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EXERCISES 12.3

Answers to selected odd-numbered problems begin on page ANS-20.

In Problems 1 and 2 solve the heat equation (1) subject to the
given conditions. Assume a rod of length L.

1. u(0,H =0, u(l,t)=0
1 <x<VL/2
u(x,0) = { > 0 * /
0, L/2<x<L
2. u(0,0) =0, wull,n)=20
u(x,0) = x(L — x)

3. Find the temperature u(x, 7) in a rod of length L if the
initial temperature is f(x) throughout and if the ends
x = 0 and x = L are insulated.

4. Solve Problem 3 if L = 2 and
x, 0<x<1
f) = {

0, I1<x<2
5. Suppose heat is lost from the lateral surface of a thin rod
of length L into a surrounding medium at temperature
zero. If the linear law of heat transfer applies, then the
heat equation takes on the form

0<x<L,t>0, h a constant. Find the temperature
u(x, t) if the initial temperature is f(x) throughout and the
ends x = 0 and x = L are insulated. See Figure 12.3.3.
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FIGURE 12.3.3 Rod losing heat in Problem 5

6. Solve Problem 5 if the ends x = 0 and x = L are held at
temperature zero.

Discussion Problems

7. Figure 12.3.2(b) shows the graphs of u(x, ) for0 =t =6
forx=0,x=m/12,x=m/6,x =7 /4, and x = 7 /2.
Describe or sketch the graphs of u(x, f) on the same time
interval but for the fixed values x = 37 /4, x = 57 /6,
x=117/12,and x = 7.

8. Find the solution of the boundary-value problem given
in (1)=(3) when f(x) = 10 sin(57x/L).

Computer Lab Assignments

9. (a) Solve the heat equation (1) subject to

u(0,1 =0, u(100,1) =0, t>0
x. 0) 0.8x, 0=x=150
u(x, =
0.8(100 — x), 50 < x = 100.

(b) Use the 3D-plot application of your CAS to
graph the partial sum Ss(x, f) consisting of the first
five nonzero terms of the solution in part (a) for
0=x=100,0 =t = 200. Assume that k = 1.6352.
Experiment with various three-dimensional viewing
perspectives of the surface (called the ViewPoint
option in Mathematica).
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in Figure 12.2.2(a) is determined from

e Reread pages 439441 of Section 12.2.
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u(l, 1) = 0,

T
u(0, 1) = 0,
u(x, 0) = f(x),

INTRODUCTION We are now in a position to solve the boundary-value problem (11) that was
discussed in Section 12.2. The vertical displacement u(x, #) of the vibrating string of length L shown

0<x<L, t>0 (1
>0 (2)

u
—| =gk, 0<x<L 3)
ot 1i=0
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SOLUTION OF THE BVP  With the usual assumption that u(x, t) = X(x)T(t), sep-
arating variables in (1) gives

X_T__
X aT

so that X"+ AX=0 )
T" + a’AT = 0. 5)

As in the preceding section, the boundary conditions (2) translate into X(0) = 0
and X(L) = 0. Equation (4) along with these boundary conditions is the regular
Sturm-Liouville problem

X"+ AX =0, X0) =0, X(L)=0. (6)

Of the usual three possibilities for the parameter, A =0, A = —a? <0, and
A = a? >0, only the last choice leads to nontrivial solutions. Corresponding to
A=a? a>0,the general solution of (4) is

X = ¢;cos ax + ¢, sin ax.

X(0) = 0 and X(L) = 0 indicate that ¢; = 0 and ¢; sin aL = 0. The last equation
again implies that oL = n7 or @ = nw /L. The eigenvalues and corresponding

. . . nw
eigenfunctions of (6) are A, = n*w?/L* and X(x) = C,sin Tx, n=1273,....
The general solution of the second-order equation (5) is then

nwa . nwa
T(t) = c3cos—— 1t + ¢,sin— 1.
: L L

By rewriting cac3 as A, and cycq as By, solutions that satisfy both the wave equation
(1) and boundary conditions (2) are

nwa . nma \ . nw
u, = <A,, cos—t + B, sin— t) sin — x @)
L L L
- nwa nwa nw
and ux, 1 = (A,, cos t + B,sin 7 l> sin 7 X. ®)
n=1

Setting + = 0 in (8) and using the initial condition u(x, 0) = f(x) gives

= nim
u(x,0) = f(x) = >, A,sin T
n=1
Since the last series is a half-range expansion for f in a sine series, we can write
A, = b,
A 2fﬂ>”md ©)
=— X) sin — x dx.
" I . X I3 X dx

