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Statistical mechanics  
• Looks at macroscopic properties of matter from a microscopic, particle-

based point of view 

• Contains two key elements: 
• Particle mechanics: Laws of motion of the individual particles

• Statistical ensembles: Collections of all accessible microscopic configurations of  
N particles corresponding to a macroscopic (thermodynamic) equilibrium state of 
the system   
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Equilibrium statistical mechanics 

• Particle mechanics: Hamiltonian particle dynamics
Hamiltonian of one particle ! = #$

%& + ( )
Newton’s law of motion
)̇ = +,

+#, -̇ = − +,
+/

• Statistical ensembles: Each configuration of particle is a representative point in the 
space of all particle coordinates, called phase space 01, 31 4567518.

We define a density of states :(-, )), such that : -, ) =>?-=>?: is the number of 

configurations in a volume element dA ≡ =>?-=>?: around a particular point -, ) in the phase 

space
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Phase space example: 1d Harmonic Oscillator 
• Total	energy
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./
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89

8<
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:

>
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/6

Ä + BC
DA = C

• Solution:  6 E = F cos 45E + I , . E = 1 6̇ = −Am4 sin 45E + I

• Motion at constant total energy , =
:M
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• 2D-Phase space:  T ., 6 U.U6 is the number of density of states around a point ., 6

6

.

T ., 6 U.U6
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Phase space 
• System of N particles: each particle has a position coordinate !" and a momentum coordinate #", 

where n = 1,⋯ ,) labels each particle

• 3D: !" = (+", ,", -") and #/ = ( ̇+", ,̇", -̇"). Each particle has 22 = 6 degrees of freedom (d.o.f.) 

• General coordinate for the N-collection of Hamiltonian particles 
#, ! = (#4, … , #67, !4,⋯ , !67)

• The system is described by a collection of particles with Hamiltonian dynamics

8 =9
/:4

67 #;
2< + > !4,⋯ , !67
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Phase space 
• !, # = (!&, … , !(), #&,⋯ , #())
• !, # has N×2/ coordinates 
• A state of the N particles that specify the position and 

momentum of each particles is given by a 
representative point in the phase space !, #
Ø Macroscopic properties of the system are determined 

as ensemble averages over the density of state 

ØThe macroscopic evolution of the system is described 
by the ”flow” of the density of states in the phase 
space

#

!

01

(# 0 , ! 0 )

63 − /567895:8;<
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Ensemble density of states
• Imagine that the phase space is filled with accessible microstates in 

analogy to how a container is filled with a fluid 

• The ”fluid” is the large collection of identical systems that are in the
same macroscopic state are in different possible microstates

• This ensemble is described by a density of systems occuping a point
in the phase space (”fluid density”) !(#, %)

• Number of systems which occupy the microstates between (#, %)
and (# + (#, % + (%) is 

! #, % ()

%

#

*+

!(#, %)
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Ensemble density of states
• Ensemble density !(#, %) is the probability density of finding the system in 

state (#, %)

∫ ! #, % () = 1

• Macroscopic thermodynamic variables are determined as averages over 
!(#, %)
• E.g. internal energy 

, = - #, % = ∫ ! #, % - #, % ()

In	general	

6 (7) = ∫ ! #, %, 7 6 #, % ()

%

#

89

!(#, %)
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Liouville’s theorem
• Arbitrary volume ! with the enclosing surface ". The rate at which the number of systems (representative points) 

increases with time is 
#

#$

%

&

'! (

• The net rate at which the representative points flow across the boundary "

%

)

'" ( * ⋅ , = %

&

'!∇ ⋅ ((*)

• Conservation	of the number of representative	points (no sinks	or	sources):		

E

EF

∫
&

'! ( = −∫
&

'!∇ ⋅ ((*)

Equation	of contintuity

#(

#$

+ M ⋅ (* = 0, P = Ṙ, Ṡ = ( ̇R
T
, ̇R
U
,⋯ , Ṙ

WX
, ̇S
T
, ̇S
U
,⋯ , Ṡ

WX
)

• Use the Hamiltonian eq.	of motion	

#(

#$

+]

^_T

WX

#(

#R
^

Ṙ
^
+

#(

#S
^

Ṡ
^
= 0

E`
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WX
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c
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−

E`

Ee
c

Ed

Eb
c

= 0 →

E`

EF

+ (, g = 0 Liouville’s theorem
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Liouville’s theorem for equilibrium systems
• For systems in thermodynamic equilibrium, all the

averages are time-independent, hence the density of
states is time-independent

• Liouville’s equation implies then that

!,# = %

• General	solution of ensemble	density commutes with
the Hamiltonian

! = !(#)
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Liouville’s theorem and ergoticity
• Ensemble density is time-independent

!, # = 0

• Particular solution
! = 12345.

