

COMPARTMENTS FOR PROTEIN SORTING

DEGRADATION OF MISFOLDED PROTEINS

• Lysosomal (extracellular) protein degradation

• Protein degraded by lysosomal enzymes

• Cytosolic (intracellular) protein degradation

• The Ubiquitin Proteosome pathway

WHICH SIGNALS LEAD TO UBIQUITINATION?

- Genetic program (amino acids)
 - N—end rule
 - N—terminal amino acid: D,R,L,K,F (< minutes); A,G,M,S,V (>10 hours)
 - Sequence of significant hydrophobicity
 - Proteins with N-terminal Met, Ser, Ala, Thr, Val, or Gly have half lives greater than 20 hours.
 - Proteins with N-terminal Phe, Leu, Asp, Lys, or Arg have half lives of 3 min or less
 - "PEST" sequences (sequences rich in Pro, Asp, Glu, Ser and Thr)

PROTEIN TURNOVER; SELECTIVE DEGRADATION/CLEAVAGE

- Phosphorylation of Ser and Thr
- Binding to adaptor proteins
- Protein damage
 - Processing
 - Oxidation of Cys and Met
 - Age-dependent modifications of side chains: hydrolsis; deaminations, racemizations, disulfide bond breaks, ketoamines...
 - Wrong folding

UBIQUITIN PATHWAY

- Covalent Attachment of multiple ubiquitin molecules
- Degradation of the tagged protein
- 3 Enzymes :
 - Ub Activating enzyme E1
 - Ub Conjugating enzyme E2
 - Ub Ligases E3

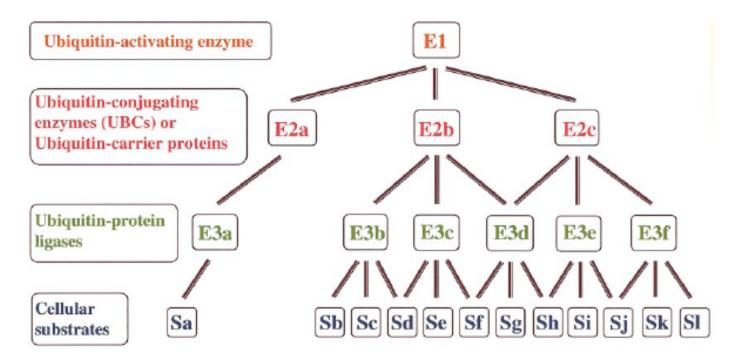
ENZYMES OF THE UBIQUITINATION

• E1:

- ubiquitin-activating enzyme.
 - exists as two isoforms of 110- and 117-kDa, which derive from a single gene and are found in both the nucleus and cytosol. Inactivation of this gene is lethal.
 - In mammals there is a single E1.

• E2:

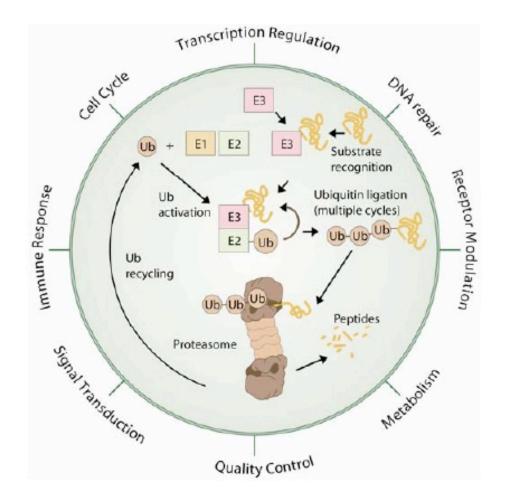
- Ubiquitin-conjugating enzymes.
 - E2s are a superfamily of related proteins. There are eleven E2s in yeast, and 20-30 E2s in mammals.

