COMPARTMENTS FOR PROTEIN SORTING

GOLGI SORTING

VESICLE BUDDING UTILIZES SEVERAL COAT PROTEIN COMPLEXES

- COPII mediates ER to Golgi transport
- COPI mediates Golgi to ER transport
- Clathrin mediates
 Golgi to Endosome transport, PM to
 Endosome transport, and perhaps other transport steps.

MECHANISMS OF GOLGI SORTING

- The Mannose-6-Phosphate (M-6-P) Receptor.
- Example: Acid hydrolase (pH optimal ~ 6.0)
- M-6-P receptor affinity is pH dependent release at 6.0
- Glucosamine acetyl transferase puts M-6-P on
 - if defective: hydrolase found in blood not lysosome

ELIMINATION OF MIS-SORTED PROTEINS

0

• Ubiquination: n-terminal amino acids

o Constitutive Secretion

MOLECULAR MECHANISMS OF VESICULAR TRAFFICKING

-Transport vesicles originate from *coated* regions of membranes

-Coat functions:

Concentrates transport proteins into patchesInduce patches to vesicularize

-Types coats:

•COPII = ER to Golgi
•COPI = Golgi to Golgi, Golgi back to ER
•Clathrin = Trans-Golgi Network (TGN), endocytosis

-Proteins essential to vesicle function

•Monomeric GTPases control coat assembly EXAMPLE: Coat-recruitment GTPases
= ARFs (responsible for COPI and clathrin coat assembly)
= Sar1 (responsible for COPII coat assembly)
•SNARE proteins guide vesicles (mediate vesicle fusion?)
•Rab proteins ensure specificity of vesicle docking

ER-RESIDENT PROTEINS OFTEN ARE RETRIEVED FROM THE CIS-GOLGI

LYSOSOMAL DEGRADATION OF PROTEINS

- lysosomes are cellular vesicles containing proteolytic enzymes
 - (e.g., papain-like cysteine protease, serine proteases, aspartic proteinases, etc., which are typically monomeric
- pH maintained at ~5.5 by proton-pumping ATPase
- Most lysosomal enzymes are transported to lysosomes through recognition by receptors for mannose-6-phosphate.
- Lysosomal enzymes are synthesized like proteins destined to be secreted or for residence on the plasma membrane but are recognized by a phosphotransferase enzyme shortly after leaving the ER.
- a mutation in the transferase leads to disease (I-cell disease); other so-called lysosomal storage diseases are the Tay-Sachs syndrome (ganglioside accumulates due to beta-Hexosaminidase deficiency), Pompe disease (accumulation of glycogen due to lack of α-Glucosidase), etc. (6 others!)

TABLE 17-1 Coated Vesicles Involved in Protein Trafficking

Vesicle Type	Coat Proteins	Associated GTPase	Transport Step Mediated
COPII	Sec23/Sec24 and Sec13/Sec31 complexes, Sec16	Sar1	ER to <i>cis</i> -Golgi
СОРІ	Coatomers containing seven different COP subunits	ARF	<i>cis</i> -Golgi to ER Later to earlier Golgi cisternae
Clathrin and adapter proteins [*]	Clathrin + AP1 complexes	ARF	trans-Golgi to endosome
	Clathrin + GGA	ARF	trans-Golgi to endosome
	Clathrin + AP2 complexes	ARF	Plasma membrane to endosome
	AP3 complexes	ARF	Golgi to lysosome, melanosome, or platelet vesicles

*Each type of AP complex consists of four different subunits. It is not known whether the coat of AP3 vesicles contains clathrin.