• It means that all the available states in the phase space are equally probably for the 
systems in the ensemble

• This ensemble is called microcanonical ensemble and the states are called 
microstates 

• Systems in the microcanonical ensemble are ergotic

7 8, 9 = ∫ ! 8, 9 7 8, 9 ;< (ensemble average)
=  time-average of F
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Statistical Equilibrium Ensembles 
• Microcanonical ensemble ! ", $ ∼ &'()*.

• Describes a system at a fixed energy, volume and number of particles 
• Each possible state at fixed , and N has an equal probability 

• Canonical ensemble.  ! ", $ ∼ -.
/ ",$
01

• describes a system at a fixed volume and number of particles, and that is thermal equilibrium with a heat bath 
at a fixed temperature T

• The energy fluctuates according to a probability distribution function (PDF) P(E) determined by 2(4, 5)
• Internal energy U of the thermodynamic system is fixed by T and determined as an average , = ⟨9⟩

• Grand canonical ensemble ! ", $, ( ∼ -.
/ ",$
01 ;<(01

• describes a system with varying number of particles and that is in thermal and chemical equilibrium with a 
thermodynamic reservoir, i.e. fixed = and >

• Particle number and energy are fluctuating variables drawn from corresponding PDFs P(E), P(n)
• The average energy and number of particles are fixed by the temperature and chemical potential 
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Microcanonical ensemble ! ", $ ∼ &'()*
• Describes a system at a fixed energy +, volume , and number of particles -

• Each possible state at fixed + and - has an equal probability

. /, 0 = 2
3 4(6 /, 0 − +), 

with the proportionality constant fixed by the normalization condition of the ensemble 
density ∫ . /, 0 :; = 1

Microcanonical density of states Σ +, ,, -

> ? = ∫ @AB C ", $ − ?
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Microcanonical ensemble 
• Microcanonical density of states Σ ", $, %

Σ " = ∫ ()* + ,, - − "

• Phase space volume with energy less	than or	equal	to	D,	

E D = F
G H,I JD

KL

Σ " =
M

MN
Ω(") and				Ω " = ∫S

N
(T Σ T
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Correspondence to the thermodynamics  
Phase	space volume with energy less	than or	equal	to	6,	

Ω 6 = :
; <,= >?

@A

Ω B ∼ multiplicity of a microstate, except is dimensional. 

If we rescale DE ≡ DGHIDGHJ
KLℏ H

Ω 6 :=
1

2Qℏ R :
; <,= >?

@SRT@SRU

• Boltzmann Entropy
Y(6) = \ lnΩ (6)
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Thermodynamics in the microcanonical ensemble  

Boltzmann	Entropy

.(0, 2, 3) = 6 lnΩ (0, 2, 3)

Temperature
;

<
=

=>

=? @,A

Pressure
D

<
=

=>

=@ ?,A

Chemical	potential
I

<
= −

=>

=A ?,@

Helmholtz free energy N = 0 − O. = 0 − 6O lnΩ
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Microcanonical ensemble examples: 
1D harmonic oscillator   

"̈ + $%
&" = %

• Solution:  ( ) = * cos ./) + 0 , 2 ) = 3 (̇ = −Am./ sin ./) + 0

• Motion at constant total energy  :
;

<=>
+

?;

<>/=AB
; = 1 is on an ellipse 

• Phase space volume of a shell corresponding to an energy gap Δ:

1

ℎ
F
(>H

I
<J)LM :,? L(>N

I
<J)

O2 O( =
2Q R +

1
2
Δ

ℎ./
−
2Q R −

1
2
Δ

ℎ./
=
2QΔ

ℎ./
=

Δ

ℏ./

• «ℎ» is the minimum phase space shell volume between two consecutive trajectories of a quantum harmonic 

oscillator with energy levels VW =
I

<
+ X ℏ./

(

2

Y 2, ( O2OY
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1D harmonic oscillator: thermodynamics    

• Phase space volume :

Ω " =
1
2&ℏ

(
) *,, -.