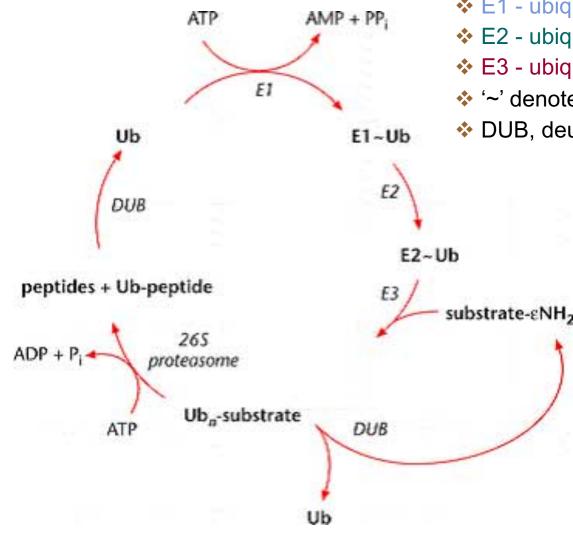

• E3s:

- Ubiquitin-protein ligases.
 - E3s play a key role in the ubiquitin pathway, as they are responsible for the selective recognition of protein substrates.
 - E3 ligases can be subdivided into at least six subtypes.

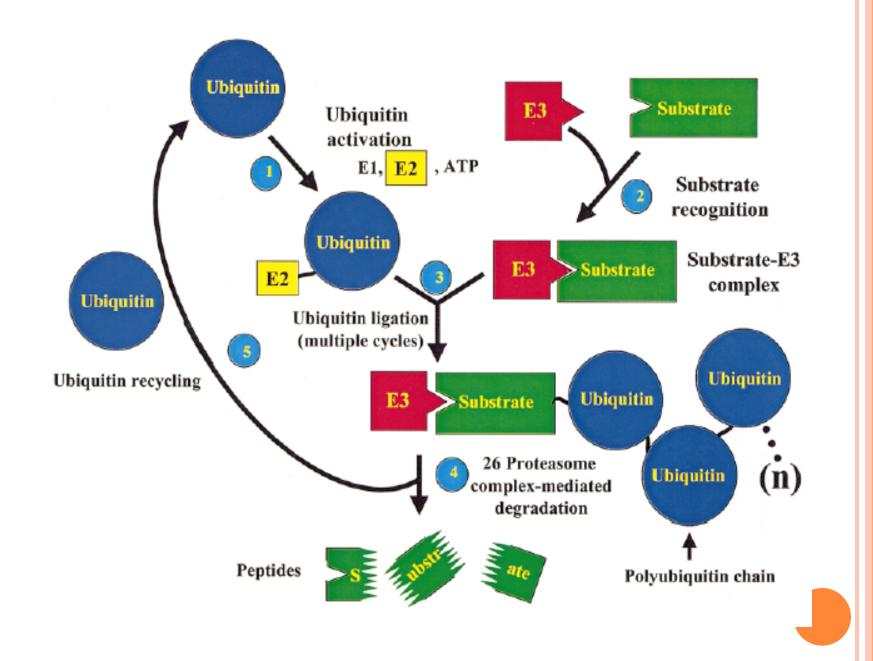
• E4:

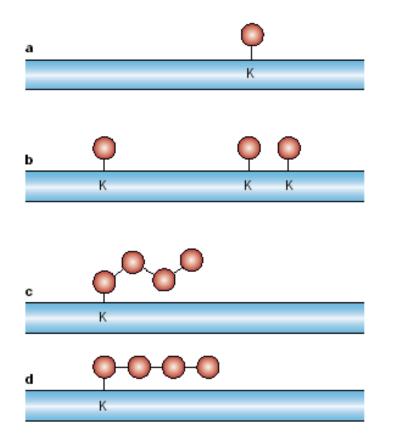
 catalyzes the efficient polymerization of very long polyubiquitin chains, it has been characterized in yeast.

