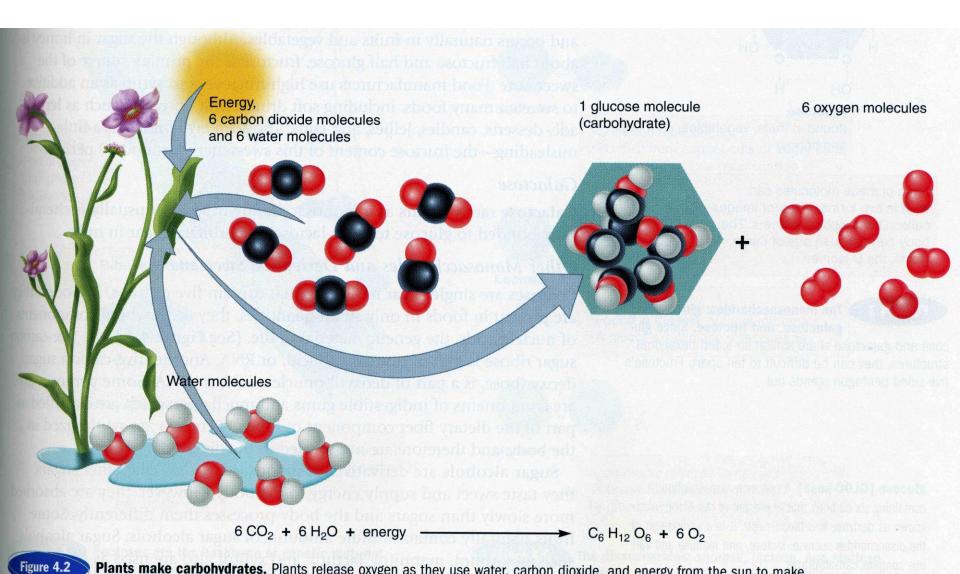
Carbohydrates



Overview Carbohydrates

- Sources of Carbohydrates
 - Simple Sugars
 - Complex Carbohydrates
 - Dietary Fiber
- Digestion and Absorption
- Functions
- Blood glucose regulation
- Dietary sweeteners
- Dietary Recommendations

What are Carbohydrates?

Plants make carbohydrates. Plants release oxygen as they use water, carbon dioxide, and energy from the sun to make carbohydrate (glucose) molecules.

Types of Carbohydrates

Simple Carbohydrates

- monosaccharides
- disaccharides

Complex Carbohydrates

- oligosaccharides
- polysaccharides
 - glycogen
 - starches
 - fibers

Monosaccharides: Single Sugars

Glucose

 carbohydrate form used by the body, referred to as "blood sugar"

Glucose

- basic sub-unit of other larger carbohydrate molecules
- found in fruits, vegetables, honey

Monosaccharides: Single Sugars

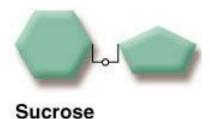
Fructose

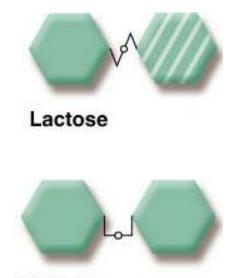
- sweetest of the sugars
- occurs naturally in fruits & honey, "fruit sugar"
- combines with glucose to form sucrose

Fructose

Galactose

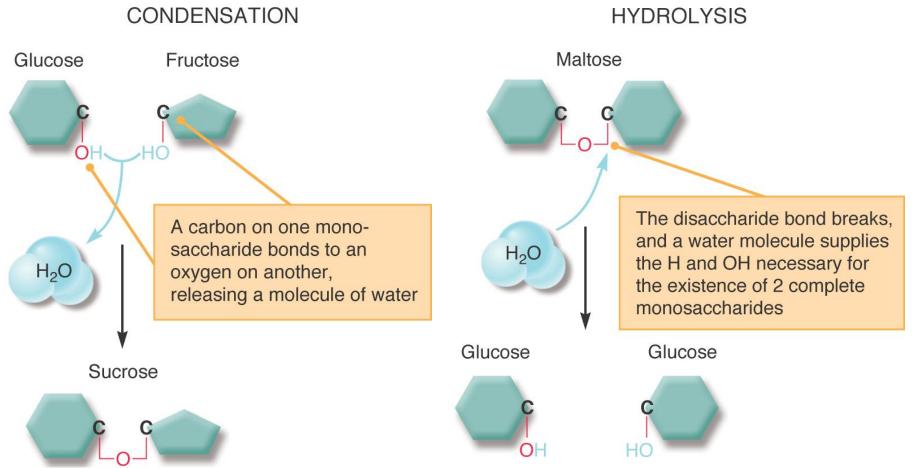
 combines with glucose to form lactose, "milk sugar"



