CHAPTER 4

Distribution of agroforestry systems in the tropics

The geographical definition of the word "tropics" (that part of the world located between 23.5 degrees north and south of the Equator) is not of much value in a discussion on land use. For the purpose of this book, the word tropics is used in a general sense, and includes the subtropical developing countries that have agroecological and socioeconomic characteristics, and land-use problems, that are similar to those of the countries within the geographical limits of the tropics. In other words, the word is used, though erroneously, as a synonym for *developing countries*. This logic is also used later in the book when discussing agroforestry systems in the temperate zone (Chapter 25).

4.1. The tropical environment

Although it is important that readers of this book have a general understanding of the physical, biological, and socioeconomic characteristics of the tropics, detailed discussions on those topics are not included here. Some discussion on tropical soils is included in Chapter 14. For other details, readers may refer to other relevant books, several of which are available. For example, Sanchez (1976, Chapter 1), and Evans (1992, Chapter 1) give general accounts of the tropical environment, while annual publications such as *World Resources* (by the World Resources Institute, Washington, D.C.) give updated information on the current state of affairs regarding world environment and resources.

The major climatic parameters that determine the environment of a location in the tropics are rainfall (quantity and distribution) and temperature regimes. Altitude is important because of its influence not only on temperature, but also on land relief characteristics. From the agroforestry point of view, the major ecological regions recognized in the FAO State of Food and Agriculture Reports (SOFA) are relevant: these are temperate, mediterranean, arid and semiarid, subhumid tropical (lowland), humid tropical (lowland) and highland. These classes, excepting the first (and possibly the second), represent the tropical and subtropical lands where agroforestry systems exist or have a potential. The main characteristics of these ecological regions (humid and

IncompositionConsequent shortening of fallows, etc.) overgrazing, soil acidity and consequent problems, low soil fertility, high rainfall erosivitySoil fertility decline caused by over-cultivation, over-grazing, degradation of deciduous woodland, fuelwood/fodder shortagetryImproved fallows, soil fertility improvement and conservation, food productionFuelwood/fodder production, soil- fertility improvement, windbreaks and shelterbelts, food production	stemsCommercial forestry, agricultural tree crop plantations, rice-paddies (esp. Asia), ranching (S. America), shifting cultivation, arable croppingArable farming, extensive ranching or nomadic pastoralism, perennial crop husbandry towards the more humid areas, forestry	cal spreadAll tropical continents, especially south-east and south Asia, west Africa and central and south America; about 35% of tropical landSavanna and sub-Saharan zones of Africa, Cerrado of South America, semi-arid and arid parts of Indian subcontinent approx. 45% of total tropical land	soilsEvergreen or semi-evergreenSavannas with low or medium-high trees and bushes (Aw); thorn scrub and Oxisols (Ferralsols) and other acid, low-base tropical soilsSavannas with low or medium-high trees and bushes (Aw); thorn scrub and steppe grasslands (BS), Vertisols, Alfisols (Luvisols, Nitosols) and Entisols	Hot, humid for all or most of the year, rainfall > 1000 mm; sometimes one or more extended dry periods per year;Hot, one or two wet seasons and at least one long dry period; rainfall 1000 mm; Koppen Aw" (some), Aw', and B climatesKoppen Af, Am and some Aw, esp. Aw"Hot, one or two wet seasons and at least one long dry period; rainfall Aw', and B climates	Humid/subhumid lowlands Dry regions (semiarid and arid)	in characteristics of the major ecological regions of agroforestry importance in the tropics and sub
ning of fallows, soil acidity and ims, low soil fall erosivity oil fertility conservation,	 , agricultural ons, rice-paddies ing (S. America), arable cropping 	tts, especially tth Asia, west and south 5% of tropical land	vergreen ls (Acrisols) alsols) and use tropical soils	or most of the 000 mm; more ods per year; ind some	owlands	ogical regions of agro
Soil fertility decline caused by over-cultivation, over-grazing, degradation of deciduous woodland, fuelwood/fodder shortage Fuelwood/fodder production, soil- fertility improvement, windbreaks	Arable farming, extensive ranching or nomadic pastoralism, perennial crop husbandry towards the more humid areas, forestry	Savanna and sub-Saharan zones of Africa, Cerrado of South America, semi-arid and arid parts of Indian subcontinent approx. 45% of total tropical land	Savannas with low or medium-high trees and bushes (Aw); thorn scrub and steppe grasslands (BS), Vertisols, Alfisols (Luvisols, Nitosols) and Entisols	Hot, one or two wet seasons and at least one long dry period; rainfall 1000 mm; Koppen Aw" (some), Aw', and B climates	Dry regions (semiarid and arid)	forestry importance in the tropics and su
Soil conservation, fodder/fuel production, watershed management,	Arable farming, plantation agriculture and forestry, ranching (in south and central America), shifting cultivation	Asia (Himalayan region, some parts of southern India and S.E. Asia), east and central African highlands, Andes; about 20% of tropical land	Evergreen to semi-evergreen vegetation depending on rainfall. Oxisols (Humic Ferralsols) and Ultisols (Humic Acrisols) Andosols (volcanic soils)	Cool temperatures, subhumid or humid (arid highlands are of low AF potential); altitude over 1000 m; Koeppen Ca, Cw (agricultural growing period over 120 days)	Highlands	ubtropics.