To determine B,,, we differentiate (8) with respect to ¢ and then set # = 0:

ou < nmwa . nwa nwa nma \ . nmw
—=>|-A,—sin—1t+ B,——cos— ¢ |sin—x
¢ A— L L L L L

2 nwa nw
= = B,— | sin—x.
g(x) E<HL%mLx

n=1

u

Jdt =0

For this last series to be the half-range sine expansion of the initial velocity g on
the interval, the total coefficient B,nmwa /L must be given by the form b, in (5) of
Section 11.3, that is,

B ZJL()'an
— == sin —
"L Logx 7 rdx



12.4 WAVE EQUATION ° 447

from which we obtain

2 [F . nmw
B, = g(x) sin — x dx. (10)
nwa Jo L
The solution of the boundary-value problem (1)—(3) consists of the series (8)
with coefficients A, and B, defined by (9) and (10), respectively.
We note that when the string is released from rest, then g(x) = 0 for every x in
the interval [0, L], and consequently, B, = 0.

PLUCKED STRING A special case of the boundary-value problem in (1)—(3) is the
model of the plucked string. We can see the motion of the string by plotting the solu-
tion or displacement u(x, 7) for increasing values of time 7 and using the animation
feature of a CAS. Some frames of a “movie” generated in this manner are given in
Figure 12.4.1; the initial shape of the string is given in Figure 12.4.1(a). You are asked
to emulate the results given in the figure plotting a sequence of partial sums of (8). See
Problems 7 and 22 in Exercises 12.4.

), ), )
S S N S

2 3 I 2 3 2 3
(a) ¢ = 0 initial shape (b)t=02 (e)t=0.7

) ) =
) )

2 3 2 3 2 3
=10 (e)r=16 f)t=19

FIGURE 12.4.1 Frames of a CAS “movie”

STANDING WAVES Recall from the derivation of the one-dimensional wave equa-
tion in Section 12.2 that the constant a appearing in the solution of the boundary-value
problem in (1), (2), and (3) is given by \/F, where p is mass per unit length and 7 is
the magnitude of the tension in the string. When 7 is large enough, the vibrating string
produces a musical sound. This sound is the result of standing waves. The solution (8)
is a superposition of product solutions called standing waves or normal modes:

ux, t) = uy(x, 1) + uy(x, 1) + uz(x, 1) + - - -

In view of (6) and (7) of Section 5.1 the product solutions (7) can be written as
nwa nw
1 = in{—1r+ in— 11
u,(x,t) = C, sin < 3 d),,) sin 3 X, (11)

where C, = VA2 + B2 and ¢, is defined by sin ¢, = A, /C, and cos ¢, = B, /C,.
Forn = 1,2,3,. .. the standing waves are essentially the graphs of sin(nmrx /L), with
a time-varying amplitude given by

nima
C, sinl—1t + .
)

Alternatively, we see from (11) that at a fixed value of x each product function
u,(x, 1) represents simple harmonic motion with amplitude C,|sin(nmx/L)| and
frequency f;, = na /2L. In other words, each point on a standing wave vibrates with
a different amplitude but with the same frequency. When n = 1,

7a T
,0) = Cysin|—1 + in—
uy(x, 1) 1sm(L q_'al) smLx
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is called the first standing wave, the first normal mode, or the fundamental
mode of vibration. The first three standing waves, or normal modes, are shown in
Figure 12.4.2. The dashed graphs represent the standing waves at various values of
time. The points in the interval (0, L), for which sin(nr /L)x = 0, correspond to
points on a standing wave where there is no motion. These points are called nodes.
For example, in Figures 12.4.2(b) and 12.4.2(c) we see that the second standing wave
has one node at L /2 and the third standing wave has two nodes at L /3 and 2L /3. In

