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xi

The art of teaching, Mark Van Doren said, is the art of assisting discovery. I have tried 
to write a book that assists students in discovering calculus—both for its practical power 
and its surprising beauty. In this edition, as in the first seven editions, I aim to convey 
to the student a sense of the utility of calculus and develop technical competence, but I 
also strive to give some appreciation for the intrinsic beauty of the subject. Newton 
undoubtedly experienced a sense of triumph when he made his great discoveries. I want 
students to share some of that excitement.

The emphasis is on understanding concepts. I think that nearly everybody agrees that 
this should be the primary goal of calculus instruction. In fact, the impetus for the cur-
rent calculus reform movement came from the Tulane Conference in 1986, which for-
mulated as their first recommendation: 

Focus on conceptual understanding.

I have tried to implement this goal through the Rule of Three: “Topics should be pre-
sented geometrically, numerically, and algebraically.” Visualization, numerical and 
graphical experimentation, and other approaches have changed how we teach concep-
tual reasoning in fundamental ways. More recently, the Rule of Three has been expanded 
to become the Rule of Four by emphasizing the verbal, or descriptive, point of view as 
well.

In writing the eighth edition my premise has been that it is possible to achieve con-
ceptual understanding and still retain the best traditions of traditional calculus. The book 
contains elements of reform, but within the context of a traditional curriculum.

I have written several other calculus textbooks that might be preferable for some instruc-
tors. Most of them also come in single variable and multivariable versions.

●	 Calculus, Eighth Edition, is similar to the present textbook except that the exponen-
tial, logarithmic, and inverse trigonometric functions are covered in the second 
semester.

●	 Essential Calculus, Second Edition, is a much briefer book (840 pages), though it 
contains almost all of the topics in Calculus, Eighth Edition. The relative brevity is 
achieved through briefer exposition of some topics and putting some features on the 
website.

●	 Essential Calculus: Early Transcendentals, Second Edition, resembles Essential 
Calculus, but the exponential, logarithmic, and inverse trigonometric functions are 
covered in Chapter 3.

A great discovery solves a great problem but there is a grain of discovery in the 
solution of any problem. Your problem may be modest; but if it challenges your 
curiosity and brings into play your inventive faculties, and if you solve it by your 
own means, you may experience the tension and enjoy the triumph of discovery.

g e o r g e  p o lya

Preface
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xii	 Preface

●	 Calculus: Concepts and Contexts, Fourth Edition, emphasizes conceptual under-
standing even more strongly than this book. The coverage of topics is not encyclo-
pedic and the material on transcendental functions and on parametric equations is 
woven throughout the book instead of being treated in separate chapters.

●	 Calculus: Early Vectors introduces vectors and vector functions in the first semester 
and integrates them throughout the book. It is suitable for students taking engineer-
ing and physics courses concurrently with calculus.

●	 Brief Applied Calculus is intended for students in business, the social sciences, and 
the life sciences.

●	 Biocalculus: Calculus for the Life Sciences is intended to show students in the life 
sciences how calculus relates to biology. 

●	 Biocalculus: Calculus, Probability, and Statistics for the Life Sciences contains all 
the content of Biocalculus: Calculus for the Life Sciences as well as three addi-
tional chapters covering probability and statistics.

The changes have resulted from talking with my colleagues and students at the Univer-
sity of Toronto and from reading journals, as well as suggestions from users and review-
ers. Here are some of the many improvements that I’ve incorporated into this edition:

●	 The data in examples and exercises have been updated to be more timely.

●	 New examples have been added (see Examples 6.1.5, 11.2.5, and 14.3.3, for 
instance). And the solutions to some of the existing examples have been amplified. 

●	 Three new projects have been added: The project Controlling Red Blood Cell Loss 
During Surgery (page 244) describes the ANH procedure, in which blood is 
extracted from the patient before an operation and is replaced by saline solution. 
This dilutes the patient’s blood so that fewer red blood cells are lost during bleed-
ing and the extracted blood is returned to the patient after surgery. The project 
Planes and Birds: Minimizing Energy (page 344) asks how birds can minimize 
power and energy by flapping their wings versus gliding. In the project The Speedo 
LZR Racer (page 936) it is explained that this suit reduces drag in the water and, as 
a result, many swimming records were broken. Students are asked why a small 
decrease in drag can have a big effect on performance.

●	 I have streamlined Chapter 15 (Multiple Integrals) by combining the first two sec-
tions so that iterated integrals are treated earlier.

●	 More than 20% of the exercises in each chapter are new. Here are some of my 
favorites: 2.7.61, 2.8.36–38, 3.1.79–80, 3.11.54, 4.1.69, 4.3.34, 4.3.66, 4.4.80, 
4.7.39, 4.7.67, 5.1.19–20, 5.2.67–68, 5.4.70, 6.1.51, 8.1.39, 12.5.81, 12.6.29–30, 
14.6.65–66. In addition, there are some good new Problems Plus. (See Problems 
12–14 on page 272, Problem 13 on page 363, Problems 16–17 on page 426, and 
Problem 8 on page 986.)
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	 Preface	 xiii

Conceptual Exercises
The most important way to foster conceptual understanding is through the problems 
that we assign. To that end I have devised various types of problems. Some exercise sets 
begin with requests to explain the meanings of the basic concepts of the section. (See, for 
instance, the first few exercises in Sections 2.2, 2.5, 11.2, 14.2, and 14.3.) Similarly, all 
the review sections begin with a Concept Check and a True-False Quiz. Other exercises 
test conceptual understanding through graphs or tables (see Exercises 2.7.17, 2.8.35–38, 
2.8.47–52, 9.1.11–13, 10.1.24–27, 11.10.2, 13.2.1–2, 13.3.33–39, 14.1.1–2, 14.1.32–38,  
14.1.41–44, 14.3.3–10, 14.6.1–2, 14.7.3–4, 15.1.6–8, 16.1.11–18, 16.2.17–18, and 
16.3.1–2).

Another type of exercise uses verbal description to test conceptual understanding 
(see Exercises 2.5.10, 2.8.66, 4.3.69–70, and 7.8.67). I particularly value problems that 
combine and compare graphical, numerical, and algebraic approaches (see Exercises 
2.6.45–46, 3.7.27, and 9.4.4).

Graded Exercise Sets
Each exercise set is carefully graded, progressing from basic conceptual exercises and 
skill-development problems to more challenging problems involving applications and 
proofs.

Real-World Data
My assistants and I spent a great deal of time looking in libraries, contacting companies 
and government agencies, and searching the Internet for interesting real-world data to 
introduce, motivate, and illustrate the concepts of calculus. As a result, many of the 
examples and exercises deal with functions defined by such numerical data or graphs. 
See, for instance, Figure 1 in Section 1.1 (seismograms from the Northridge earthquake), 
Exercise 2.8.35 (unemployment rates), Exercise 5.1.16 (velocity of the space shuttle 
Endeavour), and Figure 4 in Section 5.4 (San Francisco power consumption). Functions 
of two variables are illustrated by a table of values of the wind-chill index as a function 
of air temperature and wind speed (Example 14.1.2). Partial derivatives are introduced 
in Section 14.3 by examining a column in a table of values of the heat index (perceived 
air temperature) as a function of the actual temperature and the relative humidity. This 
example is pursued further in connection with linear approximations (Example 14.4.3). 
Directional derivatives are introduced in Section 14.6 by using a temperature contour 
map to estimate the rate of change of temperature at Reno in the direction of Las Vegas. 
Double integrals are used to estimate the average snowfall in Colorado on December 
20–21, 2006 (Example 15.1.9). Vector fields are introduced in Section 16.1 by depictions 
of actual velocity vector fields showing San Francisco Bay wind patterns.

Projects
One way of involving students and making them active learners is to have them work 
(perhaps in groups) on extended projects that give a feeling of substantial accomplish-
ment when completed. I have included four kinds of projects: Applied Projects involve 
applications that are designed to appeal to the imagination of students. The project after 
Section 9.3 asks whether a ball thrown upward takes longer to reach its maximum height 
or to fall back to its original height. (The answer might surprise you.) The project after 
Section 14.8 uses Lagrange multipliers to determine the masses of the three stages of 
a rocket so as to minimize the total mass while enabling the rocket to reach a desired 
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velocity. Laboratory Projects involve technology; the one following Section 10.2 shows 
how to use Bézier curves to design shapes that represent letters for a laser printer. Writ-
ing Projects ask students to compare present-day methods with those of the founders of 
calculus—Fermat’s method for finding tangents, for instance. Suggested references are 
supplied. Discovery Projects anticipate results to be discussed later or encourage dis-
covery through pattern recognition (see the one following Section 7.6). Others explore 
aspects of geometry: tetrahedra (after Section 12.4), hyperspheres (after Section 15.6), 
and intersections of three cylinders (after Section 15.7). Additional projects can be found 
in the Instructor’s Guide (see, for instance, Group Exercise 5.1: Position from Samples).

Problem Solving
Students usually have difficulties with problems for which there is no single well-defined 
procedure for obtaining the answer. I think nobody has improved very much on George 
Polya’s four-stage problem-solving strategy and, accordingly, I have included a version 
of his problem-solving principles following Chapter 1. They are applied, both explicitly 
and implicitly, throughout the book. After the other chapters I have placed sections called 
Problems Plus, which feature examples of how to tackle challenging calculus problems. 
In selecting the varied problems for these sections I kept in mind the following advice 
from David Hilbert: “A mathematical problem should be difficult in order to entice us, 
yet not inaccessible lest it mock our efforts.” When I put these challenging problems on 
assignments and tests I grade them in a different way. Here I reward a student signifi-
cantly for ideas toward a solution and for recognizing which problem-solving principles 
are relevant.

Technology
The availability of technology makes it not less important but more important to clearly 
understand the concepts that underlie the images on the screen. But, when properly used, 
graphing calculators and computers are powerful tools for discovering and understand-
ing those concepts. This textbook can be used either with or without technology and I 
use two special symbols to indicate clearly when a particular type of machine is required. 
The icon ; indicates an exercise that definitely requires the use of such technology, 
but that is not to say that it can’t be used on the other exercises as well. The symbol CAS  
is reserved for problems in which the full resources of a computer algebra system (like 
Maple, Mathematica, or the TI-89) are required. But technology doesn’t make pencil 
and paper obsolete. Hand calculation and sketches are often preferable to technology for 
illustrating and reinforcing some concepts. Both instructors and students need to develop 
the ability to decide where the hand or the machine is appropriate.

Tools for Enriching Calculus
TEC is a companion to the text and is intended to enrich and complement its contents. 
(It is now accessible in the eBook via CourseMate and Enhanced WebAssign. Selected 
Visuals and Modules are available at www.stewartcalculus.com.) Developed by Harvey 
Keynes, Dan Clegg, Hubert Hohn, and myself, TEC uses a discovery and exploratory 
approach. In sections of the book where technology is particularly appropriate, marginal 
icons direct students to TEC Modules that provide a laboratory environment in which 
they can explore the topic in different ways and at different levels. Visuals are anima-
tions of figures in text; Modules are more elaborate activities and include exercises. 
Instructors can choose to become involved at several different levels, ranging from sim-
ply encouraging students to use the Visuals and Modules for independent exploration, 
to assigning specific exercises from those included with each Module, or to creating 
additional exercises, labs, and projects that make use of the Visuals and Modules.
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TEC also includes Homework Hints for representative exercises (usually odd-num-
bered) in every section of the text, indicated by printing the exercise number in red. 
These hints are usually presented in the form of questions and try to imitate an effective 
teaching assistant by functioning as a silent tutor. They are constructed so as not to reveal 
any more of the actual solution than is minimally necessary to make further progress.

Enhanced WebAssign
Technology is having an impact on the way homework is assigned to students, particu-
larly in large classes. The use of online homework is growing and its appeal depends 
on ease of use, grading precision, and reliability. With the Eighth Edition we have been 
working with the calculus community and WebAssign to develop an online homework 
system. Up to 70% of the exercises in each section are assignable as online homework, 
including free response, multiple choice, and multi-part formats. 

The system also includes Active Examples, in which students are guided in step-by-
step tutorials through text examples, with links to the textbook and to video solutions.

Website
Visit CengageBrain.com or stewartcalculus.com for these additional materials:

●	 Homework Hints

●	 Algebra Review

●	 Lies My Calculator and Computer Told Me

●	 History of Mathematics, with links to the better historical websites

●	 Additional Topics (complete with exercise sets): Fourier Series, Formulas for the 
Remainder Term in Taylor Series, Rotation of Axes

●	 Archived Problems (Drill exercises that appeared in previous editions, together with 
their solutions)

●	 Challenge Problems (some from the Problems Plus sections from prior editions)

●	 Links, for particular topics, to outside Web resources

●	 Selected Visuals and Modules from Tools for Enriching Calculus (TEC)

The book begins with four diagnostic tests, in Basic Algebra, Analytic Geometry, Func-
tions, and Trigonometry.

This is an overview of the subject and includes a list of questions to motivate the study 
of calculus.

From the beginning, multiple representations of functions are stressed: verbal, numeri-
cal, visual, and algebraic. A discussion of mathematical models leads to a review of the 
standard functions, including exponential and logarithmic functions, from these four 
points of view.

The material on limits is motivated by a prior discussion of the tangent and velocity 
problems. Limits are treated from descriptive, graphical, numerical, and algebraic points 
of view. Section 2.4, on the precise definition of a limit, is an optional section. Sections 

Diagnostic Tests

A Preview of Calculus

1  Functions and Models

2 L imits and Derivatives
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2.7 and 2.8 deal with derivatives (especially with functions defined graphically and 
numerically) before the differentiation rules are covered in Chapter 3. Here the exam-
ples and exercises explore the meanings of derivatives in various contexts. Higher deriva-
tives are introduced in Section 2.8.

All the basic functions, including exponential, logarithmic, and inverse trigonometric 
functions, are differentiated here. When derivatives are computed in applied situations, 
students are asked to explain their meanings. Exponential growth and decay are now 
covered in this chapter.

The basic facts concerning extreme values and shapes of curves are deduced from the 
Mean Value Theorem. Graphing with technology emphasizes the interaction between 
calculus and calculators and the analysis of families of curves. Some substantial optimi-
zation problems are provided, including an explanation of why you need to raise your 
head 42° to see the top of a rainbow.

The area problem and the distance problem serve to motivate the definite integral, with 
sigma notation introduced as needed. (Full coverage of sigma notation is provided in 
Appendix E.) Emphasis is placed on explaining the meanings of integrals in various 
contexts and on estimating their values from graphs and tables.

Here I present the applications of integration—area, volume, work, average value—that 
can reasonably be done without specialized techniques of integration. General methods 
are emphasized. The goal is for students to be able to divide a quantity into small pieces, 
estimate with Riemann sums, and recognize the limit as an integral.

All the standard methods are covered but, of course, the real challenge is to be able to 
recognize which technique is best used in a given situation. Accordingly, in Section 7.5, 
I present a strategy for integration. The use of computer algebra systems is discussed in 
Section 7.6.

Here are the applications of integration—arc length and surface area—for which it is 
useful to have available all the techniques of integration, as well as applications to biol-
ogy, economics, and physics (hydrostatic force and centers of mass). I have also 
included a section on probability. There are more applications here than can realistically 
be covered in a given course. Instructors should select applications suitable for their 
students and for which they themselves have enthusiasm.

Modeling is the theme that unifies this introductory treatment of differential equations. 
Direction fields and Euler’s method are studied before separable and linear equations are 
solved explicitly, so that qualitative, numerical, and analytic approaches are given equal 
consideration. These methods are applied to the exponential, logistic, and other models 
for population growth. The first four or five sections of this chapter serve as a good 
introduction to first-order differential equations. An optional final section uses predator-
prey models to illustrate systems of differential equations.

This chapter introduces parametric and polar curves and applies the methods of calculus 
to them. Parametric curves are well suited to laboratory projects; the two presented here 
involve families of curves and Bézier curves. A brief treatment of conic sections in polar 
coordinates prepares the way for Kepler’s Laws in Chapter 13.

3 D ifferentiation Rules

4 A pplications of Differentiation

5 I ntegrals

6 A pplications of Integration

7  Techniques of Integration

8 F urther Applications 
of Integration

9 D ifferential Equations

10  Parametric Equations 
and Polar Coordinates
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The convergence tests have intuitive justifications (see page 719) as well as formal 
proofs. Numerical estimates of sums of series are based on which test was used to prove 
convergence. The emphasis is on Taylor series and polynomials and their applications 
to physics. Error estimates include those from graphing devices.

The material on three-dimensional analytic geometry and vectors is divided into two 
chapters. Chapter 12 deals with vectors, the dot and cross products, lines, planes, and 
surfaces.

This chapter covers vector-valued functions, their derivatives and integrals, the length 
and curvature of space curves, and velocity and acceleration along space curves, culmi-
nating in Kepler’s laws.

Functions of two or more variables are studied from verbal, numerical, visual, and alge-
braic points of view. In particular, I introduce partial derivatives by looking at a specific 
column in a table of values of the heat index (perceived air temperature) as a function 
of the actual temperature and the relative humidity.

Contour maps and the Midpoint Rule are used to estimate the average snowfall and 
average temperature in given regions. Double and triple integrals are used to compute 
probabilities, surface areas, and (in projects) volumes of hyperspheres and volumes of 
intersections of three cylinders. Cylindrical and spherical coordinates are introduced in 
the context of evaluating triple integrals.

Vector fields are introduced through pictures of velocity fields showing San Francisco 
Bay wind patterns. The similarities among the Fundamental Theorem for line integrals, 
Green’s Theorem, Stokes’ Theorem, and the Divergence Theorem are emphasized.

Since first-order differential equations are covered in Chapter 9, this final chapter deals 
with second-order linear differential equations, their application to vibrating springs and 
electric circuits, and series solutions.

Calculus, Early Transcendentals, Eighth Edition, is supported by a complete set of 
ancillaries developed under my direction. Each piece has been designed to enhance 
student understanding and to facilitate creative instruction. The tables on pages xxi–xxii 
describe each of these ancillaries.

The preparation of this and previous editions has involved much time spent reading the 
reasoned (but sometimes contradictory) advice from a large number of astute reviewers. 
I greatly appreciate the time they spent to understand my motivation for the approach 
taken. I have learned something from each of them.

Eighth Edition Reviewers
Jay Abramson, �Arizona State University
Adam Bowers, �University of California San Diego
Neena Chopra, �The Pennsylvania State University

11 I nfinite Sequences and Series

12 V ectors and the  
Geometry of Space

13 V ector Functions

14  Partial Derivatives

15 M ultiple Integrals

16 V ector Calculus

17 S econd-Order 
Differential Equations
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■ Electronic items  ■ Printed items	 (Table continues on page xxii)

Instructor’s Guide
by Douglas Shaw

ISBN 978-1-305-39371-4

Each section of the text is discussed from several viewpoints. 
The Instructor’s Guide contains suggested time to allot, points 
to stress, text discussion topics, core materials for lecture, 
workshop/discussion suggestions, group work exercises in  
a form suitable for handout, and suggested homework  
assignments.

Complete Solutions Manual

Single Variable Early Transcendentals
By Daniel Anderson, Jeffery A. Cole, and Daniel Drucker

ISBN 978-1-305-27239-2

Multivariable
By Dan Clegg and Barbara Frank

ISBN 978-1-305-27611-6

Includes worked-out solutions to all exercises in the text.

Printed Test Bank
By William Steven Harmon

ISBN 978-1-305-38722-5

Contains text-specific multiple-choice and free response test 
items.

Cengage Learning Testing Powered by Cognero
(login.cengage.com)

This flexible online system allows you to author, edit, and 
manage test bank content from multiple Cengage Learning 
solutions; create multiple test versions in an instant; and 
deliver tests from your LMS, your classroom, or wherever you 
want.

Stewart Website
www.stewartcalculus.com

Contents: Homework Hints  n  Algebra Review  n  Additional 
Topics  n  Drill exercises  n  Challenge Problems  n  Web 
Links  n  History of Mathematics  n  Tools for Enriching  
Calculus (TEC) 

TEC  TOOLS FOR ENRICHING™ CALCULUS
By James Stewart, Harvey Keynes, Dan Clegg, and developer 
Hubert Hohn

Tools for Enriching Calculus (TEC) functions as both a 
powerful tool for instructors and as a tutorial environment  
in which students can explore and review selected topics. The 
Flash simulation modules in TEC include instructions, written 
and audio explanations of the concepts, and exercises. TEC  
is accessible in the eBook via CourseMate and Enhanced 
WebAssign. Selected Visuals and Modules are available at 
www.stewartcalculus.com.

  Enhanced WebAssign®
www.webassign.net

Printed Access Code: ISBN 978-1-285-85826-5

Instant Access Code ISBN: 978-1-285-85825-8

Exclusively from Cengage Learning, Enhanced WebAssign 
offers an extensive online program for Stewart’s Calculus  
to encourage the practice that is so critical for concept 
mastery. The meticulously crafted pedagogy and exercises 
in our proven texts become even more effective in Enhanced 
WebAssign, supplemented by multimedia tutorial support and 
immediate feedback as students complete their assignments. 
Key features include: 

n  �Thousands of homework problems that match your text-
book’s end-of-section exercises

n � Opportunities for students to review prerequisite skills and 
content both at the start of the course and at the beginning 
of each section

n � Read It eBook pages, Watch It videos, Master It tutorials, 
and Chat About It links

n � A customizable Cengage YouBook with highlighting, note-
taking, and search features, as well as links to multimedia 
resources

n � Personal Study Plans (based on diagnostic quizzing) that 
identify chapter topics that students will need to master

n � A WebAssign Answer Evaluator that recognizes and accepts 
equivalent mathematical responses in the same way an 
instructor grades

n � A Show My Work feature that gives instructors the option 
of seeing students’ detailed solutions

n � Visualizing Calculus Animations, Lecture Videos, and more
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Cengage Customizable YouBook

YouBook is an eBook that is both interactive and customiz-
able. Containing all the content from Stewart’s Calculus,  
YouBook features a text edit tool that allows instructors to 
modify the textbook narrative as needed. With YouBook, 
instructors can quickly reorder entire sections and chapters 
or hide any content they don’t teach to create an eBook that 
perfectly matches their syllabus. Instructors can further 
customize the text by adding instructor-created or YouTube 
video links. Additional media assets include animated figures, 
video clips, highlighting and note-taking features, and more. 
YouBook is available within Enhanced WebAssign.

CourseMate

CourseMate is a perfect self-study tool for students, and 
requires no set up from instructors. CourseMate brings course 
concepts to life with interactive learning, study, and exam 
preparation tools that support the printed textbook. Course-
Mate for Stewart’s Calculus includes an interactive eBook, 
Tools for Enriching Calculus, videos, quizzes, flashcards, 
and more. For instructors, CourseMate includes Engagement 
Tracker, a first-of-its-kind tool that monitors student  
engagement.

CengageBrain.com

To access additional course materials, please visit  
www.cengagebrain.com. At the CengageBrain.com home 
page, search for the ISBN of your title (from the back cover of 
your book) using the search box at the top of the page. This 
will take you to the product page where these resources can 
be found.

Student Solutions Manual
Single Variable Early Transcendentals
By Daniel Anderson, Jeffery A. Cole, and Daniel Drucker

ISBN 978-1-305-27242-2

Multivariable
By Dan Clegg and Barbara Frank

ISBN 978-1-305-27182-1

Provides completely worked-out solutions to all odd- 
numbered exercises in the text, giving students a chance to 

check their answer and ensure they took the correct steps  
to arrive at the answer. The Student Solutions Manual  
can be ordered or accessed online as an eBook at  
www.cengagebrain.com by searching the ISBN.

Study Guide
Single Variable Early Transcendentals
By Richard St. Andre

ISBN 978-1-305-27914-8

Multivariable
By Richard St. Andre

ISBN 978-1-305-27184-5

For each section of the text, the Study Guide provides students 
with a brief introduction, a short list of concepts to master, 
and summary and focus questions with explained answers. 
The Study Guide also contains “Technology Plus” questions 
and multiple-choice “On Your Own” exam-style questions. 
The Study Guide can be ordered or accessed online as an 
eBook at www.cengagebrain.com by searching the ISBN.

A Companion to Calculus
By Dennis Ebersole, Doris Schattschneider, Alicia Sevilla,  
and Kay Somers

ISBN 978-0-495-01124-8

Written to improve algebra and problem-solving skills of 
students taking a calculus course, every chapter in this 
companion is keyed to a calculus topic, providing concep-
tual background and specific algebra techniques needed to 
understand and solve calculus problems related to that topic. 
It is designed for calculus courses that integrate the review of 
precalculus concepts or for individual use. Order a copy of 
the text or access the eBook online at www.cengagebrain.com 
by searching the ISBN.

Linear Algebra for Calculus
by Konrad J. Heuvers, William P. Francis, John H. Kuisti, 
Deborah F. Lockhart, Daniel S. Moak, and Gene M. Ortner

ISBN 978-0-534-25248-9

This comprehensive book, designed to supplement the calcu-
lus course, provides an introduction to and review of the basic 
ideas of linear algebra. Order a copy of the text or access 
the eBook online at www.cengagebrain.com by searching the 
ISBN.

■ Electronic items  ■ Printed items	
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To the Student

Reading a calculus textbook is different from reading a 
newspaper or a novel, or even a physics book. Don’t be dis-
couraged if you have to read a passage more than once  
in order to understand it. You should have pencil and paper 
and calculator at hand to sketch a diagram or make a  
calculation.

Some students start by trying their homework problems 
and read the text only if they get stuck on an exercise. I sug-
gest that a far better plan is to read and understand a section 
of the text before attempting the exercises. In particular, you 
should look at the definitions to see the exact meanings of 
the terms. And before you read each example, I suggest that 
you cover up the solution and try solving the problem your-
self. You’ll get a lot more from looking at the solution if 
you do so.

Part of the aim of this course is to train you to think logi-
cally. Learn to write the solutions of the exercises in a con-
nected, step-by-step fashion with explanatory sentences—
not just a string of disconnected equations or formulas.

The answers to the odd-numbered exercises appear at the 
back of the book, in Appendix I. Some exercises ask for a 
verbal explanation or interpretation or description. In such 
cases there is no single correct way of expressing the 
answer, so don’t worry that you haven’t found the definitive 
answer. In addition, there are often several different forms 
in which to express a numerical or algebraic answer, so if 
your answer differs from mine, don’t immediately assume 
you’re wrong. For example, if the answer given in the back 
of the book is s2 2 1 and you obtain 1y(1 1 s2 ), then 
you’re right and rationalizing the denominator will show 
that the answers are equivalent.

The icon ; indicates an exercise that definitely requires 
the use of either a graphing calculator or a computer with 
graphing software. But that doesn’t mean that graphing 
devices can’t be used to check your work on the other exer-
cises as well. The symbol CAS  is reserved for problems in 

which the full resources of a computer algebra system (like 
Maple, Mathematica, or the TI-89) are required.

You will also encounter the symbol |, which warns you 
against committing an error. I have placed this symbol in 
the margin in situations where I have observed that a large 
proportion of my students tend to make the same mistake.

Tools for Enriching Calculus, which is a companion to 
this text, is referred to by means of the symbol TEC  and can 
be accessed in the eBook via Enhanced WebAssign and 
CourseMate (selected Visuals and Modules are available at 
www.stewartcalculus.com). It directs you to modules in 
which you can explore aspects of calculus for which the 
computer is particularly useful. 

You will notice that some exercise numbers are printed 
in red: 5. This indicates that Homework Hints are available 
for the exercise. These hints can be found on stewartcalcu-
lus.com as well as Enhanced WebAssign and CourseMate. 
The homework hints ask you questions that allow you to 
make progress toward a solution without actually giving 
you the answer. You need to pursue each hint in an active 
manner with pencil and paper to work out the details. If a 
particular hint doesn’t enable you to solve the problem, you 
can click to reveal the next hint. 

I recommend that you keep this book for reference pur-
poses after you finish the course. Because you will likely 
forget some of the specific details of calculus, the book will 
serve as a useful reminder when you need to use calculus in 
subsequent courses. And, because this book contains more 
material than can be covered in any one course, it can also 
serve as a valuable resource for a working scientist or  
engineer.

Calculus is an exciting subject, justly considered to be 
one of the greatest achievements of the human intellect. I 
hope you will discover that it is not only useful but also 
intrinsically beautiful.

james stewart
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xxiv

Advances in technology continue to bring a wider variety of tools for 
doing mathematics. Handheld calculators are becoming more pow-
erful, as are software programs and Internet resources. In addition, 
many mathematical applications have been released for smartphones 
and tablets such as the iPad.

Some exercises in this text are marked with a graphing icon ;, 
which indicates that the use of some technology is required. Often this 
means that we intend for a graphing device to be used in drawing the 
graph of a function or equation. You might also need technology to 
find the zeros of a graph or the points of intersection of two graphs. 
In some cases we will use a calculating device to solve an equation or 
evaluate a definite integral numerically. Many scientific and graphing 
calculators have these features built in, such as the Texas Instruments 
TI-84 or TI-Nspire CX. Similar calculators are made by Hewlett Pack-
ard, Casio, and Sharp.
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You can also use computer software such  
as Graphing Calculator by Pacific Tech 
(www.pacifict.com) to perform many of these 
functions, as well as apps for phones and 
tablets, like Quick Graph (Colombiamug) or 
Math-Studio (Pomegranate Apps). Similar 
functionality is available using a web interface 
at WolframAlpha.com.
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Calculators, Computers, and 
Other Graphing Devices
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The CAS  icon is reserved for problems in which the full resources of 
a computer algebra system (CAS) are required. A CAS is capable of 
doing mathematics (like solving equations, computing derivatives or 
integrals) symbolically rather than just numerically.

Examples of well-established computer algebra systems are the com-
puter software packages Maple and Mathematica. The WolframAlpha 
website uses the Mathematica engine to provide CAS functionality  
via the Web.

Many handheld graphing calculators have CAS capabilities, such 
as the TI-89 and TI-Nspire CX CAS from Texas Instruments. Some 
tablet and smartphone apps also provide these capabilities, such as the 
previously mentioned MathStudio.

In general, when we use the term “calculator” in this book, we mean 
the use of any of the resources we have mentioned.
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xxvi

Success in calculus depends to a large extent on knowledge of the mathematics that 
precedes calculus: algebra, analytic geometry, functions, and trigonometry. The fol-
lowing tests are intended to diagnose weaknesses that you might have in these areas. 
After taking each test you can check your answers against the given answers and, if 
necessary, refresh your skills by referring to the review materials that are provided.

A

		  1.	� Evaluate each expression without using a calculator.

	 (a)	 s23d4	 (b)	 234	 (c)	 324

	 (d)	
523

521 	 (e)	 S 2

3D
22

	 (f)	 1623y4

		  2.	�� Simplify each expression. Write your answer without negative exponents.

	 (a)	 s200 2 s32 	

	 (b)	 s3a3b3ds4ab2d2

	 (c)	 S 3x 3y2y 3

x 2y21y2D22

		  3.	� Expand and simplify.

			   (a)	 3sx 1 6d 1 4s2x 2 5d	 (b)	 sx 1 3ds4x 2 5d

			   (c)	 ssa 1 sb dssa 2 sb d	 (d)	 s2x 1 3d2

			   (e)	 sx 1 2d3

		  4.	� Factor each expression.

	 (a)	 4x 2 2 25	 (b)	 2x 2 1 5x 2 12

	 (c)	 x 3 2 3x 2 2 4x 1 12	 (d)	 x 4 1 27x

	 (e)	 3x 3y2 2 9x 1y2 1 6x21y2	 (f)	 x 3y 2 4xy

		  5.	 �Simplify the rational expression.

			   (a)	
x 2 1 3x 1 2

x 2 2 x 2 2
	 (b)	

2x 2 2 x 2 1

x 2 2 9
?

x 1 3

2x 1 1

			   (c)	
x 2

x 2 2 4
2

x 1 1

x 1 2
	 (d)	

y

x
2

x

y

1

y
2

1

x

Diagnostic Tests
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	D iagnostic Tests	 xxvii

		  6.	� Rationalize the expression and simplify.

	 (a)	
s10 

s5 2 2
	 (b)	

s4 1 h 2 2

h

		  7.	� Rewrite by completing the square.

	 (a)	 x 2 1 x 1 1	 (b)	 2x 2 2 12x 1 11

		  8.	� Solve the equation. (Find only the real solutions.)

	 (a)	 x 1 5 − 14 2 1
2 x	 (b)	

2x

x 1 1
−

2x 2 1

x

	 (c)	 x 2 2 x 2 12 − 0	 (d)	 2x 2 1 4x 1 1 − 0

	 (e)	 x 4 2 3x 2 1 2 − 0	 (f)	 3| x 2 4 | − 10

	 (g)	 2xs4 2 xd21y2 2 3s4 2 x − 0

		  9.	�� Solve each inequality. Write your answer using interval notation.

	 (a)	 24 , 5 2 3x < 17	 (b)	 x 2 , 2x 1 8

	 (c)	 xsx 2 1dsx 1 2d . 0	 (d)	 | x 2 4 | , 3

	 (e)	
2x 2 3

x 1 1
< 1

		  10.	� State whether each equation is true or false.

	 (a)	 sp 1 qd2 − p2 1 q 2	 (b)	 sab − sa sb 

	 (c)	 sa2 1 b2 − a 1 b	 (d)	
1 1 TC

C
− 1 1 T

	 (e)	
1

x 2 y
−

1

x
2

1

y
	 (f)	

1yx

ayx 2 byx
−

1

a 2 b

answers to diagnostic test a: algebra

	 1.	� (a)	 81		  (b)	 281	 (c)	 1
81

		� (d)	 25		  (e)	 9
4	 (f)	 1

8

	 2.	� (a)	 6s2 	 (b)	 48a5b7	 (c)	
x

9y7

	 3.	� (a)	 11x 2 2	 (b)	 4x 2 1 7x 2 15

		� (c)	 a 2 b	 (d)	 4x 2 1 12x 1 9

		� (e)	 x 3 1 6x 2 1 12x 1 8

	 4.	� (a)	 s2x 2 5ds2x 1 5d	 (b)	 s2x 2 3dsx 1 4d
		 (c)	 sx 2 3dsx 2 2dsx 1 2d	 (d)	 xsx 1 3dsx 2 2 3x 1 9d
		 (e)	 3x21y2sx 2 1dsx 2 2d	 (f)	 xysx 2 2dsx 1 2d

	 5.	� (a)	
x 1 2

x 2 2
	 (b)	

x 2 1

x 2 3

		 (c)	
1

x 2 2
	 (d)	 2sx 1 yd

	 6.	� (a)	 5s2 1 2s10 	 (b)	
1

s4 1 h 1 2

	 7.	� (a)	 sx 1 1
2d2

1 3
4	 (b)	 2sx 2 3d2 2 7

	 8.	� (a)	 6		  (b)	 1	 (c)	 23, 4

		 (d)	 21 6 1
2s2 	 (e)	 61, 6s2 	 (f)	 2

3, 22
3

		 (g)	 12
5

	 9.	� (a)	 f24, 3d	 (b)	 s22, 4d
		 (c)	 s22, 0d ø s1, `d	 (d)	 s1, 7d
		 (e)	 s21, 4g

	 10.	� (a)	 False	 (b)	 True	 (c)	 False
		 (d)	 False	 (e)	 False	 (f)	 True

If you had difficulty with these problems, you may wish to consult the  
Review of Algebra on the website www.stewartcalculus.com.
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xxviii	 Diagnostic Tests

answers to diagnostic test b: analytic geometry

	 1.	� (a)	 y − 23x 1 1	 (b)	 y − 25

		 (c)	 x − 2	 (d)	 y − 1
2 x 2 6

	 2.	 sx 1 1d2 1 sy 2 4d2 − 52

	 3.	� Center s3, 25d, radius 5

	 4.	� (a)	 24
3

		 (b)	 4x 1 3y 1 16 − 0; x-intercept 24, y-intercept 216
3

		 (c)	 s21, 24d
		 (d)	 20

		 (e)	 3x 2 4y − 13

		  (f)	 sx 1 1d2 1 sy 1 4d2 − 100

	 5.	

6et-dtba05a-f
5.20.06

y

x1 2
0

y

x0

y

x0 4

3

_1

2

y

x
0

y

x0 4_4

y

x0 2

1

(a) (b) (c)

(d) (e) (f)

_1

3
2

_2

y=≈-1

≈+¥=4

 

y=1-   x1
2

B

		  1.	� Find an equation for the line that passes through the point s2, 25d and

	 (a)	 has slope 23

	 (b)	 is parallel to the x-axis

	 (c)	 is parallel to the y-axis

	 (d)	 is parallel to the line 2x 2 4y − 3

		  2.	� Find an equation for the circle that has center s21, 4d and passes through the point s3, 22d.

		  3.	� Find the center and radius of the circle with equation x 2 1 y 2 2 6x 1 10y 1 9 − 0.

		  4.	� Let As27, 4d and Bs5, 212d be points in the plane.

	 (a)	� Find the slope of the line that contains A and B.

	 (b)	� Find an equation of the line that passes through A and B. What are the intercepts?

	 (c)	 Find the midpoint of the segment AB.

	 (d)	 Find the length of the segment AB.

	 (e)	 Find an equation of the perpendicular bisector of AB.

	 (f)	 Find an equation of the circle for which AB  is a diameter.

		  5.	� Sketch the region in the xy-plane defined by the equation or inequalities.

	 (a)	 21 < y < 3	 (b)	 | x | , 4 and | y | , 2

	 (c)	 y , 1 2 1
2 x	 (d)	 y > x 2 2 1

	 (e)	 x 2 1 y 2 , 4	 (f)	 9x 2 1 16y 2 − 144

If you had difficulty with these problems, you may wish to consult  
the review of analytic geometry in Appendixes B and C.
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	D iagnostic Tests	 xxix

C

		  1.	� The graph of a function f  is given at the left.
	 (a)	 State the value of f s21d.
	 (b)	 Estimate the value of f s2d.
	 (c)	 For what values of x is f sxd − 2?
	 (d)	 Estimate the values of x such that f sxd − 0.
	 (e)	 State the domain and range of f.

		  2.	 If f sxd − x 3, evaluate the difference quotient 
f s2 1 hd 2 f s2d

h
 and simplify your answer.

		  3.	 Find the domain of the function.

	 (a)	 f sxd −
2x 1 1

x 2 1 x 2 2
	 (b)	 tsxd −

s3 x 

x 2 1 1
	 (c)	 hsxd − s4 2 x 1 sx 2 2 1

		  4.	 How are graphs of the functions obtained from the graph of f ?

	 (a)	 y − 2f sxd	 (b)	 y − 2 f sxd 2 1	 (c)	 y − f sx 2 3d 1 2

		  5.	 Without using a calculator, make a rough sketch of the graph.

	 (a)	 y − x 3	 (b)	 y − sx 1 1d3	 (c)	 y − sx 2 2d3 1 3

	 (d)	 y − 4 2 x 2	 (e)	 y − sx  	 (f)	 y − 2sx  

	 (g)	 y − 22x	 (h)	 y − 1 1 x21

		  6.	 Let f sxd − H1 2 x 2

2x 1 1

if x < 0

if x . 0

	 (a)	 Evaluate f s22d and f s1d.	 (b)	 Sketch the graph of f.

		  7.	� If f sxd − x 2 1 2x 2 1 and tsxd − 2x 2 3, find each of the following functions.
	 (a)	 f 8 t	 (b)	 t 8 f 	 (c)	 t 8 t 8 t

y

0 x

1

1

Figure For Problem �1

answers to diagnostic test C: functions

	 1.	� (a)	 22		 (b)	 2.8
		�  (c)	 23, 1	 (d)	 22.5, 0.3
		 (e)	 f23, 3g, f22, 3g

	 2.	 12 1 6h 1 h 2

	 3.	� (a)	 s2`, 22d ø s22, 1d ø s1, `d
		 (b)	 s2`, `d
		 (c)	 s2`, 21g ø f1, 4g

	 4.	� (a)	 Reflect about the x-axis
		 (b)	� Stretch vertically by a factor of 2, then shift 1 unit  

downward
		 (c)	 Shift 3 units to the right and 2 units upward

	 5.	

6et-dtCa05a-h
5.20.06

y

x0

(a)

1

1

y(b)

x0

1

_1

(c) y

x0

(2, 3)

y(d)

x0

4

2

(e) y

x0 1

(f ) y

x0 1

(g) y

x
0

1
_1

y(h)

x0

1

1
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xxx	 Diagnostic Tests

   	6.	� (a)	 23, 3		  (b)	

4c3DTCax06b
10/30/08

y

x0_1

1

	 7.	(a)	 s f 8 tdsxd − 4x 2 2 8x 1 2	

		 (b)	 st 8 f dsxd − 2x 2 1 4x 2 5

		 (c)	 st 8 t 8 tdsxd − 8x 2 21

D

		  1.	� Convert from degrees to radians.

	 (a)	 3008 	 (b)	 2188

		  2.	 Convert from radians to degrees.

	 (a)	 5�y6	 (b)	 2

		  3.	� Find the length of an arc of a circle with radius 12 cm if the arc subtends a central angle  
of 308.

		  4.	 Find the exact values.

	 (a)	 tans�y3d	 (b)	 sins7�y6d	 (c)	 secs5�y3d

	 	 5.	� Express the lengths a and b in the figure in terms of �.

		  6.	� If sin x − 1
3 and sec y − 5

4, where x and y lie between 0 and �y2, evaluate sinsx 1 yd.

		  7.	 Prove the identities.

	 (a)	 tan � sin � 1 cos � − sec �	 (b)	
2 tan x

1 1 tan2x
− sin 2x

		  8.	� Find all values of x such that sin 2x − sin x and 0 < x < 2�.

		  9.	� Sketch the graph of the function y − 1 1 sin 2x without using a calculator.

a

¨
b

24

Figure For Problem �5

If you had difficulty with these problems, you should look at Appendix D of this book.

If you had difficulty with these problems, you should look at sections 1.1–1.3 of this book.

answers to diagnostic test D: trigonometry

	 1.	� (a)	 5�y3	 (b)	 2�y10

	 2.	� (a)	 1508 	 (b)	 3608y� < 114.68

	 3.	 2� cm

	 4.	� (a)	 s3 	 (b)	 21
2	 (c)	 2

	 5.	� (a)	 24 sin �	 (b)	 24 cos �

	 6.	 1
15 s4 1 6s2 d

	 8.	 0, �y3, �, 5�y3, 2�

	 9.	

4c3DTDax09
10/30/08

_π π x0

2
y
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1

By the time you finish this course, you will be able to calcu- 
late the length of the curve used to design the Gateway Arch 

in St. Louis, determine where a pilot should start descent  
for a smooth landing, compute the force on a baseball bat 

when it strikes the ball, and measure the amount of light 
sensed by the human eye as the pupil changes size.