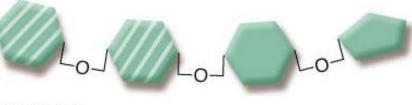

Disaccharides

Sucrose ("table sugar") – glucose + fructose

Lactose ("milk sugar") – glucose + galactose

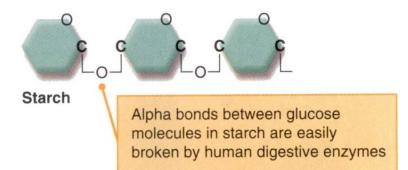

Maltose ("malt sugar") – glucose + glucose

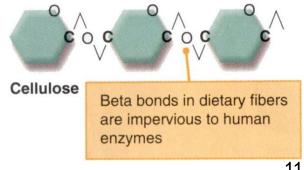
Maltose


Joining and Cleaving Sugar Molecules

Oligosaccharides

- short carbohydrate chains of 3 10 monosaccharides
- found in legumes and human milk
- Examples:
 - raffinose
 - stachyose

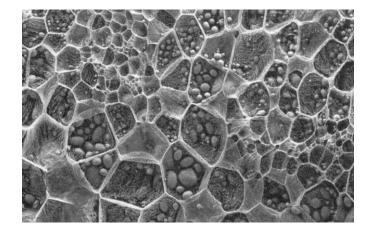

cannot be broken down by human enzymes, though can be digested by <u>colonic bacteria</u>



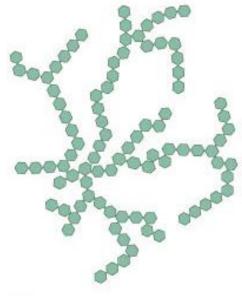
Stachyose

Polysaccharides

- long carbohydrate chains of monosaccharides linked by glycosidic bonds
 - alpha (α) bonds (starch)
 - beta (β) bonds (found in fiber)



Starch


- plant storage form of carbohydrate
- long branched or unbranched chains of glucose
 - amylose
 - amylopectin

amylopectin

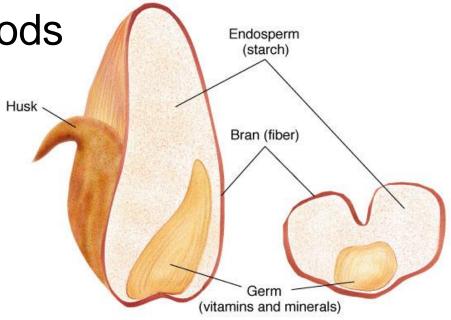
Glycogen

- highly branched chains of glucose units
- animal storage form of carbohydrate
 - found in LIVER and MUSCLE
 - Humans store ~ 100g in liver;
 ~ 400g in muscle
- negligible source of carbohydrate in the diet (meat)

Glycogen

Fiber

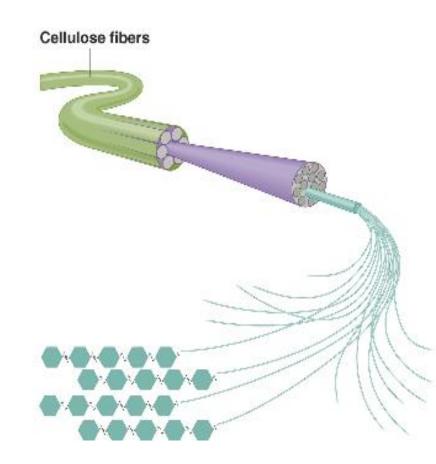
Dietary Fiber


 non-digestible carbohydrates (chains of monosaccharides) and lignin that are intact and intrinsic in plants (includes oligosaccharides)

Functional Fiber

 isolated, non-digestible carbohydrates that have beneficial physiological effects in humans

Complex Carbohydrates Fiber cont.


