This bascball pitcher is about to accelerate the
baschall 1o & high velocity by excriing a force on it. He
will be doing work on the ball as he exeris the force over a
displacement of several meters, from behind his head until he
releases the ball with arm outstretched in front of him. The
total work done on the ball will be equal to the kinctic
encrgy (1 mv?) acquired by the ball, a result known as the

work-energy principle.

i
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Work and Energy

CHAFPTER-OPENING QUESTION —Guess now!
You push very hard on a heavy desk, trying 1o move it. You do work on the desk:
{a) Whether or not it moves, as long as you arc exerting a force.
(b} Omly if i starls moving.
(e} Omly if it doesn’t move.
id) Never—it does work on you.
(e} None of the above.

ntil now we have been studying the translational motion of an object in
terms of Newton's three laws of motion. In that analysis, force has
plaved a central role as the quantity determining the motion. In this
Chapter and the two that follow, we discuss an alternative analysis of e
the translational motion of objects in terms of the quantities emergy and - mﬁ“‘"ﬂ X0
momentum. The significance of energy and momentum is that they are conserved. 7-3 Work Doae by & Varying
In quite general circumstances they remain constant. That conserved quantitics Foroe
cxisl gives us nol only a decper insight into the nature of the world but also gives 7—4 Kinetic Encrgy and the
us another way o approach solving practical problems. Work-Energy Principle

The conservation laws of encrgy and momentum are especially valuable in
dealing with systems of many objects, in which a detailed consideration of the
forces involved would be difficult or impossible. These laws are applicable to a
wide range of phenomena, including the atomic and subatomic worlds, where
Newton's laws cannot be applicd.

This Chapter is devoted lo the very important concepl of emergy and the
closely related concepl of work. These two guantities are scalars and so have no
direction associated with them, which ofien makes them easier 1o work with than
veclor quantities such as acceleration and force.

CONTENTS

7-1 Work Dong by a Constant
Foree

FIGURE 7-1 A person pulling a
crate along the floor, The work done
by the force Fis W = Fdcosd,
where d is the displacement.

a

/=1 Work Done by a Constant Force

The word work has a varicty of meanings in everyday language. But in physics,
work is given a very specific meaning to describe what is accomplished when a
force acts on an object, and the object moves through a distance. We consider only
translational motion for now and, unless otherwise explained, objects are assumed
to be rigid with no complicating internal motion, and can be treated like particles Then
the work done on an object by a constant force (constant in both magnitude and
direction) is defined to be the product of the magnitude of the displacement times the
component of the force parallel to the displacement. In equation form, we can wrile

where F| is the component of the constant force F parallel to the displacement d.
We can also write

W = Fdcos#, (7-1)

where F is the magnitude of the constant force, d is the magnitude of the displace-
menl of the object, and # is the angle between the directions of the force and the
displacement (Fig. 7-1). The cos @ factor a in Eq. 7-1 because Fcos@ (= F)
is the component of F that is parallel to d. Work is a scalar quantity—it has only
magnitude, which can be positive or negative.

FIGURE 7-2 The pemion does no Let us consider the case in which the motion and the force are in the same
waork on the bag of groceries since Fy direction, s0 8 = 0 and cos® = 1; in this case, W = Fd. For example, il you
is perpendicular to the displacement d, push a loaded grocery cart a distance of 50m by exerting a horizontal foree of
Fy 30N on the cart, you do 30N X 50m = 1500 N-m of work on the cart.

As this example shows, in SI units work 8 measured in newton-meters (N-m).
A special name is given to this unit, the joule (J): 1J = I N-m.

i [In the cgs system, the unit of work is called the erg and is defined as
e 1 erg = 1 dyne-cm. In British units, work is measured in foot-pounds. It is easy 10
show that 1] = 107 erg = 0.7376 ft - 1b.]

A force can be exerted on an object and yet do no work. If you hold a
heavy bag of groceries in your hands at rest, you do no work on it. You do exert a
force on the bag, but the displacement of the bag is zero, so the work done by
you on the bag is W = (0. You need both a force and a displacement to do work.
You also do no work on the bag of groceries if you carry it as you walk horizontally
across the floor at constant velocity, as shown in Fig. 7-2. No horizontal force is
required to move the bag at a constant velocity. The person shown in Fig. 7-2 does exert
an upward force Fp on the bag cqual to its weight. But this upward force is perpendicular
to the horizontal displacement of the bag and thus is doing no work. This conclusion
comes from our definition of work, Eq. 7-1: W = 0, because # = 90° and cos90° = (.
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Thus, when a particular force is perpendicular (o the displacement, no work is done
by that force. When you start or stop walking, there is a horizontal acceleration and
you do brieflly exert a horizontal force, and thus do work on the bag.

