Theory of Automata and Formal Languages

# What is Automata Theory?

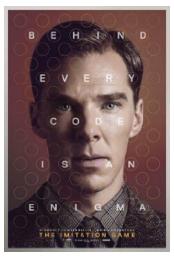
- Study of abstract (existing in thoughts or as an idea) computing devices, or "machines"
- Automaton = an abstract computing device
  - <u>Note:</u> A "device" need not even be a physical hardware!
- A fundamental question in computer science:
  - Find out what different models of machines can do and cannot do
  - The *theory of computation*
- Computability vs. Complexity

#### (A pioneer of automata theory)

# Alan Turing (1912-1954)

- Father of Modern Computer Science
- English mathematician
- Studied abstract machines called *Turing machines* even before computers existed
- Heard of the Turing test?





# Theory of Computation: A Historical Perspective

1

| 1930s      | <ul> <li>Alan Turing studied Turing machines</li> <li>Decidability</li> <li>Halting problem</li> </ul>                                     |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| 1940-1950s | <ul> <li>"Finite automata" machines studied</li> <li>Noam Chomsky proposes the<br/>"Chomsky Hierarchy" for formal<br/>languages</li> </ul> |
| 1969       | Cook introduces "intractable" problems<br>or "NP-Hard" problems                                                                            |
| 1970-      | Modern computer science: compilers,<br>computational & complexity theory evolve                                                            |

# Languages & Grammars

An alphabet is a set of symbols:



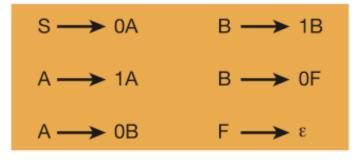
Sentences are strings of symbols:

0,1,00,01,10,1,...

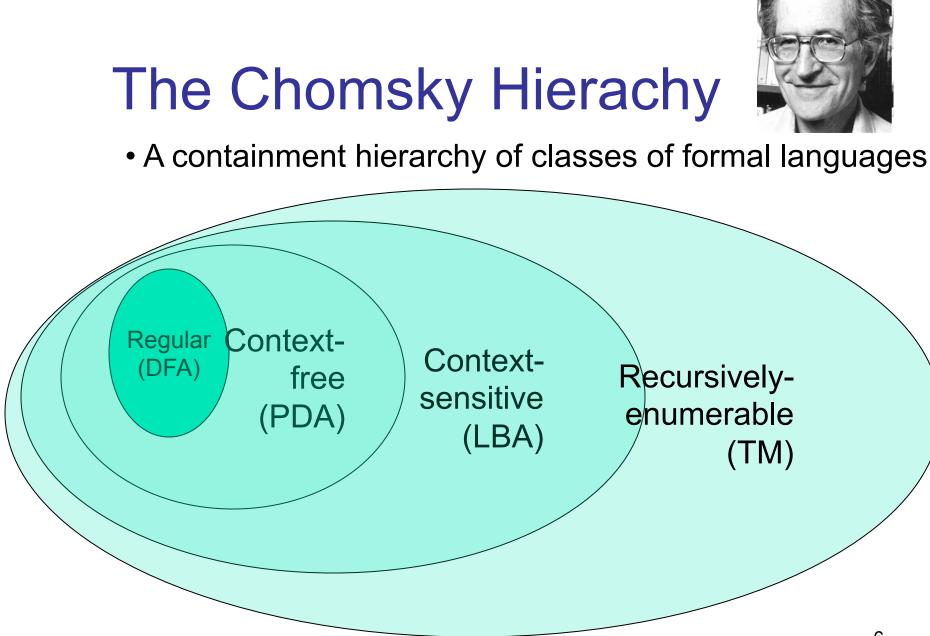
A language is a set of sentences:

 $L = \{000, 0100, 0010, ..\}$ 

A grammar is a finite list of rules defining a language.



