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Theory of Automata and  
Formal Languages 
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What is Automata Theory? 
n  Study of abstract (existing in thoughts or as an 

idea) computing devices, or “machines” 
n  Automaton = an abstract computing device 

n  Note: A “device” need not even be a physical 
hardware! 

n  A fundamental question in computer science:  
n  Find out what different models of machines can do and 

cannot do 
n  The theory of computation 

n  Computability vs. Complexity 
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Alan Turing (1912-1954) 
n  Father of Modern Computer Science 
n  English mathematician 
n  Studied abstract machines called 

Turing machines even before 
computers existed 

n  Heard of the Turing test? 

(A pioneer of automata theory) 
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Theory of Computation: A 
Historical Perspective 

1930s •  Alan Turing studied Turing machines 
•  Decidability 
•  Halting problem 

1940-1950s •  “Finite automata” machines studied 
•   Noam Chomsky proposes the  
   “Chomsky Hierarchy” for formal  
    languages 

1969 Cook introduces “intractable” problems 
 or “NP-Hard” problems 

1970- Modern computer science: compilers,  
computational & complexity theory evolve 



5 

Languages & Grammars 

Image source: Nowak et al. Nature, vol 417, 2002  

n  Languages: “A language is a 
collection of sentences of finite 
length all constructed from a 
finite alphabet of symbols” 

n  Grammars: “A grammar can be 
regarded as a device that 
enumerates the sentences of a 
language” - nothing more, 
nothing less 

n  N. Chomsky, Information and 
Control, Vol 2, 1959 
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The Chomsky Hierachy 

Regular 
(DFA) 

Context- 
free 

(PDA) 

Context- 
sensitive  

(LBA) 

Recursively- 
enumerable  

(TM) 

•  A containment hierarchy of classes of formal languages 
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The Central Concepts of 
Automata Theory 
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Alphabet 
An alphabet is a finite, non-empty set of symbols 
n  We use the symbol ∑ (sigma) to denote an 

alphabet 
n  Examples: 

n  Binary: ∑ = {0,1}  
n  All lower case letters: ∑ = {a,b,c,..z} 
n  Alphanumeric: ∑ = {a-z, A-Z, 0-9} 
n  DNA molecule letters: ∑ = {a,c,g,t} 
n  … 
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Strings 
A string or word is a finite sequence of symbols 

chosen from ∑ 
n  Empty string is ε (or “epsilon”) 

n  Length of a string w, denoted by “|w|”, is equal to 
the number of (non- ε) characters in the string 
n  E.g., x = 010100     |x| = 6 
n  y = 1010101    |x| = ? 

n  xy = concatentation of two strings x and y  
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Powers of an alphabet  
Let ∑ be an alphabet. 

n  ∑k = the set of all strings of length k  

n  ∑* = ∑0 U ∑1 U ∑2 U … 

n  ∑+ = ∑1 U ∑2 U ∑3 U … 
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Languages 
L is said to be a language over alphabet ∑, only if L ⊆ ∑* 

è this is because ∑* is the set of all strings (of all possible length 
including 0) over the given alphabet ∑ 

Examples: 
1.  Let L be the language of all strings consisting of n 0’s followed 

by n 1’s:  
 L = {ε, 01, 0011, 000111,…} 

2.  Let L be the language of all strings of with equal number of 0’s 
and 1’s:  
  L = {ε, 01, 10, 0011, 1100, 0101, 1010, 1001,…} 

 
Definition:  Ø denotes the Empty language 
n  Let L = {ε}; Is L=Ø?   NO 

Canonical ordering of strings in the language 
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The Membership Problem 
Given a string w ∈∑*and a language L over 
∑, decide whether or not w ∈L. 