- dietary fiber found in all types of plant foods

Fiber cont.

 types of non-starch polysaccharides include:

cellulose hemicelluloses pectins gums & mucilages β-glucans chitin & chitosan lignans

Digestion & Absorption

- 1. Mouth
- chewing
- salivary amylase
- 2. Stomach
- fibers remain in the stomach longer, delays gastric emptying

The action of salivary amylase in the mouth begins to digest starch to shorter glucose chains.

As soon as food reaches the stomach, stomach acid inactivates the amylase and proteases destroy the enzyme.

. .

Digestion & Absorption

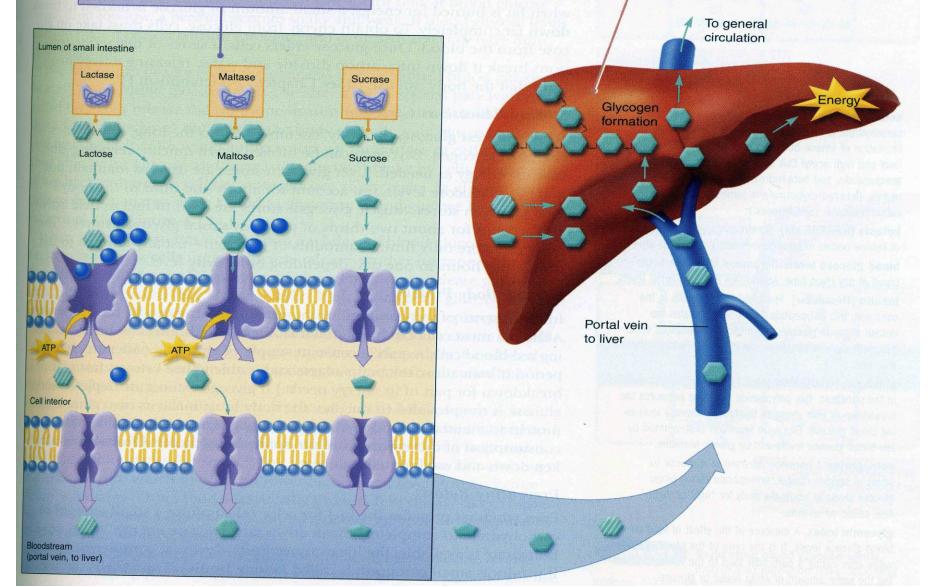
Small Intestine

- pancreas secretes enzyme *pancreatic amylase*
- enzymes located on the cell membranes of the intestinal epithelial cells complete digestion

maltose	maltase	glucose + glucose
	sucrase	5 5
sucrose	5467456	glucose + fructose
lactose	lactase	glucose + galactose

The action of salivary amylase in the mouth begins to digest starch to shorter glucose chains. As soon as food reaches the stomach, stomach acid inactivates the amylase and proteases destroy the enzyme. In the small intestine, pancreatic amylase completes the digestion of starch to maltose. Specific enzymes digest disaccharides to monosaccharides, which are absorbed by the tiny microvilli.

3


Digestion & Absorption

Small Intestine cont.

- only monosaccharides can be absorbed
 - glucose & galactose absorbed by ACTIVE TRANSPORT
 - fructose absorbed by FACILITATED DIFFUSION
- all three monosaccharides travel in the portal vein to the liver
- three fates of glucose at the liver
 - Energy, storage as glycogen, released to blood

Intestinal cells absorb glucose and galactose through energy- and sodium-dependent active transport channels. Fructose uses facilitated diffusion to enter the cell. All three monosaccharides use facilitated diffusion to move out of the cell and into the bloodstream.

Once in the bloodstream, the monosaccharides travel to the liver via the portal vein. The liver can convert fructose and galactose to glucose. The liver may form glucose into glycogen, burn it for energy, or release it to the bloodstream for use in other parts of the body.

