

CBSE > Class XI Science > Inorganic Chemistry > Chemical Bonding

Hybridization of elements involving d orbitals

LESSON 12 OF 12

Download the Unacademy Learning App to watch this and over 200k more lessons in UPSC, SSC CGL, GATE, CAT and many more categories.

Hybridisation of Elements involving d Orbitals

LESSON 12

BY Rashmi Kumari

sp³d hybridisation

■ Mixing of one s, three p and one d orbitals to form five sp^3d hybrid orbitals.

Formation of PCI₅

- It should be noted that all the bond angles in trigonal bipyramidal geometry are not equivalent.
- In PCl_5 the five sp^3d orbitals of phosphorus overlap with the singly occupied p orbitals of chlorine atoms to form five P-Cl sigma bonds.
- Three P-Cl bond lie in one plane and make an angle of 120° with each other; these bonds are termed as equatorial bonds.
- The remaining two P–Cl bonds–one lying above and the other lying below the equatorial plane, make an angle of 90° with the plane. These bonds are called axial bonds.

sp³d² hybridisation

• one s, three p and two d orbitals undergo intermixing to form six identical sp^3d^2 hybrid orbitals.

Formation of SF₆

- In SF₆ the central sulphur atom has the ground state outer electronic configuration $3s^23p^4$.
- In the exited state the available six orbitals i.e., one s, three p and two d are singly occupied by electrons.
- These orbitals hybridise to form six new sp^3d^2 hybrid orbitals, which are projected towards the six corners of a regular octahedron in SF_6

THANKS FOR WATCHING