A Preview of Calculus

calculus is fundamentally different from the mathematics that you have studied previ-
ously: calculus is less static and more dynamic. It is concerned with change and motion; it deals 
with quantities that approach other quantities. For that reason it may be useful to have an overview 
of the subject before beginning its intensive study. Here we give a glimpse of some of the main 
ideas of calculus by showing how the concept of a limit arises when we attempt to solve a variety 
of problems.
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2	 a preview of calculus

The Area Problem
The origins of calculus go back at least 2500 years to the ancient Greeks, who found 
areas using the “method of exhaustion.” They knew how to find the area A of any poly-
gon by dividing it into triangles as in Figure 1 and adding the areas of these triangles.

It is a much more difficult problem to find the area of a curved figure. The Greek  
method of exhaustion was to inscribe polygons in the figure and circumscribe polygons 
about the figure and then let the number of sides of the polygons increase. Figure 2 illus-
trates this process for the special case of a circle with inscribed regular polygons.

A¡™ ���A¶ ���AßA∞A¢A£

Let An be the area of the inscribed polygon with n sides. As n increases, it appears that 
An becomes closer and closer to the area of the circle. We say that the area of the circle 
is the limit of the areas of the inscribed polygons, and we write

A − lim 
n l `

An

The Greeks themselves did not use limits explicitly. However, by indirect reasoning, 
Eudoxus (fifth century bc) used exhaustion to prove the familiar formula for the area of 
a circle: A − �r 2.

We will use a similar idea in Chapter 5 to find areas of regions of the type shown in 
Figure 3. We will approximate the desired area A by areas of rectangles (as in Figure 4), 
let the width of the rectangles decrease, and then calculate A as the limit of these sums 
of areas of rectangles.

1
n

10 x

y

(1, 1)

10 x

y

(1, 1)

1
4

1
2

3
4

0 x

y

1

(1, 1)

10 x

y

y=≈

A

(1, 1)

The area problem is the central problem in the branch of calculus called integral cal-
culus. The techniques that we will develop in Chapter 5 for finding areas will also enable 
us to compute the volume of a solid, the length of a curve, the force of water against a 
dam, the mass and center of gravity of a rod, and the work done in pumping water out 
of a tank.

The Tangent Problem
Consider the problem of trying to find an equation of the tangent line t to a curve with 
equation y − f sxd at a given point P. (We will give a precise definition of a tangent line in 

A=A¡+A™+A£+A¢+A∞

A¡

A™

A£ A¢

A∞

FIGURE 1

FIGURE 2

TEC � In the Preview Visual, you  
can see how areas of inscribed and 
circumscribed polygons approximate 
the area of a circle.

FIGURE 3 FIGURE 4
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Chapter 2. For now you can think of it as a line that touches the curve at P as in Figure 5.)  
Since we know that the point P lies on the tangent line, we can find the equation of t if we 
know its slope m. The problem is that we need two points to compute the slope and we 
know only one point, P, on t. To get around the problem we first find an approximation 
to m by taking a nearby point Q on the curve and computing the slope mPQ of the secant 
line PQ. From Figure 6 we see that

1 	 mPQ −
 f sxd 2 f sad

x 2 a
	

Now imagine that Q moves along the curve toward P as in Figure 7. You can see that 
the secant line rotates and approaches the tangent line as its limiting position. This means 
that the slope mPQ of the secant line becomes closer and closer to the slope m of the tan-
gent line. We write

m − lim 
Q lP

mPQ

and we say that m is the limit of mPQ as Q approaches P along the curve. Because x 
approaches a as Q approaches P, we could also use Equation 1 to write

2 	 m − lim 
x l a

 
 f sxd 2 f sad

x 2 a
	

Specific examples of this procedure will be given in Chapter 2.
The tangent problem has given rise to the branch of calculus called differential calcu- 

lus, which was not invented until more than 2000 years after integral calculus. The main  
ideas behind differential calculus are due to the French mathematician Pierre Fer-
mat (1601–1665) and were developed by the English mathematicians John Wallis  
(1616–1703), Isaac Barrow (1630–1677), and Isaac Newton (1642–1727) and the Ger-
man mathematician Gottfried Leibniz (1646–1716).

The two branches of calculus and their chief problems, the area problem and the tan-
gent problem, appear to be very different, but it turns out that there is a very close con-
nection between them. The tangent problem and the area problem are inverse problems 
in a sense that will be described in Chapter 5.

Velocity
When we look at the speedometer of a car and read that the car is traveling at 48 miyh, 
what does that information indicate to us? We know that if the velocity remains constant, 
then after an hour we will have traveled 48 mi. But if the velocity of the car varies, what 
does it mean to say that the velocity at a given instant is 48 miyh?

In order to analyze this question, let’s examine the motion of a car that travels along a 
straight road and assume that we can measure the distance traveled by the car (in feet) at  
l-second intervals as in the following chart:

t − Time elapsed ssd 0 1 2 3 4 5

d − Distance sftd 0 2 9 24 42 71

0

y

x

P

y=ƒ

t

P

Q

t

0 x

y

y

0 xa x

ƒ-f(a)P{a, f(a)}

x-a

t

Q{x, ƒ}

FIGURE 5�   
The tangent line at P

FIGURE 6�   
The secant line at PQ

FIGURE 7�   
Secant lines approaching the  
tangent line
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4	 a preview of calculus

As a first step toward finding the velocity after 2 seconds have elapsed, we find the aver-
age velocity during the time interval 2 < t < 4:

 average velocity −
change in position

time elapsed

 −
42 2 9

4 2 2

 − 16.5 ftys

Similarly, the average velocity in the time interval 2 < t < 3 is

average velocity −
24 2 9

3 2 2
− 15 ftys

We have the feeling that the velocity at the instant t − 2 can’t be much different from the 
average velocity during a short time interval starting at t − 2. So let’s imagine that the dis- 
tance traveled has been measured at 0.l-second time intervals as in the following chart:

t 2.0 2.1 2.2 2.3 2.4 2.5

d 9.00 10.02 11.16 12.45 13.96 15.80

Then we can compute, for instance, the average velocity over the time interval f2, 2.5g:

average velocity −
15.80 2 9.00

2.5 2 2
− 13.6 ftys

The results of such calculations are shown in the following chart:

Time interval f2, 3g f2, 2.5g f2, 2.4g f2, 2.3g f2, 2.2g f2, 2.1g

Average velocity sftysd 15.0 13.6 12.4 11.5 10.8 10.2

The average velocities over successively smaller intervals appear to be getting closer to  
a number near 10, and so we expect that the velocity at exactly t − 2 is about 10 ftys. In 
Chapter 2 we will define the instantaneous velocity of a moving object as the limiting value  
of the average velocities over smaller and smaller time intervals.

In Figure 8 we show a graphical representation of the motion of the car by plotting the 
distance traveled as a function of time. If we write d − f std, then f std is the number of 
feet traveled after t seconds. The average velocity in the time interval f2, tg is

average velocity −
change in position

time elapsed
−

 f std 2 f s2d
t 2 2

which is the same as the slope of the secant line PQ in Figure 8. The velocity v when 
t − 2 is the limiting value of this average velocity as t approaches 2; that is,

v − lim 
t l 2

 
 f std 2 f s2d

t 2 2

and we recognize from Equation 2 that this is the same as the slope of the tangent line 
to the curve at P.

t

d

0 1 2 3 4 5

10

20

P{2, f(2)}

Q{ t, f(t)}

FIGURE 8
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	 a preview of calculus 	 5

Thus, when we solve the tangent problem in differential calculus, we are also solving 
problems concerning velocities. The same techniques also enable us to solve problems 
involving rates of change in all of the natural and social sciences.

The Limit of a Sequence
In the fifth century bc the Greek philosopher Zeno of Elea posed four problems, now 
known as Zeno’s paradoxes, that were intended to challenge some of the ideas concerning 
space and time that were held in his day. Zeno’s second paradox concerns a race between 
the Greek hero Achilles and a tortoise that has been given a head start. Zeno argued, as fol- 
lows, that Achilles could never pass the tortoise: Suppose that Achilles starts at position  
a1 and the tortoise starts at position t1. (See Figure 9.) When Achilles reaches the point 
a2 − t1, the tortoise is farther ahead at position t2. When Achilles reaches a3 − t2, the tor- 
toise is at t3. This process continues indefinitely and so it appears that the tortoise will 
always be ahead! But this defies common sense.

Achilles

tortoise

a¡ a™ a£ a¢ a∞

t¡ t™ t£ t¢

. . .

. . .

One way of explaining this paradox is with the idea of a sequence. The successive posi-
tions of Achilles sa1, a2, a3, . . .d or the successive positions of the tortoise st1, t2, t3, . . .d 
form what is known as a sequence.

In general, a sequence hanj is a set of numbers written in a definite order. For instance, 
the sequence

h1, 12 , 13 , 14 , 15 , . . .j

can be described by giving the following formula for the nth term:

an −
1

n

We can visualize this sequence by plotting its terms on a number line as in Fig- 
ure 10(a) or by drawing its graph as in Figure 10(b). Observe from either picture that the 
terms of the sequence an − 1yn are becoming closer and closer to 0 as n increases. In 
fact, we can find terms as small as we please by making n large enough. We say that the 
limit of the sequence is 0, and we indicate this by writing

lim 
n l `

1

n
− 0

In general, the notation

lim 
n l `

an − L

is used if the terms an approach the number L as n becomes large. This means that the num- 
bers an can be made as close as we like to the number L by taking n sufficiently large.

FIGURE 9

1

n1 2 3 4 5 6 7 8

10

a¡a™a£a¢

(a)

(b)

FIGURE 10
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6	 a preview of calculus

The concept of the limit of a sequence occurs whenever we use the decimal represen-
tation of a real number. For instance, if

 a1 − 3.1

 a2 − 3.14

 a3 − 3.141

 a4 − 3.1415

 a5 − 3.14159

 a6 − 3.141592

 a7 − 3.1415926

	 f

then	 lim
n l `

 an − �

The terms in this sequence are rational approximations to �.
Let’s return to Zeno’s paradox. The successive positions of Achilles and the tortoise 

form sequences hanj and htnj, where an , tn for all n. It can be shown that both sequences 
have the same limit:

lim 
n l `

an − p − lim 
n l `

tn

It is precisely at this point p that Achilles overtakes the tortoise.

The Sum of a Series
Another of Zeno’s paradoxes, as passed on to us by Aristotle, is the following: “A man 
standing in a room cannot walk to the wall. In order to do so, he would first have to 
go half the distance, then half the remaining distance, and then again half of what still 
remains. This process can always be continued and can never be ended.” (See Figure 11.)

1
2

1
4

1
8

1
16

Of course, we know that the man can actually reach the wall, so this suggests that per-
haps the total distance can be expressed as the sum of infinitely many smaller distances 
as follows:

3 	 1 −
1

2
1

1

4
1

1

8
1

1

16
1 ∙ ∙ ∙ 1

1

2n 1 ∙ ∙ ∙

FIGURE 11
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	 a preview of calculus	 7

Zeno was arguing that it doesn’t make sense to add infinitely many numbers together. 
But there are other situations in which we implicitly use infinite sums. For instance, in 
decimal notation, the symbol 0.3 − 0.3333 . . . means

3

10
1

3

100
1

3

1000
1

3

10,000
1 ∙ ∙ ∙

and so, in some sense, it must be true that

3

10
1

3

100
1

3

1000
1

3

10,000
1 ∙ ∙ ∙ −

1

3

More generally, if dn denotes the nth digit in the decimal representation of a number, then

0.d1d2 d3 d4 . . . −
d1

10
1

d2

102 1
d3

103 1 ∙ ∙ ∙ 1
dn

10n 1 ∙ ∙ ∙

Therefore some infinite sums, or infinite series as they are called, have a meaning. But 
we must define carefully what the sum of an infinite series is.

Returning to the series in Equation 3, we denote by sn the sum of the first n terms of 
the series. Thus

 s1 − 1
2 − 0.5

 s2 − 1
2 1 1

4 − 0.75

 s3 − 1
2 1 1

4 1 1
8 − 0.875

 s4 − 1
2 1 1

4 1 1
8 1 1

16 − 0.9375

 s5 − 1
2 1 1

4 1 1
8 1 1

16 1 1
32 − 0.96875

 s6 − 1
2 1 1

4 1 1
8 1 1

16 1 1
32 1 1

64 − 0.984375

 s7 − 1
2 1 1

4 1 1
8 1 1

16 1 1
32 1 1

64 1 1
128 − 0.9921875

	 f

 s10 − 1
2 1 1

4 1 ∙ ∙ ∙ 1 1
1024 < 0.99902344

	 f

 s16 −
1

2
1

1

4
1 ∙ ∙ ∙ 1

1

216 < 0.99998474

Observe that as we add more and more terms, the partial sums become closer and closer 
to 1. In fact, it can be shown that by taking n large enough (that is, by adding sufficiently 
many terms of the series), we can make the partial sum sn as close as we please to the num- 
ber 1. It therefore seems reasonable to say that the sum of the infinite series is 1 and to 
write

1

2
1

1

4
1

1

8
1 ∙ ∙ ∙ 1

1

2n 1 ∙ ∙ ∙ − 1
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8	 a preview of calculus

In other words, the reason the sum of the series is 1 is that

lim 
n l `

sn − 1

In Chapter 11 we will discuss these ideas further. We will then use Newton’s idea of 
combining infinite series with differential and integral calculus.

Summary
We have seen that the concept of a limit arises in trying to find the area of a region, the 
slope of a tangent to a curve, the velocity of a car, or the sum of an infinite series. In 
each case the common theme is the calculation of a quantity as the limit of other, easily 
calculated quantities. It is this basic idea of a limit that sets calculus apart from other 
areas of mathematics. In fact, we could define calculus as the part of mathematics that 
deals with limits.

After Sir Isaac Newton invented his version of calculus, he used it to explain the 
motion of the planets around the sun. Today calculus is used in calculating the orbits of 
satellites and spacecraft, in predicting population sizes, in estimating how fast oil prices 
rise or fall, in forecasting weather, in measuring the cardiac output of the heart, in cal-
culating life insurance premiums, and in a great variety of other areas. We will explore 
some of these uses of calculus in this book.

In order to convey a sense of the power of the subject, we end this preview with a list 
of some of the questions that you will be able to answer using calculus:

	 1.	� How can we explain the fact, illustrated in Figure 12, that the angle of elevation 
from an observer up to the highest point in a rainbow is 42°? (See page 285.)

	 2.	� How can we explain the shapes of cans on supermarket shelves? (See page 343.)

	 3.	 Where is the best place to sit in a movie theater? (See page 465.)

	 4.	� How can we design a roller coaster for a smooth ride? (See page 182.)

	 5.	 How far away from an airport should a pilot start descent? (See page 208.)

	 6.	� How can we fit curves together to design shapes to represent letters on a laser 
printer? (See page 657.)

	 7.	� How can we estimate the number of workers that were needed to build the Great 
Pyramid of Khufu in ancient Egypt? (See page 460.)

	 8.	� Where should an infielder position himself to catch a baseball thrown by an 
outfielder and relay it to home plate? (See page 465.)

	 9.	� Does a ball thrown upward take longer to reach its maximum height or to fall 
back to its original height? (See page 609.)

	 10.	� How can we explain the fact that planets and satellites move in elliptical orbits? 
(See page 868.)

	 11.	� How can we distribute water flow among turbines at a hydroelectric station so 
as to maximize the total energy production? (See page 980.)

	 12.	� If a marble, a squash ball, a steel bar, and a lead pipe roll down a slope, which 
of them reaches the bottom first? (See page 1052.)

rays from sun

observer

rays from sun

42°

138°

FIGURE 12
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9

Often a graph is the best 
way to represent a function 
because it conveys so much 

information at a glance. 
Shown is a graph of the 

vertical ground acceleration 
created by the 2011 

earthquake near Tohoku, 
Japan. The earthquake 

had a magnitude of 9.0 on 
the Richter scale and was 

so powerful that it moved 
northern Japan 8 feet closer 

to North America.

Functions and Models

The fundamental objects that we deal with in calculus are functions. This chapter pre­
pares the way for calculus by discussing the basic ideas concerning functions, their graphs, 
and ways of transforming and combining them. We stress that a function can be represented in 
different ways: by an equation, in a table, by a graph, or in words. We look at the main types of 
functions that occur in calculus and describe the process of using these functions as mathematical 
models of real-world phenomena.

1

Pictura Collectus/Alamy

Seismological Society of America
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10	 Chapter 1    Functions and Models

Functions arise whenever one quantity depends on another. Consider the following four 
situations.

A.	� The area A of a circle depends on the radius r of the circle. The rule that connects r 
and A is given by the equation A − �r 2. With each positive number r there is associ­
ated one value of A, and we say that A is a function of r.

B.	� The human population of the world P depends on the time t. The table gives esti­
mates of the world population Pstd at time t, for certain years. For instance,

Ps1950d < 2,560,000,000

But for each value of the time t there is a corresponding value of P, and we say that 
P is a function of t.

C.	� The cost C of mailing an envelope depends on its weight w. Although there is no 
simple formula that connects w and C, the post office has a rule for determining C 
when w is known.

D.	� The vertical acceleration a of the ground as measured by a seismograph during an 
earthquake is a function of the elapsed time t. Figure 1 shows a graph generated by 
seismic activity during the Northridge earthquake that shook Los Angeles in 1994. 
For a given value of t, the graph provides a corresponding value of a.

{cm/s@}

(seconds)5

50

10 15 20 25

a

t

100

30

_50

Calif. Dept. of Mines and Geology

Each of these examples describes a rule whereby, given a number (r, t, w, or t), 
another number (A, P, C, or a) is assigned. In each case we say that the second number 
is a function of the first number.

A function f  is a rule that assigns to each element x in a set D exactly one 
element, called f sxd, in a set E.

We usually consider functions for which the sets D and E are sets of real numbers. 
The set D is called the domain of the function. The number f sxd is the value of f  at x 
and is read “ f  of x.” The range of f  is the set of all possible values of f sxd as x varies 
throughout the domain. A symbol that represents an arbitrary number in the domain of a 
function f  is called an independent variable. A symbol that represents a number in the 
range of f  is called a dependent variable. In Example A, for instance, r is the indepen­
dent variable and A is the dependent variable.

Year
Population 
(millions)

1900 1650
1910 1750
1920 1860
1930 2070
1940 2300
1950 2560
1960 3040
1970 3710
1980 4450
1990 5280
2000 6080
2010 6870

FIGURE 1
Vertical ground acceleration  

during the Northridge earthquake
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	 Section  1.1    Four Ways to Represent a Function	 11

It’s helpful to think of a function as a machine (see Figure 2). If x is in the domain of 
the function f, then when x enters the machine, it’s accepted as an input and the machine 
produces an output f sxd according to the rule of the function. Thus we can think of the 
domain as the set of all possible inputs and the range as the set of all possible outputs.

The preprogrammed functions in a calculator are good examples of a function as a 
machine. For example, the square root key on your calculator computes such a function. 
You press the key labeled s   (or sx ) and enter the input x. If x , 0, then x is not in the 
domain of this function; that is, x is not an acceptable input, and the calculator will indi­
cate an error. If x > 0, then an approximation to sx  will appear in the display. Thus the 
sx  key on your calculator is not quite the same as the exact mathematical function f  
defined by f sxd − sx .

Another way to picture a function is by an arrow diagram as in Figure 3. Each arrow 
connects an element of D to an element of E. The arrow indicates that f sxd is associated 
with x, f sad is associated with a, and so on.

The most common method for visualizing a function is its graph. If f  is a function 
with domain D, then its graph is the set of ordered pairs

hsx, f sxdd | x [ Dj

(Notice that these are input-output pairs.) In other words, the graph of f  consists of all 
points sx, yd in the coordinate plane such that y − f sxd and x is in the domain of f.

The graph of a function f  gives us a useful picture of the behavior or “life history” 
of a function. Since the y-coordinate of any point sx, yd on the graph is y − f sxd, we can 
read the value of f sxd from the graph as being the height of the graph above the point x 
(see Figure 4). The graph of f  also allows us to picture the domain of f  on the x-axis and 
its range on the y-axis as in Figure 5.

0

y � ƒ(x)

domain

range

{x, ƒ}

ƒ

f(1)
f(2)

0 1 2 x xx

y y

Example �1�  The graph of a function f  is shown in Figure 6.
(a)  Find the values of f s1d and f s5d.
(b)  What are the domain and range of f ?

Solution
(a)  We see from Figure 6 that the point s1, 3d lies on the graph of f, so the value of f  
at 1 is f s1d − 3. (In other words, the point on the graph that lies above x − 1 is 3 units 
above the x-axis.)

When x − 5, the graph lies about 0.7 units below the x-axis, so we estimate that 
f s5d < 20.7.

(b)  We see that f sxd is defined when 0 < x < 7, so the domain of f  is the closed inter­
val f0, 7g. Notice that f  takes on all values from 22 to 4, so the range of f  is

	 hy | 22 < y < 4j − f22, 4g	 ■

x
(input)

ƒ
(output)

f

FIGURE 2
Machine diagram for a function f  

f
D E

ƒ

f(a)a

x

FIGURE 3
Arrow diagram for f  

FIGURE 4 FIGURE 5

x

y

0

1

1

FIGURE 6

The notation for intervals is given in 
Appendix A.
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12	 Chapter 1    Functions and Models

Example �2�  Sketch the graph and find the domain and range of each function.
(a)  fsxd − 2x 2 1	 (b)  tsxd − x 2

Solution
(a)  The equation of the graph is y − 2x 2 1, and we recognize this as being the equa­
tion of a line with slope 2 and y-intercept 21. (Recall the slope-intercept form of the 
equation of a line: y − mx 1 b. See Appendix B.) This enables us to sketch a portion 
of the graph of f  in Figure 7. The expression 2x 2 1 is defined for all real numbers, so 
the domain of f  is the set of all real numbers, which we denote by R. The graph shows 
that the range is also R.

(b)  Since ts2d − 22 − 4 and ts21d − s21d2 − 1, we could plot the points s2, 4d and 
s21, 1d, together with a few other points on the graph, and join them to produce the 
graph (Figure 8). The equation of the graph is y − x 2, which represents a parabola (see 
Appendix C). The domain of t is R. The range of t consists of all values of tsxd, that is, 
all numbers of the form x 2. But x 2 > 0 for all numbers x and any positive number y is a 
square. So the range of t is hy | y > 0j − f0, `d. This can also be seen from Figure 8. ■

Example �3�  If f sxd − 2x 2 2 5x 1 1 and h ± 0, evaluate 
f sa 1 hd 2 f sad

h
.

Solution � We first evaluate f sa 1 hd by replacing x by a 1 h in the expression for f sxd:

f sa 1 hd − 2sa 1 hd2 2 5sa 1 hd 1 1

  − 2sa2 1 2ah 1 h2d 2 5sa 1 hd 1 1

  − 2a2 1 4ah 1 2h2 2 5a 2 5h 1 1

Then we substitute into the given expression and simplify:

f sa 1 hd 2 f sad
h

−
s2a2 1 4ah 1 2h2 2 5a 2 5h 1 1d 2 s2a2 2 5a 1 1d

h

  −
2a2 1 4ah 1 2h2 2 5a 2 5h 1 1 2 2a2 1 5a 2 1

h

−
4ah 1 2h2 2 5h

h
− 4a 1 2h 2 5

■

Representations of Functions
There are four possible ways to represent a function:

●  verbally	 (by a description in words)
●  numerically	 (by a table of values)
●  visually	 (by a graph)
●  algebraically    (by an explicit formula)

If a single function can be represented in all four ways, it’s often useful to go from one 
representation to another to gain additional insight into the function. (In Example 2, for 
instance, we started with algebraic formulas and then obtained the graphs.) But certain 
functions are described more naturally by one method than by another. With this in mind, 
let’s reexamine the four situations that we considered at the beginning of this section.

x

y=2x-1

0
-1

y

1
2

FIGURE 7

(_1, 1)

(2, 4)

0

y

1

x1

y=≈

FIGURE 8

The expression

f sa 1 hd 2 f sad
h

in Example 3 is called a difference 
quotient and occurs frequently in 
calculus. As we will see in Chapter 
2, it represents the average rate of 
change of f sxd between x − a and 
x − a 1 h.
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	 Section  1.1    Four Ways to Represent a Function	 13

A.	� The most useful representation of the area of a circle as a function of its radius is 
probably the algebraic formula Asrd − �r 2, though it is possible to compile a table 
of values or to sketch a graph (half a parabola). Because a circle has to have a posi­
tive radius, the domain is hr | r . 0j − s0, `d, and the range is also s0, `d.

B.	� We are given a description of the function in words: Pstd is the human population of 
the world at time t. Let’s measure t so that t − 0 corresponds to the year 1900. The 
table of values of world population provides a convenient representation of this func­
tion. If we plot these values, we get the graph (called a scatter plot) in Figure 9. It 
too is a useful representation; the graph allows us to absorb all the data at once. What 
about a formula? Of course, it’s impossible to devise an explicit formula that gives 
the exact human population Pstd at any time t. But it is possible to find an expression 
for a function that approximates Pstd. In fact, using methods explained in Section 
1.2, we obtain the approximation

Pstd < f std − s1.43653 3 109d ∙ s1.01395dt

��Figure 10 shows that it is a reasonably good “fit.” The function f  is called a mathe-
matical model for population growth. In other words, it is a function with an explicit 
formula that approximates the behavior of our given function. We will see, however, 
that the ideas of calculus can be applied to a table of values; an explicit formula is 
not necessary. 

5x10' 5x10'

P

t20 40 60 80 100 120 20 40 60
Years since 1900Years since 1900

80 100 120

P

t0 0

FIGURE 9 FIGURE 10

The function P is typical of the functions that arise whenever we attempt to apply 
calculus to the real world. We start with a verbal description of a function. Then we 
may be able to construct a table of values of the function, perhaps from instrument 
readings in a scientific experiment. Even though we don’t have complete knowledge 
of the values of the function, we will see throughout the book that it is still possible 
to perform the operations of calculus on such a function.

C.	� Again the function is described in words: Let Cswd be the cost of mailing a large enve­
lope with weight w. The rule that the US Postal Service used as of 2015 is as follows: 
The cost is 98 cents for up to 1 oz, plus 21 cents for each additional ounce (or less) 
up to 13 oz. The table of values shown in the margin is the most convenient repre­
sentation for this function, though it is possible to sketch a graph (see Example 10).

D.	� The graph shown in Figure 1 is the most natural representation of the vertical accel­
eration function astd. It’s true that a table of values could be compiled, and it is 
even possible to devise an approximate formula. But everything a geologist needs to 

t 
(years

since 1900)
Population 
(millions)

0 1650
10 1750
20 1860
30 2070
40 2300
50 2560
60 3040
70 3710
80 4450
90 5280

100 6080
110 6870

A function defined by a table of 
values is called a tabular function.

w (ounces) Cswd (dollars)

0 , w < 1  0.98

1 , w < 2  1.19

2 , w < 3  1.40

3 , w < 4  1.61

4 , w < 5  1.82
∙  ∙
∙  ∙
∙  ∙
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14	 Chapter 1    Functions and Models

PS   In setting up applied functions as 
in Example 5, it may be useful to review 
the principles of problem solving as 
discussed on page 71, particularly  
Step 1: Understand the Problem.

know— amplitudes and patterns — can be seen easily from the graph. (The same is  
true for the patterns seen in electrocardiograms of heart patients and polygraphs for 
lie-detection.)

In the next example we sketch the graph of a function that is defined verbally.

Example �4�  When you turn on a hot-water faucet, the temperature T  of the water 
depends on how long the water has been running. Draw a rough graph of T  as a func­
tion of the time t that has elapsed since the faucet was turned on.

SOLUTION � The initial temperature of the running water is close to room temperature 
because the water has been sitting in the pipes. When the water from the hot-water tank 
starts flowing from the faucet, T  increases quickly. In the next phase, T  is constant at 
the temperature of the heated water in the tank. When the tank is drained, T  decreases 
to the temperature of the water supply. This enables us to make the rough sketch of T  
as a function of t in Figure 11.	 ■

In the following example we start with a verbal description of a function in a physical 
situation and obtain an explicit algebraic formula. The ability to do this is a useful skill 
in solving calculus problems that ask for the maximum or minimum values of quantities.

Example �5�  A rectangular storage container with an open top has a volume of  
10 m3. The length of its base is twice its width. Material for the base costs $10 per 
square meter; material for the sides costs $6 per square meter. Express the cost of mate­
rials as a function of the width of the base.

SOLUTION � We draw a diagram as in Figure 12 and introduce notation by letting w and 
2w be the width and length of the base, respectively, and h be the height. 

The area of the base is s2wdw − 2w2, so the cost, in dollars, of the material for the 
base is 10s2w2 d. Two of the sides have area wh and the other two have area 2wh, so the 
cost of the material for the sides is 6f2swhd 1 2s2whdg. The total cost is therefore

C − 10s2w2 d 1 6f2swhd 1 2s2whdg − 20w2 1 36wh

�To express C as a function of w alone, we need to eliminate h and we do so by using 
the fact that the volume is 10 m3. Thus

ws2wdh − 10

which gives 	  h −
10

2w2 −
5

w2

Substituting this into the expression for C, we have

C − 20w2 1 36wS 5

w2D − 20w2 1
180

w

Therefore the equation

Cswd − 20w2 1
180

w
        w . 0

expresses C as a function of w.	 ■

Example �6�  Find the domain of each function.

(a)  f sxd − sx 1 2                   (b)  tsxd −
1

x 2 2 x

t

T

0

FIGURE 11

w

2w

h

FIGURE 12
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SOLUTION
(a)  Because the square root of a negative number is not defined (as a real number), 
the domain of f  consists of all values of x such that x 1 2 > 0. This is equivalent to 
x > 22, so the domain is the interval f22, `d.
(b)  Since

tsxd −
1

x 2 2 x
−

1

xsx 2 1d

and division by 0 is not allowed, we see that tsxd is not defined when x − 0 or x − 1. 
Thus the domain of t is

hx | x ± 0, x ± 1j

which could also be written in interval notation as

	 s2`, 0d ø s0, 1d ø s1, `d	 ■

The graph of a function is a curve in the xy-plane. But the question arises: Which 
curves in the xy-plane are graphs of functions? This is answered by the following test.

The Vertical Line Test  A curve in the xy-plane is the graph of a function of x if 
and only if no vertical line intersects the curve more than once.

The reason for the truth of the Vertical Line Test can be seen in Figure 13. If each 
vertical line x − a intersects a curve only once, at sa, bd, then exactly one function value 
is defined by f sad − b. But if a line x − a intersects the curve twice, at sa, bd and sa, cd,  
then the curve can’t represent a function because a function can’t assign two different 
values to a.

For example, the parabola x − y 2 2 2 shown in Figure 14(a) is not the graph of a 
function of x because, as you can see, there are vertical lines that intersect the parabola 
twice. The parabola, however, does contain the graphs of two functions of x. Notice 
that the equation x − y 2 2 2 implies y 2 − x 1 2, so y − 6sx 1 2 . Thus the upper 
and lower halves of the parabola are the graphs of the functions f sxd − sx 1 2  [from 
Example 6(a)] and tsxd − 2sx 1 2 . [See Figures 14(b) and (c).] 

We observe that if we reverse the roles of x and y, then the equation x − hsyd − y 2 2 2 
does define x as a function of y (with y as the independent variable and x as the depen­
dent variable) and the parabola now appears as the graph of the function h.

(b) y=œ„„„„x+2

_2 0 x

y

(_2, 0)

(a) x=¥-2

0 x

y

(c) y=_œ„„„„x+2

_2
0

y

x

Piecewise Defined Functions
The functions in the following four examples are defined by different formulas in dif­
ferent parts of their domains. Such functions are called piecewise defined functions.

a

x=a

(a, b)

0

a

(a, c)

(a, b)

x=a

0 x

y

x

y

(a) This curve represents a function.

(b) This curve doesn’t represent
     a function.

FIGURE 13

FIGURE 14

Domain Convention
If a function is given by a formula 
and the domain is not stated explic­
itly, the convention is that the domain 
is the set of all numbers for which 
the formula makes sense and defines 
a real number.
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16	 Chapter 1    Functions and Models

Example �7 � A function f  is defined by

f sxd − H1 2 x

x 2

if  x < 21

if  x . 21

Evaluate f s22d, f s21d, and f s0d and sketch the graph.

Solution � Remember that a function is a rule. For this particular function the rule is 
the following: First look at the value of the input x. If it happens that x < 21, then the 
value of f sxd is 1 2 x. On the other hand, if x . 21, then the value of f sxd is x 2.

Since 22 < 21, we have f s22d − 1 2 s22d − 3.

Since 21 < 21, we have f s21d − 1 2 s21d − 2.

Since 0 . 21, we have f s0d − 02 − 0.

How do we draw the graph of f ? We observe that if x < 21, then f sxd − 1 2 x,  
so the part of the graph of f  that lies to the left of the vertical line x − 21 must coin­
cide with the line y − 1 2 x, which has slope 21 and y-intercept 1. If x . 21,  
then f sxd − x 2, so the part of the graph of f  that lies to the right of the line x − 21 
must coincide with the graph of y − x 2, which is a parabola. This enables us to sketch 
the graph in Figure 15. The solid dot indicates that the point s21, 2d is included on the 
graph; the open dot indicates that the point s21, 1d is excluded from the graph.	 ■

The next example of a piecewise defined function is the absolute value function. 
Recall that the absolute value of a number a, denoted by | a |, is the distance from a to 0 
on the real number line. Distances are always positive or 0, so we have

| a | > 0        for every number a

For example,

| 3 | − 3      | 23 | − 3      | 0 | − 0      | s2 2 1 | − s2 2 1      | 3 2 � | − � 2 3

In general, we have

| a | − a    if  a > 0

| a | − 2a  if  a , 0

(Remember that if a is negative, then 2a is positive.)

Example �8 � Sketch the graph of the absolute value function f sxd − | x |.
SOLUTION � From the preceding discussion we know that

| x | − Hx

2x

if  x > 0

if  x , 0

Using the same method as in Example 7, we see that the graph of f  coincides with the 
line y − x to the right of the y-axis and coincides with the line y − 2x to the left of the 
y-axis (see Figure 16).	 ■

1

x

y

1_1 0

FIGURE 15

For a more extensive review of 
absolute values, see Appendix A.

x

y=| x |

0

y

FIGURE 16
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Point-slope form of the equation of 
a line:

y 2 y1 − msx 2 x1 d

See Appendix B.

Example �9�  Find a formula for the function f  graphed in Figure 17.

SOLUTION � The line through s0, 0d and s1, 1d has slope m − 1 and y-intercept b − 0, 
so its equation is y − x. Thus, for the part of the graph of f  that joins s0, 0d to s1, 1d, 
we have

f sxd − x        if  0 < x < 1

The line through s1, 1d and s2, 0d has slope m − 21, so its point-slope form is

y 2 0 − s21dsx 2 2d        or        y − 2 2 x

So we have 	 f sxd − 2 2 x        if  1 , x < 2

We also see that the graph of f  coincides with the x-axis for x . 2. Putting this infor-
mation together, we have the following three-piece formula for f :

f sxd − Hx

2 2 x

0

if  0 < x < 1

if  1 , x < 2

if  x . 2 ■

Example �10�  In Example C at the beginning of this section we considered the cost 
Cswd of mailing a large envelope with weight w. In effect, this is a piecewise defined 
function because, from the table of values on page 13, we have

Cswd −    

0.98

1.19

1.40

1.61

if  0 , w < 1

if  1 , w < 2

if  2 , w < 3

if  3 , w < 4
	 ∙
	 ∙
	 ∙

��The graph is shown in Figure 18. You can see why functions similar to this one are 
called step functions—they jump from one value to the next. Such functions will be 
studied in Chapter 2.	 ■

Symmetry
If a function f  satisfies f s2xd − f sxd for every number x in its domain, then f  is called 
an even function. For instance, the function f sxd − x 2 is even because

f s2xd − s2xd2 − x 2 − f sxd

The geometric significance of an even function is that its graph is symmetric with respect 
to the y-axis (see Figure 19). This means that if we have plotted the graph of f  for x > 0, 
we obtain the entire graph simply by reflecting this portion about the y-axis.

If f  satisfies f s2xd − 2f sxd for every number x in its domain, then f  is called an odd 
function. For example, the function f sxd − x 3 is odd because

f s2xd − s2xd3 − 2x 3 − 2f sxd

x

y

0 1

1

FIGURE 17

FIGURE 19�   
An even function

0 x_x

f(_x) ƒ

x

y

C

0.50

1.00

1.50

0 1 2 3 54 w

figure 18
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18	 Chapter 1    Functions and Models

The graph of an odd function is symmetric about the origin (see Figure 20). If we already 
have the graph of f  for x > 0, we can obtain the entire graph by rotating this portion 
through 1808 about the origin.

Example �11�  Determine whether each of the following functions is even, odd, or 
neither even nor odd.
(a)  f sxd − x 5 1 x      (b)  tsxd − 1 2 x 4      (c)  hsxd − 2x 2 x 2 

SOLUTION
(a)	 f s2xd − s2xd5 1 s2xd − s21d5x 5 1 s2xd

 − 2x 5 2 x − 2sx 5 1 xd

 − 2f sxd

Therefore f  is an odd function.

(b)	 ts2xd − 1 2 s2xd4 − 1 2 x 4 − tsxd
So t is even.

(c)	 hs2xd − 2s2xd 2 s2xd2 − 22x 2 x 2

Since hs2xd ± hsxd and hs2xd ± 2hsxd, we conclude that h is neither even nor odd.	 ■

The graphs of the functions in Example 11 are shown in Figure 21. Notice that the 
graph of h is symmetric neither about the y-axis nor about the origin.

1

1 x

y

h1

1

y

x

g1

_1

1

y

x

f

_1

(a) (b) (c)

Increasing and Decreasing Functions
The graph shown in Figure 22 rises from A to B, falls from B to C, and rises again from C 
to D. The function f  is said to be increasing on the interval fa, bg, decreasing on fb, cg, 
and increasing again on fc, dg. Notice that if x1 and x2 are any two numbers between  
a and b with x1 , x2, then f sx1 d , f sx2 d. We use this as the defining property of an 
increasing function.

A

B

C

D

y=ƒ

f(x¡)

a

y

0 xx¡ x™ b c d

f(x™)

FIGURE 20   
An odd function

0
x

_x ƒ
x

y

figure 21

figure 22
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A function f  is called increasing on an interval I if

f sx1 d , f sx2 d      whenever x1 , x2 in I

It is called decreasing on I if

f sx1 d . f sx2 d      whenever x1 , x2 in I

In the definition of an increasing function it is important to realize that the inequality 
f sx1 d , f sx2 d must be satisfied for every pair of numbers x1 and x2 in I with x1 , x2.

You can see from Figure 23 that the function f sxd − x 2 is decreasing on the interval 
s2`, 0g and increasing on the interval f0, `d.figure 23

0

y

x

y=≈

	1 .	�� If f sxd − x 1 s2 2 x  and tsud − u 1 s2 2 u , is it true  
that f − t?

	2 .	�� If

f sxd −
x 2 2 x

x 2 1
        and        tsxd − x

is it true that f − t?

	3 .	�� The graph of a function f  is given.
	 (a)	 State the value of f s1d.
	 (b)	 Estimate the value of f s21d.
	 (c)	 For what values of x is f sxd − 1?
	 (d)	 Estimate the value of x such that f sxd − 0.
	 (e)	 State the domain and range of f.
	 (f) 	 On what interval is f  increasing?

y

0 x1

1

	 4.	�� The graphs of f  and t are given.

g

x

y

0

f
2

2

	 (a)	 State the values of f s24d and ts3d.
	 (b)	 For what values of x is f sxd − tsxd?

	 (c)	 Estimate the solution of the equation f sxd − 21.
	 (d)	 On what interval is f  decreasing?
	 (e)	 State the domain and range of f.
	 (f) 	 State the domain and range of t.

	5 .	�� Figure 1 was recorded by an instrument operated by the 
California Department of Mines and Geology at the University 
Hospital of the University of Southern California in Los 
Angeles. Use it to estimate the range of the vertical ground 
acceleration function at USC during the Northridge earthquake.

	6 .	�� In this section we discussed examples of ordinary, everyday 
functions: Population is a function of time, postage cost is a 
function of weight, water temperature is a function of time. Give 
three other examples of functions from everyday life that are 
described verbally. What can you say about the domain and 
range of each of your functions? If possible, sketch a rough 
graph of each function.

7–10 � �Determine whether the curve is the graph of a function of x.  
If it is, state the domain and range of the function.

7.	 8. y

x0 1

1

y

x0

1

1

y

x0 1

1

y

x0 1

1

	 9.	10 .

1.1�  Exercises
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20	 Chapter 1    Functions and Models

	11.	�� Shown is a graph of the global average temperature T during 
the 20th century. Estimate the following.

	 (a)	 The global average temperature in 1950
	 (b)	 The year when the average temperature was 14.2°C
	 (c)	 The year when the temperature was smallest? Largest?
	 (d)	 The range of T

t

T (•C)

1900 1950 2000

13

14

Source: Adapted from Globe and Mail [Toronto], 5 Dec. 2009. Print.

	12.	�� Trees grow faster and form wider rings in warm years and 
grow more slowly and form narrower rings in cooler years. The 
figure shows ring widths of a Siberian pine from 1500 to 2000.

	 (a)	 What is the range of the ring width function?
	 (b)	� What does the graph tend to say about the temperature 

of the earth? Does the graph reflect the volcanic erup-
tions of the mid-19th century?

R
in

g 
w

id
th

 (
m

m
)

1.6
1.4
1.2

1
0.8
0.6
0.4
0.2

0
1500 1600 1700 1800 1900

Year

2000 t

R

Source: Adapted from G. Jacoby et al., “Mongolian Tree Rings and 20th-
Century Warming,” Science 273 (1996): 771–73.

	13.	�� You put some ice cubes in a glass, fill the glass with cold water, 
and then let the glass sit on a table. Describe how the tempera-
ture of the water changes as time passes. Then sketch a rough 
graph of the temperature of the water as a function of the 
elapsed time.

	14.	�� Three runners compete in a 100-meter race. The graph 
depicts the distance run as a function of time for each runner. 
Describe in words what the graph tells you about this race. 
Who won the race? Did each runner finish the race?

0

100

20

A B C
y

	15.	�� The graph shows the power consumption for a day in Septem-
ber in San Francisco. (P is measured in megawatts; t is mea
sured in hours starting at midnight.)

