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92u 92u In Problems 27 and 28 show that the given partial differen-
ax dy ay? - tial equation possesses the indicated product solution.
2
Pu 27. k(a—” + 1%> e
arr  ror at
dx dy ,
u=e*(c,Jyar) + eYo(ar))
ay? ax 28__u+__u+__u=0;
Y o rar  rroe
*u N ib; N @ B 6% —0 u = (c;cos af + c,sin a@)(c3r* + c4r %)
dxdy dy" ox 9y 29. Verify that each of the products u = XY in (3), (4), and
PE (5) satisfies the second-order PDE in Example 1.
a_yZ - 30. Definition 12.1.1 generalizes to linear PDEs with coef-
ficients that are functions of x and y. Determine the
_ 82_u regions in the xy-plane for which the equation
Y
" Gy + DI b2y T =0
X — — u =
ou Y ax? * Y dxdy 9y Y
—, k>0 . . . o
at is hyperbolic, parabolic, or elliptic.

12.2

CLASSICAL PDEs AND BOUNDARY-VALUE PROBLEMS

REVIEW MATERIAL
e Reread the material on boundary-value problems in Sections 4.1, 4.3, and 5.2.

INTRODUCTION We are not going to solve anything in this section. We are simply going to
discuss the types of partial differential equations and boundary-value problems that we will be work-
ing with in the remainder of this chapter as well as in Chapters 13—15. The words boundary-value
problem have a slightly different connotation than they did in Sections 4.1, 4.3, and 5.2. If, say, u(x, )
is a solution of a PDE, where x represents a spatial dimension and ¢ represents time, then we may be
able to prescribe the value of u, or du/dx, or a linear combination of u and du/dx at a specified x as
well as to prescribe u and du /0t at a given time 7 (usually, # = 0). In other words, a “boundary-value
problem” may consist of a PDE, along with boundary conditions and initial conditions.

CLASSICAL EQUATIONS We shall be concerned principally with applying
the method of separation of variables to find product solutions of the following clas-
sical equations of mathematical physics:

u ou

at’

k>0 ey

x>

27 )

Ry 3)

or slight variations of these equations. The PDEs (1), (2), and (3) are known, respec-
tively, as the one-dimensional heat equation, the one-dimensional wave equation,
and the two-dimensional form of Laplace’s equation. “One-dimensional” in the
case of equations (1) and (2) refers to the fact that x denotes a spatial variable, whereas
t represents time; “two-dimensional” in (3) means that x and y are both spatial vari-
ables. If you compare (1)—(3) with the linear form in Theorem 12.1.1 (with ¢ playing
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FIGURE 12.2.1

flow of heat

One-dimensional

the part of the symbol y), observe that the heat equation (1) is parabolic, the wave
equation (2) is hyperbolic, and Laplace’s equation is elliptic. This observation will be
important in Chapter 15.

HEAT EQUATION Equation (1) occurs in the theory of heat flow—that is, heat
transferred by conduction in a rod or in a thin wire. The function u(x, f) represents
temperature at a point x along the rod at some time ¢. Problems in mechanical vibra-
tions often lead to the wave equation (2). For purposes of discussion, a solution
u(x, t) of (2) will represent the displacement of an idealized string. Finally, a solution
u(x, y) of Laplace’s equation (3) can be interpreted as the steady-state (that is, time-
independent) temperature distribution throughout a thin, two-dimensional plate.

Even though we have to make many simplifying assumptions, it is worthwhile to
see how equations such as (1) and (2) arise.

Suppose a thin circular rod of length L has a cross-sectional area A and coin-
cides with the x-axis on the interval [0, L]. See Figure 12.2.1. Let us suppose the
following:

e The flow of heat within the rod takes place only in the x-direction.

e The lateral, or curved, surface of the rod is insulated; that is, no heat escapes
from this surface.

* No heat is being generated within the rod.

e The rod is homogeneous; that is, its mass per unit volume p is a constant.

e The specific heat y and thermal conductivity K of the material of the rod are
constants.

To derive the partial differential equation satisfied by the temperature u(x, f), we
need two empirical laws of heat conduction:

(i)  The quantity of heat Q in an element of mass m is

Q = ymu, “4)

where u is the temperature of the element.

