PERIODICITY ## **PERIODICITY** - the trends in the behavior of the elements. - -arises from the periodic patterns in the electron configuration of the element. **Periodic Laws**: "When the elements are arranged in order of increasing atomic masses, certain sets of properties recur periodically." # (Dmitri Mendeleev and Lothar Meyer, 1869) "The properties of the elements are periodic functions of their atomic numbers." # (Henrey Mooseley, 1913) *The rearrangement of the periodic table was based on the X-ray spectra of elements obtained by Mooseley. Table 8.1 Mendeleev's Predicted Properties of Germanium ("eka Silicon" and Its Actual Properties | Property | Predicted Properties of eka Silicon(E) | Actual Properties of Germanium (Ge) | |----------------------------------|---|--| | atomic mass | 72amu | 72.61amu | | appearance | gray metal | gray metal | | density | 5.5g/cm ³ | 5.32g/cm ³ | | molar volume | 13cm ³ /mol | 13.65cm ³ /mol | | specific heat capacity | 0.31J/g*K | 0.32J/g*K | | oxide formula | EO ₂ | GeO ₂ | | oxide density | 4.7g/cm ³ | 4.23g/cm ³ | | sulfide formula | ES ₂ ; insoluble in H ₂ O; | GeS ₂ ; insoluble in H ₂ O; | | and solubility | soluble in aqueous (NH ₄) ₂ S | soluble in aqueous (NH ₄) ₂ S | | chloride formula (boiling point) | ECI ₄ ; (<100°C) | GeCl ₄ ; (84°C) | | chloride density | 1.9g/cm ³ | 1.844g/cm ³ | | element preparation | reduction of K ₂ EF ₆ with sodium | reduction of K ₂ GeF ₆ with sodium | # **The Periodic Table** - an arrangement of the atoms in increasing order of their atomic numbers that collects atoms with similar properties in vertical columns. FAMILY OR GROUP – elements in a column PERIOD/SERIES – elements in a row. # A. Based on Properties - 1. **Metals** have lustrous, silvery, appearance - good conductors of heat and electricity, malleable and ductile - high melting point, lose electrons - elements in the left side and in the center of the periodic table. # 2. Nonmetals - nonconductors, nonmalleable, nonductile and have no metallic luster - elements on the right side of the periodic table. | | | 1A | | | | | — | Încr | easin | g me | dallid | cha | racle | r | | | | | | |----------|---|-----------------|--------------------|-----------|------------------|-----------|------------------|-----------------|------------------|-------------------|-----------------|-----------------|------------------|-----------------|-----------------|-----------------|---------------------|---------------------|------------------| | | | 1 | | | | | | | | | | | | | | | | | 8A
18 | | ofer | | H | 2A
2 | | | | | | | | | | | 3A
13 | 4A
14 | 5A
15 | 6A
16 | 7A
17 | ?
He | | characte | | 3
Li
11 | 4
Be | an | 413 | 5D | 411 | 711 | | 8B | | 211 | 200 | 5
B
13 | ė
ė | 7
N
15 | 8
9
16 | 9
F
17 | 10
Ne
18 | | JIII C | | Na | Mg | 3B
3 | 4B
4 | 5B
5 | 6B
6 | 7В
7 | /8 | 9 | 10 | 1B
11 | 2B
12 | Àİ | Si | P | Ŝ | Ċ | År | | metall | | 19
K | 20
Ca | 21
8.0 | 22
Ti | 23
V | 24
C# | 25
Mn | 26
Fe | 2;/
Ca | 28
Ni | 29
Cu | 30
Zn | 31
Ca | 32
Ce | 33
As | 34
Se | 35
Br | 36
K r | | ging | | 37
Rb | 38
51 | 39
¥ | 40
2 1 | 41
Nb | 42
Mo | 43
1 c | 44
R ü | 45
Rh | 46
1'd | 47
Ag | 48
E d | 49
<u>In</u> | 50
5n | 51
5b | 52
Te | 53
1 | 54
Xe | | CILERA | | 55
Cs | 56
Ba | 71
Lu | 72
Hf | 73
Ta | 74
W | 75
Re | 76
Os | 77
I# | 78
Pt | 79
Au | 90
Hg | 91
Tl | 82
Pb | 93
Bi | 94
Po | 85
∆t | 86
Rn | | <u>-</u> | ′ | 87
Fr | 88
R a | 103
Lr | 104
RI | 105
Db | 106
Sg | 107
Bh | 108
Hs | 109
M U | 110 | 111 | 112 | | 114 | | 116 | Metals Metalloids | | 57
La | 58
Ce | 59
Pr | 60
Nd | 61
Pm | 62
Sm | 63
Eu | 64
Gd | 65
Th | 66
Dy | 67
Ho | 68
Er | 69
Tm | 70
Yh | | | | | | | | 89
Ac | 90
Th | 9 <u>1</u>
Pa | 92
U | 93
Np | 94
Pu | 95
Am | 96
Cm | 97
Bk | %
C1 | 99
Es | 100
Fm | 101
Md | 102