Source: Nair (1989).

3

subhumid lowlands, dry - semiarid and arid - regions, and highlands) are summarized in Table 4.1.

One of the special features of the tropics that is not a consequence of its climate and ecology is its poor economic, social, and developmental status. As mentioned earlier, the word tropics is used synonymously with developing countries. Most nations and people in the tropics are poor; gross domestic product per person is low (about \$ 100-150 per year) in most of these countries. Economic growth seldom keeps pace with population increase. A vast majority of the people work and depend on the land for their livelihood; yet agricultural production per unit area is very low. The gravity of the situation is compounded by the unfortunate political instability and turmoil that are characteristic of many of these nations, which is a serious impediment to economic development.

4.2 Distribution of tropical agroforestry systems

The inventory of agroforestry systems (Chapter 3) resulted in several publications on indigenous agroforestry systems in the tropics and subtropics. This information was later compiled into a single volume *Agroforestry Systems in the Tropics* (Nair, 1989). Several other publications were published in the late 1980s to early 1990s that describe many such indigenous agroforestry systems. Notable among these are *Agroforestry in Dryland Africa* written by Rocheleau *et al.* (1988), *Agroforestry: Classification and Management* (MacDicken and Vergara, 1990), *Agroforesterie et Desertification* (Baumer, 1987), *Systemas Agroforestales* (Montagnini, 1986), and *Agroforestry Systems in China* (Zhaohua *et al.*, 1991). Indeed, most if not all, proceedings of various conferences and meetings on agroforestry held during the 1980s contain descriptions of agroforestry systems. Thus, today there is a fairly vast literature of indigenous agroforestry systems.

A generalized overview¹ of the most common agroforestry systems in different parts of the tropics and subtropics is given in Table 4.2. A closer examination of the distribution of these systems in different ecological and geographical regions of the world reveals that there is a clear relationship between the ecological characteristics of a region and the nature of the current agroforestry systems there. The following sections examine this relationship for the three major ecological regions of the tropics.

¹ For more detailed information on the different types of agroforestry systems in the various ecological regions of the tropics and the common woody species involved in each, readers are advised to refer to: Nair, P. K. R. (ed.) 1989. *Agroforestry Systems in the Tropics*, pp. 74-84.

Table 4.2. An ov	erview of agrofores	try systems in the tr	opics.				
Subsystems and practices	South Pacific	South-East Asia	South Asia	Middle East and Mediterranean	East and Central Africa	West Africa	American Tropics
			AGRISILVICUL	FURAL SYSTEMS			
Improved fallow (in shifting cultivation areas)		Forest villages of Thailand; various fruit trees and plantation crops used as fallow species in Indonesia	Improvements to shifting cultivation; several approaches e.g. in the north-eastern areas of India		Improvements to shifting cultivation e.g. gum gardens of the Sudan	Acioa barterii, Anthonontha macrophyta, Gliricidia sepium etc., tried as fallow species	Several forms
Taungya system	Taro with Anthocephalus and Cedrella trees, and other forms	Widely practiced; forest villages of Thailand an improved form	Several forms, several names		The Shamba system	Several forms	Several forms
Tree gardens	Involving fruit trees	Dominated by fruit trees	In all ecological regions	The Dehesa system, 'Pare Arboree'			e.g. Paraiso woodlots of Paraguay
Hedgerow intercropping (alley cropping)		Extensive use of Sesbania grandiflora, Leucaena leucocephala and Calliandra calolhyrsus	Several experimental approaches e.g. conservation farming in Sri Lanka		The corridor system of Zaire	Experimental systems on alley cropping with <i>Leucaena</i> and other woody perennial species	Experimental

