Fall 2013 ADVANCED FINANCIAL INSTRUMENTS AND MARKETS #### Lecture No. 05 **Determinants of Asset Prices and Interest Rates** #### Hammad Hassan Mirza Assistant Professor (Finance) Department of Business Administration University of Sargodha ## Today's Discussion - * Principles of Assets Pricing - * Interest Rates and Theories of Interest ### Principles of Pricing Financial **Assets** * The market price of an asset equals: $$P = \frac{CF_1}{(1+r)^1} + \frac{CF_2}{(1+r)^2} + \frac{CF_3}{(1+r)^3} + \dots + \frac{CF_N}{(1+r)^N}$$ where: P = the price of the financial asset CF_t = cash flow at end of year t (t=1,2,...,N) N = maturity of the financial asset r = appropriate discount rate #### Appropriate Discount Rate * The appropriate discount rate is equal to: r = RR + IP + DP + MP + LP + EP where: RR = the real rate of interest IP = the inflation premium DP = the default risk premium MP = the maturity premium LP = the liquidity premium Administration, University of EP = the exchange-rate risk premium ## **Price and Asset Properties** - * The price of a financial asset is *inversely* related to its discount rate. - * As the discount rate rises, the price falls. - * As the discount rate falls, the price rises. - * Reversibility in the form of commissions and transfer fees reduce the price of the asset. Property of Department of Business Administration, University of ## Effect of Asset Properties on the Discount Rate Asset Properties Discount Rate Default Risk Positive Liquidity Risk Positive Convertibility Negative Currency Risk Positive #### **Tax Treatment** * After-tax discount rate equals Pretax discount rate x (1 - marginal tax rate) - * If the marginal tax rate is expected to increase, the after-tax discount rate will decrease - * If the marginal tax rate is expected to decrease, the after-tax discount rate will increase Property of Department of Business Administration, University of ## Price Volatility of Financial Assets - * The required rate of return or required *yield* of an asset is inversely related to its price. - * The sensitivity of the asset's price to a change in the required yield will not be the same for all assets. - * Changes in the required yield are measured in terms of basis points. Property of Department of Business Administraiton, University of # Price Sensitivity of Financial Assets - * The price sensitivity of a financial asset to a given change in yield is affected by the asset's: - * Maturity - * Coupon - * Yield level # Price Sensitivity of Financial Assets - * Maturity - * The longer the maturity of an asset, the greater the price sensitivity to a change in the required yield. - * Coupon Rate - * The lower the coupon rate, the greater the price sensitivity to a change in the required yield. - * Level of Interest Rates - * The lower the prevailing yield level, the greater the price sensitivity to a change in the required yield. Property of Department of Business Administraiton, University o ## Measuring Price Sensitivity to Interest Rate Changes * For a small decrease in required yield, the percentage change in price is: $$\frac{P_{-}-P_{0}}{P}$$ Where: P_1 = asset price if required yield decreases P_0 = initial asset price ## Measuring Price Sensitivity to Interest Rate Changes * The average percentage change in price per basis point change in required yield is: $$\frac{P_{-} - P_{+}}{2P_{0}(\Delta y)100}$$ Where: P_{_} = asset price if yield decreases P_{+} = asset price if yield increases P₀ = initial asset price Property of Department of Business Aystration, Change in required yield #### **Asset Properties and Duration** - * For bonds with the same coupon rate and the same yield, the bond with the longer maturity will have the greater duration. - * For bonds with the same maturity and the same yield, the bond with the lower coupon rate will have the greater duration. - * The lower the initial *yield*, the greater the duration for a given bond. Property of Department of Business Administraiton, University of # Relationship between Duration and Price Sensitivity * An estimate of the percentage change in the price of a financial asset is: -Duration x (Δy) X 100 Property of Department of Business Administraiton, University of # Modified Duration and Effective Duration - * Modified Duration - * Assumes future cash flows from an asset do not change with changes in interest rates. - * Effective Duration - * Assumes future cash flows from an asset change with changes in interest rates. #### **Interest Rates** - * An interest rate is the price paid by a borrower to a lender for the use of resources that will be used during some time period then returned. - * Real rate - * Risk-free rate - * Short-term rate Property of Department of Business Administraiton, University of ### Theories of Interest Rates - * Fisher's Classical Approach - * Loan able Funds Theory - * Keynes' Liquidity Preference Theory Property of Department of Business Administraiton, University of ## Fisher's Classical Approach - * Supply of Savings - * Marginal rate of time preference - * Income - * Reward for saving - * Demand for Borrowed Resources - * Marginal productivity of capital - * Rate of interest - * Equilibrium Rate of Interest #### Fisher's Law - * Nominal Rate of Interest (i) - * Real Rate of Interest (r) - * Premium for Expected Inflation (p) - * Fisher's Law $$(1+i) = (1+r)(1+p)$$ or $i = r + p$ Property of Department of Business Administration, University of Sargodha ## The Loanable Funds Theory - * Demand for and Supply of Funds by Firms, Governments, and Households - * Changes in the money supply - * Government deficits - * Changes in preferences by households - * New investment opportunities for firms - * Equilibrium Rate of Interest Property of Department of Business Administraiton, University of ## The Liquidity Preference Theory - * Demand for Money Balances - * Transactions