INTEGRAL TRANSFORMS

14.1 Error Function

14.2 Laplace Transform
14.3 Fourier Integral
14.4 Fourier Transforms
CHAPTER 14 IN REVIEW

The method of separation of variables is a powerful but not universally applicable
method for solving boundary-value problems. If the partial differential equation is
nonhomogeneous, if the boundary conditions are time dependent, or if the domain
of the spatial variable is an infinite interval (—2, %) or a semi-infinite interval (a, ),
we may be able to use an integral transform to solve the problem. In Section 14.2
we will solve problems that involve the heat and wave equations by means of the
familiar Laplace transform. In Section 14.4 we introduce three new integral
transforms—the Fourier transforms.
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14.1

ERROR FUNCTION

REVIEW MATERIAL
e See (14) and Example 7 in Section 2.3.

INTRODUCTION There are many functions in mathematics that are defined in terms of an
integral. For example, in many traditional calculus texts the natural logarithm is defined in the
following manner: In x = [4 d#/t, x > 0. In earlier chapters we saw, albeit briefly, the error function
erf(x), the complementary error function erfc(x), the sine integral function Si(x), the Fresnel sine
integral S(x), and the gamma function ['(«); all of these functions are defined by means of an
integral. Before applying the Laplace transform to boundary-value problems, we need to know a
little more about the error function and the complementary error function. In this section we exam-
ine the graphs and a few of the more obvious properties of erf(x) and erfc(x).

FIGURE 14.1.1

Graphs of erf(x)

and erfc(x) forx =0

PROPERTIES AND GRAPHS The definitions of the error function erf(x) and
complementary error function erfc(x) are, respectively,
2 X

, 2 o
erf(x) = ——= | e du and erfc(x) = — j e " du. 1
) Vo Jo ( Vo, M

With the aid of polar coordinates it can be demonstrated that

J e duy = ﬁ or LJ e du = 1.
0 2 Vo

Thus from the additive interval property of definite integrals, [§ = [{ + [, the last
result can be written as

2 fx_z fx_z ]
— e "du + e "dul=1.
\/%|:0 X

This shows that erf(x) and erfc(x) are related by the identity
erf(x) + erfc(x) = 1. 2)

The graphs of erf(x) and erfc(x) for x = 0 are given in Figure 14.1.1. Note that
erf(0) = 0, erfc(0) = 1 and that erf(x) — 1, erfc(x) — 0 as x — o, Other numerical
values of erf(x) and erfc(x) can be obtained from a CAS or tables. In tables the error
function is often referred to as the probability integral. The domain of erf(x) and of
erfc(x) is (—2, =). In Problem 11 in Exercises 14.1 you are asked to obtain the graph
of each function on this interval and to deduce a few additional properties.

Table 14.1, of Laplace transforms, will be useful in the exercises in the next
section. The proofs of these results are complicated and will not be given.

TABLE 14.1 Laplace Transforms
f@®),a>0 LD} = F(s) f@®,a>0 HfD} = Fs)
1 —a*/4t e—a\/} 4. 2 \/ 7 —a*l4t erfc ( a > e—a\/E
. T = . —e —a -
V't Vs T 2Vt sVs
a - a e Vs
2. —a’l4t —aVs 5. el erfe <b\[ + —) R
A ¢ e e VT oV Vs (Vs + b)
a e Vs s ( a ) ( a ) be Vs
3. erfc| — 6. —ee’ erfe| bV + — | + erfc| — —_—
e”(z\/;) s e S Y /Y R VYV s(Vs + b)
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EXERCISES 14.1

Answers to selected odd-numbered problems begin on page ANS-23.

1 teT
1. (a) Show thaterf(V?) = —f dr.
Vol Vr
(b) Use the convolution theorem and the results of
Problems 41 and 42 in Exercises 7.1 to show that

1
Plerf(V1)}) = RV

2. Use the result of Problem 1 to show that

1
Vs + 1:|'

3. Use the result of Problem 1 to show that

Flerfe(Vi)) = %[1 -

1
Fle erf(V1)} = Vo1

4. Use the result of Problem 2 to show that

1
Vs(Vs+ 1)

5. Let C, G, R, and x be constants. Use Table 14.1 to show
that

C x |RC
—1 1 — —xVRCs+RG\ | — ,—Gi/C I‘f<— _>
< {CS Tole )} MR UV

Fle erfc(V1)} =

6. Let a be a constant. Show that

Ly sinha\/g}z x[ (2n+1+a>_ <2n+1—a>]
. {s sinh Vs ,12::0 erf 2Vt ert 2Vt ’

[Hint: Use the exponential definition of the hyperbolic
sine. Expand 1/(1 — e’zw) in a geometric series.]

7. Use the Laplace transform and Table 14.1 to solve the
integral equation

t

y(7)
oVi— 7

8. Use the third and fifth entries in Table 14.1 to derive the
sixth entry.

vy =1-— dr.

b

9. Show that J e du = ? [erf(b) — erf(a)].

a

a

10. Show that f e du = Vrerf(a).

—a

Computer Lab Assignments

11. The functions erf(x) and erfc(x) are defined for x < 0.
Use a CAS to superimpose the graphs of erf(x)
and erfc(x) on the same axes for —10 =x = 10.
Do the graphs possess any symmetry? What are
lim,—, . erf(x) and lim,—, .. erfc(x)?

14.2] LAPLACE TRANSFORM

REVIEW MATERIAL

is transformed into an ODE.

e Linear second-order initial-value problems (Sections 4.3 and 4.4)

e Operational properties of the Laplace Transform (Sections 7.2-7.4)

INTRODUCTION The Laplace transform of a function f(f), t=0, is defined to be
L)} = [5 e " f(r) dt whenever the improper integral converges. This integral transforms the
function f(¢) into a function F of the transform parameter s, that is, £{f(¥)} = F(s). Similar to
Chapter 7, where the Laplace transform was used mainly to solve linear ordinary differential
equations, in this section we use the Laplace transform to solve linear partial differential equations.
But in contrast to Chapter 7, where the Laplace transform reduced a linear ODE with constant coef-
ficients to an algebraic equation, in this section we see that a linear PDE with constant coefficients

TRANSFORM OF A FUNCTION OF TWO VARIABLES The boundary-value
problems that we consider in this section will involve either the one-dimensional
wave and heat equations or slight variations of these equations. These PDEs involve
an unknown function of two independent variables u(x, f), where the variable ¢
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represents time ¢ = 0. The Laplace transform of the function u(x, f) with respect to
tis defined by

0

Hlulx, 0} = f e u(x, 1) dt,

0

where x is treated as a parameter. We continue the convention of using capital letters
to denote the Laplace transform of a function by writing

Flulx, )} = Ulx, s).