42 Agroforestry systems and practices

AgroforestryMultipurposeSeveral exampfuelwoodfuelwood treesin differentproductionaroundecological reg	Plantation cropPlantation cropsPlantation cropscombinationsand multipurposeand fruit treestrees e.g.smallholderCasuarinasystems of crocoffee in thecombinationsPapua Newplantation croGuinea highlands;plantation croalso Gliricidia andwith spice treeLeucaena withcacao	MultipurposeMainly fruit orDominated bytrees and shrubsnut trees e.g.fruit trees: alson farmlandsCanarium,Acacia mearnPometia,Pometia,cropping systeBarringtonia,IndonesiaArtocarpus altilics	Table 4.2. (continued) Subsystems and practices South Pacific South-East As
les Various forms, including social ons forestry systems	 ps Integrated production systems in p smallholdings; p shade trees in ps; plantations; other ps crop mixtures ps including various spice trees 	Several forms in o lowlands and a highlands, e.g. m, <i>Khejri-based</i> system in dry parts of India hill farming in Nepal	ia South Asia
	Irrigated systems; olive trees and cereals	The oasis system; crop combinations with carob trees; the Dehesa system; olive trees and cereals; irrigated systems	Middle East and Mediterranean
Various forms	Intergrated production; shade trees in commercial plantations; mixed systems in the highlands	Various forms; the Chagga system of Tanzanian highlands; the Nyabisindu system of Rwanda	East and Central Africa
Common in the dry regions	Plantation crop mixtures; smallholder production systems	Faidherbia (Acacia) albida- based systems in dry areas; Butyrospermum and Parkia and Parkia arboree'	West Africa
Several forms in the dry regions	Plantation crop mixtures; shade trees in commercial plantations; mixed systems in small-holdings; spice trees; babassu palm- based systems	Various forms in all ecological regions	American Tropics

Trees and shrubs (on pasture	Live-fences (of fodder trees and hedges	Protein bank (cut-and-carry) fodder production		Shelterbelts, (windbreaks, soil (conservation hedges ;	Subsystems and practices	<i>Table 4.2</i> . (continu
Cattle under coconut, pine and <i>Eucalyptus</i> <i>deglupta</i>	Occasional	Rare		<i>Casuarina</i> oligodon in the highlands as shelterbelts and to improve soils	South Pacific	ied)
Grazing under coconut and other plantation crops	<i>Leucaena,</i> <i>Calliandra</i> etc. used extensively	Very common, especially in highlands		Terrace stabilization on steep slopes	South-East Asia	
Several tree species being used very widely	<i>Sesbania,</i> <i>Euphorbia,</i> <i>Syzigium,</i> etc. common	Multipurpose fodder trees on or around farmlands, especially in highlands	SILVOPASTC	Use of <i>Casuarina</i> spp. as shelterbelts; several windbreaks	South Asia	
Very common in dry regions; the Dehesa system			ORAL SYSTEMS	Tree species for erosion control	Middle East and Mediterranean	
The Acacia- dominated system in the arid parts of Kenya,	Very common in all ecological regions	Very common		The Nyabisindu system of Rwanda	East and Central Africa	
<i>Cattle</i> under oilpalm; cattle and sheep under coconut		Very common		Various forms 1	West Africa	
Common in humid as well as dry regions e.g. grazing under	Very common in highlands	Very common		Live-fences, windbreaks, especially in highlands	American Tropics	

—

 ω

Apiculture with trees	Various forms of shifting cultivation	Agrosilvo fishery (aquaforestry)		Homegardens (involving a large number of herbaceous and woody plants and/or livestock)	Woody hedges for browse, mulch, green manure, soil conservation etc.		Subsystems and practices	Table 4.2. (conti
Common	Common			Several types of homegardens and kitchen gardens	Various forms; <i>Casuarina</i> <i>oligodon</i> widely used to provide mulch and compost		South Pacific	nued)
Common	Swidden farming and other forms	Silviculture in mangrove areas; trees on bunds of fish-breeding ponds		Very common; Java homegardens often quoted as good examples; involving several fruit trees	Various forms		South-East Asia	
Common	Very common; various names	Occasional	OTHER	Common in all s ecological regions usually involving fruit trees	Various forms, especially in lowlands	AGROSILVOPA	South Asia	
Common			SYSTEMS	The oasis system ;		STORAL SYSTEM	Middle East and Mediterranean	
Common	Very common			Various forms; the Chagga homegardens; the Nyabisindu system	Common; variants of the Shamba system	S	East and Central Africa	
Common	Very common in the lowlands			Compounds farms in humid lowlands	Very common		West Africa	
	Very common in all ecological regions			Very common in thickly populated areas	Especially in hilly regions		American Tropics	

Source: Nair(1989).

