiating the function with respect to the
parameter (when all other variables take on their optimal
values).

Equilibrium A situation in which no actors have an incen-
tive to change their behavior. At an equilibrium price, the
quantity demanded by individuals is exactly equal to that
which is supplied by all firms.

Euler’s Theorem A mathematical theorem: if f x1,…, xn
� �

is homogeneous of degree k, then
f1x1 þ f2x2 þ � � � þ fnxn ¼ kf ðx1,…, xnÞ:

Exchange Economy An economy in which the supply of
goods is fixed (that is, no production takes place). The
available goods, however, may be reallocated among
individuals in the economy.

Expansion Path The locus of those cost-minimizing input
combinations that a firm will choose to produce various
levels of output (when the prices of inputs are held
constant).

Expected Utility The average utility expected from a risky
situation. If there are n outcomes, x1,…, xn with prob-
abilities p1,…, pn

P
pi ¼ 1

� �
, then the expected utility is

given by

EðU Þ¼ p1U ðx1Þ þ p2U ðx2Þ þ � � � þ pnU ðxnÞ:
Expenditure Function A function derived from the indivi-

dual’s dual expenditure minimization problem. Shows
the minimum expenditure necessary to achieve a given
utility level:

expenditures ¼ Eðpx , py ,U Þ:
Externality An effect of one economic agent on another

that is not taken into account by normal market behavior.
First-Mover Advantage The advantage that may be gained

by the player who moves first in a game.
First-Order ConditionsMathematical conditions that must

necessarily hold if a function is to take on its maximum or
minimum value. Usually show that any activity should be
increased to the point at which marginal benefits equal
marginal costs.

Fixed Costs Costs that do not change as the level of output
changes in the short run. Fixed costs are in many respects
irrelevant to the theory of short-run price determination.
See also Variable Costs.

General Equilibrium Model A model of an economy that
portrays the operation of many markets simultaneously.

Giffen’s Paradox A situation in which the increase in a
good’s price leads individuals to consume more of the
good. Arises because the good in question is inferior and
because the income effect induced by the price change is
stronger than the substitution effect.

Hidden Action An action taken by one party to a contract
that cannot be directly observed by the other party.

Hidden Type A characteristic of one party to a contract that
cannot be observed by the other party prior to agreeing
to the contract.

Homogeneous Function A function, f x1, x2,…, xn
� �

, is
homogeneous of degree k if

f ðmx1,mx2,…,mxnÞ ¼ mkf ðx1, x2,…, xnÞ:
Homothetic Function A function that can be represented

as a monotonic transformation of a homogeneous func-
tion. The slopes of the contour lines for such a function
depend only on the ratios of the variables that enter the
function, not on their absolute levels.
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Income and Substitution Effects Two analytically different
effects that come into play when an individual is faced
with a changed price for some good. Income effects arise
because a change in the price of a good will affect an
individual’s purchasing power. Even if purchasing power
is held constant, however, substitution effects will cause
individuals to reallocate their expectations. Substitution
effects are reflected in movements along an indifference
curve, whereas income effects entail a movement to a
different indifference curve. See also Slutsky Equation.

Increasing Cost Industry An industry in which the expan-
sion of output creates cost-increasing externalities, which
cause the cost curves of those firms in the industry to shift
upward.

Increasing Returns to Scale See Returns to Scale.
Indifference Curve Map A contour map of an individual’s

utility function showing those alternative bundles of goods
from which the individual derives equal levels of welfare.

Indirect Utility Function A representative of utility as a
function of all prices and income.

Individual Demand Curve The ceteris paribus relationship
between the quantity of a good an individual chooses to
consume and the good’s price. A two-dimensional repre-
sentation of x ¼ xðpx , py , I Þ for one person.

Inferior Good A good that is bought in smaller quantities as
an individual’s income rises.

Inferior Input A factor of production that is used in smaller
amounts as a firm’s output expands.