When we deal with work, as with force, it is necessary to specify whether you
are talking about work done by a specific object or done on a specific object. Itis  § CAUTION
also important to specify whether the work done is due to one particular force  Swoe thar work s done
(and which one), or the total (net) work done by the net force on the object. on or by an object

Work done on a crate. A person pulls a 50-kg crate 40 m along
a horizontal floor by a constant force F, = 100N, which acts at a 37° angle as
shown in Fig. 7-3. The Noor is smooth and exerts no friction force. Determine (a) the
work done by cach force acting on the crate, and (b) the net work done on the crate.

FIGURE 7=-3 Example 7-1.

; A 50-kg crate is pulled along a
=) smoath floor.

APPROACH We choose our coordinale system so that € can be the vector that
represents the 40-m displacement (that is, along the x axis). Three forces act on
the crate, as shown in Fig. 7-3: the force exerted by the person Fy; the gravitational
force exerted by the Earth, mg; and the normal force Fy exerted upward by the
floor. The net force on the crate is the vector sum of these three forces.

SOLUTION (a) The work done by the gravitational and normal forces is zero,
since they are perpendicular to the displacement £ (8 = %0° in Eqg. 7-1):

Wy = mgreos90)® = 0

Wy = Fros® = 0.

The work done by By is 185/1322

W = Fexcosd = (100N){40m)cos37" = 32001J.

(b) The net work can be calculated in two equivalent ways:
(1) The net work done on an object is the algebraic sum of the work done by
each force, since work is a scalar:

wm=w“+“'r~+ “'rr
0 4+ 0 <+ 3200] = IFN0].

(2) The net work can also be calculated by first determining the net force on the
object and then taking its component along the displacement: (F,,), = Fpcosé.
Then the net work is

Wor = (Foa)ex = (Fpoosf)x
= (100N){cos37")(40m) = 3200J.
In the vertical (¥} direction, there is no displacement and no work done.

EXERCISE A A box is dragged a distance d across a floor by a force Fp which makes an angle &
with the hortzontal as in Fig. 7-1 or 7-3, If the magnitude of Fp is held constant but the angle 8
is increased, the work done by Fp (a) remains the same: (b) increases; (¢) decreases;
{d) Mirst increases, ithen decreases.

EXERCISE B Reium io the Chapier-Opening Question, page 163, and answer it again now. Try
to explain why you may have answered differently the Mirst time.
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s O LV,
¥
» work ¢
I. Draw a free-bady diagram showing all the forces 4 Find the work done by a specilic foree on the object
acting on the object you choose 1o study. by using W = Fdcos@ for a constant force. Note

2. Choose an xy coordinate system. If the object is in that the work done is negative when a force tends to
motion, it may be convenient to choose one of the opposc the displacement.
coordinate directions as the direction of one of the & To find the net work done on the object, either
forces, or as the direction of motion. [Thus, for an (@) find the work done by each force and add the
object on an mcline, you might choose one coordi- resulls algebraically; or (b) find the net force on

&
!
=
=
o
=

nate axis to be parallel to the incline.] the object, Foy, and then use it to find the net work
3. Apply Newiton's laws o determine any unknown done, which for constant net force is:
forces. W = Fadcosé.

Work on a backpack. (a) Determine the work a hiker must
do on a 15.0-kg backpack to carry it up a hill of height h = 10.0m, as shown in
FIGURE 7-4 Example 7-2. Fig. 7-4a. Determine also (b) the work done by gravity on the backpack, and
(€) the net work done onm the backpack. For simplicity, assume the motion is
smooth and at constant velocity (i.e., acceleration is zero).

APPROACH We cxplicitly follow the steps of the Problem Solving Strategy above.

SOLUTION

L. Draw a free-body diagram. The forces on thl:hc:pu:t are shown in Fig. 7-4b:
the force of gravity, mg, acting downward; and Fy;, the force the hiker must
exert upward to support the backpack. The acceleration is zero, so horizontal
forces on the backpack are negligible.

L Choose a coordinate system. We are interesied in the vertical motion of the
backpack, so we choose the y coordinate as positive vertically upward.

1 Apply Newion's laws. Newilon's second law applied in the vertical direction 1o

the backpack gives
LFy, = ma,
Fa—mg =0

since ay = 0. Hence,
Fy = mg = (150kg)(9.80m/s’) = 147N.

i 4. Work done by a specific force. (a) To calculate the work done by the hiker on
the backpack, we write Eq. 7-1 as
(b) Wa = Fyldcos@),

and we note from Fig. 7-4a that dcosf = h. 50 the work done by the hiker s
Wy = Fyldcos®) = Fyh = mgh
= (147N)(100m) = 1470),
Mote that the work done depends only on the change in elevation and not on

the angle of the hill, 8. The hiker would do the same work to hift the pack
vertically the same height h.