(5)

Digestion & Absorption

Large Intestine

- resistant starches and fibers may be digested by bacteria
 - produces short chain fatty acids
 - absorbed by the intestine and used for energy (dietary fiber yields about 2 kcal/g)
 - other health benefits (more later in semester)

Lactose Intolerance

- occurs as a result of insufficient lactase & low lactase activity
- lactose molecules from milk remain in the intestine undigested
- lactose intolerance ≠ milk allergy
- undigested lactose digested by bacteria producing irritating acid and gas
 - symptoms include bloating, abdominal discomfort, diarrhea

Lactose Intolerance

- individuals who consume little or no milk products may be at risk of developing nutrient deficiencies
- dairy options: yogurt, aged cheddar, small quantities of milk (~ ½ cup), acidophilus milk, cottage cheese
- best to consume with other foods and spread intake throughout day
- gradual increases in milk intake may cause intestinal bacteria to adapt

Alternatives to Milk

1. Calcium

 canned fish with bones, bone soup stock, broccoli, cauliflower, bok choy, calcium fortified beverages, blackstrap molasses

2. Vitamin D

- 15 minutes exposure to SUNLIGHT several times per week
- fortified margarine, fortified cereals, fatty fish (herring, tuna, salmon, sardines), fortified soy or rice milk

3. Riboflavin

 beef, chicken, liver, clams, mushrooms, broccoli, breads, fortified cereals

Functions of Carbohydrates

1) Energy

- glucose fuels the work of most of the body's cells
 - preferred fuel of NERVOUS TISSUE (the brain, nerves) and RED BLOOD CELLS (RBC)
- excess glucose is stored as GLYCOGEN in liver and muscle tissue

Functions of Carbohydrates

2) Sparing Body Protein

- if diet does not provide enough glucose, then other sources of glucose must be found
- if carbohydrate intake < 50 100 g, body protein will be used to make glucose
- an adequate supply of carbohydrate spares body proteins from being broken down to synthesize glucose

Functions of Carbohydrates

3) Preventing Ketosis (Anti-ketogenic)

- carbohydrates required for the complete metabolism of fat
- incomplete fat metabolism produces KETONES
- an adequate supply of carbohydrate (> 50 – 100 g per day) prevents KETOSIS

Fiber

- beneficial for weight control by contributing to satiety & delay gastric emptying
- soluble fibers lower blood cholesterol to help reduce risk of cardiovascular disease
- minimizes risk of and helps control Type II Diabetes
- insoluble fibers help promote intestinal health by enlarging stool size and easing passage of stool

Soluble Fiber

- examples include gums, pectins, mucilages, some hemicelluloses
- functions:
 - delay gastric emptying
 - slow transit through the digestive system
 - delay glucose absorption
 - bind to bile, help decrease cholesterol
- food sources: fruits

Insoluble Fiber

- examples include cellulose, hemicellulose
- functions:
 - speed transit through the digestive tract
 - delay glucose absorption
 - increase fecal weight and soften stool to ease passage
 - reduces risk of hemorrhoids, diverticulitis and appendicitis
- food sources: cereal grains, legumes, vegetables, nuts

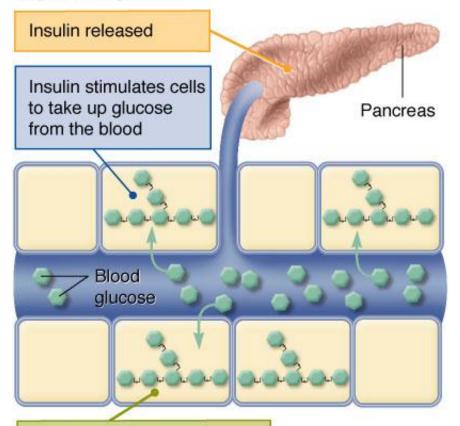
Fiber: Too much of a good thing?

Excessive amounts of fiber may lead to:

- displacement of other foods in the diet
- intestinal discomfort
- interference with the absorption of other nutrients

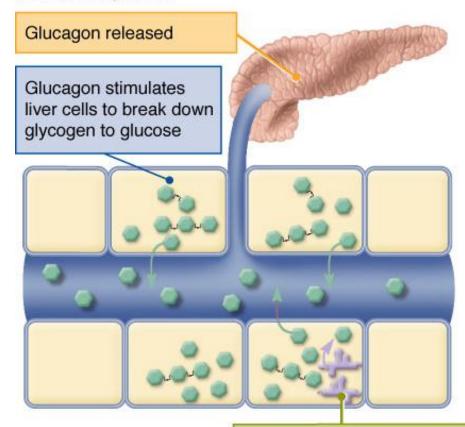
Regulation of Blood Glucose

Optimal functioning of the body is dependent on keeping levels of glucose within certain parameters.


Elevated blood glucose = Hyperglycemia

Low blood glucose = Hypoglycemia

The ENDOCRINE SYSTEM is primarily responsible for regulating blood glucose. The two main hormones are INSULIN and GLUCAGON.