4.2.1. Lowland humid and subhumid tropics

Characterized by hot, humid climate for all or most of the year, and an evergreen or semi-evergreen vegetation, the lowland humid and subhumid tropics (hereafter referred to as humid tropics) is by far the most important ecological region in terms of the total human population it supports, extent, and diversity of agroforestry and other land-use systems. Because of the climatic conditions that favor rapid growth of a large number of plant species, various types of agroforestry plant associations can be found in areas with high human population. Various forms of homegardens, plantation crop combinations, and multilayer tree gardens are common in such regions. In areas with low population density, such as the low *selvas* of Latin America, trees on rangelands and pastures, improved fallow in shifting cultivation areas, and multipurpose tree woodlots, are the major agroforestry systems. Thus, the common agroforestry systems in this zone are:

- shifting cultivation,
- taungya,
- homegardens,
- plantation-crop combination, and
- various intercropping systems.

The lowland humid tropics also include areas under natural rainforests. In such areas, the cutting of rainforests at rates exceeding natural or managed regeneration is a common problem. This causes shortening of fallow periods in shifting cultivation cycles and results in declining soil productivity and accelerated soil erosion. The potential of appropriate agroforestry systems to combat these problems needs to be exploited in future land-use strategies in this zone.

4.2.2. Semiarid and arid tropics

Extending over the savanna and Sudano-Sahelian zone of Africa, the *cerrado* of South America, and large areas of the Indian subcontinent, the semiarid and arid tropics are characterized by one or two wet seasons (Koppen Aw or Aw', respectively) and at least one long dry season. Drought is a hazard in the drier parts of the zone.

The main agroforestry systems in this zone are also influenced by population pressure; homegardens and multilayer tree gardens are found in the wetter areas with high population pressure. But generally speaking, the predominant agroforestry systems in this zone are:

- various forms of silvopastoral systems,
- windbreaks and shelterbelts, and
- multipurpose trees on crop lands, notably *Faidherbia* (*Acacia*) *albida-based* systems in Africa and *Prosopis-based* agrisilvicultural systems in the Indian subcontinent.

Alley cropping as it is known today is unlikely to be widely adopted in the

semiarid tropics (see Chapter 9). This does not imply that agroforestry in general is unsuitable for these regions. Indeed, some of the best-known agroforestry systems are found in the semiarid tropics - for example, the system based on *Faidherbia (Acacia) albida*, found in the dry areas of Africa (Felker, 1978; Miehe, 1986; Vandenbeldt, 1992), and the system based on *Prosopis cineraria*, found in the dry areas of India (Mann and Saxena, 1980; Shankarnarayan *et ah*, 1987).

Fuelwood shortage is a major problem in most parts of the semiarid and arid tropics; agroforestry potentials in fuelwood production are well documented (e.g., Nair, 1987). Similarly, desertification and fodder shortage, which are the other major land-use problems in this zone, could be addressed to some extent through the agroforestry approach (Rocheleau *et at.*, 1988) (see also Chapter 10).

4.2.3 Tropical highlands

Approximately 20% of the tropical lands are at elevations from 900-1800 m. These areas include approximately half of the Andean highlands of Central and South America, parts of Venezuela and Brazil, the mountain regions of the Caribbean, many parts of East and Central Africa, the Cameroon, the Deccan Plateau of India and some parts of the southeast Asia mainland. The altitude exceeds 1800 m in about 3% of the tropical areas in the Andes, the Ethiopian and Kenyan Highlands, northern Myanmar (Burma) and parts of Papua New Guinea. In the subtropical regions, the most important highlands are in the Himalayan region.