TRANSFORM OF PARTIAL DERIVATIVES The transforms of the partial
derivatives du /ot and 9u/dt?> follow analogously from (6) and (7) of Section 7.2:

&é’{%[} = sU(x, s) — u(x, 0), (D
ff{());[;} = s2U(x, s) — su(x, 0) — u,(x, 0). 2)

Because we are transforming with respect to 7, we further suppose that it is
legitimate to interchange integration and differentiation in the transform of

0%u /ox>:
0%u = =9 d> =, d’
2{@} = Jo e "axzdt = Jo @[e Su(x, ] dt = e . e Sulx,t)dt = Eff{u(x, N}
02 1°U
that is, /{‘—”} == 3)
0x* dx*

In view of (1) and (2) we see that the Laplace transform is suited to problems
with initial conditions—namely, those problems associated with the heat equation or
the wave equation.

I EXAMPLE 1 Laplace Transform of a PDE

. . u  u
Find the Laplace transform of the wave equation a? ﬁ = ﬁ’ t> 0.
X

SOLUTION From (2) and (3),
0? 0?
o2
dx ar
2

becomes a’ %g{u(x, n} = s2Lulx, )} — sulx, 0) — u(x, 0)

2 d*U 2
or a ﬁ — s5°U = —su(x, 0) — u,(x, 0). 4 m

The Laplace transform with respect to 7 of either the wave equation or the heat
equation eliminates that variable, and for the one-dimensional equations the trans-
formed equations are then ordinary differential equations in the spatial variable x. In
solving a transformed equation, we treat s as a parameter.
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I EXAMPLE 2 Using the Laplace Transform to Solve a BVP

9% 92
Solve =0 0<x<1, >0
ox ot
subject to u@0,H=0, wl,n)=0, t>0
du .
ulx,0) =0, — =sin7mx, 0<x<l1.
ot li=0

SOLUTION The partial differential equation is recognized as the wave equation
with @ = 1. From (4) and the given initial conditions the transformed equation is

d*U
i s2U = —sin mx, (5)

where U(x, s) = F{u(x, t)}. Since the boundary conditions are functions of 7, we
must also find their Laplace transforms:

Plu©,n} = UO,s) =0 and  Plul,n} = U, s) = 0. (©6)

The results in (6) are boundary conditions for the ordinary differential equation (5).
Since (5) is defined over a finite interval, its complementary function is

U.x, s) = c,cosh sx + ¢, sinh sx.

The method of undetermined coefficients yields a particular solution

U/x,s) = sin 7rx.
P(’) s2+772

Hence U(x, s) = ¢, cosh sx + ¢,sinh sx + sin 7rx.

s+ 72

But the conditions U(0, s) = 0 and U(1, s) = 0 yield, in turn, ¢; = 0 and ¢, = 0. We
conclude that

U, s) = sin mx
x, 5) s+ a?
1 1 T
ux, t) = £! sin wx{ = —sin mx £7! .
. 7) {sz + 72 } T s2 + ar?
1 . .
Therefore u(x, t) = — sin 7rx sin 7rt. [ |

T

I EXAMPLE 3 Using the Laplace Transform to Solve a BVP

A very long string is initially at rest on the nonnegative x-axis. The string is secured
at x = 0, and its distant right end slides down a frictionless vertical support. The
string is set in motion by letting it fall under its own weight. Find the displace-
ment u(x, 7).

SOLUTION  Since the force of gravity is taken into consideration, it can be shown
that the wave equation has the form
2 2
, 07U ou

— —g=— >0, t>0.
T 8T e 7
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FIGURE 14.2.1 “Infinitely long”

string falling under its own weight
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Here g represents the constant acceleration due to gravity. The boundary and initial
conditions are, respectively,

. Jdu
u0,H=0, Im—=0, r>0

x—% Jx

Ju

70 =0’
u(x, 0) o

=0, x>0.
=0

The second boundary condition, lim,_, . du/dx = 0, indicates that the string is
horizontal at a great distance from the left end. Now from (2) and (3),

2 Pul _ @}
g{a axz} 1) g{afz

d*U
becomes ad— = § - pu- su(x, 0) — u,(x, 0)
dx s
or, in view of the initial conditions,
d*U  s? g
dx* & a’s
The transforms of the boundary conditions are

Llu(0,H} = UW©,s) =0 and g{lim a_u} Y

x—>% 0X

With the aid of undetermined coefficients, the general solution of the transformed equa-
tion is found to be

8

s3

Ulx, s) = cie” W05 + ¢,el¥os —

The boundary condition lim, ., dU/dx = 0 implies that ¢, = 0, and U(0, s) = 0 gives
c1 = g/s>. Therefore

Ulx, s) = % e~ (as — %
s s

Now by the second translation theorem we have

1 2 1

1 v
——gt, 0=r<-
2 a
or ulx, t) =
7 5 {x‘
> (2axt — x7), t=-.
2a*

L

To interpret the solution, let us suppose that # > 0 is fixed. For 0 = x = ar the
string is the shape of a parabola passing through (0, 0) and (at, — %gtz). For x > at
the string is described by the horizontal line u = —%gﬂ. See Figure 14.2.1. |

Observe that the problem in the next example could be solved by the procedure
in Section 12.6. The Laplace transform provides an alternative solution.

I EXAMPLE 4 A Solution in Terms of erf(x)

Solve the heat equation
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subject to w0, =0, u(l,t)=uy,, t>0
ulx,00 =0, 0<x<l.

SOLUTION From (1) and (3) and the given initial condition,
0? d
L2 _th - Pl
0x ot
becomes — —sU = 0. @)

dx?

The transforms of the boundary conditions are
U
U@©,s)=0 and U(l,s) =—. ®)
s

Since we are concerned with a finite interval on the x-axis, we choose to write the
general solution of (7) as

U(x, s) = ¢, cosh (Vsx) + ¢, sinh (Vsx).

Applying the two boundary conditions in (8) yields ¢; = 0 and ¢, = u, /(s sinh V's),
respectively. Thus

sinh (Vsx)

s sinh Vs’

Now the inverse transform of the latter function cannot be found in most tables.
However, by writing

sinh (\/gx) eVox — g~ Vix Vs o=t DV

ssinh Vs s(e¥® — V%) s(1 — e 2V5)

Ux, s) = u,

and using the geometric series

1 o]
————— —2nVs
= e
I—e 2vs n=0
sinh (\/gx) = e_(z”“—x)V? e—(2n+1+x)\/§
we find —_— = _ .
ssinh Vs 5 B .