(b) The work done by gravity on the backpack is (from Eq. 7-1 and Fig. 7-4¢)
W, = F,dcos(180° — @).
Since cos(180° — @) = —cos®, we have

(c) W = Fgd(—cos8) = mg(—dcos@)
= =mgh
- = —(15.0kg)(9.80m/s')(10.0m) = —1470J.
" |PROBLEM SOLVING NOTE The work done by gravity (which is negative here) doesn't depend on the

Wirrk dowe by gratity depenads on lﬂ’k of the mw on the vertical M‘*ﬂhl-’l of the hill. This s because Efl"l"ﬂf acls

the hetgpht of the hill and vertically, so only the vertical component of displacement contributes o work done.

ot o the angie of mcline | 5 Net work dome. (c) The net work done on the backpack is W, = 0, since the

nel force on the backpack is zero (it is assumed nol to accelerate significantly).

We can also determine the net work done by adding the work done by each force:

Woero = Wo + Wy, = —1470J + 1470] = 0.

MOTE Even though the met work done by all the forces on the backpack is zero,
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CONCEPTUAL EXAMPLE 7-3 | Does the Earth do work on the Moon? The
Moon revolves around the Earth in a nearly circular orbit, with approximately constant
tangential speed, kept there by the gravilational force exerted by the Earth. Does
gravity do (a) positive work, (#) negative work, or (¢) no work at all on the Moon?

RESPONSE The gravitational force Fi; on the Moon (Fig. 7-5) acts toward the Earth
and provides its centripetal force, inward along the radius of the Moon's orbit. The
Moon's displacement at any moment is tangent to the circle, in the direction of its
velocity, perpendicular to the radius and perpendicular to the force of gravity.
Hence the angle @ between the force F;; and the instantaneous displacement of
the Moon is 90°, and the work done by gravity is therefore zero (cos 90" = 0).
This is why the Moon, as well as artificial satellites, can stay in orbit without
expenditure of fuel: no work needs to be done against the force of gravity.

i
FIGURE 7-5 Exampile 7-3.

/-2 Scalar Product of Two Vectors

Although work is a scalar, it involves the product of two guantities, force and
displacement, both of which are vectors Therefore, we now investigate the
multiplication of vectors, which will be useful throughout the book, and apply it
o work.

Because vectors have direction as well as magnitude, they cannot be
multiplied in the same way that scalars are. Insicad we must define what the
operation of vector multiplication means. Among the possible ways to define
how to multiply vectors, there are three ways that we find useful in physies:
(1) multiplication of a vector by a scalar, which was discussed in Section 3-3;
{2) multiplication of one vector by a second veclor to produce a scalar;
{3) multiplication of one vector by a second vector to produce another vector.
The third type, called the vector product, will be discussed later, in Section 11-2.

We now discuss the second type, called the scalar product, or dot product
(because a dot is used to indicate the multiplication). If we have two vectors, A
and H, then their sealar (or dot) product is defined o be

AB = ABcosd, (7-2)

where A and B are the magnitudes of the vectors and # is the angle (< 180°)
between them when their tails touch, Fig. 7-6. Since A, B, and cos @ are scalars, FIGURE 7-6 The scalar product, or
then so is the scalar product A - B (read “A dot B"), dot product, of two vectors A and B
This definition, Eq. 7-2, fits perfectly with our definition of the work done by = AB= .-l.ﬂ'i_:nli.'l'hc scalar
a constant force, Eq. 7-1. That is, we can write the work done by a constant force  Product can be interpreted as the
as the scalar product of force and displacement: Sagaiiucie of one wecior (I i this
case ) times the projection of the

We=F4d= Ficous (7-3)  Other vector, A cos d, onto B,

Indeed, the definition of scalar product, Eq. 7-2, is so chosen because many physically
imporiani quantities, such as work {and others we will meet later), can be described
as the scalar product of two vectors.

An equivalent definition of the scalar product is that it is the product of the
magnitude of one vector (say &) and the component (or projection) of the other
vecior along the direction of the first [ A cos @). See Fig. 7-6.

Since A, B, and cos @ are scalars, it doesn't matter in what order they are
multiplied. Hence the scalar product is commuiative:

A-B =B A [commutative property)
It is also easy to show that it is distributive (sec Problem 33 for the proof):
A(B+C) = A-B+A-C [distributive property]
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Let us write our vectors A and B in terms of their rectangular components
using unit vectors (Section 3-5, Eq. 3-5) as

A=Al+AJ+ Ak
8 = B, + 8] + B,k

We will take the scalar product, & - B, of these two vectors, remembering that the
unit veetors, 1, ]. and k, are perpendicular to each other

Ped=joj=kek=1
(o] = 1k =] =0
Thus the scalar product equals
KB = (4,0 + A+ ak) (B + 8]+ B.K)
= A B, + A B, + A,B,. (1-4)

Equation 7-4 is very useful.

If A is perpendicular 1o B, then Eq. 7-2 el us A - B = ABcos % = 0. But
the converse, given that A - B = 0, can come about in three different ways:
A=0,8=0 orALE

FIGURE 7=T Example 7-4, Work
done by a foree By acting a1 an angle @
to the ground is W = Fp - d.

IEITTTEEN Using the dot product. The force shown in Fig. 7-7 has
magnitude F = 20N and makes an angle of 307 to the ground. Calculate the
work done by this force using Eq. 7-4 when the wagon is dragged 100m along
the ground.

