Kinematics in Two or
Three Dimensions; Vectors

CHAPFTER-OPENING QUESTION —Guess now!
[Dom’t worry abour getting the right anvwer pow—vou will ger another chance later in
the Chapter. See also p. | of Chapter 1 for more explanation. |
A small heavy box of emergency supplies is dropped from a moving helicopter at
point A as it flics along in a horizontal direction. Which path in the drawing below best
describes the path of the box (neglecting air resistance) as seen by a person

This snowboarder flying through the
air shows an example of motion in
iwo dimensions, In the absence of
air resistance, the path would be a
perfect parabola, The gold ammow
represents the downward acceleration
of gravity, § Galileo analyzed the
motion of objects in 2 dimensions
under the action of gravity near the
Earth's surface {now called “projectile
motion™) into s horizontal  and
vertical components

We will discuss how o manipulaic
vectorns and how to add them. Besides
analyring projectile motion, we will
also see how 1o work with relative
velocity.

<

o

standing on the ground?

n Chapter 2 we dealt with motion along a straight line. We now consider the
description of the motion of objects that move in paths in two (or three)
dimensions. To do so, we first need to discuss vectors and how they
We will examine the description of motion in general, followed by an
interesting special case, the motion of projectiles near the Earth's surface. We also
discuss how to determine the relative velocity of an object as measured in different

reference frames

FIGURE 3-1

Car traveling on &
roadd, slowing down 1o round the
curve, The green armows represent
the velocity vector at each position.

FIGURE 3-2 Combining veclors in
one dimension.
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FIGURE 3-3 A person walks 10,0 km cast and then 5.0 km north.
Mlmﬁlﬁtmummummdhmcmﬁ l.nd_ﬁ-,-,
which are shown as arrows. The resultant displacement vector, Dy .
which is the vector sum of D and D, is also shown. Measurement on
lhmphﬂlhmhrmdpmmmmllﬁ.hu.muﬂtﬂ:ﬂ
11.2 km and points &t an angle & = 27" north of cast.
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3—1 Vectors and Scalars

We mentioned in Chapter 2 that the term vefociry refers not only 10 how fast an
object s moving but also to its direction. A quantity such as wvelogity, which has
direction as well as magnitude, is a vector quantity. Other quantities that are also
vectors are displacement, force, and momentum. However, many quantities have no
direction associated with them, such as mass, time, and emperature. They are spec-
ificd completely by a number and units. Such quantitics are called scalar quantitics.

Drawing a diagram of a particular physical situation i always helplul in
physics, and this is especially true when dealing with vectors. On a diagram, each
vecior is represenied by an arrow. The arrow is always drawn so that it points in
the direction of the vector quantity it represents The length of the arrow is drawn
proportional to the magnitude of the vector quantity. For example, in Fg 3-1,
green arrows have been drawn representing the velocity of a car at various places
8% it rounds a curve. The magnitude of the velocity at each point can be read off
Fig. 3-1 by measuring the length of the corresponding arrow and using the scale
shown (1cm = %0km/h).

When we write the symbol for a vector, we will always use boldface type, with
a tiny arrow over the symbol. Thus for velocity we write ¥. If we are concerned
only with the magnitude of the vector, we will write simply v, in italics, as we do
for other symbaols.

3-2 Addition of Vectors— Graphical
Methods

Because vectors arc quantitics that have direction as well as magnitude, they must
be added in a special way. In this Chapler, we will deal mainly with displacement
vectors, for which we now use the symbol D, and velocity vectors, ¢. But the results
will apply lor other vectors we encounter later.

We use simple arithmetic for adding scalars. Simple arithmelic can also be
used for adding vectors if they are in the same direction. For example, if a
person walks Bkm cast one day, and 6 km east the next day, the person will
be 8km + 6km = 14 km ecast of the point of origin. We say that the ner or
resliant displacement is 14 km to the cast (Fig. 3-2a). If. on the other hand,
the person walks Bkm east on the first day, and 6km west (in the reverse
direction) on the second day, then the person will end up 2 km from the origin
(Fig. 3-2b), so the resultant displacement is 2 km to the cast. In this case, the
resultant displacement is obtained by subtraction: 8km — 6km = 2 km.

But simple arithmetic cannot be used if the two vectors are not along the same
line. For example, suppose a person walks 10.0km cast and then walks 5.0 km
north. These displacements can be represented on a graph in which the positive
¥ axis points north and the positive x axis points cast, Fig. 3-3. On this graph, we
draw an arrow, labeled ﬂt, to represent the 10.0-km displacement to the east.
Then we draw a second arrow, I);, 1o represent the 5.0-km displacement to the
north. Both vectors are drawn to scale, as in Fig. 3-3,
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After taking this walk, the person is now 10.0 km cast and 5.0 km north of the
point of origin. The resultant displscement is represented by the arrow labeled Dy
in Fig. 3-3. Using a ruler and a protractor, you can measure on this diagram that
the person is 11.2 km [rom the origin at an angle § = 27° north of east. In other
words, the resultant displacement vector has a magnitude of 11.2 km and makes an
angle & = 27° with the positive x axis. The magnitude (length) of ﬂ. can also be
obtained using the theorem of Pythagoras in this case, since [, 1, and [y form a
right triangle with [y as the hypotenuse. Thus

Dy = VD + D3 = 1/(100km)® + (50km)?
= 4/125km’ = 11.2km.

You can use the Pythagorean theorem, of course, only when the vectors are
perpendicular to cach other. _

The resultant displacement vector, Dy, is the sum of the vectors D, and D,.
That s,

ﬁl'ﬁ|+ﬂ1.

This is a vecior equation. An important feature of adding two vectors that are not
along the same line is thal the magnitude of the resultant vector is not equal to the
sum of the magnitudes of the two separate vectors, but 18 smaller than their sum.
That is,

Day=D + Dy,
where the equals sign applies only if the two vectors point in the same direction.
In our example (Fig 3-3), Dz = 11.2km, whercas [, + [}, equals 15km,
which is the total distance traveled. Note also that we cannot set Dy equal

to 11.2km, because we have a vector equation and 11.2km is only a part of

the resultant vector, its magnitude. We could write something like this, though:
Dy = D, + D, = (11.2km, 27° N of E).

EXERCISE A Under what conditions can the magnitude of the resultant vector above be
Dy = Dy + D47

Figure 3-3 illustrates the general rules for graphically adding two vectors
together, no matter what angles they make, to get their sum. The rules are as
follows:

1. On a diagram, draw one of the vectors—eall it D, —1o scale.

2. Next draw the second vector, I3y, 1o scale, placing its tail at the tip of the first
vector and being sure its direction i correct.

3. The arrow drawn from the tail of the first vector to the tip of the second
vector represents the sum, or resaltant, of the two vectors

The length of the resultant vector represents its magnitude. Note that vectors can

be 'r.rms!iue::l parallel to thenmelvﬁﬂnmimﬂn]ng IEE: samé length and angle) 1o ﬁ:‘d.fnlm-:e: m rl.:fttlm
accomplish these manipulations. The length of the resultant can be measured with i the same. (Compare to Fg 3-3.)
a ruler and compared to the scale. Angles can be measured with a protractor. This

method is known as the tail-to-tip method of adding vectors. ¥ (km)

The resultant is not affected by the order in which the veclors are added. For
example, a displacement of 5.0km north, to which is added a displacement of
10,0 km east, yields a resultant of 11.2 km and angle & = 27° (scc Fig. 3-4), the
same as when they were added in reverse order (Fig. 3-3). That is, now using V to
représent any type of vector,

VV+¥V, = 9.+ ¥, [commutative property] (3-1a)

which is known as the commutative property of vector addition.

SECTION 3-2 Addition of Vectors — Graphical Methods 53

FIGURE 3-5 The resultant of three vectors: v, + v, + "T =

The tail-to-tip method of adding vectors can be extended to three or more
vectors. The resultant is drawn from the tail of the first vector 1o the tip of the
last one added. An example is shown in Fig. 3-5; the three vectors could repre-
sent displacements (northeasl, south, west) or perhaps three forces Check for
yourself that you get the same resultant no matter in which order you add the
three vectors; that is,

{i"l + ﬂ’ﬂ +W =% +(V+ 9‘5}. |associative property] (3-1b)
which is known as the associative property of vector addition.

A second way to add two vectors is the parallelogram method. [1 is [ully equiv-
alent to the tail-to-tip method. In this method, the two vectors are drawn starting
from a common origin, and a parallelogram is constructed using these two veclors
as adjacent sides as shown in Fig. 3-6b. The resultant is the diagonal drawn from
the common origin. In Fig. 3-6a, the tail-to-tip method s shown, and it is clear that
both methods yield the same resull

——— % = . Thil-to-4
¥, V. T T RRRy

FIGURE 3-6 Vector addition by h
two different methods, (a) and (b} = i X
Part (c) is incorrect.
- (c) Wrong
M CAUTION It is a common error to draw the sum vector as the diagonal running between

Be sure to we the correct diggonal the tips of the two vectors, as in Fig. 3-6¢. This is incorrect: it does nol represent
on paralielogram to get the resultant the sum of the two vectors. (In fact, it represents their difference, V;, — V,, as we
will s¢e in the next Section.)