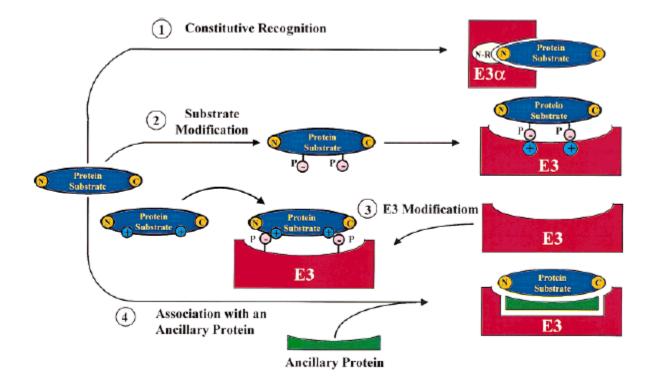

HIERARCHICAL STRUCTURE

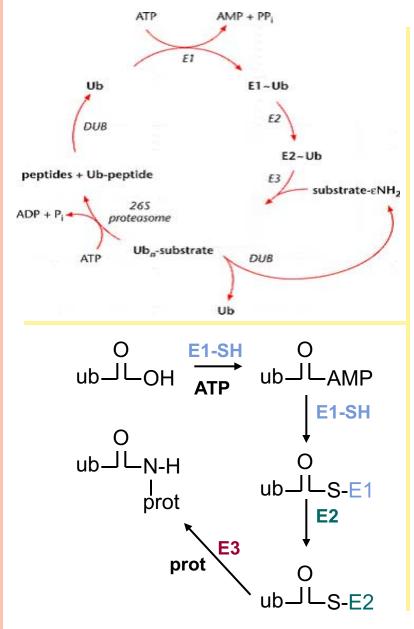

Several E2 transfer Ub from E1 to E3 to which substrate protein is bound

E3s catalyze covalent attachment to the substrate and recognize the substrate


BIOLOGICAL FUNCTION OF UBIQUITIN PROTEOSOME PATHWAY


THE UBIQUITIN DEGRADATION PATHWAY


- E1 ubiquitin activating enzyme
- E2 ubiquitin conjugating enzyme
- ✤ E3 ubiquitin ligase
- ✤ '~' denotes high-energy thioester bond
- DUB, deubiquinating enzyme


MONO- AND MULTI- UBIQUITINATION

MODES OF RECOGNITION OF PROTEIN SUBSTRATES BY THE DIFFERENT E3S

UBIQUITIN-MEDIATED DEGRADATION

E1 - ubiquitin activating enzyme

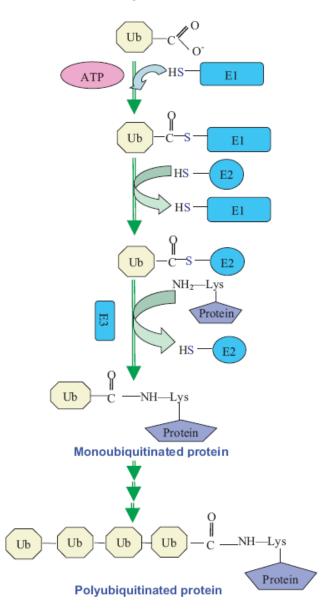
 uses ATP to activate the carboxyl group of ubiquitin's C-terminal residue (Gly76).
The outcome of this reaction is the formation of a thioester between Gly76 of ubiquitin, and a cysteine residue of E1

E2 - ubiquitin conjugating enzyme

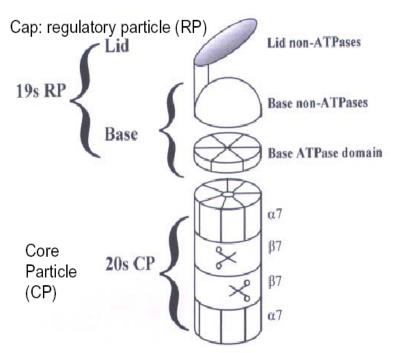
 accepts the ubiquitin from the E1 through a thioester linkage with a cysteine

