
1

Theory of Automata and
Formal Languages

2

What is Automata Theory?
n  Study of abstract (existing in thoughts or as an

idea) computing devices, or “machines”
n  Automaton = an abstract computing device

n  Note: A “device” need not even be a physical
hardware!

n  A fundamental question in computer science:
n  Find out what different models of machines can do and

cannot do
n  The theory of computation

n  Computability vs. Complexity

3

Alan Turing (1912-1954)
n  Father of Modern Computer Science
n  English mathematician
n  Studied abstract machines called

Turing machines even before
computers existed

n  Heard of the Turing test?

(A pioneer of automata theory)

4

Theory of Computation: A
Historical Perspective

1930s •  Alan Turing studied Turing machines
•  Decidability
•  Halting problem

1940-1950s •  “Finite automata” machines studied
•  Noam Chomsky proposes the
 “Chomsky Hierarchy” for formal
 languages

1969 Cook introduces “intractable” problems
 or “NP-Hard” problems

1970- Modern computer science: compilers,
computational & complexity theory evolve

5

Languages & Grammars

Image source: Nowak et al. Nature, vol 417, 2002

n  Languages: “A language is a
collection of sentences of finite
length all constructed from a
finite alphabet of symbols”

n  Grammars: “A grammar can be
regarded as a device that
enumerates the sentences of a
language” - nothing more,
nothing less

n  N. Chomsky, Information and
Control, Vol 2, 1959

6

The Chomsky Hierachy

Regular
(DFA)

Context-
free

(PDA)

Context-
sensitive

(LBA)

Recursively-
enumerable

(TM)

•  A containment hierarchy of classes of formal languages

7

The Central Concepts of
Automata Theory

8

Alphabet
An alphabet is a finite, non-empty set of symbols
n  We use the symbol ∑ (sigma) to denote an

alphabet
n  Examples:

n  Binary: ∑ = {0,1}
n  All lower case letters: ∑ = {a,b,c,..z}
n  Alphanumeric: ∑ = {a-z, A-Z, 0-9}
n  DNA molecule letters: ∑ = {a,c,g,t}
n  …

9

Strings
A string or word is a finite sequence of symbols

chosen from ∑
n  Empty string is ε (or “epsilon”)

n  Length of a string w, denoted by “|w|”, is equal to
the number of (non- ε) characters in the string
n  E.g., x = 010100 |x| = 6
n  y = 1010101 |x| = ?

n  xy = concatentation of two strings x and y

10

Powers of an alphabet
Let ∑ be an alphabet.

n  ∑k = the set of all strings of length k

n  ∑* = ∑0 U ∑1 U ∑2 U …

n  ∑+ = ∑1 U ∑2 U ∑3 U …

11

Languages
L is said to be a language over alphabet ∑, only if L ⊆ ∑*

è this is because ∑* is the set of all strings (of all possible length
including 0) over the given alphabet ∑

Examples:
1.  Let L be the language of all strings consisting of n 0’s followed

by n 1’s:
 L = {ε, 01, 0011, 000111,…}

2.  Let L be the language of all strings of with equal number of 0’s
and 1’s:
 L = {ε, 01, 10, 0011, 1100, 0101, 1010, 1001,…}

Definition: Ø denotes the Empty language
n  Let L = {ε}; Is L=Ø? NO

Canonical ordering of strings in the language

12

The Membership Problem
Given a string w ∈∑*and a language L over
∑, decide whether or not w ∈L.

Example:

 Let w = 100011
 Q) Is w ∈ the language of strings with equal
number of 0s and 1s?

13

Finite Automata
n  Some Applications

n  Software for designing and checking the behavior of
digital circuits

n  Lexical analyzer of a typical compiler
n  Software for scanning large bodies of text (e.g., web

pages) for pattern finding
n  Software for verifying systems of all types that have a

finite number of states (e.g., stock market transaction,
communication/network protocol)

14

Finite Automata : Examples
n  On/Off switch

n  Modeling recognition of the word “then”

Start state Final state Transition Intermediate
state

action

state

15

Structural expressions
n  Grammars
n  Regular expressions

n  E.g., unix style to capture city names such as
“Palo Alto CA”:

n  [A-Z][a-z]*([][A-Z][a-z]*)*[][A-Z][A-Z]

Start with a letter

A string of other
letters (possibly
empty)

Other space delimited words
(part of city name)

Should end w/ 2-letter state code

16

Formal Proofs

17

Deductive Proofs
From the given statement(s) to a conclusion

statement (what we want to prove)
n  Logical progression by direct implications

Example for parsing a statement:
n  “If y≥4, then 2y≥y2.”

(there are other ways of writing this).

given conclusion

18

Example: Deductive proof
Let Claim 1: If y≥4, then 2y≥y2.

Let x be any number which is obtained by adding the squares of 4

positive integers.
Claim 2:
Given x and assuming that Claim 1 is true, prove that 2x≥x2

n  Proof:
1)  Given: x = a2 + b2 + c2 + d2

2)  Given: a≥1, b≥1, c≥1, d≥1
3)  è a2≥1, b2≥1, c2≥1, d2≥1 (by 2)
4)  è x ≥ 4 (by 1 & 3)
5)  è 2x ≥ x2 (by 4 and Claim 1)

 “implies” or “follows”

On Theorems, Lemmas and Corollaries
We typically refer to:
n  A major result as a “theorem”
n  An intermediate result that we show to prove a larger result as a

“lemma”
n  A result that follows from an already proven result as a “corollary”

19

An example:
Theorem: The height of an n-node binary
tree is at least floor(lg n)
Lemma: Level i of a perfect binary tree has
2i nodes.
Corollary: A perfect binary tree of height h
has 2h+1-1 nodes.

20

Quantifiers
“For all” or “For every”

n  Universal proofs
n  Notation=

“There exists”
n  Used in existential proofs
n  Notation=

Implication is denoted by =>
n  E.g., “IF A THEN B” can also be written as “A=>B”

21

Proving techniques
n  By contradiction

n  Start with the statement contradictory to the given statement
n  E.g., To prove (A => B), we start with:

n  (A and ~B)
n  … and then show that could never happen

n  By induction
n  (3 steps) Basis, inductive hypothesis, inductive step

n  By contrapositive statement
n  If A then B ≡ If ~B then ~A

22

Proving techniques…
n  By counter-example

n  Show an example that disproves the claim

n  Note: There is no such thing called a
“proof by example”!
n  So when asked to prove a claim, an example that

satisfied that claim is not a proof

23

Different ways of saying the same
thing

n  “If H then C”:
i.  H implies C
ii.  H => C
iii.  C if H
iv.  H only if C
v.  Whenever H holds, C follows

24

“If-and-Only-If” statements
n  “A if and only if B” (A <==> B)

n  (if part) if B then A (<=)
n  (only if part) A only if B (=>)

 (same as “if A then B”)
n  “If and only if” is abbreviated as “iff”

n  i.e., “A iff B”
n  Example:

n  Theorem: Let x be a real number. Then floor of x =
ceiling of x if and only if x is an integer.

n  Proofs for iff have two parts
n  One for the “if part” & another for the “only if part”

25

Summary
n  Automata theory & a historical perspective
n  Chomsky hierarchy
n  Finite automata
n  Alphabets, strings/words/sentences, languages
n  Membership problem
n  Proofs:

n  Deductive, induction, contrapositive, contradiction,
counterexample

n  If and only if

n  Read chapter 1 for more examples and exercises