[ CONCEPTUAL EXAMPLE 3-1| Range of vector lengths. Suppose two vectors
each have length 3.0 units. What is the range of possible lengths for the vector repre-
senting the sum of the two?

RESPONSE The sum can take on any value from 6.0 (= 3.0 + 3.0) where the
veciors point in the same direction, to 0 (= 3.0 —= 3.0) when the vectors are
antiparallel.

EXERCISE B If the two vectors of Example 3-1 are perpendicular to each other, what is
the resultant vector lengith?

FIGURE 3-7 The negative of & 3-3 Subtfﬂc‘t-iﬂl"l ﬂfmﬁ, and
FPE N & ki Nevkip (e st e Multiplication of a Vector by a Scalar

length but opposite direction.

Given a vector V, we define the negative of this vector (V) to be a vector with

v v the same magnitude as V¥ but opposite in direction, Fig. 3-7. Note, however, that
4 no vector is ever negative in the sense of its magnitude: the magnitude of every

veclor is positive. Rather, a minus sign lells us about its direction.
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FIGURE 3-8 Subtracting two
! =n/ + § “:-Wh veckone 8 =~ %;.

We can now define the subtraction of one vector from another: the dilference
between two vectors ¥, — WV, is defined as

V.=V =%+ (-V)

‘That is, the difference between two vectors is equal to the sum of the first plus the

negative of the second. Thus our rules for addition of vectors can be applied as

shown in Fig. %uﬂ using the tail-to-tip method, o
A vector 'V can be multiplied by a scalar ¢. We define their product so that ¢ .

has the same direction as V and has magnitude ¢V, That is, multiplication of a vector ::'L;mﬂ ;Tn;ﬁ.m;::“

by a positive scalar ¢ changes the magnitude of the vector by a factor ¢ but doesn’t e wume direction as V (or opposite

alter the direction. If ¢ is a negative scalar, the magnitude of the product eV is direction if ¢ is negative).

still je|V (where |¢| means the magnitude of ¢), but the direction is precisely opposite

FIGURE 3-89 Multiplying a vector V

to that of V. See Fig. 3-9. V=15V
v
EXERCISE C What does the “incorrect” vector in Fig. 3-6c represent? (a) ¥, — ¥, / V,=-20V
(b) ¥; = ¥;, (c) something clse (specify).

3-4 Adding Vectors by Components

Adding vectors graphically using a ruler and protractor is often not sufficiently
accurate and is not useful for vectors in three dimensions. We discuss now a more
powerful and precise method for adding vectors. Bul do not lorget graphical
methods—they are useful for visualizing, for checking your math, and thus [or
getting the correct result.

Consider first a vector V that lies in a particular plane. It can be expressed as the
sum of two other vectors, called the eomponents of the original vector. The compo-
nenis are usually chosen to be along two perpendicular directions, such as
the x and y axes. The process of finding the components is known as
resolving the vector into its componenis. An example s shown in Fig. 3-10;
the vector ¥ could be a displacement vector that points at an angle # = 30°
north of east, where we have chosen the positive x axis to be to the cast
and the positive y axis north. This vector ¥ is resolved into its x and y compo-
nents by drawing dashed lines out from the tip (A) of the vector (lines AB and AC)
making them perpendicular to the x and y axes. Then the lines OB and OC represent
the x and y components of V, respectively, as shown in Fig. 3-10b. These vecror
components are written ¥V, and "?j,. We generally show veclor components as arrows,
like veciors, but dashed. The scalar componenss, Vy and V), are the magnitudes of the
veclor components, with unils, accompanied by a positive or negative sign depending
on whether they point along the positive or negative x or y axis. As can be scen
in Fig. 3-10, ¥, + ’F’}. = ¥ by the parallelogram method of adding vectors

FIGURE 3-10 Resolving a vector V into its components
along an arbitrarily chosen set of x and ¥ axes The
components, once found, themselves represent the vector,
That i, the components contain a8 much information as the

vecior iisslf
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Space is made up of three dimensions, and sometimes il is necessary 1o resolve a
vector into components along three mutually directions. In rectangular
coordinates the components are V,, V,, and V,. Resolution of a vector in three
dimensions is merely an extension of the above technigue.

The use of trigonometric [unctions for finding the components of a vector s
illustrated in Fig 3-11, where a vector and its two components are thought of as
making up a right triangle. (See also Appendix A for other details on trigonometric
functions and identities.) We then see that the sine, cosing, and langent are as given in

s ¥y Fig. 3=11. If we multiply the definition of sin# = V,/V by V on boih sides, we gel
: V, = Vsin#. (3-2a)
o e o Similarly, from the definition of cos , we obtain
an 6= 2 V, = Vcosd (3-2b)
¥
— . ] Note that @ is chosen (by convention) to be the angle that the vector makes with
ViaVar ¥y the positive x axis, measured positive counterclockwise.
IGUR The components of a given vector will be different for different choices of
:nm'm:lt:: L.mel coordinate axes. It is therefore crucial to specily the choice of coordinaie system
trigonometric functions. when giving the components.

There are two ways to specily a vector in a given coordinale system:

L. We can give its components, ¥y and V).
2. We can give its magnitude V and the angle # it makes with the positive x axis

We can shift [rom one description 1o the other using Eqs. 3-2, and, for the reverse,
by using the theorem of Pythagoras' and the definition of tangeni:

V = ‘H,,.I"r"l‘t + l-": (3-3a)

Yy
wnf = — (3=3b)

Vs

as can be seen in Fig. 3-11.
We can now discuss how (o add veclors using components The first siep is 1o
resolve each vector into its components. Next we can see, using Fig. 3-12, that the
nddilimu[anriwqu:Mnﬂmdﬂ lo give a resultant, V=V + 9, implics that

Vi = Vig + Wy

Vy = by + ¥y,

That is, the sum of the x components equals the r component of the resultant, and
the sum of the ¥y components equals the y component of the resultant, as can be
verified by a careful examination of Fig. 3-12. Note that we do nor add x componenis
to ¥ components.

"Ia three dimenuions, the |lu'ﬂﬂni'Pﬂhwhcm'r’—xa‘lﬁlt:,iaﬂi.whurﬂhdu
component alomg the third, or 7, axis

(3-4)

y
¥y

[em====meete—————

FIGURE 3=12 The componenis
of V=V,+% arc v

Vi = Vg + Vay
F_lr — 'l'lll,_p"‘"r:’lu

O . ——

¥
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If the magnitude and direction of the resultant vector are desired. they can be
obtained using Hgs. 3-3.

The components of a given vector depend on the choice of coordinale axes
You can often reduce the work involved in adding vectors by a good choice of
axes—for example, by choosing one of the axes to be in the same direction as one
of the vectors. Then that vector will have only one nonzero component.

Mail carrier’s displacement. A rural mail carrier leaves the
post office and drives 22.0 km in a northerly direction. She then drives in a dirce-
tion 60.0° south of cast for 47.0km (Fig. 3-13a). What is her displacement from
the post office?

APPROACH We choose the positive x axis to be cast and the positive y axis to
be north, since those are the compass directions used on most maps. The origin
of the xy coordinate system is at the post office. We resolve each vector into its
x and y components We add the x components together, and then the y components
together, giving us the x and y components of the resultant.

SOLUTION Resolve each displacement vector into its components, as shown
in Fig. 3-13b. Since ﬂl has magnitude 22.0 km and points north, it has only a
¥ component:

D, = 0, Dy = 220km.

D, has both x and y components:
D, = +(47.0km)(cos60°) = +(47.0km)(0.500) = +23.5km
Dy = —(470km)(sin60°) = —(47.0km)(0.866) = —40.7 km.

Notice that I} is negative because this vector component points along the nega-
live y axis The resullant vector, D, has components:

D= D +Dy = 0km + 25km = +235km

D, = Dy + Dy, = 220km + (—40.7km) = -18.7km.
This specifics the resultant vector completely:

D, = 235km, Dy = =18.7Tkm.

We can also specify the resultant vector by giving its magnitude and angle using
Eqgs. 3-3:

D = DB+ D = /(235km)" + (-187km)" = 300km
Dy  -187km
Ly 23.5km
A calculator with an INV TAN, an ARC TAN, or a TAN " key gives # = tan '{ —0.796) =
=38.5" The negative sign means & = 38.5° below the x axis, Fig. 3-13c. So, the
resultant displacement is 30.0 km directed at 38.5° in a southeasterly direction.
NOTE Always be atientive about the quadrant in which the resuliant vector

lies. An electronic calculator docs not fully give this information, but a good
diagram does.

tan@ = = ={.796.

