Fall 2013 ADVANCED FINANCIAL INSTRUMENTS AND MARKETS Lecture No. 06 Term Structure of Interest Hammad Hassan Mirza Assistant Professor (Finance) Department of Business Administration University of Sargodha #### **Interest Rates** - * An interest rate is the price paid by a borrower to a lender for the use of resources that will be used during some time period then returned. - * Real rate - * Risk-free rate - * Short-term rate ### Theories of Interest Rates - * Fisher's Classical Approach - * Loanable Funds Theory - * Keynes' Liquidity Preference Theory # Fisher's Classical Approach - * Supply of Savings - * Marginal rate of time preference - * Income - * Reward for saving - * Demand for Borrowed Resources - * Marginal productivity of capital - * Rate of interest - * Equilibrium Rate of Interest #### Fisher's Law - * Nominal Rate of Interest (i) - * Real Rate of Interest (r) - * Premium for Expected Inflation (p) - * Fisher's Law $$(1+i) = (1+r)(1+p)$$ or $i = r + p$ # The Loanable Funds Theory - * Demand for and Supply of Funds by Firms, Governments, and Households - * Changes in the money supply - * Government deficits - * Changes in preferences by households - * New investment opportunities for firms - * Equilibrium Rate of Interest | Ī | | | | |---|--|--|--| | - | | | | | - | | | | | - | | | | | - | | | | | - | | | | | _ | _ | | | | | _ | | | | | _ | | | | | - | | | | | - | | | | | - | | | | | - | | | | | | | | | | | | | | | _ | | | | | _ | | | | | | | | | | _ | | | | | - | | | | | - | | | | # The Liquidity Preference Theory - * Demand for Money Balances - * Transactions demand - * Precautionary demand - * Speculative demand - * Supply of Money - * Equilibrium Rate of Interest # Changes in the Demand for Money and Interest Rates - * Liquidity Effect - * If increasing, causes the interest rate to rise. - * Income Effect - * If increasing, causes the interest rate to rise. - * Price Expectations Effect - $\ast\,$ If increasing, causes the interest rate to rise. - * Net Effect: - The interest rate may rise, fall, or remain unchanged depending on the net effect of changes in desired liquidity, income, and price expectations. #### Features of a Bond - * Time to Maturity - * Principal or Par Value - * Coupon Interest - * Yield-to-Maturity (YTM) - * If YTM = coupon rate, market price = par value - * If YTM > coupon rate, market price < par value - * If YTM < coupon rate, market price > par value # Determinants of the Structure of Interest Rates - * The Base Interest Rate - * Risk Premiums Are Determined By: - * Issuer Type - * Credit risk - * Term to maturity - * Embedded options - * Taxability of interest - * Liquidity # Types of Issuers - * Treasury Market Sector - * Corporate Market Sector - * Utilities - * Industrials - * Finance - * Banks - * Intermarket and intramarket Sector # Default or Credit Risk - * Rating Companies - * Moody's, S&P, Fitch - * Credit Ratings - * Investment grade - * Non-investment grade - * Credit Spread ### Term to Maturity - * The volatility of a bond's price is influenced by its maturity. - * The longer the maturity of a bond, the greater its price sensitivity to a change in market yields. - * Maturity spread or yield curve spread # **Embedded Options** - * Call option - * benefits issuer - * increases required return on Treasuries - * Conversion option - * benefits bondholder - * reduces required return on bonds - * Prepayment option - * Benefits issuer - * Increases required return on mortgage-backed securities #### Tax Treatment - * Yield on taxable bond - * After-tax yield = Pretax yield x (1 Marginal tax rate) - * Equivalent taxable yield - * Taxable yield = Tax-exempt yield/(1 Marginal tax rate) # Liquidity - * The greater the expected liquidity of a security issue, the lower the required yield. - * The size of the issue is an important factor that affects its liquidity. | _ | • | | |-------|-------|------| | | ınn | - 11 | | Sessi | IUI I | - 11 | # The Yield Curve - * Relationship