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12.1

SEPARABLE PARTIAL DIFFERENTIAL EQUATIONS

REVIEW MATERIAL
e Sections 2.3, 4.3, and 4.4
e Reread “Two Equations Worth Knowing” on pages 135-136.

INTRODUCTION  Partial differential equations (PDEs), like ordinary differential equations
(ODEs), are classified as either linear or nonlinear. Analogous to a linear ODE, the dependent
variable and its partial derivatives in a linear PDE are only to the first power. For the remaining
chapters of this text we shall be interested in, for the most part, linear second-order PDEs.

LINEAR PARTIAL DIFFERENTIAL EQUATION If we let u denote the dependent
variable and let x and y denote the independent variables, then the general form of a
linear second-order partial differential equation is given by

u u u du du
A— + B +C—5+D—+E—+Fu=G, (1)
ox° dx dy Jdy dx dy

where the coefficients A, B, C, . .., G are functions of x and y. When G(x, y) = 0,
equation (1) is said to be homogeneous; otherwise, it is nonhomogeneous. For
example, the linear equations

9’u  0*u 0 J u  du
— +— = an — - —=x
x> 9y’ axt  dy Y

are homogeneous and nonhomogeneous, respectively.

SOLUTION OF A PDE A solution of a linear partial differential equation (1) is
a function u(x, y) of two independent variables that possesses all partial derivatives
occurring in the equation and that satisfies the equation in some region of the
xy-plane.

It is not our intention to examine procedures for finding general solutions of
linear partial differential equations. Not only is it often difficult to obtain a general
solution of a linear second-order PDE, but a general solution is usually not all that
useful in applications. Thus our focus throughout will be on finding particular
solutions of some of the more important linear PDEs—that is, equations that appear
in many applications.

SEPARATION OF VARIABLES Although there are several methods that can be
tried to find particular solutions of a linear PDE, the one we are interested in at the
moment is called the method of separation of variables. In this method we seek a
particular solution of the form of a product of a function of x and a function of y:

ux,y) = X(x)Y(y).

With this assumption it is sometimes possible to reduce a linear PDE in two variables
to two ODEs. To this end we note that

du ) du ) 0u , 0u ,
Z=xy, Z=xy, SS=xv, S5=xv
0x Jdy ax dJ

where the primes denote ordinary differentiation.
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I EXAMPLE 1 Separation of Variables

%u
Find product solutions of — = 4 —.
dx dy

du

SOLUTION Substituting u(x, y) = X(x)Y(y) into the partial differential equation
yields
X"Y = 4XY'.

After dividing both sides by 4XY, we have separated the variables:

Xy

4X Y
Since the left-hand side of the last equation is independent of y and is equal to the
right-hand side, which is independent of x, we conclude that both sides of the equa-
tion are independent of x and y. In other words, each side of the equation must be a
constant. In practice it is convenient to write this real separation constant as —A

(using A would lead to the same solutions).
From the two equalities

Xy
4X Y
we obtain the two linear ordinary differential equations

X"+ 41X =0 and Y + AY =0. 2)
Now, as in Example 1 of Section 11.4 we consider three cases for A: zero, negative,
or positive, thatis, A = 0, A = —a?> < 0, and A = a® > 0, where o > 0.
CASE | If A = 0, then the two ODEs in (2) are

X"=0 and Y =0.

Solving each equation (by, say, integration), we find X = ¢; + cpx and Y = ¢3. Thus
a particular product solution of the given PDE is

u=XY=(c; + cx)c; = A, + Byx, 3)

where we have replaced cic3 and cyc3 by A; and By, respectively.

CASE Il If A = —a?, then the DEs in (2) are
X' —4a’X =0 and Y — a’Y = 0.
From their general solutions
X = c,cosh2ax + ¢ssinh2ax  and Y = ¢ge®?
we obtain another particular product solution of the PDE,
u = XY = (c,cosh 2ax + ¢s sinh 2ax)cse®”
or u = Aye®” cosh 2ax + B,e®” sinh 2ax, 4)

where A2 = C4C¢q and Bz = C5C¢.

CASE Il If A = &2, then the DEs
X"+ 4a’X =0 and Y+ Y =0
and their general solutions

. — a2y
X = ¢;cos 2ax + cgsin 2ax and Y = cgem
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give yet another particular solution
u = A3e_“2y cos 2ax + B3e_"‘2y sin 2ax, 5)
where A3 = C7C9 and BQ = CgC9. |

It is left as an exercise to verify that (3), (4), and (5) satisfy the given PDE. See
Problem 29 in Exercises 12.1.

SUPERPOSITION PRINCIPLE The following theorem is analogous to
Theorem 4.1.2 and is known as the superposition principle.

THEOREM 12.1.1 Superposition Principle

If uy, us, . . ., uy are solutions of a homogeneous linear partial differential equa-
tion, then the linear combination

U= cu + cuy + -+ cpuy,

where the ¢;,i = 1, 2, . .., k, are constants, is also a solution.

Throughout the remainder of the chapter we shall assume that whenever we have
an infinite set u;, us, us, . . . of solutions of a homogeneous linear equation, we can
construct yet another solution u by forming the infinite series

©
U= D cply,
k=1

where the ¢;, i = 1, 2, . . . are constants.

CLASSIFICATION OF EQUATIONS A linear second-order partial differential
equation in two independent variables with constant coefficients can be classified as
one of three types. This classification depends only on the coefficients of the second-
order derivatives. Of course, we assume that at least one of the coefficients A, B, and
C is not zero.

DEFINITION 12.1.1 Classification of Equations

The linear second-order partial differential equation

0%u 9%u 9%u u ou
A— + B +C—5+D—+E—+Fu=0,
ax> dx Yy dy dx dy

where A, B, C, D, E, and F are real constants, is said to be
hyperbolic if B> — 4AC > 0,

parabolicif B> — 4AC =0,
elliptic if B> — 4AC < 0.