- <u>Languages</u>: "A language is a collection of sentences of finite length all constructed from a finite alphabet of symbols"
- <u>Grammars</u>: "A grammar can be regarded as a device that enumerates the sentences of a language" - nothing more, nothing less
- N. Chomsky, Information and Control, Vol 2, 1959



The Central Concepts of Automata Theory

# Alphabet

An alphabet is a finite, non-empty set of symbols

- We use the symbol  $\sum$  (sigma) to denote an alphabet
- Examples:
  - Binary:  $\sum = \{0,1\}$
  - All lower case letters:  $\sum = \{a,b,c,...z\}$
  - Alphanumeric:  $\sum = \{a-z, A-Z, 0-9\}$
  - DNA molecule letters:  $\sum = \{a,c,g,t\}$

**.**.

# Strings

- A string or word is a finite sequence of symbols chosen from  $\sum$
- Empty string is ε (or "epsilon")
- Length of a string w, denoted by "|w|", is equal to the number of (non- ε) characters in the string
  - E.g., x = 010100 |x| = 6
  - y = 1010101 |x| = ?
- xy = concatentation of two strings x and y

#### Powers of an alphabet

Let  $\sum$  be an alphabet.

•  $\sum^{k}$  = the set of all strings of length k

• 
$$\sum^* = \sum^0 \mathbf{U} \sum^1 \mathbf{U} \sum^2 \mathbf{U} \dots$$

•  $\Sigma^+ = \Sigma^1 U \Sigma^2 U \Sigma^3 U \dots$ 

#### Languages

*L* is said to be a language over alphabet  $\Sigma$ , only if  $L \subseteq \Sigma^*$ 

→ this is because ∑\* is the set of all strings (of all possible length including 0) over the given alphabet ∑

Examples:

Let L be *the* language of <u>all strings consisting of *n* 0's followed</u> <u>by *n* 1's:</u> L = (a, 01, 00111, 0001111, ...)

 $\mathbf{L} = \{\epsilon, 01, 0011, 000111, \ldots\}$ 

2. Let L be *the* language of <u>all strings of with equal number of 0's</u> <u>and 1's</u>:

 $L = \{\epsilon, 01, 10, 0011, 1100, 0101, 1010, 1001, ...\}$ 

Canonical ordering of strings in the language

Definition:Ø denotes the Empty languageLet  $L = \{\epsilon\}$ ; Is  $L=\emptyset$ ?

# The Membership Problem

*Given a string*  $w \in \sum^*$  *and a language L over*  $\sum$ *, decide whether or not*  $w \in L$ .

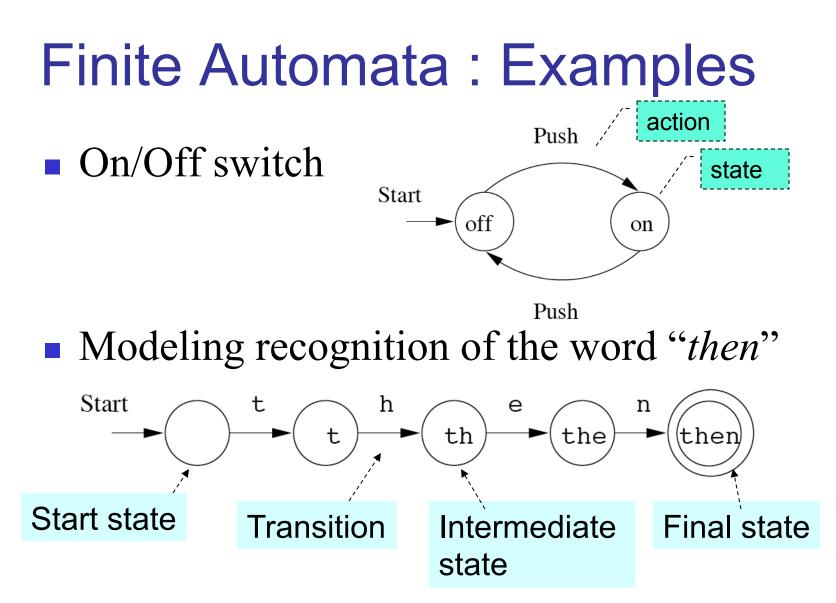
Example:

Let w = 100011

Q) Is  $w \in$  the language of strings with equal number of 0s and 1s?