demand - * Precautionary demand - * Speculative demand - * Supply of Money - * Equilibrium Rate of Interest # Changes in the Demand for Money and Interest Rates - * Liquidity Effect - $\ast\,$ If increasing, causes the interest rate to rise. - * Income Effect - $\ast\,$ If increasing, causes the interest rate to rise. - * Price Expectations Effect - $\ast\,$ If increasing, causes the interest rate to rise. - * Net Effect: - * The interest rate may rise, fall, or remain - in desired liquidity, income, and price expectations. #### Features of a Bond - * Time to Maturity - * Principal or Par Value - * Coupon Interest - * Yield-to-Maturity (YTM) - * If YTM = coupon rate, market price = par value - * If YTM > coupon rate, market price < par value - * If YTM < coupon rate, market price > par value Property of Department of Business Administration, University of ## Determinants of the Structure of Interest Rates - * The Base Interest Rate - * Risk Premiums Are Determined By: - * Issuer Type - * Credit risk - * Term to maturity - * Embedded options - * Taxability of interest - * Liquidity | - | | | | |---|--|--|--| | - | | | | | - | | | | | _ | | | | | _ | | | | | | | | | | - | - | | | | | - | | | | | - | | | | | _ | | | | | | | | | | | | | | | - | - | | | | | - | | | | | - | | | | | - | | | | | _ | | | | | | | | | | | | | | ## Types of Issuers - * Treasury Market Sector - * Corporate Market Sector - * Utilities - * Industrials - * Finance - * Banks - * Intermarket and intramarket Sector Property of Department of Business Administraiton, University of ## Term to Maturity - * The volatility of a bond's price is influenced by its maturity. - * The longer the maturity of a bond, the greater its price sensitivity to a change in market yields. - * Maturity spread or yield curve spread Property of Department of Business Administration, University of #### The Yield Curve - * Relationship between yield and maturity for bonds of the same credit quality but different maturities. - * Yield curve shapes - * Normal - * Inverted - * Flat - * Humped # Using the Yield Curve to Price a Bond - * Any financial asset can be viewed as a package of zerocoupon instruments. - * Maturity of an instrument is the coupon payment date or maturity date. - * Value of the asset equals the total value of the component zero-coupon instruments. - * Spot Rate - * Rate on zero-coupon bond Property of Department of Business Administration, University ### Theoretical Spot Rate Curve - * The process of creating a yield curve based on theoretical spot rates is called bootstrapping. - * The theoretical value of a bond is equal to the present value of its periodic cash flows discounted at the corresponding theoretical spot rate for each period. operty of Department of Business Administration, University of #### **Forward Rates** - * Market's Consensus Prediction of Future Interest - * The implied forward rate is calculated from either the spot rates or yield curve. - * The yield curve can be used to calculate the implied forward rate for any investment horizon or any subperiod within that horizon. #### Relationship Between Spot Rates and Short-Term Forward Rates * The relationship between the spot rate on an instrument maturing in six months (the current sixmonth spot rate), and the implied monthly forward rates for the next six months is: $$z_t = [(1+z_1)(1+f_1)(1+f_2)(1+f_3)...(1+f_{t-1})]^{1/t} - 1$$ Property of Department of Business Administration, University of ## Forward Rate as a Hedgeable Rate - $\ast\,$ Forward rates do \underline{not} predict future interest rates. - * Forward rates do indicate <u>how</u> an investor's expectations must differ from the market consensus in order to make the correct decision. Property of Department of Business Administraiton, University of # Determinants of the Shape of the Term Structure - * (Pure) Expectations Theory - * Liquidity Theory - * Preferred Habitat Theory - * Market Segmentation Theory #### **Pure Expectations Theory** - * Yields on bonds with different maturities are based only on expectations of future short-term rates. - * Term structure might be normal, inverted, humped, or flat. - * Ignores price risk and reinvestment risk. - * Interpretations include broad, local and return-tomaturity. Property of Department of Business Administraiton, University of #### **Liquidity Theory** - * Yields on bonds with different maturities are based only on expected future rates plus a liquidity premium that increases with maturity. - * Term structure might be normal or flat. - * Presupposes that all lenders want to lend short-term and all borrowers want to borrow long-term. - * In reality, there are lenders for short and longterms and borrowers for short and long- Property of Department Sea Administration, University of #### **Preferred Habitat Theory** - * Yields on bonds with different maturities are based only on demand and supply at each maturity. - * Term structure might be normal, inverted, humped, or flat. - * Issuers and buyers of bonds have maturity preferences but will shift to other maturities if the prices or yields are attractive enough. - * Yields are completely unrelated to expectations of future rates. | _ | | | | |---|--|--|--| | - | | | | | _ | | | | | | | | | | - | _ | | | | | | | | | | - | | | | | - | | | | | | | | | | | | | | | - | | | | | _ | | | | | | | | | | _ | - | | | | | _ | | | | | | | | | | - | | | | | - | | | | | _ | | | | | | | | | | - | | | | | | | | | ## **Market Segmentation Theory** - * Yields on bonds with different maturities are based only on demand and supply at each maturity. - * Term structure might be normal, inverted, humped, or flat. - * Issuers and buyers of bonds have maturity preferences and will not shift to another maturity because each maturity is a separate market. - * Yields are completely unrelated to expectations of future, rates.