Input Demand Functions These functions show how input
demand for a profit-maximizing firm is based on input
prices and on the demand for output. The input demand
function for labor, for example, can be written as l ¼
l P , v,wð Þ, where P is the market price of the firm’s out-
put. Contingent input demand functions l c v,w, qð Þ½ � are
derived from cost minimization and do not necessarily
reflect profit-maximizing output choices.

Isoquant Map A contour map of the firm’s production
function. The contours show the alternative combina-
tions of productive inputs that can be used to produce a
given level of output.

Kuhn-Tucker Conditions First-order conditions for an
optimization problem in which inequality constraints are
present. These are generalizations of the first-order con-
ditions for optimization with equality constraints.

Limit Pricing Choice of low-price strategies to deter entry.
Lindahl Equilibrium A hypothetical solution to the public

goods problem: the tax share that each individual pays
plays the same role as an equilibrium market price in a
competitive allocation.

Long Run See Short Run–Long Run Distinction.
Lump Sum Principle The demonstration that general pur-

chasing power taxes or transfers are more efficient than
taxes or subsidies on individual goods.

Marginal Cost (MC ) The additional cost incurred by pro-
ducing one more unit of output: MC ¼ ∂C=∂q.

Marginal Physical Product (MP ) The additional output
that can be produced by one more unit of a particular
input while holding all other inputs constant. It is usually
assumed that an input’s marginal productivity diminishes
as additional units of the input are put into use while
holding other inputs fixed. If q ¼ f k, lð Þ,MPl ¼ ∂q=∂l .

Marginal Rate of Substitution (MRS ) The rate at which
an individual is willing to trade one good for another
while remaining equally well off. TheMRS is the absolute
value of the slope of an indifference curve. MRS ¼
�dy=dx U¼ �

U

�� .
Marginal Revenue (MR) The additional revenue obtained

by a firm when it is able to sell one more unit of output.
MR ¼ ∂p ⋅ q=∂q ¼ pð1þ 1=eq, pÞ.

Marginal Revenue Product (MRP ) The extra revenue that
accrues to a firm when it sells the output that is produced
by one more unit of some input. In the case of labor, for
example, MRPl ¼ MR ⋅MPl .

Marginal Utility (MU ) The extra utility that an individ-
ual receives by consuming one more unit of a particular
good.

Market Demand The sum of the quantities of a good
demanded by all individuals in a market. Will depend on
the price of the good, prices of other goods, each con-
sumer’s preferences, and on each consumer’s income.

Market Period A very short period over which quantity
supplied is fixed and not responsive to changes in market
price.

Mixed Strategy A strategy in which a player chooses which
pure strategy to play probabilistically.

Monopoly An industry in which there is only a single seller
of the good in question.

Monopsony An industry in which there is only a single
buyer of the good in question.

Moral Hazard The effect of insurance coverage on indivi-
duals’ decisions to undertake activities that may change
the likelihood or sizes of losses.

Nash Equilibrium A strategy profile ðs�1 , s�2 ,…, s�n Þ such
that, for each player i, si is a best response to the other
players’ equilibrium strategies s��i .

Normal Good A good for which quantity demanded in-
creases (or stays constant) as an individual’s income
increases.

Normative Analysis Economic analysis that takes a position
on how economic actors or markets should operate.

Oligopoly An industry in which there are only a few sellers
of the good in question.

Opportunity Cost Doctrine The simple, though far-reach-
ing, observation that the true cost of any action can be
measured by the value of the best alternative that must be
forgone when the action is taken.

Output and Substitution Effects Come into play when a
change in the price of an input that a firm uses causes the
firm to change the quantities of inputs it will demand. The
substitution effect would occur even if output were held
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constant, and it is reflected by movements along an iso-
quant. Output effects, on the other hand, occur when
output levels change and the firmmoves to a new isoquant.

Paradox of Voting Illustrates the possibility that majority
rule voting may not yield a determinate outcome but may
instead cycle among alternatives.

Pareto Efficient Allocation An allocation of resources in
which no one individual can be made better off without
making someone else worse off.

Partial EquilibriumModel A model of a single market that
ignores repercussions in other markets.

Perfect Competition The most widely used economic
model: there are assumed to be a large number of buyers
and sellers for any good, and each agent is a price taker.
See also Price Taker.

