
MODEL DRIVEN SOFTWARE DEVELOPMENT
LECTURE : 10

 A traditional program is mainly code that manipulates a data structure and produces output.

 An example of this is an sqrt() function that takes an integer (i.e. a data structure) as input, manipulates it, and

outputs its square root.

 Of course, data structures can be a lot more complex than a simple integer or a double, but that's the general

idea of a program.

 A Compiler, on the other hand, is a program that takes source code (again, a data structure) as input, transforms it

into a bunch of data structures, it can understand better, and produces output

 That might be Binary code, Bytecode, or Intermediate language among other formats/structures.

 An Interpreter is roughly just a compiler that does this process every time you run the code.

RUBAB JAVAID UNIVERSITY OF SARGODHA

META-PROGRAMING

 Now, if we can write code that manipulates data structures,

 and write compilers that treat human written code as data structures,

why can't we write code that writes, or manipulates, other code?

Meta programming is a programming technique in which computer programs have the ability to treat

programs as their data.

RUBAB JAVAID UNIVERSITY OF SARGODHA

CONTD…

 Metaprograms – programs that generate other programs.

 Code generators are meta-programs that process specifications (or models) as input parameters, and which

generate source code as output.

 Meta-programs can be run at different times in relation to the generated program:

 Completely independently of the base program – that is, before it.

 During compilation of the base program.

 While the base program runs.

RUBAB JAVAID UNIVERSITY OF SARGODHA

META-PROGRAMS

 The metaprogram and the part of the base program to be created manually are usually specified separately.

 The generated code is also separated from the manually-created code, and both must be integrated by the

developer.

 base program and metaprogram are mixed, and similarly the result of the generation process already

contains manually-created as well as generated code, so is also mixed.

 However, the created program no longer knows anything about the metaprogram.

 We refer to that as static metaprogramming

RUBAB JAVAID UNIVERSITY OF SARGODHA

META-PROGRAMS

M2T TRANSFORMATION LANGUAGES

 Template-based approach at a glance

 Components of a template-based approach

Templates

 Text fragments and embedded meta-markers

Meta-markers query an additional data source

 Have to be interpreted and evaluated in contrast to text fragments

Template engine

 Replaces meta-markers with data at runtime and produces output files

RUBAB JAVAID UNIVERSITY OF SARGODHA

RUBAB JAVAID UNIVERSITY OF SARGODHA

M2T TRANSFORMATION LANGUAGES

A bunch of template languages for M2T transformation available

 XSLT

 JET, JET2

 Xpand, Xtend

 OFScript

 Acceleo

RUBAB JAVAID UNIVERSITY OF SARGODHA

M2T TRANSFORMATION LANGUAGES

 Separated static/dynamic code

 Templates separate static code, i.e., normal text, from dynamic code that is described by

meta-markers

 A template can be seen as a kind of blueprint which defines static text elements

 Shared by all artifacts as well as dynamic parts which have to be filled with information specific to each

particular case

 A template contains simple text fragments for the static part and meta-markers for the dynamic part.

 Meta-markers are placeholders and have to be interpreted by a template engine which processes the

templates and queries additional data sources to produce the dynamic parts.

RUBAB JAVAID UNIVERSITY OF SARGODHA

M2T TRANSFORMATION LANGUAGES

 Explicit output structure

 Using templates allows to explicitly represent the structure of output text within the template by embedding the

producing code in the produced text

 Declarative query language

 Within the meta-markers, code is used to access the information stored in the models

 Reusable base functionality

 CurrentM2Ttransformation languages come with tool support

 Support for reading in models, serialize text to files, …

 to directly read in models and to serialize text into files by just defining configuration files.

 no tedious redefinition of model loading and text serializing has to be developed manually

RUBAB JAVAID UNIVERSITY OF SARGODHA