If we assume that the inverse Laplace transform can be done term by term, it follows
from entry 3 of Table 14.1 that

_[ sinh (\/Ex)}
o { s sinh Vs

0 e—(2n+l—x)\[s e—(2n+1+x)\/;
Y | St - ———
n=0 s s

- 2n+1—x 2n+ 1+ x
rfc | ——— | —erfc | ———— |.
g fee () e (7))o

The solution (9) can be rewritten in terms of the error function using
erfc(x) = 1 — erf(x):

x. 1) E [elf <2n + 1+ x) orf (211 + 1 - x)} (10) m
ulx,t) = u f| ————— | — —|.
0/170 2\/2 2\/2

u(x, )

Figure 14.2.2(a), obtained with the aid of the 3D-plot application in a CAS,
shows the surface over the rectangular region 0 = x = 1, 0 = r = 6, defined by the
partial sum Sjo(x, #) of the solution (10) with uy = 100. It is apparent from the sur-
face and the accompanying two-dimensional graphs that at a fixed value of x (the
curve of intersection of a plane slicing the surface perpendicular to the x-axis on
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the interval [0, 1] the temperature u(x, ) increases rapidly to a constant value as time
increases. See Figures 14.2.2(b) and 14.2.2(c). For a fixed time (the curve of intersec-
tion of a plane slicing the surface perpendicular to the #-axis) the temperature u(x, t)
naturally increases from O to 100. See Figures 14.2.2(d) and 14.2.2(e).

u(0.2,t) u(0.7,t)
100 100
80 80
60 60
40 40
20 20
t t
T334 35 6 T2 3 4 56
(b) x =02 (¢) x =07
u(x,0.1) u(x,4)
120 120
100 100
80 80
60 60
40 40
20 20 ‘
02040608 1" 02040608 1
@ =01 (e) 1 = 4

FIGURE 14.2.2  Graph of solution given in (10). In (b) and (c) x is held constant.
In (d) and (e) ¢ is held constant

EXERCISES 14.2

Answers to selected odd-numbered problems begin on page ANS-23.

1. A string is stretched along the x-axis between (0, 0) and 5. In Example 3 find the displacement u(x, f) when the left

(L, 0). Find the displacement u(x, f) if the string starts
from rest in the initial position A sin(7x/L).

2. Solve the boundary-value problem

0? 0?
CE_ZE o<x<l1, t>0
9x2 o
w@©,H=0, u(l,t)=20
du . .
u(x,0) =0, — = 2 sin 7x + 4 sin 3mx.
Jt lr=0

3. The displacement of a semi-infinite elastic string is

determined from

u  0u
azﬁzﬁ’ x>0, t>0
X

w0, = f(®, limukx,t)=0, t>0

u

70 :0’
u(x, 0) Py

=0, x>0.
t=0

Solve for u(x, t).

4. Solve the boundary-value problem in Problem 3 when

sin 7rt, 0=r=1
t:
o=,

Sketch the displacement u(x, f) for # > 1.

end of the string at x = 0 is given an oscillatory motion
described by f(f) = A sin wt.

. The displacement u(x, ) of a string that is driven by an

external force is determined from

0%u 2

j+sinwxsinwt=—g, 0<x<l1, t>0
ox ar
u@,Hn=0, u(l,n=0, r>0
u
u(x,0) = 0, =0, 0<x<1l.

dt lr=0

Solve for u(x, t).

. A uniform bar is clamped at x = 0 and is initially at rest.

If a constant force Fy is applied to the free end at
x = L, the longitudinal displacement u(x, t) of a cross
section of the bar is determined from

9> 9%
aZ,—Z:—Z, 0<x<L, t>0
ox Jat
u
u©,H=0, E— =F,, FEaconstant, t>0
0x [x=L
u
ux,0 =0, — =0, 0<x<L.
Jat =0

Solve for u(x, 1). [Hint: Expand 1/(1 + e~ >May in a
geometric series.]

. A uniform semi-infinite elastic beam moving

along the x-axis with a constant velocity —vq is
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brought to a stop by hitting a wall at time 7 = 0.
See Figure 14.2.3. The longitudinal displacement
u(x, t) is determined from

) 0%u 0%u ~0 >0
a— = —, X R
axr  ar
. ou
u(0,H0=0, lim—=0, t>0
x—% Jx
u
ulx,0 =0, — = —v x>0.
ot =0
Solve for u(x, t).
%
Wall Beam
/v
—
‘ \ ___“H.
x=0 X

FIGURE 14.2.3 Moving elastic beam in Problem 8

9. Solve the boundary-value problem

Pu u

w7 0

t>0
w©0,1) =0, limu(x,r)=0, t>0

d
u(x, 0) = xe ™, - =0,

— = x> 0.
Jdt lt=0

10. Solve the boundary-value problem

’u  0u

e R

w0, =1, limuC,f)=0, t>0

x>0 t>0

0
u(x, 0) = e, & =0,

= x> 0.
Jat li=0

In Problems 11-18 use the Laplace transform to solve the
heat equation u,, = u,, x >0, t > 0, subject to the given
conditions.

11. u(0,7) = uy, lim wu(x,?) = u;, ux, 0) = u,

ux, 1)
-~ U

12. u(0, 1) = uy, lim

u(x,0) = ux

0
13. a =u(0,7), lim ulx,t) = uy, ulx,0)=u,
0x [x=0 x—>®
u .
14. — =u(0,r) — 50, lim u(x,r) =0, u(x,0)=0
0x lx=0 x>

15.

16.

17.

18.

19.

20.

21.

22,

23.

u(0,9) = f(©), lim ux,1) =0, ux 0) =0
[Hint: Use the convolution theorem.]

()_u
0x
u(0,1) =60 + 40Ut — 2), lim u(x, ) = 60,

u(x, 0) = 60

= —f(@®, limu(x,?) =0, ulx0 =0

x=0

20, 0<r<1 . B
u(0,1 = { 0 R Xh_r)r}g u(x, 1) = 100,
u(x,0) = 100

Solve the boundary-value problem

9%u u

—_— =, —o<x<l1, >0

axr ot

du .

— =100 —u(l,r, lim u(x,t)=0, t>0
0x Ix=1 x— —oo

ux,0) =0, —wo<x<I.

Show that a solution of the boundary-value problem

Pu P
kS +r=2 x>0, 1>0
dx Jat
p
w0, =0, lim=L=0, >0
x— o 0X
u(x,0) =0, x>0,

where r is a constant, is given by

! X
L) =1t — T — | dT.
ulx,t) =r rJOerc<2 kT) T

A rod of length L is held at a constant temperature
up at its ends x = 0 and x = L. If the rod’s initial
temperature is ugy + ug sin(xw /L), solve the heat
equation uy, = u;, 0 < x <L, t >0 for the tempera-
ture u(x, t).

If there is a heat transfer from the lateral surface of
a thin wire of length L into a medium at constant
temperature u,, then the heat equation takes on the
form

9%u

P
ks — b —u,) ==, 0<x<L, t>0,
0x Jt

where 4 is a constant. Find the temperature u(x, f) if the
initial temperature is a constant uy throughout and
the ends x = 0 and x = L are insulated.

A rod of unit length is insulated at x = 0 and is kept at
temperature zero at x = 1. If the initial temperature of
the rod is a constant ug, solve ku,, = u;, 0 <x <1,
t>0 for the temperature u(x, t). [Hint: Expand
1/(1 + e‘zm) in a geometric series.]