No | | | | | | Nonn | Nonmetals | | | | | | | | | | | | | | | | - B. Based on Their Electronic Configuration - 1. Representative/Main Group Elements elements in which the last electron added enters an s or p orbital in the outermost shell but in which this shell in incomplete. - found in Groups 1A-7A - 2. Transition Elements elements that have filled or partially-filled inner d subshell - found in Groups 1B 8B - 3. Inner Transition Elements elements that have filled or partially-filled inner f subshell; lanthanoids and actinoids - 4. Noble/Inert Gases have filled valence subshell; elements in Group 8A; very stable since closed shell (ns2np6) # PROPERTIES OF SOME GROUPS OF ELEMENTS - 1. Group 1A, Alkali Metals - with typical valence of 1 corresponding to their s1 electronic structure. - light metals, soft and lustrous but so reactive that they have to be kept from air or moisture (most reactive metals) - their hydroxides have an intensive basic or alkaline action, hence members of this family are referred to as alkali metals. - 2. Group 2A, Alkaline Earth Metals - also active metals but generally less than the alkali metals - has 2 valence electrons - all form chlorides that are water-soluble and carbonates that are water-insoluble # 3. Hydrogen - a colorless, diatomic gas and the first element in the periodic table - does not belong to any family - has a 1s1 electronic configuration # 4. Group 6A, Chalcogens - chalk former; the increase in metallic character down the group is clearly evident. # 5. Group 7A, Halogens - listed in the order of increasing atomic weight, melting and boiling points - fluorine and chlorine are gases (pale yellow and greenish yellow respectively); bromine is a volatile liquid (reddish brown); iodine is a volatile solid (deep violet) - order of increasing activity:lodine
bromine<chlorine<fluorine - their H compounds are all acids - all combine readily with metals to from salts # 6. Group 8A, Noble Gases - all colorless and exhibit little or no reactivity - they seldom form stable compounds with other elements # Review - Valence electrons - Valence shell - Nonvalence electrons (S) - Atomic Number (Z) # **Factors Affecting Atomic Orbital Energies** ## The Effect of Nuclear Charge (Z_{effective}) Higher nuclear charge lowers orbital energy (stabilizes the system) by increasing nucleus-electron attractions. THE GREATER INTERACTION BETWEEN NUCLEUS AND ELECTRONS, HIGHER $z_{\rm eff}$ ## The Effect of Electron Repulsions (Shielding) Electron shielding decreases the effective nuclear charge Figure 8.3 The effect of nuclear charge on orbital energy. Figure 8.4 Shielding # PERIODIC TRENDS ATOMIC SIZE/ATOMIC RADIUS – derived from the distance between atoms when bonded together. ## TRENDS: within each period (row) – atomic radius decrease from left to right (increasing atomic number and number of electrons, thus increasing effective nuclear charge, Zeff) Ex.. C, N, F within each group (column) – atomic radius increases from top to bottom (increasing n or number of shells) **Figure 8.15** # Atomic radii of the maingroup and transition elements. #### SAMPLE PROBLEM 8.3 #### Ranking Elements by Atomic Size Using only the periodic table (not Figure 8.15)m rank each set of PROBLEM: main group elements in order of *decreasing* atomic size: - (a) Ca, Mg, Sr - **(b)** K, Ga, Ca **(c)** Br, Rb, Kr **(d)** Sr, Ca, Rb PLAN: Elements in the same group increase in size and you go down; elements decrease in size as you go across a period. #### **SOLUTION:** (a) Sr > Ca > Mg These elements are in Group 2A(2). **(b)** K > Ca > Ga These elements are in Period 4. (c) Rb > Br > Kr Rb has a higher energy level and is far to the left. Br is to the left of Kr. (d) Rb > Sr > Ca Ca is one energy level smaller than Rb and Sr. Rb is to the left of Sr. | | | 1A | | | | | — | Încr | easin | g me | dallid | cha | racle | r | | | | | | |----------|---|-----------------|--------------------|-----------|------------------|-----------|------------------|-----------------|------------------|-------------------|-----------------|-----------------|------------------|-----------------|-----------------|-----------------|---------------------|---------------------|------------------| | | | 1 | | | | | | | | | | | | | | | | | 8A
18 | | ofer | | H | 2A
2 | | | | | | | | | | | 3A
13 | 4A
14 | 5A
15 | 6A
16 | 7A
17 | ?
