Lecture 3
 22.01.2019

Phase space, Liouville's theorem, statistical ensembles

Statistical mechanics

- Looks at macroscopic properties of matter from a microscopic, particlebased point of view
- Contains two key elements:
- Particle mechanics: Laws of motion of the individual particles
- Statistical ensembles: Collections of all accessible microscopic configurations of N particles corresponding to a macroscopic (thermodynamic) equilibrium state of the system

Equilibrium statistical mechanics

- Particle mechanics: Hamiltonian particle dynamics

Hamiltonian of one particle $H=\frac{p^{2}}{2 m}+U(q)$
Newton's law of motion
$\dot{q}=\frac{\partial H}{\partial p^{\prime}}, \dot{p}=-\frac{\partial H}{\partial q}$

- Statistical ensembles: Each configuration of particle is a representative point in the space of all particle coordinates, called phase space $\left(\boldsymbol{p}_{\boldsymbol{i}}, \boldsymbol{q}_{\boldsymbol{i}}\right)_{\mathbf{2 d N} \text {-dim. }}$

We define a density of states $\rho(p, q)$, such that $\rho(p, q) d^{d N} p d^{d N} \rho$ is the number of configurations in a volume element $\mathrm{d} \omega \equiv d^{d N} p d^{d N} \rho$ around a particular point (p, q) in the phase space

Phase space example: 1d Harmonic Oscillator

- Total energy

$$
H=\frac{p^{2}}{2 m}+\frac{1}{2} m^{2} \omega_{0}^{2} q^{2}
$$

$\dot{q}=\frac{\partial H}{\partial p}, \dot{p}=-\frac{\partial H}{\partial q} \rightarrow \dot{q}=\frac{p}{m}, \dot{p}=-m \omega_{0}^{2} q$

$$
\ddot{q}+\omega_{0}^{2} q=0
$$

- Solution: $q(t)=A \cos \left(\omega_{0} t+\phi\right), \quad p(t)=m \dot{q}=-A m \omega \sin \left(\omega_{0} t+\phi\right)$
- Motion at constant total energy $H=\frac{p^{2}}{2 m}+\frac{1}{2} m^{2} \omega_{0}^{2} q^{2}=$ const is on an ellipse

$$
q^{2}+\frac{1}{m^{2} \omega_{0}^{2}} \mathrm{p}^{2}=\mathrm{A}^{2}
$$

- 2D-Phase space: $\rho(p, q) d p d q$ is the number of density of states around a point (p, q)

The spring has elastic potential energy

The pendulum has gravitational potential energy

Phase space

- System of N particles: each particle has a position coordinate q_{n} and a momentum coordinate p_{n}, where $\mathrm{n}=1, \cdots, N$ labels each particle
- 3D: $q_{n}=\left(x_{n}, y_{n}, z_{n}\right)$ and $p_{i}=\left(\dot{x}_{n}, \dot{y}_{n}, \dot{z}_{n}\right)$. Each particle has $2 d=6$ degrees of freedom (d.o.f.)
- General coordinate for the N -collection of Hamiltonian particles

$$
(p, q)=\left(p_{1}, \ldots, p_{3 N}, q_{1}, \cdots, q_{3 N}\right)
$$

- The system is described by a collection of particles with Hamiltonian dynamics

$$
H=\sum_{i=1}^{3 N} \frac{p^{2}}{2 m}+U\left(q_{1}, \cdots, q_{3 N}\right)
$$

Phase space

- $(p, q)=\left(p_{1}, \ldots, p_{d N}, q_{1}, \cdots, q_{d N}\right)$
- (p, q) has $\mathrm{N} \times 2 d$ coordinates
- A state of the N particles that specify the position and momentum of each particles is given by a representative point in the phase space (p, q)
$>$ Macroscopic properties of the system are determined as ensemble averages over the density of state

\Rightarrow The macroscopic evolution of the system is described by the "flow" of the density of states in the phase space

