Given $P Q \in Q$. Then
\rightarrow if $p=f \& q \neq f \Rightarrow p \& q$ are distinguishable and we Can not marge them.
\rightarrow if (P, Q) are non-dislingrestiable, then they Can be merged, means both stoned be final states or mon-finial: States

Example 1 (DFA Minimization')

Then me build a N XN step Table

Ste

$$
\begin{aligned}
& (B, D) \cong(D, B) \\
& \therefore(A A) \cong A
\end{aligned}
$$

So, meven'reed the Crossed portion of the table

Hence the nest of they table becomes

By applying the Concept, the step table of figs beconis

[step.): we marked the cells with X^{0} which can not be merged as per rules of equivalence of states Since the cells are marked in step 0 , so me need another Elevation to market call further.
(ste pA):

$$
\begin{aligned}
& \delta[(A, D), O]=(B, D)=? \\
& \delta[(A, D), D]=(C, D)=? \\
& \delta[(A, C), 0]=(B, E)=x_{1} \\
& \delta[(A, C), 1]=(C, D)=? \\
& \delta[(A, B), O]=(B, E)=x^{\prime} \\
& \delta[(A, B), D]=(C, D)=?
\end{aligned}
$$

جrrisishich
APRIL 2010

$$
\begin{aligned}
& \delta[(B, D), 0]=(E, D)=x^{\prime} \\
& \delta[(B, D), 1]=(D, D)=? \\
& \delta[(B, C), 0]=(E, F)=? \\
& \delta[(B, C), 1]=(D, D)=? \\
& \delta[(C, D)=0]=(F, D)=x^{\prime} \\
& \delta[(C, D), 1]=(D, D)=? \\
& \delta[(E, F), 0]=(E, F)=? \\
& \delta[(E, F), 1]=(E, F)=?
\end{aligned}
$$

Since cells are again marked in step 1, so we 21 WEDNESDAY
(step in:

$$
\begin{aligned}
& \delta((A, D), O]=(B, D)=X^{2} \\
& \delta[(A, D), i]=(C, D)=X^{2} \\
& \delta[(B C), D]=(E, F)=? \\
& \delta[(B, C), 1]=(D, D)=? \\
& \delta[(E, F), O]=(E, F)=? \\
& \delta[(E, F), 1]=(E, F)=?
\end{aligned}
$$

Since cells are marked again, so we need another
-tevaticn
[step 3): $\quad \delta[(B, C), 0]=(E, E)=$?

$$
\begin{aligned}
& \delta[(B, C), 1]=(D, D)=? \\
& \delta[(E, F), 0]=(E, F)=? \\
& \delta[(E, F), 1]=(E, F)=?
\end{aligned}
$$

Tivaloni stops here, since no ar cell is marked in step's and (B, C) cd ($E, F)$ are remand as unmarked cells, so we Can merge them and final minimized DFA is as below.

Example 2

from Book
Solve II in class's

جمادى الاول|r"ب|
APRLL 2010
APRIL

M	T	W	T	F	S	S
5	6	7	1	2	3	8
12	6	7	8	9	10	4
19	14	15	16	17	18	
19	20	21	22	23	24	18
26	27	28	29	30		

H.W

26 MONDAY
27 TUESDAY

08

09
10
11
12.

01
02
03
04
05
Evening
staknent of Pumping duma
If Corsage L is regular, then $\forall z \in L$ where Br $\geqslant n$ (n is number of station in FSN of \angle). 3 stings u,v,w such that $i=$ ave where

$$
\begin{gathered}
|u v| \leqslant n \\
\mid v 1>0 \\
\text { for any } i \geqslant 0, u v^{2} \omega \in L
\end{gathered}
$$

Pumping duma extraction
Says
\longrightarrow if an mifinite langunge is Regular, it is defined by DFA. WEDNESDAY 28
\rightarrow The DFA (then must) have some finite JHyNussolar 29 number of states Say n.
\rightarrow Since Varyunge is infenille, Some strings of language must have length $\geqslant n$
\rightarrow for a string of kuyth $\geqslant n$ accepted by the DFA, me would have to walk Through DFA That must have a cycle.
\rightarrow Repeating the cycle on arbitrary number of time must yield another string accepted By the DFA \Rightarrow Pumping property.
Negation of Pumping Property (Contrapositive) Contrapuation) $\exists \& \in L ; \quad|z| \geqslant n$
\exists U,V,W where $z=U V W$; Pumpingpppatity

$$
|u v| \leq n \text { and }|v|>0
$$

$\exists i \geqslant 0$; such that $u v^{2} \omega \notin L$
then L is not regular
so we Conclude
Reyerelar Lavgrages \longrightarrow Pumping property
\rightarrow Pumping property $\rightarrow 7$ Regubur avenges
General Results:-
30 R ADDAX 1-Pumping Lemma used t prone That