The highland tropics with significant agroforestry potential are humid or subhumid, while areas with dry climates are of very low potential. Land-use problems in the highlands are similar to those in humid or dry lowlands depending on the climate, with the addition that sloping lands and steep terrains make soil erosion an issue of major concern. Moreover, the overall annual temperatures are low in the highlands (for every 100 m increase in elevation in the tropics, there is a decline of 0.6°C in the mean annual temperature); this affects the growth of certain lowland tropical species.

The main agroforestry systems in tropical highlands are:

- production systems involving plantation crops such as coffee and tea in commercial as well as smallholder systems,
- use of woody perennials in soil conservation and soil fertility maintenance,
- improved fallows, and
- silvopastoral systems.

In summary, the major types of agroforestry systems in the tropics are as listed in Table 4.3.

48 Agroforestry systems and practices

Table 4.3. Major types of agroforestry systems in the tropics.

Humid Lowlands

Shifting cultivation Taungya Plantation-crop combinations Multilayer tree gardens Intercropping systems

Semiarid Lowlands

Silvopastoral systems Windbreaks and shelterbelts Multipurpose trees for fuel and fodder Mutlipurpose trees on farmlands

Highlands

Soil conservation hedges Silvopastoral combinations Plantation-crop combinations

4.3. Agroecological spread of tropical agroforestry systems

The type of agroforestry system found in a particular area is determined to some extent by agroecological factors. However, several socioeconomic factors, such as human population pressure, availability of labor and proximity to markets, are also important determinants, so that considerable variations can be found among systems existing in similar or identical agro-climatic conditions. Sometimes, socioeconomic factors take precedence over ecological considerations. Even in the case of systems that are found in most ecological and geographical regions, such as shifting cultivation and taungya, there are numerous variants that are specific to certain socioeconomic contexts. As a general rule, it can be said that while ecological factors determine the major type of agroforestry system in a given area, the complexity of the system and the intensity with which it is managed increase in direct proportion to the population intensity and land productivity of the area.

The multispecies, multistoried homegarden systems serve to illustrate some of these points. Although these systems are found mainly in humid lowlands, they are also common in pockets of high population density in other ecological regions (see Chapter 7). In their analysis of the structural and functional aspects of 10 homegarden systems in different ecological regions, Fernandes and Nair (1986) found that although the average size of a homegarden unit is less than 0.5 ha, it generally consists of a large number of woody and herbaceous species. The garden is carefully structured so that the species form three to five canopies at varying heights, with each component having a specific place and function within the overall design.

Agroecological factors have a considerable bearing on the functional emphasis of agroforestry practices. For example, the primary function of agroforestry practices in sloping lands is erosion control and soil conservation; in wind-prone areas, the emphasis is on windbreaks and shelterbelts; and, in areas with a fuelwood shortage, the emphasis is on fuelwood production. There are also specific agroforestry approaches for the reclamation of degraded lands or wastelands (for example, land that has been badly eroded or overgrazed, or is highly saline or alkaline). The preponderance of homegardens and other multispecies systems in fertile lowlands and areas with high agricultural potential at one end of the ecological scale, and extensive silvopastoral practices at the other end, with various systems in between, indicates that the ecological potential of an area is the prime factor that determines the distribution and extent of adoption of specific agroforestry systems.

The ecological and geographical distribution of the major agroforestry systems in the world has been schematically presented by Nair (1989) (Figure 4.1). However, caution must be exercised in producing and interpreting such "agroforestry maps" because they aim to show general distribution patterns and thus include only those areas in which specified agroforestry systems are abundant. There are innumerable location-specific agroforestry practices in the tropics which, although important in certain respects, are not significant enough in terms of the overall economy and land-use pattern of the area in which they operate to warrant inclusion on a global map. Conversely, some practices, such as multipurpose trees on farmlands, are found in almost all ecological and geographical regions, but only a few of them - for example, the arid zone systems involving *Faidherbia (Acacia) albida* and *Prosopis* (Shankarnarayan *et ah*, 1987) - can be classified as distinct agroforestry systems and included on an agroforestry map.