	 (a)	 What was the power consumption at 6 am? At 6 pm?
	 (b)	� When was the power consumption the lowest? When was 

it the highest? Do these times seem reasonable?

P

0 181512963 t21

400

600

800

200

Pacific Gas & Electric

	16.	�� Sketch a rough graph of the number of hours of daylight as a 
function of the time of year.

	17.	�� Sketch a rough graph of the outdoor temperature as a function 
of time during a typical spring day.

	18.	�� �Sketch a rough graph of the market value of a new car as a 
function of time for a period of 20 years. Assume the car is 
well maintained.

	19.	�� Sketch the graph of the amount of a particular brand of coffee 
sold by a store as a function of the price of the coffee.

	20.	�� You place a frozen pie in an oven and bake it for an hour. 
Then you take it out and let it cool before eating it. Describe 
how the temperature of the pie changes as time passes. 
Then sketch a rough graph of the temperature of the pie as a 
function of time.

	21.	�� A homeowner mows the lawn every Wednesday afternoon. 
Sketch a rough graph of the height of the grass as a function 
of time over the course of a four-week period.

	22.	�� An airplane takes off from an airport and lands an hour later 
at another airport, 400 miles away. If t represents the time in 
minutes since the plane has left the terminal building, let xstd 
be the horizontal distance traveled and ystd be the altitude of 
the plane.

	 (a)	 Sketch a possible graph of xstd.
	 (b)	 Sketch a possible graph of ystd.
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	 (c)	 Sketch a possible graph of the ground speed.
	 (d)	 Sketch a possible graph of the vertical velocity.

	23.	�� Temperature readings T (in °F) were recorded every two hours 
from midnight to 2:00 pm in Atlanta on June 4, 2013. The time 
t was measured in hours from midnight.

t 0 2  4  6 8 10 12 14

T 74 69 68 66 70 78 82 86

	 (a)	� Use the readings to sketch a rough graph of T as a function 
of t.

	 (b)	� Use your graph to estimate the temperature at 9:00 am.

	24.	�� Researchers measured the blood alcohol concentration (BAC) 
of eight adult male subjects after rapid consumption of 30 mL 
of ethanol (corresponding to two standard alcoholic drinks). 
The table shows the data they obtained by averaging the BAC 
(in mgymL) of the eight men.

	 (a)	� Use the readings to sketch the graph of the BAC as a 
function of t.

	 (b)	� Use your graph to describe how the effect of alcohol  
varies with time.

t (hours) BAC t (hours) BAC

0 0 	 1.75 0.22
0.2 0.25 	 2.0 0.18
0.5 0.41 	 2.25 0.15
0.75 0.40 	 2.5 0.12
1.0 0.33 	 3.0 0.07
1.25 0.29 	 3.5 0.03
1.5 0.24 	 4.0 0.01

Source: Adapted from P. Wilkinson et al., “Pharmacokinetics of Ethanol after 
Oral Administration in the Fasting State,” Journal of Pharmacokinetics and 
Biopharmaceutics 5 (1977): 207–24.

	25.	�� If f sxd − 3x 2 2 x 1 2, find f s2d,   f s22d,   f sad,   f s2ad,  
f sa 1 1d, 2 f sad,   f s2ad,   f sa2d, [ f sad]2, and   f sa 1 hd.

	26.	�� A spherical balloon with radius r inches has volume 
Vsrd − 4

3 �r 3. Find a function that represents the amount of 
air required to inflate the balloon from a radius of r inches 
to a radius of r 1 1 inches.

27–30 � Evaluate the difference quotient for the given function.  
Simplify your answer.

	27.	 f sxd − 4 1 3x 2 x 2,      
f s3 1 hd 2 f s3d

h

	28.	� f sxd − x 3,      
f sa 1 hd 2 f sad

h
	

29.	�	 f sxd −
1

x
,      

f sxd 2 f sad
x 2 a

	30.	� f sxd −
x 1 3

x 1 1
,      

f sxd 2 f s1d
x 2 1

31–37 � Find the domain of the function.

	31.	 f sxd −
x 1 4

x 2 2 9
	32 .	 f sxd −

2x 3 2 5

x 2 1 x 2 6

	33.	 f std − s3 2t 2 1 	3 4.	 tstd − s3 2 t 2 s2 1 t 

	35.	 hsxd −
1

s4 x 2 2 5x 
	36 .	 f sud −

u 1 1

1 1
1

u 1 1
	37.	 Fspd − s2 2 sp  

	38.	�� Find the domain and range and sketch the graph of the  
function hsxd − s4 2 x 2 .

39–40 � Find the domain and sketch the graph of the function.

	39.	 f sxd − 1.6x 2 2.4	 40.	 tstd −
t 2 2 1

t 1 1

41–44 � Evaluate f s23d, f s0d, and f s2d for the piecewise defined 
function. Then sketch the graph of the function.

	41.	 f sxd − Hx 1 2

1 2 x

if  x , 0

if  x > 0

	42.	 f sxd − H3 2 1
2 x

2x 2 5

if  x , 2

if  x > 2

	43.	 f sxd − Hx 1 1

x 2

if  x < 21

if  x . 21

	44.	 f sxd − H21

7 2 2x

if  x < 1

if  x . 1

45–50 � Sketch the graph of the function.

	45.	 f sxd − x 1 | x |	 46.	 f sxd − | x 1 2 |
	47.	 tstd − |1 2 3t |	 48.	 hstd − | t | 1 | t 1 1|
	49.	 f sxd − H| x |

1

if  | x | < 1

if  | x | . 1
	50 .	 tsxd − || x | 2 1|

51–56 � Find an expression for the function whose graph is the  
given curve.

	51.	�� The line segment joining the points s1, 23d and s5, 7d

	52.	�� The line segment joining the points s25, 10d and s7, 210d

	53.	�� The bottom half of the parabola x 1 sy 2 1d2 − 0

	54.	�� The top half of the circle x 2 1 sy 2 2d2 − 4
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22	 Chapter 1    Functions and Models

	55.  y

0 x

1

1

 56 .  y

0 x

1

1

57–61 � Find a formula for the described function and state its 
domain.

	57.	�� A rectangle has perimeter 20 m. Express the area of the 
rectangle as a function of the length of one of its sides.

	58.	�� A rectangle has area 16 m2. Express the perimeter of the rect­
angle as a function of the length of one of its sides.

	59.	�� Express the area of an equilateral triangle as a function of the 
length of a side.

	60.	�� A closed rectangular box with volume 8 ft3 has length twice the 
width. Express the height of the box as a function of the width.

	61.	�� An open rectangular box with volume 2 m3 has a square base. 
Express the surface area of the box as a function of the length 
of a side of the base.

	62.	�� A Norman window has the shape of a rectangle surmounted 
by a semicircle. If the perimeter of the window is 30 ft, 
express the area A of the window as a function of the width 
x of the window.

x

	63.	�� A box with an open top is to be constructed from a rectan­
gular piece of cardboard with dimensions 12 in. by 20 in. 
by cutting out equal squares of side x at each corner and 
then folding up the sides as in the figure. Express the vol­
ume V of the box as a function of x.

20

12
x

x

x

x

x x

x x

	64.	�� A cell phone plan has a basic charge of $35 a month. The 
plan includes 400 free minutes and charges 10 cents for each 
additional minute of usage. Write the monthly cost C as a 
function of the number x of minutes used and graph C as a 
function of x for 0 < x < 600.

	65.	�� In a certain state the maximum speed permitted on freeways 
is 65 miyh and the minimum speed is 40 miyh. The fine for 
violating these limits is $15 for every mile per hour above the 
maximum speed or below the minimum speed. Express the 
amount of the fine F as a function of the driving speed x and 
graph Fsxd for 0 < x < 100.

	66.	�� An electricity company charges its customers a base rate 
of $10 a month, plus 6 cents per kilowatt-hour (kWh) for 
the first 1200 kWh and 7 cents per kWh for all usage over 
1200 kWh. Express the monthly cost E as a function of the 
amount x of electricity used. Then graph the function E for 
0 < x < 2000.

	67.	�� In a certain country, income tax is assessed as follows. There 
is no tax on income up to $10,000. Any income over $10,000 
is taxed at a rate of 10%, up to an income of $20,000. Any 
income over $20,000 is taxed at 15%.

	 (a)	� Sketch the graph of the tax rate R as a function of the 
income I.

	 (b)	� How much tax is assessed on an income of $14,000?  
On $26,000?

	 (c)	� Sketch the graph of the total assessed tax T as a function 
of the income I.

	68.	�� The functions in Example 10 and Exercise 67 are called step 
functions because their graphs look like stairs. Give two other 
examples of step functions that arise in everyday life.

69–70 � Graphs of f  and t are shown. Decide whether each func­
tion is even, odd, or neither. Explain your reasoning.

	69.  y

x

f

g
  70.  y

x

f

g

	71.	� (a)	� If the point s5, 3d is on the graph of an even function, 
what other point must also be on the graph?

	 (b)	� If the point s5, 3d is on the graph of an odd function, what 
other point must also be on the graph?

	72.	� �A function f  has domain f25, 5g and a portion of its graph  
is shown.

	 (a)	 Complete the graph of f  if it is known that f  is even.
	 (b)	 Complete the graph of f  if it is known that f  is odd.
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x0

y

5_5

73–78 � Determine whether f  is even, odd, or neither. If you have  
a graphing calculator, use it to check your answer visually.

	73.	 f sxd −
x

x 2 1 1
	 74.	 f sxd −

x 2

x 4 1 1

	75.	 f sxd −
x

x 1 1
	 76.	 f sxd − x | x |

	77.	 f sxd − 1 1 3x 2 2 x 4

	78.	 f sxd − 1 1 3x 3 2 x 5

	79.	�� If f  and t are both even functions, is f 1 t even? If f  and t 
are both odd functions, is f 1 t odd? What if f  is even and t is 
odd? Justify your answers.

	80.	�� If f  and t are both even functions, is the product ft even? If f  
and t are both odd functions, is ft odd? What if f  is even and  
t is odd? Justify your answers.

A mathematical model is a mathematical description (often by means of a function or 
an equation) of a real-world phenomenon such as the size of a population, the demand 
for a product, the speed of a falling object, the concentration of a product in a chemical 
reaction, the life expectancy of a person at birth, or the cost of emission reductions. The 
purpose of the model is to understand the phenomenon and perhaps to make predictions 
about future behavior.

Figure 1 illustrates the process of mathematical modeling. Given a real-world prob­
lem, our first task is to formulate a mathematical model by identifying and naming the 
independent and dependent variables and making assumptions that simplify the phenom­
enon enough to make it mathematically tractable. We use our knowledge of the physical 
situation and our mathematical skills to obtain equations that relate the variables. In 
situations where there is no physical law to guide us, we may need to collect data (either 
from a library or the Internet or by conducting our own experiments) and examine the 
data in the form of a table in order to discern patterns. From this numerical representation 
of a function we may wish to obtain a graphical representation by plotting the data. The 
graph might even suggest a suitable algebraic formula in some cases.

Real-world
problem

Mathematical
model

Real-world
predictions

Mathematical
conclusions

Test

Formulate Solve Interpret

The second stage is to apply the mathematics that we know (such as the calculus 
that will be developed throughout this book) to the mathematical model that we have 
formulated in order to derive mathematical conclusions. Then, in the third stage, we take 
those mathematical conclusions and interpret them as information about the original 
real-world phenomenon by way of offering explanations or making predictions. The final 
step is to test our predictions by checking against new real data. If the predictions don’t 
compare well with reality, we need to refine our model or to formulate a new model and 
start the cycle again.

A mathematical model is never a completely accurate representation of a physical 
situation—it is an idealization. A good model simplifies reality enough to permit math­

FIGURE 1
The modeling process
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24	 Chapter 1    Functions and Models

ematical calculations but is accurate enough to provide valuable conclusions. It is impor­
tant to realize the limitations of the model. In the end, Mother Nature has the final say.

There are many different types of functions that can be used to model relationships  
observed in the real world. In what follows, we discuss the behavior and graphs of these  
functions and give examples of situations appropriately modeled by such functions.

Linear Models
When we say that y is a linear function of x, we mean that the graph of the function is 
a line, so we can use the slope-intercept form of the equation of a line to write a formula 
for the function as

y − f sxd − mx 1 b

where m is the slope of the line and b is the y-intercept.
A characteristic feature of linear functions is that they grow at a constant rate. For 

instance, Figure 2 shows a graph of the linear function f sxd − 3x 2 2 and a table of 
sample values. Notice that whenever x increases by 0.1, the value of f sxd increases by 
0.3. So f sxd increases three times as fast as x. Thus the slope of the graph y − 3x 2 2, 
namely 3, can be interpreted as the rate of change of y with respect to x.

x

y

0

y=3x-2

_2

1

 

x f sxd − 3x 2 2

1.0 1.0
1.1 1.3
1.2 1.6
1.3 1.9
1.4 2.2
1.5 2.5

Example �1� �
(a)  As dry air moves upward, it expands and cools. If the ground temperature is 20°C 
and the temperature at a height of 1 km is 10°C, express the temperature T  (in °C) as a 
function of the height h (in kilometers), assuming that a linear model is appropriate.
(b)  Draw the graph of the function in part (a). What does the slope represent?
(c)  What is the temperature at a height of 2.5 km?

SOLUTION
(a)  Because we are assuming that T  is a linear function of h, we can write

T − mh 1 b

We are given that T − 20 when h − 0, so 

20 − m ? 0 1 b − b

�In other words, the y-intercept is b − 20.
We are also given that T − 10 when h − 1, so

10 − m ? 1 1 20

The slope of the line is therefore m − 10 2 20 − 210 and the required linear function is

T − 210h 1 20

The coordinate geometry of lines is 
reviewed in Appendix B.

figure 2
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�(b)  The graph is sketched in Figure 3. The slope is m − 2 10°Cykm, and this repre- 
sents the rate of change of temperature with respect to height.

�(c)  At a height of h − 2.5 km, the temperature is

	 T − 210s2.5d 1 20 − 2 5°C	 ■

If there is no physical law or principle to help us formulate a model, we construct an 
empirical model, which is based entirely on collected data. We seek a curve that “fits” 
the data in the sense that it captures the basic trend of the data points.

Example �2 � Table 1 lists the average carbon dioxide level in the atmosphere, mea-
sured in parts per million at Mauna Loa Observatory from 1980 to 2012. Use the data 
in Table 1 to find a model for the carbon dioxide level.

SOLUTION � We use the data in Table 1 to make the scatter plot in Figure 4, where t rep-
resents time (in years) and C represents the CO2 level (in parts per million, ppm).

C (ppm)

340

350

360

370

380

390

400

1980 1985 t1990 1995 2000 2005 2010

FIGURE 4 � Scatter plot for the average CO2 level �

Notice that the data points appear to lie close to a straight line, so it’s natural to 
choose a linear model in this case. But there are many possible lines that approximate 
these data points, so which one should we use? One possibility is the line that passes 
through the first and last data points. The slope of this line is

393.8 2 338.7

2012 2 1980
−

55.1

32
− 1.721875 < 1.722

We write its equation as 	

C 2 338.7 − 1.722st 2 1980d
or

1 	 C − 1.722t 2 3070.86

FIGURE 3 

T=_10h+20

T

h0

10

20

1 3

Year
CO2 level
(in ppm) Year

CO2 level
(in ppm)

1980 338.7 1998 366.5
1982 341.2 2000 369.4
1984 344.4 2002 373.2
1986 347.2 2004 377.5
1988 351.5 2006 381.9
1990 354.2 2008 385.6
1992 356.3 2010 389.9
1994 358.6 2012 393.8
1996 362.4

Table 1�
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26	 Chapter 1    Functions and Models

Equation 1 gives one possible linear model for the carbon dioxide level; it is graphed 
in Figure 5.

C (ppm)

340

350

360

370

380

390

400

1980 1985 t1990 1995 2000 2005 2010

Notice that our model gives values higher than most of the actual CO2 levels. A 
better linear model is obtained by a procedure from statistics called linear regression. 
If we use a graphing calculator, we enter the data from Table 1 into the data editor and 
choose the linear regression command. (With Maple we use the fit[leastsquare] com-
mand in the stats package; with Mathematica we use the Fit command.) The machine 
gives the slope and y-intercept of the regression line as

m − 1.71262            b − 23054.14

So our least squares model for the CO2 level is

2 	 C − 1.71262t 2 3054.14

In Figure 6 we graph the regression line as well as the data points. Comparing with 
Figure 5, we see that it gives a better fit than our previous linear model.

	

C (ppm)

340

350

360

370

380

390

400

1980 1985 t1990 1995 2000 2005 2010 	 ■

FIGURE 5�  
Linear model through first  

and last data points�

A computer or graphing calculator 
finds the regression line by the method 
of least squares, which is to minimize 
the sum of the squares of the vertical 
distances between the data points and 
the line. The details are explained in 
Section 14.7.

Figure 6�  
The regression line
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Example �3�  Use the linear model given by Equation 2 to estimate the average CO2 
level for 1987 and to predict the level for the year 2020. According to this model, when 
will the CO2 level exceed 420 parts per million?

Solution � Using Equation 2 with t − 1987, we estimate that the average CO2 level in 
1987 was

Cs1987d − s1.71262ds1987d 2 3054.14 < 348.84

This is an example of interpolation because we have estimated a value between 
observed values. (In fact, the Mauna Loa Observatory reported that the average CO2 
level in 1987 was 348.93 ppm, so our estimate is quite accurate.)

With t − 2020, we get

Cs2020d − s1.71262ds2020d 2 3054.14 < 405.35

So we predict that the average CO2 level in the year 2020 will be 405.4 ppm. This is an 
example of extrapolation because we have predicted a value outside the time frame of 
observations. Consequently, we are far less certain about the accuracy of our prediction.

Using Equation 2, we see that the CO2 level exceeds 420 ppm when

1.71262t 2 3054.14 . 420

Solving this inequality, we get

t .
3474.14

1.71262
< 2028.55

We therefore predict that the CO2 level will exceed 420 ppm by the year 2029. This  
prediction is risky because it involves a time quite remote from our observations. In 
fact, we see from Figure 6 that the trend has been for CO2 levels to increase rather more 
rapidly in recent years, so the level might exceed 420 ppm well before 2029.	 ■

Polynomials
A function P is called a polynomial if

Psxd − an xn 1 an21 xn21 1 ∙ ∙ ∙ 1 a2 x 2 1 a1 x 1 a0

where n is a nonnegative integer and the numbers a0, a1, a2, . . . , an are constants called 
the coefficients of the polynomial. The domain of any polynomial is R − s2`, `d.  
If the leading coefficient an ± 0, then the degree of the polynomial is n. For example, 
the function

Psxd − 2x 6 2 x 4 1 2
5 x 3 1 s2 

is a polynomial of degree 6.
A polynomial of degree 1 is of the form Psxd − mx 1 b and so it is a linear function.  

A polynomial of degree 2 is of the form Psxd − ax 2 1 bx 1 c and is called a quadratic 
function. Its graph is always a parabola obtained by shifting the parabola y − ax 2, as we 
will see in the next section. The parabola opens upward if a . 0 and downward if a , 0.  
(See Figure 7.)

A polynomial of degree 3 is of the form

Psxd − ax 3 1 bx 2 1 cx 1 d        a ± 0

FIGURE 7�  
The graphs of quadratic functions  
are parabolas.

0

y

2

x1

(a) y=≈+x+1

y

2

x1

(b) y=_2≈+3x+1
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28	 Chapter 1    Functions and Models

and is called a cubic function. Figure 8 shows the graph of a cubic function in part (a) 
and graphs of polynomials of degrees 4 and 5 in parts (b) and (c). We will see later why 
the graphs have these shapes.

(a) y=˛-x+1

x

1

y

10

(b) y=x$-3≈+x

x

2

y

1

(c) y=3x%-25˛+60x

x

20

y

1

Polynomials are commonly used to model various quantities that occur in the natural 
and social sciences. For instance, in Section 3.7 we will explain why economists often use  
a polynomial Psxd to represent the cost of producing x units of a commodity. In the fol-
lowing example we use a quadratic function to model the fall of a ball.

Example �4�  A ball is dropped from the upper observation deck of the CN Tower, 450 m 
above the ground, and its height h above the ground is recorded at 1-second intervals in 
Table 2. Find a model to fit the data and use the model to predict the time at which the 
ball hits the ground.

Solution � We draw a scatter plot of the data in Figure 9 and observe that a linear 
model is inappropriate. But it looks as if the data points might lie on a parabola, so we 
try a quadratic model instead. Using a graphing calculator or computer algebra system 
(which uses the least squares method), we obtain the following quadratic model:

	 3 	 h − 449.36 1 0.96t 2 4.90t 2

2

200

400

4 6 8 t0

200

400

t
(seconds)

0 2 4 6 8

hh (meters)

In Figure 10 we plot the graph of Equation 3 together with the data points and see 
that the quadratic model gives a very good fit.

The ball hits the ground when h − 0, so we solve the quadratic equation

24.90t 2 1 0.96t 1 449.36 − 0

FIGURE 8� 

Time 
(seconds)

Height 
(meters)

0 450
1 445
2 431
3 408
4 375
5 332
6 279
7 216
8 143
9 61

Table 2�

FIGURE 9 �  
Scatter plot for a falling ball

FIGURE 10 �  
Quadratic model for a falling ball
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The quadratic formula gives

t −
20.96 6 ss0.96d2 2 4s24.90d s449.36d

2s24.90d

The positive root is t < 9.67, so we predict that the ball will hit the ground after about 
9.7 seconds.	 ■

Power Functions
A function of the form f sxd − xa, where a is a constant, is called a power function. We 
consider several cases.

(i )  a − n, where n is a positive integer

The graphs of f sxd − xn for n − 1, 2, 3, 4, and 5 are shown in Figure 11. (These are poly-
nomials with only one term.) We already know the shape of the graphs of y − x (a line 
through the origin with slope 1) and y − x 2 [a parabola, see Example 1.1.2(b)].

x

1

y

10

y=x%

x

1

y

10

y=x#

x

1

y

10

y=≈

x

1

y

10

y=x

x

1

y

10

y=x$

The general shape of the graph of f sxd − xn depends on whether n is even or odd. 
If n is even, then f sxd − xn is an even function and its graph is similar to the parabola 
y − x 2. If n is odd, then f sxd − xn is an odd function and its graph is similar to that 
of y − x 3. Notice from Figure 12, however, that as n increases, the graph of y − xn 
becomes flatter near 0 and steeper when | x | > 1. (If x is small, then x 2 is smaller, x 3  
is even smaller, x 4 is smaller still, and so on.)

y=x$

(1, 1)(_1, 1)

y=x^
y=≈

(_1, _1)

(1, 1)

0

y

x

x

y

0

y=x#

y=x%

(i i)  a − 1yn, where n is a positive integer

The function f sxd − x 1yn − sn x  is a root function. For n − 2 it is the square root  
function f sxd − sx  , whose domain is f0, `d and whose graph is the upper half of the  

FIGURE 11 � Graphs of f sxd − x n for n − 1, 2, 3, 4, 5

A family of functions is a collection  
of functions whose equations are 
related. Figure 12 shows two families  
of power functions, one with even  
powers and one with odd powers.

FIGURE 12 �
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30	 Chapter 1    Functions and Models

parabola x − y 2. [See Figure 13(a).] For other even values of n, the graph of y − sn x  is 
similar to that of y − sx . For n − 3 we have the cube root function f sxd − s3 x  whose 
domain is R (recall that every real number has a cube root) and whose graph is shown 
in Figure 13(b). The graph of y − sn x  for n odd sn . 3d is similar to that of y − s3 x .

(b) ƒ=Œ„x

x

y

0

(1, 1)

(a) ƒ=œ„x

x

y

0

(1, 1)

(iii)  a − 21
The graph of the reciprocal function f sxd − x21 − 1yx is shown in Figure 14. Its 
graph has the equation y − 1yx, or xy − 1, and is a hyperbola with the coordinate axes 
as its asymptotes. This function arises in physics and chemistry in connection with 
Boyle’s Law, which says that, when the temperature is constant, the volume V  of a gas 
is inversely proportional to the pressure P:

V −
C

P

where C is a constant. Thus the graph of V  as a function of P (see Figure 15) has the 
same general shape as the right half of Figure 14.

Power functions are also used to model species-area relationships (Exercises 30–31), 
illumination as a function of distance from a light source (Exercise 29), and the period 
of revolution of a planet as a function of its distance from the sun (Exercise 32).

Rational Functions
A rational function f  is a ratio of two polynomials:

f sxd −
Psxd
Qsxd

where P and Q are polynomials. The domain consists of all values of x such that Qsxd ± 0. 
A simple example of a rational function is the function f sxd − 1yx, whose domain is 
hx | x ± 0j; this is the reciprocal function graphed in Figure 14. The function

f sxd −
2x 4 2 x 2 1 1

x 2 2 4

is a rational function with domain hx | x ± 62j. Its graph is shown in Figure 16.

Algebraic Functions
A function f  is called an algebraic function if it can be constructed using algebraic 
operations (such as addition, subtraction, multiplication, division, and taking roots) start-
ing with polynomials. Any rational function is automatically an algebraic function. Here 
are two more examples:

f sxd − sx 2 1 1            tsxd −
x 4 2 16x 2

x 1 sx 
1 sx 2 2ds3 x 1 1 

FIGURE 13 � 
Graphs of root functions

x

1

y

10

y=∆

Figure �14
The reciprocal function

P

V

0

Figure �15
Volume as a function of pressure  
at constant temperature

ƒ=
2x$-≈+1

≈-4

x

20

y

20

FIGURE 16 
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When we sketch algebraic functions in Chapter 4, we will see that their graphs can 
assume a variety of shapes. Figure 17 illustrates some of the possibilities.
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An example of an algebraic function occurs in the theory of relativity. The mass of a 
particle with velocity v is

m − f svd −
m0

s1 2 v 2yc 2 

where m0 is the rest mass of the particle and c − 3.0 3 105 kmys is the speed of light in a  
vacuum.

Trigonometric Functions
Trigonometry and the trigonometric functions are reviewed on Reference Page 2 and also 
in Appendix D. In calculus the convention is that radian measure is always used (except 
when otherwise indicated). For example, when we use the function f sxd − sin x, it is  
understood that sin x means the sine of the angle whose radian measure is x. Thus the 
graphs of the sine and cosine functions are as shown in Figure 18.
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Notice that for both the sine and cosine functions the domain is s2`, `d and the range 
is the closed interval f21, 1g. Thus, for all values of x, we have

21 < sin x < 1            21 < cos x < 1

or, in terms of absolute values,

| sin x | < 1            | cos x | < 1

Also, the zeros of the sine function occur at the integer multiples of �; that is,

sin x − 0        when        x − n�    n an integer

FIGURE 17

The Reference Pages are located at 
the back of the book.

FIGURE 18
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32	 Chapter 1    Functions and Models

An important property of the sine and cosine functions is that they are periodic func-
tions and have period 2�. This means that, for all values of x,

 
sinsx 1 2�d − sin x            cossx 1 2�d − cos x

The periodic nature of these functions makes them suitable for modeling repetitive phe-
nomena such as tides, vibrating springs, and sound waves. For instance, in Example 1.3.4  
we will see that a reasonable model for the number of hours of daylight in Philadelphia 
t days after January 1 is given by the function

Lstd − 12 1 2.8 sinF 2�

365
st 2 80dG

Example �5�  What is the domain of the function  f sxd −
1

1 2 2 cos x
?

Solution � This function is defined for all values of x except for those that make the 
denominator 0. But

1 2 2 cos x − 0   &?   cos x −
1

2
    &?   x −

�

3
 1 2n�    or    x −

5�

3
 1 2n�

where n is any integer (because the cosine function has period 2�). So the domain of f  
is the set of all real numbers except for the ones noted above. 	 ■

The tangent function is related to the sine and cosine functions by the equation

tan x −
sin x

cos x

and its graph is shown in Figure 19. It is undefined whenever cos x − 0, that is, when 
x − 6�y2, 63�y2, . . . . Its range is s2`, `d. Notice that the tangent function has period �:

tansx 1 �d − tan x        for all x

The remaining three trigonometric functions (cosecant, secant, and cotangent) are  
the reciprocals of the sine, cosine, and tangent functions. Their graphs are shown in  
Appendix D.

Exponential Functions
The exponential functions are the functions of the form f sxd − bx, where the base b is  
a positive constant. The graphs of y − 2x and y − s0.5dx are shown in Figure 20. In both 
cases the domain is s2`, `d and the range is s0, `d.

Exponential functions will be studied in detail in Section 1.4, and we will see that they  
are useful for modeling many natural phenomena, such as population growth (if b . 1)  
and radioactive decay (if b , 1d.

Logarithmic Functions
The logarithmic functions f sxd − logb x, where the base b is a positive constant, are the  
inverse functions of the exponential functions. They will be studied in Section 1.5. Figure 
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21 shows the graphs of four logarithmic functions with various bases. In each case the 
domain is s0, `d, the range is s2`, `d, and the function increases slowly when x . 1.

Example �6�  Classify the following functions as one of the types of functions that we 
have discussed.

(a)  f sxd − 5x	 (b)  tsxd − x 5

(c)  hsxd −
1 1 x

1 2 sx 
	 (d)  ustd − 1 2 t 1 5t 4

SOLUTION  

(a)  f sxd − 5x is an exponential function. (The x is the exponent.)

(b)  tsxd − x 5 is a power function. (The x is the base.) We could also consider it to be a 
polynomial of degree 5.

(c)  hsxd −
1 1 x

1 2 sx 
 is an algebraic function.

(d)  ustd − 1 2 t 1 5t 4 is a polynomial of degree 4.	 ■

1. 2 � Exercises

1–2�  Classify each function as a power function, root function, 
polynomial (state its degree), rational function, algebraic function, 
trigonometric function, exponential function, or logarithmic function.

	 1.	� (a)	 f sxd − log2 x	 (b)	 tsxd − s4 x 

		�  (c)	 hsxd −
2x 3

1 2 x 2 	 (d)	 ustd − 1 2 1.1t 1 2.54t 2

		�  (e)	 vstd − 5 t	 (f )	 ws�d − sin � cos2�

	 2.	� (a)	 y − � x	 (b)	 y − x�

		�  (c)	 y − x 2s2 2 x 3d	 (d)	 y − tan t 2 cos t

		�  (e)	 y −
s

1 1 s
	 (f )	 y −

sx 3 2 1

1 1 s3 x 

3–4�  Match each equation with its graph. Explain your choices. 
(Don’t use a computer or graphing calculator.)

	 3.	� (a)	 y − x 2          (b)	 y − x 5          (c)	 y − x 8

f

0

g
h

y

x

	4 .	� (a)	 y − 3x	 (b)	 y − 3x	 (c)	 y − x 3	 (d)	 y − s3 x 

G

f

g

F
y

x

5–6 � Find the domain of the function.

	5 .	  f sxd −
cos x 

1 2 sin x
	6 .	  tsxd −

1

1 2 tan x

	 7.	� (a)	�	 Find an equation for the family of linear functions with 
slope 2 and sketch several members of the family.

	 (b)	� Find an equation for the family of linear functions such 
that f s2d − 1 and sketch several members of the family.

	 (c)	� Which function belongs to both families?

	 8.	�� What do all members of the family of linear functions 
f sxd − 1 1 msx 1 3d have in common? Sketch several 
members of the family.
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figure 21
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34	 Chapter 1    Functions and Models

	 9.	�� What do all members of the family of linear functions 
f sxd − c 2 x have in common? Sketch several members of 
the family.

	10.	�� Find expressions for the quadratic functions whose graphs 
are shown.

y

(0, 1)

(1, _2.5)

(_2, 2)
y

x0

(4, 2)

f

g
x0

3

	11.	�� Find an expression for a cubic function f  if f s1d − 6 and 
f s21d − f s0d − f s2d − 0.

	12.	� �Recent studies indicate that the average surface tempera- 
ture of the earth has been rising steadily. Some scientists  
have modeled the temperature by the linear function 
T − 0.02t 1 8.50, where T is temperature in °C and t  
represents years since 1900.

	 (a)	� What do the slope and T-intercept represent?
	 (b)	� Use the equation to predict the average global surface  

temperature in 2100.

	13.	�� If the recommended adult dosage for a drug is D (in mg), 
then to determine the appropriate dosage c for a child of 
age a, pharmacists use the equation c − 0.0417Dsa 1 1d. 
Suppose the dosage for an adult is 200 mg.

	 (a)	� Find the slope of the graph of c. What does it represent?
	 (b)	� What is the dosage for a newborn?

	14.	�� The manager of a weekend flea market knows from past 
experience that if he charges x dollars for a rental space at 
the market, then the number y of spaces he can rent is given 
by the equation y − 200 2 4x.

	 (a)	� Sketch a graph of this linear function. (Remember that 
the rental charge per space and the number of spaces 
rented can’t be negative quantities.)

	 (b)	� What do the slope, the y-intercept, and the x-intercept of 
the graph represent?

	15.	�� The relationship between the Fahrenheit sFd and Celsius 
sCd temperature scales is given by the linear function 
F − 9

5 C 1 32.
	 (a)	 Sketch a graph of this function.
	 (b)	� What is the slope of the graph and what does it repre-

sent? What is the F-intercept and what does it represent?

	16.	� �Jason leaves Detroit at 2:00 pm and drives at a constant speed 
west along I-94. He passes Ann Arbor, 40 mi from Detroit, at 
2:50 pm.

	 (a)	� Express the distance traveled in terms of the time 
elapsed.

	 (b)	� Draw the graph of the equation in part (a).
	 (c)	� What is the slope of this line? What does it represent?

	17.	� ��Biologists have noticed that the chirping rate of crickets of 
a certain species is related to temperature, and the relation-
ship appears to be very nearly linear. A cricket produces 
113 chirps per minute at 70°F and 173 chirps per minute  
at 80°F.

	 (a)	� Find a linear equation that models the temperature T as  
a function of the number of chirps per minute N.

	 (b)	� What is the slope of the graph? What does it represent?
	 (c)	� If the crickets are chirping at 150 chirps per minute, 

estimate the temperature.

	18.	� �The manager of a furniture factory finds that it costs $2200 
to manufacture 100 chairs in one day and $4800 to produce 
300 chairs in one day.

	 (a)	� Express the cost as a function of the number of chairs 
produced, assuming that it is linear. Then sketch the 
graph.

	 (b)	� What is the slope of the graph and what does it represent?
	 (c)	� What is the y-intercept of the graph and what does it  

represent?

	19.	� �At the surface of the ocean, the water pressure is the same  
as the air pressure above the water, 15 lbyin2. Below the sur- 
face, the water pressure increases by 4.34 lbyin2 for every  
10 ft of descent.

	 (a)	� Express the water pressure as a function of the depth 
below the ocean surface.

	 (b)	� At what depth is the pressure 100 lbyin2?

	20.	� �The monthly cost of driving a car depends on the number 
of miles driven. Lynn found that in May it cost her $380 to 
drive 480 mi and in June it cost her $460 to drive 800 mi.

	 (a)	� Express the monthly cost C as a function of the distance 
driven d, assuming that a linear relationship gives a 
suitable model.

	 (b)	�� Use part (a) to predict the cost of driving 1500 miles per 
month.

	 (c)	�� Draw the graph of the linear function. What does the 
slope represent?

	 (d)	� What does the C-intercept represent?
	 (e)	� Why does a linear function give a suitable model in this  

situation?

	�21–22 � For each scatter plot, decide what type of function you 
might choose as a model for the data. Explain your choices.

	21.	�

0 x

y(a)

  0 x

y(b)
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	22.	

0 x

y(a)

  0 x

y(b)

	23.	� �The table shows (lifetime) peptic ulcer rates (per 100 popula-
tion) for various family incomes as reported by the National 
Health Interview Survey.

Income
Ulcer rate  

(per 100 population)

$4,000 	 14.1
$6,000 	 13.0
$8,000 	 13.4

$12,000 	 12.5
$16,000 	 12.0
$20,000 	 12.4
$30,000 	 10.5
$45,000 	 9.4
$60,000 	 8.2

	 (a)	� Make a scatter plot of these data and decide whether a  
linear model is appropriate.

	 (b)	� Find and graph a linear model using the first and last 
data points.

	 (c)	 Find and graph the least squares regression line.
	 (d)	� Use the linear model in part (c) to estimate the ulcer 

rate for an income of $25,000.
	 (e)	� According to the model, how likely is someone with an 

income of $80,000 to suffer from peptic ulcers?
	 (f )	� Do you think it would be reasonable to apply the model 

to someone with an income of $200,000?

	24.	� �Biologists have observed that the chirping rate of crickets of 
a certain species appears to be related to temperature. The 
table shows the chirping rates for various temperatures.

	 (a)	 Make a scatter plot of the data.
	 (b)	 Find and graph the regression line.
	 (c)	� Use the linear model in part (b) to estimate the chirping 

rate at 100°F.

Temperature 
(°F)

Chirping rate 
(chirpsymin)

Temperature 
(°F)

Chirping rate 
(chirpsymin)

50 20 75 140
55 46 80 173
60 79 85 198
65 91 90 211
70 113

;

;

	25.�	� Anthropologists use a linear model that relates human femur 
(thighbone) length to height. The model allows an anthro-
pologist to determine the height of an individual when only a 
partial skeleton (including the femur) is found. Here we find 
the model by analyzing the data on femur length and height 
for the eight males given in the following table.

	 (a)	� Make a scatter plot of the data.
	 (b)	 Find and graph the regression line that models the data.
	 (c)	� An anthropologist finds a human femur of length  

53 cm. How tall was the person?

Femur length 
(cm)

Height 
(cm)

Femur length 
(cm)

Height 
(cm)

50.1 178.5 44.5 168.3
48.3 173.6 42.7 165.0
45.2 164.8 39.5 155.4
44.7 163.7 38.0 155.8

	26.	�� When laboratory rats are exposed to asbestos fibers, some 
of them develop lung tumors. The table lists the results of 
several experiments by different scientists.

	 (a)	� Find the regression line for the data.
	 (b)	� Make a scatter plot and graph the regression line.  

Does the regression line appear to be a suitable model 
for the data?

	 (c)	� What does the y-intercept of the regression line represent?

Asbestos 
exposure 

(fibersymL)

Percent of mice 
that develop 
lung tumors

Asbestos 
exposure 

(fibersymL)

Percent of mice 
that develop 
lung tumors

50 2 1600 42
400 6 1800 37
500 5 2000 38
900 10 3000 50

1100 26

	27.	�� The table shows world average daily oil consumption from 
1985 to 2010 measured in thousands of barrels per day.

	 (a)	� Make a scatter plot and decide whether a linear model 
is appropriate.

	 (b)	� Find and graph the regression line.
	 (c)	� Use the linear model to estimate the oil consumption in 

2002 and 2012.

Years  
since 1985

Thousands of barrels  
of oil per day

0 60,083
5 66,533
10 70,099
15 76,784
20 84,077
25 87,302

Source: �US Energy Information Administration

;

;

;
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36	 Chapter 1    Functions and Models

	28.	� �The table shows average US retail residential prices of 
electricity from 2000 to 2012, measured in cents per 
kilowatt hour.

	 (a)	� Make a scatter plot. Is a linear model appropriate?
	 (b)	� Find and graph the regression line.
	 (c)	� Use your linear model from part (b) to estimate the 

average retail price of electricity in 2005 and 2013.

Years since 2000 CentsykWh

0 8.24
2 8.44
4 8.95
6 10.40
8 11.26

10 11.54
12 11.58

Source: �US Energy Information Administration

	29.�	� Many physical quantities are connected by inverse square 
laws, that is, by power functions of the form f sxd − kx22.  
In particular, the illumination of an object by a light source 
is inversely proportional to the square of the distance from 
the source. Suppose that after dark you are in a room with 
just one lamp and you are trying to read a book. The light is 
too dim and so you move halfway to the lamp. How much 
brighter is the light?

	30.	� �It makes sense that the larger the area of a region, the larger 
the number of species that inhabit the region. Many ecolo-
gists have modeled the species-area relation with a power 
function and, in particular, the number of species S of bats 
living in caves in central Mexico has been related to the 
surface area A of the caves by the equation S − 0.7A0.3.

	 (a)	� The cave called Misión Imposible near Puebla, 
Mexico, has a surface area of A − 60 m2. How many 
species of bats would you expect to find in that cave?

	 (b)	� If you discover that four species of bats live in a cave, 
estimate the area of the cave.

; 	31.	� �The table shows the number N of species of reptiles and 
amphibians inhabiting Caribbean islands and the area A of 
the island in square miles.

	 (a)	� Use a power function to model N as a function of A.
	 (b)	� The Caribbean island of Dominica has area 291 mi2. 

How many species of reptiles and amphibians would 
you expect to find on Dominica?

Island A N

Saba 	 4 	 5
Monserrat 	 40 	 9
Puerto Rico 	 3,459 	 40
Jamaica 	 4,411 	 39
Hispaniola 	 29,418 	 84
Cuba  	 44,218 	 76

	32.	� �The table shows the mean (average) distances d of the 
planets from the sun (taking the unit of measurement to be 
the distance from the earth to the sun) and their periods T 
(time of revolution in years).

	 (a)	 Fit a power model to the data.
	 (b)	� Kepler’s Third Law of Planetary Motion states that 

“The square of the period of revolution of a planet 
is proportional to the cube of its mean distance from 
the sun.”  
Does your model corroborate Kepler’s Third Law?

Planet d T

Mercury 	 0.387 	 0.241
Venus 	 0.723 	 0.615
Earth 	 1.000 	 1.000
Mars 	 1.523 	 1.881
Jupiter 	 5.203 	 11.861
Saturn 	 9.541 	 29.457
Uranus 	 19.190 	 84.008
Neptune 	 30.086 	 164.784

;

;

In this section we start with the basic functions we discussed in Section 1.2 and obtain 
new functions by shifting, stretching, and reflecting their graphs. We also show how to 
combine pairs of functions by the standard arithmetic operations and by composition.

Transformations of Functions
By applying certain transformations to the graph of a given function we can obtain 
the graphs of related functions. This will give us the ability to sketch the graphs of  
many functions quickly by hand. It will also enable us to write equations for given graphs.

Let’s first consider translations. If c is a positive number, then the graph of y − f sxd 1 c 
is just the graph of y − f sxd shifted upward a distance of c units (because each y-coordi-
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nate is increased by the same number c). Likewise, if tsxd − f sx 2 cd, where c . 0, then 
the value of t at x is the same as the value of f  at x 2 c (c units to the left of x). There- 
fore the graph of y − f sx 2 cd is just the graph of y − f sxd shifted c units to the right 
(see Figure 1).