APPROACH We choose the x axis horizontal 1o the right and the y axis vertically
upward, and write Fy and d in terms of unit vectors.
SOLUTION

B = i+ FJ = (Fcos30°)i + (Fesin30?)j = (17N)i + (10N)],
whereas d = (100m)i. Then, using Eq. 7-4,
W = Fpo+d = (17N){(100m) + (10N)(0) + (0)(0) = 1700J.

Note that by choosing the x axis along d we simplified the calculation because d
then has only one component.

7-3 Work Done by a Varying Force

Il the force acling on an object i8 constant, the work done by thal force
can be calculated using Eq. 7-1. In many cases, however, the force varics in
magnitlude or direction during a process. For example, as a rockel moves
away from Earth, work is done to overcome the force of gravity, which
varics as the inverse square of the distance from the Earth's cenler. Other
examples are the force exerted by a spring, which increases with the amount of
stretch, or the work done by a varying force exerted to pull a box or cart up an
uneven hill.
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Figure 7-8 shows the path of an object in the xy planc as it moves [rom
point a to point b. The path has been divided into short intervals each of
length Af, AL,,..., AL. A force F acts at each point on the path, and is
indicated at two points as F, and F,. During each small interval Af, the force is
approximately constant. For the first interval, the force docs work AW of
approximately (see¢ Eg. 7-1)

AW = F cos®Al,.
In the second interval the work done is approximately F;cos @ AL, and so on. The
total work done in moving the particle the total distance [ = AL + AL + ... + AL,
is the sum of all these terms:
7
W= ZF.WEE' Al (7-5)

We can examine this graphically by plotting Fcos#® versus the distance
along the path as shown in Fig. 7-%a. The distance f has been subdivided
into the same seven intervals (sec the vertical dashed lines). The value of

FIGURE 7-8 A particle acted on
by o variable force, F, moves along
the path shown from point a to point b,

FIGURE 7-9 Work done by a
force F is {a) approximately equal 1o

Feosf at the center of each interval is indicated by the horizomtal dashed  the sum of the arcas of the
lines. Each of the shaded rectangles has an arca (F cos@)(AL), which is a good  rectangles. (b) exactly equal to the
estimate of the work done during the interval. The cstimate of the work done along ~ 97ea under the curve of Feos@vs. L
the entire path given by Eq. 7-5, equals the sum of the areas of all the reclangles 300
If we subdivide the distance into a greater number of intervals, so that each AL is
smaller, the estimate of the work done becomes more accurate (the assumption that F = T Fyom®
is constant over each interval is more accurate). Letting each AL, approach zero (so we E 200
approach an infinite number of intervals), we obtain an exact result for the work done: ﬁ 1 89/1322
b E | }
W = :H'Eu ZFcosf Al = [ Fcos B dl. (7-6)
This limit as Af; — 0 is the infegral of (F cos@ di) from point a to point b. The 0" lﬂlulu!qﬂ_,_unmh_
symbol for the integral, _f, is an elongated S to indicate an infinite sum; and Af has {a) Diistance,

been replaced by df, meaning an infinitesimal distance. [We also discussed this in
the optional Section 2-9. |

In this limit as Al approaches zero, the total area of the rectangles (Fig. 7-%a)
approaches the area between the (F cosf) curve and the ! axis from a to b as
shown shaded in Fig. 7-9b. That is. the work done by a variable force in moving
an object befween hwo points is equal o the area under the (F cos 8) versus () curve
henween those fwo points, i

In the limit as AF approaches zero, the infinitesimal distance df equals i
the magnitude of the infinitesimal displacement vector df. The direction of I
the vector dif is along the tangent to the path at that point, so @ 15 the angle 1] a
between F and df a1 any point. Thus we can rewrite Eq. 7-6, using dot-product k)
notation:

b

w=[#a -7
L]

This is a gemeral definiion of work. In this equation, a and b represent

two paints in space, (x,, ¥, Z,) and (xy, ¥y, 2y). The integral in Eq. 7-7 is called a

line integral since it is the integral of F cos @ along the line that represents the path

of the object. (Equation 7-1 for a constanl force is a special case of Eq. 7-7.)
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In rectangular coordinates, any force can be written
F=Fi+ Fi+ Fk
und the displacement di is
dl = dxl + dy] + dzk
Then the work done can be wrilien

ry s o
W= J.F,d.t+ Jﬁ.dy+ J.ﬁd:.
Xy ¥ Zu

To actually use Eq. 7-6 or 7-7 to calculate the work, there are several options:
(1) If Fecos® is known as a function of position, a graph like that of Fig. 7-9b can
be made and the area determined graphically. (2) Another possibility is 1o use
numerical integration (numerical summing), perhaps with the aid of a computer or
calculator. (3) A third possibility is to use the analytical methods of inlegral
calculus, when it is doable. To do so, we must be able to write F as a function of
position, F(x, v, z), and we must know the path. Let's look at some specific examples.

