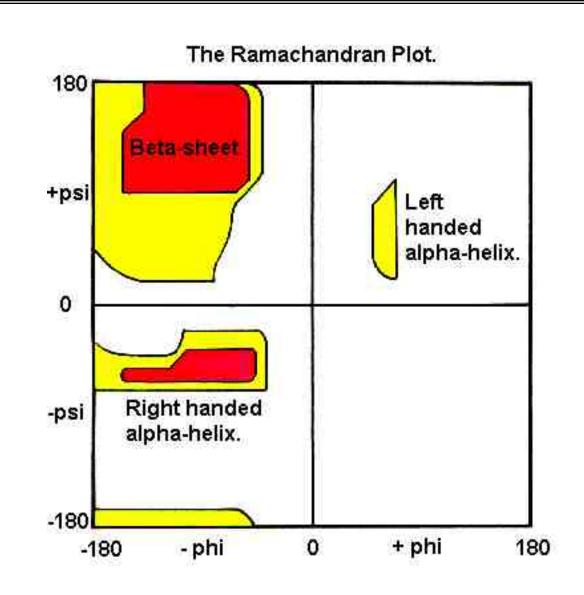
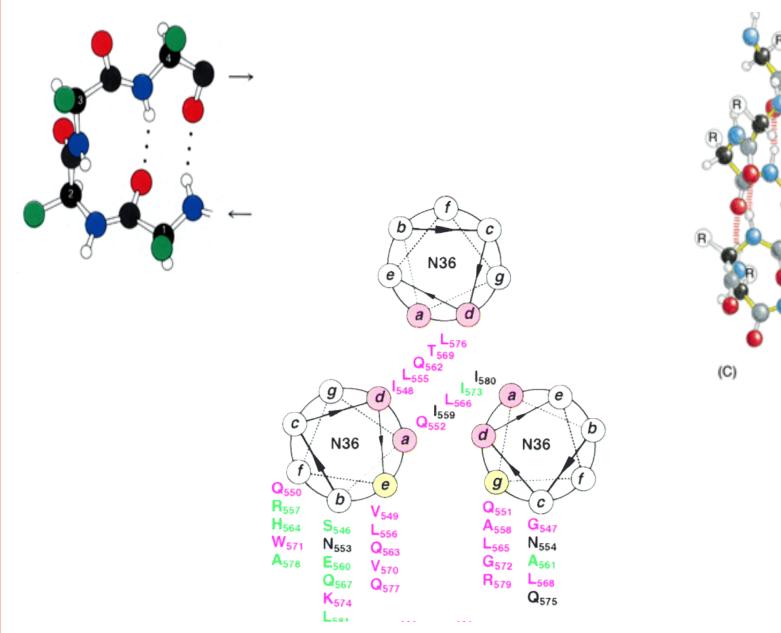
Course: Protein Structure, Function and Engineering

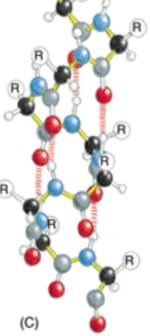
Lecture 4

Levels of Organization in Proteins Secondary Structures of Protein

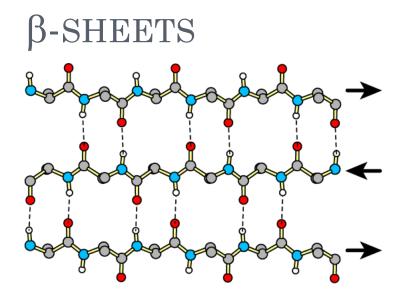

M. Fayyaz ur Rehman

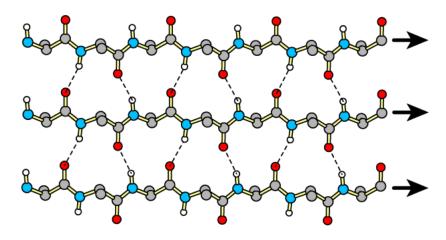
LAST LECTURE


- o Beta Turn
 - Properties
- Alpha Helix
 - Structure
 - Shape
 - Properties
- 3_{10} , Pi, and polyproloine Helix
- Polyproloine Helix
- Triple Collagen Helix
- Dipole Helix
- Amphipathic Alpha Helix
- Coiled Coil Helix


TODAY'S OUTLINE

- Beta sheets
 - Properties
- Motifs and Domains
- Folds
- Amino Acid preferences