Ensemble density of states

- Imagine that the phase space is filled with accessible microstates in analogy to how a container is filled with a fluid
- The "fluid" is the large collection of identical systems that are in the same macroscopic state are in different possible microstates
- This ensemble is described by a density of systems occuping a point in the phase space ("fluid density") $\rho(p, q)$
- Number of systems which occupy the microstates between (p, q)
 and $(p+d p, q+d q)$ is

$$
\rho(p, q) d \omega
$$

Ensemble density of states

- Ensemble density $\rho(p, q)$ is the probability density of finding the system in state (p, q)

$$
\int \rho(p, q) d \omega=1
$$

- Macroscopic thermodynamic variables are determined as averages over $\rho(p, q)$
- E.g. internal energy

$$
U=\langle H(p, q)\rangle=\int \rho(p, q) H(p, q) d \omega
$$

In general

$$
\langle F\rangle(t)=\int \rho(p, q, t) F(p, q) d \omega
$$

Liouville's theorem

- Arbitrary volume ω with the enclosing surface σ. The rate at which the number of systems (representative points) increases with time is

$$
\frac{\partial}{\partial t} \int_{\omega} d \omega \rho
$$

- The net rate at which the representative points flow across the boundary σ

$$
\int_{\sigma} d \sigma \rho \boldsymbol{v} \cdot \boldsymbol{n}=\int_{\omega} d \omega \nabla \cdot(\rho \boldsymbol{v})
$$

- Conservation of the number of representative points (no sinks or sources): $\frac{\partial}{\partial t} \int_{\omega} d \omega \rho=-\int_{\omega} d \omega \nabla \cdot(\rho \boldsymbol{v})$

Equation of contintuity

$$
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \boldsymbol{v})=0, \quad v=(\dot{q}, \dot{p})=\left(\dot{q_{1}}, \dot{q_{2}}, \cdots, \dot{q}_{3 N}, \dot{p_{1}}, \dot{p_{2}}, \cdots, \dot{p}_{3 N}\right)
$$

- Use the Hamiltonian eq. of motion

$$
\begin{gathered}
\frac{\partial \rho}{\partial t}+\sum_{i=1}^{3 N}\left[\frac{\partial \rho}{\partial q_{i}} \dot{q}_{i}+\frac{\partial \rho}{\partial p_{i}} \dot{p}_{i}\right]=0 \\
\frac{\partial \rho}{\partial t}+\sum_{i=1}^{3 N}\left[\frac{\partial \rho}{\partial q_{i}} \frac{\partial H}{\partial p_{i}}-\frac{\partial \rho}{\partial p_{i}} \frac{\partial H}{\partial q_{i}}\right]=0 \rightarrow \frac{\partial \rho}{\partial t}+\{\rho, H\}=0 \quad \text { Liouville's theorem }
\end{gathered}
$$

Liouville's theorem for equilibrium systems

- For systems in thermodynamic equilibrium, all the averages are time-independent, hence the density of states is time-independent
- Liouville's equation implies then that

$$
\{\rho, H\}=0
$$

- General solution of ensemble density commutes with
 the Hamiltonian

$$
\rho=\rho(H)
$$

Liouville's theorem and ergoticity

- Ensemble density is time-independent

$$
\{\rho, H\}=0
$$

- Particular solution

$$
\rho=\text { const } .
$$

- It means that all the available states in the phase space are equally probably for the systems in the ensemble
- This ensemble is called microcanonical ensemble and the states are called microstates
- Systems in the microcanonical ensemble are ergotic

$$
\begin{aligned}
\langle F(p, q)\rangle & =\int \rho(p, q) F(p, q) d \omega \text { (ensemble average) } \\
& =\text { time-average of } \mathrm{F}
\end{aligned}
$$