24.

25.

26.

27.

An infinite porous slab of unit width is immersed
in a solution of constant concentration c¢q. A dissolved
substance in the solution diffuses into the slab. The con-
centration c(x, ) in the slab is determined from

0? d
LT p<x<l 130
ox aJat
c(0,1) = ¢y, c(l,1) = cg, t>0
cx,0)=0, 0<x<lI,

where D is a constant. Solve for c(x, 7).

A very long telephone transmission line is initially at a
constant potential ug. If the line is grounded at x = 0
and insulated at the distant right end, then the potential
u(x, t) at a point x along the line at time ¢ is determined
from

o%u ou
2 RCE—RGu=0, x>0, t>0
ox ot
P
w0, =0, lim==0, >0
x—x X
u(x,0) = uy, x>0,

where R, C, and G are constants known as resistance,
capacitance, and conductance, respectively. Solve for
u(x, t). [Hint: See Problem 5 in Exercises 14.1.]

Show that a solution of the boundary-value problem
02 d
—u—hu =—M, x>0, t>0, hconstant
ax? at

u(0, 1) = uy, lim u(x,r) =0, >0

ux,00=0, x>0
) UoXx te—hT—JCz/4T
18 u(x, t) = 2\/;TJ:) Tdt

Starting at # = 0, a concentrated load of magnitude F
moves with a constant velocity vy along a semi-
infinite string. In this case the wave equation becomes

where 8(f — x/vg) is the Dirac delta function. Solve the
above PDE subject to

w0, =0, limux,)=0, >0

0
ux,0) =0, 2| =o,

- = x>0
dt li=o0

(a) when vy # a (b) when vy = a.
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28.

29.

30.

(a) The temperature in a semi-infinite solid is modeled
by the boundary-value problem
u  du

—, x>0,

3= t>0
ax at

u,1) = uy, limulx,t)=0, t>0

ux,0) =0, x>0.

Solve for u(x, t). Use the solution to determine ana-
Iytically the value of lim,_, .. u(x, £), x > 0.

(b) Use a CAS to graph u(x, f) over the rectangular
region defined by 0 = x = 10, 0 = r = 15. Assume
that uy = 100 and k£ = 1. Indicate the two boundary
conditions and initial condition on your graph. Use
2D and 3D plots of u(x, t) to verify your answer to
part (a).

(a) In Problem 28 if there is a constant flux of heat
into the solid at its left-hand boundary, then the
J
boundary condition is d_u =—-A,A>0,r>0.
X 1x=0
Solve for u(x, r). Use the solution to determine ana-
Iytically the value of lim,_, .. u(x, ), x > 0.

(b) Use a CAS to graph u(x, ) over the rectangular
region defined by 0 = x = 10,0 = ¢ = 15. Assume
that uy = 100 and k£ = 1. Use 2D and 3D plots of
u(x, t) to verify your answer to part (a).

Humans gather most of our information on the outside
world through sight and sound. But many creatures use
chemical signals as their primary means of communica-
tion; for example, honeybees, when alarmed, emit a
substance and fan their wings feverishly to relay the warn-
ing signal to the bees that attend to the queen. These mo-
lecular messages between members of the same species
are called pheromones. The signals may be carried by
moving air or water or by a diffusion process in which the
random movement of gas molecules transports the chem-
ical away from its source. Figure 14.2.4 shows an ant
emitting an alarm chemical into the still air of a tunnel. If
c(x, 1) denotes the concentration of the chemical x cen-
timeters from the source at time ¢, then c(x, ) satisfies
2 .
?—i = z, x>0, t>0
ox ot
and k is a positive constant. The emission of
pheromones as a discrete pulse gives rise to a boundary
condition of the form
el = —as0,
0x lx=0
where 6(7) is the Dirac delta function.
(a) Solve the boundary-value problem if it is further
known that

c(x,00=0, x>0 and lim,_.c(x,5) =0, t>0.
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(b) Use a CAS to graph the solution in part (a) for g— " W6
x = 0 at the fixed times t=10.1, t=0.5, t =1, |
t=2,andt=5. 0 o
(c) For any fixed time 7, show that [ c(x, 1) dx = Ak. FIGURE 14.2.4  Ant responding to chemical signal
Thus Ak represents the total amount of chemical in Problem 30
discharged.

14.3

FOURIER INTEGRAL

REVIEW MATERIAL
e The Fourier integral has different forms that are analogous to the four forms of Fourier series

given in Definitions 11.2.1 and 11.3.1 and Problem 21 in Exercises 14.2. A review of these
various forms is recommended.

INTRODUCTION In Chapters 11-13 we used Fourier series to represent a function f defined on
a finite interval such as (—p, p) or (0, L). When fand f" are piecewise continuous on such an inter-
val, a Fourier series represents the function on the interval and converges to the periodic extension
of foutside the interval. In this way we are justified in saying that Fourier series are associated only
with periodic functions. We shall now derive, in a nonrigorous fashion, a means of representing
certain kinds of nonperiodic functions that are defined on either an infinite interval (—2, %) or a
semi-infinite interval (0, ).

FOURIER SERIES TO FOURIER INTEGRAL Suppose a function fis defined on
the interval (—p, p). If we use the integral definitions of the coefficients (9), (10),
and (11) of Section 11.2 in (8) of that section, then the Fourier series of f on the
interval is

£ =if Foyde+ i[(fp f(t)cosgtdt) cos = x + (F £() singtdt> sinﬂx]. (1
2pJp Pl \J-p P P -p P P

If we let o, = nw /p, Aa = a,,+1 — a,, = 7 /p, then (1) becomes
1 P 12 P P
fx) =— f(dt) Aa +—, f(®) cos a,t dt | cos a,x + f(®) sin et dt | sin a, x| Aa.  (2)
2w \J-, T o1 \J-p -p

We now expand the interval (—p, p) by letting p — oc. Since p — « implies that
Aa — 0, the limit of (2) has the form lim AQHOE;O:I F(a,) Aa, which is suggestive
of the definition of the integral [(F(«) da. Thus if [Z.. f(f) dt exists, the limit of the
first term in (2) is zero, and the limit of the sum becomes

flx) = %TJ‘m [(Jw f(#) cos at dt) cos ax + (Jﬁ f(®) sin ar dt) sin ax] da. (3)
0 o —w

The result given in (3) is called the Fourier integral of fon (—2, ). As the follow-
ing summary shows, the basic structure of the Fourier integral is reminiscent of that
of a Fourier series.
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DEFINITION 14.3.1 Fourier Integral
The Fourier integral of a function f defined on the interval (—o, <) is
given by
e
flx) = —f [A(@) cos ax + B(w) sin ax] da, @)
m Jo
where Ala) = f(x) cos ax dx 5)
B(a) = ~ f(x) sin ax dx. (6)

CONVERGENCE OF A FOURIER INTEGRAL  Sufficient conditions under which
a Fourier integral converges to f(x) are similar to, but slightly more restrictive than,
the conditions for a Fourier series.

| THEOREM 14.3.1 Conditions for Convergence

Let f and f' be piecewise continuous on every finite interval and let f be
absolutely integrable on (—, %).” Then the Fourier integral of f on the interval
converges to f(x) at a point of continuity. At a point of discontinuity the Fourier
integral will converge to the average

fot) + o)
2 b

where f(x+) and f(x—) denote the limit of fat x from the right and from the left,
respectively.

