PROPERTIES OF EXPONENTS

1. $a^{n} a^{n}=a^{n+m}$
2. $\left(a^{n}\right)^{m}=a^{n m}$
3. $\frac{a^{n}}{a^{m}}=\left\{\begin{array}{l}a^{n-m} \\ \frac{1}{a^{m-n}}, a \neq 0\end{array}\right.$
4. $(a b)^{n}=a^{n} b^{n}$
5. $\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}, \quad b \neq 0$
6. $\left(\frac{a}{b}\right)^{-n}=\left(\frac{b}{a}\right)^{n}=\frac{b^{n}}{a^{n}}$
7. $(a b)^{-\pi}:=\frac{1}{(a b)^{n}}$
8. $\frac{1}{a^{-n}}=a^{n}$
9. $\frac{a^{-n}}{b^{-m}}=\frac{b^{n}}{a^{n}}$
10. $\left(a^{n} b^{m}\right)^{k}=a^{n k} b^{m k}$

Example : $\left(a^{4} b^{-9}\right)^{3}=a^{(4)(3)} b^{(-9)(3)}=a^{12} b^{-27}$
11. $\left(\frac{a^{n}}{b^{m}}\right)^{k}=\frac{a^{n k}}{b^{m k}}$

Example : $\left(\frac{a^{6}}{b^{5}}\right)^{2}=\frac{a^{(6 \times 2)}}{b^{(5)(2)}}=\frac{a^{12}}{b^{10}}$
$12 b^{\frac{m}{n}}=\left(b^{\frac{1}{n}}\right)^{m}$
OR
$b^{\frac{m}{n}}=\left(b^{m}\right)^{\frac{1}{n}}$

Problem 1:

$$
\frac{5 x^{-1} y^{-4}}{\left(3 y^{5}\right)^{-2} x^{9}}=\frac{5\left(3 y^{5}\right)^{-}}{x y^{4} x^{9}}=\frac{5(9) y^{10}}{x y^{4} x^{9}}=\frac{45 y^{6}}{x^{10}}
$$

Problem 2:

$$
\left(\frac{24 a^{3} b^{-8}}{6 a^{-5} b}\right)^{-2}=\left(\frac{4 a^{3} a^{5}}{b^{8} b}\right)^{-2}=\left(\frac{4 a^{8}}{b^{9}}\right)^{-2}
$$

Problem 3:

$$
\left(\frac{x^{2} y^{-\frac{2}{3}}}{x^{-\frac{1}{2}} y^{-3}}\right)^{-\frac{1}{7}}=\left(\frac{x^{2} x^{\frac{1}{2}} y^{3}}{y^{\frac{2}{3}}}\right)^{-\frac{1}{7}}=\left(\frac{x^{2+\frac{1}{2}} y^{3-\frac{2}{3}}}{1}\right)^{-\frac{1}{7}}=\left(x^{\frac{5}{2}} y^{\frac{7}{3}}\right)^{-\frac{1}{7}}
$$

PROPERTIES OF RADICALS

If n is a positive integer greater than 1 and both a and b are positive real numbers then.

1. $\sqrt[n]{a^{n}}=a$
2. $\sqrt[n]{a b}=\sqrt[n]{a} \sqrt[n]{b}$
3. $\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}$

RATIONALIZING THE DENOMINATOR

Problem 1:

$$
\frac{4}{\sqrt{x}}=\frac{4}{\sqrt{x}} \frac{\sqrt{x}}{\sqrt{x}}=\frac{4 \sqrt{x}}{\sqrt{x^{2}}}=\frac{4 \sqrt{x}}{x}
$$

Problem 2:

$$
\frac{1}{3-\sqrt{x}}=\frac{1}{(3-\sqrt{x})} \frac{3+\sqrt{x}}{(3+\sqrt{x})}=\frac{3+\sqrt{x}}{(3-\sqrt{x})(3+\sqrt{x})}=\frac{3+\sqrt{x}}{9-x}
$$