Node
— / LT general, the nth normal mode of vibration has n — 1 nodes.
£ TNFT O The frequency
0\\\\_,////]4\\\_,// L x
Nt %\/
e _ LT
(b) Second standing wave h= 2L 2L p
Nodes of the first normal mode is called the fundamental frequency or first harmonic and
,,,’:\\\\ / SN IPPCINN is directly related to the pitch produced by a stringed instrument. It is apparent that
0N 5 _7ZNe__7L x the greater the tension on the string, the higher the pitch of the sound. The
L NI T2LNT . . . .
3 3 frequencies f,, of the other normal modes, which are integer multiples of the funda-
mental frequency, are called overtones. The second harmonic is the first overtone,
(¢) Third standing wave and so on.
FIGURE 12.4.2 First three standing
waves
EX E RC | S E S 1 2 . 4 Answers to selected odd-numbered problems begin on page ANS-20.
In Problems 1-8 solve the wave equation (1) subject to the 7. u(0, =0, u(ll,t)=0
given conditions.
e L
L w©,0 =0, u(l,n=0 ool L T2 -
u(,0) = ~x(L—», 2| =0 e on(1-%), Eexayp 200
' 4 Tt =0 L) 2=
2. u(0,1 =0, Z(L, n=0 . ou ~ u -
w(,0) =0, —| =x(L-x “axheo T oxler
Jdt =0
3. 10,0 =0, u(lL,f)=0 uln, ) =x, =\ =

P
u(x, 0), given in Figure 12.4.3, 9_’:
-

This problem could describe the longitudinal displace-
ment u(x, f) of a vibrating elastic bar. The boundary
J conditions at x =0 and x = L are called free-end
conditions. See Figure 12.4.4.

=0

1.__
| |
| |

L/32L/3 L X

—|

u(x, t)

I
FIGURE 12.4.3 Initial displacement in Problem 3 U O x

4. u0,t) =0, u(mt)=0

Ju
u(x, 0) = gx(m* — x?), P

FIGURE 12.4.4 Vibrating elastic bar in Problem 8

=0

9. A string is stretched and secured on the x-axis at x = 0
5. u(0,0) =0, u(mn=0 and x = 7 for + > 0. If the transverse vibrations take

B du . place in a medium that imparts a resistance proportional
u(x,0) =0, Grlio O to the instantaneous velocity, then the wave equation
takes on the form
6. u(0,1) =0, u(l,nn=0
ou Pu 0%u au
= i — = —=—+28—, o<pB<l1, >0
u(x, 0) = 0.01 sin 3mx, —| =0 a2 op 2R B




Find the displacement u(x, ¢) if the string starts from rest
from the initial displacement f(x).

10. Show that a solution of the boundary-value problem

Pu  0u
—2=,—+u, 0<x<m t>0
dx Jt
u,1 =0, u(mt)=0, t>0
. 0<x<m/2
u(x,O)Z{x x<m/
T—x, w2=x<m
Ju
— =0, 0<x<m
Jat =0
is
(_ )k+l
u(x, t)——E sm(2k—1)xcos\/(2k—1)2 1t
™o (2k—

11. The transverse displacement u(x, f) of a vibrating beam
of length L is determined from a fourth-order partial
differential equation

0<x<L, t>0.

If the beam is simply supported, as shown in Figure
12.4.5, the boundary and initial conditions are

u©,1) =10 u(L,t) =0, t>0

9%u 0%u

3 =0, — =0, t>0

0x2 lx=0 X2 |x=1

u(x, 0) = f(x), =g(x), 0<x<L.
dt =0

Solve for u(x, t). [Hint: For convenience use A = a”

when separating variables.]

FIGURE 12.4.5 Simply supported beam in Problem 11

12. If the ends of the beam in Problem 11 are embedded
at x = 0 and x = L, the boundary conditions become,

fort >0,
u(,1 =0, ull,n) =0
dul o oow]
dx lx=0 T9x k=L

(a) Show that the eigenvalues of the problem are
A, = x3/L?, where x,, n=1, 2, 3,..., are the
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positive roots of the equation
coshxcosx = 1.
(b) Show graphically that the equation in part (a) has an
infinite number of roots.
(¢) Use a calculator or a CAS to find approximations to

the first four eigenvalues. Use four decimal places.

13. Consider the boundary-value problem given in (1), (2),
and (3) of this section. If g(x) = 0 for 0 < x < L, show
that the solution of the problem can be written as

1
u(x, t) = > [f(x + at) + f(x — ar)].

[Hint: Use the identity
2 sin 0 cos 6, = sin(0; + 6,) + sin(6; — 6,).]

14. The vertical displacement u(x, f) of an infinitely long
string is determined from the initial-value problem

,PPu 0’
a— = —, —o < x <o, >0
x> or
(12)
Ju
u(x, 0) = f(x), Sl = g(x).
t =0

This problem can be solved without separating variables.