β - Sheets

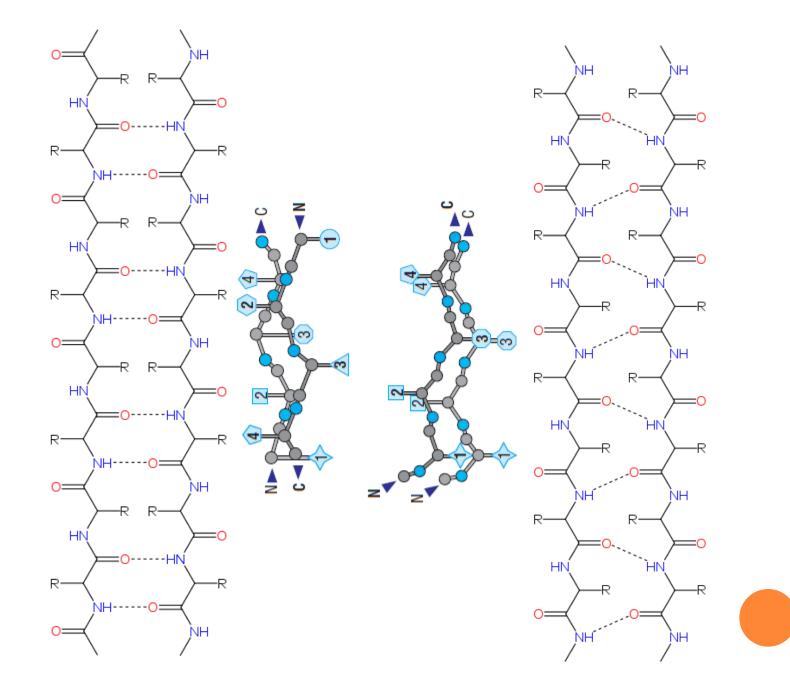

- The first β sheet structure was proposed by William Astbury in the 1930s
- A refined version was proposed by Linus Pauling and Robert Corey in 1951

- β Sheet Basics
- Made up of β-Strands
 Diverse:
 - Parallel/Antiparallel
 - Edge/Interior Strands
 - Typically Twisted
 - Many Forms

•β-sandwiches, β-barrels, β-helices, β-propellers, etc.

-1

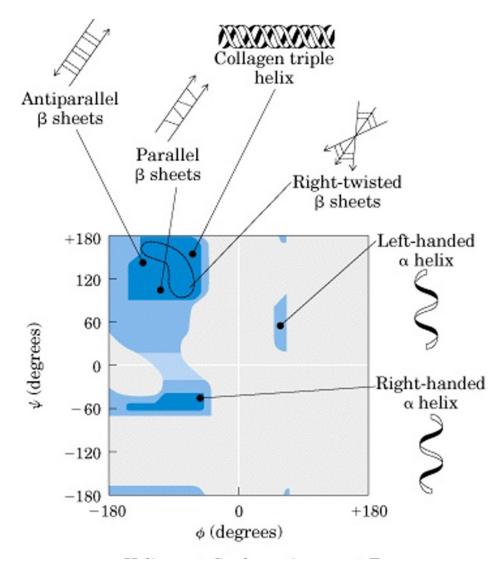
Antiparallel β-sheet


Parallel β-sheet

 β -sheets fulfill the hydrogen bonding potential of the main-chain atoms, except at the edges. Adjacent strands are usually close in sequence.

Properties:

Distance between C α 's is ~3.6 Å in an extended strand Distance between strands ~4.6 Å


Strands are not flat. They have a characteristic right-handed twist

PROPERTIES OF BETA SHEETS

- Nearly all polar amide groups are hydrogen bonded to one another in a beta-sheet structure except for the N-H and C=O groups on the outer sides of the two edge strands.
- Parallel beta sheets containing fewer than five strands are rare.
- The polypeptide chain in a beta sheet is almost fully extended. The distance between consecutive residues is 3.3 Å
- The phi and psi angles for peptides in beta sheets are approximately -130° and +125° respectively.
- Beta strands usually have a pronounced right-handed twist due to steric effects arising from the L-amino acid configuration.
- Parallel strands are less twisted than antiparallel ones. The effect of the strand twist is that sheets consisting of several long strands are themselves twisted.