3-Pumprin lernima lan not be used t prone that a. given languages is regular
Example
$P=$ pallindrome (non Mgilarllayior)

1. Let P be a Nyuloit Lagnage
2. P will have FSM of n : state
3. $\quad z=0^{n} 10^{n}$ and $z \in P$ \& $|z| \geqslant n$

Then

$$
\text { 4. } \begin{aligned}
|z|= & \left|0^{n} 10^{n}\right| \geqslant x \\
& x+1+n \geqslant n \\
& 2 x+1 \geqslant n
\end{aligned}
$$

now

Then
5

$$
\begin{aligned}
u v^{2} w & =\theta^{n-k} 0^{i k} 10^{n} \\
& =0^{n+k(i-1)} 10^{n}
\end{aligned}
$$

Then $n+k(i-1) \neq n$ for $i \geqslant 2$
Hence p is a non regular langrage
Example

$$
L=\left\{a^{n} b^{n}\right\}
$$

1. Let L be a R.L
2. having FSM \& m states
$3 . z=a^{m} b^{m}$
then since $z \in L$, so

$$
\begin{aligned}
& 4-\quad|z| \geqslant m \\
& \quad\left|a^{m} b^{m}\right| \geqslant m \Rightarrow m+m \geqslant m \Rightarrow 2 m \geqslant m
\end{aligned}
$$ proved

جمادى الاول|rسا
MAY 2010
Now for $z=U V W$

5. $u v^{i} w \in L$, so

$$
a^{m-k} a^{i k} b^{m} \Rightarrow a^{m+k\left(2^{n}-1\right)} b^{m}
$$

which gives for $i \geqslant 2, m+k(i-1) \neq m$
So L is not regular.
5 WEDNESDAY
6 THURSDAY

$$
L=\left\{x x / x \in\{0,1\}^{*}\right\}
$$

Example
(i) - Let α be R.R
(2) FSM ad m states
(3) $-\quad z=(10)^{m}(10)^{m}$
(4) $-z \in L$, then $|z| \geqslant m$

$$
\begin{gathered}
1(10)^{m}(10)^{m} 1 \geqslant m \\
2 m+2 m \geqslant m \\
4 m \geqslant m
\end{gathered}
$$

$$
\text { (5) }-z=u v \omega
$$

(6)- $u v^{2} w \in L$, then

$$
10^{m-k} 10^{2 k} 10^{m} \Rightarrow 10^{m+k(2-1)} 10^{m+1}
$$

for $i \geqslant 2 m+K\left(i^{-}-1\right) \neq m$ Hence L is not Regular.

Example

$$
L=1^{n^{2}} \text { where } n \geqslant 0
$$

Example (Repeat)

$$
\begin{aligned}
& z, \quad z=10^{m} / 0^{m} \\
& z=4 \mathrm{VW} \\
& 10^{a} 0^{b} 0^{m-a-b} 10^{m}
\end{aligned}
$$

$u v^{2} \omega \in L$

$$
\begin{aligned}
& 10^{a} 0^{i b} 0^{m-a-b} 10^{m} \\
\Rightarrow & 10^{a+i b+m-a^{n}-b} 10^{m} \Rightarrow 10^{m+b(i-1)} 10^{m}
\end{aligned}
$$

monday so for $i \geqslant 2, m+b\left(2^{-1}\right) \neq m$ nulishar to non Regular language.
TUESDAY
ج ry
(H.W : $L=\left\{a^{n}\right.$ where n is prime no. $\}$

Example $L=1^{n^{2}}$ mbere $n \geqslant 0$
1- Let L is R.L
2 -FSM \& N Stalés

$$
3-z=1^{N^{2}} \Rightarrow\left\{1, a 1^{4}, 1^{9}, 1^{16}, \cdots\right\}
$$

$1^{\left(N^{2}\right)} \geqslant N$ proned
5 -

$$
z_{-1}=1^{(N-1)^{2}} \quad\left(z=1^{N^{2}} \quad\left(\begin{array}{c}
(N+1)^{2} \\
z_{+1}=1
\end{array}\right.\right.
$$

Now $z=|\cup \cup \omega|=n^{2}<\left|\omega v^{2} \omega\right|=|u v \theta \underline{\omega}|$

$$
\begin{aligned}
& <n^{2}+|v| \quad \therefore 0<|v| \leqslant N \\
& <n^{2}+n \\
& <n^{2}+n+n+1 \therefore \text { zquare } \\
& =n^{2}+2 n+1 \quad \therefore \text { Squas } \\
& =(n+1)^{2}
\end{aligned}
$$

As $u v^{2} w$ does ${ }^{2}$ ² belong to L, so L in not Regnlar

