Course: Protein Structure, Function and Engineering

Lecture 7

Levels of Organization in Proteins **Tertiary Structures Stability**

M. Fayyaz ur Rehman

LAST LECTURE

- Protein Tertiary Structure
 - surface topography
 - Random coil
- Surface Water Molecules
- Protein Tertiary Structure
 - H bonding
 - Ionic Interaction
 - Disulfide Bonding
 - Hydrophobic Interaction
- Packing of atoms in the protein interior
- Integral Membrane Proteins

PROTEIN STRUCTURES

3-D Structure of Protein Right-hand turn (most), 3.6 residues per turn, Turn or coil Φ=60[°], Ψ=40[°] on average Antiparallele Alpha-heb and parallel Beta-sheet Loop

STABILITY OF PROTEIN TERTIARY STRUCTURE

- Above absolute zero, all chemical bonds have some flexibility: atoms vibrate and chemical groups can rotate relative to each other.
- Protein Stabilizing Forces
 - Non-Covalent
- Protein structures continuously fluctuate about the equilibrium conformation
- These fluctuations are large enough to allow small molecules such as water to penetrate into the interior of the protein
- ligand binding and catalysis, for they allow the structure to adjust to the binding of another molecule or to changes in the structure of a substrate as a reaction proceeds.

COVALENT BONDS CAN ADD STABILITY TO TERTIARY STRUCTURE

- cross-linking between segments of secondary structure in the native state
 - disulfide bridge
 - Not present in intracellular Protein
 - Present in Secretary Proteins
 - coordination of a metal ion (coordinate covalent bonds)
 - more than one stabilizing metal ion binding site
 - very loose to very tight
 - calcium (Ca2+) and zinc (Zn2+), Na, K
 - removed by chelating agents such as EDTA
 - Cause denaturation or less stability

COVALENT BONDS CAN ADD STABILITY TO TERTIARY STRUCTURE

• dissociable organic or organometallic **cofactor**

- Always present at the active site
- Formed with the organic part of some cofactors
 D-amino acid aminotransferase
- Formed with a metal ion that is an integral part of some cofactors
 - Vitamin B12, chlorophyll, and the heme group
- Formed with both

• Heme group in cytochrome c

• in some cases the cofactor is not a separable molecule, but is created by the chemical cross-linking of two amino-acid side chains

- redox active cofactor PQQ
- green fluorescent protein

POST-TRANSLATIONAL MODIFICATION

Structure of ProteinStability of Protein

Most Common Post-translational Modifications

Reversible	Irreversible
disulfide bridge	cofactor binding
cofactor binding	proteolysis
glycosylation	ubiquitination
phosphorylation	peptide tagging
acylation	lysine hydroxylation
ADP-ribosylation	methylation
carbamylation	
N-acetylation	

PROTEIN DENATURATION

- Denaturation changes the physical and chemical properties of a protein
- Denaturation results from the disruption of the bonds holding the protein structure together
 - Once bonds disrupted the protein can uncoil and form bonds other than those which provided it's original configuration
 - Protein cannot then regain original configuration
- The denatured proteins tend to
 - decrease in solubility;
 - increase the viscosity;
 - lose the biological activity;
 - lose crystalizability;
 - be susceptible to enzymatic digestion.

many different structures fluctuating; not usually very compact; disordered but not a "random coil" single structure or ensemble of very similar structures; compact

For some proteins, **but not all**, this process is readily reversible and occurs without populated intermediate forms--> "**two-state**" **folding**

- Cause of Denaturation
 - the disruption of hydration shell and electric repulsion

Denaturants

physical: heat, ultraviolet light, violent shaking, ... chemical: strong acids, bases, organic solvents, detergents, ...

 Applications sterilization, Lyophilization

Renaturation

• Once the denaturants are removed, the denatured proteins tend to fold back to their native conformations partially or fully.

• The renatured proteins can restore their biological functions.

Native ribonuclease

PROTEIN DENATURANTS

- High temperatures break the weak interactions
- Denatured State
 - loss of biological or biochemical activity, or by spectroscopic signals characteristic of an unfolded polypeptide

• Temperature-sensitive (ts) mutation

- More or Less Stable
- Chemical denaturants
 - Urea or guanidinium hydrochloride, or detergents like SDS
- Thermostable Proteins
 - Thermophilic proteins have more salt bridges, while others appear to have more hydrophobic interactions and shorter protruding loops.

PROTEIN DENATURANTS

•Protein Precipitation

• The denatured proteins expose their side chains or the inner part to the aqueous environment, which causes the proteins aggregated and separated out from the aqueous solution.

• Protein Coagulation

- When the denatured proteins become insoluble fluffy materials, heating denatured proteins will turn them into a hard solid which are not soluble even strong acids and bases are applied.
- Coagulation is an irreversible process.

Linus Pauling, 1901–1994

Robert Corey, 1897–1971

Robert G. Edwards

The Nobel Prize in Physiology or Medicine 2010 was awarded to Robert G. Edwards *"for the development of in vitro fertilization"*.