Positive Analysis Economic analysis that seeks to explain
and predict actual economic events.

Present Discounted Value (PDV ) The current value of a
sum of money that is payable sometime in the future.
Takes into account the effect of interest payments.

Price Discrimination Selling identical goods at different
prices. Requires sellers to have the ability to prevent
resale. There are three types: first degree—selling each
unit at a different price to the individual willing to pay the
most for it (“perfect price discrimination”); second
degree—adopting price schedules that give buyers an
incentive to separate themselves into differing price cate-
gories; third degree—charging different prices in sepa-
rated markets.

Price Elasticity Most important application of the elasticity
concept, this reflects the proportional change in quantity
demanded in response to a proportional change in price:
If q ¼ f p,…ð Þ, eq, p ¼ ∂q=∂p ⋅ p=q.

Price Taker An economic agent that makes decisions on the
assumption that these decisions will have no effect on
prevailing market prices.

Principal-Agent Relationship The hiring of one person
(the agent) by another person (the principal) to make
economic decisions.

Prisoners’ Dilemma Originally studied in the theory of
games but has widespread applicability. The crux of the
dilemma is that each individual, faced with the uncertainty
of how others will behave, may be led to adopt a course of
action that proves to be detrimental for all those indi-
viduals making the same decision. A strong coalition
might have led to a solution preferred by everyone in the
group.

Producer Surplus The extra return that producers make by
making transactions at the market price over and above
what they would earn if nothing were produced. It is
illustrated by the size of the area below the market price
and above the supply curve.

Production Function A conceptual mathematical function
that records the relationship between a firm’s inputs and
its outputs. If output is a function of capital and labor
only, this would be denoted by q ¼ f k, lð Þ.

Production Possibility Frontier The locus of all the alter-
native quantities of several outputs that can be produced
with fixed amounts of productive inputs.

Profit Function The relationship between a firm’s maxi-
mum profits ��ð Þ and the output and input prices it faces:

Π� ¼ Π�ðP , v,wÞ:
Profits The difference between the total revenue a firm

receives and its total economic costs of production. Eco-
nomic profits equal zero under perfect competition in the
long run. Monopoly profits may be positive, however.

Property Rights Legal specification of ownership and the
rights of owners.

Public Good A good that once produced is available to all
on a nonexclusive basis. Many public goods are also
nonrival—additional individuals may benefit from the
good at zero marginal costs.

Quasi-concave Function A function for which the set of all
points for which f Xð Þ > k is convex.

Rate of Product Transformation (RPT ) The rate at which
one output can be traded for another in the productive
process while holding the total quantities of inputs con-
stant. The RPT is the absolute value of the slope of the
production possibility frontier.

Rate of Return The rate at which present goods can be
transformed into future goods. For example, a one-
period rate of return of 10 percent implies that forgoing
1 unit of output this period will yield 1.10 units of output
next period.

Rate of Technical Substitution (RTS ) The rate at which
one input may be traded off against another in the pro-
ductive process while holding output constant. The RTS
is the absolute value of the slope of an isoquant.

RT S ¼ � dk
dl

����q¼q0
:

Rent Payments to a factor of production that are in excess
of that amount necessary to keep it in its current
employment.

Rent-Seeking Activities Economic agents engage in rent-
seeking activities when they utilize the political process to
generate economic rents that would not ordinarily occur
in market transactions.

Rental Rate The cost of hiring one machine for one hour.
Denoted by v in the text.

