Cellular Basis of Transport

- Summarize key examples of transport proteins
- Examples:
 - Sodium
 - Chloride
 - bicarbonate
- Describe mechanisms of diarrhea

Na, K ATPase

Na Coupled Transport

NaCl Co-transport is mediated by TWO transport proteins

Concept 4: Chloride secretion occurs in conjunction with basolateral Na, K, Cl transport

Absorption and Secretion in Health versus Diarrheal States

NaCl, Nutrient absorption

Chloride secretion

Healthy

NaCl absorption

Chloride Secretion

Diarrhea

Multiple Systems Interact in Regulation of Ion Transport and Secretion

Mechanisms of Diarrhea: Osmotic versus Secretory

Small Intestine

Colon

Osmotic Diarrhea: Solute-driven water losses more prominent in the colon

Mechanisms of Bacterial Pathogens

Signal/pathway	Examples	Mechanism
cAMP	Cholera toxin Heat labile E Coli (ETEC)	Blocks NaCl absorption Stimulates anion secretion
cGMP	Heat stable E Coli (EAEC) Klebsiella	Blocks NaCl absorption Stimulate anion secretion
Ca++ / protein kinase C	C Difficile enterotoxin	
Pore forming toxin	Staph Aureus α-toxin C. perfringes	Pore formation along brush border membrane
Toxin blocking protein synthesis	EHEC Shiga toxin Shigella Shiga toxin	A1 subunit of toxin binds ribosome and interrupts protein synthesis
Toxin inducing protein synthesis	Staph toxin A EAggEC toxin	Upregulate proinflammatory cytokines
Toxin affecting cytoskeleton	Clostridium species	

Minerals and Vitamins

- Iron
- Calcium
- Magnesium
- Water Soluble Vitamins
- Fat Soluble Vitamins

Iron Metabolism and Balance

Iron Absorption

Calcium and Magnesium Absorption

- Calcium
 - Absorbed primarily in duodenum
 - 1,25 OH Vit D regulates:
 - Enterocyte apical Ca Channel
 - Intracellular protein calbindin (shepards to export pump)
 - Basolateral Ca-ATPase
 - Vit D independent transport follows concentration gradient

- Magnesium
 - Absorbed throughout GI tract
 - Regulation of Mg absorption is dependent on dietary intake
 - Mg Channel upregulated in low Mg states to promote absorption

Water Soluble Vitamins

- Vitamin C
- B vitamins
 - Thiamine
 - Riboflavin
 - Niacin
 - B6
 - Folate
 - B12
 - Biotin
 - Pantothenic acid

- Water soluble
- Taken up easily by cells (B12 requires IF)
- In general, water soluble vitamins are not stored in tissue
 - Exclusions: B12 (liver storage)

Fat Soluble Vitamins

 Digested, absorbed, and transported with dietary fat

• A

D

• E

• K

• Stored in liver, fat cells

Micronutrient	Pathophysiology	Clinical deficiency syndrome	Clinical overload syndrome	Laboratory evaluation
Minerals and trace elements				
Calcium	Fat malabsorption	Paresthesias, tetany, bone demineralization	*GI, GU, bone complaints	Serum Ca, PTH, DEXA scan
Magnesium	Fat malabsorption and high GI fluid losses	Weakness, cardiac, CNS	*Weakness, cardiac	Serum Mg
Zinc	GI fluid losses	Poor growth, skin, hair, diarrhea	*Vomiting, headache, diarrhea, Cu deficiency	Serum Zn, low alkaline phosphatase
Copper	Overload more common in cholestasis	*Hemolytic anemia, neutropenia	Hepatic overload, neuropsychiatric	Serum Cu
Manganese	Overload more common in cholestasis	*Poor growth, ataxia, skeletal	Neurotoxicity	Serum Mn
Iron	Absorbed proximally; not routinely in TPN	Microcytic anemia, irritability	Hepatotoxicity, GI bleeding, vomiting	Ferritin, TIBC, Iron Binding Cap, Hgb, HCT, peripheral smear
Selenium	Absorbed throughout small bowel	Myopathy, cardiomyopathy	*Thyroid enlargement	Serum selenium
Fat-soluble				
vitamins A	Fat malabsorption, cholestasis	Xerophthalmia, blindness	Increased ICP, hepatitis, vomiting	Vitamin A: retinol binding protein ratio
D	Fat malabsorption, cholestasis	Hypocalcemia, hypophosphatemia, rickets	Emesis, renal impairment	25-OH vitamin D
E	Fat malabsorption, cholestasis	Myopathy, neuropathy, ataxia, hemolytic anemia	coagulopathy	Vitamin E: total serum lipid ratio
κ	Fat malabsorption,	Bleeding	Hemolytic anemia	Prothrombin time, PIVKA assav
Water-soluble vitamins	CHORESCUE			
B12	Gastric or ileal resection	Megaloblastic anemia, CNS including ataxia	None known	Serum B12, methylmalonic acid, homocysteine
Folate	Absorbed proximally	Anemia, thrombocytopenia, stomatitis, glossosis	None known	Serum Folate

Intestinal Brush Border Enzyme Deficiencies

- Deficiency of brush border disaccharidases
- Disaccharides not hydrolyzed at mucosal cell membrane

Intestinal Brush Border Enzyme Deficiencies

- May occur as
 - Rare congenital defects
 - Lack of sucrase, isomaltase, lactase in newborns
 - Secondary to diseases that damage intestinal epithelium
 - Crohn's disease, celiac disease
 - Genetic form
 - Lactase deficiency

Lactase "Deficiency"

- 70% of adults worldwide are lactase deficient, especially Africans, South Americans, and Asians
- Maintenance of lactase into adulthood is probably the result of a genetic mutation
- Diagnosed based on history of GI intolerance to dairy products

Lactose Intolerance Diagnostics

Lactose breath hydrogen test

- Baseline breath hydrogen concentration is measured.
- Patient consumes 25 to 50 grams lactose.
- Breath hydrogen concentration is re-measured in 3 to 8 hours. An increase >20 ppm suggests lactose malabsorption (90% sensitivity).

Lactose Deficiency Diagnostics

Lactose tolerance test

- After 8-hour fast, baseline serum glucose is measured.
- Patient consumes 50-100 grams of lactose
- Serum blood glucose levels are measured at 30, 60, and 90 minutes after lactose ingestion
- No increase in blood glucose levels suggests lactose malabsorption (Pagana, 2004).