RAMACHANDRAN PLOT

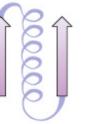
AMPHIPATHIC BETA SHEETS

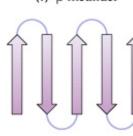
- Nearly all peptide bonds are *trans*
- Stretch of sequence with alternating hydrophobic and hydrophilic residues could have one hydrophobic and one hydrophilic face
- Polypeptide chain in a beta sheet is extended
 - Valine
 - Isoleucine

(a) Helix-loop-helix

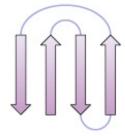
(b) Coiled coil

(c) Helix bundle

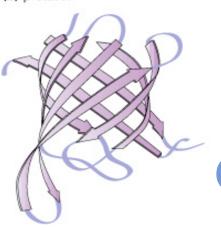




(f) β meander

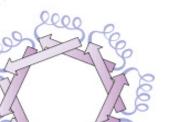


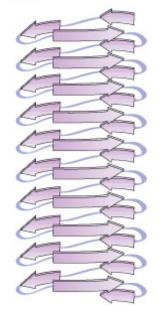
(g) Greek key



COMMON MOTIFS

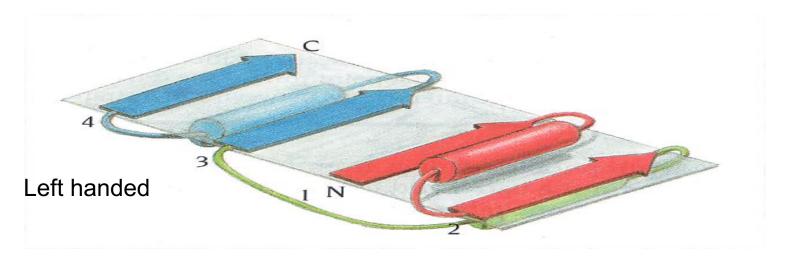
(a) Parallel twisted sheet


(b) β barrel



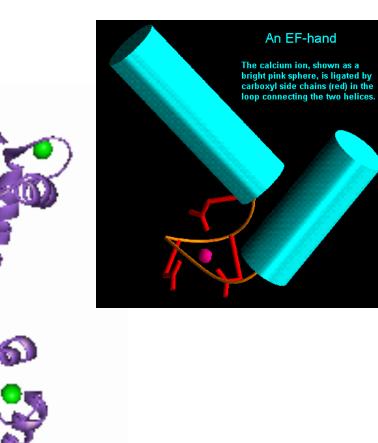
COMMON FOLDS

(c) α/β barrel



(d) β helix

Supersecondary structure: Crossovers in β - α - β -motifs

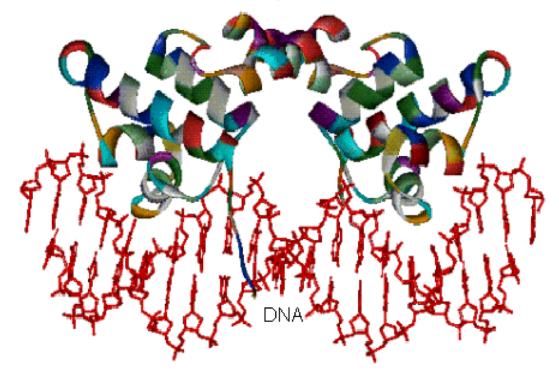

Right handed

EF Hand

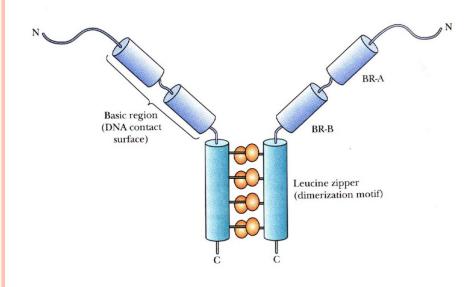
- Consists of two perpendicular 10 to 12 residue alpha helices with a 12-residue loop region.
- Form a single calcium-binding site (helix-loop-helix).
- Calcium ions interact with residues contained within the loop region.
- Each of the 12 residues in the loop region is important for calcium coordination.
- In most EF-hand proteins the residue at position 12 is a glutamate. The glutamate contributes both its side-chain oxygens for calcium coordination.

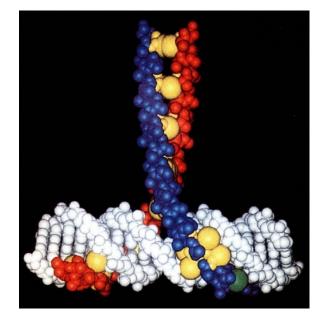
EF Fold

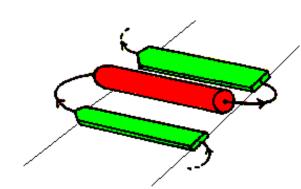
Found in Calcium binding proteins such as Calmodulin


Helix Turn Helix Motif

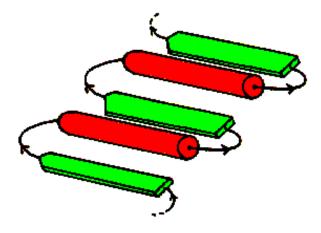
•Consists of two α helices and a short extended amino acid chain between them.

