

Fall 2013 ADVANCED FINANCIAL INSTRUMENTS AND MARKETS

#### Lecture No. 05 **Determinants of Asset Prices and Interest Rates**

#### Hammad Hassan Mirza

Assistant Professor (Finance) Department of Business Administration University of Sargodha

## Today's Discussion

- \* Principles of Assets Pricing
- \* Interest Rates and Theories of Interest



### Principles of Pricing Financial **Assets**

\* The market price of an asset equals:

$$P = \frac{CF_1}{(1+r)^1} + \frac{CF_2}{(1+r)^2} + \frac{CF_3}{(1+r)^3} + \dots + \frac{CF_N}{(1+r)^N}$$

where: P = the price of the financial asset

CF<sub>t</sub> = cash flow at end of year t (t=1,2,...,N) N = maturity of the financial asset

r = appropriate discount rate



#### Appropriate Discount Rate

\* The appropriate discount rate is equal to:

r = RR + IP + DP + MP + LP + EP

where: RR = the real rate of interest

IP = the inflation premium

DP = the default risk premium

MP = the maturity premium

LP = the liquidity premium

Administration, University of EP = the exchange-rate risk premium

## **Price and Asset Properties**

- \* The price of a financial asset is *inversely* related to its discount rate.
  - \* As the discount rate rises, the price falls.
  - \* As the discount rate falls, the price rises.
- \* Reversibility in the form of commissions and transfer fees reduce the price of the asset.

Property of Department of Business Administration, University of

## Effect of Asset Properties on the Discount Rate

Asset Properties Discount Rate

Default Risk Positive

Liquidity Risk Positive

Convertibility Negative

Currency Risk Positive

#### **Tax Treatment**

\* After-tax discount rate equals

Pretax discount rate x (1 - marginal tax rate)

- \* If the marginal tax rate is expected to increase, the after-tax discount rate will decrease
- \* If the marginal tax rate is expected to decrease, the after-tax discount rate will increase

Property of Department of Business Administration, University of

## Price Volatility of Financial Assets

- \* The required rate of return or required *yield* of an asset is inversely related to its price.
- \* The sensitivity of the asset's price to a change in the required yield will not be the same for all assets.
- \* Changes in the required yield are measured in terms of basis points.

Property of Department of Business Administraiton, University of

# Price Sensitivity of Financial Assets

- \* The price sensitivity of a financial asset to a given change in yield is affected by the asset's:
  - \* Maturity
  - \* Coupon
  - \* Yield level



# Price Sensitivity of Financial Assets

- \* Maturity
- \* The longer the maturity of an asset, the greater the price sensitivity to a change in the required yield.
- \* Coupon Rate
  - \* The lower the coupon rate, the greater the price sensitivity to a change in the required yield.
- \* Level of Interest Rates
  - \* The lower the prevailing yield level, the greater the price sensitivity to a change in the required yield.

Property of Department of Business Administraiton, University o

## Measuring Price Sensitivity to Interest Rate Changes

\* For a small decrease in required yield, the percentage change in price is:

$$\frac{P_{-}-P_{0}}{P}$$

Where:  $P_1$  = asset price if required yield decreases  $P_0$  = initial asset price

## Measuring Price Sensitivity to Interest Rate Changes

\* The average percentage change in price per basis point change in required yield is:

$$\frac{P_{-} - P_{+}}{2P_{0}(\Delta y)100}$$

Where: P<sub>\_</sub> = asset price if yield decreases

 $P_{+}$  = asset price if yield increases

P<sub>0</sub> = initial asset price

Property of Department of Business Aystration, Change in required yield



#### **Asset Properties and Duration**

- \* For bonds with the same coupon rate and the same yield, the bond with the longer maturity will have the greater duration.
- \* For bonds with the same maturity and the same yield, the bond with the lower coupon rate will have the greater duration.
- \* The lower the initial *yield*, the greater the duration for a given bond.