x=0
k,‘,r’lfl' ‘.,a"ﬂ Work Done by a Spring Force

! Let us determine the work needed 1o stretch or compress a coiled spring, such as

{a) Unstreiched 1 that shown in Fig. 7-10. For a person to hold a spring either streiched or
! compressed an amount x from its normal (relaxed) length requires a force F; that
I is directly proportional to x. That is,
I

M‘*ﬁ F 5 = kx,
R

where k is a constant, called the spring constant (or spring stiffness constant), and is

———

(b} Stretched a measure of the stiffness of the particular spring. The spring itself exerts a force in
—x— the opposite direction (Fig. 7-10b or ¢):

g.;u E.’ K = -k (7-8)

I Igp q 5 This force is sometimes called a “restoring force™ because the spring exerts

its force in the direction opposite the displacement (hence the minus sign),

{c) Compressed and thus acts to return the spring to its normal length. Equation 7-8 is known

FIGURE 7-10 (a) Spring in normal
[unstretched) position. (b) Spring is
stretched by a person exerting o
force Fp to the right (positive
direction). The spring pulls back
with a force i,whert Fg = —kx.
{c) Person compresses the spring

{x = 0}, and the spring pushes back
with & foree Fy = —kx where

Fy > D because x < 0.

FIGURE 7=11 Work done 1o
stretch & spring a distance r equals
the iriangular area under the
curve F = kx. The ared of a
trinngle i 1 % base x altflude,

so W = |{x)(kx) = Jks2,

F

&
i
i

e x

as the spring equation or Hooke's law, and is accurate for springs as long as x is
not too great (see Section 12-4) and no permanent deformation occurs.

Let us calculate the work a person does to stretch (or compress) a spring
from its normal (unstretched) length, x, =0, to an extra length, 1, = x.
We assume the streiching is done slowly, so that the acceleration is essentially
zero. The force B, is exerted parallel to the axis of the spring, along the r axis,
so Fp and df are parallel. Hence, since df = dxi in this case, the work done by
the person is'

&
= Llkx.
]

Tg=X I x
W = J[ﬁ.{:}l]-[mi] - Lﬁ.{;m = Lk.rd.: = Lk

Eg=lF

(As is frequently done, we have used x to represent both the variable ol integra-
tion, and the particular value of x al the end of the interval x, = 0 10 x, = x.)
Thus we see that the work needed is proportional to the sguare of the distance
stretched (or compressed), x.

This same result can be obained by computing the area under the graph of Fvs x
(with cos@ = 1 in this case) as shown in Fig. 7-11. Since the area is a triangle of
altitude kx and basc x, the work a person does to stretch or compress a spring an
amount x is

W = §(x)(kx) = bk,

which is the same result as before. Because W oo x?, it takes the same amount of
work to stretch a spring or compress it the same amount x.

"See the Table of Integrals, Appendiz B.
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Work done on a spring. (a) A person pulls on the spring in

Fig. 7-10, stretching it 3.0cm, which requires a maximum force of 73 N. How

much work does the person do? (b) IL insiead, the person compresses the
sorine Y0 em how much work does the aerson do™



Work done on a spring. (a) A person pulls on the spring in
Fig. 7-10, stretching it 3.0cm, which requires a maximum force of 75 N. How
much work does the person do? (b) I insiead, the person compresses the
spring 3.0 cm, how much work does the person do?

APPROACH The force F = kx holds at each point, including xp.,. Hence Fo,,
occurs al X = Xg,,.

SOLUTION (@) First we need to calculate the spring constant k:

k_F,.“_ TSN

N R A 2.5 % 10° N/m.

Then the work done by the person on the spring is
W = Lkxi,, = }(25 x 10°N/m)(0.030m)’ = 1L1J.

(b) The [orce that the person exerts is still F = kx, though now both x and Fp
are negative (x is positive o the right). The work done is

= =00 m T=—{10%m AL i
Wy = [ Fe(x)dx = [k.:d.r = kg

H=l 8

= 1(25 x 10°N/m)(=0.030m)* = 1.1],

which is the same as for stretching i

NOTE We cannot use W = Fd (Eq. 7-1) for a spring because the force is not
constant.

A More Complex Force Law— Robot Arm
IETTITEECN Force as function of x. A robot arm that controls the

position of a video camera (Fig. 7-12) in an automated surveillance system
is manipulated by a motor thal exerts a force on the arm. The force is

given by
F(x) = Fu(t T %1—1].

x;

where Fy = 10N, x, = 0.0070m, and x is the position of the end of the
arm. If the arm moves from x, = 0010m w0 x = 0050m, how much
work did the motor do?