The signs of trigonometric functions depend on which “quadrant”™ the angle
falls in: for example, the tangent is positive in the first and third quadrants (from 0°
to 90° and 180° to 270°), but negative in the second and fourth quadrants; see
Appendix A. The best way to keep track of angles, and to check any vector result,
is always 1o draw a vector diagram. A vector diagram gives yvou something tangible
to look at when analyzing a problem, and provides a check on the resulis.

The following Problem Solving Strategy should not be considered a prescription.
Rather it 1s a summary of things to do to get vou thinking and mvolved m the
problem at hand.

(<)

FIGURE 3-13 Ezample 3-2.
E]'l'hclwdipi.lmntmm
p and Idy. (b) I is resolved into
its components. (c) I and Dy are
added graphically to obtain the
resultani I, The component method
of adding the vectors is explained in
the Example.

=
" PROBLEM SOLVING

fdentify the correct guadrant by
drawidng u carefiul didgram
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cOLV,
‘?":‘
Adding Vectors Pay careful attention lo signs: any component that
points along the negative x or y axis geis a minus

Here is a brief summary of how 1o add two or more WA
VECLOTS USing components: 5. Add the x componenis together o get the x compo-
1. Draw a disgram, adding the veciors graphically by nent of the resultant. Ditto for y:

cither the parallelogram or tail-to-tip method. Vi = ¥y + V3, + any others
2. Choose x and y axes. Choose them in a way, if possible, V, = Viy + Vi, + any others.

that will make vour work easier. (For example, choose

that vector will have only one component.)
3, Resolve cach vector into its ¥ and y components,
showing each component along its appropriate (x or y)

i fhis i o of th This i1s the answer: the components of the resultant
one axis along the direction of one of the vectors so veclor. Check signs 1o see if they fit the quadrant
shown in your diagram (point 1 above).

i If you want 1o know the magnitwde and direction of

axis a5 o (dashed) arrow. the resultant vector, use Eqs 3-3: R
4. Calculate each component (when not given) _ ] i =
simcs sl oouince. I §, & tic uglc that voctor U, V=ML e =
makes with the positive x axis, then: The vector diagram you already drew helps to obtain
Vie = Vicosd,, V,, = Vising,. the correct position (quadrant) of the angle 8.
¥ IETUETET N Three short trips. An airplanc trip involves three legs, with

0, Dy, 4. Calculate the components:

X ﬁ,:.ﬂu = [ cos
; P B Dy, = +Dsin0® = 0km

two stopovers, as shown in Fig. 3-14a. The first leg is due cast for 620 km; the
second leg is southeast (45%) for 440 km; and the third leg is a1 53° south of west,
for 550 km, as shown. What is the plane’s Lotal displacement?

*X
East | APPROACH We follow the steps in the Problem Solving Strategy above.

L. Draw a dingram such as Fig. 3-14a, where D, , B, , and D, represent the three
legs of the trip, and Dy, is the planc’s total displacement.

2. Choose axes: Axes are also shown in Fig. 3-14a: x is east, v north.

1. Resolve components: [t is imperative to draw a good diagram., The components
are drawn in Fig. 3-14b. Instead of drawing all the vectors starting from a
common origin, as we did in Fig. 3-13b, here we draw them “tail-to-tip”™ style,
which is just as valid and may make it casier to see.

D, = 620km

D, ';‘ﬂ,. 0,: D, = +Dycosds” = +(440km)(0.707) = +311km
" /b, Dy = -Dysinds® = —(440km)(0.707) = —311km

iy By: Dy = —Dycos53® = —(550km}(0.602) = —331km

(b) Dy, = —Dysin5¥ = —(550km){0.799) = —439km.

We have given a minus sign (o each component that in Fig. 3-14b points in the

FIGURE 3-14 Example 3-3, —x or —y direction. The components are shown in the Table in the margin,

3l =311
=331 -4 39

PIBPR i

5. Add the components: We add the x components together, and we add the
Components y components together to obtain the x and y components of the resultant:
* (km) ¥ (km) D, = D+ Dy + Dy = 620km + 311km — 3 km = 600km
620 0 Dy, = Dy + Dy + Dy = 0Okm —31km — 439km = —750km.
The x and y components are 600 km and —750km, and point respectively to
the east and south. This is one way o give the answer.
600 —150 6. Magnitude and direction: We can also give the answer as

Dy -750km

el = 5 " G0km

Dy = /D + D; = \/(600)® + (-750)km = 960km

80§ = =31°

Thus, the total displacement has magnitude %60 km and points 51° below the

CHAPTER 3 x axis (south of east), as was shown in our original sketch, Fig. 3-14a.



3-5 Unit Vectors

Vectors can be conveniently written in terms of wail vectors. A unit vector is defined
to have a magnitude exactly equal to one (1). It is useful to define unit vectors that
point along coordinate axes, and in an x, y, 2 rectangular coordinale system these
unit vectors are called i, j, and k. They point, respectively, along the positive x, y,
and r axes as shown in Fig. 3-135. Like other vectors, i.j, and k do not have 1o be
placed at the origin, but can be placed elsewhere as long as the direction and unit
length remain unchanged. It is common to write unit vectors with a “hat™: i, j. k
(and we will do so in this book) as a reminder that each is & unit vector.

Because of the definition of multiplication of a vector by a scalar (Section 3-3), the
components of a vector ¥ can be written ¥, = Vi, ¥V, = V,j, and V, = V,k.
Hence any vector ¥ can be written in terms of its components as

V= vi+ Wi+ vk (3-5)

Uinit vectors are helpful when adding vectors analytically by components. For
example, Eq. 3-4 can be seen to be true by using unil vector notation for each
vector (which we write for the two-dimensional case, with the extension to three
dimensions being straightforward):

V= {1"':}{ + {F}']j o3 I';Fl ¥ i.:
= (Viel + ¥, 0) + (vad + ¥, j)
= (Ve + vh]i * {vlp T l"'EIp”

Comparing the first line to the third line, we get Eq. 34,
Using unit vectors. Write the vectors of Example 3-2 in unit
vector notation, and perform the addition.
APPROACH We use the components we found in Example 3-2,
Dy =0, Dy=220km, and Dy, =235km, Dy = —407km,

and we now wrile them in the form of Eqg. 3-5.
SOLUTION We have

B, = 0 + 220kmj

D, = 235kmi — 407km .

D=0 +D, = (0+235kmi + (220 - 407)km]
= 235kmi - 187km j.

The components of the resultant displacement, D, are D, = 23.5km and Dy =
~18.7km. The magnitude of D is D = V{233km)* + (18.7km)? = 30.0 km,

just a8 in Example 3-2.

e

3~06 Vector Kinematics

We can now extlend our definitions of velocity and acceleration in a formal way to
two- and three-dimensional motion. Suppose a particle lollows a path in the xy plane
as shown in Fig. 3-16. At time [,, the particle is at point P, and at ume £, il is at
point Py, The vector ¥, is the position vector of the particle at time 1, (it represents
the displacement of the particle from the origin of the coordinate system). And ¥,
is the position vector al time fy.

B i

F4

FIGURE 3-15 Unit vectors i, j. and
k along the x, v, and 7 axes

FIGURE 3=16 Path of a particle in
the xy plane. Al time 1; the particle is
at point Py given by the position
vector ¥y ; sl Iy the particle is al point
P, given by the position vector ;.
The displacement vector for the time
imerval iy - tis AF = F; - ¥,

y

In one dimension, we defined displacement as the change in position of the
particle. In the more general case of two or three dimensions, the
vector is defined as the vector representing change in position. We call it AF

where

AF = f] . '|.
This represents the displacement during the lime interval &1 = 1, = 1.

"We used 1 for the displacement vector eatlier in the Chapler for ilusiraling vector sddition. The new
notation here, AF, emphasizes that it is the difference between two position vectomn,

¥
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—_ --'-u-‘h
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x'.
0 x
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FIGURE 3-17 (n) As we take Af
and A¥ smaller and smaller [compare
1o Fig. 3-16] we see that the direction
of Ar and of the instantaneous
velocity (AF/Af, where Af = 0) s
(b)) tangent to the curve ol Py,

FIGURE 3-18 (a) Velocity vectors ¥
and ¥; al insianis £y and §; lor o particle
il points Py and Py, as in Fig. 3=16
(h) The direction of the average
acceleration is in the direction of

AV =% — ¥

(b)

In unit vector notation, we can write
o= onl 4w+ ok (3-6a)
where x;, v, and z; are the coordinaies of point P, . Similarly,

'1 - .I!i - _ﬁj + I;E.
Hence
At = (xy = x)l + (m = Wi + (1 - 2k (3-6ib)

If the motion is along the x axis only, then w = 3 =0, z; = 2, = 0, and the
magnitude of the displacement is 4r = x; — x;, which is consistent with our
carlier onc-dimensional equation (Section 2-1). Even in one dimension, displace-
ment s & vector, as are velocity and acceleration.