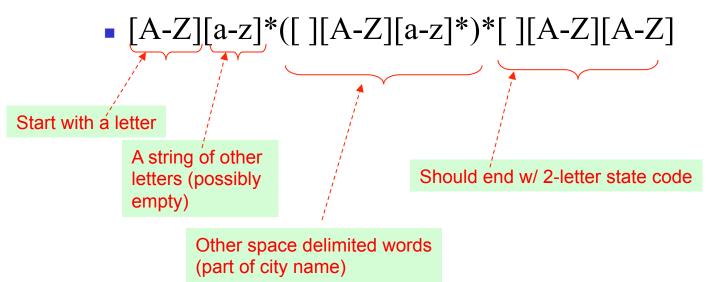
# Finite Automata

- Some Applications
  - Software for designing and checking the behavior of digital circuits
  - Lexical analyzer of a typical compiler
  - Software for scanning large bodies of text (e.g., web pages) for pattern finding
  - Software for verifying systems of all types that have a finite number of states (e.g., stock market transaction, communication/network protocol)



# Structural expressions

- Grammars
- Regular expressions
  - E.g., unix style to capture city names such as "Palo Alto CA":



#### **Formal Proofs**

# **Deductive Proofs**

From the given statement(s) to a conclusion statement (what we want to prove)

Logical progression by direct implications

Example for parsing a statement:"If 
$$y \ge 4$$
,then  $2^y \ge y^2$ ."givenconclusion

(there are other ways of writing this).

# Example: Deductive proof

Let <u>Claim 1: If  $y \ge 4$ , then  $2^y \ge y^2$ .</u>

Let x be any number which is obtained by adding the squares of 4 positive integers.

Claim 2:

Given x and assuming that Claim 1 is true, prove that  $2^{x} \ge x^{2}$ 

■ Proof:  
1) Given: 
$$x = a^2 + b^2 + c^2 + d^2$$
  
2) Given:  $a \ge 1$ ,  $b \ge 1$ ,  $c \ge 1$ ,  $d \ge 1$   
3)  $\Rightarrow a^2 \ge 1$ ,  $b^2 \ge 1$ ,  $c^2 \ge 1$ ,  $d^2 \ge 1$  (by 2)  
4)  $\Rightarrow x \ge 4$  (by 1 & 3)  
5)  $\Rightarrow 2^x \ge x^2$  (by 4 and Claim 1)

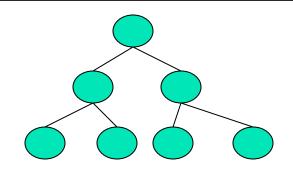
"implies" or "follows"

#### **On Theorems, Lemmas and Corollaries**

We typically refer to:

- A major result as a "theorem"
- An intermediate result that we show to prove a larger result as a "lemma"
- A result that follows from an already proven result as a "**corollary**"

An example: <u>Theorem:</u> The height of an n-node binary tree is at least floor(lg n) <u>Lemma:</u> Level i of a perfect binary tree has 2<sup>i</sup> nodes. <u>Corollary:</u> A perfect binary tree of height h has 2<sup>h+1</sup>-1 nodes.



# Quantifiers

- *"For all"* or *"For every"*Universal proofs
  Notation= \(\nother \) *"There exists"*Used in existential proofs
  Notation= \(\frac{1}{2}\)
  Implication is denoted by =>
  - E.g., "IF A THEN B" can also be written as "A=>B"

# **Proving techniques**

- By contradiction
  - Start with the statement contradictory to the given statement
  - E.g., To prove (A => B), we start with:
    - (A and ~B)
    - ... and then show that could never happen
- By induction
  - (3 steps) Basis, inductive hypothesis, inductive step
- By contrapositive statement
  - If A then  $B \equiv \text{If } \sim B$  then  $\sim A$

# Proving techniques...

- By counter-example
  - Show an example that disproves the claim
- Note: There is no such thing called a "proof by example"!
  - So when asked to prove a claim, an example that satisfied that claim is *not* a proof

# Different ways of saying the same thing

- *"If* H then C":
  - i. H *implies* C
  - H => C
  - iii. C *if* H
  - ${\scriptstyle iv.} \quad H \textit{ only if } C$
  - v. Whenever H holds, C follows

#### *"If-and-Only-If"* statements

- "A if and only if B" (A <==> B)
  - (*if part*) if B then A  $( \leq )$
  - (only if part) A only if B (=>) (same as "if A then B")
- "If and only if" is abbreviated as "iff"
  i.e., "A iff B"
- Example:
  - <u>Theorem:</u> Let x be a real number. Then floor of x = ceiling of x if and only if x is an integer.
- Proofs for iff have two parts
  - One for the "if part" & another for the "only if part"

# Summary

- Automata theory & a historical perspective
- Chomsky hierarchy
- Finite automata
- Alphabets, strings/words/sentences, languages
- Membership problem
- Proofs:
  - Deductive, induction, contrapositive, contradiction, counterexample
  - If and only if
- Read chapter 1 for more examples and exercises