Regulation of Blood Glucose

High blood glucose

Insulin stimulates liver and muscle cells to store glucose as glycogen

Low blood glucose

Glucagon stimulates liver cells to make glucose from amino acids

Diabetes Mellitus

- a disorder of energy metabolism due to failure of insulin to regulate blood glucose
- results in hyperglycemia
- acute symptoms include thirst, increased urine production, hunger
- long term consequences include increased risk of heart disease, kidney disease, blindness, neural damage
- two forms: Type I and Type II

Diabetes Mellitus

Type I

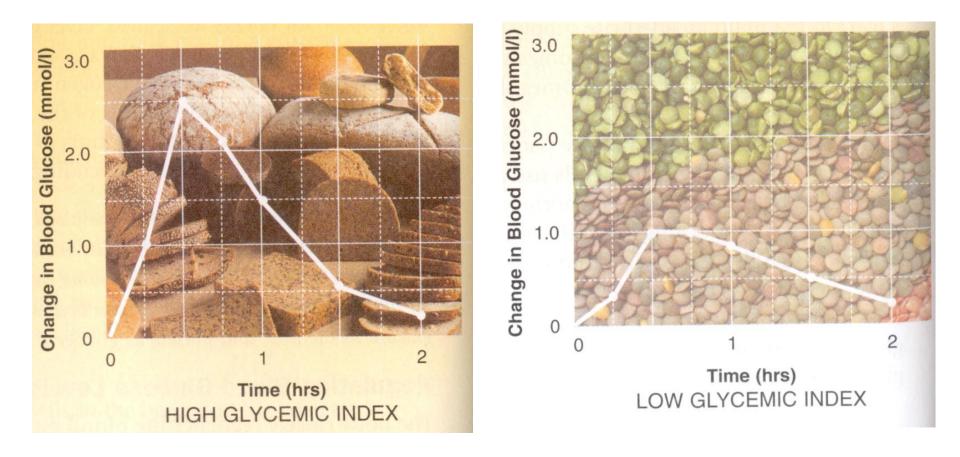
- accounts for about 10% of cases
- occurs when β cells of the pancreas are destroyed
 - insulin cannot be synthesized
- without insulin, blood glucose levels rise because the tissues are unable to access the glucose
- death occurs shortly after onset unless given injections of insulin

Diabetes Mellitus

Type II

- occurs when cells of body are unable to respond to insulin
- called "insulin insensitivity" or "insulin resistance"
- blood glucose levels rise
- insulin secretion increases in an attempt to compensate
 - leads to hyperinsulinemia

Hypoglycemia


- dramatic drop in blood glucose
- symptoms similar to an anxiety attack: rapid weak heart beat, sweating, anxiety, hunger, trembling, weakness
- RARE in healthy people
- may occur as a result of poorly managed Diabetes or other causes:
 - reactive hypoglycemia
 - fasting hypoglycemia

The Glycemic Index

 a measure of the extent to which a food raises blood glucose concentration & elicits an insulin response compared to pure glucose

Low	Moderate	High
pasta	banana	white bread
baked beans bran cereals apples	orange juice ice cream	cornflakes potatoes jelly beans
milk		watermelon

The Glycemic Index

The Glycemic Index cont.

	Glucose	100
	Baked potato	85
	Jelly bean	78
	Honey	73
	Bagel	72
	Sucrose	65
	Boiled new potato	62
	Brown rice	55
	Chocolate	49
	Boiled carrots	47
	Orange	44
	Spaghetti	42
	Apple	38
	Skim milk	32
	Lentils	29
	Fructose	23
,		

The Glycemic Index cont.

The Theory...

- consuming foods with a low glycemic index will minimize dramatic fluctuations in blood glucose
- this reduces the need for insulin secretion and may help manage Type II Diabetes

Evidence?

The Glycemic Index cont.

In Practice...

- the glycemic effect of a food may vary if consumed with other foods
- few foods have had their glycemic index determined
- the factors that contribute to a food's glycemic index are not fully understood and estimating the glycemic index is not intuitive
- eating several small meals frequently has similar metabolic effects on blood glucose as does consuming low glycemic index foods
- evidence of benefits is based on epidemiological studies

Sugar

In 2006, Canadians consumed an average 61 g/day of "added sugars" (> 14 tsps!)