(a) Show that the wave equation can be put into the
form 9%u/omdé = 0 by means of the substitutions
E=x+atandn =x — at.

(b) Integrate the partial differential equation in part (a),
first with respect to n and then with respect to &,
to show that u(x, ) = F(x + at) + G(x — at), where
F and G are arbitrary twice differentiable functions,
is a solution of the wave equation. Use this solution
and the given initial conditions to show that

1 1 [~
Fx) = Ef(x) + Zf g(s)ds + ¢

1 1 [
and Gx) = Ef(x) - ZJ g(s)ds — ¢,

where x( is arbitrary and ¢ is a constant of
integration.

(¢) Use the results in part (b) to show that

x+at

1 1
u(x, ) = E [f&x +at) + f(x —an] + %J g(s)ds. (13)

x—at

Note that when the initial velocity g(x) =0, we
obtain
1
u(x, r) = 3 [f(x + af) + f(x — ap)], —x < x < %,

This last solution can be interpreted as a super-
position of two traveling waves, one moving to
the right (that is, % f(x — at)) and one moving to the
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left (% f(x + at)). Both waves travel with speed
a and have the same basic shape as the initial
displacement f(x). The form of u(x, ) given in (13) is
called d’Alembert’s solution.

In Problems 15-18 use d’Alembert’s solution (13) to solve
the initial-value problem in Problem 14 subject to the given
initial conditions.
15. f(x) = sinx,
16. f(x) = sinx,
17. f(x) =0, g(x) = sin2x
18. f(x) =e™, gx)=0

gx) =1

g(x) = cos x

Computer Lab Assignments

19. (a) Usea CAS to plot d’Alembert’s solution in Problem
18 on the interval [—5, 5] at the times t = 0, t = 1,
t =2,t=3,and t = 4. Superimpose the graphs on
one coordinate system. Assume that a = 1.

(b) Use the 3D-plot application of your CAS to plot
d’Alembert’s solution u(x, ) in Problem 18 for
—5=x=5, 0=1t=4. Experiment with various
three-dimensional viewing perspectives of this
surface. Choose the perspective of the surface for
which you feel the graphs in part (a) are most
apparent.

20. A model for an infinitely long string that is initially held
at the three points (—1, 0), (1, 0), and (0, 1) and then
simultaneously released at all three points at time t = 0
is given by (12) with

1= x|, |x|=1

d
0, [x|>1 an

fx) = { g(x) = 0.

21.

22,
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(a) Plot the initial position of the string on the interval
[—6, 6].

(b) Use a CAS to plot d’Alembert’s solution (13) on
[—6, 6] fort =02k, k=0,1,2,...,25. Assume
thata = 1.

(¢) Use the animation feature of your computer algebra
system to make a movie of the solution. Describe the
motion of the string over time.

An infinitely long string coinciding with the x-axis
is struck at the origin with a hammer whose head is
0.2 inch in diameter. A model for the motion of the
string is given by (12) with

1, |x]=01

fx) =0 and g) = {0’ |x| = 0.1.

(a) Use a CAS to plot d’Alembert’s solution (13) on
[—6, 6] fort =02k, k=0,1,2,...,25. Assume
thata = 1.

(b) Use the animation feature of your computer algebra
system to make a movie of the solution. Describe the
motion of the string over time.

The model of the vibrating string in Problem 7 is called
the plucked string. The string is tied to the x-axis at
x =0andx = L and is held at x = L/2 at h units above
the x-axis. See Figure 12.2.4. Starting at t = 0 the string
is released from rest.

(a) Use a CAS to plot the partial sum Sg(x, £)—that is,
the first six nonzero terms of your solution— for
t=0.1k, k=0,1,2,...,20. Assume that a = 1,
h=1,and L = 7.

(b) Use the animation feature of your computer alge-

bra system to make a movie of the solution to
Problem 7.
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Pu  9*u
ax*  9y?
du

ax

u(x,0) =0,

x=0

)

:0’

du
ax

e Reread page 438 of Section 12.2 and Example 1 in Section 11.4.

INTRODUCTION  Suppose we wish to find the steady-state temperature u(x, y) in a rectangular
plate whose vertical edges x = 0 and x = a are insulated, as shown in Figure 12.5.1. When no heat
escapes from the lateral faces of the plate, we solve the following boundary-value problem:

0<x<a, 0<y<b (1)
B =0, 0<y<b 2)
u(x, b) = f(x), 0<x<a. (3)