(ii)  The rate of heat flow Q, through the cross-section indicated in
Figure 12.2.1 is proportional to the area A of the cross section and
the partial derivative with respect to x of the temperature:

0, = —KAu,. 5)

Since heat flows in the direction of decreasing temperature, the minus sign in (5) is
used to ensure that Q; is positive for u, < 0 (heat flow to the right) and negative for
u, > 0 (heat flow to the left). If the circular slice of the rod shown in Figure 12.2.1
between x and x + Ax is very thin, then u(x, f) can be taken as the approximate tem-
perature at each point in the interval. Now the mass of the slice is m = p(A Ax), and
so it follows from (4) that the quantity of heat in it is

0 = ypAAxu. (6)

Furthermore, when heat flows in the positive x-direction, we see from (5) that heat
builds up in the slice at the net rate

—KAu,(x, 1) — [—KAu,(x + Ax,1)] = KA [u(x + Ax, 1) — u(x,1)]. (7)
By differentiating (6) with respect to ¢, we see that this net rate is also given by
0, = vypA Ax u,. (8)

Equating (7) and (8) gives

Kou &+ Ax, 1) —ux, 1)
Yp Ax :

©))
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FIGURE 12.2.2 Flexible string
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Finally, by taking the limit of (9) as Ax — 0, we obtain (1) in the form"
(K /vy puy, = u;. It is customary to let k = K /yp and call this positive constant the
thermal diffusivity.

WAVE EQUATION  Consider a string of length L, such as a guitar string, stretched
taut between two points on the x-axis—say, x = 0 and x = L. When the string starts
to vibrate, assume that the motion takes place in the xu-plane in such a manner that
each point on the string moves in a direction perpendicular to the x-axis (transverse
vibrations). As is shown in Figure 12.2.2(a), let u(x, f) denote the vertical displace-
ment of any point on the string measured from the x-axis for r+ > 0. We further
assume the following:

» The string is perfectly flexible.

* The string is homogeneous; that is, its mass per unit length p is a
constant.

* The displacements u are small in comparison to the length of the string.

* The slope of the curve is small at all points.

* The tension T acts tangent to the string, and its magnitude 7 is the same at
all points.

* The tension is large compared with the force of gravity.

* No other external forces act on the string.

Now in Figure 12.2.2(b) the tensions T and T, are tangent to the ends of the
curve on the interval [x, x + Ax]. For small 6, and 6, the net vertical force acting on
the corresponding element As of the string is then

Tsin 6, — T'sin 6, = Ttan 6, — T tan 6,
= Tlux + Ax, 1) — uy(x, 0],

where T = |T;| = |T,|. Now p As = p Ax is the mass of the string on [x, x + Ax],
so Newton’s second law gives

T[MX(.X + Ax7 t) - ux(-x7 t)] = pr utt

ux + Ax, 1) —u(x, 1) _p

or u,,
Ax T

If the limit is taken as Ax — 0, the last equation becomes u,, = (p/T)u,;. This of
course is (2) with a> = T/p.

LAPLACE’S EQUATION  Although we shall not present its derivation, Laplace’s
equation in two and three dimensions occurs in time-independent problems involv-
ing potentials such as electrostatic, gravitational, and velocity in fluid mechanics.
Moreover, a solution of Laplace’s equation can also be interpreted as a steady-state
temperature distribution. As illustrated in Figure 12.2.3, a solution u(x, y) of (3)
could represent the temperature that varies from point to point—but not with time —
of a rectangular plate. Laplace’s equation in two dimensions and in three dimensions
is abbreviated as V?u = 0, where

-~ 9%u 9%u

B 0x? ('fyz

_ 9%u 0%u 0%u

and Viu =
x> ay* 97

V2u

are called the two-dimensional Laplacian and the three-dimensional Laplacian,
respectively, of a function u.

¥ .. . L Cou(x + Ax, 1) = u(x, 1)
The definition of the second partial derivative is u,, = Ahm) A :
x—( X

ftan 0> = u,(x + Ax, £) and tan 6, = u,(x, 1) are equivalent expressions for slope.
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We often wish to find solutions of equations (1), (2), and (3) that satisfy certain
side conditions.