E3 - ubiquitin ligase

 transfers the ubiquitin molecule to the epsilon NH₂ group of lysine on the substrate


 ubiquitin molecules are then added in succession to the Lysine 48 residue to form a multiubiquitin chain

the DUB enzyme 'recycles' ubiquitin

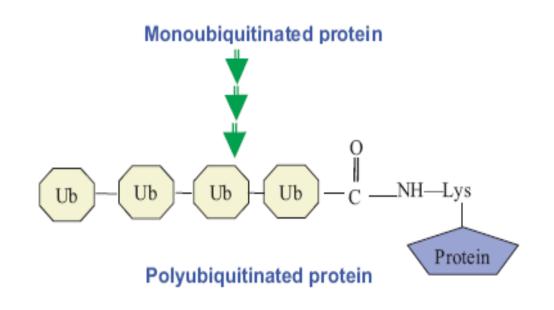

the 26S proteasome degrades the substrate to peptides

UBIQUITIN PATHWAY

Dipankar Nandi et al

SCHEMATIC REPRESENTATION OF THE EUKARYOTIC

- Core particle is composed of four 7-membered rings.
- Two types of subunits (25 kDa): αand β, all differ .
- Subunits are similar in structure, different in sequence.
- only only β subunits are catalytically active .
- Cap region regulates activity, performes the energy dependent steps.


PROCESSING VIA THE PROTEASOME

- Length of produced peptides: 3-23 amino acids
- Average length of peptides: 7-9 amino acids
- Peptide composition of given protein stays constant
- Protein is completely degraded before import of next protein
- Peptides produced by proteasome are further degraded by other roteases and aminopeptidases (Tricorn, Multicorn, Thimet, TPPII)
- Proteasome and immune system function:
 - Peptides of 8-9 amino acids in length are transported to the cell surface via the ER presented on the cell surface via MHC class I – molecules

POLYUBIQUITINATION

• Poly Ub chain synthesized by adding Ub moieties to Lys of the previous Ub

• Another enzyme E4 may be catalyzing this step

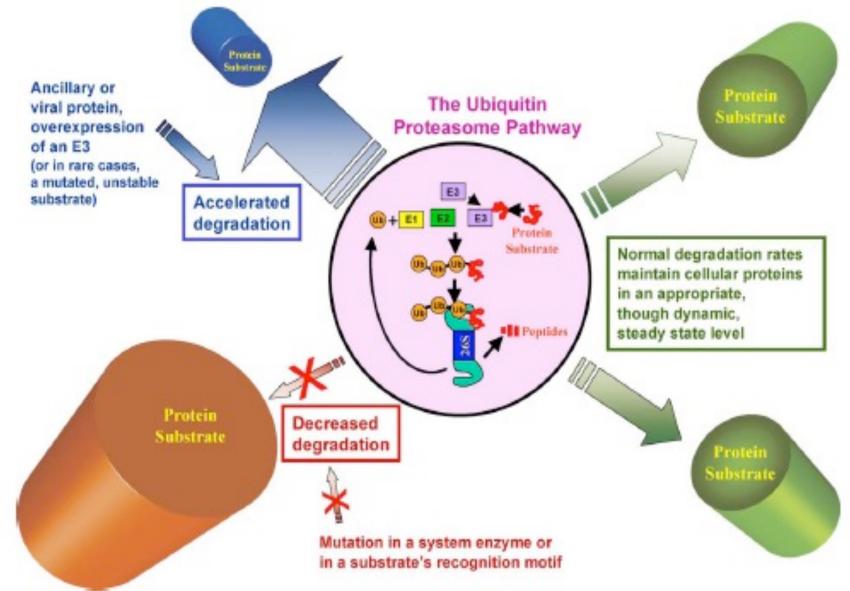
DEUBIQUITINATION

• Thiol proteases

• Ubiquitin processing (UBP) enzymes

- Removes Ub from polyubiquinated proteins
- Ubiquitin carboxy terminal hydrolases (UBH)