The average velocity vector over the time interval Ar = f, - 1, is defined as

average velocity = % (3-T)
Now let us consider shorter and shorter time intervals—that is, we let Af approach
zero o that the distance between points Py and P, also approaches zero, Fig. 3-17.
We define the instantaneous veloclty vector as the limit of the average velocity as
At approaches zero:

., AF ¥

v .&rlﬂl Al dr (3-8)
The direction of ¥ at any moment is along the line tangent to the path at that
momeni (Fig. 3-17).

Note that the magnitude of the average velocity in Fig. 3-16 is not equal to the
average speed, which is the actual distance traveled along the path, Al, divided by
Af. In some special cases, the average speed and average velocity are equal (such
a5 motion along a straight line in one direction), bul in general they are not.
However, in the limit A — 0, Ar always approaches Al so the instantancous
speed always equals the magnitude of the instantancous velocity al any ltime.

The instantancous velocity (Eq. 3-8) is equal to the derivative of the position
vector with respect to time. Equation 3-8 can be written in terms of components
starting with Eq. 3-6a as:

df dx

fp-a.uq-\.

dy.  dz.
= E;i + &}-j + &}t = v + n,j + vk, (3-9)

where ©; = dx/df, v, = dy/dr, v; = dz/dt arc the x, y, and z components of the
velocity. Note that di/dt = dj/dt = dk/dt = 0 since these unit vectors are
constant in both magnitude and direction.

Acceleration in two or three dimensions is treated in a similar way. The
average acceleration vector, over a time interval Af = [, = 1, is defined as

average acceleration = ay - i:— —ﬂ ' (3-10)
Ar -1

where AV is the change in the instantancous velocity vector during that time
interval: A¥ = #; — #,. Nole thal ¥, in many cases, such as in Fig. 3-18a, may not
be in the same direction as ¥,. Hence the average acceleration vector may be in a
different direction from cither ¥, or ¥, (Fig. 3-18b). Furthermore, ¥, and #; may have
the same magnitude but different directions, and the difference of two such veciors
will not be zero. Hence acceleration can result from either a change in the magnitude
of the velocity, or from a change in direction of the velocity, or from a change in both.

The instantaneous acceleration vector is defined as the limit of the average
acceleration veetor as the time mterval Ar & allowed to approach zero:

M
I_.I.“—I-[lum_d: (3-11)

and is thus the derivative of ¥ with respect to I,
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We can write # using componenis:

T T
P di it il

= atl + n_..j + a,i. (3-12)

where a, = duv,/dl, etc. Because v, = dx/dt, then a, = dv,/df = d’x/di’, as
we saw in Section 2-4. Thus we can also write the acceleration as

d*r . d:}' L dII
§ =l gl mk
The instantaneous acceleration will be nonzero not only when the magnitude of
the velocity changes but also if its direction changes. For example, a person riding
in a car traveling at constant speed around a curve, or a child nding on a merry-go-
round, will both experience an acceleration because of a change in the direction of
the velocity, even though the speed may be constani. (More on this in Chapter 5.)
In general, we will use the terms “velocity™ and “acceleration™ 1o mean the instan-
taneous values. [f we want to discuss average values, we will use the word “average.”

IETTLITEE] Position given as a function of time. The position of a

particle as a function of time is given by
F = [(50m/s)t + (60m/s)]i + [(70m) - (3.0m/s")P]],

where r is in meters and [ is in seconds. (a) What is the particle’s displacement
between &, = 2.0s and 1, = 3.0s? (b) Determine the particle’s instantaneous
velocity and acceleration as a function of time. (¢) Evaluate #¥ and dat r = 3.0s.

APPROACH For (a), we lind AF = ¥, — #,, inserling f, = 2.0s for finding ¥,,
and & = 3.0s for #,. For (), we take derivatives (Eqs. 3-9 and 3-11), and for
(c) we substitute f = 3.0s8 into our results in (b).

SOLUTION (a) Al £, = 2.0,
# = [(50m/s)(2.0s) + (6.0m/s*)(2.0s)*]i + [(7.0m) - (3.0m/s")(2.05)*]]
= (34m)i - (17m)].
Similarly, a1 1, = 3.0s,
¥, = (15m +54m)i + (7.0m — 81m)j = (69m)i — (T4m)}

{3-12¢)

Thus
AF = #—# = (9m —34m)i + (~74m + 17m)j = (35m)i - (57 m)j.

That is, Ax = 35m, and Ay = —-57Tm.

(b} To find velocity, we take the dervative of the given F with respect to time,
noting (Appendix B-2) that d{¢*)/dr = 21, and d{r*)/dt = 3"

j =22 [5.0m/s + (12m/s2H]i + [0 — (9.0m/5%) )]

dl
The acceleration is (keeping only two significant figures):
i= g = (12m/s*)i — (18 m/s*)t].

Thus a; = 12m/s" is constant; but @, = —(18m/s')t depends lincarly on
time, increasing in magnitude with time in the negative y direction.
(c) We substitute ¢ = 3.05 into the equations we just derived for ¥ and &

¥ = (50m/s +36m/s)i — (81m/s)j = (41m/s)i — (81 m/s)]
i = (12m/s)i - (54 m/s?)].
Their magnitudes at f = 3.0s are v =\/(41 m/s)® + (81m/s)? = 91 m/s, and
a = V(12m/sf + (S4m/s*) = 55m/s

SECTION 3-6 Vector Kinematics

Constant Acceleration

In Chapter 2 we studied the important case of one-dimensional motion for
which the acceleration is constant. In two or three dimensaons, if the acceleration
vector, , is constant in magnitude and direction, then a, = constant, a, = constant,
a, = constanl. The average acceleration in this case 18 equal to the imstantaneous
acceleration at any momenl. The equations we derived in Chapter 2 for one
dimension, Eqs 2-12a, b, and c, apply separately 1o each perpendicular component
of two- or three-dimensional motion. In two dimensions we let ¥, = vl + vygj
be the initial velocity, and we apply Egs 3-6a, 3-9, and 3-12b for the position
vector, ¥, velocity, ¥, and acceleration, & 'We can then write Eqs. 2-12a. b, and ¢, for
two dimensions as shown in Tahle 3-1.

TABLE 3-1 Kinematic Equations for Constant Acceleration in 2 Dimensions

x Component (horizontal) y Component { verticul)
Ty = Uepy + @yl (Eq. 2-12a) By = Byg + iyl

x = x5 + wygt + lagi? (Eq. 2-12k) ¥ = W+ vyt + oyt
i = Vo + 2ag(x - xq) (Eq. 2-12¢) vy = o + 2ay(y — n)

The first two of the equations in Table 3-1 can be¢ written more formally in
vector notation.

V=¥ + [§ = constant] (3-13a)

F o= iy + ¥t + i [# = constant] {3-13b)
Here, ¥ is the position vector at any time, and #, is the position vector at [ = 0.
These equations are the vector equivalent of Egs 2-12a and b. In practical situa-
tions, we usually use the component form given in Table 3-1.

3-~7 Projectile Motion

FIGURE 3-19 This strobe In Chapter 2, we studied one-dimensional motion of an object in terms of displace-
photograph of a ball making a serics ment, velocity, and acceleration, including purcly vertical motion of a falling object
of bounces shows the characteristic undergoing acceleration due to gravity. Now we examine the more general transla-

“parabolic” path of projectile motion.  isnal motion of objects moving through the air in two dimensions near the
Earth’s surface, such as a golf ball, a thrown or batted baseball, kicked footballs,
and speeding bullets. These arc all examples of projectile motion (sce Fig. 3-19),
which we can describe as taking place in two dimensions.

Although air resistance is often important. in many cases its effect can be
ignored, and we will ignore i in the followmg analysis We will not be concerned now
with the process by which the object is thrown or projected. We consider only its
motion affer it has been projected, and before it lands or s caught—that i we
analyze our projected object only when it is moving freely through the air under the
action of gravity alone. Then the acceleration of the object is that doe to gravity,
which acts downward with magnitude g = 9.80m/s", and we assume il is constant.’

CGialileo was the first to describe projectile motion accurately. He showed thai
it could be understood by analyzing the horizontal and vertical components of the
motion scparately. For convenience, we assume that the motion begins at time
f = 0 ai the origin of an gy coordinate system (s0 x; = y = 0).