He | | characte | | 3
Li
11 | 4
Be | an | 413 | 5D | 411 | 711 | | 8B | | 211 | 200 | 5
B
13 | ė
ė | 7
N
15 | 8
9
16 | 9
F
17 | 10
Ne
18 | | JIII C | | Na | Mg | 3B
3 | 4B
4 | 5B
5 | 6B
6 | 7В
7 | /8 | 9 | 10 | 1B
11 | 2B
12 | Àİ | Si | P | Ŝ | Ċ | År | | metall | | 19
K | 20
Ca | 21
8.0 | 22
Ti | 23
V | 24
C# | 25
Mn | 26
Fe | 2;/
Ca | 28
Ni | 29
Cu | 30
Zn | 31
Ca | 32
Ce | 33
As | 34
Se | 35
Br | 36
K r | | ging | | 37
Rb | 38
51 | 39
¥ | 40
2 1 | 41
Nb | 42
Mo | 43
1 c | 44
R ü | 45
Rh | 46
1'd | 47
Ag | 48
E d | 49
<u>In</u> | 50
5n | 51
5b | 52
Te | 53
1 | 54
Xe | | CILERA | | 55
Cs | 56
Ba | 71
Lu | 72
Hf | 73
Ta | 74
W | 75
Re | 76
Os | 77
I# | 78
Pt | 79
Au | 90
Hg | 91
Tl | 82
Pb | 93
Bi | 94
Po | 85
∆t | 86
Rn | | <u>-</u> | ′ | 87
Fr | 88
R a | 103
Lr | 104
RI | 105
Db | 106
Sg | 107
Bh | 108
Hs | 109
M U | 110 | 111 | 112 | | 114 | | 116 | Metals Metalloids | | 57
La | 58
Ce | 59
Pr | 60
Nd | 61
Pm | 62
Sm | 63
Eu | 64
Gd | 65
Th | 66
Dy | 67
Ho | 68
Er | 69
Tm | 70
Yh | | | | | | | | 89
Ac | 90
Th | 9 <u>1</u>
Pa | 92
U | 93
Np | 94
Pu | 95
Am | 96
Cm | 97
Bk | %
C1 | 99
Es | 100
Fm | 101
Md | 102
No | | | | | | Nonn | Nonmetals | | | | | | | | | | | | | | | | # 2. IONIC SIZE Cations are generally smaller than the metals from which they were formed. Anions are generally larger than the nonmetal from which they were formed. **Figure 8.29** #### Ionic vs. atomic radius. #### SAMPLE PROBLEM 8.8 #### Ranking lons by Size **PROBLEM:** Rank each set of ions in order of *decreasing* size, and explain your ranking: (a) $$Ca^{2+}$$, Sr^{2+} , Mg^{2+} (b) K^+ , S^{2-} , Cl^{-} (c) Au^+ , Au^{3+} PLAN: Compare positions in the periodic table, formation of positive and negative ions and changes in size due to gain or loss of electrons. #### **SOLUTION:** (a) $$Sr^{2+} > Ca^{2+} > Mg^{2+}$$ These are members of the same Group (2A/2) and therefore decrease in size going up the group. **(b)** $$S^{2-} > Cl^{-} > K^+$$ The ions are isoelectronic; S^{2-} has the smallest Z_{eff} and therefore is the largest while K⁺ is a cation with a large Z_{eff} and is the smallest. (c) $$Au^+ > Au^{3+}$$ The higher the + charge, the smaller the ion. | | | 1A | | | | | — | Încr | easin | g me | dallid | cha | racle | r | | | | | | |----------|---|-----------------|--------------------|-----------|------------------|-----------|------------------|-----------------|------------------|-------------------|-----------------|-----------------|------------------|-----------------|-----------------|-----------------|---------------------|---------------------|------------------| | | | 1 | | | | | | | | | | | | | | | | | 8A
18 | | ofer | | H | 2A
2 | | | | | | | | | | | 3A
13 | 4A
14 | 5A
15 | 6A
16 | 7A
17 | ?