INITIAL CONDITIONS  Since solutions of (1) and (2) depend on time ¢, we can
prescribe what happens at ¢ = 0; that is, we can give initial conditions (IC). If f(x)
denotes the initial temperature distribution throughout the rod in Figure 12.2.1, then
a solution u(x, ) of (1) must satisfy the single initial condition u(x, 0) = f(x),
0 < x < L. On the other hand, for a vibrating string we can specify its initial dis-
placement (or shape) f(x) as well as its initial velocity g(x). In mathematical terms
we seek a function u(x, ¢) that satisfies (2) and the two initial conditions:

ou
ulx,0) = f(x), — 0 gx),

0<x<L. (10)
Jat li=

For example, the string could be plucked, as shown in Figure 12.2.4, and released
from rest (g(x) = 0).

BOUNDARY CONDITIONS The string in Figure 12.2.4 is secured to the x-axis at
x = 0and x = L for all time. We interpret this by the two boundary conditions (BC):

u(0,1) = 0, u(ll,t)=0, t>0.

Note that in this context the function f in (10) is continuous, and consequently,
f(0) = 0 and f(L) = 0. In general, there are three types of boundary conditions
associated with equations (1), (2), and (3). On a boundary we can specify the values
of one of the following:

Ju
@) u, (ii) Py or h a constant.
n

L. ou
(iii) — + hu,
an
Here du/dn denotes the normal derivative of u (the directional derivative of u in
the direction perpendicular to the boundary). A boundary condition of the first
type (i) is called a Dirichlet condition; a boundary condition of the second type (if)
is called a Neumann condition; and a boundary condition of the third type (iii) is
known as a Robin condition. For example, for # > 0 a typical condition at the right-
hand end of the rod in Figure 12.2.1 can be

@' ulL, 1) = u, 1y a constant,

ou

Gy =| =0, or
0Xx |x=L

., Ou

(i)’ P = —h(u(L,t) — u,), h > 0 and u,, constants.
X Ix=L

Condition (i)' simply states that the boundary x = L is held by some means at a
constant temperature u for all time ¢ > 0. Condition (ii)’ indicates that the boundary
x = L is insulated. From the empirical law of heat transfer, the flux of heat across a
boundary (that is, the amount of heat per unit area per unit time conducted across the
boundary) is proportional to the value of the normal derivative du/on of the temper-
ature u. Thus when the boundary x = L is thermally insulated, no heat flows into or
out of the rod, so

u

— = 0.

0x lx=L
We can interpret (iii)' to mean that heat is lost from the right-hand end of the rod by
being in contact with a medium, such as air or water, that is held at a constant tem-
perature. From Newton’s law of cooling, the outward flux of heat from the rod is pro-
portional to the difference between the temperature u(L, f) at the boundary and the
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temperature u,, of the surrounding medium. We note that if heat is lost from the left-
hand end of the rod, the boundary condition is

du

—| = 0.0 = u,).

The change in algebraic sign is consistent with the assumption that the rod is at a
higher temperature than the medium surrounding the ends so that u(0, #) > u,, and
u(L,t) > u,. Atx = 0 and x = L the slopes u,(0, 7) and u,(L, f) must be positive and
negative, respectively.
Of course, at the ends of the rod we can specify different conditions at the same
time. For example, we could have
ou
— =0 and u(L, t) = uy, t>0.
0x lx=0
We note that the boundary condition in (i)' is homogeneous if uy = 0; if uy # 0,
the boundary condition is nonhomogeneous. The boundary condition (if)’ is homoge-
neous; (iif)’ is homogeneous if u,, = 0 and nonhomogeneous if u,, # 0.

BOUNDARY-VALUE PROBLEMS Problems such as

52 42
, 07U dJ7u

Solve: a— =—, 0<x<L, t>0
ax- ar-
Subject to: (BC) u(0,H=0, ulL,t)y=0, t>0 (11)
) du
(IC)  u(x,0) = f(x), Tr‘ =g, 0<x<L
( t=0
and
0’u  0%u
Solve: — — =0, 0<x<a 0<y<b
dx- dy~
dJu du (12)
. — =0, — =0, 0<y<b
Subject to: (BO) 0X 1x=0 0X lx=a

ux,0) =0, ukx,b) =fx), 0<x<a

are called boundary-value problems.