I EXAMPLE 1 Fourier Integral Representation

Find the Fourier integral representation of the function

0, x <0
=91 0<x<2
0, x> 2.
y SOLUTION The function, whose graph is shown in Figure 14.3.1, satisfies the

hypotheses of Theorem 14.3.1. Hence from (5) and (6) we have at once

0

1
1
| Ala) = f(x) cos ax dx
| | —0
2 X 0 2 ©
= f(x) cos axdx + J f(x) cos axdx + J f(x) cos axdx
FIGURE 14.3.1 Piecewise-continuous —o 0 2
function defined on (—o, x) 2 sin 2a
= f cos axdx =
0 o
* ) 2 1 — cos 2a
B(a) = f(x) sin ax dx = sinaxdx = ——.
—x 0 o

“This means that the integral [, |f(x)| dx converges.
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Substituting these coefficients into (4) then gives

1 [”](sin2a 1 —cos2a) .
fx) =— cos ax + | ——— | sin ax | da.
T Jo o @

When we use trigonometric identities, the last integral simplifies to

F) = gfc sin a cos a(x — 1) da. 7 m
T Jo

o

The Fourier integral can be used to evaluate integrals. For example, it follows
from Theorem 14.3.1 that (7) converges to f(1) = 1; that is,

2 € L1 w .
—f Sln—adoz=1 and so f Smada=7—7.
0 0 2

o a o

The latter result is worthy of special note, since it cannot be obtained in the “usual”
manner; the integrand (sin x) /x does not possess an antiderivative that is an elemen-
tary function.

COSINE AND SINE INTEGRALS When fis an even function on the interval
(—, x), then the product f(x) cos ax is also an even function, whereas f(x) sin ax
is an odd function. As a consequence of property (g) of Theorem 11.3.1, B(a) = 0,
and so (4) becomes

fx) = 2 fx(fxf(t) cos at dt) cos ax da.
™ Jo 0

Here we have also used property (f) of Theorem 11.3.1 to write

f(®cosatdt =2 J f(1) cos at dt.
—x 0

Similarly, when f'is an odd function on (—2, %), products f(x) cos ax and f(x) sin ax
are odd and even functions, respectively. Therefore A(a) = 0, and

flx) = g fx<fwf(t) sin «t dt) sin ax da.
™ Jo 0

We summarize in the following definition.

| DEFINITION 14.3.2 Fourier Cosine and Sine Integrals

(i) The Fourier integral of an even function on the interval (—, ) is the
cosine integral

fx) = 2 f A(a) cos ax da, (8)
™ Jo

where Ala) = j 7:)"()() cos ax dx. ©))
0

(ii) The Fourier integral of an odd function on the interval (—o, =) is the
sine integral

flx) = % f* B(a) sin ax da, (10)
™ Jo

where B(a) = fﬁf(x) sin ax dx. (11)
0
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I EXAMPLE 2 Cosine Integral Representation

Find the Fourier integral representation of the function

I, |x|<a
0, |x|>a.

J) ={

SOLUTION It is apparent from Figure 14.3.2 that f is an even function. Hence we
represent f'by the Fourier cosine integral (8). From (9) we obtain

Ala) = J f(x) cos ax dx = f Sf(x) cos ax dx + ff(x) cos axdx = j cos ax dx = 22 aa
’ 0 a 0 o
2 | ”si
s0 Fo) = _J sinaacos ax 12 =
™ Jo el

FIGURE 14.3.2 Piecewise-continuous

even function defined on (—, )

| x

FIGURE 14.3.3 Function defined
on (0, *)

/
’/, \
—”

(a) Cosine integral

N

(b) Sine integral
FIGURE 14.3.4 (a)is the even

extension of f; (b) is the odd extension

of f

The integrals (8) and (10) can be used when f'is neither odd nor even and defined
only on the half-line (0, >¢). In this case (8) represents f on the interval (0, c°) and its
even (but not periodic) extension to (—, 0), whereas (10) represents f on (0, %) and
its odd extension to the interval (—2, 0). The next example illustrates this concept.

I EXAMPLE 3 Cosine and Sine Integral Representations

Represent f(x) = e 5, x>0
(a) by a cosine integral (b) by a sine integral.

SOLUTION The graph of the function is given in Figure 14.3.3.

(a) Using integration by parts, we find

* 1
Ala) = fo e~ cos axdx = T o
Therefore the cosine integral of fis
()_gjwcosaxd (13)
fo = 7)o 1+ 2%
(b) Similarly, we have
B(a) = L e*sin axdx = 1 foﬂ'
The sine integral of fis then
2 [ «asin ax
=— | ——da 14
@ WJOHazd“ (14)

Figure 14.3.4 shows the graphs of the functions and their extensions represented by
the two integrals. [ |

USE OF COMPUTERS We can examine the convergence of a Fourier integral in a
manner similar to graphing partial sums of a Fourier series. To illustrate, let’s use part
(b) of Example 3. Then by definition of an improper integral the Fourier sine integral
representation (14) of f(x) = e, x > 0, can be written as f(x) = lim,_,.. Fj(x),
where x is considered a parameter in

F()_EJ”asinaxd (15)
e 7)o 1+ o? «
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Now the idea is this: Since the Fourier sine integral (14) converges, for a specified
value of b >0 the graph of the partial integral F,(x) in (15) will be an
approximation to the graph of fin Figure 14.3.4(b). The graphs of Fj(x) for b =5
and b = 20 given in Figure 14.3.5 were obtained by using Mathematica and its
Nlntegrate application. See Problem 21 in Exercises 14.3.