Property of Department of Business Administraiton, University of

# Relationship between Duration and Price Sensitivity

\* An estimate of the percentage change in the price of a financial asset is:

-Duration x ( $\Delta y$ ) X 100

Property of Department of Business Administraiton, University of



# Modified Duration and Effective Duration

- \* Modified Duration
  - \* Assumes future cash flows from an asset do not change with changes in interest rates.
- \* Effective Duration
  - \* Assumes future cash flows from an asset change with changes in interest rates.



#### **Interest Rates**

- \* An interest rate is the price paid by a borrower to a lender for the use of resources that will be used during some time period then returned.
  - \* Real rate
  - \* Risk-free rate
- \* Short-term rate

Property of Department of Business Administraiton, University of



### Theories of Interest Rates

- \* Fisher's Classical Approach
- \* Loan able Funds Theory
- \* Keynes' Liquidity Preference Theory

Property of Department of Business Administraiton, University of



## Fisher's Classical Approach

- \* Supply of Savings
- \* Marginal rate of time preference
- \* Income
- \* Reward for saving
- \* Demand for Borrowed Resources
- \* Marginal productivity of capital
- \* Rate of interest
- \* Equilibrium Rate of Interest



#### Fisher's Law

- \* Nominal Rate of Interest (i)
- \* Real Rate of Interest (r)
- \* Premium for Expected Inflation (p)
- \* Fisher's Law

$$(1+i) = (1+r)(1+p)$$
  
or  
 $i = r + p$ 

Property of Department of Business Administration, University of Sargodha



## The Loanable Funds Theory

- \* Demand for and Supply of Funds by Firms, Governments, and Households
  - \* Changes in the money supply
  - \* Government deficits
  - \* Changes in preferences by households
  - \* New investment opportunities for firms
- \* Equilibrium Rate of Interest



Property of Department of Business Administraiton, University of

## The Liquidity Preference Theory

- \* Demand for Money Balances
  - \* Transactions demand
  - \* Precautionary demand
- \* Speculative demand
- \* Supply of Money
- \* Equilibrium Rate of Interest



# Changes in the Demand for Money and Interest Rates

- \* Liquidity Effect
  - $\ast\,$  If increasing, causes the interest rate to rise.
- \* Income Effect
  - $\ast\,$  If increasing, causes the interest rate to rise.
- \* Price Expectations Effect
  - $\ast\,$  If increasing, causes the interest rate to rise.
- \* Net Effect:
- \* The interest rate may rise, fall, or remain
  - in desired liquidity, income, and price expectations.

#### Features of a Bond

- \* Time to Maturity
- \* Principal or Par Value
- \* Coupon Interest
- \* Yield-to-Maturity (YTM)
  - \* If YTM = coupon rate, market price = par value
- \* If YTM > coupon rate, market price < par value
- \* If YTM < coupon rate, market price > par value

Property of Department of Business Administration, University of

## Determinants of the Structure of Interest Rates

- \* The Base Interest Rate
- \* Risk Premiums Are Determined By:
  - \* Issuer Type
  - \* Credit risk
  - \* Term to maturity
  - \* Embedded options
  - \* Taxability of interest
  - \* Liquidity



| - |  |  |  |
|---|--|--|--|
| - |  |  |  |
| - |  |  |  |
| _ |  |  |  |
| _ |  |  |  |
|   |  |  |  |
| - |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
| - |  |  |  |
| - |  |  |  |
| - |  |  |  |
| _ |  |  |  |
|   |  |  |  |
|   |  |  |  |
| - |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
| - |  |  |  |
| - |  |  |  |
| - |  |  |  |
| - |  |  |  |
| _ |  |  |  |
|   |  |  |  |
|   |  |  |  |

## Types of Issuers

- \* Treasury Market Sector
- \* Corporate Market Sector
  - \* Utilities
- \* Industrials
- \* Finance
- \* Banks
- \* Intermarket and intramarket Sector



Property of Department of Business Administraiton, University of

## Term to Maturity

- \* The volatility of a bond's price is influenced by its maturity.
- \* The longer the maturity of a bond, the greater its price sensitivity to a change in market yields.
- \* Maturity spread or yield curve spread