MODIFICATIONS The partial differential equations (1), (2), and (3) must be
modified to take into consideration internal or external influences acting on the
physical system. More general forms of the one-dimensional heat and wave equa-
tions are, respectively,

2

kM G = X (13)
X, Luu)=—
x> ot
2u ’u
and a? ﬁ + F(x, t,u,u,) = ﬁ (14)

For example, if there is heat transfer from the lateral surface of a rod into a
surrounding medium that is held at a constant temperature u,,, then the heat equa-
tion (13) is

0%u ou
k— — h(u — u,) = —.

In (14) the function F could represent the various forces acting on the string. For ex-
ample, when external, damping, and elastic restoring forces are taken into account,
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(14) assumes the form

0’u 0u du
a5t f.n)=55 tc5,; +ku
dx ot Jt 15
1 T (15)
External Damping Restoring
force force force

REMARKS

The analysis of a wide variety of diverse phenomena yields mathematical
models (1), (2), or (3) or their generalizations involving a greater number of spa-
tial variables. For example, (1) is sometimes called the diffusion equation,
since the diffusion of dissolved substances in solution is analogous to the flow
of heat in a solid. The function u(x, #) satisfying the partial differential equation
in this case represents the concentration of the dissolved substance. Similarly,
equation (2) arises in the study of the flow of electricity in a long cable or trans-
mission line. In this setting (2) is known as the telegraph equation. It can be
shown that under certain assumptions the current and the voltage in the line are
functions satisfying two equations identical with (2). The wave equation (2)
also appears in the theory of high-frequency transmission lines, fluid mechan-
ics, acoustics, and elasticity. Laplace’s equation (3) is encountered in the static
displacement of membranes.

EXERCISES 12.2

Answers to selected odd-numbered problems begin on page ANS-20.

In Problems 1-4 a rod of length L coincides with the interval
[0, L] on the x-axis. Set up the boundary-value problem for
the temperature u(x, 7).

1. The left end is held at temperature zero, and the right end
is insulated. The initial temperature is f(x) throughout.

2. The left end is held at temperature ug, and the right end
is held at temperature u;. The initial temperature is zero
throughout.

3. The left end is held at temperature 100, and there is heat
transfer from the right end into the surrounding medium
at temperature zero. The initial temperature is f(x)
throughout.

4. The ends are insulated, and there is heat transfer from
the lateral surface into the surrounding medium at tem-
perature 50. The initial temperature is 100 throughout.

In Problems 5-8 a string of length L coincides with the
interval [0, L] on the x-axis. Set up the boundary-value prob-
lem for the displacement u(x, 7).

5. The ends are secured to the x-axis. The string is released
from rest from the initial displacement x(L — x).

6. The ends are secured to the x-axis. Initially, the string is
undisplaced but has the initial velocity sin(wx/L).

7. The left end is secured to the x-axis, but the right end
moves in a transverse manner according to sin .
The string is released from rest from the initial dis-
placement f(x). For t > 0 the transverse vibrations are
damped with a force proportional to the instantaneous
velocity.

8. The ends are secured to the x-axis, and the string is
initially at rest on that axis. An external vertical force
proportional to the horizontal distance from the left end
acts on the string for r > 0.

In Problems 9 and 10 set up the boundary-value problem for
the steady-state temperature u(x, y).

9. A thin rectangular plate coincides with the region
defined by 0 = x =4, 0 =y = 2. The left end and the
bottom of the plate are insulated. The top of the plate is
held at temperature zero, and the right end of the plate is
held at temperature f(y).

10. A semi-infinite plate coincides with the region defined
by 0 = x = m,y = 0. The left end is held at temperature
e Y, and the right end is held at temperature 100 for
0 <y = 1 and temperature zero for y > 1. The bottom of
the plate is held at temperature f(x).