1t 1t
0.5 i 0.5 i (\\\\
0 x 0 x
—05F -0.5 \\\\}
_1 - — 1 L
L | | | | J/ L | | | | J
-3 2 -l 0 1 2 3 -3 2 -1 0 1 2 3

(a) Fs(x) (b) Fy(x)

FIGURE 14.3.5 Convergence of F)(x) to f(x) in Example 3(b) as b —

COMPLEX FORM The Fourier integral (4) also possesses an equivalent complex
form, or exponential form, that is analogous to the complex form of a Fourier series
(see Problem 21 in Exercises 11.2). If (5) and (6) are substituted into (4), then

1 e} o
flx) = —f f f(®) [cos at cos ax + sin at sin ax] dt da
mTJo J—o

=lfx ocf(t)cos a(t — x)dtda
0

™ —0

= wa ’ f(®) cos a(t — x)dt da (16)
27 ) oo J e

= %TJOO i f(®[cos a(t — x) + isin a(t — x)] dtda (17)

1 o0 o] . B
= —f f®e "9 dt da
27 ) o) o

1 (= ([ . ,
= Py ( f@)e™ dt)e"‘“‘ da. (18)

—

We note that (16) follows from the fact that the integrand is an even function of c. In
(17) we have simply added zero to the integrand,

ifx oof(t)sin a(t —x)dtda =0

—o0 J—w©

because the integrand is an odd function of «.. The integral in (18) can be expressed as

o0

o) =2 | e da, (19)
2 ),

where Cla) = % f(x)e'** dx. (20)

—o

This latter form of the Fourier integral will be put to use in the next section when
we return to the solution of boundary-value problems.
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EXERCISES 14.3

Answers to selected odd-numbered problems begin on page ANS-24.

In Problems 1-6 find the Fourier integral representation of
the given function.

s x< -1
-1, —-1<x<0
1. = ’
F® 2, 0<x<l1
0, x>1
0, x <
2. fx) =14, w<x<2m
0, x> 2
0, x<0
3. /() =Jx, 0<x<3
0, x>3
0, x<0
4. f(x) =3sinx, 0=x=7
0, x>
0, x<0
e, x| <1
6. =
f®) {O, [x|>1

In Problems 7-12 represent the given function by an appro-
priate cosine or sine integral.

0, x< -1
=5 —-1<x<0
7. =
f 5, 0<x<l
0, x> 1
0, x| <1
8. fx)y ={m 1<|x|<2
0, | x| >2
|x|, |x| < {x, |x| <7
9. = 10. =
f) {0’ > O =10, x| >
11. f(x) = ¢ *lsinx 12. f(x) = xe 1|

In Problems 13-16 find the cosine and sine integral repre-
sentations of the given function.

13. fx) =e ®, k>0, x>0
14. f(x) = e — e x>0
15. f(x) = xe™ >, x>0

16. f(x) = e *cosx, x>0

In Problems 17 and 18 solve the given integral equation for
the function f.

17. ff(x) cosaxdx = e ¢
0

1, 0<a<l1
0, a>1

18. fo(x) sin ax dx = {
0

19. (a) Use (7) to show that

*sin 2x T
dx = —.
J(; X . 2

[Hint: a is a dummy variable of integration.]
(b) Show in general that for k > 0,

*sin kx T
dx = —.
fo X . 2

20. Use the complex form (19) to find the Fourier integral
representation of f(x) = e~ *l. Show that the result is the
same as that obtained from (8).

Computer Lab Assignments

21. While the integral (12) can be graphed in the same man-
ner discussed on page 501 to obtain Figure 14.3.5, it can

also be expressed in terms of a special function that is
built into a CAS.

(a) Use a trigonometric identity to show that an
alternative form of the Fourier integral repre-
sentation (12) of the function f in Example 2
(witha = 1) is

fo) = lr sina(r + 1) —sinaw = 1)
T Jo

o

(b) As a consequence of part (a), f(x) = lim F)(x),
where b=

Py = 1 f bsin a(x + 1) — sin a(x — 1) o
0

o

Show that the last integral can be written as
. .
Fy(x) = —[Si(b(x + 1)) — Si(b(x — 1))],
T

where Si(x) is the sine integral function. See
Problem 49 in Exercises 2.3.

(c) Use a CAS and the sine integral form of Fy(x) in
part (b) to obtain the graphs on the interval [—3, 3]
for b =4, 6, and 15. Then graph Fj(x) for larger
values of b > 0.
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14.4] FOURIER TRANSFORMS

REVIEW MATERIAL
e Definition 14.3.2
e Equations (19) and (20) in Section 14.3

INTRODUCTION  So far in this text we have studied and used only one integral transform: the
Laplace transform. But in Section 14.3 we saw that the Fourier integral had three alternative forms:
the cosine integral, the sine integral, and the complex or exponential form. In the present section we
shall take these three forms of the Fourier integral and develop them into three new integral trans-
forms, not surprisingly called Fourier transforms. In addition, we shall expand on the concept of
a transform pair, that is, an integral transform and its inverse. We shall also see that the inverse of an
integral transform is itself another integral transform.

TRANSFORM PAIRS The Laplace transform F(s) of a function f(¢) is defined by
an integral, but up to now we have been using the symbolic representation
f(@® =% YHF(s)} to denote the inverse Laplace transform of F(s). Actually, the

inverse Laplace transform is also an integral transform.
If Z{f()} = [5e ™ f(¢) dt = F(s), then the inverse Laplace transform is

1 yFi®
SUHUF(s)}) = ﬁﬁ—iw e'F(s) ds = f(1).

The last integral is called a contour integral; its evaluation requires the use of com-
plex variables and is beyond the scope of this text. The point here is this: Integral
transforms appear in transform pairs. If f(x) is transformed into F(«) by an
integral transform

b
F(a) = f fK(a, x) dx,
then the function f can be recovered by another integral transform
d
fx) = f F(a)H(a, x) da,

called the inverse transform. The functions K and H in the integrands are called
the kernels of their respective transforms. We identify K(s, ) = ¢~*" as the kernel
of the Laplace transform and H(s, 1) = e*'/2i as the kernel of the inverse Laplace
transform.

FOURIER TRANSFORM PAIRS The Fourier integral is the source of three new
integral transforms. From (20)—(19), (11)—(10), and (9)—(8) of Section 14.3 we are
prompted to define the following Fourier transform pairs.

| DEFINITION 14.4.1 Fourier Transform Pairs

(i) Fourier F(f@) = f f@)edx = Fa) (1)

transform:

| -
Inverse Fourier F HUF(a)}) = 2—f Fla)e " da = f(x) )
transform: WSS
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(i) Fourier sine F{fx)} = f%.f(x) sin ax dx = F(a) 3)
transform: g

2 0
Inverse Fourier F U F ()} = — J F(a) sin ax da = f(x) )
sine transform: ™ Jo

(iii) Fourier cosine FAf(0)} = fxf(x) cos ax dx = F(a) 5
transform: 2

0

2 o}
Inverse Fourier F M F(a)} = = J F(a) cos axda = f(x)  (6)
cosine transform: mJo

EXISTENCE The conditions under which (1), (3), and (5) exist are more stringent
than those for the Laplace transform. For example, you should verify that {1},
Fe{1}, and F.{1} do not exist. Sufficient conditions for existence are that f be
absolutely integrable on the appropriate interval and that f and f’ be piecewise con-
tinuous on every finite interval.

OPERATIONAL PROPERTIES Since our immediate goal is to apply these new
transforms to boundary-value problems, we need to examine the transforms of
derivatives.