APPROACH The force applicd by the motor is not a linear function of x. We can
determine the integral [F(x)de, or the arca under the F(x) curve (shown in

FIGURE 7=11 Robol arm positions
a video cameri

Fig. 7-13). FIGURE 7-13 Examplc 7-6.
SOLUTION We integrate to find the work done by the motor: 00 T F (W)
xs P . Fy [*, 175+
= f(1e G)ar = mf [ va
S\ [* =£1]
1 ]
- —_— . 100 +
F"(“ "6 3 ) {
1 ?_5_'
We put in the values given and oblain 50+
(0.050m)* — (0.010m)* 251
Wy = 20N[{0.050m — 0.010m) + 3 = (.36 ).

0 001 002 003 0.04 008

SECTION 7-3 Work Done by a Varying Force 171

7—4 Kinetic Energy and the
Work-Energy Principle

Energy is one of the most important concepls in science. Yel we cannol give a
simple gencral definition of energy in only a few words Nonetheless, each specific
type of energy can be defined fairly simply. In this Chapler we define translational
kinctic energy; in the next Chapler, we take up potential energy. In later Chaplers
we will examine other types of energy, such as that related to heat (Chapters 19
and 20). The crucial aspect of all the types of energy is that the sum of all types, the
total energy, is the same after any process as it was beflore: thal is, energy s a
conserved quantity.

For the purposes of this Chapter, we can define energy in the traditional way
a8 “the ability to do work.™ This simple deflinition is not very precise, nor is it really
valid for all types of energy.’ It works, however, for mechanical energy which we
discuss in this Chapter and the next. We now define and discuss one of the basic
types of energy, kinctic energy.

A moving object can do work on another object it strikes A flving cannonball
does work on a brick wall it knocks down; a moving hammer does work on a nail
it drives inlo wood. In either case, a moving object exerts a force on a second
object which undergoes a displacement. An object in motion has the ability to do
work and thus can be said 1o have energy. The energy of motion is called kimetic
energy, [rom the Greek word kinetikos, meaning “motion.”

To obtain a quantitative definition for kinetic energy, let us consider a simple
rigid object of mass m (treated as a particle) that is moving in a siraight line with
an initial speed v,. To accelerate it uniformly to a speed vy, a constant net force
Fae is exerted on it parallel to its motion over a displacement d, Fig. 7-14.

FIGURE 7-14 A comstani nct force
Fipi aoceleraies a car from speed vy

lo speed v; over a displacement d. ¥ . v
The net wark done is Wee = Fod. ﬂ—"';_ e -"f'_"_.,f_'_,.'-.t_

Then the net work done on the object is W, = F,..d. We apply Newton's
second law, F,, = ma, and use Eq.2-12¢ (v} = v} + 2ad), which we rewrile as
v — %

53 "
where v, is the initial speed and w, the final speed. Substituting this into F,, = ma,
we determine the work done:

Woe = Faqd = mad = m(“‘%_‘”_f)d = m(ﬂi_;_t%)

2d
ar
Woer = jmd = fmui. (7-9)
We define the quantity Lme” 10 be the trunslational kinetic emergy. K, of the object:
Kinrhc energy K = i.l'ﬂ'l!lp {7=10)

{ e firmaedd ]
(We call this “translational™ kinectic encrgy to distinguish it from rotational kinetic
encrgy, which we discuss in Chapter 10.) Equation 7-9, derived here for one-
dimensional motion with a constant force, is valid in general for translational
motion of an object in three dimensions and even if the force varies, as we will
show al the end of this Section,

'Encrgy associnted with heat is often not available to do work, as we will discuss in Chapter 20,
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We can rewrile Eq. 7-9 as:

Wor = K; - K|
or

Woee = AK = {mel — jmol. (7-11) | WORK-ENERGY PRINCIPLE

Equation 7-11 (or Eq. 7-9} is a useful result known as the work-energy principle.
It can be stated in words:

The net work done on an object is equal 1o the change in the ohject’s

| WORK-ENERGY PRINCIPLI
kinetic energy.

Notice that we made use of Newton's second law, K, = ma, where F, is the ner

force—1the sum of all forces acting on the object. Thus, the work-energy principle

is valid only if W is the net work done on the object—that is, the work done by all 4§ CAUTION

forces lﬁil‘lﬂ on the l]bj-E-CL Work-erergy talid only for net work
The work-energy principle is a very useful reformulation of Newton's

laws. It tells us that if (positive) net work W is done on an object, the object’s

kinetic energy increases by an amount W. The principle also holds true for |d K
the reverse situation: il the net work W done on an object is negative, ]*
the object’s kinetic energy decrcases by an amount W. That is, a net force o 1—'*

exeried on an object opposite to the object’s direction of motion decreases its
speed and ils kinetic energy. An cxample is a moving hammer (Fig. 7-15)
striking a nail. The net force on the hammer (—F in Fig. 7-15, where F is
assumed constant for simplicity) acts toward the left, whereas the displacement d
of the hammer is loward the right. So the nel work done on the hammer,
W, = (F){d)(cos 1R0") = — Fd, is negative and the hammer’s kinetic energy
decreases {usually 1o zero).