Vertical and Horizontal Shifts  �Suppose c . 0. To obtain the graph of

 y − f sxd 1 c, shift the graph of y − f sxd a distance c units upward

 y − f sxd 2 c, shift the graph of y − f sxd a distance c units downward

 y − f sx 2 cd, shift the graph of y − f sxd a distance c units to the right

 y − f sx 1 cd, shift the graph of y − f sxd a distance c units to the left

y=   ƒ1
c

x

y

0

y=f(_x)

y=ƒ

y=_ƒ

y=cƒ
(c>1)

x

y

0

y=f(x-c)y=f(x+c) y =ƒ

y=ƒ-c

y=ƒ+c

c

c

c c

Now let’s consider the stretching and reflecting transformations. If c . 1, then the  
graph of y − cf sxd is the graph of y − f sxd stretched by a factor of c in the vertical  
direction (because each y-coordinate is multiplied by the same number c). The graph of 
y − 2f sxd is the graph of y − f sxd reflected about the x-axis because the point sx, yd is 
replaced by the point sx, 2yd. (See Figure 2 and the following chart, where the results of 
other stretching, shrinking, and reflecting transformations are also given.)

Vertical and Horizontal Stretching and Reflecting � Suppose c . 1. To obtain the 
graph of

 y − cf sxd, stretch the graph of y − f sxd vertically by a factor of c

 y − s1ycd f sxd, shrink the graph of y − f sxd vertically by a factor of c

 y − f scxd, shrink the graph of y − f sxd horizontally by a factor of c

 y − f sxycd, stretch the graph of y − f sxd horizontally by a factor of c

 y − 2f sxd, reflect the graph of y − f sxd about the x-axis

 y − f s2xd, reflect the graph of y − f sxd about the y-axis

Figure �2�  Stretching and reflecting the graph of fFigure �1�  Translating the graph of f
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Figure 3 illustrates these stretching transformations when applied to the cosine function 
with c − 2. For instance, in order to get the graph of y − 2 cos x we multiply the y-coordi-
nate of each point on the graph of y − cos x by 2. This means that the graph of y − cos x 
gets stretched vertically by a factor of 2.

x

1

2

y

0

y=cos x

y=cos 2xy=cos    x1
2

x

1

2

y

0

y=2 cos x

y=cos x

y=    cos x1
2

1

Example �1�  Given the graph of y − sx , use transformations to graph y − sx 2 2, 

y − sx 2 2 , y − 2sx , y − 2sx , and y − s2x .

SOLUTION � The graph of the square root function y − sx , obtained from Fig- 
ure 1.2.13(a), is shown in Figure 4(a). In the other parts of the figure we sketch 
y − sx 2 2 by shifting 2 units downward, y − sx 2 2  by shifting 2 units to the 
right, y − 2sx  by reflecting about the x-axis, y − 2sx  by stretching vertically by a 
factor of 2, and y − s2x  by reflecting about the y-axis.

(a) y=œ„x (b) y=œ„-2x (c) y=œ„„„„x-2 (d) y=_œ„x (e) y=2œ„x (f ) y=œ„„_x

0 x

y

0 x

y

0 x

y

20 x

y

_2

0 x

y

1

10 x

y

	
■

Example �2�  Sketch the graph of the function f sxd − x 2 1 6x 1 10.

SOLUTION � Completing the square, we write the equation of the graph as

y − x 2 1 6x 1 10 − sx 1 3d2 1 1

This means we obtain the desired graph by starting with the parabola y − x 2 and shift-
ing 3 units to the left and then 1 unit upward (see Figure 5).

(a) y=≈ (b) y=(x+3)@+1

x0_1_3

1

y

(_3, 1)

x0

y

■

Figure �3

Figure �4

Figure �5
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Example �3�  Sketch the graphs of the following functions.
(a)  y − sin 2x	 (b)  y − 1 2 sin x

SOLUTION
(a)  We obtain the graph of y − sin 2x from that of y − sin x by compressing horizon-
tally by a factor of 2. (See Figures 6 and 7.) Thus, whereas the period of y − sin x is  
2�, the period of y − sin 2x is 2�y2 − �.
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y
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π
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π
4

π

y=sin 2x

FIGURE 7

(b)  To obtain the graph of y − 1 2 sin x, we again start with y − sin x. We reflect  
about the x-axis to get the graph of y − 2sin x and then we shift 1 unit upward to get 
y − 1 2 sin x. (See Figure 8.)
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2 	 ■

Example �4�  Figure 9 shows graphs of the number of hours of daylight as functions of 
the time of the year at several latitudes. Given that Philadelphia is located at approxi-
mately 408N latitude, find a function that models the length of daylight at Philadelphia.
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FIGURE 9 
 � Graph of the length of daylight from 

March 21 through December 21  
at various latitudes 

Source: Adapted from L. Harrison,  
Daylight, Twilight, Darkness and Time � 
(New York: Silver, Burdett, 1935), 40.
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40	 Chapter 1    Functions and Models

SOLUTION � Notice that each curve resembles a shifted and stretched sine function. 
By looking at the blue curve we see that, at the latitude of Philadelphia, daylight 
lasts about 14.8 hours on June 21 and 9.2 hours on December 21, so the amplitude 
of the curve (the factor by which we have to stretch the sine curve vertically) is 
1
2 s14.8 2 9.2d − 2.8.

By what factor do we need to stretch the sine curve horizontally if we measure the 
time t in days? Because there are about 365 days in a year, the period of our model 
should be 365. But the period of y − sin t is 2�, so the horizontal stretching factor  
is 2�y365.

We also notice that the curve begins its cycle on March 21, the 80th day of the 
year, so we have to shift the curve 80 units to the right. In addition, we shift it 12 units 
upward. Therefore we model the length of daylight in Philadelphia on the tth day of the 
year by the function

Lstd − 12 1 2.8 sinF 2�

365
st 2 80dG

■

Another transformation of some interest is taking the absolute value of a function. If 
y − | f sxd|, then according to the definition of absolute value, y − f sxd when f sxd > 0 
and y − 2f sxd when f sxd , 0. This tells us how to get the graph of y − | f sxd| from the 
graph of y − f sxd: The part of the graph that lies above the x-axis remains the same; the 
part that lies below the x-axis is reflected about the x-axis.

Example �5�  Sketch the graph of the function y − | x 2 2 1 |.
SOLUTION � We first graph the parabola y − x 2 2 1 in Figure 10(a) by shifting the 
parabola y − x 2 downward 1 unit. We see that the graph lies below the x-axis when 
21 , x , 1, so we reflect that part of the graph about the x-axis to obtain the graph of 
y − | x 2 2 1| in Figure 10(b).	 ■

Combinations of Functions
Two functions f  and t can be combined to form new functions f 1 t, f 2 t, ft, and fyt  
in a manner similar to the way we add, subtract, multiply, and divide real numbers. The 
sum and difference functions are defined by

s f 1 tdsxd − f sxd 1 tsxd             s f 2 tdsxd − f sxd 2 tsxd

If the domain of f  is A and the domain of t is B, then the domain of f 1 t is the inter-
section A > B because both f sxd and tsxd have to be defined. For example, the domain
of f sxd − sx  is A − f0, `d and the domain of tsxd − s2 2 x  is B − s2`, 2g, so the
domain of s f 1 tdsxd − sx 1 s2 2 x  is A > B − f0, 2g.

Similarly, the product and quotient functions are defined by

s ftdsxd − f sxdtsxd            S  f

tDsxd −
 f sxd
tsxd

The domain of ft is A > B, but we can’t divide by 0 and so the domain of fyt is 
hx [ A > B | tsxd ± 0j. For instance, if f sxd − x 2 and tsxd − x 2 1, then the domain 
of the rational function s fytdsxd − x 2ysx 2 1d is hx | x ± 1j, or s2`, 1d ø s1, `d. 

There is another way of combining two functions to obtain a new function. For
example, suppose that y − f sud − su  and u − tsxd − x 2 1 1. Since y is a function 
of u and u is, in turn, a function of x, it follows that y is ultimately a function of x. 

figure 10
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(b) y=| ≈-1 |
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We compute this by substitution:

y − f sud − f stsxdd − f sx 2 1 1d − sx 2 1 1

The procedure is called composition because the new function is composed of the two 
given functions f  and t.

In general, given any two functions f  and t, we start with a number x in the domain 
of t and calculate tsxd. If this number tsxd is in the domain of f, then we can calculate 
the value of f stsxdd. Notice that the output of one function is used as the input to the next 
function. The result is a new function hsxd − f stsxdd obtained by substituting t into f. It is  
called the composition (or composite) of f  and t and is denoted by f 8 t (“ f  circle t”).

Definition � Given two functions f  and t, the composite function f 8 t (also called 
the composition of f  and t) is defined by

s f 8 tdsxd − f stsxdd

The domain of f 8 t is the set of all x in the domain of t such that tsxd is in the domain  
of f. In other words, s f 8 tdsxd is defined whenever both tsxd and f stsxdd are defined. 
Figure 11 shows how to picture f 8 t in terms of machines.

Example �6�  If f sxd − x 2 and tsxd − x 2 3, find the composite functions f 8 t and t 8 f.

SOLUTION � We have

 s f 8 tdsxd − f stsxdd − f sx 2 3d − sx 2 3d2

 st 8 f dsxd − ts f sxdd − tsx 2 d − x 2 2 3	 n

NOTE � You can see from Example 6 that, in general, f 8 t ± t 8 f. Remember, the 
notation f 8 t means that the function t is applied first and then f  is applied second. In 
Example 6, f 8 t is the function that first subtracts 3 and then squares; t 8 f  is the function 
that first squares and then subtracts 3.

Example �7�  If f sxd − sx  and tsxd − s2 2 x , find each of the following functions 
and their domains.
(a)  f 8 t            (b)  t 8 f             (c)  f 8 f             (d)  t 8 t

SOLUTION
(a)	 s f 8 tdsxd − f stsxdd − f (s2 2 x) − ss2 2 x − s4 2 2 x 

The domain of f 8 t is hx | 2 2 x > 0j − hx | x < 2j − s2`, 2g.

(b)	 st 8 f dsxd − ts f sxdd − t(sx ) − s2 2 sx 

For sx  to be defined we must have x > 0. For s2 2 sx  to be defined we must have
2 2 sx > 0, that is, sx < 2, or x < 4. Thus we have 0 < x < 4, so the domain of 
t 8 f  is the closed interval f0, 4g.

(c)	 s f 8 f dsxd − f s f sxdd − f (sx ) − ssx − s4 x 

The domain of f 8 f  is f0, `d.

FIGURE 11 �  
The f 8 t machine is composed of 
the t machine (first) and then the  
f  machine.

f

g

f{©}

f • g

x

©

(input)

(output)

If 0 < a < b, then a 2 < b 2.
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42	 Chapter 1    Functions and Models

	 (a)	 y − f sx 2 4d	 (b)	 y − f sxd 1 3
	 (c)	 y − 1

3 f sxd	 (d)	 y − 2f sx 1 4d
	 (e)	 y − 2 f sx 1 6d

!@

$

%

#f

y

3

_3

6

0 x3_3_6 6

	 1.	� �Suppose the graph of f  is given. Write equations for the graphs 
that are obtained from the graph of f  as follows.

	 (a)	 Shift 3 units upward.
	 (b)	 Shift 3 units downward.
	 (c)	 Shift 3 units to the right.
	 (d)	 Shift 3 units to the left.
	 (e)	 Reflect about the x-axis.
	 (f )	 Reflect about the y-axis.
	 (g)	 Stretch vertically by a factor of 3.
	 (h)	 Shrink vertically by a factor of 3.

	 2.	�� Explain how each graph is obtained from the graph of y − f sxd.
	 (a)	 y − f sxd 1 8	 (b)	 y − f sx 1 8d
	 (c)	 y − 8 f sxd	 (d)	 y − f s8xd
	 (e)	 y − 2f sxd 2 1	 (f)	 y − 8 f s 1

8 xd
	3 .	�� The graph of y − f sxd is given. Match each equation with its 

graph and give reasons for your choices.

(d)	 st 8 tdsxd − tstsxdd − t(s2 2 x ) − s2 2 s2 2 x 

This expression is defined when both 2 2 x > 0 and 2 2 s2 2 x > 0. The first 
inequality means x < 2, and the second is equivalent to s2 2 x < 2, or 2 2 x < 4, or 
x > 22. Thus 22 < x < 2, so the domain of t 8 t is the closed interval f22, 2g.	 ■

It is possible to take the composition of three or more functions. For instance, the 
composite function f 8 t 8 h is found by first applying h, then t, and then f  as follows:

s f 8 t 8 hdsxd − f stshsxddd

Example �8�  Find f 8 t 8 h if f sxd − xysx 1 1d, tsxd − x 10, and hsxd − x 1 3.

SOLUTIOn
 s f 8 t 8 hdsxd − f stshsxddd − f stsx 1 3dd

	  − f ssx 1 3d10 d −
sx 1 3d10

sx 1 3d10 1 1
	 ■

So far we have used composition to build complicated functions from simpler ones. 
But in calculus it is often useful to be able to decompose a complicated function into 
simpler ones, as in the following example.

Example �9�  Given Fsxd − cos2sx 1 9d, find functions f , t, and h such that F − f 8 t 8 h.

SOLUTION � Since Fsxd − fcossx 1 9dg2, the formula for F says: First add 9, then take 
the cosine of the result, and finally square. So we let

hsxd − x 1 9            tsxd − cos x            f sxd − x 2

Then	  s f 8 t 8 hdsxd − f stshsxddd − f stsx 1 9dd − f scossx 1 9dd

 	  − fcossx 1 9dg2 − Fsxd	 ■

1. 3  �Exercises
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	4 .	� �The graph of f  is given. Draw the graphs of the following 
functions.

	 (a)	 y − f sxd 2 3	 (b)	 y − f sx 1 1d

	 (c)	 y − 1
2 f sxd	 (d)	 y − 2f sxd

x

y

0 1

2

	 5.	� �The graph of f  is given. Use it to graph the following  
functions.

	 (a)	 y − f s2xd	 (b)	 y − f s 1
2xd

	 (c)	 y − f s2xd	 (d)	 y − 2f s2xd

x

y

0 1

1

	�6–7 � The graph of y − s3x 2 x 2  is given. Use transformations  
to create a function whose graph is as shown.

1.5 y=œ„„„„„„3x-≈

x

y

30

	6 .	

5 x

y

20

3

  7. 

_4
_1

_2.5

x

y

_1 0

	 8.	� (a)	� How is the graph of y − 2 sin x related to the graph of 
y − sin x? Use your answer and Figure 6 to sketch the  
graph of y − 2 sin x.

	 (b)	� How is the graph of y − 1 1 sx   related to the graph of 
y − sx

  

? Use your answer and Figure 4(a) to sketch the 
graph of y − 1 1 sx .

9–24 � Graph the function by hand, not by plotting points, but by 
starting with the graph of one of the standard functions given in 
Section 1.2, and then applying the appropriate transformations.

	 9.	 y − 2x 2	 10.	 y − sx 2 3d2

	11.	 y − x 3 1 1	 12.	 y − 1 2
1

x

	13.	 y − 2 cos 3x	 14.	 y − 2sx 1 1 

	15.	 y − x 2 2 4x 1 5	 16.	 y − 1 1 sin �x

	17.	 y − 2 2 sx 	 18.	 y − 3 2 2 cos x

	19.	 y − sin( 1
2 x)	 20.	 y − | x | 2 2

	21.	 y − | x 2 2 |	 22.	 y −
1

4
 tanSx 2

�

4 D
	23.	 y − | sx 2 1 |	 24.	 y − | cos �x |

	25.	�� The city of New Orleans is located at latitude 30°N. Use 
Figure 9 to find a function that models the number of hours 
of daylight at New Orleans as a function of the time of year. 
To check the accuracy of your model, use the fact that on 
March 31 the sun rises at 5:51 am and sets at 6:18 pm in 
New Orleans. 

	26.	�� A variable star is one whose brightness alternately increases 
and decreases. For the most visible variable star, Delta 
Cephei, the time between periods of maximum brightness is 
5.4 days, the average brightness (or magnitude) of the star 
is 4.0, and its brightness varies by 60.35 magnitude. Find 
a function that models the brightness of Delta Cephei as a 
function of time.

	27.	� �Some of the highest tides in the world occur in the Bay of 
Fundy on the Atlantic Coast of Canada. At Hopewell Cape 
the water depth at low tide is about 2.0 m and at high tide  
it is about 12.0 m. The natural period of oscillation is  
about 12 hours and on June 30, 2009, high tide occurred  
at 6:45 am. Find a function involving the cosine function  
that models the water depth Dstd (in meters) as a function  
of time t (in hours after midnight) on that day.

	28.	�� In a normal respiratory cycle the volume of air that moves 
into and out of the lungs is about 500 mL. The reserve and 
residue volumes of air that remain in the lungs occupy 
about 2000 mL and a single respiratory cycle for an average 
human takes about 4 seconds. Find a model for the total 
volume of air Vstd in the lungs as a function of time.

	29.	� (a)	� How is the graph of y − f (| x |) related to the graph of f ?
	 (b)	 Sketch the graph of y − sin | x |.
	 (c)	 Sketch the graph of y − s| x |.
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44	 Chapter 1    Functions and Models

	52.	� Use the table to evaluate each expression.
	 (a)	� f sts1dd	 (b)	 ts f s1dd	 (c)	 f s f s1dd
	 (d)	 tsts1dd	 (e)	 st 8 f ds3d	 (f )	 s f 8 tds6d

x 1 2 3 4 5 6

f sxd 3 1 4 2 2 5

tsxd 6 3 2 1 2 3

	53.	�� Use the given graphs of f  and t to evaluate each expression, or 
explain why it is undefined.

	� (a)	 f sts2dd	 (b)	 ts f s0dd	 (c)	 s f 8 tds0d
	 (d)	 st 8 f ds6d	 (e)	 st 8 tds22d	 (f )	 s f 8 f ds4d

x

y

0

fg

2

2

	54.	� �Use the given graphs of f  and t to estimate the value of 
f stsxdd for x − 25, 24, 23, . . . , 5. Use these estimates to 
sketch a rough graph of f 8 t.

g

f

x

y

0 1

1

	55.	�� A stone is dropped into a lake, creating a circular ripple that 
travels outward at a speed of 60 cmys.

	 (a)	� Express the radius r of this circle as a function of the  
time t (in seconds).

	 (b)	� If A is the area of this circle as a function of the radius, 
find A 8 r and interpret it.

	56.	�� A spherical balloon is being inflated and the radius of the 
balloon is increasing at a rate of 2 cmys.

	 (a)	� Express the radius r of the balloon as a function of the  
time t (in seconds).

	 (b)	� If V is the volume of the balloon as a function of the 
radius, find V 8 r and interpret it.

	57.	�� A ship is moving at a speed of 30 kmyh parallel to a straight 
shoreline. The ship is 6 km from shore and it passes a light-
house at noon.

	 (a)	� Express the distance s between the lighthouse and the ship 

	30.	�� Use the given graph of f  to sketch the graph of y − 1yf sxd. 
Which features of f  are the most important in sketching 
y − 1yf sxd? Explain how they are used.

1

10 x

y
	

31–32 � Find (a) f 1 t, (b) f 2 t, (c) ft, and (d) fyt and state their 
domains.

	31.	 �f sxd − x 3 1 2x 2,  tsxd − 3x 2 2 1

	32.	� f sxd − s3 2 x ,  tsxd − sx 2 2 1

	33–38 � Find the functions (a) f 8 t, (b) t 8 f , (c) f 8 f , and (d) t 8 t 
and their domains.

	33.	� f sxd − 3x 1 5,  tsxd − x 2 1 x

	34.	� f sxd − x 3 2 2,  tsxd − 1 2 4x 

	35.	� f sxd − sx 1 1,  tsxd − 4x 2 3

	36.	� f sxd − sin x,  tsxd − x 2 1 1

	37.	� f sxd − x 1
1

x
,  tsxd −

x 1 1

x 1 2

	38.	� f sxd −
x

1 1 x
,  tsxd − sin 2x

	39–42 � Find f 8 t 8 h.

	39.	� f sxd − 3x 2 2,  tsxd − sin x,    hsxd − x 2

	40.	� f sxd − | x 2 4 |,  tsxd − 2 x,    hsxd − sx 

	41.	� f sxd − sx 2 3 ,  tsxd − x 2,    hsxd − x 3 1 2

	42.	� f sxd − tan x,  tsxd −
x

x 2 1
,    hsxd − s3 x 

	43–48 � Express the function in the form f 8 t.

	43.	 Fsxd − s2x 1 x 2d4	 44.	 Fsxd − cos2x

	45.	 Fsxd −
s3 x 

1 1 s3 x 
	 46.	 Gsxd −   3Î x

1 1 x
 

	47.	 vstd − secst 2d tanst 2d	 48.	 ustd −
tan t

1 1 tan t

	49–51 � Express the function in the form f 8 t 8 h.

	49.	 Rsxd − ssx 2 1 	 50.	 Hsxd − s8 2 1 | x | 
	51.	 Sstd − sin2scos td
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In Appendix G we present an alterna-
tive approach to the exponential and 
logarithmic functions using integral 
calculus.

as a function of d, the distance the ship has traveled since 
noon; that is, find f  so that s − f sdd.

	 (b)	� Express d as a function of t, the time elapsed since noon; 
that is, find t so that d − tstd.

	 (c)	� Find f 8 t. What does this function represent?

	58.	�� An airplane is flying at a speed of 350 miyh at an altitude of 
one mile and passes directly over a radar station at time t − 0.

	 (a)	� Express the horizontal distance d (in miles) that the plane 
has flown as a function of t.

	 (b)	� Express the distance s between the plane and the radar  
station as a function of d.

	 (c)	 Use composition to express s as a function of t.

	59.	� The Heaviside function H is defined by

Hstd − H0

1

if  t , 0

if  t > 0

		��  It is used in the study of electric circuits to represent the 
sudden surge of electric current, or voltage, when a switch is 
instantaneously turned on.

	 (a)	 Sketch the graph of the Heaviside function.
	 (b)	� Sketch the graph of the voltage Vstd in a circuit if the 

switch is turned on at time t − 0 and 120 volts are  
applied instantaneously to the circuit. Write a formula  
for Vstd in terms of Hstd.

	 (c)	� Sketch the graph of the voltage Vstd in a circuit if the 
switch is turned on at time t − 5 seconds and 240 volts 
are applied instantaneously to the circuit. Write a formula 
for Vstd in terms of Hstd. (Note that starting at t − 5  
corresponds to a translation.)

	60.	�� The Heaviside function defined in Exercise 59 can also 
be used to define the ramp function y − ctHstd, which 

The function f sxd − 2x is called an exponential function because the variable, x, is the 
exponent. It should not be confused with the power function tsxd − x 2, in which the 
variable is the base.

In general, an exponential function is a function of the form

f sxd − bx

where b is a positive constant. Let’s recall what this means.
If x − n, a positive integer, then

bn − b ? b ? ∙ ∙ ∙ ? b 
   

    n factors

If x − 0, then b 0 − 1, and if x − 2n, where n is a positive integer, then

b2n −
1

bn

represents a gradual increase in voltage or current in a circuit.
	 (a)	 Sketch the graph of the ramp function y − tHstd.
	 (b)	� Sketch the graph of the voltage Vstd in a circuit if the 

switch is turned on at time t − 0 and the voltage is gradu-
ally increased to 120 volts over a 60-second time interval. 
Write a formula for Vstd in terms of Hstd for t < 60.

	 (c)	� Sketch the graph of the voltage Vstd in a circuit if the 
switch is turned on at time t − 7 seconds and the voltage 
is gradually increased to 100 volts over a period of 25 sec-
onds. Write a formula for Vstd in terms of Hstd for t < 32.

	61.	�� Let f  and t be linear functions with equations f sxd − m1x 1 b1 
and tsxd − m2 x 1 b2. Is f 8 t also a linear function? If so, 
what is the slope of its graph?

	62.	�� If you invest x dollars at 4% interest compounded annually,  
then the amount Asxd of the investment after one year is 
Asxd − 1.04x. Find A 8 A, A 8 A 8 A, and A 8 A 8 A 8 A. What 
do these compositions represent? Find a formula for the com-
position of n copies of A.

	63.	� (a)	� If tsxd − 2x 1 1 and hsxd − 4x 2 1 4x 1 7, find a func-
tion f  such that f 8 t − h. (Think about what operations 
you would have to perform on the formula for t to end up 
with the formula for h.)

	 (b)	� If f sxd − 3x 1 5 and hsxd − 3x 2 1 3x 1 2, find a func-
tion t such that f 8 t − h.

	64.	�� If f sxd − x 1 4 and hsxd − 4x 2 1, find a function t such  
that t 8 f − h.

	65.	�� Suppose t is an even function and let h − f 8 t. Is h always an 
even function?

	66.	� �Suppose t is an odd function and let h − f 8 t. Is h always an 
odd function? What if f  is odd? What if f  is even?
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If x is a rational number, x − pyq, where p and q are integers and q . 0, then

bx − bpyq − sq bp 
− ssq b d p

But what is the meaning of bx if x is an irrational number? For instance, what is meant 
by 2s3 or 5�?

To help us answer this question we first look at the graph of the function y − 2x,  
where x is rational. A representation of this graph is shown in Figure 1. We want to 
enlarge the domain of y − 2x to include both rational and irrational numbers.

There are holes in the graph in Figure 1 corresponding to irrational values of x. We 
want to fill in the holes by defining f sxd − 2x, where x [ R, so that f  is an increasing 
function. In particular, since the irrational number s3  satisfies

1.7 , s3 , 1.8

we must have	 21.7 , 2s3 , 21.8

and we know what 21.7 and 21.8 mean because 1.7 and 1.8 are rational numbers. Similarly,  
if we use better approximations for s3 , we obtain better approximations for 2s3:

 1.73 , s3 , 1.74  ?  21.73 , 2s3 , 21.74

 1.732 , s3 , 1.733  ?  21.732 , 2s3 , 21.733

 1.7320 , s3 , 1.7321  ?  21.7320 , 2s3 , 21.7321

 1.73205 , s3 , 1.73206 ? 21.73205 , 2s3 , 21.73206

	 .	 .	 .	 .
	 .	 .	 .	 .
	 .	 .	 .	 .

It can be shown that there is exactly one number that is greater than all of the numbers

21.7,     21.73,     21.732,     21.7320,     21.73205,     . . .

and less than all of the numbers

21.8,     21.74,     21.733,     21.7321,     21.73206,     . . .

We define 2s3 to be this number. Using the preceding approximation process we can 
compute it correct to six decimal places:

2s3 < 3.321997

Similarly, we can define 2x (or bx, if b . 0) where x is any irrational number. Figure 
2 shows how all the holes in Figure 1 have been filled to complete the graph of the 
function f sxd − 2x, x [ R.

x10

y

1

A proof of this fact is given in  
J. Marsden and A. Weinstein, 
Calculus Unlimited (Menlo Park, CA: 
Benjamin/Cummings, 1981). 

FIGURE 2  
�y − 2 x, x real 

FIGURE 1 �  
Representation of y − 2x, x rational

x0

y

1

1
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The graphs of members of the family of functions y − bx are shown in Figure 3 for 
various values of the base b. Notice that all of these graphs pass through the same point 
s0, 1d because b 0 − 1 for b ± 0. Notice also that as the base b gets larger, the exponential 
function grows more rapidly (for x . 0).

0

1®

1.5®2®4®10®”   ’®1
4”   ’®1

2

x

y

1

You can see from Figure 3 that there are basically three kinds of exponential functions 
y − bx. If 0 , b , 1, the exponential function decreases; if b − 1, it is a constant; and 
if b . 1, it increases. These three cases are illustrated in Figure 4. Observe that if b ± 1, 
then the exponential function y − bx has domain R and range s0, `d. Notice also that, 
since s1ybdx − 1ybx − b2x, the graph of y − s1ybdx is just the reflection of the graph of 
y − bx about the y-axis.

(a) y=b®,  0<b<1 (b) y=1® (c) y=b®,  b>1

1
(0, 1)

(0, 1)

x0

y y

x0x0

y

One reason for the importance of the exponential function lies in the following proper-
ties. If x and y are rational numbers, then these laws are well known from elementary  
algebra. It can be proved that they remain true for arbitrary real numbers x and y. 

Laws of Exponents � If a and b are positive numbers and x and y are any real 
numbers, then

1.  bx1y − bxby      2.  bx2y −
bx

by       3.  sbx dy − bxy      4.  sabdx − axbx

Example �1�  Sketch the graph of the function y − 3 2 2x and determine its domain 
and range.

SOLUTION � First we reflect the graph of y − 2x [shown in Figures 2 and 5(a)] about the 
x-axis to get the graph of y − 22x in Figure 5(b). Then we shift the graph of y − 22x 

figure 3

If 0 , b , 1, then b x approaches 0 
as x becomes large. If b . 1, then b x 
approaches 0 as x decreases through 
negative values. In both cases the  
x-axis is a horizontal asymptote. These 
matters are discussed in Section 2.6.

figure 4

www.stewartcalculus.com
For review and practice using the 
Laws of Exponents, click on Review 
of Algebra.

For a review of reflecting and shifting 
graphs, see Section 1.3.
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48	 Chapter 1    Functions and Models

�upward 3 units to obtain the graph of y − 3 2 2x in Figure 5(c). The domain is R and 
the range is s2`, 3d.

	

0

1

(a) y=2®

x

y

0

_1

(b) y=_2®

x

y

y=3

0

2

(c) y=3-2®

x

y

■

Example �2�  Use a graphing device to compare the exponential function f sxd − 2x 
and the power function tsxd − x 2. Which function grows more quickly when x is large?

SOLUTION � Figure 6 shows both functions graphed in the viewing rectangle f22, 6g  
by f0, 40g. We see that the graphs intersect three times, but for x . 4 the graph of 
f sxd − 2x stays above the graph of tsxd − x 2. Figure 7 gives a more global view and 
shows that for large values of x, the exponential function y − 2x grows far more rapidly 
than the power function y − x 2.

250

0 8

y=2®

y=≈

40

0
_2 6

y=2® y=≈

figure 6	 figure 7	 ■

Applications of Exponential Functions
The exponential function occurs very frequently in mathematical models of nature and  
society. Here we indicate briefly how it arises in the description of population growth 
and radioactive decay. In later chapters we will pursue these and other applications in 
greater detail.

First we consider a population of bacteria in a homogeneous nutrient medium. Suppose 
that by sampling the population at certain intervals it is determined that the population  
doubles every hour. If the number of bacteria at time t is pstd, where t is measured in 
hours, and the initial population is ps0d − 1000, then we have

 ps1d − 2ps0d − 2 3 1000

 ps2d − 2ps1d − 22 3 1000

 ps3d − 2ps2d − 23 3 1000

figure 5

Example 2 shows that y − 2x increases 
more quickly than y − x 2. To demon-
strate just how quickly f sxd − 2x 
increases, let’s perform the following 
thought experiment. Suppose we start 
with a piece of paper a thousandth of  
an inch thick and we fold it in half 50 
times. Each time we fold the paper in 
half, the thickness of the paper doubles, 
so the thickness of the resulting paper 
would be 250y1000 inches. How thick  
do you think that is? It works out to  
be more than 17 million miles!
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It seems from this pattern that, in general,

pstd − 2t 3 1000 − s1000d2 t

This population function is a constant multiple of the exponential function y − 2t, so it  
exhibits the rapid growth that we observed in Figures 2 and 7. Under ideal conditions  
(unlimited space and nutrition and absence of disease) this exponential growth is typical 
of what actually occurs in nature.

What about the human population? Table 1 shows data for the population of the world 
in the 20th century and Figure 8 shows the corresponding scatter plot.

5x10'

P

t20 40 60 80 100 1200

Years since 1900

The pattern of the data points in Figure 8 suggests exponential growth, so we use a graph- 
ing calculator with exponential regression capability to apply the method of least squares 
and obtain the exponential model

P − s1436.53d ? s1.01395d t

where t − 0 corresponds to 1900. Figure 9 shows the graph of this exponential function  
together with the original data points. We see that the exponential curve fits the data rea-
sonably well. The period of relatively slow population growth is explained by the two 
world wars and the Great Depression of the 1930s.

5x10'

20 40 60 80 100 120

P

t0

Years since 1900

figure 8 � 
Scatter plot for world  

population growth

FIGURE 9 � 
Exponential model for  

population growth

t
(years since 1900)

Population 
(millions)

0 1650
10 1750
20 1860
30 2070
40 2300
50 2560
60 3040
70 3710
80 4450
90 5280

100 6080
110 6870

Table 1�
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In 1995 a paper appeared detailing the effect of the protease inhibitor ABT-538 on the 
human immunodeficiency virus HIV-1.1 Table 2 shows values of the plasma viral load 
Vstd of patient 303, measured in RNA copies per mL, t days after ABT-538 treatment was 
begun. The corresponding scatter plot is shown in Figure 10.
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Figure 10�  Plasma viral load in patient 303

The rather dramatic decline of the viral load that we see in Figure 10 reminds us of 
the graphs of the exponential function y − bx in Figures 3 and 4(a) for the case where the 
base b is less than 1. So let’s model the function Vstd by an exponential function. Using 
a graphing calculator or computer to fit the data in Table 2 with an exponential function 
of the form y − a ? bt, we obtain the model

V − 96.39785 ? s0.818656dt

In Figure 11 we graph this exponential function with the data points and see that the 
model represents the viral load reasonably well for the first month of treatment.
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We could use the graph in Figure 11 to estimate the half-life of V, that is, the time 
required for the viral load to be reduced to half its initial value (see Exercise 33). In the 
next example we are given the half-life of a radioactive element and asked to find the 
mass of a sample at any time.

Example �3�  The half-life of strontium-90, 90Sr, is 25 years. This means that half of 
any given quantity of 90Sr will disintegrate in 25 years.
(a)	 If a sample of 90Sr has a mass of 24 mg, find an expression for the mass mstd that 
remains after t years.
(b)	 Find the mass remaining after 40 years, correct to the nearest milligram.
(c)	 Use a graphing device to graph mstd and use the graph to estimate the time required 
for the mass to be reduced to 5 mg.

Table 2

t (days) Vstd

	 1 	 76.0

	 4 	 53.0

	 8 	 18.0

11 	 9.4

15 	 5.2

22 	 3.6

Figure 11 
�Exponential model for viral load

1. D. Ho et al., “Rapid Turnover of Plasma Virions and CD4 Lymphocytes in HIV-1 Infection,” Nature 373 
(1995): 123–26.
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Solution �
(a)	 The mass is initially 24 mg and is halved during each 25-year period, so

 ms0d − 24

 ms25d −
1

2
s24d

 ms50d −
1

2
?

1

2
s24d −

1

22 s24d

 ms75d −
1

2
?

1

22 s24d −
1

23 s24d

 ms100d −
1

2
?

1

23 s24d −
1

24 s24d

From this pattern, it appears that the mass remaining after t years is

mstd −
1

2ty25 s24d − 24 ? 22ty25 − 24 ? s221y25dt

This is an exponential function with base b − 221y25 − 1y21y25.

(b)	 The mass that remains after 40 years is

ms40d − 24 ? 2240y25 < 7.9 mg

(c)	 We use a graphing calculator or computer to graph the function mstd − 24 ? 22ty25 
in Figure 12. We also graph the line m − 5 and use the cursor to estimate that mstd − 5 
when t < 57. So the mass of the sample will be reduced to 5 mg after about 57 years.	 ■

The Number e
Of all possible bases for an exponential function, there is one that is most convenient 
for the purposes of calculus. The choice of a base b is influenced by the way the graph 
of y − bx crosses the y-axis. Figures 13 and 14 show the tangent lines to the graphs of 
y − 2x and y − 3x at the point s0, 1d. (Tangent lines will be defined precisely in Section 
2.7. For present purposes, you can think of the tangent line to an exponential graph at a 
point as the line that touches the graph only at that point.) If we measure the slopes of 
these tangent lines at s0, 1d, we find that m < 0.7 for y − 2x and m < 1.1 for y − 3x.

0

1

mÅ1.1

0

y=2®

1
mÅ0.7

x

y
y=3®

x

y

figure 13 	 figure 14

It turns out, as we will see in Chapter 3, that some of the formulas of calculus will be 
greatly simplified if we choose the base b so that the slope of the tangent line to y − bx 

m=24 · 2_t/25

m=5

30

0 100

Figure �12
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52	 Chapter 1    Functions and Models

at s0, 1d is exactly 1. (See Figure 15.) In fact, there is such a number and it is denoted by 
the letter e. (This notation was chosen by the Swiss mathematician Leonhard Euler in 
1727, probably because it is the first letter of the word exponential.) In view of Figures 
13 and 14, it comes as no surprise that the number e lies between 2 and 3 and the graph 
of y − ex lies between the graphs of y − 2x and y − 3x. (See Figure 16.) In Chapter 3 
we will see that the value of e, correct to five decimal places, is

e < 2.71828

We call the function f sxd − ex the natural exponential function.

0

1

y=2®

y=e®

y=3®y

x

Example �4�  Graph the function y − 1
2 e2x 2 1 and state the domain and range.

SOLUTION � We start with the graph of y − ex from Figures 15 and 17(a) and reflect about 
the y-axis to get the graph of y − e2x in Figure 17(b). (Notice that the graph crosses the  
y-axis with a slope of 21). Then we compress the graph vertically by a factor of 2 to  
obtain the graph of y − 1

2 e2x in Figure 17(c). Finally, we shift the graph downward one 
unit to get the desired graph in Figure 17(d). The domain is R and the range is s21, `d. 

1
2(d) y=   e–®-1

y=_1
0

1

1
2(c) y=   e–®

0

1

0

(b) y=e–®

1

x0

y

(a) y=´

1

y

x

y

x

y

x

■

How far to the right do you think we would have to go for the height of the graph 
of y − ex to exceed a million? The next example demonstrates the rapid growth of this 
function by providing an answer that might surprise you.

Example �5�  Use a graphing device to find the values of x for which ex . 1,000,000.

0

y=´

1

m=1

x

y

FIGURE 15 
�The natural exponential function 
crosses the y-axis with a slope of 1.

FIGURE 16

FIGURE 17

TEC � Module 1.4 enables you to graph 
exponential functions with various 
bases and their tangent lines in order 
to estimate more closely the value of b 
for which the tangent has slope 1.
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SOLUTION � In Figure 18 we graph both the function y − ex and the horizontal line 
y − 1,000,000. We see that these curves intersect when x < 13.8. Thus ex . 106 when 
x . 13.8. It is perhaps surprising that the values of the exponential function have 
already surpassed a million when x is only 14. 

	

1.5x10^

0 15

y=´

y=10^

	 ■FIGURE 18

	�1–4 � Use the Law of Exponents to rewrite and simplify the  
expression.

	 1.	� (a)	
423

228 	 (b)	
1

s3 x 4 

	 2.	� (a)	 8 4y3	 (b)	 xs3x 2d3

	 3.	� (a)	 b8s2bd4	 (b)	
s6y3d4

2y 5

	 4.	� (a)	
x 2n ? x 3n21

x n12 	 (b)	
sasb 

s3 ab 

	 5.	� (a)	� Write an equation that defines the exponential function 
with base b . 0.

	 (b)	 What is the domain of this function?
	 (c)	 If b ± 1, what is the range of this function?
	 (d)	� Sketch the general shape of the graph of the exponential 

function for each of the following cases.
	 (i)	 b . 1
	 (ii)	 b − 1
	 (iii)	 0 , b , 1

	 6.	� (a)	� How is the number e defined?
	 (b)	 What is an approximate value for e?
	 (c)	 What is the natural exponential function?

	7–10 � Graph the given functions on a common screen. How are 
these graphs related?

	 7.	� y − 2x,    y − e x,    y − 5x,    y − 20 x

	 8.	� y − e x,    y − e 2x,    y − 8x,    y − 82x

;

	 9.	� y − 3x,    y − 10 x,    y − ( 1
3)x

,    y − ( 1
10 )x

	10.	� y − 0.9 x,    y − 0.6x,    y − 0.3x,    y − 0.1x

	�11–16 � Make a rough sketch of the graph of the function. Do not 
use a calculator. Just use the graphs given in Figures 3 and 13 
and, if necessary, the transformations of Section 1.3.

	11.	 y − 4x 2 1	 12.	 y − s0.5dx 21

	13.	 y − 222x	 14.	 y − e | x |

	15.	 y − 1 2 1
2 e2x	 16.	 y − 2s1 2 e x d

	17.	�� Starting with the graph of y − e x, write the equation of the 
graph that results from

	 (a)	 shifting 2 units downward.
	 (b)	 shifting 2 units to the right.
	 (c)	 reflecting about the x-axis.
	 (d)	 reflecting about the y-axis.
	 (e)	 reflecting about the x-axis and then about the y-axis.

	18.	�� Starting with the graph of y − e x, find the equation of the 
graph that results from

	 (a)	 reflecting about the line y − 4.
	 (b)	 reflecting about the line x − 2.

	�19–20 � Find the domain of each function.

	19.	� (a)	 f sxd −
1 2 e x 2

1 2 e12x 2	 (b)	 f sxd −
1 1 x

e cos x

	20.	� (a)	 tstd − s10 t 2 100 	 (b)	 tstd − sinse t 2 1d
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54	 Chapter 1    Functions and Models

	21–22 � Find the exponential function f sxd − Cb x whose graph  
is given.

	21.		  22.	

0

(1, 6)

(3, 24)
y

x

(_1, 3)

”1,    ’4
3

0

y

x

 

 	23.	� �If f sxd − 5x, show that

 f sx 1 hd 2 f sxd
h

− 5xS 5h 2 1

h D
	24.	�� Suppose you are offered a job that lasts one month. Which 

of the following methods of payment do you prefer?
	 I.	 One million dollars at the end of the month.
	 II.	� One cent on the first day of the month, two cents on the 

second day, four cents on the third day, and, in general, 
2n21 cents on the nth day.

	25.	�� Suppose the graphs of f sxd − x 2 and tsxd − 2x are drawn 
on a coordinate grid where the unit of measurement is  
1 inch. Show that, at a distance 2 ft to the right of the origin, 
the height of the graph of f  is 48 ft but the height of the 
graph of t is about 265 mi.

	26.	� �Compare the functions f sxd − x 5 and tsxd − 5x by graph-
ing both functions in several viewing rectangles. Find all 
points of intersection of the graphs correct to one decimal 
place. Which function grows more rapidly when x is large?

	27.	� �Compare the functions f sxd − x 10 and tsxd − e x by 
graphing both f  and t in several viewing rectangles. When 
does the graph of t finally surpass the graph of f ?