A lot of sugar comes in sugar sweetened beverages

ONE DAY 11.9 teaspoons

ONE WEEK 1.7 cups ONE MONTH 7.5 cups ONE YEAR 45.3 pounds 3,550 pounds

Sugar

Intrinsic sugars

- from intact fruits & vegetables

Added sugars

 – saccharides added to foods & beverages by manufacturer, cook, or consumer

Free sugars

 added sugars + concentrated sugars (i.e. from honey, syrups, and juices)

Sugar

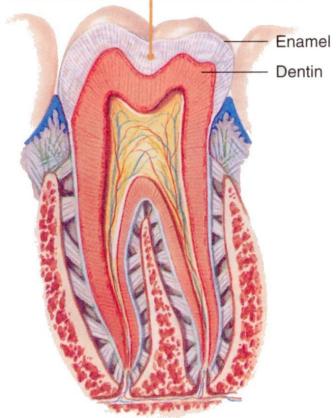
Why is sugar added to foods?

- flavour enhancement
- provide texture and colour
- permits fermentation
- adds bulk
- acts as a preservative
- balance acidity

Risks of Excess Consumption?

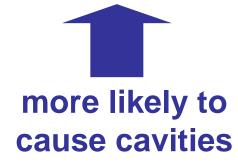
Which of the following are risks of excess sugar consumption?

- nutrient deficiencies?
- development of dental caries?
- development of Type II Diabetes? Obesity?
- hyperactivity in children?


Empty Calories?

Compare:

	Honey	Coke	Apricots
Size of 100 kcal portion	1.5	1 cup	6
	tbsp		
Carbohydrate (g)	26	26	24
Protein (g)	trace	0	2
Calcium (mg)	2	6	30
Vitamin A (µg)	0	0	554
Vitamin C (mg)	trace	0	22 49


Dental Caries

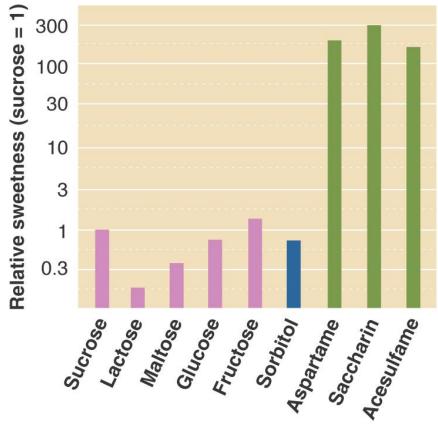
Sugars, whether consumed from the diet or from complex carbohydrates partially digested in the mouth, contribute to tooth decay. Bacteria feeding on sugar and other carbohydrates produce acids that eat away tooth enamel

Which is more cariogenic?

Reducing risk of caries formation

- eat sugary foods with meals
- limit between meal snacks containing sugars and starches
- brush and floss teeth regularly
- if brush and flossing not possible, rinse teeth with water or chew sugar-free gum

Nutritive & Artificial Sweeteners


Nutritive Sweeteners

- imparts sweetness and provides energy
- includes natural sweeteners, refined sweeteners, and sugar alcohols

Refined Sweeteners

- composed of simple sugars extracted from other foods
- Non-Nutritive (Artificial) Sweeteners
- impart sweetness but provide a negligible amount of energy

Nutritive & Artificial Sweeteners

Key Sugar alcohol Refined sweeteners

Sugar Alcohols

- examples: sorbitol, mannitol, xylitol
- considered sugar replacers: use similar amount as sugar and provide about 2 kcal per gram
- only found in commercial foods (common in chewing gum)
- bacteria that produce cavity causing acid don't metabolize sugar alcohols

Artificial Sweeteners

Aspartame

- 200x sweeter than sugar, yields 4 kcal per gram
- made of two amino acids:

PHENALANINE & ASPARTIC ACID

 individuals with PKU (genetic disorder) cannot convert phenylalanine to tyrosine effectively, increase's in blood phenylalanine concentration can be toxic

Artificial Sweeteners

Saccharin

 one study found that excess may cause bladder cancer in rats, but longitudinal human studies show no support for saccharin causing bladder cancer

Acesulfame K

- cannot be digested by the body thus provides no energy
- not affected by heat so can be used in cooking
- 200x sweeter than table sugar

Artificial Sweeteners

Sucralose

- made from sugar but does not contribute to energy because it is not digested
- approved by the FDA in U.S. in 1998, used in Canada since 1992
- sold under trade name Splenda
- 600x times sweeter than table sugar

Can sugar free help with weight loss?