 
Example: 

 Let w = 100011 
 Q) Is w ∈ the language of strings with equal 
number of 0s and 1s? 
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Finite Automata 
n  Some Applications 

n  Software for designing and checking the behavior of 
digital circuits 

n  Lexical analyzer of a typical compiler 
n  Software for scanning large bodies of text (e.g., web 

pages) for pattern finding 
n  Software for verifying systems of all types that have a 

finite number of states (e.g., stock market transaction, 
communication/network protocol) 
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Finite Automata : Examples 
n  On/Off switch 

n  Modeling recognition of the word “then” 

Start state Final state Transition Intermediate  
state 

action 

state 
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Structural expressions 
n  Grammars 
n  Regular expressions 

n  E.g., unix style to capture city names such as 
“Palo Alto CA”: 

n  [A-Z][a-z]*([ ][A-Z][a-z]*)*[ ][A-Z][A-Z] 

Start with a letter 

A string of other  
letters (possibly 
empty) 

Other space delimited words 
(part of city name) 

Should end w/ 2-letter state code 
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Formal Proofs 



17 

Deductive Proofs 
From the given statement(s) to a conclusion 

statement (what we want to prove) 
n  Logical progression by direct implications 
 
Example for parsing a statement: 
n  “If y≥4,    then 2y≥y2.” 

 
(there are other ways of writing this). 

given conclusion 
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Example: Deductive proof  
Let Claim 1: If y≥4, then 2y≥y2.  
 
Let x be any number which is obtained by adding the squares of 4 

positive integers. 
Claim 2: 
Given x and assuming that Claim 1 is true, prove that 2x≥x2 

n  Proof: 
1)  Given: x = a2 + b2 + c2 + d2 

2)  Given: a≥1, b≥1, c≥1, d≥1 
3)  è a2≥1, b2≥1, c2≥1, d2≥1 (by 2) 
4)  è x ≥ 4    (by 1 & 3) 
5)  è 2x ≥ x2    (by 4 and Claim 1)  

        “implies” or “follows” 



On Theorems, Lemmas and Corollaries 
We typically refer to:  
n  A major result as a “theorem” 
n  An intermediate result that we show to prove a larger result as a 

“lemma” 
n  A result that follows from an already proven result as a “corollary” 
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An example: 
Theorem: The height of an n-node binary 
tree is at least floor(lg n) 
Lemma: Level i of a perfect binary tree has 
2i nodes.  
Corollary: A perfect binary tree of height h 
has 2h+1-1 nodes. 
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Quantifiers 
“For all” or “For every”  

n  Universal proofs 
n  Notation=    

“There exists” 
n  Used in existential proofs 
n  Notation= 

Implication is denoted by => 
n  E.g., “IF A THEN B” can also be written as “A=>B”  
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Proving techniques 
n  By contradiction 

n  Start with the statement contradictory to the given statement 
n  E.g., To prove (A => B), we start with: 

n  (A and ~B) 
n  … and then show that could never happen 

n  By induction 
n  (3 steps) Basis, inductive hypothesis, inductive step 

n  By contrapositive statement 
n  If A then B   ≡  If ~B then ~A 



22 

Proving techniques… 
n  By counter-example 

n  Show an example that disproves the claim 

n  Note: There is no such thing called a  
“proof by example”!  
n  So when asked to prove a claim, an example that 

satisfied that claim is not a proof  
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Different ways of saying the same 
thing  

n  “If H then C”: 
i.  H implies C 
ii.  H => C  
iii.  C if H 
iv.  H only if C 
v.  Whenever H holds, C follows 
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“If-and-Only-If” statements 
n  “A if and only if B”   (A <==> B) 

n  (if part) if B then A   ( <= ) 
n  (only if part) A only if B  ( => ) 

   (same as “if A then B”) 
n  “If and only if” is abbreviated as “iff” 

n  i.e., “A iff B” 
n   Example: 

n  Theorem: Let x be a real number. Then floor of x = 
ceiling of x if and only if x is an integer. 

n  Proofs for iff have two parts  
n  One for the “if part” & another for the “only if part” 
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Summary   
n  Automata theory & a historical perspective 
n  Chomsky hierarchy  
n  Finite automata 
n  Alphabets, strings/words/sentences, languages 
n  Membership problem 
n  Proofs: 

n  Deductive, induction, contrapositive, contradiction, 
counterexample 

n  If and only if 

n  Read chapter 1 for more examples and exercises 