	28.	� �Use a graph to estimate the values of x such that 
e x . 1,000,000,000.

	29.	� �A researcher is trying to determine the doubling time for 
a population of the bacterium Giardia lamblia. He starts 
a culture in a nutrient solution and estimates the bacteria 
count every four hours. His data are shown in the table.

Time (hours) 0 4 8 12 16 20 24

Bacteria count
sCFUymLd 37 47 63 78 105 130 173

	 (a)	� Make a scatter plot of the data.
	 (b)	� Use a graphing calculator to find an exponential curve 

f std − a ? bt that models the bacteria population  
t hours later.

;

;

;

;

	 (c)	� Graph the model from part (b) together with the scatter 
plot in part (a). Use the TRACE feature to determine 
how long it takes for the bacteria count to double.

©
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 / 
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G. lamblia

30.	���	� A bacteria culture starts with 500 bacteria and doubles in 
size every half hour.

	 (a)	� How many bacteria are there after 3 hours?
	 (b)	� How many bacteria are there after t hours?
	 (c)	� How many bacteria are there after 40 minutes?
	 (d)	� Graph the population function and estimate the time 

for the population to reach 100,000.

	31.	�� �The half-life of bismuth-210, 210Bi, is 5 days.
	 (a)	� If a sample has a mass of 200 mg, find the amount 

remaining after 15 days.
	 (b)	� Find the amount remaining after t days.
	 (c)	� Estimate the amount remaining after 3 weeks.
	 (d)	� Use a graph to estimate the time required for the mass 

to be reduced to 1 mg.

	32.	�� �An isotope of sodium, 24Na, has a half-life of 15 hours. A 
sample of this isotope has mass 2 g.

	 (a)	� Find the amount remaining after 60 hours.
	 (b)	� Find the amount remaining after t hours.
	 (c)	� Estimate the amount remaining after 4 days.
	 (d)	� Use a graph to estimate the time required for the mass 

to be reduced to 0.01 g.

	33.	�� Use the graph of V in Figure 11 to estimate the half-life 
of the viral load of patient 303 during the first month of 
treatment.

	34.	�� After alcohol is fully absorbed into the body, it is metabo-
lized with a half-life of about 1.5 hours. Suppose you have 
had three alcoholic drinks and an hour later, at midnight, 
your blood alcohol concentration (BAC) is 0.6 mgymL.

	 (a)	� Find an exponential decay model for your BAC t hours 
after midnight.

	 (b)	� Graph your BAC and use the graph to determine when 
you can drive home if the legal limit is 0.08 mgymL.

Source: Adapted from P. Wilkinson et al., “Pharmacokinetics of Ethanol after 
Oral Administration in the Fasting State,” Journal of Pharmacokinetics and 
Biopharmaceutics 5 (1977): 207–24.

	35.	� �Use a graphing calculator with exponential regression 
capability to model the population of the world with the 

;

;

;

;

;
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data from 1950 to 2010 in Table 1 on page 49. Use the 
model to estimate the population in 1993 and to predict 
the population in the year 2020.

	36.	�� The table gives the population of the United States, in mil-
lions, for the years 1900–2010. Use a graphing calculator 

Year Population Year Population

1900 	 76 1960 	 179
1910 	 92 1970 	 203
1920 	 106 1980 	 227
1930 	 123 1990 	 250
1940 	 131 2000 	 281
1950 150 2010 310

;

with exponential regression capability to model the US 
population since 1900. Use the model to estimate the 
population in 1925 and to predict the population in the  
year 2020.

	37.	� �If you graph the function

f sxd −
1 2 e 1yx

1 1 e 1yx

you’ll see that f  appears to be an odd function. Prove it.

	38.	� �Graph several members of the family of functions

f sxd −
1

1 1 ae bx

�where a . 0. How does the graph change when b changes? 
How does it change when a changes?

;

;

Table 1 gives data from an experiment in which a bacteria culture started with 100 bac-
teria in a limited nutrient medium; the size of the bacteria population was recorded at 
hourly intervals. The number of bacteria N is a function of the time t: N − f std.

Suppose, however, that the biologist changes her point of view and becomes inter-
ested in the time required for the population to reach various levels. In other words, she is 
thinking of t as a function of N. This function is called the inverse function of f , denoted 
by f 21, and read “ f  inverse.” Thus t − f 21sNd is the time required for the population 
level to reach N. The values of f 21 can be found by reading Table 1 from right to left or 
by consulting Table 2. For instance, f 21s550d − 6 because f s6d − 550.

t 
(hours)

 N − f std
 − population at time t

0 100
1 168
2 259
3 358
4 445
5 509
6 550
7 573
8 586

Table 1�  N as a function of t

  

N
 t − f 21 sNd
 − time to reach N bacteria

100 0
168 1
259 2
358 3
445 4
509 5
550 6
573 7
586 8

Table 2�  t as a function of N

Not all functions possess inverses. Let’s compare the functions f  and t whose arrow  
diagrams are shown in Figure 1. Note that f  never takes on the same value twice (any two 
inputs in A have different outputs), whereas t does take on the same value twice (both 2  
and 3 have the same output, 4). In symbols,

ts2d − ts3d

but	 f sx1 d ± f sx 2 d        whenever x1 ± x 2

Functions that share this property with f  are called one-to-one functions.

4

3

2

1

10

4

2
g

4

3

2

1

10

7

4

2
f

FIGURE 1 �  
f  is one-to-one; t is not.
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56	 Chapter 1    Functions and Models

1 �  Definition  A function f  is called a one-to-one function if it never takes on 
the same value twice; that is,

f sx1 d ± f sx2 d        whenever x1 ± x2

In the language of inputs and outputs, 
this definition says that f  is one-to-one 
if each output corresponds to only one 
input.

If a horizontal line intersects the graph of f  in more than one point, then we see from 
Figure 2 that there are numbers x1 and x2 such that f sx1 d − f sx2 d. This means that f  is 
not one-to-one. 

0

‡fl

y=ƒ

y

x⁄ ¤

Therefore we have the following geometric method for determining whether a func-
tion is one-to-one.

�Horizontal Line Test � A function is one-to-one if and only if no horizontal line 
intersects its graph more than once.

Example �1�  Is the function f sxd − x 3 one-to-one?

SOLUTION 1 � If x1 ± x 2, then x 3
1 ± x 3

2  (two different numbers can’t have the same 
cube). Therefore, by Definition 1, f sxd − x 3 is one-to-one.

SOLUTION 2 � From Figure 3 we see that no horizontal line intersects the graph of 
f sxd − x 3 more than once. Therefore, by the Horizontal Line Test, f  is one-to-one.	 ■

Example �2�  Is the function tsxd − x 2 one-to-one?

SOLUTION 1 � This function is not one-to-one because, for instance,

ts1d − 1 − ts21d

and so 1 and 21 have the same output.

SOLUTION 2�  From Figure 4 we see that there are horizontal lines that intersect the graph 
of t more than once. Therefore, by the Horizontal Line Test, t is not one-to-one.	 ■

One-to-one functions are important because they are precisely the functions that pos-
sess inverse functions according to the following definition.

2 �  Definition � Let f  be a one-to-one function with domain A and range B.
Then its inverse function f 21 has domain B and range A and is defined by

f 21syd − x    &?    f sxd − y

for any y in B.

FIGURE 2 � 
This function is not one-to-one  

because f sx1d − f sx2d.

FIGURE 3 �  
f sxd − x 3 is one-to-one.

0

y=˛

y

x

FIGURE 4 �  
tsxd − x 2 is not one-to-one.

0

y=≈

x

y
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This definition says that if f  maps x into y, then f 21 maps y back into x. (If f  were 
not one-to-one, then f 21 would not be uniquely defined.) The arrow diagram in Figure 5 
indicates that f 21 reverses the effect of f. Note that

 domain of f 21 − range of f

 range of f 21 − domain of f

For example, the inverse function of f sxd − x 3 is f 21sxd − x 1y3 because if y − x 3, 
 then

f 21syd − f 21sx 3 d − sx 3 d1y3 − x

CAUTION � Do not mistake the 21 in f 21 for an exponent. Thus

f 21sxd    does not mean  
1

f sxd

The reciprocal 1yf sxd could, however, be written as f f sxdg21.

Example �3�  If f s1d − 5, f s3d − 7, and f s8d − 210, find f 21s7d, f 21s5d, and 
f 21s210d.

SOLUTION � From the definition of f 21 we have

f 21s7d − 3        because        f s3d − 7

f 21s5d − 1        because        f s1d − 5

f 21s210d − 8        because        f s8d − 210

The diagram in Figure 6 makes it clear how f 21 reverses the effect of f  in this case.	 ■

The letter x is traditionally used as the independent variable, so when we concentrate 
on f 21 rather than on f, we usually reverse the roles of x and y in Definition 2 and write

3 �

	

f 21sxd − y    &?    f syd − x

By substituting for y in Definition 2 and substituting for x in (3), we get the follow-
ing cancellation equations:

4 �

	

 f 21s f sxdd − x for every x in A

 f s f 21sxdd − x for every x in B

FIGURE 5 �

x

y

A

B

f – !f

B

5

7

_10

f

A

1

3

8

A

1

3

8

f –!

B

5

7

_10

FIGURE 6 �  
The inverse function reverses inputs 
and outputs.
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58	 Chapter 1    Functions and Models

The first cancellation equation says that if we start with x, apply f, and then apply f 21, 
we arrive back at x, where we started (see the machine diagram in Figure 7). Thus f 21 
undoes what f  does. The second equation says that f  undoes what f 21 does.

x xf ƒ f –!

For example, if f sxd − x 3, then f 21sxd − x 1y3 and so the cancellation equations become

 f 21s f sxdd − sx 3 d1y3 − x

 f s f 21sxdd − sx 1y3 d3 − x

These equations simply say that the cube function and the cube root function cancel each 
other when applied in succession.

Now let’s see how to compute inverse functions. If we have a function y − f sxd and 
are able to solve this equation for x in terms of y, then according to Definition 2 we must 
have x − f 21syd. If we want to call the independent variable x, we then interchange x and 
y and arrive at the equation y − f 21sxd.

5 �  How to Find the Inverse Function of a One-to-One Function f

Step 1�  Write y − f sxd.

Step 2�  Solve this equation for x in terms of y (if possible).

Step 3� � To express f 21 as a function of x, interchange x and y. 
The resulting equation is y − f 21sxd.

Example �4�  Find the inverse function of f sxd − x 3 1 2.

SOLUTION � According to (5) we first write

y − x 3 1 2

Then we solve this equation for x:

 x 3 − y 2 2

 x − s3 y 2 2 

Finally, we interchange x and y:

 y − s3 x 2 2 

Therefore the inverse function is f 21sxd − s3 x 2 2 .	 ■

The principle of interchanging x and y to find the inverse function also gives us the 
method for obtaining the graph of f 21 from the graph of f. Since f sad − b if and only  
if f 21sbd − a, the point sa, bd is on the graph of f  if and only if the point sb, ad is on the 

figure 7

In Example 4, notice how f 21 reverses 
the effect of f . The function f  is the 
rule “Cube, then add 2”; f 21 is the rule 
“Subtract 2, then take the cube root.”
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graph of f 21. But we get the point sb, ad from sa, bd by reflecting about the line y − x. 
(See Figure 8.)

0

y

x

(b, a)

(a, b)

y=x

0

y

x

f –!

y=x f

	figure  8	 figure 9

Therefore, as illustrated by Figure 9:

The graph of f 21 is obtained by reflecting the graph of f  about the line y − x.

Example �5�  Sketch the graphs of f sxd − s21 2 x  and its inverse function using the 
same coordinate axes.

SOLUTION � First we sketch the curve y − s21 2 x  (the top half of the parabola 
y 2 − 21 2 x, or x − 2y 2 2 1) and then we reflect about the line y − x to get the  
graph of f 21. (See Figure 10.) As a check on our graph, notice that the expression for 
f 21 is f 21sxd − 2x 2 2 1, x > 0. So the graph of f 21 is the right half of the parabola 
y − 2x 2 2 1 and this seems reasonable from Figure 10.	 ■

Logarithmic Functions
If b . 0 and b ± 1, the exponential function f sxd − bx is either increasing or decreasing 
and so it is one-to-one by the Horizontal Line Test. It therefore has an inverse function 
f 21, which is called the logarithmic function with base b and is denoted by logb. If we 
use the formulation of an inverse function given by (3),

f 21sxd − y    &?    f syd − x

then we have 

6 �

	

logb x − y    &?    by − x

Thus, if x . 0, then logb x is the exponent to which the base b must be raised to give x. 
For example, log10 0.001 − 23 because 1023 − 0.001.

The cancellation equations (4), when applied to the functions f sxd − bx and 
f 21sxd − logb x, become

7 �

	

 logbsbx d − x for every x [ R

 blogb x − x for every x . 0

0

y=x
y=ƒ

(0, _1)

y=f –!(x)

(_1, 0)

y

x

FIGURE 10 
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60	 Chapter 1    Functions and Models

The logarithmic function logb has domain s0, `d and range R. Its graph is the reflec-
tion of the graph of y − bx about the line y − x.

Figure 11 shows the case where b . 1. (The most important logarithmic functions have  
base b . 1.) The fact that y − bx is a very rapidly increasing function for x . 0 is  
reflected in the fact that y − logb x is a very slowly increasing function for x . 1.

Figure 12 shows the graphs of y − logb x with various values of the base  b . 1. Since 
logb 1 − 0, the graphs of all logarithmic functions pass through the point s1, 0d.

0

y

1

x1

y=log£ x

y=log™ x

y=log∞ x
y=log¡¸ x

The following properties of logarithmic functions follow from the corresponding 
properties of exponential functions given in Section 1.4.

Laws of Logarithms�  If x and y are positive numbers, then�

	 1.	� logbsxyd − logb x 1 logb y  

	 2.	� logbS x

yD − logb x 2 logb y

	 3.	� logbsxrd − r logb x        (where r is any real number)

Example �6�  Use the laws of logarithms to evaluate log2 80 2 log2 5.

SOLUTION � Using Law 2, we have

log2 80 2 log2 5 − log2S 80

5 D − log2 16 − 4

because 24 − 16.	 ■

Natural Logarithms
Of all possible bases b for logarithms, we will see in Chapter 3 that the most convenient 
choice of a base is the number e, which was defined in Section 1.4. The logarithm with 
base e is called the natural logarithm and has a special notation:

loge x − ln x

If we put b − e and replace loge with “ln” in (6) and (7), then the defining properties 
of the natural logarithm function become

FIGURE 11

0

y=x

y=b®,  b>1

y=logb x,  b>1

y

x

FIGURE 12

Notation for Logarithms
Most textbooks in calculus and the 
sciences, as well as calculators, 
use the notation ln x for the natural 
logarithm and log x for the “common 
logarithm,” log10 x. In the more advanced 
mathematical and scientific literature 
and in computer languages, however, 
the notation log x usually denotes the 
natural logarithm.
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8 �

	
ln x − y    &?    ey − x

9 �

	

	  lnsex d − x x [ R

	  e ln x − x x . 0

In particular, if we set x − 1, we get

ln e − 1

Example �7�  Find x if ln x − 5.

SOLUTION 1 � From (8) we see that

ln x − 5        means        e 5 − x

Therefore x − e 5.
(If you have trouble working with the “ln” notation, just replace it by loge. Then the 

equation becomes loge x − 5; so, by the definition of logarithm, e 5 − x.)

SOLUTION 2 � Start with the equation

ln x − 5

and apply the exponential function to both sides of the equation:

e ln x − e 5

But the second cancellation equation in (9) says that e ln x − x. Therefore x − e 5.	 ■

Example �8�  Solve the equation e 523x − 10.

SOLUTION � We take natural logarithms of both sides of the equation and use (9):

 lnse 523x d − ln 10

 5 2 3x − ln 10

 3x − 5 2 ln 10

 x − 1
3 s5 2 ln 10d

Since the natural logarithm is found on scientific calculators, we can approximate the 
solution: to four decimal places, x < 0.8991.	 ■

Example �9�  Express ln a 1 1
2 ln b as a single logarithm.

SOLUTION � Using Laws 3 and 1 of logarithms, we have

 ln a 1 1
2 ln b − ln a 1 ln b 1y2

 − ln a 1 lnsb 

	  − ln(asb )	 ■
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62	 Chapter 1    Functions and Models

The following formula shows that logarithms with any base can be expressed in terms 
of the natural logarithm.

10 � � Change of Base Formula  For any positive number b sb ± 1d, we have

logb x −
ln x

ln b
 

Proof � Let y − logb x. Then, from (6), we have by − x. Taking natural logarithms of 
both sides of this equation, we get y ln b − ln x. Therefore

	 y −
ln x

ln b
	 ■

Scientific calculators have a key for natural logarithms, so Formula 10 enables us 
to use a calculator to compute a logarithm with any base (as shown in the following 
example). Similarly, Formula 10 allows us to graph any logarithmic function on a graph-
ing calculator or computer (see Exercises 43 and 44).

Example �10�  Evaluate log8 5 correct to six decimal places.

SOLUTION � Formula 10 gives

	 log8 5 −
ln 5

ln 8
< 0.773976	

■

Graph and Growth of the Natural Logarithm
The graphs of the exponential function y − ex and its inverse function, the natural loga-
rithm function, are shown in Figure 13. Because the curve y − ex crosses the y-axis with  
a slope of 1, it follows that the reflected curve y − ln x crosses the x-axis with a slope of 1.

In common with all other logarithmic functions with base greater than 1, the natural 
logarithm is an increasing function defined on s0, `d and the y-axis is a vertical asymp-
tote. (This means that the values of ln x become very large negative as x approaches 0.)

Example �11�  Sketch the graph of the function y − lnsx 2 2d 2 1.

SOLUTION � We start with the graph of y − ln x as given in Figure 13. Using the transfor- 
mations of Section 1.3, we shift it 2 units to the right to get the graph of y − lnsx 2 2d 
and then we shift it 1 unit downward to get the graph of y − lnsx 2 2d 2 1. (See 
Figure 14.)

0

y

2 x(3, 0)

x=2

y=ln(x-2)

0

y

x

y=ln x

(1, 0) 0

y

2 x

x=2

(3, _1)

y=ln(x-2)-1

y

1
0

x1

y=x
y=´

y=ln x

FIGURE 13�   
The graph of y − ln x is the reflection 
of the graph of y − ex about the line 
y − x .

FIGURE 14�  	 ■
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Although ln x is an increasing function, it grows very slowly when x . 1. In fact, ln x  
grows more slowly than any positive power of x. To illustrate this fact, we compare  
approximate values of the functions y − ln x and y − x 1y2 − sx  in the following table 
and we graph them in Figures 15 and 16. You can see that initially the graphs of y − sx  
and y − ln x grow at comparable rates, but eventually the root function far surpasses 
the logarithm.

x 1 2 5 10 50 100 500 1000 10,000 100,000

ln x 0 0.69 1.61 2.30 3.91 4.6 6.2 6.9 9.2 11.5

sx 1 1.41 2.24 3.16 7.07 10.0 22.4 31.6 100 316

ln x

sx 
0 0.49 0.72 0.73 0.55 0.46 0.28 0.22 0.09 0.04

x0

y

1000

20

y=œ„x

y=ln x

x0

y

1

1

y=œ„x

y=ln x

FIGURE 15	� FIGURE 16

Inverse Trigonometric Functions
When we try to find the inverse trigonometric functions, we have a slight difficulty:  
Because the trigonometric functions are not one-to-one, they don’t have inverse func-
tions. The difficulty is overcome by restricting the domains of these functions so that 
they become one-to-one.

You can see from Figure 17 that the sine function y − sin x is not one-to-one (use 
the Horizontal Line Test). But the function f sxd − sin x, 2�y2 < x < �y2, is one-to-
one (see Figure 18). The inverse function of this restricted sine function f  exists and is 
denoted by sin21 or arcsin. It is called the inverse sine function or the arcsine function.

y

0_π π xπ
2

y=sin x

0

y

x

_ π
2

π
2

	 Figure 18   
	 y − sin x, 2�

2 < x < �
2� 

figure 17
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Since the definition of an inverse function says that

f 21sxd − y    &?    f syd − x

we have

sin21x − y    &?    sin y − x    and    2
�

2
< y <

�

2

Thus, if 21 < x < 1, sin21x is the number between 2�y2 and �y2 whose sine is x.

Example �12�  Evaluate (a) sin21s1
2d and (b) tansarcsin 13 d.

SOLUTION

(a)  We have
sin21s1

2d −
�

6

because sins�y6d − 1
2 and �y6 lies between 2�y2 and �y2.

(b)  Let � − arcsin 13, so sin � − 1
3. Then we can draw a right triangle with angle � as  

in Figure 19 and deduce from the Pythagorean Theorem that the third side has length 
s9 2 1 − 2s2 . This enables us to read from the triangle that

tansarcsin 13 d − tan � −
1

2s2 
■

The cancellation equations for inverse functions become, in this case,

 sin21ssin xd − x    for 2
�

2
< x <

�

2

 sinssin21xd − x    for 21 < x < 1

The inverse sine function, sin21, has domain f21, 1g and range f2�y2, �y2g, and  
its graph, shown in Figure 20, is obtained from that of the restricted sine function (Fig
ure 18) by reflection about the line y − x.

The inverse cosine function is handled similarly. The restricted cosine function 
f sxd − cos x, 0 < x < �, is one-to-one (see Figure 21) and so it has an inverse function 
denoted by cos21 or arccos.

cos21x − y    &?    cos y − x    and    0 < y < �

The cancellation equations are

 cos21scos xd − x    for 0 < x < �

 cosscos21xd − x    for 21 < x < 1

sin21x ±
1

sin x

2 œ„2

3

¨

1

figure 19

0

y

x1_1

π
2

_ π
2

figure 20�� 
y − sin21 x − arcsin x

FIGURE 21�   
y − cos x, 0 < x < �

0

y

x

1

ππ
2

0

y
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π
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π
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The inverse cosine function, cos21, has domain f21, 1g and range f0, �g. Its graph is 
shown in Figure 22.

The tangent function can be made one-to-one by restricting it to the interval 
s2�y2, �y2d. Thus the inverse tangent function is defined as the inverse of the func-
tion f sxd − tan x, 2�y2 , x , �y2. (See Figure 23.) It is denoted by tan21 or arctan.

tan21x − y    &?    tan y − x    and    2
�

2
, y ,

�

2

Example �13�  Simplify the expression cosstan21xd.

SOLUTION 1 � Let y − tan21x. Then tan y − x and 2�y2 , y , �y2. We want to find 
cos y but, since tan y is known, it is easier to find sec y first:

 sec2 y − 1 1 tan2 y − 1 1 x 2

 sec y − s1 1 x 2         ssince sec y . 0 for 2�y2 , y , �y2d

Thus	 cosstan21xd − cos y −
1

sec y
−

1

s1 1 x 2 

SOLUTION 2 � Instead of using trigonometric identities as in Solution 1, it is perhaps 
easier to use a diagram. If y − tan21x, then tan y − x, and we can read from Figure 24 
(which illustrates the case y . 0) that

	 cosstan21xd − cos y −
1

s1 1 x 2 
 	 ■

The inverse tangent function, tan21 − arctan, has domain R and range s2�y2, �y2d. 
Its graph is shown in Figure 25.

π
2

_ π
2

y

0
x

We know that the lines x − 6�y2 are vertical asymptotes of the graph of tan. Since 
the graph of tan21 is obtained by reflecting the graph of the restricted tangent function 
about the line y − x, it follows that the lines y − �y2 and y − 2�y2 are horizontal 
asymptotes of the graph of tan21.

FIGURE 25 � 
y − tan21 x − arctan x

�FIGURE 22�   
y − cos21x − arccos x
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x

1

ππ
2

0

y

x1

π

_1

π
2

FIGURE 24 �
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x

figure 23�   
y − tan x, 2�

2  , x , �2

π
2

π
2_

y

0 x
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	 1.	�� (a)	 What is a one-to-one function?
	 (b)	� How can you tell from the graph of a function whether it 

is one-to-one?

	 2.	� (a)	� Suppose f  is a one-to-one function with domain A and 
range B. How is the inverse function f 21 defined? What is 
the domain of f 21? What is the range of f 21?

	 (b)	� If you are given a formula for f, how do you find a  
formula for f 21?

	 (c)	� If you are given the graph of f, how do you find the graph 
of f 21?

	�3–14 � A function is given by a table of values, a graph, a formula, 
or a verbal description. Determine whether it is one-to-one.

	 3.	 x 1 2 3 4 5 6

f sxd 1.5 2.0 3.6 5.3 2.8 2.0

	4 .	 x 1 2 3 4 5 6

f sxd 1.0 1.9 2.8 3.5 3.1 2.9

	 5.	 6.	 y

x
x

y

y

xx

y

	 7.	 8.	

y

x
x

y

y

xx

y

	 9.	 f sxd − 2x 2 3	 10.	 f sxd − x 4 2 16

	11.	 tsxd − 1 2 sin x	 12.	 tsxd − s3 x 

	13.	� f std is the height of a football t seconds after kickoff.

	14.	� f std is your height at age t.

	15.	�� Assume that f  is a one-to-one function.
	 (a)	� If f s6d − 17, what is f 21s17d?
	 (b)	�� If f 21s3d − 2, what is f s2d?

	16.	�� If f sxd − x 5 1 x 3 1 x, find f 21s3d and f s f 21s2dd.

	17.	� If tsxd − 3 1 x 1 e x, find t21s4d.

	18.	� The graph of f  is given.
	 (a)	 Why is f  one-to-one?
	 (b)	 What are the domain and range of f 21?
	 (c)	 What is the value of f 21s2d?
	 (d)	 Estimate the value of f 21s0d.

y

x0 1

1

	19.	�� The formula C − 5
9 sF 2 32d, where F > 2459.67, 

expresses the Celsius temperature C as a function of the 
Fahrenheit temperature F. Find a formula for the inverse 
function and interpret it. What is the domain of the inverse 
function?

The remaining inverse trigonometric functions are not used as frequently and are 
summarized here.

11 �   y − csc21x (| x | > 1)    &?    csc y − x  and    y [ s0, �y2g ø s�, 3�y2g

	  y − sec21x (| x | > 1)    &?    sec y − x  and    y [ f0, �y2d ø f�, 3�y2d

	  y − cot21x sx [ Rd      &?    cot y − x  and    y [ s0, �d

The choice of intervals for y in the definitions of csc21 and sec21 is not universally 
agreed upon. For instance, some authors use y [ f0, �y2d ø s�y2, �g in the definition 
of sec21. [You can see from the graph of the secant function in Figure 26 that both this 
choice and the one in (11) will work.]

0

y

x
_1

2ππ

FIGURE 26   
�y − sec x
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	20.	�� In the theory of relativity, the mass of a particle with speed � is

m − f svd −
m 0

s1 2 v 2yc 2 

	� where m 0 is the rest mass of the particle and c is the speed of 
light in a vacuum. Find the inverse function of f  and explain 
its meaning.

	21–26 � Find a formula for the inverse of the function.

	21.	 f sxd − 1 1 s2 1 3x	 22.	 f sxd −
4x 2 1

2x 1 3

	23.	 f sxd − e 2x21	 24.	� y − x 2 2 x,    x > 1
2

	25.	 y − lnsx 1 3d	 26.	 y −
1 2 e2x

1 1 e2x

	27–28	� Find an explicit formula for f 21 and use it to graph f 21, 
f, and the line y − x on the same screen. To check your work, see 
whether the graphs of f  and f 21 are reflections about the line.

	27.	 f sxd − s4x 1 3 	 28.	 f sxd − 1 1 e2x

	29–30 � Use the given graph of f  to sketch the graph of f 21.

	29.	 30.	y

x0 1

1

y

x0 2

1

	31.	� Let f sxd − s1 2 x 2 ,  0 < x < 1.
	 (a)	 Find f 21. How is it related to f ?
	 (b)	 Identify the graph of f  and explain your answer to part (a).

	32.	� Let tsxd − s3 1 2 x 3  .
	 (a)	 Find t21. How is it related to t?
	 (b)	� Graph t. How do you explain your answer to part (a)?

	33.	� (a)	 How is the logarithmic function y − logb x defined?
	 (b)	 What is the domain of this function?
	 (c)	 What is the range of this function?
	 (d)	� Sketch the general shape of the graph of the function  

y − logb x if b . 1.

	34.	� (a)	 What is the natural logarithm?
	 (b)	 What is the common logarithm?
	 (c)	� Sketch the graphs of the natural logarithm function and the 

natural exponential function with a common set of axes.

	35–38 � Find the exact value of each expression.

	35.	� (a)	 log2 32	 (b)	 log8 2

	36.	� (a)	 log5  
1

125	 (b)	 lns1ye 2 d

	37.	� (a)	 log10 40 1 log10 2.5
	 (b)	 log 8 60 2 log 8 3 2 log 8 5

;

;

	38.	� (a)	 e2ln 2	 (b)	 e lnsln e3d

	39–41 � Express the given quantity as a single logarithm.

	39.	 ln 10 1 2 ln 5	 40.	ln b 1 2 ln c 2 3 ln d

	41.	 1
3 lnsx 1 2d3 1 1

2 fln x 2 lnsx 2 1 3x 1 2d2g

	42.	�� Use Formula 10 to evaluate each logarithm correct to six 
decimal places.

	 (a)	 log5 10	 (b)	 log3 57

	43–44	� Use Formula 10 to graph the given functions on a 
common screen. How are these graphs related?

	43.	� y − log1.5 x,    y − ln x,    y − log10 x,    y − log50 x

	44.	� y − ln x,    y − log10 x,    y − e x,    y − 10 x

	45.	�� Suppose that the graph of y − log2 x is drawn on a coordi-
nate grid where the unit of measurement is an inch. How 
many miles to the right of the origin do we have to move 
before the height of the curve reaches 3 ft?

	46.	� �Compare the functions f sxd − x 0.1 and tsxd − ln x by 
graphing both f  and t in several viewing rectangles.  
When does the graph of f  finally surpass the graph of t?

	�47–48 � Make a rough sketch of the graph of each function.  
Do not use a calculator. Just use the graphs given in Figures 12 
and 13 and, if necessary, the transformations of Section 1.3.

	47.	� (a)	 y − log10sx 1 5d	 (b)	 y − 2ln x

	48.	� (a)	 y − lns2xd	 (b)	 y − ln | x |

	�49–50 � (a)	 What are the domain and range of f ?
(b)	 What is the x-intercept of the graph of f ?
(c)	 Sketch the graph of f.

	49.	 f sxd − ln x 1 2	 50.	 f sxd − lnsx 2 1d 2 1

51–54 � Solve each equation for x.

	51.	� (a)	 e724x − 6	 (b)	 lns3x 2 10d − 2

	52.	� (a)	 lnsx 2 2 1d − 3	 (b)	 e 2x 2 3e x 1 2 − 0

	53.	� (a)	 2x25 − 3	 (b)	 ln x 1 lnsx 2 1d − 1

	54.	� (a)	 lnsln xd − 1	 (b)	 e ax − Ce bx,  where a ± b

55–56 � Solve each inequality for x.

	55.	� (a)	 ln x , 0	 (b)	 e x . 5

	56.	� (a)	 1 , e 3x21 , 2	 (b)	 1 2 2 ln x , 3

	57.	� (a)	� Find the domain of f sxd − lnse x 2 3d.
	 (b)	� Find f 21 and its domain.

;

;
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68	 Chapter 1    Functions and Models

	58.	� (a)	� What are the values of e ln 300 and lnse 300d?
	 (b)	� Use your calculator to evaluate e ln 300 and lnse 300d. What 

do you notice? Can you explain why the calculator has 
trouble?

	59.	� �Graph the function f sxd − sx 3 1 x 2 1 x 1 1 and explain 
why it is one-to-one. Then use a computer algebra system 
to find an explicit expression for f 21sxd. (Your CAS will 
produce three possible expressions. Explain why two of 
them are irrelevant in this context.)

	60.	� �(a)	� If tsxd − x 6 1 x 4, x > 0, use a computer algebra sys
tem to find an expression for t 21sxd.

	 (b)	� Use the expression in part (a) to graph y − tsxd, y − x, 
and y − t 21sxd on the same screen.

	61.	�� If a bacteria population starts with 100 bacteria and doubles 
every three hours, then the number of bacteria after t hours 
is n − f std − 100 ∙ 2 ty3. 

	 (a)	� Find the inverse of this function and explain its meaning.
	 (b)	 When will the population reach 50,000?

	62.	�� When a camera flash goes off, the batteries immediately 
begin to recharge the flash’s capacitor, which stores electric 
charge given by

Qstd − Q0s1 2 e 2tya d

	� (The maximum charge capacity is Q0 and t is measured in 
seconds.)

	 (a)	� Find the inverse of this function and explain its meaning.
	 (b)	� How long does it take to recharge the capacitor to 90% 

of capacity if a − 2?

63–68 � Find the exact value of each expression.

	63.	� (a)	 cos21 s21d	 (b)	 sin21s0.5d

	64.	� (a)	 tan21 s3 	 (b)	 arctans21d

CAS

CAS

	65.	� (a)	 csc21 s2 	 (b)	 arcsin 1

	66.	� (a)	 sin21(21ys2 )	 (b)	 cos21(s3 y2)
	67.	� (a)	 cot21(2s3 )	 (b)	 sec21 2

	68.	� (a)	 arcsinssins5�y4dd	 (b)	 cos(2 sin21 ( 5
13))

	69.	� Prove that cosssin21 xd − s1 2 x 2 .

70–72 � Simplify the expression.

	70.	 tanssin21xd	 71.	 sinstan21xd	 72.	 sins2 arccos xd

73-74 � Graph the given functions on the same screen. How are 
these graphs related?

	73.	� y − sin x,  2�y2 < x < �y2;    y − sin21x;    y − x

	74.	� y − tan x,  2�y2 , x , �y2;    y − tan21x;    y − x

	75.	�� Find the domain and range of the function

tsxd − sin21s3x 1 1d

	76.	� (a)	� Graph the function f sxd − sinssin21xd and explain the 
appearance of the graph.

	 (b)	� Graph the function tsxd − sin21ssin xd. How do you 
explain the appearance of this graph?

	77.	� (a)	� If we shift a curve to the left, what happens to its 
reflection about the line y − x? In view of this geo-
metric principle, find an expression for the inverse of 
tsxd − f sx 1 cd, where f  is a one-to-one function.

	 (b)	� Find an expression for the inverse of hsxd − f scxd,  
where c ± 0.

;

;

CONCEPT CHECK	 Answers to the Concept Check can be found on the back endpapers.

1	 Review

	 1.	� (a)	 What is a function? What are its domain and range?
	 (b)	 What is the graph of a function?
	 (c)	� How can you tell whether a given curve is the graph of  

a function?

	 2.	�� Discuss four ways of representing a function. Illustrate your 
discussion with examples.

	 3.	�� (a)	� What is an even function? How can you tell if a function 
is even by looking at its graph? Give three examples of an 
even function.

	 (b)	� What is an odd function? How can you tell if a function 
is odd by looking at its graph? Give three examples of  
an odd function.

	4 .	� What is an increasing function?

	5 .	� What is a mathematical model?

	 6.	� Give an example of each type of function.
	 (a)	 Linear function	 (b)	 Power function
	 (c)	 Exponential function	 (d)	 Quadratic function
	 (e)	 Polynomial of degree 5	 (f )	 Rational function

	 7.	� �Sketch by hand, on the same axes, the graphs of the following 
functions.

	 (a)	 f sxd − x	 (b)	 tsxd − x 2

	 (c)	 hsxd − x 3	 (d)	 jsxd − x 4
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true-false quiz

Determine whether the statement is true or false. If it is true, 
explain why. If it is false, explain why or give an example that 
disproves the statement.

	 1.	� If f  is a function, then f ss 1 td − f ssd 1 f std.

	 2.	� If f ssd − f std, then s − t.

	 3.	� If f  is a function, then f s3xd − 3 f sxd.

	4 .	�� If x1 , x2 and f  is a decreasing function, then f sx1 d . f sx2 d

	5 .	�� A vertical line intersects the graph of a function at most once.

	 6.	� If f  and t are functions, then f 8 t − t 8 f.

	 7.	�� If f  is one-to-one, then f 21sxd −
1

 f sxd
.

	 8.	� You can always divide by e x.

	 9.	� If 0 , a , b, then ln a , ln b.

	10.	� If x . 0, then sln xd6 − 6 ln x.

	11.	� If x . 0 and a . 1, then 
ln x

ln a
− ln 

x

a
 .

	12.	� tan21s21d − 3�y4

	13.	� tan21x −
sin21x

cos21x
	14.	� If x is any real number, then sx 2 − x.

	 8.	﻿� �Draw, by hand, a rough sketch of the graph of each function.
	 (a)	 y − sin x	 (b)	 y − tan x	 (c)	 y − e x

	 (d)	 y − ln x	 (e)	 y − 1yx	 (f )	 y − | x |
	 (g)	 y − sx 	 (h)	 y − tan21x

	 9.	�� Suppose that f  has domain A and t has domain B.
	 (a)	 What is the domain of f 1 t?
	 (b)	 What is the domain of f t?
	 (c)	 What is the domain of fyt?

	10.	� �How is the composite function f 8 t defined? What is its 
domain?

	11.	� �Suppose the graph of f  is given. Write an equation for each of 
the graphs that are obtained from the graph of f  as follows.

	 (a)	 Shift 2 units upward.	 (b)	 Shift 2 units downward.
	 (c)	 Shift 2 units to the right.	 (d)	 Shift 2 units to the left.
	 (e)	 Reflect about the x-axis.	

	 (f )	 Reflect about the y-axis.
	 (g)	 Stretch vertically by a factor of 2.
	 (h)	 Shrink vertically by a factor of 2.
	 (i)	 Stretch horizontally by a factor of 2.
	 ( j)	 Shrink horizontally by a factor of 2.

	12.	� (a)	� What is a one-to-one function? How can you tell if a 
function is one-to-one by looking at its graph?

	 (b)	� If f  is a one-to-one function, how is its inverse function  
f 21 defined? How do you obtain the graph of f 21 from  
the graph of f ?

	13.	� (a)	� How is the inverse sine function f sxd − sin21x defined? 
What are its domain and range?

	 (b)	� How is the inverse cosine function f sxd − cos21x  
defined? What are its domain and range?

	 (c)	� How is the inverse tangent function f sxd − tan21x  
defined? What are its domain and range?

	 (f)	 Is f  one-to-one? Explain.
	 (g)	 Is f  even, odd, or neither even nor odd? Explain.

	 2.	�� The graph of t is given.

gy

x0 1

1

	 (a)	 State the value of ts2d.
	 (b)	 Why is t one-to-one?
	 (c)	 Estimate the value of t21s2d.
	 (d)	 Estimate the domain of t21.
	 (e)	 Sketch the graph of t21.

EXERCISES

	 1.�	 Let f  be the function whose graph is given.

y

x1

1

f

	 (a)	 Estimate the value of f s2d.
	 (b)	 Estimate the values of x such that f sxd − 3.
	 (c)	 State the domain of f.
	 (d)	 State the range of f.
	 (e)	 On what interval is f  increasing?
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	21.	�� Life expectancy improved dramatically in the 20th century. 
The table gives the life expectancy at birth (in years) of males 
born in the United States. Use a scatter plot to choose an 
appropriate type of model. Use your model to predict the life 
span of a male born in the year 2010.

Birth year Life expectancy Birth year Life expectancy

1900 48.3 1960 66.6
1910 51.1 1970 67.1
1920 55.2 1980 70.0
1930 57.4 1990 71.8
1940 62.5 2000 73.0
1950 65.6

	22.	�� A small-appliance manufacturer finds that it costs $9000 to 
produce 1000 toaster ovens a week and $12,000 to produce 
1500 toaster ovens a week.

	 (a)	� Express the cost as a function of the number of toaster 
ovens produced, assuming that it is linear. Then sketch 
the graph.

	 (b)	� What is the slope of the graph and what does it represent?
	 (c)	� What is the y-intercept of the graph and what does it  

represent?

	23.	� If f sxd − 2x 1 ln x, find f 21s2d.

	24.	� Find the inverse function of f sxd −
x 1 1

2x 1 1
.

	25.	� Find the exact value of each expression.
	 (a)	 e 2 ln 3	 (b)	 log10 25 1 log10 4

	 (c)	 tansarcsin 12 d	 (d)	 sinscos21 s4
5dd

	26.	� Solve each equation for x.
	 (a)	 e x − 5	 (b)	 ln x − 2

	 (c)	 eex
− 2	 (d)	 tan21x − 1

	27.	�� The half-life of palladium-100, 100Pd, is four days. (So half of 
any given quantity of 100Pd will disintegrate in four days.) The 
initial mass of a sample is one gram.

	 (a)	� Find the mass that remains after 16 days.
	 (b)	� Find the mass mstd that remains after t days.
	 (c)	� Find the inverse of this function and explain its meaning.
	 (d)	 When will the mass be reduced to 0.01g?

	28.	�� The population of a certain species in a limited environment 
with initial population 100 and carrying capacity 1000 is

Pstd −
100,000

100 1 900e2t

	 where t is measured in years.
	 (a)	� Graph this function and estimate how long it takes for the 

population to reach 900.
	 (b)	� Find the inverse of this function and explain its meaning.
	 (c)	� Use the inverse function to find the time required for  

the population to reach 900. Compare with the result of 
part (a).

;

	 3.	�� If f sxd − x 2 2 2x 1 3, evaluate the difference quotient

f sa 1 hd 2 f sad
h

	4 .	�� Sketch a rough graph of the yield of a crop as a function of the 
amount of fertilizer used.

5–8 � Find the domain and range of the function. Write your answer 
in interval notation.

	5 .	 f sxd − 2ys3x 2 1d	 6.	 tsxd − s16 2 x 4 

	 7.	 hsxd − lnsx 1 6d	 8.	 Fstd − 3 1 cos 2t

	 9.	�� Suppose that the graph of f  is given. Describe how the graphs 
of the following functions can be obtained from the graph of f.

	 (a)	 y − f sxd 1 8	 (b)	 y − f sx 1 8d
	 (c)	 y − 1 1 2 f sxd	 (d)	 y − f sx 2 2d 2 2
	 (e)	 y − 2f sxd	 (f )	 y − f 21sxd

	10.	�� The graph of f  is given. Draw the graphs of the following 
functions.

	 (a)	 y − f sx 2 8d	 (b)	 y − 2f sxd
	 (c)	 y − 2 2 f sxd	 (d)	 y − 1

2 f sxd 2 1
	 (e)	 y − f 21sxd	 (f )	 y − f 21sx 1 3d

y

x0 1

1

11–16 � Use transformations to sketch the graph of the function.

