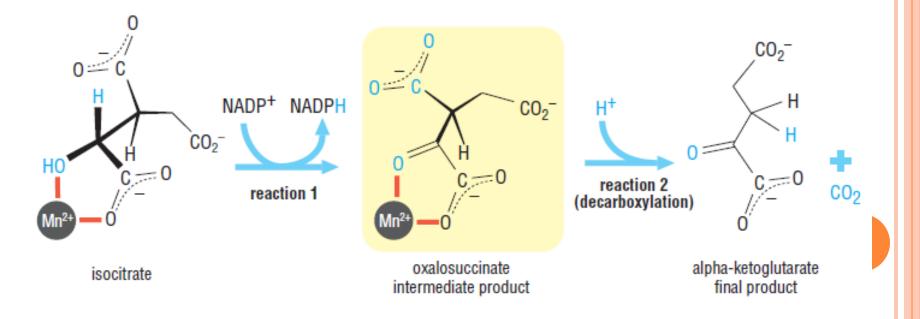
• Metalloproteases \rightarrow H₂O \rightarrow OH⁻

- These enzymes use a metal-ion cofactor to activate water for direct attack on the substrate carbonyl
- carboxypeptidase and thermolysin do not proceed through a stable intermediate
- They bind a molecule of water to a metal ion, usually Zn₂₊.
- Binding H_2O to a transition metal ion lowers the pK_a of the bound water,
- making it a better acid. It is thus much easier to turn metal-bound H_2O into $OH_{\!-}$
- The metal-bound OH₋ can attack the amide bond of a peptide substrate directly, hydrolyzing it without the need for a covalent enzyme intermediate.

PHOSPHORYL-GROUP TRANSFER REACTIONS


- Two-step strategy
 - Catalyzed by kinases and phosphatases
 - Can occur with a wide variety of attacking groups Serine, threonine and tyrosine –OH groups, the carboxylate groups of aspartate and glutamate, cysteine –SH and the nitrogen of histidine
- Bacterial alkaline Phosphatase
 - which catalyzes the transfer of phosphate to water from many organophosphate substrates
 - a serine –OH on the enzyme first attacks the phosphorus atom
 - phosphoserine-enzyme intermediate
- Phosphoglucomutases
 - D-glucose 1-phosphate and D-glucose 6-phosphate
 - proceeds through a phosphoaspartyl anhydride intermediate
 - when the phosphate on the aspartyl group of the enzyme attacks the unphosphorylated position on the sugar and transfers the phosphate group to it. 2