DEGRADATION OF MISFOLDED PROTEINS

• Lysosomal (extracellular) protein degradation

• Protein degraded by lysosomal enzymes

• Cytosolic (intracellular) protein degradation

• The Ubiquitin Proteosome pathway

MAIN PROTEOLYTIC PATHWAYS IN EUKARYOTES

 endosome-lysosome pathway degrades
 extracellular and cellsurface proteins

 ubiquitin-proteasome pathway degrades proteins from the cytoplasm, nucleus and ER

 mitochondria (and chloroplasts) have their own proteolytic system that are of bacterial origin

LYSOSOMAL DEGRADATION

- Proteins delivered via endocytosis
- Lysosomes
 - The cellular dust-bins
 - Contain many hydrolytic enzymes
 Proteases
 - Lipases
 - Glycosidases

LYSOSOMAL DEGRADATION OF PROTEINS

 macroautophagy is the equivalent of forming intracellular endosomes (phagosomes) that fuse to the lysosome and result in the breakdown of its contents
 Hsc73 (constitutively-expressed Hsp70 chaperone) is involved in one pathway of lysosome-mediated degradation

Fig. 1 Pathways of protein degradation in lysosomes. Lysosomes are able to degrade intra- and extracellular proteins following different mechanisms

CYTOSOLIC PROTEIN DEGRADATION

• The Ubiquitin Proteosome Pathway

2004 Nobel Prize in Chemistry

- The discovery of ubiquitin-mediated protein degradation
 - Aaron Ciechanover
 - Avram Hershko
 - Irwin Rose
- Cells give a chemical "kiss of death" to proteins that need to be destroyed.

TARGETING BY UBIQUITIN

• Despite help from chaperones, more than 80% fold incorrectly

• Proteins are dislocated back into the cytosol

- Oligosaccharides are removed
- Deglycosylation is catalyzed by N-glycanase

• One third of the newly made polypeptide chains are selected for degradation

THE EXPORT OF MISFOLDED PROTEINS

UBIQUITIN

- 76 amino acids, 8.5 kDa protein
- Heat stable
- Folds into a compact globular structure
- Found throughout the cell
- Found in all eukaryotic cells
- Human and yeast ubiquitin share 96% sequence identity
- Involved in many cellular processes

	R
Y	

THE PROTEOSOME

- Professional protein degrading organelles
- An abundant ATP-dependent protease
- Constitutes nearly 1% of cellular protein
- Present in many copies throughout the cytosol and the nucleus
- Consists of a central hollow cylinder (20S)
- Ends of the cylinder are associated with the 19S cap

TYPES OF UBIQUITINATION

- Mono-ubiquitination
 - Transcription, histone function, endocytosis and membrane trafficking
- Lys48, Lys11 or Lys29 linked poly ubiquitination
 - Target proteins to the proteasome
- Lys63 linked poly ubiquitination
 - Signaling, DNA repair, stress response, endocytosis and signal transduction

UBIQUITIN PATHWAY

- Covalent Attachment of multiple ubiquitin molecules
- Degradation of the tagged protein
- 3 Enzymes :
 - Ub Activating enzyme E1
 - Ub Conjugating enzyme E2
 - Ub Ligases E3

THE UBIQUITIN DEGRADATION PATHWAY

- E1 ubiquitin activating enzyme
- E2 ubiquitin conjugating enzyme
- ✤ E3 ubiquitin ligase
- ✤ '~' denotes high-energy thioester bond
- DUB, deubiquinating enzyme

UBIQUITIN-MEDIATED DEGRADATION

E1 - ubiquitin activating enzyme

 uses ATP to activate the carboxyl group of ubiquitin's C-terminal residue (Gly76).
 The outcome of this reaction is the formation of a thioester between Gly76 of ubiquitin, and a cysteine residue of E1

E2 - ubiquitin conjugating enzyme

 accepts the ubiquitin from the E1 through a thioester linkage with a cysteine

E3 - ubiquitin ligase

 transfers the ubiquitin molecule to the epsilon NH₂ group of lysine on the substrate

 ubiquitin molecules are then added in succession to the Lysine 48 residue to form a multiubiquitin chain

the DUB enzyme 'recycles' ubiquitin

 the 26S proteasome degrades the substrate to peptides