How much carbohydrate do l need?

AMDR (Adults)

45 - 65% of total average energy intake

RDA for Carbohydrates (Adults) = 130 g per day

Daily Value (2000 kcal diet) = **300 g per day**

AI for Fiber (Adults)*

- Men: 38 g per day
- Women: 25 g per day

Sugar = max 10% of energy intake

*Note: after age 50, recommendations decrease to 30 and 21 g per day for men and women respectively.

Sources of Carbohydrates

What do you need to eat to meet carbohydrate recommendations?

1 cup skim milk	= 12 g
1 cup non-fat yogurt (plain)	= 19 g
1 apple with skin (2.75" diameter)	= 21 g
1 orange (2.5" diameter)	= 15 g
1 slice bread (whole wheat)	= 13 g
1 cup Raisin Bran	= 47 g
1 cup white rice (enriched, cooked)	= 45 g
1/2 cup black beans (cooked)	= 20 g
1/2 cup carrots (boiled)	= 8 g
1 baked potato with skin	= 51 g

What do you need to eat to meet fiber recommendations?

1 apple with skin (2.75" diameter) = 3.7 g1 peach (peeled, 2.5" diameter) = 2.0 g $\frac{1}{2}$ cup blueberries = 2.0 g $\frac{1}{2}$ cup lentils $= 7.8 \, \mathrm{g}$ ¹/₂ cup broccoli (chopped) $= 3.0 \, \mathrm{g}$ $\frac{1}{2}$ cup sweet red pepper (raw, chopped) = 1.0 g $\frac{1}{2}$ cup peanuts (dried, salted) = 6.0 g $\frac{1}{2}$ cup almonds (dried, unsalted) = 7.5 g1 slice bread (whole wheat) = 2.0 gbaked potato with skin $= 5.0 \, \mathrm{g}$

Carbohydrates in the Diet

Increase complex carbohydrate intake: whole grains, legumes, vegetables

- eat more breads, cereals, pasta, rice, fruits, vegetables & legumes
- eat fruits and vegetables with the peel
- add fruits to muffins and pancakes
- add legumes to casseroles and mixed dishes as a meat substitute

Sugar Recommendations

DRI:

< 10% of average daily energy intake should be from sugars
 Tips for limiting sugar intake:

- use food labels determine amount of sugar in products
- use ingredient lists to identify multiple sugar sources and added sugars
- use less added sugar
- limit soft drinks, juice, sugary cereals, candy
- choose fresh or frozen fruits

Table 55 Suggestions for Reducing Simple-Sugar Intake

At the Supermarket

- Read ingredient labels. Identify all the added sugars in a product. Select items lower in total sugar when possible.
- Buy fresh fruits or fruits packed in water, juice, or light syrup, rather than those packed in heavy syrup.
- Buy fewer foods that are high in sugar, such as prepared baked goods, candies, sugared cereals, sweet desserts, soft drinks, and fruit-flavored punches. Substitute vanilla wafers, graham crackers, bagels, English muffins, and diet soft drinks, for example.
- Buy reduced-fat microwave popcorn to replace candy for snacks.

In the Kitchen

- Reduce the sugar in foods prepared at home. Try new recipes or adjust your own. Start by
 reducing the sugar gradually until you've decreased it by one-third or more.
- Experiment with spices such as cinnamon, cardamom, coriander, nutmeg, ginger, and mace to enhance the flavor of foods.
- Use home-prepared items (with less sugar) instead of commercially prepared ones that are higher in sugar.

At the Table

- Use less of all sugars. This includes white and brown sugars, honey, molasses, and syrups.
- Choose fewer foods high in sugar, such as prepared baked goods, candies, and sweet desserts.
- Reach for fresh fruit instead of a sweet for dessert or between-meal snacks.
- Add less sugar to foods—coffee, tea, cereal, and fruit. Get used to using half as much; then see if you can cut back even more.
- Cut back on the number of sugared soft drinks, punches, and fruit juices you drink. Substitute
 water, diet soft drinks, and whole fruits rather than fruit juice.

Modified from USDA Home and Garden Bulletin No. 232-5, 1986.