I EXAMPLE 2 (lassifying Linear Second-Order PDEs

Classify the following equations:

Pu Ju Pu 0u Pu 0u
@3-—==— Mm-_5="— (©_5+-=5=0
0x dy dx dy dx dy

SOLUTION (a) By rewriting the given equation as

u ou

axr  dy

>
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we can make the identifications A = 3, B = 0, and C = 0. Since B2 — 4AC = 0,
the equation is parabolic.

(b) By rewriting the equation as

we see that A=1, B=0, C = —1, and B> — 4AC = —4(1)(—1) > 0. The
equation is hyperbolic.

(¢) With A=1, B=0, C=1, and B> — 4AC = —4(1)(1) < 0 the equation is

elliptic.

I REMARKS

(7) In case you are wondering, separation of variables is not a general method for
finding particular solutions; some linear partial differential equations are simply
not separable. You are encouraged to verify that the assumption u = XY does
not lead to a solution for the linear PDE 9%u /x> — ou /9y = x.

(@i) A detailed explanation of why we would want to classify a linear second-
order PDE as hyperbolic, parabolic, or elliptic is beyond the scope of this text,
but you should at least be aware that this classification is of practical importance.
We are going to solve some PDEs subject to only boundary conditions and oth-
ers subject to both boundary and initial conditions; the kinds of side conditions
that are appropriate for a given equation depend on whether the equation is
hyperbolic, parabolic, or elliptic. On a related matter, we shall see in Chapter 15
that numerical-solution methods for linear second-order PDEs differ in confor-
mity with the classification of the equation.

EXERCISES 12.1

Answers to selected odd-numbered problems begin on page ANS-19.

In Problems 1-16 use separation of variables to find, if
possible, product solutions for the given partial differential
equation.

0 d d d
. == 2. 435 =0
Jdx  dy ax dy
3ouct+u,=u 4 uy=u,+tu
Ju Ju du ou
Sox—=y— 6.y —+x—=0
dx dy dx dy
Pu Pu u *u
7.—2+ +—2=O 8.y +u=0
ax dxdy dy dx dy
’u Ju ’u  Ou
9.kj—u=—, k>0 10. k—=—, k>0
ax at axt ot
2 2
1 228 -

axz o

0? 02 d
12. 25 =5 + 2k, k>0
0x at Jt
Pu u Pu  9*u
13.—2+—2=0 14.x2—2+—2=0
ax dy X y
15. upy + uyy = u 16. a’u,, — g = u,, g aconstant

In Problems 17-26 classify the given partial differential
equation as hyperbolic, parabolic, or elliptic.

9%u 9%u 9%u
17. — + — — =0
Jx dx dy  dy
d*u d*u *u
18. 3 — 7t 5—— + 5= 0
ax dxdy dy
9*u d*u d*u
19. — + 6 +9—=0

ox? ax dy ay?



20.

21.

22.

23.

24.

25. a

26. k

0%u

ox2

’u

x>

0%u

dx dy

%u

x>

0%u

ax

2
28u

9%u
ox?

0
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92u 92u In Problems 27 and 28 show that the given partial differen-
ax dy ay? - tial equation possesses the indicated product solution.
2
Pu 27. k(a—” + 1%> e
arr  ror at
dx dy ,
u=e*(c,Jyar) + eYo(ar))
ay? ax 28__u+__u+__u=0;
Y o rar  rroe
*u N ib; N @ B 6% —0 u = (c;cos af + c,sin a@)(c3r* + c4r %)
dxdy dy" ox 9y 29. Verify that each of the products u = XY in (3), (4), and
PE (5) satisfies the second-order PDE in Example 1.
a_yZ - 30. Definition 12.1.1 generalizes to linear PDEs with coef-
ficients that are functions of x and y. Determine the
_ 82_u regions in the xy-plane for which the equation
Y
" Gy + DI b2y T =0
X — — u =
ou Y ax? * Y dxdy 9y Y
—, k>0 . . . o
at is hyperbolic, parabolic, or elliptic.

12.2

CLASSICAL PDEs AND BOUNDARY-VALUE PROBLEMS

REVIEW MATERIAL
e Reread the material on boundary-value problems in Sections 4.1, 4.3, and 5.2.

INTRODUCTION We are not going to solve anything in this section. We are simply going to
discuss the types of partial differential equations and boundary-value problems that we will be work-
ing with in the remainder of this chapter as well as in Chapters 13—15. The words boundary-value
problem have a slightly different connotation than they did in Sections 4.1, 4.3, and 5.2. If, say, u(x, )
is a solution of a PDE, where x represents a spatial dimension and ¢ represents time, then we may be
able to prescribe the value of u, or du/dx, or a linear combination of u and du/dx at a specified x as
well as to prescribe u and du /0t at a given time 7 (usually, # = 0). In other words, a “boundary-value
problem” may consist of a PDE, along with boundary conditions and initial conditions.

CLASSICAL EQUATIONS We shall be concerned principally with applying
the method of separation of variables to find product solutions of the following clas-
sical equations of mathematical physics:

u ou

at’

k>0 ey

x>

27 )

Ry 3)

or slight variations of these equations. The PDEs (1), (2), and (3) are known, respec-
tively, as the one-dimensional heat equation, the one-dimensional wave equation,
and the two-dimensional form of Laplace’s equation. “One-dimensional” in the
case of equations (1) and (2) refers to the fact that x denotes a spatial variable, whereas
t represents time; “two-dimensional” in (3) means that x and y are both spatial vari-
ables. If you compare (1)—(3) with the linear form in Theorem 12.1.1 (with ¢ playing