between yield and maturity for bonds of the same credit quality but different maturities. - * Yield curve shapes - * Normal - * Inverted - * Flat * Humped | - | | | |---|--|--| | | | | | | | | # Using the Yield Curve to Price a Bond - * Any financial asset can be viewed as a package of zerocoupon instruments. - * Maturity of an instrument is the coupon payment date or maturity date. - * Value of the asset equals the total value of the component zero-coupon instruments. - * Spot Rate - * Rate on zero-coupon bond # Theoretical Spot Rate Curve - * The process of creating a yield curve based on theoretical spot rates is called bootstrapping. - * The theoretical value of a bond is equal to the present value of its periodic cash flows discounted at the corresponding theoretical spot rate for each period. #### **Forward Rates** - * Market's Consensus Prediction of Future Interest Rates - * The implied forward rate is calculated from either the spot rates or yield curve. - * The yield curve can be used to calculate the implied forward rate for any investment horizon or any subperiod within that horizon. | _ | | | | | |---|--|--|--|--| | _ | | | | | | _ | | | | | | | | | | | | _ | | | | | | _ | | | | | | | | | | | | | | | | | | _ | _ | | | | | | | | | | | | | | | | | | _ | | | | | | _ | | | | | | | | | | | | | | | | | | _ | | | | | | _ | _ | | | | | | _ | | | | | | _ | | | | | | | | | | | | _ | | | | | | _ | | | | | | _ | | | | | | | | | | | #### Relationship Between Spot Rates and Short-Term Forward Rates * The relationship between the spot rate on an instrument maturing in six months (the current sixmonth spot rate), and the implied monthly forward rates for the next six months is: $$z_t = [(1+z_1)(1+f_1)(1+f_2)(1+f_3)...(1+f_{t-1})]^{1/t} -1$$ # Forward Rate as a Hedgeable Rate - $\ast\,$ Forward rates do \underline{not} predict future interest rates. - * Forward rates do indicate <u>how</u> an investor's expectations must differ from the market consensus in order to make the correct decision. # Determinants of the Shape of the Term Structure - * (Pure) Expectations Theory - * Liquidity Theory - * Preferred Habitat Theory - * Market Segmentation Theory | |
 |
 | | |---|------|------|--| | • | |
 | | ### **Pure Expectations Theory** - * Yields on bonds with different maturities are based only on expectations of future short-term rates. - * Term structure might be normal, inverted, humped, or flat. - * Ignores price risk and reinvestment risk. - * Interpretations include broad, local and return-tomaturity. ### **Liquidity Theory** - * Yields on bonds with different maturities are based only on expected future rates plus a liquidity premium that increases with maturity. - * Term structure might be normal or flat. - * Presupposes that all lenders want to lend short-term and all borrowers want to borrow long-term. - * In reality, there are lenders for short and longterms and borrowers for short and long- ### **Preferred Habitat Theory** - * Yields on bonds with different maturities are based only on demand and supply at each maturity. - * Term structure might be normal, inverted, humped, or flat. - * Issuers and buyers of bonds have maturity preferences but will shift to other maturities if the prices or yields are attractive enough. - * Yields are completely unrelated to expectations of future rates. | - | | | | |---|--|--|--| | - | | | | | - | | | | | _ | | | | | | | | | | - | | | | | - | | | | | _ | - | | | | | - | | | | | - | | | | | _ | | | | | | | | | | - | | | | | - | | | | | _ | - | | | | | - | | | | | - | | | | | _ | | | | | | | | | | - | | | | | | | | | # **Market Segmentation Theory** - * Yields on bonds with different maturities are based only on demand and supply at each maturity. - * Term structure might be normal, inverted, humped, or flat. - * Issuers and buyers of bonds have maturity preferences and will not shift to another maturity because each maturity is a separate market. - * Yields are completely unrelated to