Problem 3:

$$
\frac{5}{4 \sqrt{x}+\sqrt{3}}=\frac{5}{(4 \sqrt{x}+\sqrt{3})} \frac{(4 \sqrt{x}-\sqrt{3})}{(4 \sqrt{x}-\sqrt{3})}=\frac{5(4 \sqrt{x}-\sqrt{3})}{(4 \sqrt{x}+\sqrt{3})(4 \sqrt{x}-\sqrt{3})}=\frac{5(4 \sqrt{x}-\sqrt{3})}{16 x-3}
$$

POLYNOMIALS

Polynomial comes from poly- (meaning "many") and -nomial (in this case meaning "term") ... so it says "many terms"

A polynomial is an expression consisting of variables (also called indeterminates) and coefficients, that involves only the operations of addition, subtraction, multiplication, and non-negative integer exponentiation of variables

General expression is: $a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+a_{3} x^{n-3}+\ldots .+a_{n}$
Monomial: $3 x^{2} y$
Binomial: $5 x-1$
Trinomial: $3 x+5 y^{2}-3$

These are polynomials

- $3 x$
- $x-2$
- $-6 y^{2}-(79) x$
- $3 x y z+3 x y^{2} z-0.1 x z-200 y+0.5$
- $512 v^{5}+99 w^{5}$
- 5

These are not polynomials

- $3 x y^{-2}$ is not, because the exponent is "-2" (exponents can only be $0,1,2, \ldots$)
- $\mathbf{2 / (x + 2)}$ is not, because dividing by a variable is not allowed
- $1 / x$ is not either
- $\mathbf{V} \mathbf{x}$ is not, because the exponent is $" 1 / 2$ "

Degree of Polynomial

1. The degree of a polynomial in one variable is the largest exponent in the polynomial.
$5 x^{12}-2 x^{6}+x^{5}-198 x+1$
degree: 12
$x^{4}-x^{3}+x^{2}-x+1$
degree: 4
$56 x^{23}$
$5 x-7$
-8
degree : 23
degree : 1
degree : 0
2. The degree of each term in a polynomial in two variables is the sum of the exponents in each term and the degree of the polynomial is the largest such sum.

$x^{2} y-6 x^{3} y^{12}+10 x^{2}-7 y+1$	degree : 15
$6 x^{4}+8 y^{4}-x y^{2}$	degree : 4
$x^{4} y^{2}-x^{3} y^{3}-x y+x^{4}$	degree : 6
$6 x^{14}-10 y^{3}+3 x-11 y$	degree : 14

FACTORING POLYNOMIALS

(A) Greatest common factor

1. $x^{3} y^{2}+3 x^{4} y+5 x^{5} y^{3}=x^{3} y\left(y+3 x+5 x^{2} y^{2}\right)$
2. $3 x^{6}-9 x^{2}+3 x=3 x\left(x^{5}-3 x+1\right)$
3.

$$
9 x^{2}(2 x+7)-12 x(2 x+7)=3 x(2 x+7)(3 x-4)
$$

(B) By Grouping

1. $x^{5}-3 x^{3}-2 x^{2}+6=x^{3}\left(x^{2}-3\right)-2\left(x^{2}-3\right)=\left(x^{2}-3\right)\left(x^{3}-2\right)$
2. $x^{5}+x-2 x^{4}-2=\left(x^{4}+1\right)(x-2)$

(C) Factoing Quadratic Polynomials

(a) $x^{2}+2 x-15$
(b) $x^{2}-10 x+24$
(c) $x^{2}+6 x+9$
(d) $x^{2}+5 x+1 \quad$ |
(e) $3 x^{2}+2 x-8$
(f) $5 x^{2}-17 x+6$

(D) Special Forms

Important Formulas

$$
\begin{aligned}
a^{2}+2 a b+b^{2} & =(a+b)^{2} \\
a^{2}-2 a b+b^{2} & =(a-b)^{2} \\
a^{2}-b^{2} & =(a+b)(a-b) \\
a^{3}+b^{3} & =(a+b)\left(a^{2}-a b+b^{2}\right) \\
a^{3}-b^{3} & =(a-b)\left(a^{2}+a b+b^{2}\right)
\end{aligned}
$$

$x^{2}-20 x+100=(x-10)^{2}$
$25 x^{2}-9=(5 x+3)(5 x-3)$

$$
8 x^{3}+1=(2 x+1)\left(4 x^{2}-2 x+1\right)
$$