• Regenerates monomeric Ub


REGULATION OF UBIQUITINATION:

- Some proteins regulate or facilitate ubiquitin conjugation.
- Regulation by phosphorylation of some target proteins has been observed.
 - E.g., phosphorylation of PEST domains activates ubiquitination of proteins rich in the PEST amino acids.
- Glycosylation of some PEST proteins with GlcNAc has the opposite effect, prolonging half-life of these proteins.
- GlcNAc attachment increases with elevated extracellular glucose, suggesting a role as nutrition sensor.

REGULATION BY ANCILLARY PROTEINS

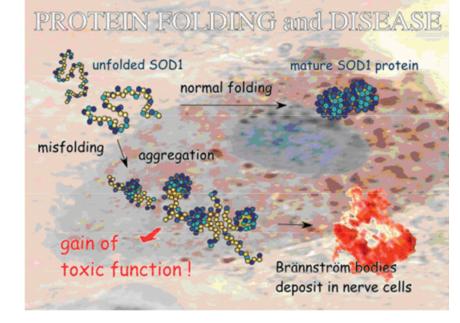
- Several viral proteins exploit the ubiquitin system
 - by targeting for degradation cellular substrates which may interfere with propagation of the virus.
- In some instances, the viral protein functions as
 - a bridging' element between the E3 and the substrate,
 - thus conferring recognition in trans.
- The prototype of such a protein is the high risk HPV oncoprotein E6 which interacts with an E3 domain, and with the tumor suppressor protein p53.
- This interaction targets p53 for rapid degradation and, thus, most probably prevents stress signal induced apoptosis and ensures further replication propagation of the virus .

CONSEQUENCES OF DEFECTS IN UBIQUITINATION

PATHOLOGICAL CONDITIONS ASSOCIATED WITH UBIQUITIN PROTEOSOME PATHWAY

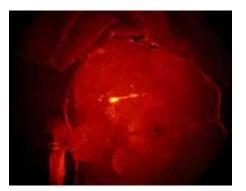
- Malignancies
- Neurodegenerative disorders
- Genetic disease
 - Cystic fibrosis, Angelman's syndrome & Liddle's syndrome
- Immune and inflammatory responses

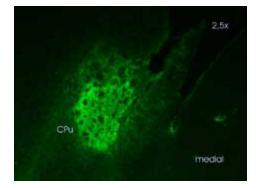
MALIGNANCIES


- Oncoproteins like NMyc, c-Myc, c-Fos, are substrates of U-P pathway.
- Destabilization of tumor suppressor genes like p53 and p27.
- Extremely low levels of p53 in uterine cervical carcinoma.

Neurodegenerative disorders

Alzheimer's disease **Formation of**


inclusion bodies

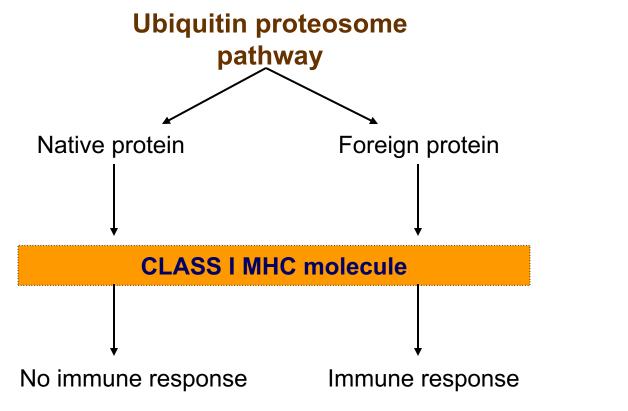

- Parkinson's disease
- Huntington's disease
- Spinocerebellar ataxias.
- Spinobulbar muscular dystrophy (Kennedy's syndrome)

- Accumulation of ubiquitin may be secondary reflecting unsuccessful attempts of ubiquitination.
- Abnormal protein associate with each other forming aggregates.
- Hypothesis: Aggregated proteins inhibit ubiquitin proteosome pathway.