Let us look at a (tiny) ball rolling off the end of a horizontal table with an
initial velocity in the horizontal (x) direction, v,,. See Fig. 3-20, wheére an object
[alling vertically is also shown for comparison. The velocily vector ¥ al each instant
points in the direction of the ball's motion at that instant and is always tangent to
the path. Following Galileo’s ideas, we treat the horizonial and vertical compo-
nenis of the velocity, v, and vy, scparately, and we can apply the kinematic
equations (Eqs 2-12a through 2-12c) to the x and y components of the motion.

First we examine the vertical {y) component of the motion. At the instant the
ball leaves the table’s top (r = 0), it has only an x component of velocity. Once the

"This resiTicis us %0 objects whose distance traveled and maximum height above the Earth arc small
621 CHAPTER 3 compared to the Earth's radius (65400 km)),



Frojectile FIGURE 3-20 Projectile motion of a small ball projected

tmation horizontally, The dashed black line represents the path of the
™ ; - object. The velocity vector ¥ at each point is in the direchon of
] motion and thus is tangent to the path. The velocity vectors are
I green arrows, and velocity components are dashed. (A vertically
f falling object starting at the same point is shown at the lefi for
comparison; vy is the same for the falling object and the projectile.)
Vertical
fall

ball leaves the table (at ¢ = 0), it experiences a vertically downward acceleration g,
the acceleration due to gravity, Thus v, is initially zero (v, = 0) but increases
continually in the downward direction (until the ball hits the ground). Let us take y
to be positive upward. Then a, = —g, and from Eq. 2-12a we n.n;m':r: vy = —gif
since we set v, = (. The vertical displacement is given by y = — 3 gi". . A

In the honzontal direction, on u:f other hand, the m;relernliunlis Zero (we are ﬁtﬁgﬁiﬂmﬁﬁ:f
ignoring air resistance). With @, = 0, the honizontal component of velocity, v, , remaing (e hall was dropped from rest al
constant, ¢qual to its initial value, vy, and thus has the same magnitude at each  (he same time the other was
point on the path, The horizontal displacement is then given by x = v,,f. The two  projected horizontally outward. The
vector components, ¥, and ¥, , can be added vectorially at any instant to obtain the  vertical position of each ball is seen
velocity ¥ at that tume (thal s {or each point on the path), as shown in Fig. 3-20. to be the same at cach instanl.

One result of this analysis, which Galileo himsell predicted, is that an object
projected horizontally will reach the ground in the same time as an object dropped
vertically. This is because the vertical motions are the same in both cases, as
shown in Fig. 3-20. Figure 3-21 is a multiple-exposure photograph of an experi-
ment that confirms this,

EXERCISE D Return to the Chapter-Opening Question, page 51, and anawer it again now.
Try 1o explain why you may have answered differently the first time,

FIGURE 3=21 Multiple-cxposure

Il an object is projected a1 an upward angle, as in Fig. 3-22, the analysis is
similar, except that now there is an initial vertical component of velocity, vy,.
Because of the downward acceleration of gravity, the upward component of
velocity v, gradually decreases with time until the object reaches the highest point
on its path, at which point w, = (. Subsequently the object moves downward
(Fig. 3-22) and v, increases in the downward direction, as shown (that is
becoming more negative ). As before, v, remains constant.

9, =0 a i poin
f
S ﬂ-‘

e % FIGURE 3-221 Path of a projectile fired with
v, rn-\"" initial velocity ¥; at angle 8 to the horizontal. Path
is shown dashed in black, the velocily veciors are
My green arfows, and velocity components are
\"x dashed, The scceleration d = J¥%/d! is downward.
v . That is, & = § = —g] where | is the unit vector in
l P - the positive v direction.
¥
' ¥
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3-8 Solving Problems Involving
Projectile Motion

We now work through several Examples of projectile motion quantitatively.

We can simplify Eqs 2-12 (Table 3-1) for the case of projectile motion
because we can sel a, = 0. See Table 3-2, which assumes y is positive upward,
80 dy = —g = —9.80m/s’. Note that if # is chosen relative to the +x axis, as in
Fig. 3-22, then

Uy = Uycoslly,

tyy = Upsind,.
PROBLEM SOLVING In doing problems involving projectile motion, we must consider a time interval
Cheice of time terval - for which our chosen object is in the air, influenced only by gravity. We do not

consider the throwing (or projecting) process, nor the time after the object lands
or is caught, because then other influences act on the object, and we can no
longer set d = §.

TABLE 3-2 Kinematic Equations for Projectile Motion
(r positive upward; a, = 8, &, = —g = — 280 m/¥’)

Horizontal Motion Vertical Motion'

W= B = e g b—

Vg = Ugp (Eq.2-12a) vy = By = gl

X = xg + typl (Eq.2-12b) Y= gy + thygt — §g?
(Eq.2-12) v} = oo — 28(y — )

"I v is taken positive downward, the minus [~ | signs in front of g become plus | + | signs

q 0O Lll"'.!
> Yo

l'l‘uit"l.'lih’.' Motion The x and y motions are connécted by the common
lime.

Our approach to solving problems in Section 2-6 = Exsmine the horizontal (x) and vertical (y) motions
also applies here. Solving problems involving projec- separalely. If you are given the initial velocity, you
lile motion can require creativily, and cannotl be done WS (- resolve it into its x and y components

just by following some rules. Certainly you must 6 List the kmown and umkmown quantities, choosing
avoid just plugging numbers into equations that seem ay =0 and ay = —g or +g, where g = 9.80m/s",
to “work." and using the + or — sign, depending on whether

you choose y positive down or up. Remember that v,
L. As always, read carcfully; choose the object (or  Go.ver changes throughout the trajectory, and that

objects) you are going to analyze. vy = 0 at the highest point of any trajectory that
2. Draw a carcful diagram showing what is happening returns downward. The velocity just before landing is
to the object. generally not zero.
3. Choose an origin and an xy coordinate system. 7. ‘Think for & minute before jumping into the equations.
4. Decide on the time interval, which for projectile A little planning goes a long way. Apply the relevanit
motion can only include motion under Lthe effect of equations (Table 3-2), combining equations il neces-
gravity alone, not throwing or landing. The time sary. You may need to combine components of a vector
interval must be the same for the x and y analyses to get magmitude and direction (Egs 3-3).
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Driving off & clMf. A movic stunt driver on a motorcycle
speeds horizontally off a 50.0-m-high cliff. How last must the motorcycle leave
the clifl top to land on level ground below, 90.0 m [rom the base of the clifl where
the cameras are? Ignore air resistance.

APPROACH We explicitly follow the steps of the Problem Solving Strategy above.
SOLUTION

1. and 2. Read, choose the object, and draw a diagram. Our object is the
motorcycle and driver, taken as a single unit. The diagram is shown in Fig. 3-23.

3. Choose u coordinate system. We choose the y direction to be positive upward,

4. Choose a time interval. We choose our time interval 1o begin (f = 0) just as

5. Examine x and y motions. In the horzontal (x) direction, the acceleration

with the top of the cliff as » = 0. The x direction is horizontal with x, = 0
al the point where the motorcycle leaves the cliff.

the motorcycle leaves the cliflf top at position x, =0, % =0; our time
interval ends just before the motorcycle hits the ground below,

d, =0, 50 the velocity is constant. The value of r when the motorevcle " i xampi
reaches the ground is x = +%.0m. In the vertical direction. the accelera- — e
tion is the acceleration due 1o gravity, a, = —g = —~9.80m/s". The value of

y when the molorcycle reaches the ground is y = =50.0m. The initial

velocity is horizontal and is our unknown, vy, ; the initial vertical velocity is

zero, vy = 0.

6. List knowns and unknowns. Sce the Table in the margin. Note that in addition  Kpown Usksows
io not knowing the initial horizontal velocity vy (which stays constant until = =0 ¥ro
landing), we also do not know the time ! when the motorcycle reaches the ¥ =000m [
mﬂd- y = =400 m

«» Apply relevant equations. The motorcvele mainiains constant v, as long as il is ay =10

in the air. The time it stays in the air is determined by the y motion—when it~ 9 = =8 = ~980m/s’
hits the ground. 50 we first find the time using the y motion, and then use this tye = 0

time value in the x equations. To find out how long it takes the motorcycle to

reach the ground below, we use Eq. 2-12b (Table 3-2) for the vertical (y)

direction with , = 0 and vy, = &

¥y = W+ vyl + fa, P
= 0+ 0 +}§(-p)

or

y m =dgp
We solve for f and set ¥y = =500 m:
2y \/I{—jﬂ.ﬂm]
~§ = V-9m0m/?
To calculate the initial velocity, vy, we again use Eq. 2-12b, but this time for
the horizontal (x) direction, with a;, = 0 and x, = x

x = X+ gl + fa

= 0 + Ul + 0

t = = 3.19s

or
I = ““'.
Then
x 0.0 m
= - — = JRD
P =TT 310 m/t,

which is about 100 km/h {roughly 60 mi/h).