Statistical Equilibrium Ensembles

- Microcanonical ensemble $\boldsymbol{\rho}(\boldsymbol{p}, \boldsymbol{q}) \sim$ const.
- Describes a system at a fixed energy, volume and number of particles
- Each possible state at fixed U and N has an equal probability
- Canonical ensemble. $\rho(\boldsymbol{p}, \boldsymbol{q}) \sim e^{-\frac{H(p, q)}{k T}}$
- describes a system at a fixed volume and number of particles, and that is thermal equilibrium with a heat bath at a fixed temperature T
- The energy fluctuates according to a probability distribution function (PDF) P(E) determined by $\rho(p, q)$
- Internal energy U of the thermodynamic system is fixed by T and determined as an average $U=\langle E\rangle$
- Grand canonical ensemble $\boldsymbol{\rho}(\boldsymbol{p}, \boldsymbol{q}, \boldsymbol{n}) \sim \boldsymbol{e}^{-\frac{\boldsymbol{H}(\boldsymbol{p}, \boldsymbol{q})}{\boldsymbol{k} \boldsymbol{T}}+\frac{\mu n}{k T}}$
- describes a system with varying number of particles and that is in thermal and chemical equilibrium with a thermodynamic reservoir, i.e. fixed T and μ
- Particle number and energy are fluctuating variables drawn from corresponding PDFs P(E), P(n)
- The average energy and number of particles are fixed by the temperature and chemical potential

Microcanonical ensemble $\boldsymbol{\rho}(\boldsymbol{p}, \boldsymbol{q}) \sim$ const

- Describes a system at a fixed energy U, volume V and number of particles N
- Each possible state at fixed U and N has an equal probability

$$
\rho(p, q)=\frac{1}{\Sigma} \delta(H(p, q)-U)
$$

with the proportionality constant fixed by the normalization condition of the ensemble density $\int \rho(p, q) d \omega=1$

Microcanonical density of states $\Sigma(U, V, N)$

$$
\Sigma(U)=\int d \omega \delta(H(p, q)-U)
$$

Microcanonical ensemble

- Microcanonical density of states $\Sigma(U, V, N)$

$$
\Sigma(U)=\int d \omega \delta(H(p, q)-U)
$$

- Phase space volume with energy less than or equal to U,

$$
\Omega(U)=\int_{H(p, q) \leq U} d \omega
$$

$\Sigma(U)=\frac{\partial}{\partial U} \Omega(U)$ and $\Omega(U)=\int_{0}^{U} d E \Sigma(E)$

Correspondence to the thermodynamics

Phase space volume with energy less than or equal to U,

$$
\Omega(U)=\int_{H(p, q) \leq U} d \omega
$$

$\Omega(E) \sim$ multiplicity of a microstate, except is dimensional.
If we rescale $\boldsymbol{d} \omega \equiv \frac{\boldsymbol{d}^{3 N} p d^{3 N} q}{(2 \pi \hbar)^{N}}$

$$
\Omega(U):=\frac{1}{(2 \pi \hbar)^{N}} \int_{H(p, q) \leq U} d^{3 N} p d^{3 N} q
$$

- Boltzmann Entropy

$$
S(U)=k \ln \Omega(U)
$$

Thermodynamics in the microcanonical ensemble

Boltzmann Entropy

$$
S(U, V, N)=k \ln \Omega(U, V, N)
$$

Temperature $\quad \frac{1}{T}=\left(\frac{\partial S}{\partial U}\right)_{V, N}$

Pressure

$$
\frac{P}{T}=\left(\frac{\partial S}{\partial V}\right)_{U, N}
$$

Chemical potential

$$
\frac{\mu}{T}=-\left(\frac{\partial S}{\partial N}\right)_{U, V}
$$

Helmholtz free energy

$$
F=U-T S=U-k T \ln \Omega
$$

Microcanonical ensemble examples: 1D harmonic oscillator

$$
\ddot{q}+\omega_{0}^{2} q=0
$$

- Solution: $q(t)=A \cos \left(\omega_{0} t+\phi\right), p(t)=m \dot{q}=-A m \omega_{0} \sin \left(\omega_{0} t+\phi\right)$
- Motion at constant total energy $\frac{p^{2}}{2 m U}+\frac{q^{2}}{2 U / m \omega_{0}^{2}}=1$ is on an ellipse
- Phase space volume of a shell corresponding to an energy gap Δ :

$$
\frac{1}{h} \int_{\left(U-\frac{1}{2} \Delta\right) \leq H(p, q) \leq\left(U+\frac{1}{2} \Delta\right)} d p d q=\frac{2 \pi\left(U+\frac{1}{2} \Delta\right)}{h \omega_{0}}-\frac{2 \pi\left(U-\frac{1}{2} \Delta\right)}{h \omega_{0}}=\frac{2 \pi \Delta}{h \omega_{0}}=\frac{\Delta}{\hbar \omega_{0}}
$$