Parkinson's disease and Lewy Bodies

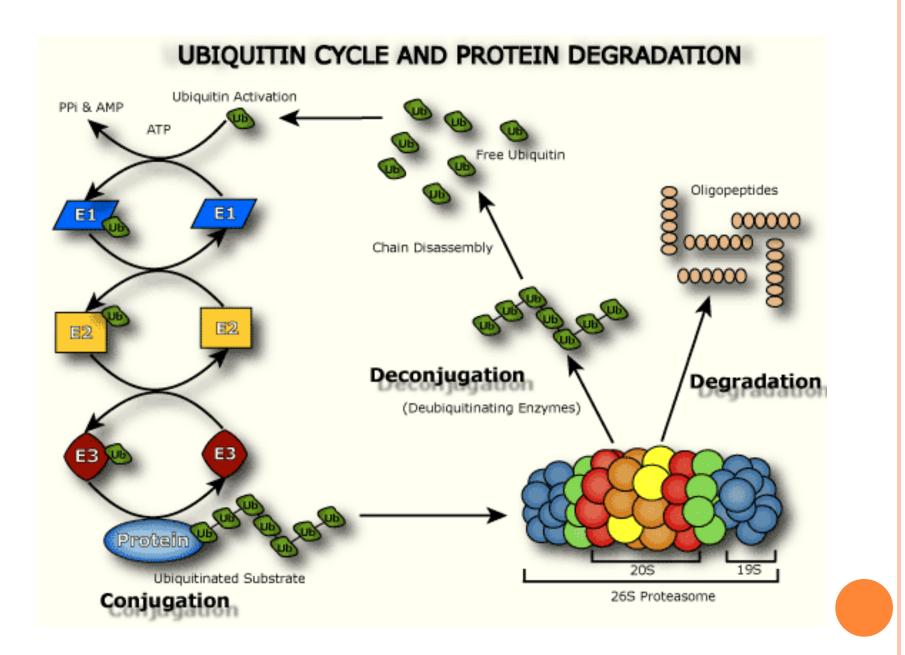
Angleman syndrome

- Ubiquitin system is considered to be involved in brain development.
- Defective synthesis of gene coding for E3 ligase E6-AP
- Characteristic symptoms involve mental retardation, seizures, out of context frequent smiling and laughter.
- Brain proteins that could be stabilized by mutation have not been identified.


Cystic fibrosis

- Gene codes for a protein, CFTR, which is chloride ion channel.
- Small fraction of protein matures to the cell surface.
- Mutation in protein Δ F508, CFTR^{Δ F508} doesn't reach the cell surface.
- Ubiquitination degrades mutant CFTR^{ΔF508}, resulting in complete lack of cell surface expression.

Immune and inflammatory responses


Ubiqutin proteosome pathway is involved in processing of antigenic proteins.

 Epitopes are presented on class I MHC molecule generating T cell immune response.

DRUG DEVELOPMENT FOR UBIQUITIN DYSFUNCTION

- Inhibition of enzymes common to entire pathway would target the process non- specifically.
- Narrow window between benefits and toxicity needs to be identified.
- Develop completely specific E3 ligase inhibitors that would affect the pathways of interests.
- Better approach would be development of small molecules that ould be specific for substrates.

- several classes
- Serine proteases include
- Digestive enzymes
 - trypsin, chymotrypsin, & elastase.
- Different serine proteases differ in substrate specificity. For example:
 - Chymotrypsin prefers an aromatic side chain on the residue whose carbonyl carbon is part of the peptide bond to be cleaved.
 - Trypsin prefers a positively charged Lys or Arg residue at this position.