NOTE In the time interval of the projectile motion, the only acceleration is g in
the negative y direction. The acceleration in the x direction is zero.
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FIGURE 3-24 Example 3-7.

ji=i=-4

envsics arprien [EITIETEREN A kicked football. A football is kicked at an angle 8, = 37.0°

Sportx with a vclocity of 20.0 m/s, as shown in Fig. 3-24. Calculate (a) the maximum
height, (b) the time of travel before the foothall hits the ground, (¢) how [ar away
it hits the ground, (d) the velocity vector at the maximum height, and (e) the
acccleration vector at maximum height. Assume the ball leaves the foot at
ground level, and ignore air resistance and rotation of the ball.

APPROACH This may scem difficult at first because there are so many questions
But we can deal with them one at a time. We take the y direction as positive
upward, and treat the x and y motions separately. The total time in the air is again
determined by the y motion. The x motion occurs at constanl veloaity. The y
component of velocity varies, being positive (upward) initially, decreasing to zero
at the highest point, and then becoming negative as the football falls
SOLUTION We resolve the initial velocity into its components (Fig. 3-24):

U = Weos3T0® = (200m/s)(0.799) = 160m/s

tyy = wsin3IN0" = (200m/s)(0.602) = 12.0m/s.
(@) We consider a time interval that begins just after the football loses contact
with the foot until it reaches its maximum height. During this time interval, the
acceleration is g downward. At the maximum height, the velocity is horizontal
(Fig. 3-24), s0o v, = (; and this occurs al a time given by v, = vy = gt with
v, = 0 (see Eq.2-12a in Table 3-2). Thus

L e _ (120m/)
'] (9.80 m/s")
From Eq. 2-12b, with y, = 0, we have

y = vyl - | gt*

= (12.0m/s)(1.2245) — {(9.80m/s*)(1.2245)* = 735m.
Alternatively, we could have used Eq. 2-12¢, solved for y, and found
e — vy (120m/s) — (Dm/s)?
g 2(9.80 m/s*)

The maximum height is 7.35 m.
(&) To find the time it takes for the ball to return to the ground, we consider a
different time interval, starting at the moment the ball leaves the foot
(t =0, w=0) and ending just before the ball touches the ground (y = 0
again). We can use Eq. 2-12b with w = 0 and also set y = 0 (ground level):

Y = Yot vyl — igt

ﬂ = '} + 'IJ'H-I ] #ﬂ{
This equation can be easily factored:

tigf — vy) = 0.
There are two solutions, § = 0 (which corresponds 1o the imitial point, ), and

v 2(12.0
R . G
 § (9.80 m/s%)

which is the total travel time of the [oothall.

= 1.X4s = 122s.

= T35m.

l}I'=
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NOTE The time needed for the whole trip, I = 2u,, /g = 2.45s, is double the
time to reach the highest point, calculated in (a). That is, the time to go up equals
the time o come back down Lo the same level (ignoring air resistance).
() The total distance traveled in the x direction is found by applying Eq. 2-12b
with x; =0, a; = 0, v, = 16.0m/s:

= vl = (160m/s){2.45s8) = 39.2m.
() At the highest point, there is no vertical component to the velocity. There is
only the horizontal component (which remains constanl throughout the fMight),
80 V= Uy = tyoos 3700 = 16.0m/s.
(¢) The acceleration vector is the same a1 the highest point as it is throughout the
flight, which is 9.80 m/s* downward.
NOTE We treated the football as if it were a particle, ignoring its rotation. We

also ignored air resistance. Hecause air resistance is significant on a football, our
results are only estimates.

EXERCISE E Two balls are thrown in the air at different angles, but each reaches the same
height. Which ball remains in the air longer: the one thrown at the steeper angle or the
one thrown at a shallower angle?

CONCEPTUAL EXAMPLE 3-8] Where does the apple land? A child sits

upright in a wagon which is moving to the right at constant speed as shown in o
Fig. 3-25. The child extends her hand and throws an apple straight upward (from [
her own point of view, Fig. 3-25a), while the wagon continues to travel forward —a-x

al constant speed. If air resistance is neglected, will the apple land (@) behind
the wagon, (b) in the wagon, or (c) in front of the wagon?
RESPONSE The child throws the apple straight up from her own reference (rame

(a) Wapna releience frame

with initial velocity ¥,, (Fig. 3-25a). But when viewed by someone on the %o & -".r'-'."‘.\
ground, the apple also has an initial honzontal component of velocity equal 1o " b

the speed of the wagon, ¥.,. Thus, 1o 4 person on the ground, the apple will t/ \‘
follow the path of a projectile as shown in Fig. 3-25b, The apple experiences no x Ll 3
horizonial acceleration, so ¥, will stay constant and equal to the speed of the ﬂ: - &
wagon. As the apple follows its arc, the wagon will be directly under the apple at

all times because they have the same horizontal velocity. When the apple comes (h) Geund reference frame

down, it will drop right into the outstretched hand of the child. The answer is (b).  FIGURE 3-25 Example 3-8

ONCEPTUAL EXAMPLE 3-9 | The wrong strategy. A boy on a small hill aims
his water-balloon slingshot horizontally, straight at a second boy hanging from a tree
branch a distance o away, Fig. 3-26. A1 the instant the water balloon is released, the
second boy lets go and falls from the tree, hoping to avoid being hit. Show that he
made the wrong move. (He hadn't studied physics yel.) Ignore air resistance.
RESPONSE Both the water balloon and the boy in the tree start falling at the
same instant, and in a time ! they each fall the same vertical distance y = |gf®,
much like Fig. 3-21. In the time it takes the water balloon to travel the horzontal
distance d, the balloon will have the same y position as the [alling boy. Splat. If
the boy had stayed in the tree, he would have avoided the humiliation.

J jl':lﬂ FIGURE 3-16 E—'ll'-ﬂ'lﬂ#]-q
¥
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Level horizontal range. (a) Derive & formula for the hori

zonial range R of a projectile in terms of its initial speed w, and angle 8;. The

horizontal range i8 defined as the horizontal distance the projectile travels

1=0 t-hmﬁﬂ} before returning to its original height (which is typically the ground); that is,

| ¥ (final) = w. Secc Fig. 3-27a. (F) Suppose one of Napolcon's cannons had a

B, -~ _" muzzle speed, t;, of 60.0m/s At what angle should it have been aimed (ignore
S air resistance) to strike a target 320 m away?

(a) APPROACH The situation is the same as in Example 3-7, except we arc now not
given numbers in (a). We will algebraically manipulate equations to obtain our
result.

SOLUTION (a) Weset x; = 0 and 3 = 0 at 1 = (. Alter the projectile travels
a horizontal distance R, it returns to the same level, y = 0, the final point. We
choose our time interval to start {7 = 0) just after the projectile is fired and to

end when it returns to the same vertical height. To find a general expression for R,
we sel both y = 0 and w = 0 in Eq. 2-12b for the vertical motion, and obtain

- lg 2
FIGURE 3-27 Exampie 3-10, P Jott ek ¥+ 38yl
(a) The range R of a projectile; e e 3
(b) there are generally two angles 6, 0 =0+ vyl bar’

SLATVER grve-Ah Ramnd Tenge. LN We solve for 7, which gives two solutions: ¢ = 0 and 1 = 2u,,/g. The first solu-
ﬂ'ﬂ';mr 1rf“;r'"=k “:"1‘ tion corresponds to the initial instant of projection and the second is the time
ochinndod. o when the projectile returns to y = 0. Then the range, R, will be equal to x ai the
moment [ has this value, which we put into Eq. 2-12b for the horizontal motion
[x = vgl, with x; = 0). Thus we have:

Il'pn) '21.?;‘ Vyg Etﬁﬂnﬂumﬁ'ﬂn
£ g £
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R = vyl = ":u-( [-" = J'hl

where we have writlen vy, = yycosly and vy, = wysinfly,. Ths is the resull we
sought. It can be rewrilten, using the trigonometric identity 2 sin # cos 8 = sin 28
{ Appendix A or inside the rear cover):
1, sin 26,
£

We see that the maximum range, for a given initial velocity 1y, is obtained when
sin 28 takes on ils maximum value of 1.0, which occurs for 28, = W°; so

R [only if y (final) = w

8, = 45" for maximum range, and R, = w/g.

[When air resistance is imporiant, the range is less for a given w»,, and the
maximum range is obtained al an angle smaller than 45°)

NOTE The maximum range increases by the square of u,, so doubling the muzzle
velocity of a cannon increases ils maximum range by a factor of 4.

(b) We put R = 320m into the equation we just derived, and (assuming, unreal-
istically, no air resistance) we solve it to find
Rg  (320m)(9.80 m/+’

H.'ﬂ.u.u = -:nﬁl. - {ﬁﬂ_ﬁnj;}:}l - = [[.871.