Figure 7-15 also illustrates how energy can be considered the ability to
do work. The hammer, as it slows down, does positive work on the nail: FIGURE 7-15 A moving hammer
W, = (+F)(+d)(cos0*) = Fd and is positive. The decrease in kinetic energy of  5trikes a nail and comes to rest. The
the hammer (= Fd by Eq. 7-11) is equal to the work the hammer can do on m‘m 'ffﬂ;'_': 'F_,_"f'" m;:"ﬂ‘
another ohject, the nail in this case. sl T" . thi:d Inm The

The translational kinetic energy (= jmv’) is directly proportional 1o the mass mﬁ":ﬂ: m“;: :nﬂ i Ih:!'
of the object, and it is also proportional to the square of the speed. Thus, if the hammer is positive (W, = Fd > 0).
mass is doubled, the kinetic energy is doubled. But il the speed is doubled, the  The work done on the hammer by
object has four times as much kinetic energy and is therefore capable of doing four  he nail is negative (W, = —Fd).
times as much work.

Because of the direct connection between work and kinetic energy, energy is
measured in the same units as work: joules in 51 units, [The energy unit s ergs in
the cgs, and foot-pounds in the British system.] Like work, kinetic energy is a
scalar quantily. The kinetic energy of a group of objects is the sum of the kinetic
energies of the individual objects.

The work-energy principle can be applied to a particle, and also to an object
that can be approximated as a particle, such as an object that is rigid or whose
internal motions are insignificant. It is very useful in simple situations, as we will
seg in the Examples below. The work-energy principle is not as powerful and
encompassing as the law of conservation of energy which we treat in the next
Chapter, and should not itself be considered a statement of energy conservation.

Kinetic energy and work done on a baseball. A 145-g basehall
is thrown so that it acquires a speed of 25 m/s. (a) What is its kinetic energy?
(H) What was the net work done on the ball to make it reach this speed, if it started
from rest?

APPROACH We use K = im’, and the work-energy principle, Eq. 7-11.
SOLUTION (a) The kinetic energy of the ball after the throw is

K = imv' = 3(0.145kg)(25m/s)* = 45].

(b) Since the initial kinetic energy was zero. the net work done is just equal to the
final kinetic energy, 45 1.

hammet) (on nail)
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Work on a car, o increase its kinetic energy.

¢ = 20 mis - = 30 nifs How much net work is required to accelerate a 1000-kg car from 20 m/s to 30 m/s
- (Fig. 7-16)?

SBe- S=Bs APPROACH A car is a complex system. The engine turns the wheels and tires

FIGURE 7-16 Example 7-8. which push against the ground, and the ground pushes back (see Example 4—4).

We aren’l interested right now in those complications. Instead, we can gel a
uscful result using the work-cnergy prinaple, but only if we model the car as a
particle or simple rigid object.
SOLUTION The net work needed is equal to the increase in kinetic energy:

W = K; - K, = jmv] - {mm]

= $(1000kg)(30m/s)® — ;(1000kg)(20m/s)’ = 2.5 x 10°J.

EXERCISE C (o) Make a guess: will the work needed 1o accelerate the car in Example 7-8
from rest (o 20m/s be more than, less than, or equal 1o the work already calculated 1o
gccelerate it from 20my's to 30m/s7? (b} Make the calculation.

¥y = 60 km/h b=
qﬂ_- 1"'-'-.5 5
F
FIGURE 7-17 Example7-9, d id = M)
iy = | 20 kmih w0
:'_ -
FI I 3&_
(k) did="

[ CONCEFTUAL EXAMPLE 7-9 | Work to stop a car. A car traveling 60 km/h
can brake to a stop within a distance d of 20m (Fig. 7-17a). Il the car is going twice
as fast, 120 km/h, what is its stopping distance (Fig. 7-17b)? Assume the maximum
braking force is approximately independent of speed.

RESPONSE Again we model the car as if it were a particle. Because the net
stopping force F is approximately constant, the work needed to stop the car, Fd, is
proportional to the distance traveled. We apply the work-energy principle, noting
that ¥ and d are in opposite directions and that the final speed of the car is zero:

Woo = Fdcos180° = —Fd.
Then

-Fd = AK = {md — 1mod

= 0 - imvl.

Thus, since the force and mass are constant, we sce that the stopping distance, d,

(D) PHYSICS APPLIED increases with the square of the speed:

Cary sopping distance d o .

mifhiad spreid vowared
T r—— If the car’s initia] speed is doubled, the stopping distance is (2)° = 4 times as
great, or 80 m.

| EXERCISE D Can kinetic energy ever be negative?

EXERCISE E (a) If the kinctic encrgy of an arrow is doubled, by what factor has its speed
increased? (b) If its speed is doubled, by what lactor does its kinetic energy increase?
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A compressed spring. A horizontal spring has spring

constant k = 360 N/m. (a) How much work is required 1o compress it from its
uncompressed length (x = 0} to x = 11.0cm? (b) If a 1.85-kg block is placed
against the spring and the spring is released, what will be the speed of the block
when it separates from the spring at x = 07 Ignore fnction. (¢) Repeat part (b)
but assume that the block 15 moving on a table as in Fig. 7-18 and that some kind
of conslant drag force F, = TON is acting to slow il down, such as friction

(or perhaps your finger).