Property of Department of Business Administration, University of

#### The Yield Curve

- \* Relationship between yield and maturity for bonds of the same credit quality but different maturities.
- \* Yield curve shapes
- \* Normal
- \* Inverted
- \* Flat
- \* Humped



# Using the Yield Curve to Price a Bond

- \* Any financial asset can be viewed as a package of zerocoupon instruments.
  - \* Maturity of an instrument is the coupon payment date or maturity date.
  - \* Value of the asset equals the total value of the component zero-coupon instruments.
- \* Spot Rate
  - \* Rate on zero-coupon bond

Property of Department of Business Administration, University



### Theoretical Spot Rate Curve

- \* The process of creating a yield curve based on theoretical spot rates is called bootstrapping.
- \* The theoretical value of a bond is equal to the present value of its periodic cash flows discounted at the corresponding theoretical spot rate for each period.

operty of Department of Business Administration, University of



#### **Forward Rates**

- \* Market's Consensus Prediction of Future Interest
  - \* The implied forward rate is calculated from either the spot rates or yield curve.
- \* The yield curve can be used to calculate the implied forward rate for any investment horizon or any subperiod within that horizon.

#### Relationship Between Spot Rates and Short-Term Forward Rates

\* The relationship between the spot rate on an instrument maturing in six months (the current sixmonth spot rate), and the implied monthly forward rates for the next six months is:

$$z_t = [(1+z_1)(1+f_1)(1+f_2)(1+f_3)...(1+f_{t-1})]^{1/t} - 1$$

Property of Department of Business Administration, University of



## Forward Rate as a Hedgeable Rate

- $\ast\,$  Forward rates do  $\underline{not}$  predict future interest rates.
- \* Forward rates do indicate <u>how</u> an investor's expectations must differ from the market consensus in order to make the correct decision.

Property of Department of Business Administraiton, University of



# Determinants of the Shape of the Term Structure

- \* (Pure) Expectations Theory
- \* Liquidity Theory
- \* Preferred Habitat Theory
- \* Market Segmentation Theory



#### **Pure Expectations Theory**

- \* Yields on bonds with different maturities are based only on expectations of future short-term rates.
- \* Term structure might be normal, inverted, humped, or flat.
- \* Ignores price risk and reinvestment risk.
- \* Interpretations include broad, local and return-tomaturity.

Property of Department of Business Administraiton, University of

#### **Liquidity Theory**

- \* Yields on bonds with different maturities are based only on expected future rates plus a liquidity premium that increases with maturity.
- \* Term structure might be normal or flat.
- \* Presupposes that all lenders want to lend short-term and all borrowers want to borrow long-term.
- \* In reality, there are lenders for short and longterms and borrowers for short and long-

Property of Department Sea Administration, University of

#### **Preferred Habitat Theory**

- \* Yields on bonds with different maturities are based only on demand and supply at each maturity.
- \* Term structure might be normal, inverted, humped, or flat.
- \* Issuers and buyers of bonds have maturity preferences but will shift to other maturities if the prices or yields are attractive enough.
- \* Yields are completely unrelated to expectations of future rates.

| _ |  |  |  |
|---|--|--|--|
| - |  |  |  |
| _ |  |  |  |
|   |  |  |  |
| - |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
| _ |  |  |  |
|   |  |  |  |
| - |  |  |  |
| - |  |  |  |
|   |  |  |  |
|   |  |  |  |
| - |  |  |  |
| _ |  |  |  |
|   |  |  |  |
| _ |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
| - |  |  |  |
| _ |  |  |  |
|   |  |  |  |
| - |  |  |  |
| - |  |  |  |
| _ |  |  |  |
|   |  |  |  |
| - |  |  |  |
|   |  |  |  |

## **Market Segmentation Theory**

- \* Yields on bonds with different maturities are based only on demand and supply at each maturity.
- \* Term structure might be normal, inverted, humped, or flat.
- \* Issuers and buyers of bonds have maturity preferences and will not shift to another maturity because each maturity is a separate market.
- \* Yields are completely unrelated to expectations of future, rates.