He | | characte | | 3
Li
11 | 4
Be | an | 413 | 5D | 411 | 711 | | 8B | | 211 | 200 | 5
B
13 | ė
ė | 7
N
15 | 8
9
16 | 9
F
17 | 10
Ne
18 | | JIII C | | Na | Mg | 3B
3 | 4B
4 | 5B
5 | 6B
6 | 7В
7 | /8 | 9 | 10 | 1B
11 | 2B
12 | Àİ | Si | P | Ŝ | Ċ | År | | metall | | 19
K | 20
Ca | 21
8.0 | 22
Ti | 23
V | 24
C# | 25
Mn | 26
Fe | 2;/
Ca | 28
Ni | 29
Cu | 30
Zn | 31
Ca | 32
Ce | 33
As | 34
Se | 35
Br | 36
K r | | ging | | 37
Rb | 38
51 | 39
¥ | 40
2 1 | 41
Nb | 42
Mo | 43
1 c | 44
R ü | 45
Rh | 46
1'd | 47
Ag | 48
E d | 49
<u>In</u> | 50
5n | 51
5b | 52
Te | 53
1 | 54
Xe | | CILERA | | 55
Cs | 56
Ba | 71
Lu | 72
Hf | 73
Ta | 74
W | 75
Re | 76
Os | 77
I# | 78
Pt | 79
Au | 90
Hg | 91
Tl | 82
Pb | 93
Bi | 94
Po | 85
∆t | 86
Rn | | <u>-</u> | ′ | 87
Fr | 88
R a | 103
Lr | 104
RI | 105
Db | 106
Sg | 107
Bh | 108
Hs | 109
M U | 110 | 111 | 112 | | 114 | | 116 | Metals Metalloids | | 57
La | 58
Ce | 59
Pr | 60
Nd | 61
Pm | 62
Sm | 63
Eu | 64
Gd | 65
Th | 66
Dy | 67
Ho | 68
Er | 69
Tm | 70
Yh | | | | | | | | 89
Ac | 90
Th | 9 <u>1</u>
Pa | 92
U | 93
Np | 94
Pu | 95
Am | 96
Cm | 97
Bk | %
C1 | 99
Es | 100
Fm | 101
Md | 102
No | | | | | | Nonn | Nonmetals | | | | | | | | | | | | | | | | 3. **IONIZATION ENERGY** – minimum energy required to remove an electron from the ground state of the isolated atom. FIRST IONIZATION ENERGY (I1) - energy needed to remove the first (outermost) electron); I1 < I2 < I3 *Small atoms are expected to have high IE because their valence electrons are nearer and more strongly attracted to the nucleus. TRENDS: - within each group, IE ↓ with increasing atomic number due to the ↑ in size (↑ n) - within each period, IE ↑ with increasing atomic number due to increase in Zeff Figure 8.18 First ionization energies of the main-group elements. Figure 8.19 The first three ionization energies of beryllium (in MJ/mol). #### SAMPLE PROBLEM 8.4 ## Ranking Elements by First Ionization Energy PROBLEM: Using the periodic table only, rank the elements in each of the following sets in order of *decreasing* IE₁: - (a) Kr, He, Ar (b) Sb, Te, Sn (c) K, Ca, Rb - (d) I, Xe, Cs PLAN: IE decreases as you proceed down in a group; IE increases as you go across a period. #### **SOLUTION:** (a) He > Ar > Kr Group 8A(18) - IE decreases down a group. (b) Te > Sb > Sn Period 5 elements - IE increases across a period. (c) Ca > K > Rb Ca is to the right of K; Rb is below K. (d) Xe > I > Cs I is to the left of Xe; Cs is further to the left and down one period. | | | 1A | | | | | — | Încr | easin | g me | dallid | cha | racle | r | | | | | | |----------|---|-----------------|--------------------|-----------|------------------|-----------|------------------|-----------------|------------------|-------------------|-----------------|-----------------|------------------|-----------------|-----------------|-----------------|---------------------|---------------------|------------------| | | | 1 | | | | | | | | | | | | | | | | | 8A
18 | | ofer | | H | 2A
2 | | | | | | | | | | | 3A
13 | 4A
14 | 5A
15 | 6A
16 | 7A
17 | ?