SITE OF INTRACELLULAR DEGRADATION

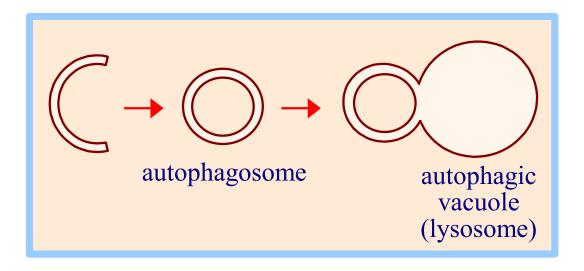
- Ubiquitin—mediated degradation of cytosolic and membrane proteins occurs in the
 - cytosol and
 - on the cytosolic face of the ER membranes.
- Although components of the system have been localized to the nucleus, conjugation and degradation have not been demonstrated in this organelle.

• Aspartate proteases include

- the digestive enzyme pepsin
- Some proteases found in lysosomes
- the kidney enzyme renin
- HIV-protease.
- Two aspartate residues participate in acid/base catalysis at the active site.
 - In the initial reaction, one aspartate accepts a proton from an active site H2O, which attacks the carbonyl carbon of the peptide linkage.
 - Simultaneously, the other aspartate donates a proton to the oxygen of the peptide carbonyl group.

• **Zinc Proteases** (metalloproteases) include:

- digestive enzymes carboxypeptidases
- matrix metalloproteases (MMPs), secreted by cells
- one lysosomal protease.
- Some MMPs (e.g., collagenase) are involved in degradation of extracellular matrix during tissue remodeling.
- Some MMPs have roles in cell signaling relating to their ability to release cytokines or growth factors from the cell surface by cleavage of membranebound pre-proteins.


• Cysteine proteases

- a cysteine sulfhydryl group.
 - Papain is a well-studied plant cysteine protease.
 - Cathepsins are a large family of lysosomal cysteine proteases, with varied substrate specificities.
 - Caspases are cysteine proteases involved in activation & implementation of apoptosis (programmed cell death).
 - Caspases get their name from the fact that they cleave on the carboxyl side of an aspartate residue.
 - Calpains are Ca++-activated cysteine proteases that cleave intracellular proteins involved in cell motility & adhesion.
 - They regulate processes such as cell migration and wound healing.

- The proteasome hydrolases constitute a unique family of **threonine proteases**. A conserved N-terminal threonine is involved in catalysis at each active site.
- The 3 catalytic b subunits are synthesized as preproteins. They are activated when the N-terminus is cleaved off, making threonine the N-terminal residue.
- Catalytic threonines are exposed at the lumenal surface.

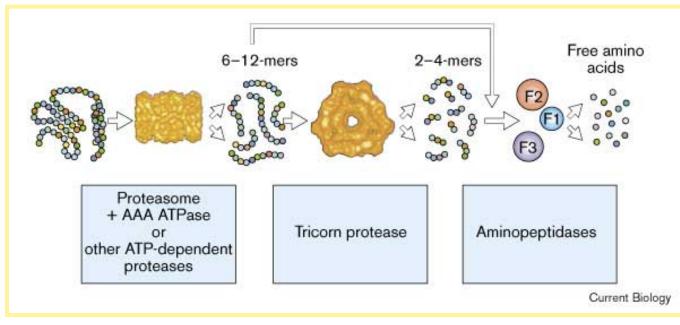
- Lysosomes contain a large variety of hydrolytic enzymes that degrade proteins & other substances taken in by endocytosis.
- Materials taken into a cell by inward budding of vesicles from the

- In autophagy, part of the cytoplasm may become surrounded by two concentric membranes.
- Fusion of the outer membrane of this autophagosome with a lysosomal vesicle results in degradation of enclosed cytoplasmic structures and macromolecules.
- Genetic studies in yeast have identified unique proteins involved in autophagosome formation.