FOURIER TRANSFORM  Suppose that f is continuous and absolutely integrable
on the interval (—o, ») and f’ is piecewise continuous on every finite interval. If
f(x) — 0 as x — =£oc, then integration by parts gives

FU) = | Fre= dx

= f(x) e T io fw f(x)e* dx
= —iazfoo f(x) e dx,
that is, FL(0) = —ia Fa). %)

Similarly, under the added assumptions that f’ is continuous on (—%, %), f"(x)
is piecewise continuous on every finite interval and f'(x) — 0 as x — *%, we have

FU'@) = (i F(f®)} = —Fo. ®)
It is important to be aware that the sine and cosine transforms are not suitable for

transforming the first derivative (or, for that matter, any derivative of odd order). It is
readily shown that

FAf 0} = —aF {f@}  and  F{f'0)} = aF{f(0)} — fO).

The difficulty is apparent; the transform of f”(x) is not expressed in terms of the orig-
inal integral transform.

FOURIER SINE TRANSFORM  Suppose that f and f’ are continuous, f is
absolutely integrable on the interval [0, ), and " is piecewise continuous on every
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finite interval. If f— 0 and f" — 0 as x — =, then
FAf' 0} = J £"(x) sin ax dx
0

= f'(x) sin ax

- af f'(x) cos ax dx
0 0

) + afwf(x) sin axdx]
0 0

af(0) — &> F{f(x)},
that is, FLf" )} = —a*F(a) + af(0). 9)

-« [f(x) cos ax

FOURIER COSINE TRANSFORM Under the same assumptions that lead to (9)
we find the Fourier cosine transform of f”(x) to be

FAL" ()} = —a’Fla) = f(0). (10)

A natural question is “How do we know which transform to use on a given
boundary-value problem?” Clearly, to use a Fourier transform, the domain of the
variable to be eliminated must be (—, =¢). To utilize a sine or cosine transform, the
domain of at least one of the variables in the problem must be [0, 2¢). But the deter-
mining factor in choosing between the sine transform and the cosine transform is the
type of boundary condition specified at zero.

Remember this In the examples that follow, we shall assume without further mention that both u
when working . . . . . . ..
Exercises 14.4. and du/dx (or du/dy) approach zero as x — oo, This is not a major restriction,

since these conditions hold in most applications.

I EXAMPLE 1 Using the Fourier Transform

u  du
Solve the heat equation k F = E’ —x < x <%, >0, subject to
X
U, |'x| <1
ux, 0) = f(x), where X) =
(x,0) = f(x) @ {0’ > 1.
SOLUTION The problem can be interpreted as finding the temperature u(x, ) in an
infinite rod. Because the domain of x is the infinite interval (—, ), we use the
Fourier transform (1) and define

Flux, 1)} = f ulx, e dx = U(a, 1).

If we transform the partial differential equation and use (8),

fez-op
ox Jt

dUu du
yields —ka?U(a, 1) = o or o + ka’U(a, 1) = 0.

Solving the last equation gives U(a, 1) = ce™*". Now the transform of the initial
condition is

1 elt — pTia

Flu(x,0)) = fw fx)edx = f Uy e dx = uy

—1 i
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o

sin
This result is the same as U(a, 0) = 2u, . Applying this condition to the solution
a

Ula, 1) gives U(a, 0) = ¢ = (2ug sin a)/a, so
sin «

—ka?
ekat‘

Ula, 1) = 2u,

It then follows from the inversion integral (2) that

S
Uy smo .
u(x, ) = —J —— eTketeTiax g
T)ow «

The last expression can be simplified somewhat by using Euler’s formula

—lax _—

e = cos ax — i sin aex and noting that

"
sina .

f e *tsin ax da = 0,

e

since the integrand is an odd function of «. Hence we finally have

Uy |“ sinacosax _
ulx, 1) = — — e "“da. (11) m
T ) o e

It is left to the reader to show that the solution (11) can be expressed in terms of
the error function. See Problem 23 in Exercises 14.4.

I EXAMPLE 2 Using the Cosine Transform

The steady-state temperature in a semi-infinite plate is determined from
— 4+ —=0, 0<x<m y>0

u0,y) =0, u(my =e”, y>0
u

=0, 0<x<m
dy ly=0

Solve for u(x, y).

SOLUTION The domain of the variable y and the prescribed condition at y = 0 in-
dicate that the Fourier cosine transform is suitable for the problem. We define

x

Flulx,y)} = fo u(x,y) cos aydy = Ux, o).

62 82
In view of (10), %{—Z} + 9?«]'—';} 20
x dy
d*U d*U
becomes i o?U(x, ) — u,(x,0) = 0 or ke a?U = 0.

Since the domain of x is a finite interval, we choose to write the solution of the
ordinary differential equation as

U(x, a) = c¢,cosh ax + ¢, sinh ax. (12)

Now Z{u(0,y)} = F.{0} and F.{u(m, y)} = F.{e >} are in turn equivalent to

= d = .
UO0,a) =0 an U(m, a) e



508

° CHAPTER 14 INTEGRAL TRANSFORMS

When we apply these latter conditions, the solution (12) gives

¢y =0 and

¢» = 1/[(1 + o?) sinh ar]. Therefore

so from (6) we arrive at

5 [
MWﬁ:;
1 Jo

Ux, ) =

sinh ax
(1 + o?)sinh a7’

sinh ax

———————cos &y da.
(1 + «) sinh a7

(13) m

Had u(x, 0) been given in Example 2 rather than u(x, 0), then the sine transform
would have been appropriate.

EXERCISES 14.4

Answers to selected odd-numbered problems begin on page ANS-24.

In Problems 1-21 use the Fourier integral transforms of this
section to solve the given boundary-value problem. Make as-
sumptions about boundedness where necessary.

1. k@=%, —o<x<o%o >0
ax? ot
ulx,0) = e M, —oo <y <o
2. @=%, —o < x<ow >0
ax? ot
0, x< —1
u(x, 0) = —100, —-1<x<0
’ 100, 0<x<l1
0, x> 1
3. Find the temperature u(x, f) in a semi-infinite rod if

u(0, 1) = ug, t > 0 and u(x, 0) = 0, x > 0.

*sin ax

Use the result f
0 o

the solution of Problem 3 can be written as

da = g, x > 0, to show that

2u, |~ sinax

0 a2

u(x,) =uy — — | ——e *'da.
T Jo o

Find the temperature u(x, f) in a semi-infinite rod if
u(0,1) =0,t> 0, and

1, 0<x<1

o=y 72

Solve Problem 3 if the condition at the left boundary is

u
_ — —A,

x=0

t>0,

0x

where A is a constant.

10.

11.

12.

13.

14.

Solve Problem 5 if the end x = 0 is insulated.

Find the temperature u(x, f) in a semi-infinite rod if
u(0,0)=1,t>0,and u(x,0) = e *, x> 0.