We wanl to solve for an angle &, that is between 0° and ™7, which means 28,
in this equation can be as large as 180°, Thus, 28, = 60.6° is a solution, bul
20, = 180° — 60.6° = 119.4% is also a solution (see Appendix A-9). In general
we will have two solutions (see Fig. 3-27b), which in the present case are given by

& = 303* or 9.7

Either angle gives the same range. Only when sin 28, = 1 (s0 8, = 457) is there
a single solution (that is, both solutions are the same).
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EXERQISE F The maximum range of a projectile is found 1o be 100m. If the projectile
strikes the ground a distance of 82 m away, what was the angle of lsunch? {a) 35 or 557
(b) 307 or 60°% (c) 27.5* or T25% (d) 13.75" or 76.25".

The level range formula derived in Example 3-10 applies only if 1akeoll
and landing are at the same height (y = ). Example 3-11 below considers a
case where they are not equal heights (y # ).

A punt. Suppose the football in Example 3-7 was punted and PHYSICS APPLIED
left the punter's foot at a height of 1.00m above the ground. How far did the ., ——
football travel before hitting the ground? Set x, = 0, w = 0.

APPROACH The x and y motions are again treated separately. But we cannot use -' PROBLEM SOLVING
the range formula [rom Example 3-10 because it is valid only if y (final) = ¥, Do aor juse any formula unles you
which is not the case here, Now we have s, = 0, and the football hits the ground @/ swre i range of salidiny firs tie
where y = —1.00m (see Fig. 3-28). We choose our time interval to start when  /707om ihe range formids does
the ball leaves his foot (¢ =0, jp = 0, x, = 0) and end just before the ball hits " 4P/ here hecause y &
the ground (y = —1.00m). We can geot x from Eg. 2-12b, x = v,l, since we

know that vy, = 16.0m/s from Example 3-7. But first we must find £, the time

al which the ball hits the ground, which we obtain from the y motion.

¥

FIGURE 3-28 ~
leaves the pun’

N
wegondwh 89 /7322 v

SOLUTION With y = —1.00m and vy = 12.0m/s (sce Example 3-7), we use
the equation

y = w + vt = igf,
and obtain
-1.00m = 0+ (120m/s)r — (4.90m/s" )¢’

We rearrange this equation into standard form (ax® + bx + ¢ = 0) so we can
use the quadratic formula:

(490 m/s")1* — (120m/s)t — (1.00m) = 0.
The quadratic formula (Appendix A-1) gives
.r- 120m/s £ 3/(—120m/s)® — 44.90m/s?)(—1.00m)
2(4.90 m/s)
= 2533 or -008ls

The second solution would correspond to a time prior to our chosen time interval
that begins at the kick, so it doesn’t apply. With ¢ = 2535 [or the time at which
the ball touches the ground, the horizontal distance the ball traveled is (using
tzg = 160m/s from Example 3-T):

x = Uyl = (160m/s)(2535) = 405m.

Our assumption in Example 3-7 that the ball leaves the foot at ground level
would result in an underestimate of about 1.3 m in the distance our punt traveled.
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e Li"'---.._ '-*{:._ -hhhhxm
] "‘q..‘- a ] = — "\..\
| “'u.‘[u,ﬂnﬁs . " N
200 m S 200 m Thrown downward? ™« Yy
| \.\x {nﬂ{ﬂ} ‘n:;
i T i i
(a) (b)

FIGURE 3-29 Example 3-12.

LU TERTY Rescue helicopter drops supplies. A rescue helicopier

@FH!!IES APPLIED wants to drop a package of supplies to solated mountain chmbers on a rocky

Reaching a arges ridge 200 m below. If the helicopter is traveling horizontally with a speed of

from a moving helicopier T0m/s {250 km/h), (a) how [ar in advance of the recipients (horizontal distance)

must the package be dropped (Fig. 3-29a)7 (b) Suppose, instead, that the heli-

copler releases the package a horizontal distance of 400m in advance of the

mountain climbers. What vertical velocity should the package be given (up or down)

so that it arrives precisely at the climbers’ position (Fig. 3-29b)7 (c) With what

speed does the package land in the latter case?

APPROACH We choose the origin of our xy coordinate system at the initial position
of the helicopter, taking + vy upward, and use the kinematic equations (Table 3-2).

SOLUTION (a) We can find the time to reach the climbers using the vertical distance of

200m. The package is “dropped” so initially it has the velocity of the helicopter,

ty = 70m/s, vy = 0. Then, since y = —gf%, we have

=2¥ —2(—200m)
= 5L S Mt Beniatetie: S
SR 9.80 m/s? -

The horizontal motion of the falling package is af constant speed of 70 m/s So

x = vl = (T0m/s)(6.39s) = 447m = 450m,
assuming the given numbers were good to two significant figures.
(b) We are given x = 400m, v,y = T0m/s, y = —200m, and we want to find v,
(see Fig. 3-29b). Like most problems, this one can be approached in various
ways. Instead of searching for a formula or two, let's try to reason it out in a
simple way, based on whal we did in part (a). If we know f, perhaps we can gel vy,.
Since the horizontal motion of the package is at constant speed (once it s released
we don’l care what the helicopier does), we have 1 = vl, so

x 400 m

I = ;:; - :l'a-;fl = 571s.
Now let's try lo use the vertical motion 10 get ¥y: ¥ = ¥y + ¥yel — 3g1°. Since
=0 and y = —200m, we can solve for vy,:

y+igf  —200m + 3(9.80 m/s)(5.715)*

Ko i 5715 o/
Thus, in order to arrive al precisely the mountain climbers® position, the package
must be thrown dowmward from the helicopter with a speed of 7.0m/s
(¢} We want to know v of the package at | = 5.71 5. The components are:

Uy = Ugg = 0m/s

Uy = Uy~ gt = —70m/s - (9.80m/s)(5.715) = —63m/s.
S0 v = %/(70m/s)’ + (-63m/s)’ = 94 m/s. (Better not to release the package
from such an altitude, or use a parachute. )
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Projectile Motion Is Parabolic

We now show that the path [ollowed by any projectile is a parabola, if we can
Ignore air resistance and can assume that g is constant. To do so, we need to find y
as a function of x by eliminating ¢ between the two equations for horizontal and
vertical motion (Eq. 2-12b in Table 3-2), and for simplicity we sel x, = W, = 0:

I = vyl
y = thyl = 1gr

From the first equation, we have I = x/v,,, and we substitute this into the second
one 1o oblain

u;u) ( g ) ,
= E - — | i3-14)
Y (’-'HJ 2

We see that y a8 a function of x has the form
¥y = Ax — Bx,

where A and 8 are constants for any specific projectile motion. This is the well-known
equation for a parabola. See Figs. 3-19 and 3-30.

The idea that projectile motion is parabolic was, in Galileo's day, at the forefront
of physics research. Today we discuss it i Chapter 3 of introductory physics!

FIGURE 3-30 Examples of projectile motion—sparks {small hot glowing pieces of metal), water, and Greworks The
parabolic path characteristic of projectile motion is affected by air resistance,

3-9 Relative Velocity

We now consider how observations made in different frames of reference are
related to each other. For example, consider two trains approaching one another,
each with a speed of 80 km/h with respect to the Earth, Observers on the Earth
beside the train tracks will measure B0 km/hr for the speed of each of the trains
Observers on either one of the trains (a different frame of reference) will measure
a speed of 160 km/h for the train approaching them.,

Similarly, when one car traveling %0 km/h passes a second car traveling in the
game direction at 75km/h, the first car has a speed relative 1o the second car of
90 km/h — 75km/h = 15 km/h.

