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Polynomial Arithmetic

111:  x2 + x + 1=1.x2 + 1.x1 + 1.x0

101:  x2 + 1=1.x2 +0. x1+ 1. x0

011:  0.x2 + 1.x1 + 1.x0

This ploy of representing a bit pattern with a polynomial 
will allow us to create a finite field with bit patterns.

In general, 

anxn + an−1xn−1 + ...... + a1x + a0

Coefficients a0, a1, ...., an are drawn from some 
designated set S. S is called the coefficient set.

When an an≠ 0, we have a polynomial of degree n.



• A zeroth-degree polynomial is called a constant 
polynomial.

• Polynomial arithmetic deals with the addition, 
subtraction, multiplication, and division of 
polynomials.

• Note that we have no interest in evaluating the 
value of a polynomial for any value of the 
variable x.

Polynomial Arithmetic



Arithmetic Operations on Polynomials



Arithmetic Operations on Polynomials

Let’s say we want to divide the polynomial 
8x2 + 3x + 2 by the polynomial 2x + 1:



Arithmetic Operations on Polynomials 
Whose Coefficients Belong to a Finite Field

Let’s consider the set of all polynomials whose 
coefficients belong to the finite field Z7





Dividing Polynomials Defined Over a Finite Field

We say that a polynomial is defined over a field 
(polynomial over a field) if all its coefficients 
are drawn from the field. 

Let’s now consider polynomials defined over 
GF(2) or Z2= {0, 1}. Note that the 2 is the first 
prime. 

Note: addition is XOR, multiply is AND



Arithmetic Operations On Polynomials Over GF(2)



Arithmetic Operations On Polynomials Over GF(2)



Polynomials Over a Field Constitute a Ring
• The group operator is polynomial addition. Zp

• The polynomial 0 is the identity element with respect to 
polynomial addition.

• Polynomial addition is associative and commutative.

• The set of all polynomials over a given field is closed under 
polynomial addition.

• Polynomial multiplication distributes over polynomial 
addition.

• Polynomial multiplication is associative.

Therefore, the set of all polynomials over a field constitutes a 
ring. Such a ring is also called the polynomial ring. 



Polynomials Over a Field Constitute a Ring
• Since polynomial multiplication is commutative, the set of 

polynomials over a field is actually a commutative ring.

• In general, for polynomials defined over a field, the division 
of a polynomial f(x) of degree m by another polynomial g(x) 
of degree n ≤ m can be expressed by

• When r(x) is zero, we say that g(x) divides f(x) that is 
g(x)|f(x).



Irreducible Polynomials – Prime Polynomials

• When g(x) divides f(x) without leaving a remainder, we say 
g(x) is a factor of f(x).

• A polynomial f(x) over a field F is called irreducible if f(x) 
cannot be expressed as a product of two polynomials, both 
over F and both of degree lower than that of f(x).

• An irreducible polynomial is also referred to as a prime 
polynomial.



Example of Modular Polynomial Arithmetic in 
GF(23)



How large is the set of polynomials when 
multiplications are carried out modulo x3 + x + 1?

With multiplications modulo x3 + x + 1, we have only the 
following eight polynomials in the set of polynomials over 
GF(23):

0
1
x
x2

x + 1
x2 + 1
x2 + x
x2 + x + 1



How large is the set of polynomials when 
multiplications are carried out modulo x3 + x + 1?

this set as GF(23) where the exponent of 2 (which in this case 
is 3) is the degree of the modulus polynomial.



GF(23) is a Finite Field?
• GF(23) is an abelian group under the operation of 

polynomial addition.

• GF(23) is also a commutative ring.

• GF(23) is an integral domain because of the fact that the 
set contains the multiplicative identity element 1 and 
because if for a ∈ GF(23) and b ∈ GF(23) we have

a × b = 0 mod (x3 + x + 1)
then either a = 0 or b = 0.

• GF(23) is a finite field because it is a finite set and 
because it contains a unique multiplicative inverse for 
every non-zero element.



GF(23) is a Finite Field?
• GF(23) contains a unique multiplicative inverse 

for every non-zero element.

• Therefore, GF(23) is a finite field.

• GF(2n) is a finite field for every n.

• AES arithmetic is based on GF(28). It uses the 
following irreducible polynomial

x8 + x4 + x3 + x + 1
• AES obviously contains 256 distinct polynomials.



Representing the Individual Polynomials 
in GF(2n) by Binary Code Words

• Think of the polynomials as bit strings



GF(2n):

Addition is XOR

The bitwise operations needed to directly
multiply two bit patterns are specific to the 
irreducible polynomial that defines a given 
GF(2n).



• Subtraction is the same as addition in GF(28).
[Each “number” is its own additive inverse in GF(28).]

• The order of a finite field refers to the number of 
elements in the field. So the order of GF(2n) is 2n.



Direct Bitwise Operations for
Multiplications in GF(28)

• In AES, this field is derived using the 
following irreducible polynomial of degree 8:

m(x) = x8 + x4 + x3 + x + 1
• Note: in GF(28):

x8 mod m(x) = x4 + x3 + x + 1





Summary of How a Multiplication is 
Carried out in GF(28)

• Multiply B with 00000001: do nothing
• Multiply B with 00000010:

– If B’s MSB is 0: left shift B by 1 bit
– If B’s MSB is 1: left shift B by 1 bit then XOR it with 

00011011
• Multiply B with 00000100: do the above twice and so on
• Example:
B × 10000011
= B × (00000001 + 00000010 + 10000000)
= (B × 00000001) + (B × 00000010) + (B × 10000000)
= (B × 00000001) ⊗ (B × 00000010) ⊗ (B × 10000000)



• 10000000   mod   100011011 = 10000011

• 10010101   mod   100011011 = 10001010

Multiplicative Inverses in GF(28)



Multiplicative Inverses in GF(23)

Additive 
Inverse

Multiplicative 
Inverse

000 000 -----
001 001 001
010 010 101
011 011 110
100 100 111
101 101 010
110 110 011
111 111 100

Irreducible polynomial x3 + x + 1



Using a Generator to Represent the 
Elements of GF(2n)

• If g is a generator element, then every element of 
GF(2n), except for the 0 element, can be expressed as 
some power of g.

• Example: for GF(23), Irreducible polynomial x3 + x + 1



• Note: the powers g0 through g6 of the generator element, along 
with the element 0, correspond to the eight polynomials of 
GF(23) [ note g = x]

• The higher powers of g obey the relationship gk = gk mod 7

• Since every polynomial in GF(2n) is represented by a power of 
g, multiplying any two polynomials in GF(2n) becomes trivial 
— we just have to add the exponents of g modulo (2n − 1).



If g is the generator element of a finite field of 
the form GF(2n), then all the powers of g from g0

through g2^(n)−2, along with the element 0, 
correspond to the elements of the finite field.

Using the generator notation allows the 
multiplications of the elements of the finite field 
to be carried out without reference to the 
irreducible polynomial.
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