	11.	 y − sx 2 2d3	 12.	 y − 2sx 

	13.	 y − x 2 2 2x 1 2	 14.	 y − lnsx 1 1d

	15.	 f sxd − 2cos 2x	 16.	 f sxd − H2x

e x 2 1

if  x , 0

if  x > 0

	17.	� Determine whether f  is even, odd, or neither even nor odd.

	 (a)	 f sxd − 2x 5 2 3x 2 1 2

	 (b)	 f sxd − x 3 2 x 7

	 (c)	 f sxd − e2x2

	 (d)	 f sxd − 1 1 sin x

	18.	�� Find an expression for the function whose graph consists of 
the line segment from the point s22, 2d to the point s21, 0d 
together with the top half of the circle with center the origin 
and radius 1.

	19.	�� If f sxd − ln x and tsxd − x 2 2 9, find the functions  
(a) f 8 t, (b) t 8 f , (c) f 8 f , (d) t 8 t, and their domains.

	20.	�� Express the function Fsxd − 1ysx 1 sx  as a composition of 
three functions.
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Principles of 
Problem Solving

There are no hard and fast rules that will ensure success in solving problems. However, 
it is possible to outline some general steps in the problem-solving process and to give 
some principles that may be useful in the solution of certain problems. These steps and 
principles are just common sense made explicit. They have been adapted from George 
Polya’s book How To Solve It.

The first step is to read the problem and make sure that you understand it clearly. Ask 
yourself the following questions:

What is the unknown?

What are the given quantities?

What are the given conditions?

For many problems it is useful to 

draw a diagram

and identify the given and required quantities on the diagram.
Usually it is necessary to

introduce suitable notation

In choosing symbols for the unknown quantities we often use letters such as a, b, c, m, n,  
x, and y, but in some cases it helps to use initials as suggestive symbols; for instance, V  
for volume or t for time. 

Find a connection between the given information and the unknown that will enable you 
to calculate the unknown. It often helps to ask yourself explicitly: “How can I relate the 
given to the unknown?” If you don’t see a connection immediately, the following ideas 
may be helpful in devising a plan.

Try to Recognize Something Familiar � Relate the given situation to previous knowledge. 
Look at the unknown and try to recall a more familiar problem that has a similar unknown.

Try to Recognize Patterns � Some problems are solved by recognizing that some kind of 
pattern is occurring. The pattern could be geometric, or numerical, or algebraic. If you 
can see regularity or repetition in a problem, you might be able to guess what the con-
tinuing pattern is and then prove it.

Use Analogy � Try to think of an analogous problem, that is, a similar problem, a related 
problem, but one that is easier than the original problem. If you can solve the similar, 
simpler problem, then it might give you the clues you need to solve the original, more 
difficult problem. For instance, if a problem involves very large numbers, you could first 
try a similar problem with smaller numbers. Or if the problem involves three-dimensional 
geometry, you could look for a similar problem in two-dimensional geometry. Or if the 
problem you start with is a general one, you could first try a special case.

Introduce Something Extra � It may sometimes be necessary to introduce something new, 
an auxiliary aid, to help make the connection between the given and the unknown. For 
instance, in a problem where a diagram is useful the auxiliary aid could be a new line 
drawn in a diagram. In a more algebraic problem it could be a new unknown that is 
related to the original unknown.

Take Cases � We may sometimes have to split a problem into several cases and give a 
different argument for each of the cases. For instance, we often have to use this strategy 
in dealing with absolute value.

1  Understand the Problem

2  think of a plan
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Work Backward � Sometimes it is useful to imagine that your problem is solved and 
work backward, step by step, until you arrive at the given data. Then you may be able 
to reverse your steps and thereby construct a solution to the original problem. This pro-
cedure is commonly used in solving equations. For instance, in solving the equation 
3x 2 5 − 7, we suppose that x is a number that satisfies 3x 2 5 − 7 and work back-
ward. We add 5 to each side of the equation and then divide each side by 3 to get x − 4. 
Since each of these steps can be reversed, we have solved the problem.

Establish Subgoals � In a complex problem it is often useful to set subgoals (in which the 
desired situation is only partially fulfilled). If we can first reach these subgoals, then we 
may be able to build on them to reach our final goal.

Indirect Reasoning � Sometimes it is appropriate to attack a problem indirectly. In using 
proof by contradiction to prove that P implies Q, we assume that P is true and Q is false 
and try to see why this can’t happen. Somehow we have to use this information and arrive 
at a contradiction to what we absolutely know is true.

Mathematical Induction � In proving statements that involve a positive integer n, it is 
frequently helpful to use the following principle.

Principle of Mathematical Induction � Let Sn be a statement about the positive  
integer n. Suppose that

1.  �S1 is true.

2. �� Sk11 is true whenever Sk is true.

�Then Sn is true for all positive integers n.

This is reasonable because, since S1 is true, it follows from condition 2 swith k − 1d 
that S2 is true. Then, using condition 2 with k − 2, we see that S3 is true. Again using 
condition 2, this time with k − 3, we have that S4 is true. This procedure can be followed 
indefinitely.

In Step 2 a plan was devised. In carrying out that plan we have to check each stage of the 
plan and write the details that prove that each stage is correct.

Having completed our solution, it is wise to look back over it, partly to see if we have 
made errors in the solution and partly to see if we can think of an easier way to solve the 
problem. Another reason for looking back is that it will familiarize us with the method 
of solution and this may be useful for solving a future problem. Descartes said, “Every 
problem that I solved became a rule which served afterwards to solve other problems.”

These principles of problem solving are illustrated in the following examples. Before 
you look at the solutions, try to solve these problems yourself, referring to these Principles 
of Problem Solving if you get stuck. You may find it useful to refer to this section from 
time to time as you solve the exercises in the remaining chapters of this book.

Example �1� � Express the hypotenuse h of a right triangle with area 25 m2 as a function 
of its perimeter P.

SOLUTION � Let’s first sort out the information by identifying the unknown quantity and 
the data:

 Unknown: hypotenuse h

 Given quantities: perimeter P, area 25 m 2

3  Carry Out the Plan

4  Look Back

PS   Understand the problem
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It helps to draw a diagram and we do so in Figure 1.

a

h
b

In order to connect the given quantities to the unknown, we introduce two extra 
variables a and b, which are the lengths of the other two sides of the triangle. This 
enables us to express the given condition, which is that the triangle is right-angled, by 
the Pythagorean Theorem:

h 2 − a 2 1 b 2

The other connections among the variables come by writing expressions for the area 
and perimeter:

25 − 1
2 ab            P − a 1 b 1 h

Since P is given, notice that we now have three equations in the three unknowns a, b,  
and h:

1 � 	   h 2 − a 2 1 b 2

2 � 	   25 − 1
2 ab

3 � 	   P − a 1 b 1 h

Although we have the correct number of equations, they are not easy to solve in a 
straightforward fashion. But if we use the problem-solving strategy of trying to recog-
nize something familiar, then we can solve these equations by an easier method. Look 
at the right sides of Equations 1, 2, and 3. Do these expressions remind you of anything 
familiar? Notice that they contain the ingredients of a familiar formula:

sa 1 bd2 − a 2 1 2ab 1 b 2

Using this idea, we express sa 1 bd2 in two ways. From Equations 1 and 2 we have

sa 1 bd2 − sa 2 1 b 2 d 1 2ab − h 2 1 4s25d

From Equation 3 we have

sa 1 bd2 − sP 2 hd2 − P2 2 2Ph 1 h 2

Thus	  h 2 1 100 − P2 2 2Ph 1 h 2

	  2Ph − P2 2 100

	  h −
P2 2 100

2P

This is the required expression for h as a function of P.	 ■

As the next example illustrates, it is often necessary to use the problem-solving prin
ciple of taking cases when dealing with absolute values.

Example �2�  Solve the inequality | x 2 3 | 1 | x 1 2 | , 11.

Solution � Recall the definition of absolute value:

| x | − Hx

2x

if x > 0

if x , 0

PS   Draw a diagram

FIGURE 1 �

PS   Connect the given with the 
unknown
PS   Introduce something extra

PS   Relate to the familiar
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It follows that

 | x 2 3 | − Hx 2 3

2sx 2 3d
if  x 2 3 > 0

if  x 2 3 , 0

 − Hx 2 3

2x 1 3

if  x > 3

if  x , 3

Similarly

 | x 1 2 | − Hx 1 2

2sx 1 2d
if  x 1 2 > 0

if  x 1 2 , 0

 − Hx 1 2

2x 2 2

if  x > 22

if  x , 22

These expressions show that we must consider three cases:

x , 22            22 < x , 3            x > 3

Case I  If x , 22, we have

 | x 2 3 | 1 | x 1 2 | , 11

 2x 1 3 2 x 2 2 , 11

 22x , 10

 x . 25

Case II  If 22 < x , 3,  the given inequality becomes

 2x 1 3 1 x 1 2 , 11

 5 , 11    (always true)

Case iii  If x > 3, the inequality becomes

 x 2 3 1 x 1 2 , 11

 2x , 12

 x , 6

Combining cases I, II, and III, we see that the inequality is satisfied when 25 , x , 6.  
So the solution is the interval s25, 6d.	� ■

In the following example we first guess the answer by looking at special cases and 
recognizing a pattern. Then we prove our conjecture by mathematical induction.

In using the Principle of Mathematical Induction, we follow three steps:

Step 1	� Prove that Sn is true when n − 1.

Step 2	� Assume that Sn is true when n − k and deduce that Sn is true when n − k 1 1.

Step 3	� Conclude that Sn is true for all n by the Principle of Mathematical Induction.

PS   Take cases
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Example �3�  If f0sxd − xysx 1 1d and fn11 − f0 8 fn for n − 0, 1, 2, . . . , find a formula 
for fnsxd.

Solution � We start by finding formulas for fnsxd for the special cases n − 1, 2, and 3.

	   f1sxd − s f0 8 f0dsxd − f0( f0sxd) − f0S x

x 1 1D
 −

x

x 1 1

x

x 1 1
1 1

−

x

x 1 1

2x 1 1

x 1 1

−
x

2x 1 1

	   f2sxd − s f0 8 f1 dsxd − f0( f1sxd) − f0S x

2x 1 1D
 −

x

2x 1 1

x

2x 1 1
1 1

−

x

2x 1 1

3x 1 1

2x 1 1

−
x

3x 1 1

	   f3sxd − s f0 8 f2 dsxd − f0( f2sxd) − f0S x

3x 1 1D
 −

x

3x 1 1

x

3x 1 1
1 1

−

x

3x 1 1

4x 1 1

3x 1 1

−
x

4x 1 1

We notice a pattern: The coefficient of x in the denominator of fnsxd is  n 1 1 in the 
three cases we have computed. So we make the guess that, in general,

4 � 	  fnsxd −
x

sn 1 1dx 1 1

To prove this, we use the Principle of Mathematical Induction. We have already verified 
that (4) is true for n − 1. Assume that it is true for n − k, that is,

fksxd −
x

sk 1 1dx 1 1

Then	   fk11sxd − s f0 8 fk dsxd − f0( fksxd) − f0S x

sk 1 1dx 1 1D
	  −

x

sk 1 1dx 1 1

x

sk 1 1dx 1 1
1 1

−

x

sk 1 1dx 1 1

sk 1 2dx 1 1

sk 1 1dx 1 1

−
x

sk 1 2dx 1 1

This expression shows that (4) is true for n − k 1 1. Therefore, by mathematical 
induction, it is true for all positive integers n.	� ■

PS   Analogy: Try a similar, simpler 
problem

PS   Look for a pattern
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	 1.	� �One of the legs of a right triangle has length 4 cm. Express the length of the altitude perpen-
dicular to the hypotenuse as a function of the length of the hypotenuse.

	 2.	� �The altitude perpendicular to the hypotenuse of a right triangle is 12 cm. Express the length 
of the hypotenuse as a function of the perimeter.

	 3.	� �Solve the equation | 2x 2 1 | 2 | x 1 5 | − 3.

	4 .	� Solve the inequality | x 2 1 | 2 | x 2 3 | > 5.

	5 .	� Sketch the graph of the function f sxd − | x 2 2 4 | x | 1 3 |.
	 6.	� Sketch the graph of the function tsxd − | x 2 2 1 | 2 | x 2 2 4 |.
	 7.	� Draw the graph of the equation x 1 | x | − y 1 | y |.
	 8.	� Sketch the region in the plane consisting of all points sx, yd such that 

| x 2 y | 1 | x | 2 | y | < 2

	 9.	� �The notation maxha, b, . . .j means the largest of the numbers a, b, . . . . Sketch the graph of 
each function.

		�  (a)	� f sxd − maxhx, 1yxj
		�  (b)	 f sxd − maxhsin x, cos xj
		�  (c)	 f sxd − maxhx 2, 2 1 x, 2 2 xj

	10.	� �Sketch the region in the plane defined by each of the following equations or inequalities.
		�  (a)	� maxhx, 2yj − 1

		�  (b)	 21 < maxhx, 2yj < 1

		�  (c)	 maxhx, y 2j − 1

	11.	� Evaluate slog2 3dslog3 4dslog4 5d ∙ ∙ ∙ slog31 32d.

	12.	� (a)	 Show that the function f sxd − ln(x 1 sx 2 1 1 ) is an odd function.

		�  (b)	 Find the inverse function of f.

	13.	� Solve the inequality lnsx 2 2 2x 2 2d < 0.

	14.	� Use indirect reasoning to prove that log2 5 is an irrational number.

	15.	� �A driver sets out on a journey. For the first half of the distance she drives at the leisurely  
pace of 30 miyh; she drives the second half at 60 miyh. What is her average speed on  
this trip?

	16.	� Is it true that f 8 st 1 hd − f 8 t 1 f 8 h?

	17.	� Prove that if n is a positive integer, then 7n 2 1 is divisible by 6.

	18.	� Prove that 1 1 3 1 5 1 ∙ ∙ ∙ 1 s2n 2 1d − n2.

	19.	� If f0sxd − x 2 and fn11sxd − f0s fnsxdd for n − 0, 1, 2, . . . , find a formula for fnsxd.

	20.	� (a)	� If f0sxd −
1

2 2 x
 and fn11 − f0 8  fn for n − 0, 1, 2, . . . ,  find an expression for fnsxd and 

use mathematical induction to prove it.

	� 	 (b)	� Graph f0, f1, f2, f3 on the same screen and describe the effects of repeated composition.;

Problems
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The maximum sustain-
able swimming speed S of 

salmon depends on the water 
temperature T. Exercise 58 in 

Section 2.7 asks you to analyze 
how S varies as T changes by 

estimating the derivative of S 
with respect to T.

In A Preview of Calculus  �(page 1) we saw how the idea of a limit underlies the various 
branches of calculus. It is therefore appropriate to begin our study of calculus by investigating 
limits and their properties. The special type of limit that is used to find tangents and velocities 
gives rise to the central idea in differential calculus, the derivative.

© Jody Ann / Shutterstock.com

Limits and Derivatives2
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78	 Chapter 2    Limits and Derivatives

In this section we see how limits arise when we attempt to find the tangent to a curve or 
the velocity of an object.

The Tangent Problem
The word tangent is derived from the Latin word tangens, which means “touching.” Thus 
a tangent to a curve is a line that touches the curve. In other words, a tangent line should 
have the same direction as the curve at the point of contact. How can this idea be made 
precise?

For a circle we could simply follow Euclid and say that a tangent is a line that 
intersects the circle once and only once, as in Figure 1(a). For more complicated curves 
this definition is inadequate. Figure l(b) shows two lines l and t passing through a point 
P on a curve C. The line l intersects C only once, but it certainly does not look like what 
we think of as a tangent. The line t, on the other hand, looks like a tangent but it intersects 
C twice.

To be specific, let’s look at the problem of trying to find a tangent line t to the parabola 
y − x 2 in the following example.

Example �1�  Find an equation of the tangent line to the parabola y − x 2 at the  
point Ps1, 1d.

SOLUTION � We will be able to find an equation of the tangent line t as soon as we know 
its slope m. The difficulty is that we know only one point, P, on t, whereas we need two 
points to compute the slope. But observe that we can compute an approximation to m 
by choosing a nearby point Qsx, x 2 d on the parabola (as in Figure 2) and computing the 
slope mPQ of the secant line PQ. [A secant line, from the Latin word secans, meaning 
cutting, is a line that cuts (intersects) a curve more than once.]

We choose x ± 1 so that Q ± P. Then

mPQ −
x 2 2 1

x 2 1

For instance, for the point Qs1.5, 2.25d we have

mPQ −
2.25 2 1

1.5 2 1
−

1.25

0.5
− 2.5

The tables in the margin show the values of mPQ for several values of x close to 1. The 
closer Q is to P, the closer x is to 1 and, it appears from the tables, the closer mPQ is to 
2. This suggests that the slope of the tangent line t should be m − 2.

We say that the slope of the tangent line is the limit of the slopes of the secant lines, 
and we express this symbolically by writing

lim
Q lP

 mPQ − m        and        lim
x l 1

 
x 2 2 1

x 2 1
− 2

Assuming that the slope of the tangent line is indeed 2, we use the point-slope form 
of the equation of a line [y 2 y1 − msx 2 x1d, see Appendix B] to write the equation of 
the tangent line through s1, 1d as

y 2 1 − 2sx 2 1d        or        y − 2x 2 1

(a)

(b)

t

P
Ct

l

FIGURE 1 �

x

y

0

y=≈

tQ{x, ≈}

P(1, 1)

FIGURE 2 

x mPQ

2 3
1.5 2.5
1.1 2.1
1.01 2.01
1.001 2.001

x mPQ

0 1
0.5 1.5
0.9 1.9
0.99 1.99
0.999 1.999
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Figure 3 illustrates the limiting process that occurs in this example. As Q approaches 
P along the parabola, the corresponding secant lines rotate about P and approach the 
tangent line t.

Q approaches P from the right

Q approaches P from the left

P

y

x0

Q

t

P

y

x0

Q

t

P

y

x0

Q

t

P

y

x0
Q

t

P

y

x0

Q

t

x0

P

y
Q

t

	 ■

Many functions that occur in science are not described by explicit equations; they are 
defined by experimental data. The next example shows how to estimate the slope of the 
tangent line to the graph of such a function.

Example �2�  The flash unit on a camera operates by storing charge on a capacitor and 
releasing it suddenly when the flash is set off. The data in the table describe the charge 
Q remaining on the capacitor (measured in microcoulombs) at time t (measured in 
seconds after the flash goes off). Use the data to draw the graph of this function and 
estimate the slope of the tangent line at the point where t − 0.04. [Note: The slope of 
the tangent line represents the electric current flowing from the capacitor to the flash 
bulb (measured in microamperes).]

SOLUTION � In Figure 4 we plot the given data and use them to sketch a curve that 
approximates the graph of the function.

t

Q

0 0.02 0.04 0.06 0.08 0.1

90

100

60

70

80

50

(seconds)

(microcoulombs)

FIGURE 3 �

TEC � In Visual 2.1 you can see how 
the process in Figure 3 works for 
additional functions.

t Q

0.00 100.00
0.02   81.87
0.04   67.03
0.06   54.88
0.08   44.93
0.10   36.76

FIGURE 4 �
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80	 Chapter 2    Limits and Derivatives

Given the points Ps0.04, 67.03d and Rs0.00, 100.00d on the graph, we find that the 
slope of the secant line PR is

mPR −
100.00 2 67.03

0.00 2 0.04
− 2824.25

The table at the left shows the results of similar calculations for the slopes of other 
secant lines. From this table we would expect the slope of the tangent line at t − 0.04 
to lie somewhere between 2742 and 2607.5. In fact, the average of the slopes of the 
two closest secant lines is

1
2 s2742 2 607.5d − 2674.75

So, by this method, we estimate the slope of the tangent line to be about 2675.
Another method is to draw an approximation to the tangent line at P and measure 

the sides of the triangle ABC, as in Figure 5.

t

Q

A

B C

P

0 0.02 0.04 0.06 0.08 0.1

90

100

60

70

80

50

(seconds)

(microcoulombs)

This gives an estimate of the slope of the tangent line as

2 | AB |
| BC | < 2

80.4 2 53.6

0.06 2 0.02
− 2670

	 ■

The Velocity Problem
If you watch the speedometer of a car as you travel in city traffic, you see that the 
speed doesn’t stay the same for very long; that is, the velocity of the car is not constant. 
We assume from watching the speedometer that the car has a definite velocity at each 
moment, but how is the “instantaneous” velocity defined? Let’s investigate the example 
of a falling ball.

Example �3�  Suppose that a ball is dropped from the upper observation deck of  
the CN Tower in Toronto, 450 m above the ground. Find the velocity of the ball after  
5 seconds.

SOLUTION � Through experiments carried out four centuries ago, Galileo discovered that 
the distance fallen by any freely falling body is proportional to the square of the time it 
has been falling. (This model for free fall neglects air resistance.) If the distance fallen 

R mPR

(0.00, 100.00) 2824.25
(0.02, 81.87) 2742.00
(0.06, 54.88) 2607.50
(0.08, 44.93) 2552.50
(0.10, 36.76) 2504.50

FIGURE 5 �

�The physical meaning of the answer 
in Example 2 is that the electric cur-
rent flowing from the capacitor to 
the flash bulb after 0.04 seconds is 
about 2670 microamperes.
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The CN Tower in Toronto was the 
tallest freestanding building in the 
world for 32 years.

after t seconds is denoted by sstd and measured in meters, then Galileo’s law is 
expressed by the equation

sstd − 4.9t 2

The difficulty in finding the velocity after 5 seconds is that we are dealing with a 
single instant of time st − 5d, so no time interval is involved. However, we can approxi-
mate the desired quantity by computing the average velocity over the brief time interval 
of a tenth of a second from t − 5 to t − 5.1:

 average velocity −
change in position

time elapsed

 −
ss5.1d 2 ss5d

0.1

 −
4.9s5.1d2 2 4.9s5d2

0.1
− 49.49 mys

The following table shows the results of similar calculations of the average velocity 
over successively smaller time periods.

Time interval Average velocity smysd

5 < t < 6 53.9

5 < t < 5.1 49.49

5 < t < 5.05 49.245

5 < t < 5.01 49.049

5 < t < 5.001 49.0049

It appears that as we shorten the time period, the average velocity is becoming closer to 
49 mys. The instantaneous velocity when t − 5 is defined to be the limiting value of 
these average velocities over shorter and shorter time periods that start at t − 5. Thus it 
appears that the (instantaneous) velocity after 5 seconds is

v − 49 mys	 ■

You may have the feeling that the calculations used in solving this problem are very 
similar to those used earlier in this section to find tangents. In fact, there is a close 
connection between the tangent problem and the problem of finding velocities. If we 
draw the graph of the distance function of the ball (as in Figure 6) and we consider the 
points Psa, 4.9a 2 d and Qsa 1 h, 4.9sa 1 hd2 d on the graph, then the slope of the secant 
line PQ is

mPQ −
4.9sa 1 hd2 2 4.9a 2

sa 1 hd 2 a

which is the same as the average velocity over the time interval fa, a 1 hg. Therefore 
the velocity at time t − a (the limit of these average velocities as h approaches 0) must 
be equal to the slope of the tangent line at P (the limit of the slopes of the secant lines).

Examples 1 and 3 show that in order to solve tangent and velocity problems we must 
be able to find limits. After studying methods for computing limits in the next five sec-
tions, we will return to the problems of finding tangents and velocities in Section 2.7.FIGURE 6 �

t

s

Q

a a+h0

slope of secant line
� average velocity

P

s=4.9t @

t

s

0 a

slope of tangent line
� instantaneous velocityP

s=4.9t @
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Exercises

	1 .	� �A tank holds 1000 gallons of water, which drains from the  
bottom of the tank in half an hour. The values in the table 
show the volume V of water remaining in the tank (in gallons) 
after t minutes.

t smind 5 10 15 20 25 30

V sgald 694 444 250 111 28 0

	 (a)	� If P is the point s15, 250d on the graph of V, find the 
slopes of the secant lines PQ when Q is the point on the 
graph with t − 5, 10, 20, 25, and 30.

	 (b)	� Estimate the slope of the tangent line at P by averaging 
the slopes of two secant lines.

	 (c)	� Use a graph of the function to estimate the slope of the  
tangent line at P. (This slope represents the rate at which 
the water is flowing from the tank after 15 minutes.)

	2 .	� �A cardiac monitor is used to measure the heart rate of a patient 
after surgery. It compiles the number of heartbeats after t min
utes. When the data in the table are graphed, the slope of the 
tangent line represents the heart rate in beats per minute.

t smind 36 38 40 42 44

Heartbeats 2530 2661 2806 2948 3080

The monitor estimates this value by calculating the slope of 
a secant line. Use the data to estimate the patient’s heart rate 
after 42 minutes using the secant line between the points with 
the given values of t.

	 (a)	 t − 36    and    t − 42	 (b)	 t − 38    and    t − 42
	 (c)	 t − 40    and    t − 42	 (d)	 t − 42    and    t − 44

What are your conclusions?

	3 .	� �The point Ps2, 21d lies on the curve y − 1ys1 2 xd.
	 (a)	� If Q is the point sx, 1ys1 2 xdd, use your calculator to find 

the slope of the secant line PQ (correct to six decimal 
places) for the following values of x :

	 (i)	 1.5	 (ii)	 1.9	 (iii)	 1.99	 (iv)	 1.999
	 (v)	 2.5	 (vi)	 2.1	 (vii)	 2.01	 (viii)	 2.001
	 (b)	� Using the results of part (a), guess the value of the slope 

of the tangent line to the curve at Ps2, 21d.
	 (c)	� Using the slope from part (b), find an equation of the 

tangent line to the curve at Ps2, 21d.

	 4.	� �The point Ps0.5, 0d lies on the curve y − cos �x.
	 (a)	� If Q is the point sx, cos �xd, use your calculator to find the 

slope of the secant line PQ (correct to six decimal places) 
for the following values of x :
	 (i)	 0	 (ii)	 0.4	 (iii)	 0.49
	(iv)	 0.499	 (v)	 1	 (vi)	 0.6
	(vii)	 0.51	 (viii)	 0.501

  	 (b)	�� Using the results of part (a), guess the value of the 
slope of the tangent line to the curve at Ps0.5, 0d.

	 (c)	� Using the slope from part (b), find an equation of the 
tangent line to the curve at Ps0.5, 0d.

	 (d)	� Sketch the curve, two of the secant lines, and the 
tangent line.

	 5.	� �If a ball is thrown into the air with a velocity of 40 ftys, its 
height in feet t seconds later is given by y − 40t 2 16t 2.

	 (a)	� Find the average velocity for the time period beginning 
when t − 2 and lasting

	 (i)	 0.5 seconds	 (ii)	 0.1 seconds
	 (iii)	 0.05 seconds	 (iv)	 0.01 seconds
	 (b)	 Estimate the instantaneous velocity when t − 2.

	 6.	� �If a rock is thrown upward on the planet Mars with a 
velocity of 10 mys, its height in meters t seconds later is 
given by y − 10t 2 1.86t 2.

	 (a)	 Find the average velocity over the given time intervals:
	 (i)	 [1, 2]	 (ii)	 [1, 1.5]
	 (iii)	 [1, 1.1]	 (iv)	 [1, 1.01]
	 (v)	 [1, 1.001]
	 (b)	 Estimate the instantaneous velocity when t − 1.

	 7.	� �The table shows the position of a motorcyclist after acceler
ating from rest.

t ssecondsd 0 1 2 3 4 5 6

s (feet) 0 4.9 20.6 46.5 79.2 124.8 176.7

	 (a)	� Find the average velocity for each time period:
		  (i)  f2, 4g        (ii)  f3, 4g        (iii)  f4, 5g        (iv)  f4, 6g
	 (b)	� Use the graph of s as a function of t to estimate the 

instantaneous velocity when t − 3.

	 8.	� �The displacement (in centimeters) of a particle moving 
back and forth along a straight line is given by the equation 
of motion s − 2 sin �t 1 3 cos �t, where t is measured in 
seconds.

	 (a)	� Find the average velocity during each time period:
	 (i)	 [1, 2]	 (ii)	 [1, 1.1]
	 (iii)	 [1, 1.01]	 (iv)	 [1, 1.001]
	 (b)	� Estimate the instantaneous velocity of the particle  

when t − 1.

	 9.	� The point Ps1, 0d lies on the curve y − sins10�yxd.
	 (a)	� If Q is the point sx, sins10�yxdd, find the slope of the 

secant line PQ (correct to four decimal places) for 
x − 2, 1.5, 1.4, 1.3, 1.2, 1.1, 0.5, 0.6, 0.7, 0.8, and 0.9. 
Do the slopes appear to be approaching a limit?

	 (b)	� Use a graph of the curve to explain why the slopes of 
the secant lines in part (a) are not close to the slope of 
the tangent line at P.

	 (c)	� By choosing appropriate secant lines, estimate the slope 
of the tangent line at P.

;
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Having seen in the preceding section how limits arise when we want to find the tangent 
to a curve or the velocity of an object, we now turn our attention to limits in general and 
numerical and graphical methods for computing them.

Let’s investigate the behavior of the function f  defined by f sxd − x 2 2 x 1 2 for 
values of x near 2. The following table gives values of f sxd for values of x close to 2 but 
not equal to 2.

x f sxd x f sxd

1.0 2.000000 3.0 8.000000
1.5 2.750000 2.5 5.750000
1.8 3.440000 2.2 4.640000
1.9 3.710000 2.1 4.310000
1.95 3.852500 2.05 4.152500
1.99 3.970100 2.01 4.030100
1.995 3.985025 2.005 4.015025
1.999 3.997001 2.001 4.003001

From the table and the graph of f  (a parabola) shown in Figure 1 we see that the closer 
x is to 2 (on either side of 2), the closer f sxd is to 4. In fact, it appears that we can make the 
values of f sxd as close as we like to 4 by taking x sufficiently close to 2. We express this by  
saying “the limit of the function f sxd − x 2 2 x 1 2 as x approaches 2 is equal to 4.” The 
notation for this is

lim
x l

 

2
 sx 2 2 x 1 2d − 4

In general, we use the following notation.

1 �  Intuitive Definition of a Limit � Suppose f sxd is defined when x is near the 
number a. (This means that f  is defined on some open interval that contains a, 
except possibly at a itself.) Then we write

lim
x l a

 f sxd − L

and say	 “the limit of f sxd, as x approaches a, equals L”

if we can make the values of f sxd arbitrarily close to L (as close to L as we like) by 
restricting x to be sufficiently close to a (on either side of a) but not equal to a.

Roughly speaking, this says that the values of f sxd approach L as x approaches a. In 
other words, the values of f sxd tend to get closer and closer to the number L as x gets 
closer and closer to the number a (from either side of a) but x ± a. (A more precise defi-
nition will be given in Section 2.4.)

An alternative notation for

lim
x l a

 f sxd − L

is	 f sxd l L        as        x l a

which is usually read “ f sxd approaches L as x approaches a.”

fiGure 1

4
ƒ

approaches
4.

x

y

2
As x approaches 2,

y=≈-x+2

0
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84	 Chapter 2    Limits and Derivatives

Notice the phrase “but x ± a” in the definition of limit. This means that in finding the 
limit of f sxd as x approaches a, we never consider x − a. In fact, f sxd need not even be 
defined when x − a. The only thing that matters is how f  is defined near a.

Figure 2 shows the graphs of three functions. Note that in part (c), f sad is not defined 
and in part (b), f sad ± L. But in each case, regardless of what happens at a, it is true  
that  lim x l a f sxd − L.

(c)

x

y

0

L

a

(b)

x

y

0

L

a

(a)

x

y

0

L

a

Example �1�  Guess the value of lim
x l1

 
x 2 1

x 2 2 1
.

SOLUTION � Notice that the function f sxd − sx 2 1dysx 2 2 1d is not defined when x − 1, 
but that doesn’t matter because the definition of lim x l a f sxd says that we consider 
values of x that are close to a but not equal to a.

The tables at the left give values of f sxd (correct to six decimal places) for values of 
x that approach 1 (but are not equal to 1). On the basis of the values in the tables, we 
make the guess that

	 lim
x l 1

 
x 2 1

x 2 2 1
− 0.5	 ■

Example 1 is illustrated by the graph of f  in Figure 3. Now let’s change f  slightly by 
giving it the value 2 when x − 1 and calling the resulting function t:

tsxd − H x 2 1

x 2 2 1
if x ± 1

2 if x − 1

This new function t still has the same limit as x approaches 1. (See Figure 4.)

0 1

0.5

x-1
≈-1y=

0 1

0.5

y=©

2

y

x

y

x

figure 3	 Figure 4

figure 2�  lim
x l a

 f sxd − L in all three cases

x , 1 f sxd

0.5 0.666667
0.9 0.526316
0.99 0.502513
0.999 0.500250
0.9999 0.500025

x . 1 f sxd

1.5 0.400000
1.1 0.476190
1.01 0.497512
1.001 0.499750
1.0001 0.499975

1 0.5
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Example �2�  Estimate the value of lim
t l 0

 
st 2 1 9 2 3

t 2 .

SOLUTION � The table lists values of the function for several values of t near 0.

t st 2 1 9 2 3

t 2

61.0 0.162277 . . .

60.5 0.165525 . . .

60.1 0.166620 . . .

60.05 0.166655 . . .

60.01 0.166666 . . .

As t approaches 0, the values of the function seem to approach 0.1666666 . . . and so 
we guess that

	 lim
t l 0

 
st 2 1 9 2 3

t 2 −
1

6
	 ■

In Example 2 what would have happened if we had taken even smaller values of t? The 
table in the margin shows the results from one calculator; you can see that something 
strange seems to be happening.

If you try these calculations on your own calculator you might get different values, 
but eventually you will get the value 0 if you make t sufficiently small. Does this mean 
that the answer is really 0 instead of 16 ? No, the value of the limit is 16, as we will show in 
the next section. The problem is that the calculator gave false values because st 2 1 9  is 
very close to 3 when t is small. (In fact, when t is sufficiently small, a calculator’s value 
for st 2 1 9  is 3.000. . . to as many digits as the calculator is capable of carrying.)

Something similar happens when we try to graph the function

f std −
st 2 1 9 2 3

t 2

of Example 2 on a graphing calculator or computer. Parts (a) and (b) of Figure 5 show 
quite accurate graphs of f , and when we use the trace mode (if available) we can estimate 
easily that the limit is about 16. But if we zoom in too much, as in parts (c) and (d), then we 
get inaccurate graphs, again because of rounding errors from the subtraction.

0.1

0.2

0.1

0.2

sad 25 < t < 5  sbd 20.1 < t < 0.1  scd 21026 < t < 1026  sdd 21027 < t < 1027

t st 2 1 9 2 3

t 2

60.001 0.166667
60.0001 0.166670
60.00001 0.167000
60.000001 0.000000

www.stewartcalculus.com
For a further explanation of why 
calculators sometimes give false 
values, click on Lies My Calculator 
and Computer Told Me. In particu-
lar, see the section called The Perils 
of Subtraction.

FIGURE 5 �
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86	 Chapter 2    Limits and Derivatives

Example �3�  Guess the value of lim 
x l 0

 
sin x

x
.

SOLUTION � The function f sxd − ssin xdyx is not defined when x − 0. Using a calcula-
tor (and remembering that, if x [ R, sin x means the sine of the angle whose radian 
measure is x), we construct a table of values correct to eight decimal places. From the 
table at the left and the graph in Figure 6 we guess that

 lim 
x l 0

sin x

x
− 1

This guess is in fact correct, as will be proved in Chapter 3 using a geometric argument. 

	
0 x_1 1

y
sin x

xy=1

	
■

Example �4�  Investigate lim 
x l 0

 sin 
�

x
.

SOLUTION � Again the function f sxd − sins�yxd is undefined at 0. Evaluating the 
function for some small values of x, we get

 f s1d − sin � − 0              f (1
2) − sin 2� − 0

 f (1
3) − sin 3� − 0              f (1

4) − sin 4� − 0

 f s0.1d − sin 10� − 0             f s0.01d − sin 100� − 0

Similarly, f s0.001d − f s0.0001d − 0. On the basis of this information we might be 
tempted to guess that

 lim 
x l 0

 sin 
�

x
− 0

but this time our guess is wrong. Note that although f s1ynd − sin n� − 0 for any 
integer n, it is also true that f sxd − 1 for infinitely many values of x (such as 2y5 or 
2y101) that approach 0. You can see this from the graph of f  shown in Figure 7.

y=sin(π/x)

x

y

1

1

_1

_1

x
sin x

x

61.0 0.84147098
60.5 0.95885108
60.4 0.97354586
60.3 0.98506736
60.2 0.99334665
60.1 0.99833417
60.05 0.99958339
60.01 0.99998333
60.005 0.99999583
60.001 0.99999983

figure 6

Computer Algebra Systems
Computer algebra systems (CAS) 
have commands that compute limits. 
In order to avoid the types of pitfalls 
demonstrated in Examples 2, 4, and 
5, they don’t find limits by numerical 
experimentation. Instead, they use more 
sophisticated techniques such as com- 
puting infinite series. If you have access 
to a CAS, use the limit command to 
compute the limits in the examples of 
this section and to check your answers 
in the exercises of this chapter.

figure 7
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The dashed lines near the y-axis indicate that the values of sins�yxd oscillate 
between 1 and 21 infinitely often as x approaches 0. (See Exercise 51.) 

Since the values of f sxd do not approach a fixed number as x approaches 0,

	
lim
x l 0

 sin 
�

x
does not exist

	 ■

Example �5�  Find lim
x l 0

 Sx 3 1
cos 5x

10,000D.

SOLUTION � As before, we construct a table of values. From the first table in the margin 
it appears that

lim
x l 0

 Sx 3 1
cos 5x

10,000D − 0

But if we persevere with smaller values of x, the second table suggests that

 lim 
x l 0

 Sx 3 1
cos 5x

10,000D − 0.000100 −
1

10,000

Later we will see that lim x l 0 cos 5x − 1; then it follows that the limit is 0.0001.	 ■

Examples 4 and 5 illustrate some of the pitfalls in guessing the value of a limit. It is 
easy to guess the wrong value if we use inappropriate values of x, but it is difficult to 
know when to stop calculating values. And, as the discussion after Example 2 shows, 
sometimes calculators and computers give the wrong values. In the next section, how-
ever, we will develop foolproof methods for calculating limits.

One-Sided Limits

Example �6�  The Heaviside function H is defined by

Hstd − H0

1

if t , 0

if t > 0

[This function is named after the electrical engineer Oliver Heaviside (1850–1925) and 
can be used to describe an electric current that is switched on at time t − 0.] Its graph 
is shown in Figure 8.

As t approaches 0 from the left, Hstd approaches 0. As t approaches 0 from the right, 
Hstd approaches 1. There is no single number that Hstd approaches as t approaches 0. 
Therefore lim t l 0 Hstd does not exist.	 ■

We noticed in Example 6 that Hstd approaches 0 as t approaches 0 from the left and 
Hstd approaches 1 as t approaches 0 from the right. We indicate this situation symboli-
cally by writing

lim
t l 02

 Hstd − 0        and        lim
t l 01

 Hstd − 1

The notation t l 02 indicates that we consider only values of t that are less than 0. Like-
wise, t l 01 indicates that we consider only values of t that are greater than 0.

x x 3 1
cos 5x

10,000

1 1.000028
0.5 0.124920
0.1 0.001088
0.05 0.000222
0.01 0.000101

x x 3 1
cos 5x

10,000

0.005 0.00010009
0.001 0.00010000

t

y

1

0

FIGURE 8 �  
The Heaviside function
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88	 Chapter 2    Limits and Derivatives

2 �  Definition of One-Sided Limits � We write

lim
x la2

 f sxd − L

and say the left-hand limit of f sxd as x approaches a [or the limit of f sxd as  
x approaches a from the left] is equal to L if we can make the values of f sxd  
arbitrarily close to L by taking x to be sufficiently close to a with x less than a.

Notice that Definition 2 differs from Definition 1 only in that we require x to be less 
than a. Similarly, if we require that x be greater than a, we get “the right-hand limit of 
f sxd as x approaches a is equal to L” and we write

lim
x l

 

a1
 f sxd − L

Thus the notation x l a1 means that we consider only x greater than a. These defini-
tions are illustrated in Figure 9.

0 x

y

L

xa0 x

y

ƒ L

x a

ƒ

x    a+x    a_
(a) lim  ƒ=L (b) lim  ƒ=L

By comparing Definition l with the definitions of one-sided limits, we see that the 
following is true.

3 ��      lim
x l a

 f sxd − L      if and only if      lim
x l

 

a2
 f sxd − L    and    lim

x l
 

a1
 f sxd − L

Example �7�  The graph of a function t is shown in Figure 10. Use it to state the values 
(if they exist) of the following:

(a)  lim
x l 22

 tsxd            (b)  lim
x l 21

 tsxd            (c)  lim
x l 2

 tsxd

(d)  lim
x l 52

 tsxd            (e)  lim
x l 51

 tsxd            (f )  lim
x l 5

 tsxd

SOLUTION � From the graph we see that the values of tsxd approach 3 as x approaches 2 
from the left, but they approach 1 as x approaches 2 from the right. Therefore

(a)  lim
x l 22

 tsxd − 3        and        (b)  lim
x l 21

 tsxd − 1

(c)  Since the left and right limits are different, we conclude from (3) that limx l 2 tsxd 
does not exist.

The graph also shows that

(d)  lim
x l 52

 tsxd − 2        and        (e)  lim
x l 51

 tsxd − 2

FIGURE 9 �

FIGURE 10 �

y

0 x

y=©

1 2 3 4 5

1

3

4
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(f )  This time the left and right limits are the same and so, by (3), we have

lim
x l 5

 tsxd − 2

Despite this fact, notice that ts5d ± 2.	 ■

Infinite Limits

Example �8�  Find lim
x l 0

 
1

x 2  if it exists.

SOLUTION � As x becomes close to 0, x 2 also becomes close to 0, and 1yx 2 becomes very 
large. (See the table in the margin.) In fact, it appears from the graph of the function 
f sxd − 1yx 2 shown in Figure 11 that the values of f sxd can be made arbitrarily large 
by taking x close enough to 0. Thus the values of f sxd do not approach a number, so 
lim x l 0 s1yx 2 d does not exist.	 ■

To indicate the kind of behavior exhibited in Example 8, we use the notation

lim 
x l 0

 
1

x 2 − `

This does not mean that we are regarding ` as a number. Nor does it mean that the limit  
exists. It simply expresses the particular way in which the limit does not exist: 1yx 2 can 
be made as large as we like by taking x close enough to 0.

In general, we write symbolically

 lim 
x l a

 f sxd − `

to indicate that the values of f sxd tend to become larger and larger (or “increase without 
bound”) as x becomes closer and closer to a.