(a) a2 @ — az”
X

YL t>0

—0 < x < o%w

0
u(x, 0) = f(x), a—”t’ L =Ew. —=<x<s=

(b) If g(x) = 0, show that the solution of part (a) can be
written as u(x, 1) = 5[ f(x + at) + f(x — an)]

Find the displacement u(x, t) of a semi-infinite string if

uw©0,H=0, t>0
u

u(x,0) = xe™, — =0, x>0
ot =0

Solve the problem in Example 2 if the boundary condi-
tions at x = 0 and x = 7 are reversed: u(0, y) = e,
u(m,y) =0,y >0.

Solve the problem in Example 2 if the boundary condi-
tionaty = 0isu(x,0) = 1,0 <x <.

Find the steady-state temperature u(x, y) in a plate
defined by x = 0, y = 0 if the boundary x = 0 is insu-
lated and, aty = 0,

50, 0<x<1
“O=1 x> 1

Solve Problem 13 if the boundary condition at x = 0 is
u(0,y) =0,y >0.



u  0u
15.,—24‘,—2:0, x>0, 0<y<2
ax dy
w0,y) =0, 0<y<?2
u(x, 0) = f(x), u(x,2)=0, x>0
0? 92
16. 5 +°=5=0, 0<x<m y>0
dx dy
u
X Ix=m
@

- =0, 0<x<m
dy ly=o0

In Problems 17 and 18 find the steady-state temperature in the
plate given in the figure. [Hint: One way of proceeding is to
express Problems 17 and 18 as two- and three-boundary-value
problems, respectively. Use the superposition principle. See
Section 12.5.]

17. y
u=e-y
u=e>x X
FIGURE 14.4.1 Plate in Problem 17

18.

FIGURE 14.4.2 Plate in Problem 18

19. Use the result F{e 7%’} = 2V 7pe ™" to solve the
boundary-value problem

o*u u
—=— —o<x<o, >0
x> ot

ulx, 0) = e, —o <y < oo,

20. If F{f(x)} = F(a) and F{g(x)} = G(«), then the
convolution theorem for the Fourier transform is
given by

f f(Mglx — ndr = F {F(a)G(a)}.
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Use this result and F {e™*"*"} = 2/ mpe 7" to show
that a solution of the boundary-value problem

9%u _du

2 —e<x<® t>0
oxr ot ’
ulx,0) = f(x), —w<x<w®
is u(x, t) = L ) F(r)e™ DMk G
U 2Vhkmt )

21. Use the transform % {e*/4”"} given in Problem 19 to
find the steady-state temperature in the infinite strip
shown in Figure 14.4.3.

i M x

Insulated

FIGURE 14.4.3 Infinite strip in Problem 21

22. The solution of Problem 14 can be integrated. Use
entries 42 and 43 of the table in Appendix III to show
that

100 x 1 x+1 1 x—1
u(x,y) = — | arctan — — — arctan - E arctan .
™ y y y

23. Use the solution given in Problem 20 to rewrite the so-
lution of Example 1 in an alternative integral form.
Then use the change of variables v = (x — 7) /2 Vkt
and the results of Problem 9 in Exercises 14.1 to show
that the solution of Example 1 can be expressed as

t—@[rf<x+1)— f(x—l)]
w0 = e\ T v |

Computer Lab Assignments

24. Assume that up = 100 and k = 1 in the solution in
Problem 23. Use a CAS to graph u(x, t) over the rectan-
gular region defined by —4 =x=4, 0 =r=6. Use
a 2D plot to superimpose the graphs of u(x, f) for
t = 0.05, 0.125, 0.5, 1, 2, 4, 6, and 15 on the interval
[—4,4]. Use the graphs to conjecture the values
of lim,_,, u(x, ) and lim,_, ., u(x, ). Then prove these
results analytically using the properties of erf(x).
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C H A PT E R 1 4 | N R EVl EW Answers to selected odd-numbered problems begin on page ANS-24.
In Problems 1-16 solve the given boundary-value problem Plu 0u
by an appropriate integral transform. Make assumptions 9. a2 + 8_y2 =0, x>0, y>0
about boundedness where necessary. 50, 0<y<1
u(0,y) =
Pu 0 0, y>1
I.E—l—a—yzzo, x>0, 0<)’<7T u(s. 0) = 100, 0<x<1
ou ' 0, x>1
Daleey - O Oy 9 9
X 1x=0
0. S5 +r="0 0<x< 1 130
ur,0) =0, =| =e¥ x>0 -
dy y=1 du
— =0, w(l,n=0, t>0
Pu ou dxle=o
2. —=—, 0<x<1, t>0 .0) =0, <x<
2 o X ux,00=0, 0<x<l1
— _ 82 82
u©,0=0 u,n=0 >0 LS5 +°5=0, x>0, 0<y<m
u(x, 0) = 50 sin 27y, 0<x <1 ox"  dy
u0,y) =4, 0<y<mw
o*u _u ou ou
3'8_)8_}1”_5’ h>0, x>0, t>0 d_ =0, & =Be™*, x>0
ou yly=0 dy y=m
u@©,)=0, lim—=0, t>0 Pu ou
x> 0x 12.,—2=,—, 0<x<l1 >0
ulx,0) =uy, x>0 ax ot
5 u,1) = uy, u(l,t) =uy,, t>0
Ju  0u _ _
4, ———=¢M, —w<x<ow, >0 ux,0)=0, 0<x<1
ar - ox?
u(x,0) = 0, —o <x <o [Hint: Use the identity
2u ou sinh (x — y) = sinh x cosh y — cosh x sinh y,
5. e o >0, 1>0 and then use Problem 6 in Exercises 14.1.]
pr— T —_ ,2 ..
u(,1 =1, XIEI}CM(X,I)—O 13, k:;_b;:(;_l;t’ x>0
X
u(x,0) =0, x>0 [Hint: Use Theorem 7.4.2.] 0 c<0
azu qu u(x, 0) = {E’_x x> O
6. —=— 0<x<1 >0 ’
ox o %u  du
u@0,0=0, u(l,n =0, t>0 14'8_)825’ x>0, t>0
. u . ou
u(x, 0) = sin rx, — = —sinmx, 0<x<1 — = —50, lim u(x,t) =100, >0
ot lr=0 00X lx=0 ’ x—x ’ ’
2 u(x,0) =100, x>0
7. k%{?—” —o<x<® >0 P
o 15 kS5 =2, x>0, >0
O, <0 ) ox ot
ulx,0) = uy, 0<x<m % =0, t>0
0 x> ox =0
’ ux,0)=e¢* x>0
o2 o2 .
8. % n % =0, O<x<m y>0 16. Show that a solution of the BVP
axr  dy u  0u
0, 0<y<l1 axt 0, wrase O<y<l
0’ y>2 5y:0 - Oa I/l(.x, 1) _f('x)’ —30<_x<OC
d | cosh ay cos a(t —
H =0, 0<x<m is u(x,y)z—f J fpSShaycosat =9 40
dy ly=0 7)o Jow cosh «