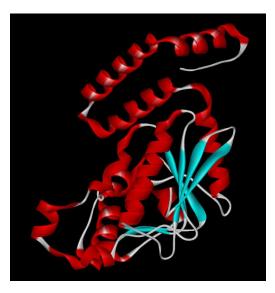

•Carboxyl-terminal helix fits into the major groove of DNA.


•This motif is found in DNA-binding proteins, including λ repressor, tryptophan repressor, catabolite activator protein (CAP)


λ repressor

Leucine Zipper




Rossman Fold

The beta-alpha-beta-alpha-beta subunitOften present in nucleotide-binding proteins

The right-handed beta-alpha-beta unit. The helix lies above the plane of the strands.


The Rossman fold

What is a Protein Fold?

- Compact, globular folding arrangement of the polypeptide chain
- Chain folds to optimise packing of the hydrophobic residues in the interior core of the protein

AMINO ACID PREFERENCES

- long side chains such as those of leucine, methionine, glutamine and glutamic acid are often found in helices.
 - extended side chains can project out away from the crowded central region
- Residues whose side chains are branched at the beta carbon, such as valine, isoleucine and phenylalanine, are more often found in beta sheets
 - Every other side chain in a sheet is pointing in the opposite direction

Conformational Preferences of the Amino Acids

Amino			
acid	α- helix	β-strand	Reverse turn
Glu	1.59	0.52	1.01
Ala	1.41	0.72	0.82
Leu	1.34	1.22	0.57
Met	1.30	1.14	0.52
GIn	1.27	0.98	0.84
Lys	1.23	0.69	1.07
Arg	1.21	0.84	0.90
His	1.05	0.80	0.81
Val	0.90	1.87	0.41
lle	1.09	1.67	0.47
Tyr	0.74	1.45	0.76
Cys	0.66	1.40	0.54
Trp	1.02	1.35	0.65
Phe	1.16	1.33	0.59
Thr	0.76	1.17	0.90
Gly	0.43	0.58	1.77
Asn	0.76	0.48	1.34
Pro	0.34	0.31	1.32
Ser	0.57	0.96	1.22
Asp	0.99	0.39	1.24

CHOU AND FASMAN PROTEIN STRUCTURE PREDICTION

- Partially Valid Assumption
- Prediction of Stretch Structure
- The methods take proteins of known three-dimensional structure
- Tabulate the preferences of individual amino acids for various structural elements
- By comparing these values with what might be expected randomly, conformational preferences can be assigned to each amino acid.
- A moving window of about five residues is scanned along a sequence, and the average preferences are tallied.

• Proline is disfavored in both helices and sheets

- no backbone N–H group
- Glycine is also less commonly found in helices and sheets.
 - lacks a side chain
 - can adopt a much wider range of phi, psi torsion angles in peptides
- strongly associated with beta turns
- Pro–Gly and Gly–Pro

- Proline, for instance, is sometimes found in alpha helices; when it is, it simply interrupts the helical hydrogen-bonding network and produces a kink in the helix
- secondary structure formation is driven by the burial of peptide groups when hydrophobic side chains associate with each other.
- A few sequences form semistable helices in water, especially at reduced temperatures, and it has been suggested that these might serve as nucleation sites for protein folding.