4 �  Intuitive Definition of an Infinite Limit � Let f  be a function defined on both 
sides of a, except possibly at a itself. Then

 lim 
x l a

 f sxd − `

means that the values of f sxd can be made arbitrarily large (as large as we please) 
by taking x sufficiently close to a, but not equal to a.

Another notation for limx l a f sxd − ` is

f sxd l `        as        x l a

Again, the symbol ̀  is not a number, but the expression lim x l a f sxd − ` is often read as

“the limit of f sxd, as x approaches a, is infinity”

or	 “ f sxd becomes infinite as x approaches a”

or	 “ f sxd increases without bound as x approaches a”

This definition is illustrated graphically in Figure 12.

x
1

x 2

61 1
60.5 4
60.2 25
60.1 100
60.05 400
60.01 10,000
60.001 1,000,000

figure 11 �

y=

0

y

x

1
≈

figure 12 �
lim
x l a

 f sxd − `

x

y

x=a

y=ƒ

a0
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90	 Chapter 2    Limits and Derivatives

A similar sort of limit, for functions that become large negative as x gets close to a, is 
defined in Definition 5 and is illustrated in Figure 13.

5 �  Definition � Let f  be a function defined on both sides of a, except possibly at 
a itself. Then

 lim 
x l a

 f sxd − 2`

means that the values of f sxd can be made arbitrarily large negative by taking x 
sufficiently close to a, but not equal to a.

The symbol limx l a f sxd − 2` can be read as “the limit of f sxd, as x approaches a, is 
negative infinity” or “ f sxd decreases without bound as x approaches a.” As an example 
we have

lim
x l

 

0
 S2

1

x 2D − 2`

Similar definitions can be given for the one-sided infinite limits

	 lim
x l

 

a2
 f sxd − `	 lim

x l
 

a1
 f sxd − `

	 lim
x l

 

a2
 f sxd − 2`	 lim

x l
 

a1
 f sxd − 2`

remembering that x l a2 means that we consider only values of x that are less than a,  
and similarly x l a1 means that we consider only x . a. Illustrations of these four 
cases are given in Figure 14.

(d) lim  ƒ=_`

a

y

0 x

x a+x a_
(c) lim  ƒ=_`

y

0 a x

(a) lim  ƒ=`

y

0 a x

x a_
(b) lim  ƒ=`

a

y

x

x a+

0

6 �  Definition � The vertical line x − a is called a vertical asymptote of the  
curve y − f sxd if at least one of the following statements is true:

	 lim
x l

 

a
 f sxd − `	 lim

x l
 

a2
 f sxd − ` 	 lim

x l
 

a1
 f sxd − `

	 lim
x l

 

a
 f sxd − 2`	 lim

x l
 

a2
 f sxd − 2`	 lim

x l
 

a1
 f sxd − 2`

For instance, the y-axis is a vertical asymptote of the curve y − 1yx 2 because 
limx l 0 s1yx 2 d − `. In Figure 14 the line x − a is a vertical asymptote in each of 

When we say a number is “large nega-
tive,” we mean that it is negative but its 
magnitude (absolute value) is large.

FIGURE 14 �

0 x

y

x=a

y=ƒ

a

figure 13 
�lim
x l a

 f sxd − 2`
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the four cases shown. In general, knowledge of vertical asymptotes is very useful in 
sketching graphs.

Example �9�  Find lim
x l

 

31
 

2x

x 2 3
 and lim

x l
 

32
 

2x

x 2 3
.

SOLUTION � If x is close to 3 but larger than 3, then the denominator x 2 3 is a small 
positive number and 2x is close to 6. So the quotient 2xysx 2 3d is a large positive 
number. [For instance, if x − 3.01 then 2xysx 2 3d − 6.02y0.01 − 602.] Thus, intui-
tively, we see that

lim
x l

 

31
 

2x

x 2 3
− `

Likewise, if x is close to 3 but smaller than 3, then x 2 3 is a small negative number 
but 2x is still a positive number (close to 6). So 2xysx 2 3d is a numerically large nega-
tive number. Thus

  lim
x l

 

32
 

2x

x 2 3
− 2`

The graph of the curve y − 2xysx 2 3d is given in Figure 15. The line x − 3 is a verti-
cal asymptote.	 ■

Example �10�  Find the vertical asymptotes of f sxd − tan x.

SOLUTION � Because

tan x −
sin x

cos x

there are potential vertical asymptotes where cos x − 0. In fact, since cos x l 01 as 
x l s�y2d2 and cos x l 02 as x l s�y2d1, whereas sin x is positive (near 1) when x 
is near �y2, we have

lim
x l

 

s�y2d2
 tan x − `        and        lim

x l
 

s�y2d1
 tan x − 2`

This shows that the line x − �y2 is a vertical asymptote. Similar reasoning shows  
that the lines x − �y2 1 n�, where n is an integer, are all vertical asymptotes of 
f sxd − tan x. The graph in Figure 16 confirms this.	 ■

Another example of a function whose graph has a vertical asymptote is the natural 
logarithmic function y − ln x. From Figure 17 we see that

lim
x l

 

01
 ln x − 2`

and so the line x − 0 (the y-axis) is a vertical asymptote. In fact, the same is true for 
y − log b x provided that b . 1. (See Figures 1.5.11 and 1.5.12.)

Figure 16�   
y − tan x

__
x

y

π0_π

1

π
2

3π
 2

π
2

3π
 2

Figure 17�   
The y-axis is a vertical asymptote of  
the natural logarithmic function.

x0

y

1

y=ln x

Figure 15� 

5

2x
x-3y=

0 x

y

x=3
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 	 1 .	� Explain in your own words what is meant by the equation

lim
x l 2

 f sxd − 5

		��  Is it possible for this statement to be true and yet f s2d − 3? 
Explain.

	 2 .	� Explain what it means to say that

lim
x l 12

f sxd − 3        and         lim
x l11

 f sxd − 7

		��  In this situation is it possible that limx l 1 f sxd exists?  
Explain.

	 3 .	�� Explain the meaning of each of the following.

	 (a)	 lim
x l

 

23
f sxd − `	 (b)	 lim

x l 41
f sxd − 2`

	 4.	�� Use the given graph of f  to state the value of each quantity,  
�if it exists. If it does not exist, explain why.

	 (a)	 lim
x l

 

22
f sxd	 (b)	 lim

x l 21
f sxd	 (c)	 lim

x l 2
 f sxd

	 (d)	 f s2d	 (e)	 lim
x l 4

 f sxd	 (f )	 f s4d

y

0 x2 4

4

2

	 5.	�� For the function f  whose graph is given, state the value of 
each quantity, if it exists. If it does not exist, explain why.

	 (a)	 lim
x l 1

 f sxd	 (b)	 lim
x l 32

f sxd	 (c)	 lim
x l 31

f sxd

	 (d)	 lim
x l 3

 f sxd	 (e)	 f s3d

y

0 x2 4

4

2

	 6.	�� For the function h whose graph is given, state the value of 
each quantity, if it exists. If it does not exist, explain why.

	 (a)	 lim
x l 232

hsxd	 (b)	 lim
x l 231

hsxd	 (c)	 lim
x l 23

hsxd

	 (d)	 hs23d	 (e)	 lim
xl

 

02 
hsxd	 (f )	 lim

x l
 

01 
hsxd

	 (g)	 lim
x l 0

 hsxd	 (h)	 hs0d	 (i)	 lim
x l 2

 hsxd

	 ( j)	 hs2d	 (k)	 lim
x l

 

51
hsxd	 (l)	 lim

x l
 

52 
hsxd

y

0 x2_2_4 4 6

	  7.	�� For the function t whose graph is given, state the value of 
each quantity, if it exists. If it does not exist, explain why.

	 (a)	 lim
t l 02

tstd	 (b)	 lim
t l 01

tstd	 (c)	 lim
t l 0

tstd

	 (d)	 lim
t l 22

tstd	 (e)	 lim
t l 21

tstd	 (f )	 lim
t l 2

tstd

	 (g)	 ts2d	 (h)	 lim
t l 4

 tstd

y

t2 4

4

2

	 8.	�� For the function A whose graph is shown, state the following.

	 (a)	  lim 
x l23

 Asxd	 (b)	 lim
x l22

 Asxd	

	 (c)	 lim
x l21

 Asxd	 (d)	  lim 
x l21

 Asxd

	 (e)	 The equations of the vertical asymptotes

0

y

x2_3 5

	 9.	�� For the function f  whose graph is shown, state the following.

	 (a)	 lim 
x l27

 f sxd	 (b)	 lim 
x l23 

 f sxd	 (c)	 lim
x l 0 

 f sxd

	 (d)	 lim
x l 62

f sxd	 (e)	 lim
x l 61

f sxd
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	 (f )	 The equations of the vertical asymptotes.

x

y

0 6_3_7

	10.	� �A patient receives a 150-mg injection of a drug every 
4 hours. The graph shows the amount f std of the drug in 
the bloodstream after t hours. Find

lim
tl 122

 f std        and        lim
tl 121

 f std

and explain the significance of these one-sided limits.

4 8 12 16 t

f(t)

150

0

300

11–12 � Sketch the graph of the function and use it to determine 
the values of a for which limx l a f sxd exists.

	11.	 f sxd − H1 1 x

x 2

2 2 x

if x , 21

if  21 < x , 1

if x > 1

	12.	 f sxd − H1 1 sin x

cos x

sin x

if x , 0

if  0 < x < �

if x . �

	13–14 � Use the graph of the function f  to state the value of 
each limit, if it exists. If it does not exist, explain why.

(a)  lim
x l 02 

f sxd      (b)  lim
x l 01 

f sxd      (c)  lim
x l 0 

f sxd

	13.	 f sxd −
1

1 1 e 1yx 	 14.	 f sxd −
x 2 1 x

sx 3 1 x 2 

15–18 � Sketch the graph of an example of a function f  that  
satisfies all of the given conditions.

	15.	� lim
x l 02

 f sxd − 21,    lim
x l 01

 f sxd − 2,    f s0d − 1

	16.	� lim
x l 0

 f sxd − 1,    lim
x l 32

 f sxd − 22,    lim
x l 31

 f sxd − 2,

	� f s0d − 21,    f s3d − 1

;

	17.	� lim
x l 31

 f sxd − 4,    lim
x l 32

 f sxd − 2,    lim
x l 22

 f sxd − 2,

	� f s3d − 3,    f s22d − 1

	18.	� lim
x l 02

 f sxd − 2,    lim
x l 01

 f sxd − 0,    lim
x l 42

 f sxd − 3,

	 lim
x l 41

 f sxd − 0,    f s0d − 2,    f s4d − 1

19–22 � Guess the value of the limit (if it exists) by evaluating 
the function at the given numbers (correct to six decimal places).

	19.	�� lim
x l

 

3
 
x 2 2 3x

x 2 2 9
,  

	 x − 3.1, 3.05, 3.01, 3.001, 3.0001,	

	 2.9, 2.95, 2.99, 2.999, 2.9999

	20.	� �lim
x l

 

23
 
x 2 2 3x

x 2 2 9
,

	 x − 22.5, 22.9, 22.95, 22.99, 22.999, 22.9999,

	 23.5, 23.1, 23.05, 23.01, 23.001, 23.0001

	21.	�� lim
tl 0

 
e5 t 2 1

t
,    t − 60.5, 60.1, 60.01, 60.001, 60.0001

	22.	� lim
hl 0

 
s2 1 hd5 2 32

h
,

h − 60.5, 60.1, 60.01, 60.001, 60.0001

23–28 � Use a table of values to estimate the value of the limit. 
If you have a graphing device, use it to confirm your result 
graphically.

	23.	 lim
x l 4

 
ln x 2 ln 4

x 2 4
	 24.	 lim

p l 21
 

1 1 p 9

1 1 p 15

	25.	� lim
� l 0

 
sin 3�

tan 2�
	 26.	 lim

t l 0
 
5 t 2 1

t

	27.	� lim
x l01

 x x 	 28.	 lim
x l01

 x 2 ln x

	29.	� �(a)	� By graphing the function f sxd − scos 2x 2 cos xdyx 2 
and zooming in toward the point where the graph 
crosses the y-axis, estimate the value of lim x l 0 f sxd.

	 (b)	� Check your answer in part (a) by evaluating f sxd for  
values of x that approach 0.

	30.	� �(a)	� Estimate the value of

lim
x l 0

 
sin x

sin �x

	�� by graphing the function f sxd − ssin xdyssin �xd. 
State your answer correct to two decimal places.

	 (b)	� Check your answer in part (a) by evaluating f sxd for  
values of x that approach 0.

;

;
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94	 Chapter 2    Limits and Derivatives

31– 43 � Determine the infinite limit.

	31.	  lim
x l51

 
x 1 1

x 2 5
	32 .	 lim

x l
 

52
 
x 1 1

x 2 5

	33.	 lim
x l

 

1
 

2 2 x

sx 2 1d2 	3 4.	 lim
x l32

 
sx 

sx 2 3d5

	35.	 lim
x l

 

31
 lnsx 2 2 9d	3 6.	 lim

x l 01
 lnssin xd

	37.	 lim
xls�y2d1

 
1

x
 sec x	3 8.	 lim

x l�2
 cot x

	39.	 lim
x l2�2

 x csc x	 40.	 lim
x l

 

22
 

x 2 2 2x

x 2 2 4x 1 4

41.		 lim
x l21

 
x 2 2 2x 2 8

x 2 2 5x 1 6

	42.	 lim
xl01

 S 1

x
2 ln xD

43.		 lim
xl0

 sln x 2 2 x22d

	44.	� �(a)	 Find the vertical asymptotes of the function

y −
x 2 1 1

3x 2 2x 2

	 (b)	� Confirm your answer to part (a) by graphing the  
function.

	45.	� Determine lim
x l

 

12
 

1

x 3 2 1
 and lim

x l
 

11
 

1

x 3 2 1

	 (a)	� by evaluating f sxd − 1ysx 3 2 1d for values of x that 
approach 1 from the left and from the right,

	 (b)	 by reasoning as in Example 9, and
	 (c)	 from a graph of f.

	46.	� �(a)	� By graphing the function f sxd − stan 4xdyx and 
zooming in toward the point where the graph crosses 
the y-axis, estimate the value of lim x l 0 f sxd.

	 (b)	� Check your answer in part (a) by evaluating f sxd for  
values of x that approach 0.

	47.	� (a)	� Estimate the value of the limit lim x l 0 s1 1 xd1yx to 
five decimal places. Does this number look familiar?

	 (b)	� Illustrate part (a) by graphing the function 
y − s1 1 xd1yx.

	48.	� (a)	� Graph the function f sxd − e x 1 ln | x 2 4 | for  
0 < x < 5. Do you think the graph is an accurate  
representation of f ?

	 (b)	� How would you get a graph that represents f  better?

	49.	� (a)	� Evaluate the function f sxd − x 2 2 s2xy1000d for 
x − 1, 0.8, 0.6, 0.4, 0.2, 0.1, and 0.05, and guess the 
value of

lim 
x l 0

 Sx 2 2
2x

1000D

;

;

;

;

;

	 (b)	� Evaluate f sxd for x − 0.04, 0.02, 0.01, 0.005, 0.003, 
and 0.001. Guess again.

	50.	� (a)	� Evaluate hsxd − stan x 2 xdyx 3 for x − 1, 0.5, 0.1, 
0.05, 0.01, and 0.005.

	 (b)	 Guess the value of lim 
x l 0

 
tan x 2 x

x 3 .

	 (c)	� Evaluate hsxd for successively smaller values of x 
until you finally reach a value of 0 for hsxd. Are you 
still confident that your guess in part (b) is correct? 
Explain why you eventually obtained 0 values. (In 
Section 4.4 a method for evaluating this limit will be 
explained.)

	 (d)	� Graph the function h in the viewing rectangle f21, 1g 
by f0, 1g. Then zoom in toward the point where the 
graph crosses the y-axis to estimate the limit of hsxd 
as x approaches 0. Continue to zoom in until you 
observe distortions in the graph of h. Compare with 
the results of part (c).

	51.	� �Graph the function f sxd − sins�yxd of Example 4 in 
the viewing rectangle f21, 1g by f21, 1g. Then zoom in 
toward the origin several times. Comment on the behav-
ior of this function.

	52.	� Consider the function f sxd − tan 
1

x
.

	 (a)	� Show that f sxd − 0 for x −
1

�
, 

1

2�
, 

1

3�
, . . .

	 (b)	� Show that f sxd − 1 for x −
4

�
, 

4

5�
, 

4

9�
, . . .

	 (c)	 What can you conclude about lim
x l 01

 tan 
1

x
 ?

	53.	� �Use a graph to estimate the equations of all the vertical 
asymptotes of the curve

y − tans2 sin xd 2� < x < �

	� Then find the exact equations of these asymptotes.

	54.	� �In the theory of relativity, the mass of a particle with 
velocity v is

m −
m0

s1 2 v2yc2 

	� �where m0 is the mass of the particle at rest and c is the 
speed of light. What happens as v l c2?

	55.	� �(a)	� Use numerical and graphical evidence to guess the 
value of the limit

lim
xl1

 
x3 2 1

sx 2 1

	 (b)	� How close to 1 does x have to be to ensure that the 
function in part (a) is within a distance 0.5 of its limit?

;

;

;

;
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In Section 2.2 we used calculators and graphs to guess the values of limits, but we saw 
that such methods don’t always lead to the correct answer. In this section we use the fol-
lowing properties of limits, called the Limit Laws, to calculate limits.

�Limit Laws � Suppose that c is a constant and the limits

lim
x l a

 f sxd        and        lim
x l a

 tsxd

exist. Then

1.	 lim
x l a

 f f sxd 1 tsxdg − lim
x l a

 f sxd 1 lim
x l a

 tsxd

2.	 lim
x l a

 f f sxd 2 tsxdg − lim
x l a

 f sxd 2 lim
x l a

 tsxd

3.	 lim
x l a

 fcf sxdg − c lim
x l a

 f sxd

4.	 lim
x l a

 f f sxd tsxdg − lim
x l a

 f sxd ? lim
x l a

 tsxd

5.	 lim
x l a

 
 f sxd
tsxd

−
lim
x l a 

f sxd

lim
xla

 tsxd
    if lim

x l a

 tsxd ± 0

These five laws can be stated verbally as follows:

	1.	� The limit of a sum is the sum of the limits.

	2.	� The limit of a difference is the difference of the limits.

	3.	�� The limit of a constant times a function is the constant times the limit of the 
function.

	4.	� The limit of a product is the product of the limits.

	5.	�� The limit of a quotient is the quotient of the limits (provided that the limit of 
the denominator is not 0).

It is easy to believe that these properties are true. For instance, if f sxd is close to L 
and tsxd is close to M, it is reasonable to conclude that f sxd 1 tsxd is close to L 1 M. 
This gives us an intuitive basis for believing that Law 1 is true. In Section 2.4 we give a 
precise definition of a limit and use it to prove this law. The proofs of the remaining laws 
are given in Appendix F.

Example �1�  Use the Limit Laws and the graphs of f  and t in Figure 1 to evaluate the 
following limits, if they exist.

(a)  lim
x l 22

 f f sxd 1 5tsxdg            (b)  lim
x l 1

 f f sxdtsxdg            (c)  lim
x l 2

 
 f sxd
tsxd

SOLUTION  
(a)  From the graphs of f  and t we see that

lim
x l 22

 f sxd − 1        and        lim
x l 22

 tsxd − 21

Sum Law

Difference Law

Constant Multiple Law

Product Law

Quotient Law

x

y

0

f

g
1

1

FIGURE 1 �
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96	 Chapter 2    Limits and Derivatives

Therefore we have

 lim
x l 22

 f f sxd 1 5tsxdg − lim
x l 22

 f sxd 1 lim
x l 22

 f5tsxdg        (by Limit Law 1)

 − lim
x l 22

 f sxd 1 5 lim
x l 22

 tsxd         (by Limit Law 3)

 − 1 1 5s21d − 24

(b)  We see that lim x l 1 f sxd − 2. But lim x l 1 tsxd does not exist because the left and 
right limits are different:

lim
x l 12

tsxd − 22            lim
x l 11

tsxd − 21

So we can’t use Law 4 for the desired limit. But we can use Law 4 for the one-sided 
limits:

 lim
x l 12

 f f sxdtsxdg − lim
x l12

 f sxd ? lim
x l12

 tsxd − 2 ? s22d − 24

 lim
x l 11

 f f sxdtsxdg − lim
x l11

 f sxd ? lim
x l11

 tsxd − 2 ? s21d − 22

The left and right limits aren’t equal, so lim x l 1 f f sxdtsxdg does not exist.

(c)  The graphs show that

lim
x l 2

 f sxd < 1.4        and        lim
x l 2

 tsxd − 0

Because the limit of the denominator is 0, we can’t use Law 5. The given limit does not 
exist because the denominator approaches 0 while the numerator approaches a nonzero 
number.	 ■

If we use the Product Law repeatedly with tsxd − f sxd, we obtain the following law.

6. � lim
x l

 

a
 f f sxdgn − f lim

x l
 

a
 f sxdg n          where n is a positive integer

In applying these six limit laws, we need to use two special limits: 

7.  lim
x l a

 c − c	 8. � lim
x l a

 x − a

These limits are obvious from an intuitive point of view (state them in words or draw 
graphs of y − c and y − x), but proofs based on the precise definition are requested in 
the exercises for Section 2.4.

If we now put f sxd − x in Law 6 and use Law 8, we get another useful special limit.

9. � lim
x l a

 xn − an        where n is a positive integer

A similar limit holds for roots as follows. (For square roots the proof is outlined in 
Exercise 2.4.37.)

10. � �lim
x l a

 sn x − sn a       where n is a positive integer

(If n is even, we assume that a . 0.)

Power Law
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Newton and Limits
Isaac Newton was born on Christmas 
Day in 1642, the year of Galileo’s death. 
When he entered Cambridge University 
in 1661 Newton didn’t know much 
mathematics, but he learned quickly 
by reading Euclid and Descartes and by 
attending the lectures of Isaac Barrow. 
Cambridge was closed because of the 
plague in 1665 and 1666, and Newton 
returned home to reflect on what he 
had learned. Those two years were 
amazingly productive for at that time 
he made four of his major discoveries: 
(1) his representation of functions as 
sums of infinite series, including the 
binomial theorem; (2) his work on differ-
ential and integral calculus; (3) his laws 
of motion and law of universal gravita-
tion; and (4) his prism experiments on 
the nature of light and color. Because of 
a fear of controversy and criticism, he 
was reluctant to publish his discoveries 
and it wasn’t until 1687, at the urging 
of the astronomer Halley, that Newton 
published Principia Mathematica. In 
this work, the greatest scientific treatise 
ever written, Newton set forth his ver-
sion of calculus and used it to investi-
gate mechanics, fluid dynamics, and 
wave motion, and to explain the motion 
of planets and comets.

The beginnings of calculus are 
found in the calculations of areas and 
volumes by ancient Greek scholars such 
as Eudoxus and Archimedes. Although 
aspects of the idea of a limit are implicit 
in their “method of exhaustion,” Eudoxus 
and Archimedes never explicitly formu-
lated the concept of a limit. Likewise, 
mathematicians such as Cavalieri, Fer- 
mat, and Barrow, the immediate precur-
sors of Newton in the development of 
calculus, did not actually use limits. It 
was Isaac Newton who was the first to 
talk explicitly about limits. He explained 
that the main idea behind limits is that 
quantities “approach nearer than by 
any given difference.” Newton stated 
that the limit was the basic concept in 
calculus, but it was left to later mathe
maticians like Cauchy to clarify his ideas 
about limits.

More generally, we have the following law, which is proved in Section 2.5 as a con-
sequence of Law 10.

11. � lim 
x l

 

a
sn f sxd − sn lim

x l
 

a
 f sxd      where n is a positive integer

�fIf n is even, we assume that lim
x l

 

a
 f sxd . 0.g

 

Example �2�  Evaluate the following limits and justify each step.

(a)  lim
x l

 

5
 s2x 2 2 3x 1 4d	 (b)  lim

x l
 

22
 
x 3 1 2x 2 2 1

5 2 3x

SOLUTION�

(a)	  lim
x l

 

5
 s2x 2 2 3x 1 4d − lim

x l
 

5
 s2x 2 d 2 lim

x l
 

5
 s3xd 1 lim

x l
 

5
 4    (by Laws 2 and 1)

	  − 2 lim
x l

 

5
 x 2 2 3 lim

x l
 

5
 x 1 lim

x l
 

5
 4     (by 3)

	  − 2s52 d 2 3s5d 1 4     (by 9, 8, and 7)

	  − 39

(b)  We start by using Law 5, but its use is fully justified only at the final stage when we 
see that the limits of the numerator and denominator exist and the limit of the denomi-
nator is not 0.

	  lim
x l

 

22
 
x 3 1 2x 2 2 1

5 2 3x
−

lim
x l

 

22
 sx 3 1 2x 2 2 1d

lim
x l

 

22
 s5 2 3xd       (by Law 5)

	  
−

lim
x l

 

22 
x 3 1 2 lim

x l
 

22 x
2 2 lim

x l
 

22
 1

lim
x l

 

22
 5 2 3 lim

x l
 

22
 x       (by 1, 2, and 3)

	  −
s22d3 1 2s22d2 2 1

5 2 3s22d
      (by 9, 8, and 7)

	  − 2
1

11
	 ■

NOTE � If we let f sxd − 2x 2 2 3x 1 4, then f s5d − 39. In other words, we would 
have gotten the correct answer in Example 2(a) by substituting 5 for x. Similarly, direct 
substitution provides the correct answer in part (b). The functions in Example 2 are 
a polynomial and a rational function, respectively, and similar use of the Limit Laws 
proves that direct substitution always works for such functions (see Exercises 57 and 58). 
We state this fact as follows.

Direct Substitution Property �� If f  is a polynomial or a rational function and a is 
in the domain of f , then

lim
x l

 

a
 f sxd − f sad

Root Law
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98	 Chapter 2    Limits and Derivatives

Functions with the Direct Substitution Property are called continuous at a and will be 
studied in Section 2.5. However, not all limits can be evaluated by direct substitution, as 
the following examples show.

Example �3�  Find lim
xl1

 
x 2 2 1

x 2 1
.

SOLUTION � Let f sxd − sx 2 2 1dysx 2 1d. We can’t find the limit by substituting x − 1 
�because f s1d isn’t defined. Nor can we apply the Quotient Law, because the limit of 
the denominator is 0. Instead, we need to do some preliminary algebra. We factor the 
numerator as a difference of squares:

x 2 2 1

x 2 1
−

sx 2 1dsx 1 1d
x 2 1

The numerator and denominator have a common factor of x 2 1. When we take the 
limit as x approaches 1, we have x ± 1 and so x 2 1 ± 0. Therefore we can cancel the 
common factor and then compute the limit by direct substitution as follows:

 lim
x l 1

 
x 2 2 1

x 2 1
− lim

x l 1
 
sx 2 1dsx 1 1d

x 2 1

 − lim
x l 1

 sx 1 1d

 − 1 1 1 − 2

The limit in this example arose in Example 2.1.1 when we were trying to find the  
tangent to the parabola y − x 2 at the point s1, 1d.	 ■

NOTE � In Example 3 we were able to compute the limit by replacing the given func-
tion f sxd − sx 2 2 1dysx 2 1d by a simpler function, tsxd − x 1 1, with the same limit. 
This is valid because f sxd − tsxd except when x − 1, and in computing a limit as x 
approaches 1 we don’t consider what happens when x is actually equal to 1. In general, 
we have the following useful fact.

If f sxd − tsxd when x ± a, then lim
xla

 f sxd − lim
x la

 tsxd, provided the limits exist.

Example �4�  Find lim
x l1

 tsxd where 

tsxd − Hx 1 1

�

if  x ± 1

if  x − 1

SOLUTION � Here t is defined at x − 1 and ts1d − �, but the value of a limit as x 
approaches 1 does not depend on the value of the function at 1. Since tsxd − x 1 1 for 
x ± 1, we have

	 lim
x l 1

 tsxd − lim
x l 1

 sx 1 1d − 2	 ■

Note that the values of the functions in Examples 3 and 4 are identical except when  
x − 1 (see Figure 2) and so they have the same limit as x approaches 1.

Notice that in Example 3 we do not 
have an infinite limit even though the 
denominator approaches 0 as x l 1. 
When both numerator and denominator 
approach 0, the limit may be infinite or 
it may be some finite value.

y=©

1 2 3

1

x

y

0

2

3

y=ƒ

1 2 3

1

x

y

0

2

3

FIGURE 2 �  
The graphs of the functions f  (from 
Example 3) and t (from Example 4)
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Example �5�  Evaluate lim
h l 0

 
s3 1 hd2 2 9

h
.

SOLUTION � If we define 

Fshd −
s3 1 hd2 2 9

h

then, as in Example 3, we can’t compute lim h l 0 Fshd by letting h − 0 since Fs0d is  
undefined. But if we simplify Fshd algebraically, we find that

Fshd −
s9 1 6h 1 h 2 d 2 9

h
−

6h 1 h 2

h
−

hs6 1 hd
h

− 6 1 h

(Recall that we consider only h ± 0 when letting h approach 0.) Thus

	 lim
h l 0

 
s3 1 hd2 2 9

h
− lim

h l 0
 s6 1 hd − 6	 ■

Example �6�  Find lim
t l 0

 
st 2 1 9 2 3

t 2 .

SOLUTION � We can’t apply the Quotient Law immediately, since the limit of the 
denominator is 0. Here the preliminary algebra consists of rationalizing the numerator:

 lim
t l 0

 
st 2 1 9 2 3

t 2 − lim
t l 0

 
st 2 1 9 2 3

t 2 ?
st 2 1 9 1 3

st 2 1 9 1 3

 − lim
t l 0

 
st 2 1 9d 2 9

t2(st 2 1 9 1 3)

	  − lim
t l 0

 
t 2

t 2(st 2 1 9 1 3)

   − lim
t l 0

 
1

st 2 1 9 1 3

 −
1

slim
t l0

 st 2 1 9d 1 3

   −
1

3 1 3
−

1

6

This calculation confirms the guess that we made in Example 2.2.2.	 ■

Some limits are best calculated by first finding the left- and right-hand limits. The 
following theorem is a reminder of what we discovered in Section 2.2. It says that a two-
sided limit exists if and only if both of the one-sided limits exist and are equal.

1 �  Theorem�  lim
x l a

 f sxd − L        if and only if        lim
x l

 

a2
 f sxd − L − lim

x l
 

a1
 f sxd

Here we use several properties of 
limits (5, 1, 10, 7, 9).
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100	 Chapter 2    Limits and Derivatives

When computing one-sided limits, we use the fact that the Limit Laws also hold for 
one-sided limits.

Example �7�  Show that lim
x l 0

 | x | − 0.

SOLUTION � Recall that

| x | − Hx

2x

if  x > 0

if  x , 0

Since | x | − x for x . 0, we have

lim
x l

 

01
 | x | − lim

x l
 

01
 x − 0

For x , 0 we have | x | − 2x and so 

lim
x l

 

02
 | x | − lim

x l
 

02
 s2xd − 0

Therefore, by Theorem 1, 

	 lim
x l 0

 | x | − 0	 ■

Example �8�  Prove that lim
x l 0

 | x |
x

 does not exist.

SOLUTION�  Using the facts that | x | − x when x . 0 and | x | − 2x when  x , 0, we 
have

 lim
x l

 

01
 | x |

x
− lim

x l
 

01
 
x

x
− lim

x l
 

01
 1 − 1

 lim
x l

 

02
 | x |

x
− lim

x l
 

02
 
2x

x
− lim

x l
 

02
 s21d − 21

Since the right- and left-hand limits are different, it follows from Theorem 1 that 
lim x l 0 | x |yx does not exist. The graph of the function f sxd − | x |yx is shown in Fig-
ure 4 and supports the one-sided limits that we found.	 ■

Example �9�  If

f sxd − Hsx 2 4 

8 2 2x

if  x . 4

if  x , 4

determine whether lim x l 4 f sxd exists.

SOLUTION � Since f sxd − sx 2 4  for x . 4, we have

lim
x l

 

41
 f sxd − lim

x l
 

41
 sx 2 4 − s4 2 4 − 0

Since f sxd − 8 2 2x for x , 4, we have

lim
x l

 

42
 f sxd − lim

x l
 

42
 s8 2 2xd − 8 2 2 ? 4 − 0

The right- and left-hand limits are equal. Thus the limit exists and

lim
x l 4

 f sxd − 0

The graph of f  is shown in Figure 5.	 ■

1

_1
x

y

0

y= |x|
x

FIGURE 4 �

It is shown in Example 2.4.3 that 
lim x l 01 sx − 0.

4 x

y

0

FIGURE 5 �

The result of Example 7 looks plausible  
from Figure 3.

y

x0

y=|x|

FIGURE 3 �
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Example �10�  The greatest integer function is defined by v x b − the largest integer 

that is less than or equal to x. (For instance, v4 b − 4, v4.8b − 4, v� b − 3, vs2 b − 1,

v21
2b − 21.) Show that lim x l3 v x b  does not exist.

SOLUTION � The graph of the greatest integer function is shown in Figure 6. Since  
�v x b − 3 for 3 < x , 4, we have

lim
x l

 

31
 v x b − lim

x l
 

31
 3 − 3

Since v x b − 2 for 2 < x , 3, we have

lim
x l

 

32
 v x b − lim

x l
 

32
 2 − 2

Because these one-sided limits are not equal, lim xl3 v x b  does not exist by Theorem 1. ■

The next two theorems give two additional properties of limits. Their proofs can be 
found in Appendix F.

2 �  Theorem�  If f sxd < tsxd when x is near a (except possibly at a) and the limits 
of f  and t both exist as x approaches a, then

lim
x l a

 f sxd < lim
x l a

 tsxd

3 �  The Squeeze Theorem�  If f sxd < tsxd < hsxd when x is near a (except  
possibly at a) and

lim
x l a

 f sxd − lim
x l a

 hsxd − L

then	 lim
x l a

 tsxd − L

The Squeeze Theorem, which is sometimes called the Sandwich Theorem or the 
Pinching Theorem, is illustrated by Figure 7. It says that if tsxd is squeezed between 
f sxd and hsxd near a, and if f  and h have the same limit L at a, then t is forced to have 
the same limit L at a.

Example �11�  Show that lim
x l 0

 x 2 sin 
1

x
− 0.

SOLUTION � First note that we cannot use

	 lim
x l 0

 x 2 sin 
1

x
− lim

x l 0
 x 2 ? lim

x l 0
sin 

1

x

because lim x l 0 sins1yxd does not exist (see Example 2.2.4).
Instead we apply the Squeeze Theorem, and so we need to find a function f  smaller 

than tsxd − x 2 sins1yxd and a function h bigger than t such that both f sxd and hsxd
approach 0. To do this we use our knowledge of the sine function. Because the sine of 

Other notations for v x b  are fxg and :x;. 
The greatest integer function is 
sometimes called the floor function.

y=[ x]

1 2 3

1

2

3

4

4 5 x

y

0

FIGURE 6   
�Greatest integer function

0 x

y

a

L

f

g

h

FIGURE 7 �
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102	 Chapter 2    Limits and Derivatives

	 4.	 lim
xl 21

 sx 4 2 3xdsx 2 1 5x 1 3d

	 5.	 lim
t l 22

 
t 4 2 2

2t 2 2 3t 1 2
	 6.	� lim

ul
 

22
 su 4 1 3u 1 6 

	 7.	 lim
x l 8

 s1 1 s3 x ds2 2 6x 2 1 x 3d	 8.	� lim
t l 2

 S t 2 2 2

t 3 2 3t 1 5D
2

	 9.	� lim
x l 2

 Î 2x 2 1 1

3x 2 2
 

	10.	� (a)	 What is wrong with the following equation?

x 2 1 x 2 6

x 2 2
− x 1 3

	 (b)	 In view of part (a), explain why the equation

lim
x l

 

2
 
x 2 1 x 2 6

x 2 2
− lim

x l
 

2
 sx 1 3d

is correct.

11–32 � Evaluate the limit, if it exists.

	11.	 lim
x l

 

5
 
x 2 2 6x 1 5

x 2 5
	12 .	 lim

x l
 

23
 

x 2 1 3x

x 2 2 x 2 12
  

	13.	 lim
x l

 

5
 
x 2 2 5x 1 6

x 2 5
	1 4.	 lim

x l
 

4
 

x 2 1 3x

x 2 2 x 2 12

	15.	 lim
t l

 

23
 

t 2 2 9

2t 2 1 7t 1 3
	1 6.	 lim

x l
 

21
 
2x 2 1 3x 1 1

x 2 2 2x 2 3

	17.	 lim
h l

 

0
 
s25 1 hd2 2 25

h
	 18.	 lim

h l
 

0
 
s2 1 hd3 2 8

h

	1 .	� �Given that

lim
x l

 

2
 f sxd − 4      lim

x l
 

2
 tsxd − 22      lim

x l
 

2
 hsxd − 0

		��  find the limits that exist. If the limit does not exist, explain why.

	 (a)	 lim
x l

 

2
 f f sxd 1 5tsxdg	 (b)	 lim

x l
 

2
 ftsxdg3

	 (c)	 lim
x l 2

 sf sxd 	 (d)	 lim
x l

 

2
 
3f sxd
tsxd

	 (e)	 lim
x l

 

2
 
tsxd
hsxd

	 (f )	 lim
x l

 

2
 
tsxdhsxd

f sxd

	2 .	� �The graphs of f  and t are given. Use them to evaluate each 
limit, if it exists. If the limit does not exist, explain why.

	 (a)	 lim
x l

 

2
 f f sxd 1 tsxdg	 (b)	 lim

x l
 

0
 f f sxd 2 tsxdg

	 (c)	 lim
x l

 

21
 f f sxdtsxdg	 (d)	 lim

x l
 

3
 

f sxd
tsxd

	 (e)	 lim
x l

 

2
 fx 2 f sxdg	 (f )	 f s21d 1 lim

x l
 

21
 tsxd

y=©

0 1

1

y=ƒ

0 1

1

y y

x x

�3–9 � Evaluate the limit and justify each step by indicating the 
appropriate Limit Law(s).

	3 .	 lim
x l

 

3
 s5x 3 2 3x 2 1 x 2 6d

any number lies between 21 and 1, we can write.

4 �	 21 < sin 
1

x
< 1

Any inequality remains true when multiplied by a positive number. We know that 
x 2 > 0 for all x and so, multiplying each side of the inequalities in (4) by x 2, we get

2x 2 < x 2 sin 
1

x
< x 2

as illustrated by Figure 8. We know that

lim
x l 0

 x 2 − 0        and        lim
x l 0

 s2x 2 d − 0

Taking f sxd − 2x 2, tsxd − x 2 sins1yxd, and hsxd − x 2 in the Squeeze Theorem, we 
obtain

	 lim
x l 0

 x 2 sin 
1

x
− 0	 ■

y=≈

y=_≈

0 x

y

FIGURE 8 �
y − x 2 sins1yxd
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	40.	� Prove that lim
x l

 

01
 sx  esins�yxd − 0.

41–46 � Find the limit, if it exists. If the limit does not exist, 
explain why.

	41.	 lim
x l 3

 s2x 1  | x 2 3 |d	 42.	 lim
x l

 

26
 
2x 1 12

| x 1 6 |

	43.	 lim
x l

 

0.52
 

2x 2 1

| 2x 3 2 x 2 | 	 44.	 lim
x l

 

22
 
2 2 | x |
2 1 x

	45.	 lim
x l

 

02
 S 1

x
2

1

| x | D	 46.	 lim
x l

 

01
 S 1

x
2

1

| x | D
	47.	� The signum (or sign) function, denoted by sgn, is defined by 

sgn x − H21

0

1

if  x , 0

if  x − 0

if  x . 0

	 (a)	� Sketch the graph of this function.
	 (b)	�� Find each of the following limits or explain why it does 

not exist.
	 (i)	 lim

x l
 

01
 sgn x	 (ii)	 lim

x l
 

02
 sgn x

	 (iii)	 lim
x l 0

 sgn x	 (iv)	 lim
x l 0

 | sgn x |
	48.	� Let tsxd − sgnssin xd .
	 (a)	�� Find each of the following limits or explain why it does 

not exist.
	 (i)	 lim

x l
 

01
 tsxd	 (ii)	 lim

x l02
  tsxd	 (iii)	 lim

x l
 

0
 tsxd

	 (iv)	 lim
x l

 

�1
 tsxd	 (v)	 lim

x l�2
  tsxd	 (vi)	 lim

x l
 

� 
 tsxd

	 (b)	�� For which values of a does lim x l a tsxd not exist?
	 (c)	 Sketch a graph of t.

	49.	� Let tsxd −
x 2 1 x 2 6

| x 2 2 | .

	 (a)	� Find
	 (i)	 lim

x l
 

21
 tsxd	 (ii)	 lim

x l
 

22
 tsxd

	 (b)	� Does limx l 2 tsxd exist?
	 (c)	� Sketch the graph of t.

	50.	� Let

f sxd − Hx 2 1 1

sx 2 2d2

if x , 1

if x > 1

	 (a)	� Find lim x l12 f sxd and lim x l11  f sxd.
	 (b)	� Does lim x l1 f sxd exist?
	 (c)	� Sketch the graph of f.

	51.	� Let

Bstd − H4 2 1
2 t

st 1 c 

if t , 2

if t > 2

		�  Find the value of c so that lim
t l 2

  Bstd exists.

	19.	 lim
x l

 

22
 

x 1 2

x 3 1 8
	20 .	 lim

t l 1
 
t 4 2 1

t 3 2 1

	21.	 lim
h l 0

 
s9 1 h 2 3

h
	22 .	 lim

ul 2
 
s4u 1 1 2 3

u 2 2

	23.	 lim
x l

 

3
 

1

x
2

1

3

x 2 3
	2 4.	 lim

h l
 

0
 
s3 1 hd21 2 321

h

	25.	 lim
t l 0

 
s1 1 t 2 s1 2 t 

t
	2 6.	 lim

t l
 

0
 S 1

t
2

1

t 2 1 tD
	27.	 lim

x l 16
 

4 2 sx 

16x 2 x 2 	2 8.	 lim
x l

 

2
 

x 2 2 4x 1 4

x 4 2 3x 2 2 4

	29.	 lim
t l 0

 S 1

ts1 1 t 
2

1

t
D	30 .	 lim

xl24
 
sx 2 1 9 2 5

x 1 4

	31.	 lim
h l 0

 
sx 1 hd3 2 x 3

h
	32 .	 lim

h l 0
 

1

sx 1 hd2 2
1

x 2

h

	33.	� (a)	 Estimate the value of

lim
x l

 

0
 

x

s1 1 3x 2 1

		�  by graphing the function f sxd − xyss1 1 3x 2 1d.
	 (b)	� Make a table of values of f sxd for x close to 0 and guess 

the value of the limit.
	 (c)	� Use the Limit Laws to prove that your guess is correct.