FIGURE 7-18 Example 7-10.

APPROACH We use our result from Section 7-3 that the net work, W, needed Lo
stretch or compress a spring by a distance x is W = ikx’. In (b) and (¢) we use
the work-energy principle.

SOLUTION (a) The work needed 1o compress the spring a distance x = 0.110m is

W = {{3I60N/m)(0.110m)* = 2.18),

where we have converted all units 1o S1.

(b) In returning to its uncompressed length, the spring does 218 of work on the
block (same calculation as in part (@), only in reverse). According to the work-energy
principle, the block scquires kinetic energy of 2,181 Since K = {mn?, the block's

speed must be

[2K
B = R
i
2(2181)
v L5Eg = 1S4/

(c) There are two forces on Lthe block: that exerted by the spring and that exerted
by the drag foree, F,,. Work done by a force such as friction is complicated. For one
thing, heat {or, rather, “thermal energy™) is produced—iry rubbing your hands
together. Nonetheless, the product By, + d for the drag force, even when it is
friction, can be used in lhe work-energy principle to give correct results for a
particle-like object. The spring does 2,18 ) of work on the block. The work done
by the friction or drag force on the block, in the negative x direction, is

Wp = —Fpx = —(70N)(0.110m) = —0.77J.

This work is negative because the drag force acts in the direction opposite to the
displacement x. The net work done on the block is W, = 2.18] — 0.77] = 141 1.
From the work-energy principle, Eq. 7-11 (with © = v and v, = 0), we have

2Woar
m

" \[ﬁTT_"ﬁ .
1.BS kg

for the block's speed at the moment it separates from the spring (x = 0).

1.23m/s
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General Derivation of the Wurl:-Enerm.r Pﬂnd&

We derived the work-energy principle, Eq. 7-11, for motion in one dimension with
a constant force. [t is valid even if the force is variable and the motion is in two or
three dimensions, as we now show. Suppose the net force F,, on a particle varies in
both magnitude and direction, and the path of the particle is a curve as in Fig. 7-8.
The net force may be considered 1o be a function of I, the distance along the curve.
The net work done is (Eq. 7-6):

W = Jr_l-.ﬂ = [F...:mﬂ'dl = [.u;.u.

FIGURE 7-8 (repeated) where F represents the component of the net foree parallel to the curve at any point.
A particle acted on by a variable By Newton's second law,
force F, moves along the path shown e
from point & to paing b, F = may = m—

]
where a,, the component of a parallel 1o the curve al any poinl, is equal 1o the rate
of change of speed, dv/di. We can think of v as a function of {, and using the chain
rule for derivatives, we have

dv duv di dv
Rl b
since df/df is the speed . Thus (letting 1 and 2 refer to the initial and final quantitics,
respoctively):
' dv r dv
]

i
Woer = Jﬁ#=]m;dﬁ= my—dl =
I i

df
which integrates to
Woe = imrd — fmv] = AK.
This is again the work-energy principle, which we have now derived for motion in
three dimensions with a variable net force, using the definitions of work and
kinetic energy plus Newton's second law.

Notice in this derivation that only the component of F,, parallel to the
motion, F;, contributes to the work. Indeed, a force (or component of a foree)
acting perpendicular to the velocity vector does no work. Such a foree changes
only the direction of the velocity. It does nol affect the magnitude of the velocity.
One example of this is uniform circular motion in which an object moving with
constant speed in a circle has a (“centripetal”) force acting on it toward the center of
the circle. This force does no work on the object, because (as we saw in Example 7-3)
it is always perpendicular to the object’s displacement df,

[
1

| Summary

Work is done on an object by a foree when the object moves
through & distance, 4. The work W done by a constani force F on
mnhhﬂthmprﬂﬁmnhmmhy-dhphmmlhﬂmhy
W = Fdeost = F-d, (7-1,7-3)
where @ is the angle between F and d.
'ﬂ:lﬂl::prnn'uu:'unllndth:mlupind‘nutgl"mdi.
Inn:nrnl.lhtmhpnhﬂulmrlwﬁnnhlndih
defined as

A-B = ABcosd (7=-2)
where @ is the angle between A and B. In rectangular coordi-
nates we can also write

A-B = A By + AyBy + ALB;. (7T-4)
The work W done by a variable force F on an object that
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moves from point & to point b is
L] k
W= Jldl = f.“ml.ﬂ, (7-7

where di represents an infinitesimal displacement along the
path of the object and # is the angle between 4f and F at each
point af the object’s path.

The translationnl kinetic emerygy, K. of an object of mass m
moving with speed v is defined to be

K = lme. (7-10)
The wark-energy principle states that the net work done on an
object by the net resultant force is equal to the change in kinetic
encrgy of the object:

Wo = AK = imed — imvi. {7-11)