He | | characte | | 3
Li
11 | 4
Be | an | 413 | 5D | 411 | 711 | | 8B | | 211 | 200 | 5
B
13 | ė
ė | 7
N
15 | 8
9
16 | 9
F
17 | 10
Ne
18 | | JIII C | | Na | Mg | 3B
3 | 4B
4 | 5B
5 | 6B
6 | 7В
7 | /8 | 9 | 10 | 1B
11 | 2B
12 | Àİ | Si | P | Ŝ | Ċ | År | | metall | | 19
K | 20
Ca | 21
8.0 | 22
Ti | 23
V | 24
C# | 25
Mn | 26
Fe | 2;/
Ca | 28
Ni | 29
Cu | 30
Zn | 31
Ca | 32
Ce | 33
As | 34
Se | 35
Br | 36
K r | | ging | | 37
Rb | 38
51 | 39
¥ | 40
2 1 | 41
Nb | 42
Mo | 43
1 c | 44
R ü | 45
Rh | 46
1'd | 47
Ag | 48
E d | 49
<u>In</u> | 50
5n | 51
5b | 52
Te | 53
1 | 54
Xe | | CILERA | | 55
Cs | 56
Ba | 71
Lu | 72
Hf | 73
Ta | 74
W | 75
Re | 76
Os | 77
I# | 78
Pt | 79
Au | 90
Hg | 91
Tl | 82
Pb | 93
Bi | 94
Po | 85
∆t | 86
Rn | | <u>-</u> | ′ | 87
Fr | 88
R a | 103
Lr | 104
RI | 105
Db | 106
Sg | 107
Bh | 108
Hs | 109
M U | 110 | 111 | 112 | | 114 | | 116 | Metals Metalloids | | 57
La | 58
Ce | 59
Pr | 60
Nd | 61
Pm | 62
Sm | 63
Eu | 64
Gd | 65
Th | 66
Dy | 67
Ho | 68
Er | 69
Tm | 70
Yh | | | | | | | | 89
Ac | 90
Th | 9 <u>1</u>
Pa | 92
U | 93
Np | 94
Pu | 95
Am | 96
Cm | 97
Bk | %
C1 | 99
Es | 100
Fm | 101
Md | 102
No | | | | | | Nonn | Nonmetals | | | | | | | | | | | | | | | | - 4. ELECTRON AFFINITY energy change associated to the addition of an e- to a gaseous atom/ion (an exothermic process) - The higher the Z_{eff} the higher the EA will be closest to the nucleus. * Large atoms are expected to have low EA because their valence electrons are farther from the nucleus. *Small atoms have high EA because added electron TRENDS:- increasing across a period (left to right) - decreasing across a group (top to bottom) Figure 8.20 Electron affinities of the main-group elements. | 1A
(1) | | | | | | 9 | 8A
(18) | |--------------------|------------------|------------------|--------------------|--------------------|-----------------|-------------------|---------------------| | H
-72.8 | 2A
(2) | 3A
(13) | 4A
(14) | 5A
(15) | 6A
(16) | 7A
(17) | He (0.0) | | Li
-59.6 | Be (+18) | B -26.7 | C – 122 | N
+7 | O –141 | F - 328 | Ne (+29) | | Na – 52.9 | Mg (+21) | AI -42.5 | Si
- 134 | P – 72.0 | S -200 | CI -349 | Ar (+35) | | K
-48.4 | Ca (+186) | Ga -28.9 | Ge
- 119 | As - 78.2 | Se – 195 | Br
-325 | K r
(+39) | | Rb -46.9 | Sr (+146) | In – 28.9 | Sn – 107 | Sb – 103 | Te – 190 | I
-295 | Xe (+41) | | Cs -45.5 | Ba (+46) | TI –19.3 | Pb -35.1 | Bi
-91.3 | Po –183 | At –270 | Rn (+41) | 5. ELECTRONEGATIVITY – is the ability of a bonded atom to attract electrons to itself *In general, EN increases across a period and decreases down a group ## 6. METALLICITY *In general, the metallic character decreases across a period and increases down a group. **Figure 8.21** ## Trends in three atomic properties. Figure 8.22 Trends in metallic behavior. ## **REACTIVITY** Metals – from basic oxides metal oxides + water → metal hydroxide $$Na_2O + H_2O \rightarrow 2 NaOH$$ $$CaO + H_2O \rightarrow Ca(OH)_2$$ Nonmetals – form acidic oxides nonmetal oxide + water → acid Figure 8.24 The trend in acid-base behavior of element oxides. # 2nd DEPARTMENTAL EXAM: February 4, 2012 3-5 PM LH-C # COVERAGE: ATOMIC STRUCTURE, ELECTRONIC STRUCTURE, QUANTUM NOS., ELECTRONIC CONFIGURATION, PERIODICITY