	34.	� �(a)	 Use a graph of

f sxd −
s3 1 x 2 s3 

x

	�� to estimate the value of limx l 0 f sxd to two decimal 
places.

	� (b)	� Use a table of values of f sxd to estimate the limit to 
four decimal places.

	� (c)	� Use the Limit Laws to find the exact value of the limit.

	35.	� �Use the Squeeze Theorem to show that 
limx l 0 sx 2 cos 20�xd − 0. Illustrate by graphing the 
functions f sxd − 2x 2, tsxd − x 2 cos 20�x, and hsxd − x 2 
on the same screen.

	36.	� �Use the Squeeze Theorem to show that

lim
x l

 

0
 sx 3 1 x 2  sin 

�

x
− 0

		��  Illustrate by graphing the functions f, t, and h (in the 
notation of the Squeeze Theorem) on the same screen.

	37.	� �If 4x 2 9 < f sxd < x 2 2 4x 1 7 for x > 0, find lim
x l 4

  f sxd.

	38.	� If 2x < tsxd < x 4 2 x 2 1 2 for all x, evaluate lim
x l 1

 tsxd.

	39.	� Prove that lim
x l

 

0
 x 4 cos 

2

x
− 0.

;

;

;

;
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The intuitive definition of a limit given in Section 2.2 is inadequate for some purposes 
because such phrases as “x is close to 2” and “ f sxd gets closer and closer to L” are vague. 
In order to be able to prove conclusively that

lim
x l 0

 Sx 3 1
cos 5x

10,000D − 0.0001        or        lim
x l 0

 
sin x

x
− 1

we must make the definition of a limit precise.

	59.	� �If lim
x l 1

 
f sxd 2 8

x 2 1
− 10, find lim

x l 1
 f sxd.

	60.	� If lim
x l 0

 
f sxd
x 2 − 5, find the following limits.

	 (a)	� lim
x l 0

 f sxd	 (b)	� lim
x l 0

 
f sxd

x

	61.	� If

f sxd − Hx 2

0

if x is rational

if x is irrational

prove that lim x l 0 f sxd − 0.

	62.	� �Show by means of an example that limx l a f f sxd 1 tsxdg may 
exist even though neither lim x l a f sxd nor limx l a tsxd exists.

	63.	� �Show by means of an example that limx l a f f sxd tsxdg may 
exist even though neither limx l a f sxd nor limx l a tsxd exists.

	64.	� Evaluate lim
x l 2

 
s6 2 x 2 2

s3 2 x 2 1
.

	65.	� Is there a number a such that

lim
x l

 

22
 
3x 2 1 ax 1 a 1 3

x 2 1 x 2 2

exists? If so, find the value of a and the value of the limit.

	66.	� �The figure shows a fixed circle C1 with equation 
sx 2 1d2 1 y 2 − 1 and a shrinking circle C2 with radius r 
and center the origin. P is the point s0, rd, Q is the upper 
point of intersection of the two circles, and R is the point of 
intersection of the line PQ and the x-axis. What happens to R 
as C2 shrinks, that is, as r l 01?

x

y

0

P Q
C™

C¡
R

	52.	� Let

tsxd −   

x

3

2 2 x 2 

x 2 3

  if  x , 1

  if  x − 1

  if  1 , x < 2

  if  x . 2

	 (a)	� Evaluate each of the following, if it exists.
	 (i)	� lim

x l
 

12
 tsxd	 (ii)	� lim

x l 1
 tsxd	 (iii)	� ts1d

	 (iv)	� lim
x l

 

22
 tsxd	 (v)	� lim

x l 21

 

tsxd	 (vi)	� lim
x l 2

 tsxd

	 (b)	� Sketch the graph of t.

	53.	� (a)	�� If the symbol v b  denotes the greatest integer function 
defined in Example 10, evaluate

	 (i)	 lim
x l

 

221
 v x b 	 (ii)	 lim

x l
 

22
 v x b 	 (iii)	 lim

x l
 

22.4
 v x b

	 (b)	� If n is an integer, evaluate
	 (i)	 lim

x l
 

n2
 v x b 	 (ii)	 lim

x l n1 
 v x b

	 (c)	� For what values of a does limx l a v x b  exist?

	54.	� �Let f sxd − vcos x b , 2� < x < �.

	 (a)	� Sketch the graph of f.
	 (b)	� Evaluate each limit, if it exists.

	 (i)	� lim
x l 0

 f sxd	 (ii)	� lim
x l

 

s�y2d2
 f sxd

	 (iii)	� lim
x l

 

s�y2d1 
f sxd	 (iv)	� lim

x l
 

�y2
 f sxd

	 (c)	� For what values of a does limx l a f sxd exist?

	55.	� �If f sxd − v x b 1 v2x b , show that limx l 2 f sxd exists but is 
not equal to f s2d.

	56.	� In the theory of relativity, the Lorentz contraction formula

L − L0 s1 2 v 2yc 2 

expresses the length L of an object as a function of its velocity 
v with respect to an observer, where L0 is the length of the 
object at rest and c is the speed of light. Find limv l

 

c2 L and 
interpret the result. Why is a left-hand limit necessary?

	57.	� If p is a polynomial, show that lim xl a psxd − psad.

	58.	� �If r is a rational function, use Exercise 57 to show that 
limx l a rsxd − rsad for every number a in the domain of r.
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To motivate the precise definition of a limit, let’s consider the function

f sxd − H2x 2 1

6

if  x ± 3

if  x − 3

Intuitively, it is clear that when x is close to 3 but x ± 3, then f sxd is close to 5, and so 
lim x l3 f sxd − 5.

To obtain more detailed information about how f sxd varies when x is close to 3, we 
ask the following question:

How close to 3 does x have to be so that f sxd differs from 5 by less than 0.l?

The distance from x to 3 is | x 2 3 | and the distance from f sxd to 5 is | f sxd 2 5 |, so our 
problem is to find a number � such that

| f sxd 2 5 | , 0.1        if        | x 2 3 | , �    but x ± 3

If | x 2 3 | . 0, then x ± 3, so an equivalent formulation of our problem is to find a 
number � such that

| f sxd 2 5 | , 0.1        if        0 , | x 2 3 | , �

Notice that if 0 , | x 2 3 | , s0.1dy2 − 0.05, then

| f sxd 2 5 | − | s2x 2 1d 2 5 | − | 2x 2 6 | − 2| x 2 3 | , 2s0.05d − 0.1

that is,	 | f sxd 2 5 | , 0.1        if        0 , | x 2 3 | , 0.05

Thus an answer to the problem is given by � − 0.05; that is, if x is within a distance of 
0.05 from 3, then f sxd will be within a distance of 0.1 from 5.

If we change the number 0.l in our problem to the smaller number 0.01, then by using 
the same method we find that f sxd will differ from 5 by less than 0.01 provided that x 
differs from 3 by less than (0.01)y2 − 0.005:

| f sxd 2 5 | , 0.01        if        0 , | x 2 3 | , 0.005

Similarly,

| f sxd 2 5 | , 0.001        if        0 , | x 2 3 | , 0.0005

The numbers 0.1, 0.01, and 0.001 that we have considered are error tolerances that we 
might allow. For 5 to be the precise limit of f sxd as x approaches 3, we must not only be 
able to bring the difference between f sxd and 5 below each of these three numbers; we 
must be able to bring it below any positive number. And, by the same reasoning, we can! 
If we write « (the Greek letter epsilon) for an arbitrary positive number, then we find as 
before that

1 �  	 | f sxd 2 5 | , «        if        0 , | x 2 3 | , � −
«

2

This is a precise way of saying that f sxd is close to 5 when x is close to 3 because (1) says 
that we can make the values of f sxd within an arbitrary distance « from 5 by restricting 
the values of x to be within a distance «y2 from 3 (but x ± 3).

It is traditional to use the Greek letter  
� (delta) in this situation.
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Note that (1) can be rewritten as follows:

if    3 2 � , x , 3 1 �    sx ± 3d        then        5 2 « , f sxd , 5 1 «

and this is illustrated in Figure 1. By taking the values of x (± 3) to lie in the interval 
s3 2 �, 3 1 �d we can make the values of f sxd lie in the interval s5 2 «, 5 1 «d.

Using (1) as a model, we give a precise definition of a limit.

2 �  Precise Definition of a Limit � Let f  be a function defined on some open 
interval that contains the number a, except possibly at a itself. Then we say that  
the limit of f sxd as x approaches a is L, and we write

lim
x l a

  f sxd − L

if for every number « . 0 there is a number � . 0 such that

if    0 , | x 2 a | , �        then        | f sxd 2 L | , «

Since | x 2 a | is the distance from x to a and | f sxd 2 L | is the distance from f sxd to 
L, and since « can be arbitrarily small, the definition of a limit can be expressed in words 
as follows:

lim x l a f sxd 5 L means that the distance between f sxd and L can be made arbitrarily small 
by requiring that the distance from x to a be sufficiently small (but not 0).

Alternatively,

lim x l a f sxd 5 L means that the values of f sxd can be made as close as we please to L  
by requiring x to be close enough to a (but not equal to a).

We can also reformulate Definition 2 in terms of intervals by observing that the 
inequality | x 2 a | , � is equivalent to 2� , x 2 a , �, which in turn can be writ-
ten as a 2 � , x , a 1 �. Also 0 , | x 2 a | is true if and only if x 2 a ± 0, that is, 
x ± a. Similarly, the inequality | f sxd 2 L | , « is equivalent to the pair of inequalities 
L 2 « , f sxd , L 1 «. Therefore, in terms of intervals, Definition 2 can be stated as 
follows:

lim x l a f sxd 5 L means that for every « . 0 (no matter how small « is) we can find 
� . 0 such that if x lies in the open interval sa 2 �, a 1 �d and x ± a, then f sxd lies in  
the open interval sL 2 «, L 1 «d.

We interpret this statement geometrically by representing a function by an arrow dia-
gram as in Figure 2, where f  maps a subset of R onto another subset of R.

x a f(a) ƒ

f

The definition of limit says that if any small interval sL 2 «, L 1 «d is given around L,  
then we can find an interval sa 2 �, a 1 �d around a such that f  maps all the points in 
sa 2 �, a 1 �d (except possibly a) into the interval sL 2 «, L 1 «d. (See Figure 3.)

0 x

y

5+∑
5

5-∑

3

3+∂3-∂

ƒ
is in
here

when x is in here
(x≠3)

FIGURE 1 �

FIGURE 2 �
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a-∂ a

ƒ

a+∂

x

f

L-∑ L L+∑

Another geometric interpretation of limits can be given in terms of the graph of a 
function. If « . 0 is given, then we draw the horizontal lines y 5 L 1 « and y 5 L 2 « 
and the graph of f. (See Figure 4.) If lim x l a f sxd 5 L, then we can find a number � . 0 
such that if we restrict x to lie in the interval sa 2 �, a 1 �d and take x ± a, then the 
curve y 5 f sxd lies between the lines y 5 L 2 « and y 5 L 1 «. (See Figure 5.) You can 
see that if such a � has been found, then any smaller � will also work.

It is important to realize that the process illustrated in Figures 4 and 5 must work 
for every positive number «, no matter how small it is chosen. Figure 6 shows that if a 
smaller « is chosen, then a smaller � may be required.

0 x

y

a

y=L+∑

y=L-∑

a-∂ a+∂

∑

∑
L

when x is in here
(x≠ a)

ƒ
is in
here

0 x

y

a

y=L+∑

y=L-∑

∑

∑
L

y=ƒ

L+∑

L-∑

0 x

y

a

y=L+∑

y=L-∑

a-∂ a+∂

Example �1�  Since f sxd − x 3 2 5x 1 6 is a polynomial, we know from the Direct 
Substitution Property that lim x l1 f sxd − f s1d − 13 2 5s1d 1 6 − 2. Use a graph to 
find a number � such that if x is within � of 1, then y is within 0.2 of 2, that is,

if        | x 2 1 | , �        then        | sx3 2 5x 1 6d 2 2 | , 0.2

In other words, find a number � that corresponds to « 5 0.2 in the definition of a limit 
for the function f sxd 5 x3 2 5x 1 6 with a 5 1 and L 5 2.

SOLUTION � A graph of f  is shown in Figure 7; we are interested in the region near the 
point s1, 2d. Notice that we can rewrite the inequality

 | sx3 2 5x 1 6d 2 2 | , 0.2

as	 20.2 , sx 3 2 5x 1 6d 2 2 , 0.2

or equivalently	 1.8 , x3 2 5x 1 6 , 2.2

So we need to determine the values of x for which the curve y 5 x3 2 5x 1 6 lies 
between the horizontal lines y 5 1.8 and y 5 2.2. Therefore we graph the curves 
y 5 x3 2 5x 1 6, y 5 1.8, and y 5 2.2 near the point s1, 2d in Figure 8. Then we 

FIGURE 4  FIGURE 5 FIGURE 6

15

_5

_3 3

FIGURE 7 �

y=˛-5x+6

y=2.2

y=1.8

(1, 2)

0.8 1.2

2.3

1.7

FIGURE 8 �

FIGURE 3 �
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108	 Chapter 2    Limits and Derivatives

use the cursor to estimate that the x-coordinate of the point of intersection of the line 
y 5 2.2 and the curve y 5 x3 2 5x 1 6 is about 0.911. Similarly, y 5 x3 2 5x 1 6 
intersects the line y 5 1.8 when x < 1.124. So, rounding toward 1 to be safe, we can 
say that

if        0.92 , x , 1.12        then        1.8 , x3 2 5x 1 6 , 2.2

This interval s0.92, 1.12d is not symmetric about x 5 1. The distance from x 5 1 to the 
left endpoint is 1 2 0.92 5 0.08 and the distance to the right endpoint is 0.12. We can 
choose � to be the smaller of these numbers, that is, � 5 0.08. Then we can rewrite our 
inequalities in terms of distances as follows:

if        | x 2 1 | , 0.08        then        | sx3 2 5x 1 6d 2 2 | , 0.2

This just says that by keeping x within 0.08 of 1, we are able to keep f sxd within 0.2  
of 2.

Although we chose � 5 0.08, any smaller positive value of � would also have 
worked.	 ■

The graphical procedure in Example 1 gives an illustration of the definition for 
« 5 0.2, but it does not prove that the limit is equal to 2. A proof has to provide a � for 
every «.

In proving limit statements it may be helpful to think of the definition of limit as a 
challenge. First it challenges you with a number «. Then you must be able to produce a 
suitable �. You have to be able to do this for every « . 0, not just a particular «.

Imagine a contest between two people, A and B, and imagine yourself to be B. Person 
A stipulates that the fixed number L should be approximated by the values of f sxd to within 
a degree of accuracy « (say, 0.01). Person B then responds by finding a number � such 
that if 0 , | x 2 a | , �, then | f sxd 2 L | , «. Then A may become more exacting and 
challenge B with a smaller value of « (say, 0.0001). Again B has to respond by finding a 
corresponding �. Usually the smaller the value of «, the smaller the corresponding value 
of � must be. If B always wins, no matter how small A makes «, then lim x l a f sxd 5 L.

Example �2�  Prove that lim
x l3

s4x 2 5d − 7.

SOLUTION �
1. � Preliminary analysis of the problem (guessing a value for �).  Let « be a given 

positive number. We want to find a number � such that

if        0 , | x 2 3 | , �        then        | s4x 2 5d 2 7 | , «

But | s4x 2 5d 2 7 | 5 | 4x 2 12 | 5 | 4sx 2 3d | 5 4| x 2 3 |. Therefore we want �  
such that

if        0 , | x 2 3 | , �        then        4| x 2 3 | , «

that is,	 if        0 , | x 2 3 | , �        then        | x 2 3 | ,
«

4

This suggests that we should choose � 5 «y4.

2.  Proof (showing that this � works).  Given « . 0, choose � 5 «y4. If 
0 , | x 2 3 | , �, then

| s4x 2 5d 2 7 | − | 4x 2 12 | − 4| x 2 3 | , 4� − 4S «

4D − «

TEC � In Module 2.4/2.6 you can 
explore the precise definition of a limit 
both graphically and numerically.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



	 Section  2.4    The Precise Definition of a Limit	 109

Thus
if        0 , | x 2 3 | , �        then        | s4x 2 5d 2 7 | , «

Therefore, by the definition of a limit,

lim
x l3

 s4x 2 5d − 7 

This example is illustrated by Figure 9.

figure 9�

y

0 x

7+∑

7

7-∑

3-∂ 3+∂

3

y=4x-5

	 ■

Note that in the solution of Example 2 there were two stages—guessing and proving.  
We made a preliminary analysis that enabled us to guess a value for �. But then in the 
second stage we had to go back and prove in a careful, logical fashion that we had made 
a correct guess. This procedure is typical of much of mathematics. Sometimes it is neces-
sary to first make an intelligent guess about the answer to a problem and then prove that 
the guess is correct.

The intuitive definitions of one-sided limits that were given in Section 2.2 can be pre
cisely reformulated as follows.

3 �  Definition of Left-Hand Limit �

lim
x l

 

a2
 f sxd − L 

��if for every number « . 0 there is a number � . 0 such that

��if        a 2 � , x , a        then        | f sxd 2 L | , «

4 �  Definition of Right-Hand Limit �

 lim
x la1

 f sxd − L 

��if for every number « . 0 there is a number � . 0 such that

��if        a , x , a 1 �        then        | f sxd 2 L | , «

Notice that Definition 3 is the same as Definition 2 except that x is restricted to lie in 
the left half sa 2 �, ad of the interval sa 2 �, a 1 �d. In Definition 4, x is restricted to lie 
in the right half sa, a 1 �d of the interval sa 2 �, a 1 �d.

Cauchy and Limits
After the invention of calculus in the 
17th century, there followed a period 
of free development of the subject in 
the 18th century. Mathematicians like 
the Bernoulli brothers and Euler were 
eager to exploit the power of calculus 
and boldly explored the consequences 
of this new and wonderful mathemati-
cal theory without worrying too much 
about whether their proofs were com-
pletely correct.
    The 19th century, by contrast, was the 
Age of Rigor in mathematics. There was 
a movement to go back to the founda-
tions of the subject—to provide careful 
definitions and rigorous proofs. At the 
forefront of this movement was the 
French mathematician Augustin-Louis 
Cauchy (1789–1857), who started out as 
a military engineer before becoming a 
mathematics professor in Paris. Cauchy 
took Newton’s idea of a limit, which was 
kept alive in the 18th century by the 
French mathematician Jean d’Alembert, 
and made it more precise. His definition 
of a limit reads as follows: “When the 
successive values attributed to a vari-
able approach indefinitely a fixed value 
so as to end by differing from it by as 
little as one wishes, this last is called the 
limit of all the others.” But when Cauchy 
used this definition in examples and 
proofs, he often employed delta-epsilon 
inequalities similar to the ones in this 
section. A typical Cauchy proof starts 
with: “Designate by � and « two very 
small numbers; . . .” He used « because 
of the correspondence between epsi-
lon and the French word erreur and � 
because delta corresponds to différence. 
Later, the German mathematician Karl 
Weierstrass (1815–1897) stated the 
definition of a limit exactly as in our 
Definition 2.
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Example �3�  Use Definition 4 to prove that lim
x l 01

 sx − 0.

SOLUTION �
1.  Guessing a value for �.  Let « be a given positive number. Here a 5 0 and L 5 0, 

so we want to find a number � such that

	 if        0 , x , �        then         | sx 2 0 | , «

that is,	 if        0 , x , �        then        sx , «

or, squaring both sides of the inequality sx , «, we get

if        0 , x , �        then        x , «2

This suggests that we should choose � 5 «2.

2.  Showing that this � works.  Given « . 0, let � 5 «2. If 0 , x , �, then

sx , s� 5 s« 2 5 «

so	 | sx 2 0 | , «	

According to Definition 4, this shows that limx l 01 sx − 0.	 ■

Example �4�  Prove that lim
x l 3

 x2 5 9.

SOLUTION �
1.  Guessing a value for �.  Let « . 0 be given. We have to find a number � . 0  

such that

if        0 , | x 2 3 | , �        then        | x2 2 9 | , «

To connect | x2 2 9 | with | x 2 3 | we write | x2 2 9 | 5 | sx 1 3dsx 2 3d |. Then  
we want

if        0 , | x 2 3 | , �        then        | x 1 3 | | x 2 3 | , «

Notice that if we can find a positive constant C such that | x 1 3 | , C, then 

| x 1 3 | | x 2 3 | , C| x 2 3 |
and we can make C| x 2 3 | , « by taking | x 2 3 | , «yC, so we could choose 
� − «yC.

We can find such a number C if we restrict x to lie in some interval centered at 3. 
In fact, since we are interested only in values of x that are close to 3, it is reasonable 
to assume that x is within a distance l from 3, that is, | x 2 3 | , 1. Then 2 , x , 4, 
so 5 , x 1 3 , 7. Thus we have | x 1 3 | , 7, and so C 5 7 is a suitable choice for 
the constant.

But now there are two restrictions on | x 2 3 |, namely

| x 2 3 | , 1        and        | x 2 3 | ,
«

C
5

«

7

To make sure that both of these inequalities are satisfied, we take � to be the smaller of 
the two numbers 1 and «y7. The notation for this is � 5 minh1, «y7j.
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2.  Showing that this � works.  Given « . 0, let � 5 minh1, «y7j. If
0 , | x 2 3 | , �, then | x 2 3 | , 1  ?  2 , x , 4  ?  | x 1 3 | , 7 (as in part l).
We also have | x 2 3 | , «y7, so

| x 2 2 9 | − | x 1 3 | | x 2 3 | , 7 ?
«

7
− «

This shows that lim x l3 x2 5 9.	 ■

As Example 4 shows, it is not always easy to prove that limit statements are true  
using the «, � definition. In fact, if we had been given a more complicated function such 
as f sxd 5 s6x2 2 8x 1 9dys2x2 2 1d, a proof would require a great deal of ingenuity. 
Fortunately this is unnecessary because the Limit Laws stated in Section 2.3 can be 
proved using Definition 2, and then the limits of complicated functions can be found 
rigorously from the Limit Laws without resorting to the definition directly.

For instance, we prove the Sum Law: If lim x l a f sxd 5 L and lim x l a tsxd 5 M both 
exist, then

lim
x l a

 f f sxd 1 tsxdg − L 1 M

The remaining laws are proved in the exercises and in Appendix F.

Proof of the Sum Law � Let « . 0 be given. We must find � . 0 such that

if        0 , | x 2 a | , �        then        | f sxd 1 tsxd 2 sL 1 Md | , «

Using the Triangle Inequality we can write

5 �	  | f sxd 1 tsxd 2 sL 1 Md | 5 | s f sxd 2 Ld 1 stsxd 2 Md |
 < | f sxd 2 L | 1 | tsxd 2 M |

We make | f sxd 1 tsxd 2 sL 1 Md | less than « by making each of the terms | f sxd 2 L | 
and | tsxd 2 M | less than «y2.

Since «y2 . 0 and lim x l a f sxd 5 L, there exists a number �1 . 0 such that

if        0 , | x 2 a | , �1        then        | f sxd 2 L | ,
«

2

Similarly, since limx l a tsxd − M, there exists a number � 2 . 0 such that

if        0 , | x 2 a | , � 2        then        | tsxd 2 M | ,
«

2

Let � − minh�1, �2j, the smaller of the numbers �1 and � 2. Notice that

if        0 , | x 2 a | , �    then    0 , | x 2 a | , �1    and    0 , | x 2 a | , � 2

and so	 | f sxd 2 L | ,
«

2
        and        | tsxd 2 M | ,

«

2
Therefore, by (5),

 | f sxd 1 tsxd 2 sL 1 Md | < | f sxd 2 L | 1 | tsxd 2 M |
 ,

«

2
1

«

2
5 «

Triangle Inequality:

| a 1 b | < | a | 1 | b |
(See Appendix A).
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To summarize,

if        0 , | x 2 a | , �        then        | f sxd 1 tsxd 2 sL 1 Md | , «

Thus, by the definition of a limit,

	 lim
x l a

 f f sxd 1 tsxdg − L 1 M 	 ■

Infinite Limits
Infinite limits can also be defined in a precise way. The following is a precise version of 
Definition 2.2.4.

6 �  Precise Definition of an Infinite Limit � Let f  be a function defined on some 
open interval that contains the number a, except possibly at a itself. Then

lim
x l a

 f sxd − `

��means that for every positive number M there is a positive number � such that

if        0 , | x 2 a | , �        then        f sxd . M

This says that the values of f sxd can be made arbitrarily large (larger than any given 
number M) by requiring x to be close enough to a (within a distance �, where � depends 
on M, but with x ± a). A geometric illustration is shown in Figure 10.

Given any horizontal line y 5 M, we can find a number � . 0 such that if we restrict 
x to lie in the interval sa 2 �, a 1 �d but x ± a, then the curve y 5 f sxd lies above the 
line y − M. You can see that if a larger M is chosen, then a smaller � may be required.

Example �5�  Use Definition 6 to prove that lim
x l 0

 
1

x 2 − `.

SOLUTION � Let M be a given positive number. We want to find a number � such that

if        0 , | x | , �        then        1yx2 . M

But	
1

x 2 . M    &?    x 2 ,
1

M
    &?    sx 2 

, Î 1

M
     &?    | x | ,

1

sM  

So if we choose � − 1ysM  and 0 , | x | , � − 1ysM , then 1yx 2 . M. This shows 
that 1yx2 l ` as x l 0.	 n

Similarly, the following is a precise version of Definition 2.2.5. It is illustrated by 
Figure 11.

7 �  Definition � Let f  be a function defined on some open interval that contains 
the number a, except possibly at a itself. Then

lim
x l a

 f sxd − 2`

��means that for every negative number N there is a positive number � such that

if        0 , | x 2 a | , �        then        f sxd , N

figure 10
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FIGURE 11 �
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	 1.	�� Use the given graph of f  to find a number � such that

if        | x 2 1 | , �        then        | f sxd 2 1 | , 0.2

x

y

0

1.2
1

0.8

1 1.10.7

	 2.	� �Use the given graph of f  to find a number � such that

if        0 , | x 2 3 | , �        then        | f sxd 2 2 | , 0.5

x

y

0

2.5

2

1.5

3 3.82.6

	 3.	�� Use the given graph of f sxd − sx  to find a number � such 
that

if        | x 2 4 | , �        then        | sx 2 2 | , 0.4

??

y=œ„x

x

y

40

2
2.4

1.6

	 4.	�� Use the given graph of f sxd 5 x 2 to find a number � such that

if        | x 2 1 | , �        then        | x 2 2 1 | , 1
2

x

y

? 1 ?0

1.5

1

0.5

y=≈

	 5.	� �Use a graph to find a number � such that

if        Z x 2
�

4 Z , �        then        | tan x 2 1| , 0.2

	 6.	� �Use a graph to find a number � such that

if        | x 2 1| , �        then        Z 2x

x 2 1 4
2 0.4 Z , 0.1

	 7.	� �For the limit

lim
x l 2

 sx 3 2 3x 1 4d 5 6

�illustrate Definition 2 by finding values of � that corre-
spond to « 5 0.2 and « 5 0.1.

	 8.	� �For the limit

lim
x l 0

 
e 2x 2 1

x
5 2

�illustrate Definition 2 by finding values of � that corre-
spond to « 5 0.5 and « 5 0.1.

	 9.	� �(a)	 Use a graph to find a number � such that

if      2 , x , 2 1 �      then    
1

lnsx 2 1d
. 100

	 (b)	 What limit does part (a) suggest is true?

	10.	� �Given that lim x l �  csc2 x − `, illustrate Definition 6 by  
finding values of � that correspond to (a) M − 500 and  
(b) M − 1000.

	11.	�� A machinist is required to manufacture a circular metal 
disk with area 1000 cm2. 

	 (a)	� What radius produces such a disk?
	 (b)	� If the machinist is allowed an error tolerance of

65 cm2 in the area of the disk, how close to the ideal 
radius in part (a) must the machinist control the radius?

	 (c)	� In terms of the «, � definition of limx l a f sxd 5 L, 
what is x? What is f sxd? What is a? What is L? What 
value of « is given? What is the corresponding value  
of �?

	12.	� �A crystal growth furnace is used in research to determine 
how best to manufacture crystals used in electronic compo-
nents for the space shuttle. For proper growth of the crystal, 
the temperature must be controlled accurately by adjusting 
the input power. Suppose the relationship is given by 

T swd − 0.1w 2 1 2.155w 1 20

where T is the temperature in degrees Celsius and w is the 
power input in watts.

	 (a)	� How much power is needed to maintain the tempera-
ture at 200°C?

;

;

;

;

;

;

;

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



114	 Chapter 2    Limits and Derivatives

	 (b)	� If the temperature is allowed to vary from 200°C by  
up to 61°C, what range of wattage is allowed for the  
input power?

	 (c)	� In terms of the «, � definition of limx l a f sxd 5 L, what  
is x? What is f sxd? What is a? What is L? What value of  
« is given? What is the corresponding value of �?

	13.	� (a)	� Find a number � such that if | x 2 2| , �, then 

| 4x 2 8| , «, where « 5 0.1.
	 (b)	 Repeat part (a) with « 5 0.01.

	14.	�� Given that limx l 2 s5x 2 7d 5 3, illustrate Definition 2 by 
finding values of � that correspond to « 5 0.1, « 5 0.05, and 
« 5 0.01.

15–18 � Prove the statement using the «, � definition of a limit and 
illustrate with a diagram like Figure 9.

	15.	 lim
x l 3

  s1 1 1
3 xd − 2	1 6.	 lim

x l
 

4
 s2x 2 5d 5 3

	17.	 lim
xl23

 s1 2 4xd − 13	1 8.	 lim
xl22

 s3x 1 5d − 21

19–32 � Prove the statement using the «, � definition of a limit.

	19.	 lim
x l

 

1
 
2 1 4x

3
5 2	2 0.	 lim

x l 10
  s3 2 4

5 xd − 25

	21.	 lim
xl4

 
x 2 2 2x 2 8

x 2 4
− 6	22 .	 lim

x l21.5
 
9 2 4x 2

3 1 2x
− 6

	23.	 lim
x l a

 x − a	24 .	 lim
x l a

 c − c

	25.	 lim
x l 0

 x 2 − 0	2 6.	 lim
x l 0

 x 3 − 0

	27.	 lim
x l 0

 | x | − 0	2 8.	 lim
xl

 

261
 s8 6 1 x − 0

	29.	 lim
x l 2

 sx 2 2 4x 1 5d 5 1	3 0.	 lim
x l 2

 sx 2 1 2x 2 7d 5 1

	31.	 lim
x l

 

22
 sx 2 2 1d 5 3	32 .	 lim

x l 2
 x 3 5 8

	33.	�� Verify that another possible choice of � for showing that 
lim x l3 x 2 5 9 in Example 4 is � 5 min h2, «y8j.

	34.	�� Verify, by a geometric argument, that the largest possible choice 
of � for showing that lim x l3 x 2 − 9 is � − s9 1 « 2 3.

	35.	� �(a)	� For the limit limx l 1 sx3 1 x 1 1d 5 3, use a graph to 
find a value of � that corresponds to « 5 0.4.

	 (b)	� By using a computer algebra system to solve the cubic 
equation x3 1 x 1 1 5 3 1 «, find the largest possible 
value of � that works for any given « . 0.

	 (c)	� Put « 5 0.4 in your answer to part (b) and compare 
with your answer to part (a).

	36.	� Prove that lim
x l2

 
1

x
−

1

2
.

	37.	�� Prove that lim
x l a

 sx − sa  if a . 0.

FHint: Use | sx 2 sa | − | x 2 a |
sx  1 sa 

 . F
	38.	�� If H is the Heaviside function defined in Example 2.2.6, 

prove, using Definition 2, that lim t l 0 Hstd does not exist. 
[Hint: Use an indirect proof as follows. Suppose that the 
limit is L. Take « 5 1

2 in the definition of a limit and try to 
arrive at a contradiction.]

	39.	� If the function f  is defined by

f sxd − H0

1

if  x is rational

if  x is irrational

prove that lim x l 0 f sxd does not exist.

	40.	�� By comparing Definitions 2, 3, and 4, prove Theorem 2.3.1.

	41.	� How close to 23 do we have to take x so that

1

sx 1 3d4 . 10,000

	42.	� Prove, using Definition 6, that lim
x l23

 
1

sx 1 3d4 − `.

	43.	� Prove that lim
x l 01

 ln x − 2`.

	44.	�� Suppose that lim x l a f sxd 5 ` and lim x l a tsxd 5 c, where 
c is a real number. Prove each statement.

	 (a)	 lim
x l a

 f f sxd 1 tsxdg − `

	 (b)	 lim
x l a

 f f sxdtsxdg 5 `    if  c . 0

	 (c)	 lim
xl a

 f f sxdtsxdg 5 2`    if  c , 0

CAS

We noticed in Section 2.3 that the limit of a function as x approaches a can often be 
found simply by calculating the value of the function at a. Functions with this property 
are called continuous at a. We will see that the mathematical definition of continuity cor-
responds closely with the meaning of the word continuity in everyday language. (A con-
tinuous process is one that takes place gradually, without interruption or abrupt change.)

1 �  Definition � A function f  is continuous at a number a if

lim
xl a

 f sxd − f sad
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Notice that Definition l implicitly requires three things if f  is continuous at a:

1.	� f sad is defined (that is, a is in the domain of f )

2.	� lim
x l

 

a
 f sxd exists

3.	� lim
x l

 

a
 f sxd 5 f sad

The definition says that f  is continuous at a if f sxd approaches f sad as x approaches 
a. Thus a continuous function f  has the property that a small change in x produces only 
a small change in f sxd. In fact, the change in f sxd can be kept as small as we please by 
keeping the change in x sufficiently small.

If f  is defined near a (in other words, f  is defined on an open interval containing a, 
except perhaps at a), we say that f  is discontinuous at a (or f  has a discontinuity at a)  
if f  is not continuous at a.

Physical phenomena are usually continuous. For instance, the displacement or veloc-
ity of a vehicle varies continuously with time, as does a person’s height. But disconti-
nuities do occur in such situations as electric currents. [See Example 2.2.6, where the 
Heaviside function is discontinuous at 0 because lim t l 0 Hstd does not exist.]

Geometrically, you can think of a function that is continuous at every number in an 
interval as a function whose graph has no break in it: the graph can be drawn without 
removing your pen from the paper.

Example �1�  Figure 2 shows the graph of a function f. At which numbers is f  discon-
tinuous? Why?

SOLUTION � It looks as if there is a discontinuity when a − 1 because the graph has a 
break there. The official reason that f  is discontinuous at 1 is that f s1d is not defined.

The graph also has a break when a 5 3, but the reason for the discontinuity is dif-
ferent. Here, f s3d is defined, but lim x l3 f sxd does not exist (because the left and right 
limits are different). So f  is discontinuous at 3.

What about a 5 5? Here, f s5d is defined and lim x l5 f sxd exists (because the left 
and right limits are the same). But

lim
x l 5

 f sxd ± f s5d

So f  is discontinuous at 5.	 n

Now let’s see how to detect discontinuities when a function is defined by a formula.

Example �2�  Where are each of the following functions discontinuous?

(a)  f sxd 5
x2 2 x 2 2

x 2 2
	 (b)  f sxd − H 1

x 2
if  x ± 0

1 if  x − 0

(c)  f sxd − H x 2 2 x 2 2

x 2 2
if  x ± 2

1 if  x − 2

	 (d)  f sxd − v x b

SOLUTION 
(a)  Notice that f s2d is not defined, so f  is discontinuous at 2. Later we’ll see why f  is 
continuous at all other numbers.

figure 2

y

0 x1 2 3 4 5

As illustrated in Figure 1, if f  is con-
tinuous, then the points sx, f sxdd on  
the graph of f  approach the point 
sa, f sadd on the graph. So there is no 
gap in the curve.

figure 1

f(a)

x0

y

a

y=ƒ

ƒ
approaches

f(a).

As x approaches a,
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(b)  Here f s0d 5 1 is defined but

lim
x l 0

 f sxd − lim
x l 0

 
1

x 2

does not exist. (See Example 2.2.8.) So f  is discontinuous at 0.

(c)  Here f s2d 5 1 is defined and

lim
x l2

 f sxd − lim
x l2

x 2 2 x 2 2

x 2 2
− lim

x l2
 
sx 2 2dsx 1 1d

x 2 2
− lim

x l2
 sx 1 1d − 3

exists. But 

lim
x l2

 f sxd ± f s2d

so f  is not continuous at 2.

(d)  The greatest integer function f sxd − v x b  has discontinuities at all of the inte- 
gers because lim x ln v x b  does not exist if n is an integer. (See Example 2.3.10 and 
Exercise 2.3.53.)	 n

Figure 3 shows the graphs of the functions in Example 2. In each case the graph can’t be 
drawn without lifting the pen from the paper because a hole or break or jump occurs in the 
graph. The kind of discontinuity illustrated in parts (a) and (c) is called removable because  
we could remove the discontinuity by redefining f  at just the single number 2. [The 
function tsxd − x 1 1 is continuous.] The discontinuity in part (b) is called an infinite 
discontinuity. The discontinuities in part (d) are called jump discontinuities because 
the function “jumps” from one value to another.

1 2 3

1

x

y

0

(d) ƒ=[x]

1 2

1

x

y

0

(c) ƒ= if  x≠2

1 if x=2

≈-x-2
x-2(b) ƒ=

if  x≠0

1 if 

1

x=0

1

x

y

01 2 x

y

0

1

(a) ƒ=≈-x-2
x-2 ≈

2 �  Definition � A function f  is continuous from the right at a number a if

lim
x l

 

a1
 f sxd − f sad

and f  is continuous from the left at a if

lim
x l

 

a2
 f sxd − f sad

Example �3�  At each integer n, the function f sxd − v x b  [see Figure 3(d)] is continu-
ous from the right but discontinuous from the left because

lim
x l

 

n1
 f sxd − lim

x l
 

n1
 v xb − n − f snd

FIGURE 3 �  
Graphs of the functions in Example 2
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but	 lim
x l

 

n2
 f sxd − lim

x l
 

n2
v x b − n 2 1 ± f snd	 n

3 �  Definition � ��A function f  is continuous on an interval if it is continuous at 
every number in the interval. (If f  is defined only on one side of an endpoint of the 
interval, we understand continuous at the endpoint to mean continuous from the 
right or continuous from the left.)

Example �4�  Show that the function f sxd − 1 2 s1 2 x 2  is continuous on the  
interval f21, 1g.

SOLUTION � If 21 , a , 1, then using the Limit Laws, we have

	  lim
x l a

 f sxd − lim
x l a

 (1 2 s1 2 x 2 )

	  − 1 2 lim
x l a

 s1 2 x 2 	 (by Laws 2 and 7)

	  − 1 2 s  lim 
x l a

s1 2 x 2 d      (by 11)

	  − 1 2 s1 2 a 2 	 (by 2, 7, and 9)

	  − f sad

Thus, by Definition l, f  is continuous at a if 21 , a , 1. Similar calculations show that

lim
x l

 

211
 f sxd − 1 − f s21d        and        lim

x l
 

12
 f sxd − 1 − f s1d

so f  is continuous from the right at 21 and continuous from the left at 1. Therefore, 
according to Definition 3, f  is continuous on f21, 1g.

The graph of f  is sketched in Figure 4. It is the lower half of the circle

	 x 2 1 sy 2 1d2 − 1	 n

Instead of always using Definitions 1, 2, and 3 to verify the continuity of a function as 
we did in Example 4, it is often convenient to use the next theorem, which shows how to 
build up complicated continuous functions from simple ones.

4 �  Theorem � If f  and t are continuous at a and c is a constant, then the following 
functions are also continuous at a:

1.  f 1 t	 2.  f 2 t	 3.  cf

4.  ft		  5. �
f

t     if tsad ± 0

Proof � Each of the five parts of this theorem follows from the corresponding Limit 
Law in Section 2.3. For instance, we give the proof of part 1. Since f  and t are continu-
ous at a, we have

lim
x l a

 f sxd − f sad        and        lim
x l a

 tsxd − tsad

1-1

1

x

y

0

ƒ=1-œ„„„„„1-≈

FIGURE 4 �
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Therefore

	  lim
x l a

 s f 1 tdsxd − lim
x l a

 f f sxd 1 tsxdg

	  − lim
x l a

 f sxd 1 lim
x l a

 tsxd        (by Law 1)

	  − f sad 1 tsad

	  − s f 1 tdsad

This shows that f 1 t is continuous at a.	 n

It follows from Theorem 4 and Definition 3 that if f  and t are continuous on an inter-
val, then so are the functions f 1 t, f 2 t, cf, ft, and (if t is never 0) fyt. The following 
theorem was stated in Section 2.3 as the Direct Substitution Property.

5 �  Theorem �  
(a)	� Any polynomial is continuous everywhere; that is, it is continuous on 

R − s2`, `d.
��(b)	� Any rational function is continuous wherever it is defined; that is, it is contin-

uous on its domain.

Proof
(a)  A polynomial is a function of the form

Psxd − cn xn 1 cn21xn21 1 ∙ ∙ ∙ 1 c1x 1 c0 

where c0, c1, . . . , cn are constants. We know that

lim
x l a

 c0 − c0        (by Law 7)

and	 lim
x l a

 xm − am        m − 1, 2, . . . , n        (by 9)

This equation is precisely the statement that the function f sxd − xm is a continuous 
function. Thus, by part 3 of Theorem 4, the function tsxd − cxm is continuous. Since P 
is a sum of functions of this form and a constant function, it follows from part 1 of  
Theorem 4 that P is continuous.

(b)  A rational function is a function of the form

f sxd −
Psxd
Qsxd

where P and Q are polynomials. The domain of f  is D − hx [ R | Qsxd ± 0j. We 
know from part (a) that P and Q are continuous everywhere. Thus, by part 5 of Theo-
rem 4, f  is continuous at every number in D.	 n

As an illustration of Theorem 5, observe that the volume of a sphere varies con-
tinuously with its radius because the formula Vsrd − 4

3�r 3 shows that V  is a polyno-
mial function of r. Likewise, if a ball is thrown vertically into the air with a velocity 
of 50 ftys, then the height of the ball in feet t seconds later is given by the formula  
h − 50t 2 16t 2. Again this is a polynomial function, so the height is a continuous func-
tion of the elapsed time, as we might expect.
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