SECONDARY STRUCTURE PREDICTION

	10	20	30	40	50	60	70
UNK_7585500	MTKNESYSGİDYFR	FIAALLIVAI	HTSPLFSFSE	TGNFIİTRIV	APVAVPFFFM	ITSGFFLISRY	TCNAEK
DPM	cccttttctccchh						
DSC		hhhheeeeee				cccceeeecc	ccchhh
GOR4		hhhhhhhhc		cccceeeee		ccceeeecc	ccccc
HNNC		իրիրիրիրի			eccccccheeh		ccchhh
PHD		hhhhhhhhh				ccceeeecc	
Predator	cccccccccchhh	իհիհիհիհի				ccceeeecc	
SIMPA96 SOPM	hccttccttchhhh		000000000000000000000000000000000000000	tocoeeeeee	cccccceeec	ccceeeecc	ccchhh
Sec.Cons.	ccccccccchhhh						
Sec. cons.	cececece			ccceeeeee:	eee	cuceeeeeuu	ccciiiii
	80	90	100	110	120	130	140
UNK 7585500							
	80 LGAFIKKTTLIYGV hchhhhcceeeee	AILLYIPINV	YNGYFKMDNL	LPNIIKDIVF	DGTLYHLWYL	PASIIGAAIA	
UNK_7585500 DPM DSC	LGAFIKKTTLIYGV	AILLYIPINV	I YNGYFKMDNL ctcccchccc		I DGTLYHLWYL	PASIIGAAIA	WYLVKK
DPM DSC GOR4	LGAFIKKTTLIYGV hchhhhhcceeeee hhhhhcccceeeee cccccccchhhce	AILLYIPINV eeeeeecece eeeeeecccc eeeeeecccce	YNGYFKMDNL ctcccchccc cccccccccc eccccccccc	LPNIIKDIVF ccceecceec cccccceecceec ccccceeeceec	DGTLYHLWYL CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	PASIIGAAIA ccceechhhh cccccccchh	 WYLVKK hheehh hhhhhh
DPM DSC GOR4 HNNC	LGAFIKKTTLIYGV hchhhhhcceeeee hhhhhccceeeee ccccccchhhhce hhhhhhhh	AILLYIPINV eeeeeecece eeeeeecccc eeeeeecccce	YNGYFKMDNL ctcccchccc cccccccccc eccccccccc	LPNIIKDIVF ccceecceee cccccceeec ccccceeeee hhhhhhhh	DGTLYHLWYL CCCCCCCCCCC CCCCCCCCCCCCCCCCCCCCCCC	PASIIGAAIA ccceechhhh cccccccchh ccchhhhhhh chhhhhhhh	 WYLVKK hheehh hhhhhh hhhhhh
DPM DSC GOR4 HNNC PHD	LGAFIKKTTLIYGV hchhhhhcceeeee hhhhhccceeeee cccccccchhhhce hhhhhhhh	AILLYIPINV eeeeeeecece eeeeeecccce eeeeeecccce hheeeeccce eeeeeeccce	I YNGYFKMDNL ctcccccccc eccccccccc cccceehchh ccccccccc	LPNIIKDIVF ccceecceec ccccceeecc ccccceeeee hhhhhhhh	I DGTLYHLWYL cccccccccc cccceccecc cccheeheec cchhhhhhhh	PASIIGAAIA ccceechhhh cccccccchh ccchhhhhhh chhhhhhhh	 WYLVKK hheehh hhhhhh hhhhhh
DPM DSC GOR4 HNNC PHD Predator	LGAFIKKTTLIYGV hchhhhhcceeeee hhhhhccceeeee cccccccchhhhce hhhhhhhh	AILLYIPINV eeeeeeecccc eeeeeecccce hheeeecccce eeeeeecccce eeeeeeecccce	I YNGYFKMDNL ctcccccccc eccccccccc cccceehchh ccccccccc	LPNIIKDIVF ccceecceee ccccceeeee hhhhhhhhee chhhhhhhh	I DGTLYHLWYL ccccccccccccccccccccccccccccccccccc	PASIIGAAIA ccceechhhh cccchhhhhhh chhhhhhhhhhh hhhhhhhh	 WYLVKK hheehh hhhhhh hhhhhh hhhhhh hhhhhh hhhhhh
DPM DSC GOR4 HNNC PHD Predator SIMPA96	LGAFIKKTTLIYGV hchhhhhcceeeee hhhhhccceeeee cccccccchhhce hhhhhhhh	AILLYIPINV eeeeeeecccce eeeeeecccce hheeeecccce eeeeeeee	I YNGYFKMDNL ctcccccccc ecccccccccc cccceehchh cccccccc	LPNIIKDIVF ccceecceee ccccceeeee hhhhhhhhee chhhhhhhh	I DGTLYHLWYL ccccccccccc cccceccecccc cccheeheec cchhhhhhhh	PASIIGAAIA ccceechhhh cccchhhhhhh chhhhhhhhhhh hhhhhhhh	 WYLVKK hheehh hhhhhh hhhhhh hhhhhh hhhhhh hhhhhh
DPM DSC GOR4 HNNC PHD Predator	LGAFIKKTTLIYGV hchhhhhcceeeee hhhhhccceeeee cccccccchhhhce hhhhhhhh	AILLYIPINV eeeeeeecccce eeeeeecccce hheeeeccce eeeeeeee	I YNGYFKMDNL ctcccccccc ecccccccccc ccccceehchh cccccccc	LPNIIKDIVF ccceecceee ccccceeeee hhhhhhhhee chhhhhhhh	J DGTLYHLWYL ccccccccccccccccccccccccccccccccccc	PASIIGAAIA ccceechhhh ccccccchh ccchhhhhhhh hhhhhhhh	 WYLVKK hheehh hhhhhh hhhhhh hhhhhh hhhhhh hhhhhh

• Transmembrane proteins

- single alpha helix
- 20 hydrophobic residues