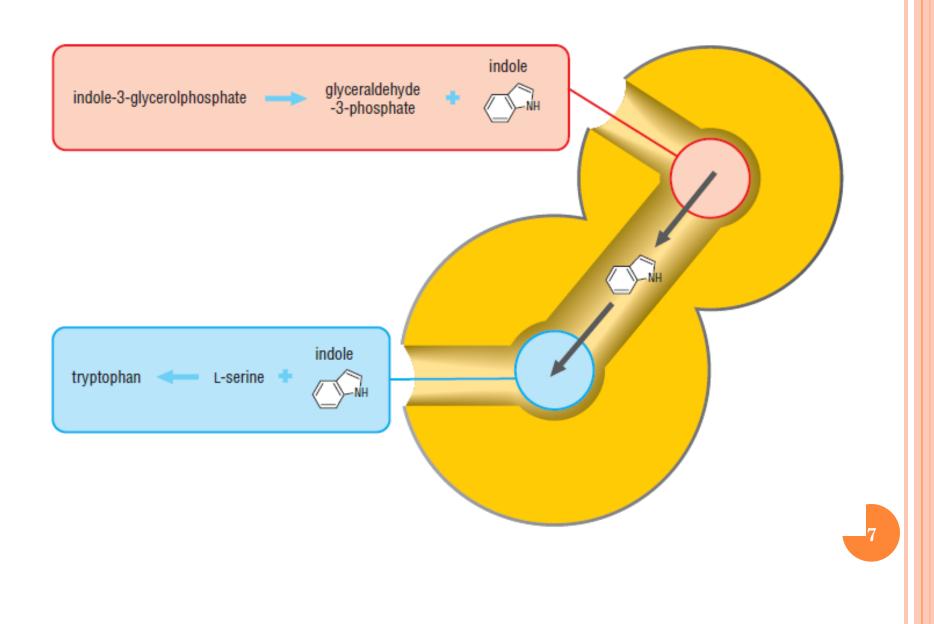
BIFUNCTIONAL OR MULTIFUNCTIONAL ENZYMES

• Three classes

- First class, the two reactions take place consecutively at the same active site
- second, two separate chemical reactions are catalyzed by two distinct active sites, each located in a different domain some distance apart
- In the third, two or more reactions are also catalyzed by two or more distinct active sites, but these are connected by internal channels in the protein

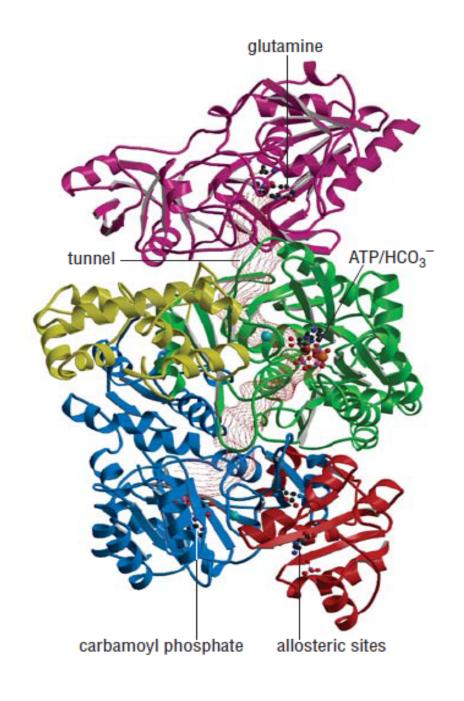
- In bifunctional enzymes that carry out two different reactions using the same active site
 - Isocitrate dehydrogenase (ICDH)
 - Isocitrate \rightarrow oxalosuccinate (unstable) NADP
 - Oxalossuccinate → alpha ketoglutarate (same site) Mn

- Some bifunctional enzymes contain two active sites
- enzyme contains two independently folded domains
- First product \rightarrow Dissociate \rightarrow find other site
- Regulation, synthesis, two genes
- dihydrofolate reductase-thymidylate synthase
 - catalyzes two reactions in the biosynthesis of thymidine


BIFUNCTIONAL ENZYMES SHUTTLE

• Physical channel (or channels) used coz

- first reaction product is an uncharged species
- the reaction product is so unstable in free solution


• Tryptophan synthase

- Tunnel is 25 Å long
- Connects the active site of the alpha-subunit, in which indole, an uncharged molecule that might diffuse out of the cell, is generated from indole 3-glycerolphosphate, to the second active site, in which the indole is added to a molecule of acrylate, derived from serine, to produce tryptophan.

TRIFUNCTIONAL ENZYMES

- carbamoyl phosphate synthetase
 - involved in the synthesis of 2`-deoxyUMP
 - three separate active sites connected by two tunnels through the interior of the protein
- first reaction produces Ammonia,
 - a neutral species, which travels along a tunnel to the second active site where
- it reacts with carboxyphosphate to give a carbamate intermediate
 - that would be too unstable to survive in aqueous solution. Therefore, it is transported through the interior of the protein to the third active site,
- where it is phosphorylated by ATP to give the final product.
- covers a distance of nearly 100 Å

ENZYMES ALSO HAVE NON-ENZYMATIC

- Regulatory function
 - some enzymes double as transcription factors;
 - others act as signaling proteins;
 - some are cofactors for essential reactions in protein synthesis; and
 - yet others are transported out of the cell to serve as cytokines or growth factors.
- Metabolic enzyme double as a repressor, for example, couples the expression of some genes to metabolism in a direct way
 - Folate-dependent enzyme thymidylate synthase
 - also functions as an RNA-binding protein.
 - interacts with its own mRNA to form a ribonucleoprotein complex
 - is also evidence that it can interact with a number of other cellular new mRNAs, including transcripts of the *p53 tumor suppressor gene and* the myc family of transcription factor genes
 - It is also a target for several anti-cancer drugs