Returns to Scale A way of classifying production functions
that records how output responds to proportional in-
creases in all inputs. If a proportional increase in all inputs
causes output to increase by a smaller proportion, the
production function is said to exhibit decreasing returns
to scale. If output increases by a greater proportion than
the inputs, the production function exhibits increasing
returns. Constant returns to scale is the middle ground
where both inputs and outputs increase by the same
proportions. Mathematically, if f mk,mlð Þ ¼ mkf k, lð Þ,
k > 1 implies increasing returns, k ¼ 1 constant returns,
and k < 1 decreasing returns.
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Risk Aversion Unwillingness to accept fair bets. Arises
when an individual’s utility of wealth function is concave
[that is, U 0 Wð Þ > 0, U 00 Wð Þ < 0]. Absolute risk aver-
sion is measured by r Wð Þ ¼ �U 00 Wð Þ=U 0ðW Þ. Relative
risk aversion is measured by

rr Wð Þ ¼ �WU 00 Wð Þ
U 0 Wð Þ :

Second-Order Conditions Mathematical conditions re-
quired to ensure that points for which first-order condi-
tions are satisfied are indeed true maximum or true
minimum points. These conditions are satisfied by func-
tions that obey certain convexity assumptions.

Shephard’s Lemma Application of the envelope theorem,
which shows that a consumer’s compensated demand
functions and a firm’s (constant output) input demand
functions can be derived from partial differentiation of ex-
penditure functions or total cost functions, respectively.

Shifting of a TaxMarket response to the imposition of a tax
that causes the incidence of the tax to be on some eco-
nomic agent other than the one who actually pays the tax.

Short Run, Long Run Distinction A conceptual distinc-
tion made in the theory of production that differentiates
between a period of time over which some inputs are
regarded as being fixed and a longer period in which all
inputs can be varied by the producer.

Signaling Actions taken by individuals in markets charac-
terized by hidden types in an effort to identify their true
type.

Slutsky Equation A mathematical representation of the
substitution and income effects of a price change on
utility-maximizing choices:

∂x=∂px ¼ ∂x=∂px U¼U
� �X ð∂x=∂I Þ:

���
Social Welfare Function A hypothetical device that records

societal views about equity among individuals.
Subgame-Perfect Equilibrium A strategy profile ðs�1 ,

s�2 ,…, s�n Þ that constitutes a Nash equilibrium for every
proper subgame.

Substitutes (Gross) Two goods such that if the price of one
increases, more of the other good will be demanded.
That is x and y are gross substitutes if ∂x=∂py > 0. See
also Complements; Slutsky Equation.

Substitutes (Net) Two goods such that if the price of one
increases, more of the other good will be demanded if
utility is held constant. That is, x and y are net substitutes if

∂x=∂py U¼ �
U > 0:

��

Net substitutability is symmetric in that

∂x=∂py U¼ �
U ¼ ∂y=∂px U¼ �

U :
����

See also Complements; Slutsky Equation.
Substitution Effects See Income and Substitution Effects;

Output and Substitution Effects; Slutsky Equation.
Sunk Cost An expenditure on an investment that cannot be

reversed and has no resale value.
Supply Function For a profit-maximizing firm, a function

that shows quantity supplied (q) as a function of output
price (P) and input prices v,wð Þ:

q ¼ q P , v,wð Þ:
Supply Response Increases in production prompted by

changing demand conditions and market prices. Usually
a distinction is made between short-run and long-run
supply responses.

Tacit Collusion Choice of cooperative (monopoly) strate-
gies without explicit collusion.

Total Cost Function The relationship between (mini-
mized) total costs, output, and input prices

C ¼ C v,w, qð Þ:
Utility Function A mathematical conceptualization of the

way in which individuals rank alternative bundles of com-
modities. If there are only two goods, x and y, utility is
denoted by

utility ¼ U x, yð Þ:
Variable Costs Costs that change in response to changes in

the level of output being produced by a firm. This is in
contrast to fixed costs, which do not change.

von Neumann–Morgenstern Utility A ranking of out-
comes in uncertain situations such that individuals choose
among these outcomes on the basis of their expected
utility values.

Wage The cost of hiring one worker for one hour. Denoted
by w in the text.

Walrasian Price Adjustment The assumption that mar-
kets are cleared through price adjustments in response
to excess demand or supply.

Zero-Sum Game A game in which winnings for one player
are losses for the other player.
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Chance node, 269
Change in demand, 392

quantity demanded, 392
Cheap talk game, 279–81
Chief executive officer (CEO), 632
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continuous growth and, 622–23
continuous time and, 621–24
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duality principle, 38

728 Index



envelope theorem in, 42–43
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