- «h» is the minimum phase space shell volume between two consecutive trajectories of a quantum harmonic

- Phase spacevolume a shell corresponding to an energy gap Δ.

$$
\text { oscillator with energy levels } \epsilon_{n}=\left(\frac{1}{2}+n\right) \hbar \omega_{0}
$$

1D harmonic oscillator: thermodynamics

- Phase space volume :

$$
\Omega(U)=\frac{1}{2 \pi \hbar} \int_{H(p, q) \leq U} d p d q=\frac{\text { Area }}{2 \pi \hbar}=\frac{U}{\hbar \omega_{0}}
$$

- Entropy:

$$
\mathrm{S}=\mathrm{k} \ln (\Omega) \rightarrow S(U)=k \ln \left(\frac{U}{\hbar \omega_{0}}\right)
$$

- Temperature:

$$
\frac{1}{\mathrm{~T}}=\frac{\partial \mathrm{S}}{\partial \mathrm{U}}=\frac{k}{U} \rightarrow U=k T
$$

Equipartition of energy: an oscillator in 1D has 2 degrees of freedom (1 translational and 1 vibrational),

$$
A=\pi \sqrt{2 m U} \sqrt{\frac{2 U}{m \omega_{0}^{2}}}=\frac{2 \pi U}{\omega_{0}}
$$ hence $U(T)=2 \cdot\left(\frac{1}{2} k T\right)=k T$

Microcanonical ensemble of free particle

Hamiltonian of N non-interacting particles in 3D

$$
H(p)=\sum_{i=1}^{3 N} \frac{p_{i}^{2}}{2 m}
$$

- Microcanonical density of states

$$
\begin{aligned}
& \Sigma(U)=\frac{1}{(2 \pi \hbar)^{3 N}} \int d^{3 N} p d^{3 N} q \delta\left(\sum_{i=1}^{3 N} \frac{p_{i}^{2}}{2 m}-U\right) \\
& \Sigma(U)=\frac{\mathrm{V}^{N}}{(2 \pi \hbar)^{3 N}} \int d^{3 N} p \delta\left(\sum_{i=1}^{3 N} \frac{p_{i}^{2}}{2 m}-U\right)
\end{aligned}
$$

Microcanonical ensemble of free particle

- Equation of a hyper-sphere in a $3 N$-dimensional momentum space

$$
p_{1}^{2}+p_{2}^{2}+\cdots+p_{3 N}^{2}=R^{2}, \quad R=\sqrt{2 m U}
$$

- Surface integral over the momentum space

- Volume of the hyper-sphere scales with its radius $V_{3 N}=C_{3 N} R^{3 N}$
- Area of the hyper-sphere is related to the volume by

$$
S_{3 N-1}=\frac{d V_{3 N}}{d R}=3 N C_{3 N} R^{3 N-1}
$$

- How do we compute the constant $C_{3 N}$?

Microcanonical ensemble of free particle

- How do we compute the constant $C_{3 N}$?
- Product of Gaussian integrals $=$ volume integral of a Gaussian

$$
\prod_{i}^{3 N} \int_{-\infty}^{+\infty} d x_{i} e^{-x_{i}^{2}}=\pi^{\frac{3 N}{2}}=\int d V_{3 N} e^{-R^{2}}=3 N C_{3 N} \int d R R^{3 N-1} e^{-R^{2}}
$$

$\Gamma(\mathrm{z})$ integral:

$$
\int_{0}^{\infty} d R\left(R^{2}\right)^{\frac{3 N-1}{2}} e^{-R^{2}}=_{\left(x=R^{2}\right)} \frac{1}{2} \int_{0}^{\infty} d x x^{\frac{3 N}{2}-1} e^{-x}=\frac{1}{2} \Gamma\left(\frac{3 N}{2}\right)
$$

$$
\pi^{\frac{3 N}{2}}=\frac{3 N}{2} C_{3 N} \Gamma\left(\frac{3 N}{2}\right) \rightarrow C_{3 N}=\frac{\pi^{\frac{3 N}{2}}}{\Gamma\left(\frac{3 N}{2}+1\right)}=\frac{\pi^{\frac{3 N}{2}}}{\left(\frac{3 N}{2}\right)!}
$$

$$
\begin{aligned}
& C_{2}=\frac{\pi}{(1)!} \rightarrow \Omega_{2 D}=\pi R^{2} \\
& C_{2}=\frac{\pi^{3 / 2}}{\left(\frac{3}{2}\right)!}=\frac{\pi^{3 / 2}}{3 \sqrt{\pi} / 4} \\
& \rightarrow \Omega_{3 D}=\frac{4 \pi}{3} R^{3}
\end{aligned}
$$