/0 /1 =
2345
2&ℏ

=
"
ℏ67

• Entropy:

S = k ln (Ω) → ? " = @ ln
"
ℏ67

• Temperature:

1
T
=
BS
BU

=
@
"
→ " = @D

Equipartition of energy: an oscillator in 1D has 2 degrees of freedom (1 translational and 1 vibrational), 

hence " D = 2 ⋅
F

G
@D = @D

1

0

H 0, 1 /0/H

0G

2I"
+

1G

2"/I67
G = 1

2 = &5L

2 = & 2I"
2"

I67
G =

2&"
67

5

L
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Microcanonical ensemble of free particle 
Hamiltonian of N non-interacting particles in 3D 

!(#) = ∑'()*+ ,-.
/0

• Microcanonical density of states

Σ 2 = )
/3ℏ 56 ∫ 8*+#8*+9 : ∑'()*+ ,-.

/0 − 2

Σ 2 = V+
2>ℏ *+ ∫ 8*+#: ?

'()

*+ #'/
2@ − 2
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Microcanonical ensemble of free particle 
• Equation of a hyper-sphere in a  3" −dimensional momentum space 

$%& + $&& + ⋯+ $)*& = ,&, , = 2/0
• Surface integral over the momentum space 

∫ 2)*$ 3 ∑56%)* 789
&: − 0 can be evaluated from the volume  of the hypersphere ;)*

;)* = <
= 7 >?

2)*$

• Volume of the hyper-sphere scales with its radius ;)* = @)*,)*

• Area of the hyper-sphere is related to the volume by 

A)*B% =
2;)*
2, = 3"@)*,)*B%

• How do we compute the constant @)*?

,
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Microcanonical ensemble of free particle 
• How do we compute the constant !"#?

• Product	of Gaussian integrals	=	volume integral	of a	Gaussian

8
9

"#

:
;<

=<

>?9@
;AB

C
= D

"#
E = ∫ >G"#@

;HC = 3J!"#∫ >K K
"#;L@;H

C

Γ(z) integral: 

∫Q
<
>K (KE)

RSTU

C @;H
C
=(AVHC)

L

E
∫Q
<
>? ?

RS

C
;L@;A =

L

E
Γ

"#

E

D
"#
E =

3J

2
!"#Γ

3J

2
→ !"# =

D
"#
E

Γ
3J
2 + 1

=
D
"#
E

3J
2 !

K

!E =
D

1 !
→ ΩE] = DKE

!E =
D"/E

3
2 !

=
D"/E

3 D/4

→ Ω"] =
4D

3
K"
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Microcanonical ensemble of free particle 

• Microcanonical phase space volume of free particles

Ω " = V%
2'ℏ )% *)% , ,-. *)% = /)% 20"

)%
1

Ω " = V%
2'ℏ )%

'
)%
1

33
2 !

20"
)%
1

Σ " = 6Ω "
6"

7
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Entropy of the microcanonical ensemble

• Indistinguishable particles: the number of microstates is reduced by N!
Ω → Ω

N!
• Boltzmann’s formula

% = ' l) *
+!
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Entropy of the free particles in the microcanonical ensemble
• Phase space volume Ω " =

$%

&'ℏ )%

*

+,/& !
201"

)%

2

345 ∼
78

9
34: ∼

78;<

9
34: ∼ 34= (:) (In	high dimensions,	the volume and	area	scales the same!)

S = T 34
5

8!

• U = VW lX Y
Z[

&'ℏ2

)

2
− V lX

+,

&
! − V lX W!

Using Stirling approx W! ∼ W logW − W

S(:, ],8) = T8
^

9
+ 34

]

8

`:

7a8ℏ9

7
9
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Thermodynamic properties of the ideal gas

• Thermodynamic	potential

1 2, 4, 5 = 75
5
2
+ l;

4
5

<2
3>5ℏ@

A
@

BC =
D
E
BF +

G
E
BH + IBJ

• Temperature
1
L
=

M1
M2 N,O

= 75
M
M2

l; 2
A
@ =

357
2

1
2
→ 2 =

3
2
57L

• Pressure
Q
L
=

M1
M4 R,O

=
57
4
→ Q4 = 57L

• Sackur-Tetrode formula

C = SJ D + TU H
J
+ V

W
TUE + V

W
TU XY

WZℏW
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