When the velocities are along the same line, simple addition or subtraction is
sufficient to oblain the relative veloaity. But if they are not along the same line, we
must make use of vector addition. We emphasize, as mentioned in Section 2-1, that
when specifying a velocity, it is important to specify what the reference frame s
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When delermining relative velocity, it is easy 1o make a mistake by adding or
subtracting the wrong velocities. It is important, therefore, to draw a diagram and
usc a careful labeling process. Each velocity is labeled by rwo subscripis: the firse
refers 1o the object, the second 1o the reference frame in which it has this velocity.
For example, suppose & boal is 1o cross a river 1o the opposite side, as shown in
Fig. 3=31. We let ¥y be the velocity of the Boat with respect 1o the Waler. (This is
also what the boat’s velocity would be relative 1o the shore if the water were still.)
Similarly, ¥#45 is the velocity of the Boat with respect (o the Shore, and ¥ is the
velocity of the Water with respect to the Shore (this is the river current). Note that
¥uw 18 what the boat's motor produces (against the water), whereas ¥ is equal 1o
¥uw plus the effect of the current, ¥y5. Therefore, the velocity of the boat relative
to the shore is (see vector diagram, Fig. 3-31)

Vs = Tyw + Wy, (3-15)
FIGUNRE 3-31 ‘Tb move diroclly By wriling the subscripts using this convention, we sec that the inner subscripls
across the river, the boat must head {the two W's) on the right-hand side of Eq. 3-15 are the same, whereas the outer
upstroam at an angle 4, Velocity subscripts on the right of Eq. 3-15 (the B and the 5) are the same as the two

VRGOS MG WIOWN &3 J0cE RITTRe: subscripts for the sum vector on the lefl, ¥y By lollowing this convention (first

¥a1 = velocily of Hoat with subscript for the object, second for the reference frame), you can write down the
Frxpack to the. Bhoee, correct equation relating velocities in different reference frames’ Figure 3-32
Fyw = velocity of Boat with gives a derivation of Eg. 3-15.
respect to the Water, Equation 3-15 is valid in general and can be extended to three or more veloc-
Ywy = velocity of the Water with  jties. For example, if a fisherman on the boat walks with a velocity ¥y relative Lo
reapect to the Shore (river the boat, his velocity relative 1o the shore is ¥ = ¥y + ¥gy + ¥y The equations
current). involving relative velocity will be correet when adjacent inner subscripis are
identical and when the outermost ones correspond exactly 10 the two on the velocity
on the left of the equation. But this works only with plus signs (on the right), not
minus signs.
It is often uselul to remember thatl for any two objecis or reference lrames,
A and B, the velocity of A relative to B has the same magnitude, but opposite
direction, as the velocity of B relative to A:

Yoo = V- (3-16)

For example, il a train is traveling 100 km,/h relative to the Earth in a certain direc-
tion, objects on the Earth (such as trees) appear to an observer on the train 1o be
traveling 100 km/h in the opposite direction.

"We thus would know by inspection that {for example) the equation 'i"'“ = Vg + Vg B WITnE

FIGURE 3-32 Derivation of relative velocity equation (Eq. 3-15), in this case for
o person walking along the corndor in a train. We are looking down on the train
and two reference frames are shown! oy on the Earth and £'y" fixed on the train.
We have:

fpr = position vector of person (P) relative to train (T), ¥

Fpp = position vector of person (P) relative to Earth (E),

frm = position vector of train's coordinate system (1) relative to Earth (E).
From the diagram we sce that

r|f,,

Fer

i?l‘! = in I f.'l.:. il
‘We take the derivative with respect (o time to obtain

i il d
o (te) = 2 (Fre) + 2 (Fra).
or, since dFdr = ¥,

Yeu = e+ Y.
This is the equivalent of Eq. 3-15 for the present situation (check the subscripts!).
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FIGURE 3-33 Example 1-16.

- Crossing a river. A woman in a small motor
boat is trying to cross a river that flows due west with a strong current. The woman
starts on the south bank and is trying to reach the north bank directly north from her
starting point. Should she (a) head due north, (b) head due west, (c) head in a north-
westerly direction, (d) head in a northeasterly direction?

RESPONSE If the woman heads straight across the river, the current will drag the
boat downstream (westward). To overcome the river’s westward current, the boat
must acquire an eastward component of velocity as well as a northward compo-
nent, Thus the boat must (d) head in a northeasterly direction (see Fig 3-33).
The actual angle depends on the strength of the currenl and how fast the boat
moves relative to the water. If the current 18 weak and the motor is strong, then
the boat can head almost, but not quite, due north.

Heading upstream. A boat's speed in still water is
tyw = L.BSm/s. If the boat is to travel directly across a river whose current has
speed vy = 1.20m/s, at what upstream angle must the boat head? (See Fig. 3-33.)
APPROACH We reason as in Example 3-13, and use subscripts as in Eq. 3-15.
Figure 3-33 has been drawn with V5. the velocity of the Boat relative to the
Shore, pointing directly across the river because this is how the boat is supposed
1o move. (Note that ¥y = Fyw + ¥yg.) To accomplish this, the boat needs (o
head upstream to offset the current pulling it downstream.

SOLUTION Vector ¥y points upstream at an angle & as shown. From the diagram,
Pws _ 1.20m/s
P 1.85m/s

Thus @ = 40.4°, so the boat must head upstream at a 40.4° angle.

sinf = = (L6486,

Heading across the river. The same boat (v = 1.85m/s)

now heads directly across the river whose current is still 1.20m /s {a) What is the
velocity (magnitude and direction) of the boat relative to the shore? (&) If the
river is 110 m wide, how long will it take to cross and how far downstream will
the boat be then?

APPROACH The boal now heads directly across the river and is pulled down-
stream by the current, as shown in Fig. 3-34. The boat's velocity with respect to
the shore, ¥4, is the sum of its velocity with respect (o the waler, ¥y, plus the
velocity of the water with respect to the shore, ¥y !

Vas ™ Vow + Vs,
just as before.
SOLUTION (a) Since ¥y is perpendicular to %y, we can gel wy; using the
theorem of Pythagoras:

tgs = VUhw + thy = V(185m/s) + (1.20m/s) = 221m/s.
We can obtain the angle (note how @ is defined in the diagram) from:

tanf = vyg/tgy = (120m/s)/({1.85m/s) = 0.6486.
Thus 6 = tan'(0.6486) = 33.0°. Note that this angle is not equal to the angle
caleulated in Example 3-14,
(H) The travel time for the boat is determined by the time it takes to cross the river.
Given the river's width D = 110m, we can use the velocily nenl in the
direction of D, vy = D/I. Solving for ¢, we get = 110m/1.85m/s = 5955
The boal will have been carried downsiream, in this time, a distance

d = gt = (L.20m/s)(59.58) = Tldm = 7im.
NOTE There is no acceleration in this Example, so the motion involves only
constant velocities (of the boat or of the river).

FIGURE 3~ e

93/1322

FIGURE 3-34 Example 3-15.
A boat heading directly across a
river whose current moves at
1.20m/s
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(a) (b)

Car velocities at 90°. Two automobiles approach a street corner
al right angles 1o each other with the same speed of 400km/h (= 11.11 m/s), as
shown in Fig. 3-35a. What is the relative velocity of one car with respect (o the
other? That is, deiermine the velocity of car 1 as seen by car 2.

APPROACH Figure 3-35a shows the situation in a reference [rame fixed Lo the
Earth. But we want to view the situation from a reference frame in which car 2 is
al rest, and this is shown in Fig. 3-35b. In this reference frame (the world as seen
by the driver of car 2), the Earth moves toward car 2 with velocity ¥, (speed of
40.0km/h), which is ol course equal and opposite 1o ¥,5, the velocity of car 2
with respect to the Earth (Eq. 3-16):

Vae = ~Vea.
Then the velocity of car 1 as seen by car 2 is (sce Eq. 3-15)

V2 = ¥ + ¥
SOLUTION Because Wex = —W¥¢, then

Vi = W5 — 5.
That is, the velocity of car 1 as seen by car 2 is the difference of their velocities,
¥,p — %5, bolh measured relative 1o the Earth (see Fig. 3-35¢). Since the
magnitudes of ¥,¢, ¥, and ¥, are equal (#0.0km/h = 11.11 m/s), we see

| Summary

(Fig. 3-35b) that ¥, poinis ai a 45° angle 1oward car 2; the speed is
B = V({1L11m/sf + (11.11m/s)’ = 15.7m/s (= 56.6km/h).

A quantity that has both a magnitude and a direction is called a
veclor. A quantity that has only a magnitude is called a scular.

Addition of vectors can be done graphically by placing the
il of each successive arrow (representing each vector) at the
tip of the previous onc. The sum, or resultant vector, is the arrow
drawn from the tail of the first o the tip of the last. Two vectors
can also be added using the parallelogram method.

Vectors can be added more accurately using the analytical
method of adding their components along chosen axes with the
aid of trigonometric functions. A vector of magnitude V' making
an angle & with the x axis has components

Vi = Voosé Vy = Vené, (3-2)
Giiven the cormponents, we can find the magnitude and direction from

V = WVi+ ¥, ianéd= v, (3-3)

It is often helpful to express a vector in terms of its components
along chosen axes using wmil vectors, which are vectors of unit

length along the chosen coordinale axes, for Cartesian coordinates
hmmmm;y.m:mmmlj,mdh

The general definitions for the insiantamcous velodty, ¥,
and scceleration. d, of a particle (in one, two, or three dimen-
FIONS) are

dy
v (3-8)
£ - :—'~ @-11)

where ¥ is the position vector of the particle. The kinematic
equations for motion with constant accéleration can be wrillen
for each of the x, y, and z components of the motion and have
the same form as for one-dimensional motion (Eqs 2-12). Or
they can be written in the more general vector form:
¥o= W+ i
Fo= Fy + Wt + it (3-13)
Projectile motiom of an object moving in the air ocar the
Earth's surface can be analyzed as two separale motions il air
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