Microcanonical ensemble of free particle

- Microcanonical phase space volume of free particles

$$
\begin{gathered}
\Omega(U)=\frac{\mathrm{V}^{N}}{(2 \pi \hbar)^{3 N}} V_{3 N}, \text { and } V_{3 N}=C_{3 N}(2 m U)^{\frac{3 N}{2}} \\
\Omega(U)=\frac{\mathrm{V}^{N}}{(2 \pi \hbar)^{3 N}} \frac{\pi^{\frac{3 N}{2}}}{\left(\frac{3 N}{2}\right)!}(2 m U)^{\frac{3 N}{2}} \\
\Sigma(U)=\frac{\partial \Omega(U)}{\partial U}
\end{gathered}
$$

Entropy of the microcanonical ensemble

- Indistinguishable particles: the number of microstates is reduced by N !

$$
\Omega \rightarrow \frac{\Omega}{\mathrm{N}!}
$$

- Boltzmann's formula

$$
S=k \ln \frac{\Omega}{N!}
$$

Entropy of the free particles in the microcanonical ensemble

- Phase space volume $\Omega(U)=\frac{\mathrm{V}^{N}}{(2 \pi \hbar)^{3 N}} \frac{1}{(3 N / 2)!}(2 \pi m U)^{\frac{3 N}{2}}$
$\ln \Omega \sim \frac{3 N}{2} \ln U \sim \frac{3 N-1}{2} \ln U \sim \ln \Sigma(U)$ (In high dimensions, the volume and area scales the same!)

$$
S=k \ln \frac{\Omega}{N!}
$$

- $S=k N \ln \left[V\left(\frac{m U}{2 \pi \hbar^{2}}\right)^{\frac{3}{2}}\right]-k \ln \left(\frac{3 N}{2}\right)!-k \ln (N!)$

Using Stirling approx $N!\sim N \log N-N$

$$
S(U, V, N)=k N\left\{\frac{5}{2}+\ln \frac{V}{N}\left(\frac{m U}{3 \pi N \hbar^{2}}\right)^{\frac{3}{2}}\right\}
$$

Thermodynamic properties of the ideal gas

- Thermodynamic potential

$$
\begin{aligned}
& S(U, V, N)=k N\left\{\frac{5}{2}+\ln \frac{V}{N}\left(\frac{m U}{3 \pi N \hbar^{2}}\right)^{\frac{3}{2}}\right\} \\
& \boldsymbol{d S}=\frac{\mathbf{1}}{\boldsymbol{T}} \boldsymbol{d} \boldsymbol{U}+\frac{\boldsymbol{P}}{\boldsymbol{T}} \boldsymbol{d} \boldsymbol{V}+\boldsymbol{\mu} \boldsymbol{d} \boldsymbol{N}
\end{aligned}
$$

- Temperature

$$
\frac{1}{T}=\left(\frac{\partial S}{\partial U}\right)_{V, N}=k N \frac{\partial}{\partial U} \ln U^{\frac{3}{2}}=\frac{3 N k}{2} \frac{1}{U} \rightarrow U=\frac{3}{2} N k T
$$

- Pressure

$$
\frac{P}{T}=\left(\frac{\partial S}{\partial V}\right)_{T, N}=\frac{N k}{V} \rightarrow P V=N k T
$$

- Sackur-Tetrode formula

$$
S=k N\left\{1+\ln \frac{V}{N}+\frac{3}{2} \ln T+\frac{3}{2} \ln \left(\frac{m e}{2 \pi \hbar^{2}}\right)\right\}
$$