A significant feature that emerges from this analysis is that, irrespective of the sociocultural differences in different geographical regions, the major types of agroforestry systems are structurally similar in areas with similar ecological conditions. Thus, agroecological zones can be taken as a basis for design of agroforestry systems. The underlying concept is that areas with similar ecological conditions can have structurally similar agroforestry systems. ICRAF used this strategy in designing its Agroforestry Research Networks for Africa (AFRENAs) (ICRAF, 1987). The idea was further developed by Nair (1992), who proposed a generalized matrix of the most common types of landuse constraints or problems in the three major agroecological zones in the tropics, and the broad types of agroforestry interventions that could be developed to address these problems. This is presented in Figure 4.2. Such matrices of agroecological conditions versus agroforestry practices could be developed for any given region. However, the agroecological conditions and the biological and socioeconomic characteristics of agroforestry systems are so complex and varied that it would be difficult to integrate all this information

Source: Nair (1989). Figure 4.1. Major agroforestry systems in different ecological regions of the tropics and subtropics (see legend for systems on page 51).

Figure 4.1 A.

into simple models. Computer-aided, knowledge-engineering applications such as Expert Systems would perhaps be a feasible approach to address this problem. A Knowledge-Based Expert System developed by Warkentin *et al.* (1990) for design of alley cropping illustrates the opportunities and possibilities in applying this technique in agroforestry systems design.

References

- Baumer, M. 1987. *Agroforesterie et Desertification*. Centre Technique de Cooperation Agricole et Rurale, Wageningen, The Netherlands.
- Evans, J. 1992. Plantation Forestry in the Tropics, 2nd edition. Clarendon Press, Oxford, UK.
- Felker, P. 1978. *State-of-the-art: Acacia albida as a Complementary Intercrop with Annual Crops*. Report to USAID. Univ. of California, Riverside, CA, USA.
- Fernandes, E.C.M. and Nair, P.K.R. 1986. An evaluation of the structure and function of tropical homegardens. *Agricultural Systems* 21: 279-310.
- ICRAF. 1987. Profile of ICRAF in Africa ICRAF, Nairobi, Kenya.
- MacDicken, K.G. and Vergara, N.T. (eds.). 1990. Agroforestry: Classification and Management. John Wiley, New York, USA.
- Mann, H.S. and Saxena, S.K. (eds.) 1980. "*Kherji*" (*Prosopis cineraria*) in the Indian Desert: Its Role in Agroforestry. CAZRI Monograph 11. Central Arid Zone Research Institute, Jodhpur, India.
- Miehe, S. 1986. *Acacia albida* and other multipurpose trees on the Fur farmlands in the Jebel Marra highlands, Western Dafur, Sudan. *Agroforestry Systems* 4: 89-119.
- Montagnini, F. (ed.). 1986. Systemas Agroforestales. Organization for Tropical Studies (OTS)/CATIE, San Jose, Costa Rica.
- Nair, P.K.R. 1987. Agroforestry and firewood production. In: Hall, D.O. and Overend, R.P. (eds.), *Biomass*, pp. 367-386. John Wiley, Chichester, UK.
- Nair, P.K.R. (ed.). 1989. Agroforestry Systems in the Tropics. Kluwer, Dordrecht, The Netherlands.
- Nair, P. K. R. 1992. Agroforestry system design: an ecozone approach. In: Sharma, N. P. (ed.), Managing the World's Forests: Looking for Balance Between Conservation and Development, pp. 403-432. Kendall/Hunt Publishing, Dubuque, Iowa/ World Bank, Washington, D.C., USA.
- Poschen, P. 1986. An evaluation of the *Acacia albida* based agroforestry practices in the Hararghe highlands of Ethiopia. *Agroforestry Systems* 4: 129-143.
- Rocheleau, D., Weber, F. and Field-Juma, A. 1988. Agroforestry in Dryland Africa. ICRAF, Nairobi, Kenya.
- Sanchez, P.A. 1976. *Properties and Management of Soils in the Tropics*. John Wiley, New York, USA.
- Shankarnarayan, K.A., Harsh, L.N., and Kathju, S. 1987. Agroforestry systems in the arid zones of India. *Agroforestry Systems* 5: 9-88.
- Vandenbeldt, R.J. (ed.). 1992. Faidherbia albida in the West African Semi-Arid Tropics. ICRISAT, Hyderabad, India and ICRAF, Nairobi, Kenya.
- Warkentin, M. E., Nair, P. K. R., Ruth, S.R., and Sprague, K. 1990. A Knowledge-Based Expert System for planning and design of agroforestry systems. *Agroforestry Systems* 11: 71-83.
- Zhaohua, Z., Mantang, C., Shiji, W., and Youxu, J. (eds.) 1991. *Agroforestry Systems in China*. Chinese Academy of Forestry, Beijing, China and International Development Research Centre, Ottawa, Canada.