Push Dowson Automata (PDA)
$\rightarrow A$ mathimatical model that Corresponds analograsty to CFL's That can be generated from CFG'S is Called PDA's.

Machine halt

Yes/Acapt if string accepted by PDA

No/ryjeat if string Byiected by PDA

Ex-1

$$
a^{+}=\{a, a a, a a a, \ldots-\}
$$

for string aa^{\prime}

$$
\text { a }|a| \Delta|\Delta| \Delta \mid \cdots \cdots
$$

\rightarrow impi tape
if the tape is blank, then

$$
|\Delta| \Delta|\Delta| \Delta \mid \cdots \cdots
$$

we read from left t right and right side is infinite and no back tracking is allowed here.! Then PDA would be

|rIle
JUNE 2010
Exampless of PDA's for Regular languages:-
(i) $a b^{*}=\{a, a b, a b b, a b b b, \ldots\}$

(iii) _ $(a+b)^{*}=\left\{\Lambda, a, b, a b, b_{a}, b_{b}, a a, \ldots\right\}$

Evening

JUNE						
M	T	W	T	F	S	S
	1	2	3	4	5	6
7	8	9	10	11	12	13
14	15	16	17	18	19	20
21	22	23	24	25	26	27
28	29	30				

JUNE $2010{ }^{\text {""rum" }}$
(iv) - $\varepsilon=\{a, b\}$ and $L \triangleq$ which ands with ' a '

(v)
$L \triangleq$ Contain substonin ' $a a^{\prime}$

H.W Design PDA for " $a^{n} b^{n "}$

Theorem: Every CFG has a POA
General (Construction of PDA Using CFG)
\rightarrow if a wood is generated by $C F G$, Then that urond should also be accepted by its respective PDA.

رجب
\rightarrow if a word Can not be generated by CFG Then it will be rejected by corresponding PDA

Example
02
$03 ;$ \qquad
\qquad
Evening
\qquad
30 WED
رجب 1 THURSDAY -

$$
\begin{aligned}
& S \rightarrow S B \\
& S \rightarrow A B \\
& A \rightarrow C C \\
& B \rightarrow b \\
& C \rightarrow a
\end{aligned}
$$

IT is better that youer CFG should be in CNE form, otherwise in is passibility That Sonce vieles studn or not.

The Rules folloned Duing Construclios'
\rightarrow if non-terminals on R.H.S of productuon

$$
\text { e.g } \quad N T \rightarrow N T_{1} N T_{2}
$$

\qquad $N T_{i}$
then Push on stach in Neurse direction
\rightarrow if all termesials on R.H.S of produetion e.g $N T \rightarrow T_{1} T_{2} T_{3}-T_{2}$
then Nied in forwavd divecticn'
$N T_{1} N T_{2}$ \qquad $N T_{i}^{6}$

Then Read in fasward direction $\left(T_{1} T_{2}-T_{i}\right)$ and Push $N T_{2}^{\prime \prime}, N T_{i=1}^{\prime},-N T_{1}$ in Reunse ovolev

$$
\rightarrow N T \rightarrow \frac{N T_{1} N T_{2}-N T_{2} T_{1} T_{2}-T_{2}{ }_{2}}{1}
$$

Then Push in Neverse order the nor terminals while $N T_{2}$. is Push tunce and Nead the Remaing terminals $T_{1} T_{2} T_{2}$ in farward directios.

رجب اسri
JULY 2010
Then
(i) lead $T_{1} T_{2}-T_{2}$. in farwad
(ii) Push NT's in severse while Pushed $N T_{2}$ turicaly.
(iii) Read $T_{1}^{\prime} T_{2}^{\prime}$ - T_{e}^{\prime} iu fanvard diretioni
\rightarrow Only staut. symbol 's' is fushed firi
\int Example

$$
S \rightarrow a s a / b s b / 1
$$

for 'abba'
Stach impuil Tape

Sximution of PDA
A pubhdoren automaton (PDA) is a 7 -tople $M=\left\{Q, \sum\right.$ $\left.r, \varepsilon_{0}, z_{0}, A, \delta\right)$ where
Q is a tinite set of stalis
\sum and Γ are finite sets (inpul \& stachalyhbete
q_{0}, the intial state
z_{0}, the milial stech symbol $\in \Gamma$
A, the aceapitig state

رجب اسr|r

Acceptance by a PDA
If $M=\left(Q, \Sigma, r, q_{0}, z_{0}, A, \delta\right)$ is a PDA and $x \in \Sigma^{*}, x$ i accepted by M if $\left(q_{0}, x, z_{0}\right) \mu_{M}^{*}(q, 1, \alpha)$ for some $\alpha \in r^{*}$ and some $q \in A$. (The stack may or may not be comply when x is accepted, because a may or may not be 1.) A langrage $L \leq \Sigma^{*}$ is said A be accepted by NA if L is precisely the set of strings accepted by $M . M$ This case, we wite $L=L(M)$.
 no configuration for which M has a choice of more than one move.
A langrage \angle is $D C F L$, if these is a $D P D A$ accepting L.

Sion Example:-

$$
0^{n} 1^{n} \cup 0^{n} 1^{2 n} \text { where } n \geqslant 1
$$

JULY						
M	T	W	T	F	S	S
5			1	2	3	4
12	13	7	8	9	10	11
19	15	16	17	18		
26	21	22	23	24	25	
28	29	30	31			

(1.W PDA if pessible $0^{n} 1^{n} 0^{n}$

Defn of Turring Nachine \qquad
$\xrightarrow{-}$
i-
A turing maehine ($T M$) is a $S-$ Tupple $T=\{Q, \varepsilon$, $\left.r, q_{0}, \delta\right)$, where
Q is a finite bet of states, assuned noti : contain h_{a} or h_{r}
Σ and μ are fimite set (inpui and appe alphabets)
q_{0}, the initien state

$$
\begin{aligned}
\text { s: } Q \times(\Gamma \cup\{\Delta\}) \rightarrow & \left(Q \cup\left\{h_{0}, h_{r}\right\}\right) \times(\operatorname{rU}\{\Delta\}) \\
& \times\{R, L, s\} \text { is a pertinal }
\end{aligned}
$$