• Most autophagy is not a mechanism for selective degradation of individual macromolecules.

o chaperone-mediated autophagy

- Cytosolic proteins that include the sequence KFERQ may be selectively taken up by lysosomes .
- This process is stimulated under conditions of nutritional or oxidative stress, involves interaction of proteins to be degraded with:
- Cytosolic chaperones that unfold the proteins.
- A lysosomal membrane receptor (LAMP-2A) that may provide a pathway across the membrane.
- Chaperones in the lysosomal lumen that may assist with translocation across the membrane.


- Proteasomal degradation of particular proteins is an essential mechanism by which cellular processes are regulated, such as cell division, apoptosis, differentiation and development.
 - E.g., progression through the cell cycle is controlled in part through regulated degradation of proteins called cyclins that activate cyclin-dependent kinases.

PROTEASE INHIBITORS

- Many inhibitors of proteasome protease activity are known, some of which are natural products and others experimentally produced.
 - TMCs are naturally occurring proteasome inhibitors.
 - They bind with high affinity adjacent to active site threenines within the proteasome core complex.
 - TMCs have a heterocyclic ring structure derived from modified amino acids.
- Proteasome inhibitors cause cell cycle arrest and induction of apoptosis (programmed cell death) when added to rapidly dividing cells.
 - The potential use of proteasome inhibitors in treating cancer is being investigated.

TRICORN PROTEIN DEGRADATION PATHWAY

- Tricorn protease in prokaryotes may be part of a degradation pathway that involves proteasome (in archaea) or other ATPdependent proteases in archaea/bacteria
- Proteasomes/other oligomeric proteases digest proteins to small peptides
- Tricorn protease then cleaves these to 2-4 mers, which are then degraded down to the level of free amino acids by aminopeptidases

probably one of many pathways of protein degradation in prokaryotes

MEMBRANE PROTEIN DEGRADATION

- AAA proteases mediate the degradation of membrane proteins in bacteria, mitochondria and chloroplasts (i.e., compartments of eubacterial origin)
- combine proteolytic and chaperone activities in one system, acting as quality-control machineries

DEGRADATION OF FOREIGN PROTEINS

- The immune system is a surveillance mechanism that can
 - recognize foreign proteins
 - degrade them
- An essential feature of this system is the ability to distinguish 'self' from 'non-self'.
- The MHC class I antigen presenting cells display peptide fragments that are derived from the foreign protein, to cytotoxic T cells.
- The generation of these peptides requires the 26S proteasome.

DEGRADATION OF REGULATORS:

• Many regulators of cell growth and development are

- highly unstable proteins,
- Stability is controlled by the ubiquitin/proteasome pathway
- Substrates of this pathway include p53, Rb, cyclins, CDK inhibitors, transcription factors, and signal-transducing molecules.
- Distinct targeting complexes accomplish the recognition of these proteins.

THE GENERATION OF ACTIVE PROTEINS

- Enzymes whose activities can be deleterious to the cell are often expressed as precursors that are catalytically inactive.
- The proteolytic cleavage of the precursor generates an active enzyme.
 - For instance, proteases that are present in the digestive tract,
 - those that function in the lysosome, are initially synthesized as precursors.
 - Ubiquitin, and catalytic subunits of the proteasome are also expressed as precursors that are proteolytically processed to yield catalytically active subunits.

THE RECYCLING OF AMINO ACIDS:

- Proteases are required for
 - Generation of free amino acids from short peptides
 - Generated by the proteasome
 - intracellular proteases.
- In many microorganisms dipeptidases and other proteases that hydrolyze short amino acid chains
- The availability of free amino acids and di-peptides can allosterically regulate the activity of a specific E3 protein,
 - which in turn controls the levels of a transcription factor that is required for inducing amino acid biosynthetic pathway genes.